

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and title page. They reflect the authors' opinions and are published as presented and without change,
in the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, IEEE Computer Society Press, or the Institute of Electrical and Electronics
Engineers, Inc.

Published by IEEE Computer Society Press
1730 Massachusetts Avenue, N.W.

Washington, D.C. 20036-1903

COVER DESIGNED BY JACK I. BALL ESTERO

IEEE Computer Society Order Number 743
Library of Congress Number 86-81582

IEEE Catalog Number 86CH2345-7
ACM Order Number 401860
ISBN 0-8186-0743-2 (paper)

ISBN 0-8186-4743-4 (microfiche)
ISBN 0-8186-8743-6 (case)

Prices (1986) ACM or IEEE Members: $60.00 prepaid
All others: $120 prepaid

Additional copies of the 1986 Proceedings may be ordered prepaid from:

ACM
Order Department

Post Office Box 64145
Baltimore, MD 21264

I EEE Service Center
445 Hoes Lane

Piscataway, NJ 08854

Computer Society of the IEEE
Post Office Box 80452

Worldway Postal Center
Los Angeles, CA 90080

Computer Society of the IEEE
Ave. de la Tanche

1160 Brussels, Belgium

Copyright and Reprint Permissions: Abstracting is perrnitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center. 29 Congress Street. Salem. MA
01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use
without fee. For other copying. reprint or republication permission. write to Director. Publishing serv
ices. IEEE. 345 E. 47 St.. New York. NY 10017. All rights reserved. Copyright © 1986 by The Institute
of Electrical and Electronics Engineers. Inc.

e Association for Computing Machinery

ii

~ THE COMPUTER SOCIETY
~OFTHEIEEE

This 1986 edition of the proceedings of the Fall Joint Computer Conference, published on the 50th
anniversary of the writing of the paper

"On Computable Numbers, with an Application to the Entscheidungs Problem,"

is dedicated to the memory of

ALAN M. TURING

who wrote:

"My contention is that machines can be constructed which will simulate the behaviour of the human
mind very closely. They will make mistakes at times, and at times they may make new and very
interesting statements, and on the whole the output of them will be worth attention to the same sort of
extent as the output of a human mind."

How close are we to his vision today?

Conference Committee 1986 Fall Joint Computer Conference

Harold S. Stone
Program

David C. Wood
Finance

Harry M. Kepner
Operations

Carla Elfeld
Samuel Fleming
M. Alex Harkins
Deanna Kirchoff.
Charlotte Lin
Peter Maverick
George Weinreich

Dennis J. Frailey
Registration and
Conference Advisor

Bruce Anderson
Publications

La Joyce Doran

William Lively
Resources

Rosetta L. Winkler
Conference Secretary

Joan W. Golden

FJCC S.teeringCommittee

Dick B. Simmons
Chairman

James H. Aylor

Roy L. Russo.
President, Computer Society of the IEEE

William Habingreither
Wendy Chin

Stanley Winkler
Conference Chairman

v

Toni Shetler
Professional
Development

Karen Duncan
Helen Takacs
Judi Paulos
Kermit Paulos

Beth Stinnette
Executive Education Coordinator

David M. Hyatt
Industrial Liaison

A.T. Landberg

Alex A.J. Hoffman
Society Liaison

Karen Duncan
Conference
Management

Thomas A. D'Auria
Special Events

Adrian J. Basili
TechnicaL Advisor

Tim Durkin
Exhibits

Cynthia Cegelski
Lynda Rosenthal

Seymour J. Wolfson
Past Chairman

James Iverson

Paul W. Abrahams
President, Association for Computing :Machinery

James Adams'
Pegotty Cooper

Program Committee

Referees

Abraham, J.A. Dandapani, R.
Adams, S. David, R.
Agarwal, R. De Jong, K.
Agarwal, Y.K. Driscoll, J.R.
Aida,H. Duchamp, D.
Aikens, J. Eager, D.L.
Allen, P. Ezzat, A.
Alonso, R. Freitas, R.
Ammann,A. Ferrari, D.
Babaoglu, O. Friedman, D.
Bard, Y. Friedman, M.
Benjamin, J. Furthgott, D.
Bennett, B.T. Gagliardi, R.
Berghel, H. Gangopadhyay, D.
Birman, K. Garcia-Molina, H.
Bose, P. Gerasch, T.
Brandenberg, J. Gilbert, R.
Brown, J.W. Goosen, H.
Carey, M. Goto, A.
Carlsson, G.E. Graham, D.
Carter, W.C. Hallmark, G.
Chen, c.Y. Hansen, WJ.
Cheng, V. Harandi, M.T.
Chikayama, T. Hassner, D.
Cook, J. Hayes, J.P.
Cooper, E. Hellerstein, J.L.
Copeland, G. Hillyer, B.
Cox,G. Homan, T.
Dana, C. Houghton, R.

1986 Fall Joint Computer Conference

Harold S. Stone, Program Chairman
Maureen Ferraro, Executive Program Coordinator

Lionel Baldwin
Laszlo Belady
Domenico Ferrari
Norman Gibbs
C. Lee Giles
William Howden
Kai Hwang
Laurel Kaleda
Elaine Kant
John Kender
David Kincaid
Kenneth Kolence
Jerome Kurtzberg
Stephen Lavenberg
Tony Marsland
John Meyer

Cleve Moler
Ryoichi Mori
Kenji Naemura
Anil Nigam
Arthur Parry
Richard Paul
James Peterson
Paul Purdom
David Rine
Daniel Siewiorek
Jack Stankovic
John White
Robert Wilensky
Michael Willett
Michael Wozny

1986 Fall Joint Computer Conference

Hutz, S. Matsumoto, Y. Robinson, J. Tokoro, M.
Hwang, K.T. Melamed, A. Rosenberg, A.L. Tokuda, H.
Ibrahim, H. Mitra, D. Sabbah, D. Tomita, S.
Ihara, H. Mirchandaney, R. Sakai, K. Townsley, D.
Ishiguro, M. Mok,A. Sanders, W.H. Tripathi, S.
Ishizuka, M. Moler, C. Sarin, S. Tsujii, J.
Iyer, B.R. Molina, H.G. Sauer, C.H. Turn, R.
Jha, N. Morita, Y. Scott, D. Valduriez, P.
Johnson, M.S. Mourad, S. Sekino, A. Varman, PJ.
Kaneda, Y. Mullarkey, P. Seth, S.c. Vernon, M.K.
Kawaoka, T. Muraoka, Y. Sevick, K.C. Waddle, Y.
Kender, J. Murthy, S. Sha, L. Wagner, K.
King, R. Nataraj, K.S. Shibayama, E. Wah,B.
Kjell, B. Newman, T. Shin, K.G. Wang, H.
Kobayashi, S. Neumann, P.G. Siewiorek, D.P. Wang, P.
Kokubu, A. Ng, Y.W. Silberschatz, A. Whang, K.Y.
Koo,R. Nicola, V. Singh, A. White, J.R.
Korth, H. Nitta, K. Smith, E. Willett, M.
Krishna, M. Norris, E. Stankovic, J. Williamson, C.
Kung, H.T. Okada, Y. Stephenson, P. Wolberg, G.
Kuper, G. Okugawa, S. Stewart, B. Wong,M.
Kurose, J. Omori,K. Stone, H.S. Wozny,M.
Landwehr; C.E. O'Neill, D.M. Sturgis, H. Yemini, Y.
Lee,!. Patel, J. Suwa,M. Yokota, M.
McCall, T. Preparata, P.P. Sylvester, J. Yonezawa, A.
McCluskey, EJ. Ramamritham, K. Tamaki, H. Young, H.
Malek,M. Rashid, R. Tanaka, H. Yuba, T.
Malhotra, A. Reddy, S.M. Tanaka, Y. Zahorjan, J.
Masson, G .M. Reeker, L. Toda, M. Zicari, R.

vii

Table of Contents

Dedication to Alan M. Turing .. .iii

Conference Committee .. v

Program Committee .. vii

Referees. .vii

FJCC '86-A Conference for the Profession-Stanley Winkler xxi

FJCC '86-A New Beginning-Harold S. Stone xxiii

Conference-at-a-Glance .. xxvi

EDUCATION ARENA

TRACK ED-I: New Technology in Education. Track Chair: Lionel Baldwin, President, National
Technological University

Session 1 - Education by Satellite. Session Chair: Lionel Baldwin, National
Technological University (I-B)

AMCEE Programming for Computer Professionals, J. T. Fitch, AMCEE 1

NTU Computer Engineering Program, F. J. Mowle, D. G. Meyer, and P. H.
Swain, Purdue University ... 5

NTU Computer Science Program, S. Sahni, University of Minnesota 11

Ses~ion 2 - Computers in Education. Session Chair: Arthur Melmed,
Consultant (4-B)

Workstations at Carnegie Mellon, B. A. Sherwood, Carnegie Mellon
University ... 15

Intelligent Tutoring Systems for Professionals, A. M. Lesgold, University of
Pittsburgh .. 18

SOFTWARE SYSTEMS ARENA

TRACK SS-I: Software Engineering. Track Chair: Laszlo Belady, MCC

Session 1 - Object-Oriented Software. Session Co-Chairs: Clarence Ellis and
Ted Biggertsaif, MCC (2-C)

An Approach to Type Safety in a Traits System, G. Curry, Sequent Computer Systems 25

Object-Oriented Programming for Macintosh Applications, L. Rosenstein,
K. Doyle, and S. Wallace, Apple Computer, Inc 31

Classes versus Prototypes in Object-Oriented Languages, A. H. Borning,
University of Washington .. 36

Why Properties Are Objects or Refinements of "is-a," S. B. Zdonik, Brown
University ... 41

ix

TRACK SS-4: Programming Languages, Compilers and Environments. Track
Chair: John R. White, Xerox Corporation

Session 5 - Programming Languages. Session Chair: John White, Xerox
Corporation (7-B)

A Systolic Parsing Algorithm for a Visual Programming Language, A. W.
Bojanczyk and T. D. Kimura, Washington University48

Learning, Research and the Graphical Representation of Programming, R. P.
Taylor, N. Cunniff, and M. Uchiyama, Columbia University 56

Command Language Support for Application Programs, C. C. Genet,
Grumman Data Systems Corp .. 64

ARTIFICIAL INTELLIGENCE ARENA

TRACK AI-2: Computer Vision. Track Chair: John Kender, Columbia University

Session 2 - Model-Based High-Level Vision. Session Chair: John Kender,
Columbia University (5-1)

Survey of Image Quality Measurements, I. E. Abdou and N. J. Dusaussoy,
University of Delaware .. 71

A Spatial Knowledge StI1.Jcture for Image_ Information Systems Using
Symbolic Projections, S-K. Chang and E. Jungert, University of Pittsburgh
and FFV Elektronik AB. 79

Document Image Understanding, S. N. Srihari, State University of of New
York at Buffalo .. 87

TRACK AI-3: Robotics. Track Chair: Richard Paul, University of Pennsylvania

Session 1 - Robot Perception. Session Chair: Takeo Kanade, Carnegie Mellon
University (6-1)

Living in a Dynamic World, R. L. Andersson, AT&T Bell Laboratories 97

CMU Sidewalk Navigation System: A Blackboard-Based Outdoor
Navigation System Using Sensor Fusion with Colored-Range Images, Y. Goto,
K. Matsuzaki, I. Kweon, and T.
Obatake, Carnegie Mellon University 105

Error Modelling in Stereo Navigation, L. Matthies and S. A. Shafer,
Carnegie Mellon University .. 114

Session 2 - Task-Level Robot Programming. Session Chair: Tomas Lozano
Perez, MIT (7-G)

Automatic Grasp Planning: An Operation Space Approach, M. T. Mason and
R. C. Brost, Carnegie Mellon University 124

Planning Stable Force-Closure Grasps, V.-D. Nguyen, MIT 129

Off-Line Planning for On-Line Object Localization, T. Lozano-Perez and
W. E. L. Grimson, MIT .. 138

Session 3 - Real-Time Robot Programming. Session Chair: Russell Taylor,
IBM T. J. Watson Research Center (8-G)

AMLlX: A Programming Language for Design and Manufacturing, L. R.
Nackman, M. A. Lavin, R. H. Taylor, W. C. Dietrich, Jr., and D. D.
Grossman, IBM T. J. Watson Research Center 145

Satyr and the Nymph: Software Archetype for Real-Time Robotics, J. B.
Chen, B. S. R. Armstrong, R. S. Fearing, and J. W. Burdick, Stanford
University ... 160

x

The Meglos User Interface, R. D. Gaglianello and H. P. Katseif, AT&T Bell
Laboratories . 169

A Robot Force and Motion Server, H. Zhang and R. P. Paul, University of
Pennsylvania .. 178

TRACK AI-4: Rule-Based Systems. Track Chair: David C. Rine, George Mason
University

Session 1 - Software Engineering Methods for Rule-Based Systems. Session
Chair, David C. Rine, George Mason University (5-C)

Software Engineering for Rule-Based Software Systems, R. J. K. Jacob and
J. N. Froscher, Naval Research Laboratory 185

Session 3 - Rule-Based Models and Applications. Session Chair:
Elaine Kant, Schlumberger Doll Research Center (8-C)

An Organizational Framework for Comparing Adaptive Artificial
Intelligence Systems, T. A. Blaxton and B. G. Kushner, BDM Corp 190

An Object/Task Modeling Approach Based on Domain Knowledge and
Control Knowledge Representation, Q. Chen, Research Institute of
Surveying and Mapping, Beijing China 200

A Plant Intelligent Supervisory Control Expert System, M. Ali and E. S.
Washington, University of Tennessee Space Institute 207

A Knowledge-Based Layout Design System for Industrial Plants, K.
Yoshida, Y. Kobayashi, Y. Ueda, Hitachi, Ltd., and H. Tanaka, S. Muto, and
J. Yoshizawa, Tokyo Electric Power Co. Inc 216

Session 4 - Prolog and Frame-Based Methods. Session Chair: Kenneth De
Jong, George Mason University (9-C)

A Logic Programming Approach to Frame-Based Language Design, H-H.
Chen, I-P. Lin, and C-P. Wu, National Taiwan University 223

Interfacing Prolog to Pascal, K. Magel, North Dakota State University 229

Knowledge-Based Optimization in Prolog Compiler, N. Tamura, IBM Japan,
Ltd .. 237

TRACK AI-5: Natural Language Processing. Track Chair: Robert Wilensky,
University of California at Berkeley

Session 1 - User Interfaces. Session Chair: Robert Wilensky, University of California
at Berkeley (1-1)

Communication with Expert Systems, K. R. McKeown, Columbia
University ... 241

Language Analysis in Not-So-Limited Domains, P. S. Jacobs, General
Electric Corporate Research and Development. 247

Providing Expert Systems with Integrated Natural Language and Graphical
Interfaces, P. J. Hayes, Carnegie Group, Inc 253

TEAM: An Experimental Transportable Natural-Language Interface, P.
Martin, D. E. Appelt, B. J. Grosz, and F. Pereira, SRI International. 260

xi

SUPERCOMPUTING ARENA

TRACK SC-l: Parallel Computation. Track Chair: Kai Hwang, University of
Southern California

Session 1 - Parallel Processing for AI. Session Chair: Kai Hwang, University
of Southern California (I-D)

Parallel Processing of a Knowledge-Based Vision System, D. I. Moldovan
and C. 1. Wu, University of Southern California 269

A Fault Tolerant, Bit-Parallel, Cellular Array Processor, S. G. Morton, ITT
Advanced Technology Center ... 277

Implementation of Parallel Prolog on Tree Machines, H. Miura, Fujitsu Ltd.,
M. Imai, Toyohashi University, M. Yamashita, Hiroshima University, and
T. Ibaraki, Kyoto University ... 287

Optimal Granularity of Parallel Evaluation of AND Trees, G-J. Li and B. W.
Wah, University of Illinois at Urbana-Champaign 297

Session 2 - Parallel Algorithms for Supercomputing. Session Chair: Benjamin
Wah, University of Illinois at Urbana-Champaign (2-D)

Parallel Preprocessing and Postprocessing in Finite-Element Analysis on a
Multiprocessor Computer, P. S. Tseng, Carnegie Mellon University, and
K. Hwang, University of Southern California at Los Angeles 307

A New Class of Parallel Algorithms for Solving Linear Tridiagonal Systems,
S. Lakshmivarahan and S. K. Dhall, University of Oklahoma 315

A Parallel Computer Based on Cube-Connected Cycles for Wafer-Scale
Integration, M. J. Chung, E. J. Toy, and A. Gupta, Rensselaer Polytechnic
Institute .. 325

TRACK SC-3: Multiprocessors. Track Chair: Daniel Siewiorek, Carnegie Mellon
University

Session 1 - Multiprocessors I. Session Chair: Zary Segall, Carnegie Mellon
University (4-D)

MUPPET - A Programming Environment of Message-Based
Multiprocessors, H. Muehlenbein, F. Limburger, S. Streitz, and S. Warhaut,
GMD, West Germany .. 336

Distributed Functions Allocation for Reliability and Delay Optimization, S.
Hariri and C. S. Raghavendra, University of Southern California at Los
Ange.les .. 344

DBCL: Data-Flow Computing Base Language with n-Value Logic, J. Herath,
N. Saito, K. Toda, Y. Yamaguchi, and T. Yuba, Kieo University,
Japan .. 353

Session 2 - Multiprocessors 2. Session Chair: Pat McGehearty,
Microelectronics and Computer Technology Corporation (5-D)

Evon: An Extended von Neumann Model for Parallel Processing, W.-M.
Ching, IBM T. J. Watson Research Center 363

Optimal Code Generation for Expressions on Super Scalar Machines, P.
Bose, IBM T. J. Watson Research Center ~ .. 372

A Symmetric Concurrent B-Tree Algorithm, V. Laninand D. Shasha,
Courant Institute, New York University 380

xii

Session 3 - High-Speed Techniques. Session Chair: William Brantley, IBM T.
J. Watson Research Center (6-D)

Architecture of a Fiber Optics Based Distributed Information Network
FORTIS: Local Area Network, P. C. Barr, Northeastern University, and
S.O. Krishnamoorthy, Framingham State College 390

On the Design of Fault-Tolerant Systolic Arrays with Linear Cells, C. Y.
Chen and J. A. Abraham, University of Illinois at Urbana400

The Design and Development of a Very High Speed System Bus-The
Encore Multimax Nanobus, D. J. Schanin, Infinity Systems, Inc410

TRACK SC-4: Optical Computing. Track Chair: C. Lee Giles, AFOSR/NE

Session 1 - Optical Computers. Session Chair: John Caulfield, University of
Alabama (I-A)

Optoelectronic Devices for Computing, F. J. Leonberger, UT Research
Center , 419

Architectures for Optical Matrix Multipliers, R. A. Athale, 8DM
Corporation ... 422

Session 2 - New Directions in Optical Computing. Session Chair: C. Lee Giles,
AFOSR/NE (2-A)

Optical Realizations of Neural Network Models, D. Psaltis, C.LT428

Optical Symbolic Computing, B.O. Kushner, BDM Coproration, and J. Neff,
DARPA .. 434

An Extendible Optically Interconnected Parallel Computer, A. D. McAulay,
Texas Instruments, Inc441

Session 3 - Optical Interconnections for Computing. Session Chair: John Neff,
DARPA/DSO (3-A)

Optical Interconnect Technology Developments, L. D. Hutcheson,
CyberOptics Corporation448

Optical Interconnection Systems for Digital Parallel Processors, A. A.
Sawchuk, University of Southern California457

Optical Interconnection Technology in the Telecommunications Network, D.
H. Hartman, Bell Communications Research464

TRACK SC';S: Networks. Track Chair: Michael Willett, IBM Corporation

,Session 1 - Implementing a Token-Ring Local Area Network, Session Chair:
- Michael Willett,IBM Corporation (4-A))

Standards and. Architecture for Token-Ring Local Area Networks, J. Winkler
and J. Munn, IBM Corp .. .479

The IBM Token-Ring Network: A Functional Perspective, Michael Willett,
IBM Corp ... 489

Implementing the IEEE 802.5 Token-Ring Standard, M. C.Hamner and J. J.
Carlo, Texas Instruments, Inc .. .498

The Fiber Distributed Data Interface: A Bright Future Ahead, S. P. Joshi,
Advanced Micro DeviCes .. 504

xiii

ALGORITHMS ARENA

TRACK AL-l: Artificial Intelligence Algorithms. Track Chair: Tony A. Marsland,
University of Alberta

Session 1 - Computer Chess Techniques. Session Chair: Tony A. Marsland,
University of Alberta (3-H)

Phased State Space Search, T. A. Marsland and N. Srimani, University of
Alberta ... 514

Improved Parallel Alpha-Beta Search, J. Schaeffer, University of
Alberta ... 519

TRACK AL-2: Numerical Methods. Track Chair: David R. Kincaid, University of
Texas at Austin

Session 1 - Vector and Parallel Algorithms. Session Chair: David R. Kincaid,
University of Texas at Austin (7-D)

New ADI Model Problem Applications, N. S. Ellner and E. L. Wachspress,
University of Tennessee ... 528

Finite Element Analysis Using Advanced Processors, G. F. Carey and E.
Barragy, University of Texas at Austin 535

Parallelism in Solving PDEs, J. R. Rice, Purdue University 540

Geophysical Modeling - Migration Viewed as a Spectrum of Supercomputer
Applications, O. G. Johnson and O. Lheman, University of Houston 547

Session 2 - Finite Differences, Finite Elements, and Grid Generation - A
Tutorial. Session Chair: Linda J. Hayes, University of Texas at
Austin(8-D)

A Tutorial on Finite-Difference Methods and Ordering of Mesh Points, D. M.
Young and D. R. Kincaid, University of Texas at Austin 556

Finite Element Methods, J. T. Oden, University of Texas at Austin 560

Boundary Element Methods, S. R. Kennon, University of Texas at
Austin ... 563

A Comparison of Grid Generation Techniques, S. R. Kennon, University of
Texas at Austin, and G. S. Dulikravich, Pennsylvania State University 568

TRACK AL-3: General Algorithms. Track Chair: Paul Purdom, Indiana University

Session 1 - Searching. Session Chair: Cynthia Brown, Northeastern
University (7-1)

Intelligent Backtracki~g Using Symmetry. C. Brown, L. Finkelstein.
Northeastern University, and P. W. Purdom, Jr., Indiana University 576

Time-Space Tradeoffs for Tree Search and Traversal, D. A. Carlson,
University of Massachusetts at Amherst 585

A Fast Probabilistic Algorithm for Four-Coloring Large Planar Graphs, R. A.
Archuleta and H. D. Shapiro, University of New Mexico 595

Session 2 - Data Structures. Session Chair: Michael Loui, University of
Illinois (8-1)

Techniques for Collision Resolution in Hash Tables with Open Addressing, J.
I. Munro and P. Celis, University of Waterloo 601

Performance Analysis of Concurrent Maintenance Policies for Servers in a
Distributed Environment, F. B. Bastani, W. Hilal, and I.-R. Chen,
University of Houston .. 611

xiv

Construction Through Decomposition: A Divide-and-Conquer Algorithm for
the N-Queens Problem, B. Abramson and M. M. Yung, Columbia
University ; 620

Session 3 - Optimization. Session Chair: Larry Russo, University of
Washington (9-1)

Two Flow Routing Algorithms for the Maximum Concurrent-Flow Problem,
J. Biswas, University of Texas at Austin, and D. W. Matula, Southern
Methodist University ... 629

A Least-Cost Partition Algorithm, T. J .Marlowe, Jr., Seton Hall
University ... 637

A Polynominal Determination of the Most Recent Property in Pascal-Like
Programs, D. Armbruster, University of Stuttgart 648

MODELING AND MEASUREMENT ARENA

TRACK MM-l: Performance Modeling and Measurement. Track Chair: Stephen
Lavenberg, IBM T. J. Watson Research Center

Session 1 - Performance Modeling and Measurement. Session Chair: Stephen
Lavenberg, IBM T. J. Watson Research Center (I-G)

Frame Caching in Menu-Driven Videotex Systems, S. Lakshmi, S. Calo, and
P. Gupta, IBM T. J. Watson Research Center 655

The Contribution to Performance of Instruction-Set Usage in Systeml370, O.
R. LaMaire and W. W. White, IBM T. J. Watson Research Center 665

Dynamic Load Sharing in Distributed Database Systems, P. S. Yu, S.
Balsamo, and Y. H. Lee, IBM T. J. Watson Research Center 675

A Load Index for Dynamic Load Balancing, D. Ferrari and S. Zhou,
University of California at Berkeley 684

Session 2 - Performance Modeling Methods. Session Chair: Stephen
Lavenberg, IBM, T. J. Watson Research Center (2-G)

An Approximation of the Processing Time for Random Graph Model of
Parallel Computation, E. Gelenbe, University of Paris, R. Nelson, T.
Philips, and A. Tantawi, IBM T. J. Watson Research Center 691

Performance Analysis of Dynamic Locking, I. K. Ryu, University of
Southern California, and A. Thomasian, IBM T. J. Watson
Research Center ". 698

Session 3 - Performance Modeling Workstations. Session Chair: Stephen
Lavenberg, IBM T. J. Watson Research Center (3-B)

A Graphical Interface for Specification of Extended Queueing Network
Models, J. B. Sinclair and S. Madala, Rice University 709

A Graphics-Oriented Modeler's Workstation Environment for The RESearch
Queueing Package (RESQ), J. F. Kurose, K. J. Gordon, University of
Massachusetts, and R. F. Gordon, E. A. MacNair, and P. D. Welch, IBM
Hawthorne Research Laboratory. .719

The Performance Analysis Workstation: An Interactive Animated Simulation
Package for Queueing Networks, B. Melamed, AT&T Bell
Laboratories ... 729

xv

TRACK MM-2: The State of the Art of Capacity Management in MVS Systems.
Track Chair: Kenneth Kolence, Kolence Associates

Session I - Capacity Management 1. Session Chair: Kenneth Kolence,
Kolence Associates (3-G)

An Overview of the Capacity-Management Process, K. W. Kolence, Kolence
Associates. .741

An Overview of Performance and Predictions for MVS Systems and SNA
Networks, J. P. Buzen, BGS Systems, Inc 751

A Survey of the State of Art and Practice in lIO Subsystem Modeling and
Analysis, B. J. Smith, IBM General Products Division 760

Session 2 - Capacity Management 2. Session Chair: Kenneth Kolence,
Kolence Associates (4-G)

The Evolving Role of Software Products in Capacity Management: A Survey,
P. C. Howard, EDP Performance Review 764

The Evolution of Workload Management in the Data Processing Industry: A
Survey, T. L. Lo, McDonnell Douglas 768

The Evolution of Software Performance Engineering: A Survey, C. U. Smith,
L & S Computer Technology, Inc .. 778

COMPUTER DESIGN ARENA

TRACK CD-I: Fault-Tolerant Computing. Track Chair: John Meyer, University of
Michigan

Session 2 - Evaluation. Session Chair: Kishor S. Trivedi, Duke University
(5-E)

Performability Analysis of Operation Modes of Configurable Duplex
Systems, B. R. Iyer, D. M. Diaz, and P. S. Yu, IBM T. J. Watson Research
Center ... 785

Recognition of Error Symptoms in Large Systems, R. K. Iyer, L. T. Young,
and V. Sridhar, University of Illinois at Urbana-Champaign 797

METASAN: A Performability Evaluation Tool Based on Stochastic Activity
Networks, W. H. Sanders and J. F. Meyer, Industrial Technology
Institute .. 807

A Hierarchical, Combinatorial-Markov Method of Solving Complex
Reliability Models, R. A. Sahner, Gould CSD, and K. S. Trivedi, Duke
University ... 817

Session 3 - Testing. Session Chair: Edward J. McCluskey, Stanford
University (6-E)

Design of Systems with Concurrent Error Detection Using Software
Redundancy, K. A. Hua and J. A. Abraham, University of Illinois
at Urbana ... 826

Stuck-At Fault Detection in Parity Trees, S. Mourad, J. L. A. Hughes, and
E. 1. McCluskey, Stanford University 836

A Two-Level Guidance Heuristic for ATPG, T. Kirkland, MCC, and M. R.
Mercer, University of Texas at Austin 841

xvi

TRACK CD-2: VLSI Design and Test: Theory and Practice. Track Chair: Jerome
M. Kurtzberg, IBM T. J. Watson Research Center

Session 1 - VLSI Techniques of Design Automation. Session Chair: Sheldon
Akers, University of Massachusetts at Amherst (1-E)

Automatic Intra-Device Pin and Element Reassignment (AID PER)
Algorithm, H. A. Hershey and T. A. Onitiri, AT&T Bell Laboratories 848

A Knowledge-Based TDM Selection System, X. Zhu and M. A. Breuer,
University of Southern California at Los Angeles 854

Deriving Module Interconnectivity from Behavioral Specifications and
Coupling a VLSI Layout Editor for Error-Free Routing, G. C.
Op,alakrishnan,N. C. Lee, D. R. Smith, and M. K. Srivas, State University of
New York ... 864

Session 2 - VLSI Research in Universities. Session Chair: Timothy N. Trick,
University of Illinois at Urbana (2-E)

Recent Results in VLSI CAD at MIT, R. E. Zippel, P. Penfield, Jr., L. A.
Glasser, C. E. Leiserson, 1. L. Wyatt, Jr., and J. Allen, Massachusetts
Institute of Technology. 871

Highlights of CMU Research on CAD, CAM, CAT of VLSI Circuits, J. P.
Shen, Carnegie Mellon University 878

Research in Reliable VLSI Architectures at the University of Illinois, 1.
A. Abraham, University of Illinois at Urbana-Champaign 890

Highlights of VLSI Research at Berkeley, C. H. Sequin, A. R. Newton, and
A.L. Sangiovanni-Vincentelli, University of California at Berkeley 894

Session 4 - Expert Systems for Design and Test. Session Chair: Pradip Bose,
IBM T. J. Watson Research Center (7-E)

DEFT: A Design for Testability Expert System, 1. A. B. Fortes and M. A.
Samad, Purdue University ... 899

Experiences in Prolog-Based DFT Rule Checking, G. Cabodi, P. Camurati,
and P. Prinetto, Politecnico di Torino 909

A Rule-Based System for the Optimal State Assignment of Controllers, E.
Dupont, 1. Idt, and G. Saucier, Lab. Circuits et Systems 915

TRACK CD-3: Computer Graphics. Track Chair: Michael Wozny, Rensselaer
Polytechnic Institute

Session 1 - Computer Geometry. Session Chair: Louis Doctor, Raster
Technologies, Inc. (8-E)

Constructive Solid Geometry: A Symbolic Computation Approach, L. L. Leff
and D. Y. Y. Yun, Southern Methodist University 925

Creation and Smooth-Shading of Steiner Patch Tessellations, D. E. Breen,
Rensselaer Polytechnic Institute ... 931

Algorithms for Normal-Vector Interpolation on Polygonal Surfaces, P. H.
Getto, Rensselaer Polytechnic Institute 941

xvii

INTERNATIONAL DEVELOPMENT ARENA

TRACK ID-I: Computer Developments in Japan. Track Chair: Ryoichi Mori,
University of Tsukuba, Track Secretariat: Mr. Kenji Naemura, NTT Electrical
Communications Laboratories

Session 1 - Fifth Generation Computers I: Language Architecture. Session
Chair: Koichi Furukawa, ICOT (4-F)

Guarded Hom Clauses and Experience with Parallel Logic Programming, J.
Tanaka, K. Ueda, T. Miyazaki, A. Takeuchi, Y. Matsmoto, and K.
Furukawa, ICOT Research Center 948

"Kabu-Wake" Parallel Inference Mechanism and It s Evaluation, H.
Masuzawa, K. Kumon, A. Itashiki, K. Satoh, and Y. Sohma, Fujitsu Ltd 955

A Very Fast Prolog Complier on Multiple Architectures, T. Kurokawa, N.
Tamura, Y. Asakawa, and H. Komatsu, IBM Japan 963

A Relational-Database Machine Based on Functional Programming
Concepts, Y. Kiyoki, K. Kato, and T. Masuda, University of Tsukuba 969

Session 2 - Fifth Generation Computers II: Applications. Session Chair:
Koichi Furukawa, ICOT (5-F)

Knowledge-Based Expert System for Hardware Logic Design, T. Mano, F.
Maruyama, K. Hayashi, T. Kakuda, N. Kawato, and T. Uehara, Fujitsu,
Ltd .. 979

Research Activities on Natural Language Processing of the FOCS Project, T.
Yokoi, H. Miyoshi, K. Mukai, and Y. Tanaka, ICOT 987

ARGOS/V: A System for Verification of Prolog Programs, T. Kanamori, H.
Fujita, H. Seki, K. Horiuchi, and M. Maeji, Mitsubishi Electric 994

Session 3 - Advanced Microcomputer Developments. Session Chair: Iwao
Morishita, University of Tokyo (6-F)

A 32-Bit CMOS Microprocessor with Six-Stage Pipeline Structure, H.
Kaneko, Y. Miki, S. Nohara, K. Koya, and M. Araki, NEC Corp 1000

Advanced Super Integration, T. Saito, T. Yamamoto, T. Shigematsu, K.
Nagao, S. Takeda, and Y. Suzuki, Toshiba Corp 1008

A 16-Bit Microprocessor with Multi-Register Bank Architecture, H.
Maejima, H. Kida, T. Watanabe, S. Baba, and K. Kurakazu, Hitachi,
Ltd ... 1014

Session 4 - Supercomputing Systems. Session Chair: Yoshikuni Okada,
Electrotechnical Laboratory (7-F)

Software-Oriented Approach for Supercomputer Design, K. Miura, Y.
Tanakura, and S. Kamiya, Fujitsu America 1020

Advanced Implicit-Solution Function of DEQSOL and Its Evaluation, C.
Kon'no, M. Saji, N. Sagawa, and Y. Umetani, Hitachi, Ltd 1026

Fortran and Tuning Utilities Aiming at Ease of Use of a Supercomputer, H.
Katayama and M. Tsukagoshi, NEC Corp 1034

The IX Supercomputer for Knowledge-Based Systems, T. Higuchi, T.
Furuya, H. Kusumoto, K. Handa, and A. Kokubu, ETL 1041

Session 5 - Interworking Systems. Session Chair: Kenji Naemura, NTT
Electrical Communications Laboratories (8-F)

Methods for Achieving Integrated Operation in a High-Performance Optical
Loop Intercomputer Communications System, M. Kurata, S. Tsuruho, T.
Isogawa, and H. Nakashima, NTT 1050

xviii

Autonomous Decentralized Software Structure and Its Application, K. Mori,
H. Ihara, Y. Suzuki, K. Kawano, M. Koizumi, M. Orimo, K. Nakai, and
H. Nakanishi, Hitachi Ltd ... 1056

Approaches to an Integrated Office Environment, M. Yoshida, M. Kotera, K.
Yokoyama, and S. Hikita, Oki Electric ... 1064

OPERATING SYSTEMS AND DATA BASES ARENA

TRACK OSDB-l: Operating Systems. Track Chair: James Peterson, MCC

Session 1 - Applications of Petri-Nets. Session Chair: Paul Reynolds,
University of Virginia (7-H)

Use of Petri-Net Invariants to Detect Static Deadlocks in Ada Programs, B.
Shenker, T. Murata, and S. Shatz, University of Illinois at Chicago 1072

A CAD Tool for Stochastic Petri-Nets, M. K. Molloy, Carnegie Mellon
University .. ' .. 1082

Petri - A UNIX Tool for the Analysis of Petri-Nets, I. R. Forman,
Microelectronics & Computer Technology Corp 1092

The GTPN Analyzer: Numerical Methods and User Interface, M. A.
Holliday, Duke University, and M. K. Vernon, University of Wisconsin
at Madison1099

Session 2 - Security and Protection in Computer Systems. Session Chair:
James Peterson, MCC (8-H)

Security and Privacy Requirements in Computing, R. Tum, California State
University at Northridge .. 1106

Analyzing the Security of an Existing Computer System, M. Bishop, NASA
Ames Research Center. 1115

A Network Technique to Achieve Program and Data Security with Nominal
Communications Overhead, J. Driscoll, H. Srinidhi, University of Central
Florida, and T. S. Chesser, Martin Marietta Data Systems 1120

TRACK OSDB-2: Distributed Operating-Systems. Track Chair: Jack Stankovic,
Carnegie Mellon University

Session 1 - Distributed-Operating Systems. Session Chair: Jack Stankovic,
Carnegie Mellon University (5-H)

From RIG to Accent to Mach: An Evolution of a Network Operating System,
R. F. Rashid, Carnegie Mellon University 1128

Load Balancing in NEST: A Network of Workstations, A. K. Ezzat, AT&T
Bell Laboratories ... 1138

Checkpointing and Rollback-Recovery for Distributed Systems, R. Koo and
S. Toueg, Cornell University .. 1150

The Gutenberg Operating System Kernel, P. Chrysanthis, K. Ramamritham,
D. Stemple, University of Massachusetts, and S. Vinter, BBN
Laboratories .. 1159

Session 2 - Distributed Databases. Session Chair: Hector Garcia-Molina,
Princeton University (6-H)

CARAT: A Testbed for the Performance Evaluation of Distributed Database
Systems, W. H. Kohler and B-C. Jenq, University of Massachusetts 1169

Request II - A Distributed Database System for Local Area Networks, M.
Rusinkiewicz and D. Georgakopoulos, University of Houston 1179

xix

A Protocol for Failure and Recovery Detection to Support Partitioned
Operation in Distributed Database Systems, J. K. Kim and G. G.
Belford, University of Illinois Urbana-Champaign 1189

Replication in Distributed Systems: The Eden Experience, J. D. Noe, A. B.
Proudfoot, and C. Pu, University of Washington 1197

TRACK OSDB-3: Data Bases. Track Chair:Anil Nigam,IBM T. J. Watson
;Research Center

Session 1 - Data Bases: Session Chair: Anil Nigam, IBM T. J. Watson
'Research Center (I-H)

MA YBE Algebra Operators in Database Machine Architecture, L. L. Miller,
Iowa State University, and A. R. Hurson; Pennsylvania State
University .. 1210

Pros and Cons of Operating System Transactions for Database Systems, G.
Weikum, Technical University of Darmstadt, West Germany _ 1219

Main Memory Database Recovery, M. Eich, Southern Methodist University 1226

A Relational-Database Machine Organization for Parallel Pipelined Query
Execution, M. Hirakawa, T. Tsuda, M. Tanaka, and T. Ichikawa,
Hiroshima University .. 1233

Index to Authors '. 1245

xx

The 1986 Fall Joint Computer Conference
A Conference for the Profession

Stanley Winkler
Conference Chairman

A professional, technical conference is the term we have used to describe the 1986 Fall Joint
Computer Conference (FJCC '86). It was our aim to prepare the finest conference of the decade.
Sponsored by two great professional computer associations, the Association for Computing Machinery
(ACM) and the Computer Society of the IEEE, the FJCC was conceived as a conference-for-all
members. Specifically, the FJCC combines two meetings of the Societies customarily held.in the fall
season: The ACM National Conference and the COMPCON Fall meeting of the Computer Society
of the IEEE. The ACM Council and the Computer Society Governing Board will meet during FJCC
'86, as will various Boards and Committees, following the tradition of conducting Society business
during the annual Fall Meeting.

Professional, technical conferences in the United States have a long and honorable history that can be
traced back to the Mechanics Institutes of the 1800s. These Institute meetings, made necessary by the
rapid technical advances of the Industrial Revolution, allowed professionals in the field of engineer
ing to gather together and share problems and experiences. As the workforce became more special
ized, it was no longer adequate for industry to rely on the transfer of technical knowledge from father
to son or from master to apprentice. Today, in the computer field, professional conferences remain an
important, if not the most important, means of exchange of ideas, information, and knowledge within
the profession. While classroom education can provide the basis for entry into the profession, the
essential continuing education is best acquired by interaction with one's peers. This interaction
among peers is at once the function and the raison d'etre of professional, technical conferences.

Of course, times have changed, and our computing profession has changed with it. Thirty-five years
ago at the first joint meeting, in Philadelphia, the topics discussed encompassed most of the field as it
was known then. That completeness would be impossible to accomplish today. Nonetheless, it
seemed important to try, during FJCC '86, to provide a broad-based review of the most significant
topics that confront the computing profession and industry. The salient feature of the 1986 Fall Joint
Computer Conference is its broad-based nature. Equally important is the fact that, broad-based
though it is, FJCC'86 presents full in-depth discussions of the topics selected. The technical program
for FJCC '86, so ably developed under the leadership of Harold S. Stone, is a cornucopia of technical
delights prepared by experts for their fellow practitioners of the art of computing.

In his introduction to the FJCC '86 technical program (in this volume), Harold S. Stone refers to
FJCC '86 as "a new beginning." Since by definition all beginnings are new, one cannot quarrel with this
phrase. I think, however, that the French saying "the more things change, the more they remain the
same" also applies. I had the pleasant and comfortable feeling, on first seeing the finished FJCC '86
technical program, that the program is a return to the best traditions of the past. It is, indeed, a
thoroughly modern program, broad-based and in full detail. It displays, without compromise, the
current state-of-the-art. A casual look at the Conference-at-a-Glance confirms this assertion. Butthe
technical program of the 1986 Fall Joint Computer Conference does more than provide a static
snapshot of the world of computing today. It describes and represents the directions that the leaders
of the computing profession are taking.

This illumination of the directions that the computing profession is taking is the most important
function of an FJCC. Significantly, this illumination is not a prediction of the future gained by gazing
into a crystal ball, or. by the reading of tea leaves. It is, in fact, a self-fulfilling prophecy. The
participants in FJCC '86, the speakers, panelists, discussants, and attendees, are not just talking about
professional leadership in the 1990s-they are making it happen. They can make it happen because
"they" are the leaders, the top, key people incthe profession and in the industry. The content of

xxi

FJCC '86 in its breadth and depth is outstanding-probably exceeding that of any conference held in
the last decade. This unprecedented breadth and depth is achieved through the nine conferences that
are held simultaneously during FJCC '86.

Each of these nine conferences is a front-line, major event of its own. The nine conferences are:
Artificial Intelligence, Supercomputing, Software Systems, Algorithms, Modeling and Measurement,
Computer Design, Computer Developments in Japan, Operating Systems and Data Bases, and
Education.

The fact that these nine conferences are going on at the same time is a significant added dimension to
the FJCC '86 experience. Not only can FJCC participants meet the experts in their own specialty, but
they can interact with the leaders in other specialties. This provides an enrichment for the individual,
and, at the same time, is very good for the profession. The interpersonal communication among
specialists in various fields of computer science and engineering stimulates thinking and creativity.
This "cross-cultural" communication induces the propagation of ideas and concepts from one field
into another, adding robustness and vibrancy to our profession.

This Proceedings provides a permanent record of the technical papers presented at the Conference.
As such, it is a valuable addition to the shelves of our personal and organizational libraries. It does not,
however, capture the other dynamic and exciting aspects of FJCC '86; absent are the discussions
following each presentation of a technical paper, the poster sessions where last minute ideas are put
forth, and the conversations in the hallways and lounges during coffee breaks and after sessions. Also
not reflected in the Proceedings are the special events such as the world class Chess Tournaments
the 17th North American Computer Chess Championship and the 6th World Microcomputer Chess
Championship.

The FJCC was designed to provide a complete educational experience. Complementing the technical
program, Toni Shetler and her committee arranged an unparalleled Professional Education Program
(PEP) and a very interesting Exhibitor Technical Forum. The Professional Education Program, which
took place during the first two days of the Conference, gave attendees the opportunity to learn new
skills and to sharpen old ones. There were one- and two-day courses, many of the hands-on variety.
The Exhibitor Technical Forums provided the opportunity for vendors to discuss and explain the
technology imbedded in their principal products. All of these activities were part of the effort to attain
the objective of FJCC '86: to expand the professional horizons and capabilities of the conference
attendees.

It was my privilege to chair a Conference Committee of capable, dedicated individuals, who contrib
uted their time and effort in the service of the profession by creating the FJCC '86. They are
listed "elsewhere in this volume. To each of these friends I want to say, "Thank you." There were many
others who helped us and to all of them I want to express my sincere appreciation. And finally, I want "
to thank the participants because, in the final analysis, it is they who are the Conference.

xxii

The 1986 Fall Joint Computer Conference -A New Beginning

Harold S. Stone
Program Chairman

The Conference Role

The 1986 Fall Joint Computer Conference is a
conference of the future and of the past. The future
is embodied by the conference theme - Exploring
the Knowledge-Based Society - and the past by
its popular predecessor conference of the 1960s.
In looking forward, the conference offers technical
papers, panels, and tutorials to cover the topical
areas that form the technology base for the next
decade. Such areas as Artificial Intelligence,
supercomputers, design automation, computer
graphics, and networks are among the topics of
special attention. In looking backward to the
FlCC's of 20 years ago, the vast changes in the
discipline are evident, which underscores the
importance of providing state-of-the-art informa
tion in subject areas destined to form the core of
the field in coming years.

Consider the change in the hardware technology
from the 1960s to the 1980s. The supercomputers
of the 1960s are the micros and minis of the 1980s.
Who would believe then that such computing
power would be available on the desk tops of
virtually every researcher, analyst, programmer,
and student. The workhorse. of a typical scientific
installation in 1960 had 128K of 10 microsecond
memory. A low-cost microprocessor of 1986 has
256K of 150 nanosecond memory. A supercom
puter of 1965 had 2M bytes of 1 microsecond
memory. A typical workstation of 1986 has 4M
bytes of 120 nanosecond memory. The dramatic
improvements in cost and performance made
possible through VLSI technology were truly
unimaginable in the days of the former FlCC.

The impact of such changes on the computing field
are not yet fully assimilated, but the trends are
clear. In days of expensive hardware, software was
viewed to be inexpensive, more or less by defauk
Where hardware was too costly to commit to a
special-purpose job, or where the functional
requirements were too vague to lock into hardware,
the often-used solution was to build hardware to
do approximately what was desired, and to leave
the final tailoring to software. That is, constrain
the major cost by freezing the hardware at some
stage, and fill in the remainder of the implementa
tion with "inexpensive" software.

xxiii

All too often this approach had costly surprises in
store for the system developers. With hardware
frozen, the only freedom available to make such
systems work was in software development,
enhancements, and maintenance. Software costs
climbed continually during the life of systems since
software costs never ceased. In long-lived systems,
software costs eventually dwarfed the hardware
investment. Moreover, the inherent flexibility
attributed to software became a myth, as changes
to existing large-scale software became substan
tially more difficult and eventually impossible to
implement. On the other hand, hardware became
far more flexible, as each new generation of
computers was succeeded by faster and less
expensive generations, each upward compatible
with its predecessors. The relative flexibility of
hardware and software as viewed in the 1960s had
turned upside down by the 1970s.

To improve the software situation, substantial
efforts in high-level languages increased
programmer productivity, but, productivity as
measured in lines of code, failed to attain high
multiples that was once viewed necessary to
prevent the massive cost of software production
from swamping the industry. Who would have
predicted how this view would change after
widespread introduction of the microprocessor?
With millions of' potential users instead of
hundreds, the sales price of software could be kept
relatively low per user, in spite of high costs for
development. Moreover, as new microprocessors
were introduced, it was totally impractical to
rewrite a new software base for each new offering.
Survivability of the microprocessor was largely tied
to the ability to move a complete software base to
the microprocessor, and this in tum created the
market for portable software. With relatively little
effort, it is possible today to move a complete
operating system plus compilers, editors, and
supporting tools to a totally new microprocessor
with a unique instruction set.

Instead of writing new code that reinvents old
software, the field has developed techniques to
reuse software that does the job. The net result is
that most software has become inexpensive on a
per-user basis. Expensive software still exists,

however, where user communities are small, and
where techniques are embodied in software for the
first time.

Having reflected on the changes in computing
technology from when the FJCC was at its former
height to the present time when the FJCC has been
reborn, can we conceive of the changes that will
take place in the next several years? For example,
what will happen to programming as a profession?
Will it be a profession that supports a population
that seems to grow exponentially? Or will there be
a limit to that growth that holds the population
constant? Or will the numbers collapse? All three
of these models are possible, depending on how the
field places computer power in the hands of the
user. The exponential growth models the growth
in the number of computers, and is a model in
which each computer system requires individual
programming. The constant-population model is a
model in which a fixed pool of people is able to
supply a growing population of machines, and is
probably an accurate reflection of the industry in
the next few years as portable software becomes
more widely used in place of specially tailored
software. The last model in which fewer program
mers are able to supply a growing pool of machines
is one in which a relatively few "super" systems
created by highly skilled programming teams
account for large fractions of software use. The
remaining software can be supplied by a much
smaller pool of programmers under the first or
second models.

The potential for this last model clearly exists
today. If the model eventually becomes reality, the
industry will be far different from the one we know.
Are we ready for that event?

The 1986 FJCC is a conference where we can
examine the recent trends, hear the projections,
discuss the possibilities with the experts in each
field, and then prepare for the future. The key to
the FJCC is the technical focus. We must be an
informed profession, and we must look forward in
technology.

The growth of the computer profession has brought
diversity, and the diversity has splintered the
profession a hundred ways into the SIGs and TCs
that form the technical leadership of the disciplines
within the profession. The diversity has created
journals, newsletters, conferences, and workshops
with single themes directed to the experts in the
various areas. Each of these activities has had its
positive benefits within the narrow focus area, but
the single-focus activities cannot provide for
advances that require the synthesis of ideas from
multiple disciplines. The FJCC is, by design, a
multiple-focus conference. Its purpose is to bring
together the experts across a range of disciplines so
that the mix of ideas can provide impetus for new
projects attaining new plateaus that are not readily
achievable within anyone discipline.

Consider, for example, four different ways of

representing information. Individually, we might
have information represented as

• text,

• voice,

• graphics, or

• data base.

For each representation we can build a discipline
that deals with that representation exclusively, and
we create such disciplines as publishing, telephony,
computer graphics, and on-line information
utilities. Now reconsider the four representations,
and consider what happens when you join any two
together. A whole new discipline is created. If you
join text and voice, you obtain the voice-operated
typewriter, voice-data communications networks,
or spoken output from written text. If you combine
graphics and text, you create computer publishing,
intelligent copiers, and electronic encyclopedias.
But there is no need to focus on just the four data
representations. Pick any collection of special
interest areas and consider what new challenges can
be formed by combining any two or three areas.
This gives an inkling of what can happen when you
bring together active thinkers from a variety of
areas and h~t the pot boil. This is the FJCe.

Conference Management

How was the technical conference put together?
With a new conference we have no history from last
year, no experienced program committee to draw
upon, and no expectant audience ready to submit
materials to the annual gathering of the clan. This
conference was mounted as thirty tracks in the
major areas of computer science and engineering.
Each track chair had the charge to create a track
that best illuminated the area, whether through
solicited refereed papers, panels, or through invited
papers from recognized innovators. The confer
ence call also produced papers in abundance, and
these were distributed to the tracks for refereeing
according to the subject matter of the papers. In
all, 248 submissions were processed for the
conference. Of these, approximately 150 were
unsolicited and went through the conference
refereeing processing. Roughly one third of these
papers were accepted for the proceedings. The
remainder of the papers in the proceedings were
generated by the collective energy of the track
chairs. These were treated either as invited papers
not subjected to an external review or as solicited
papers that were reviewed and possibly modified
prior to publication in the proceedings. A number
of solicited papers were dropped from consider
ation after the reviewing process, but the exact
numbers of such rejections is not known because
such papers were not coordinated centrally.

With a large fraction of solicited papers at this
conference, there became a potential for abuse of
the refereeing system. To assure high technical

. quality, it is essential that papers receive fair,

xxiv

independent assessments by competent reviewers.
Invited papers were not refereed, so the basis for
invitation had to be on the basis of past perform
ance. Chairs of sessions have been selected for
their contributions, and they themselves are
candidates for invited papers in their own sessions.
However, for ethical reasons, no person at this
conference was permitted to accept a paper in
which that person or a close colleague was among
the authors. In each such instance in this
proceedings, the paper underwent independent
review and was accepted by a party other than the
session chair.

The success of the program is due entirely to the
efforts of the program committee members (listed
on page vii). Finally, I thank each of the following
for their contributions:

Sheldon Akers T. A. Marsland
Lionel V. Baldwin Nancy Martin
Laszlo Belady Ed ward J. McCluskey
Ted Biggerstaff Pat McGehearty
Barry Boehm Arthur S. Melmed
Pradip Bose John Meyer
Cynthia Brown Cleve Moler
William Brantley Robert Morgan
Luis Felipe Cabrera Ryoichi Mori
John Caulfield Iwao Morishita
Lori Clarke Kenji Naemura
Paul Cohen John Neff
Kenneth De J ong Ani! Nigam
Louis Doctor Y oshikuni Okada
Clarence Ellis Arthur Parry
Richard Fairley Richard Paul
Domenico Ferrari J ames Peterson
Henry Fuchs Dhiraj K. Pradhan
Koichi Furukawa Paul Purdom
Hector Garcia-Molina Paul Reynolds
N orman Gibbs Harriett Rigas
C. Lee Giles David Rine
Linda J. Hayes Larry Ruzzo
Philip J. Hayes Zary Segall
Alex Hoffman Daniel Siewiorek
William G. Hooper S. E. Smith
William Howden Jack Stankovic
Kai Hwang Russell Taylor
Laurel Kaleda Timothy N. Trick
Elaine Kant Kishor Trivedi
John Kender Wing Toy
Peter Kessler Andries van Dam
David R. Kincaid Benjamin Wah
Chandra M. R. Kintala Richard L. Wexelblat
Ken Kolence John R. White
Jerome Kurtzberg Robert Wilensky
Stephen Lavenberg Michael Willett
Tomas Lozano-Perez Michael Wozny
Michael Loui

xxv

In a list this long, the nature of the contributions
varies widely across the list. All contributions have
been important, and each party noted above
deserves their share of credit in the success of the
FJCC. However, some contributions deserve
special mention. I greatly appreciate the work of
Ryoichi Mori and Kenji Naemura for producing the
papers in the International Developments Arena.
Les Belady, Jim Peterson, Jerry Kurtzberg, John
Meyer, David Rine, Steve Lavenberg, Jack Stankovic,
and Ken Kolence each produced top quality tracks
through their resourcefulness and continued efforts.
Maureen Ferraro, Executive Program Coordina
tor, provided the glue that held the team and the
participants together. As the conference grew from
embryo into infancy and then maturity, Maureen
was there with the detailed work to guide the devel
opment. Tracking the papers and referees, manag
ing the proceedings, and making personal contacts
to assure timely responses were typical of the many
tasks she tackled. The magnitude of the job could
exceed the capacity of many computers I have
known, and only occasionally challenged but never
exceeded her capacity to get the job done.

Finally, we come to the referees-anonymous to
the authors-recognized here in the proceedings.
We gratefully acknowledge the role played by the
referees (listed on page vii). No conference can
succeed without the wisdom of careful reviews to
assure the quality and accuracy of the published
material.

Conference at a Glance

PLENARY SESSION
Industrial Keynoter:H.Ross Perot

Tuesday, 8: 30-9: 30 Electronic Data Systems

Grand Grand Grand Governor's Senator's Sapphire Topaz Thornton Grand
BallroomB Ballroom D Ballroom A Lecture Lecture Room Room Room Ballroom E

Hall Hall
Room A RoomB RoomC RoomD RoomE RoomF RoomG RoomH Room I

I SC4-1 EDI-I CIl-l SCI-l CD2-1 MMI-l OSDB3-1 Al5-1
Tues. Caulfield: Baldwin: Hoffman: Hwang: Akers: Lavenberg: Nigam: Wilensky:
04 Nov. Education Legal Parallel VLSI
10: 00- Optical by Professional Processing Design Performance Databases User
12: 00 Computers Satellite Concerns for AI Automation Studies Interfaces

2 SC4-2 SS4-1 SSI-I SCI-2 CD2-2 ED2-1 MMl-2 All-I AI5-2
Giles: VanDam: Ellis: Wah: Trick: Fairley: Lavenberg: Martin: Granger:
Optical Object- VLSI Software Perf ormance- Design Natural

1: 30- Computing Hypertext Oriented Parallel Research in Engineering Modeling Issues and Language
3:30 Directions Software Algorithms Academia Education Methods Practice Processing

3 SC4-3 MMI-3 SSI-2 SC2-1 CD2-3 ED2-2 MM2-1 ALl-1 AI5-3
Neff: Lavenberg: Belady: Moler: Pradhan: Smith: Kolence: Marsland: Hayes:
Optical Performance- Software- VLSI Fault- Corporate Capacity- Computer Natural

3:45- Inter- Modeling Design Hypercube Tolerant Software Management Chess Language
5: 15 Connections Workstations Modes Computers Goals Engineering 1 Techniques Panel

PLENARY SESSION
Keynoter: Kenneth Wilson, Nobel Laureate

Cornell University, Dept. of Physics

Keynoter: C. Gordon Bell
National Science Foundation

Wednesday, 8: 3Q-9: 30

Room A RoomB RoomC RoomD RoomE RoomF RoomG RoomH Room I

4 SC5-1 EDI-2 CI1-2 SC3-1 CDl-l IDl-l MM2-2 SS4-2 AI2-1
Wed. Willett: Melmed: Kaleda: Segall: Toy: Furukawa: Kolence: Boehm: Kender:
05 Nov. Token-Ring Computers Multi- Fault- Fifth- Capacity Software Computer
10: 00- Local Area in Computer Processors Tolerant Generation Management Development Vision
12: 00 Networks Education Standards 1 Applications Computers 1 2 Environment 1

5 SC5-2 SS4-3 AI4-1 SC3-2 CDl-2 IDI-2 MM2-3 OSDB2-1 AI2-2
Willett: Kintala: Rine: McGehearty: Trivedi: Furukawa: Ferrari: Stankovic: Kender:

Integrated Engineering Multi- Fifth- Insularity of Distributed Computer
1: 30- Token-ring Programming Rule-Based Processors Reliability Generation Performance Operating Vision
3:30 Networks Environments Systems 2 Evaluation Computers 2:: . Evaluation Systems 2

6 SC5-3 SS4-4 AI4-2. SC3-3 CDl-3 IDl-3 OSDB2-2 AI3-1
Hooper: Kessler: Wexelblat: Brantley: McCluskey: Morishita: Garcia: Kanade:
Integration Issues in High- Micro-

3: 45- of Voice Code Knowledge Speed Testing Computer Distributed Robot
5: 15 and Data Generation Engineering Techniques Developments Databases Perception

PLENARY SESSION
Turing Lecture

1986 ACM Turing Award Winner
Thursday, 8: 30-9: 30

Room A RoomB RoomC RoomD RoomE RoomF RoomG RoomH Room I

7 SS3-1 SS4-5 AI4-3 AL2-1 CD2-4 IDI-4 AI3-2 OSDBl-l AL3-1
Thurs. Clarke: White: Cabrera: Kincaid: Bose: Okada: Lozano-Perez Reynolds: Brown:
06 Nov. Problems in UNIX: Vector and Expert Super Task-Level Application
10: 00- Program Programming Wave of Parallel Systems Computing Robot of Searching
12: 00 Testing Languages the Past? Algorithms Design/Test Systems Programming Petri-Nets

8 SC5-4 CD2-5 AI4-3 AL2-2 CD3-1 IDI-5 AI3-3 OSDBl-2 AL3-2
Kumar: Usia: Kant: Hayes: Doctor: Naemura: Taylor: Peterson: Loui:
Network Rule-Based: Finite- Inter- Real-Time Security/

I: 30- Management Design Models and Element Computer Working Robot Protection Data
3:30 Languages Applications Methods Geometry Systems Programming Systems Structures

9 SSl-3 AI4-4 CD3-2 AL3-3
Morgan: Bottegal: Wozny: Ruzzo:
Application Computer Optimi-

3: 45- of Logic Graphics zation
5: IS ADA Programming Standards Techniques

XXVI

New Technology in Education

TRACK CHAIR: Dr. Lionel Baldwin
National Technological University

EDUCATION ARENA

Software Engineering Education

TRACK CHAIR: Prof. Norman Gihbs
Cam.egie Mellon University

AM::EE PRcx;RAl+1ING FOR Ca-tPUTER PROFESSIONALS

John T. Fitch
Associate Director

Association for Media-based Continuing Education for Engineers

ABSTRACT

The Association for Media-based Continuing Educa
tion for Engineers (AMCEE) is a consortium of 33
engineering universities which provides off
campus education via television and videotape.
Clients are engineers, industrial scientists, and
technical managers in business, industry, and
government. AMCEE operates a satellite delivery
system, offering six hours a day, five days a
week of non-credit continuing .education courses.
The bulk of the courses, however, are delivered
on videocassettes, accompanied by study guides
and textbooks. The majority of these "short
courses" are in computer and communicationre
latedsubj ects.

INTRODUCTION

In a session on "Technical Education by Satel
lite," it seems appropriate to talk specifically
about continuing education for computer profes
sionals, because the AMCEE programs aimed at that
audience have been among its most successful.
But first it ,might be worth a .brief digression to
explain AMCEE itself and its mission.

AMCEE is an acronym for the Association for
Media-based Continuing Education for Engineers.
It is a non-profit, tax exempt consortium of, at
.present, thirty-three engineering universities.
What these schools have in common is 'programs of
off-campus graduate and/or continuing education
using television and/or videotape. Most of the
members offer master's. degree programs and con
tinuing education short courses to practicing en
gineers, industrial scientists, and technical
managers who take their coursework at the job
site rather than on campus. The medium that con
nects the campus class.room with the industrial
site or government laboratory is either "liveR
television using Instructional Television Fixed
Service (ITFS) microwave .channels, or a set of
courier"';delivered videocassettes. Most of ·these
materials are in what is commonly called "candid
classroom" format, i.e. the courses are broadcast
or videotaped as they are being taught to a class
of on-c&npus students. Cameras are fixed to the
walla and ceiling of the classroom, and the
equipment is often operated by students. 'Thus,
the production costs are marginal.

Bringing the classroom to the student offers con
venience and flexibility, as well as significant

CH2345-7/86/0000/0001$01.00 © 1986 IEEE

cost-· and time-effectiveness. And all wi thout
sacrificing academic quality. Several studies
have shown that off-campus students do as well or
better than their on-campus counterparts taking
the same course.

With a view toward providing better quality
materials to "increase the national ·effectiveness
of continuing education for engineers," twelve
.universities joined together in 1976 to form
AMCEE. Its headquarters were placed on the cam
pus of one of its members, the Georgia Institute
of Technology in Atlanta. The idea was that an
association of schooLs would make it economically
feasible to develop studio produced videocas
settes and collateral printed materials for a na
tional rather than a regional clientele. Thus,
1986 is the tenth anniversary of the consortium
which has since nearly tripled in size in terms
of membership -- and increased by an order of
magnitude its services to business, industry, and
government. Table 1 is a list of the present
AMCEE membership.

Table 1 - Members of AMCEE

Auburn University
Colorado State University
Georgia Institute of Technology
GMI Engineering and Management Institute
Illinois Institute of Technology
Iowa State University
Massachusetts Institute of Technology
Michigan Technological University
North Carolina State University
Northeastern University
Oklahoma State University
polytechnic University
Purdue University
Southern Methodist University
Stanford University
University of Alaska
University of Arizona
University of Florida
University of Idaho
University of Illinois at Urbana-qhampaign
University of Kentucky
University of Maryland
University of Massachusetts
University of Michigan
University of Minnesota
University of South Carolina
University of Southern California
University of Washington

During these first ten years, the medium of
delivery has been the videocassette, there being
no economical national equivalent of the local,
live ITFS. And videocassettes still offer
scheduling flexibility that prompts many clients
to opt for them, even when live television is
also available. Participants who miss a session
because of travel or pressing business can catch
up with their colleagues by watching the video
cassettes on their own.

Today, with over 90 per cent of the engineering
universities who offer media-based off-campus
education as members, AMCEE publishes an annual
catalog listing some 500 video courses in 16 en
gineering and science disciplines from its 33
members. These disciplines cover all the tradi
tional ones from aeronautical engineering to
mathematics as well as a number of interdiscipli
nary and management subjects. During the last
fiscal year, AMCEE logged over 1500 orders from
some 850 clients and reached an estimated 22,000
individual participants.

SATELLITE DELIVERY

By 1985 the economics of satellite television had
made it feasible for AMCEE to re-evaluate the
possibility of live television delivery for its
programs. At the same time, a subset of AMCEE
member universities formed a sister organization,
the National Technological University (NTU) to
offer an accredited master's degree program on a
national basis. The two organizations agreed to
share a transponder on a recently launched satel
lite in the "Ku" band. Unlike the more widely
used "c" band, used by the cable and movie chan
nel companies, the Ku band is used primarily for
business communications. Several AMCEE clients
were already equipped to receive satellite
programs in this higher frequency part of the
·spectrum. Furthermore, because of the higher
power of the particular satellite selected (G
Star I), it was possible to split the bandwidth
and power of a single transponder and still
provide reasonably good signals to carefully
specified and installed receivers -- thus further
improving the economics of this new delivery
mode.

In September 1985, the two organizations in
augurated the "AMCEE/NTU Satellite Network," NTU
providing candid classroom courses for credit
towards a master's degree, AMCEE providing non
credit short courses for continuing education.
Currently, there are five origination sites where
"earth stations" are located that can transmit
classes up to the satellite. These are located
at Colorado State University; the Universities of
Massachusetts, Maryland, Maryland, and South
Carolina; and the Georgia Institute of Technol
ogy. AMCEE, because it is located at Georgia
Tech, relies heavily on the "up-link" there.
Each weekday from 11:00 a.m. to 5:00 p.m. Eastern
time, AMCEE broadcasts a variety of short courses
and seminars, a total of 1500 hours of instruc
tion per year. Many of the courses are pre
recorded on videocassette, but some of them are

2

live with participant interaction
wi th the instructor. These are
and technical management topics,
popular being those having to do
and communications.

via telephone
on engineering
with the most
with computers

Organizations receiving the telecourses install
their own "down-links" and pay for the service
through a network registration fee and individual
course registration fees. Under license, they
can videotape transmissions for delayed use to
provide them with the scheduling flexibility
available through videocassette delivery. In
general, the pricing is similar for the two modes
of delivery, though the startup cost for par
ticipation in the satellite network clearly makes
it more expensive, initially. So, one might ask
why a company might choose satellite over video
cassette delivery. There is more than one
answer. For one thing, it is simply a lot easier
to walk into a room and turn on the TV than it is
to plan far enough ahead to order a set of
videocassettes, take delivery of them, keep them
safely, and return them after they've been used.
And when the program is a "live" event, there is
the added value -- gratification, even excite
ment, if you will -- in being able to call up the
instructor and ask a question that applies to
your own particular situation. As of this writ
ing (Spr ing 1986) there were approximate 1y 60
down-link receiving sites scattered across the
country.

But to concentrate on the difference in cost be
tween videotape and television delivery systems
obscures a more important point: the dominant
cost of education is the participating engineer's
time. Anything, then, that can be done to con
serve that time, by, for example, eliminating the
need to commute to a college campus undoubtedly
outweighs the higher cost of media-based deli
very.

We have experienced minimal start-up problems
with the network, most having to do with the
novel split transponder and the necessity for
careful purchase, installation, and maintenance
of down-link equipment. Training directors
regularly call the AMCEE office with their lists
of registrants for a variety of courses. AMCEE,
in turn, coordinates the shipment of printed
materials -- study guides and/or textbooks -- to
the receiving sites (usually!) in time for the
start of each course.

SPECIAL PROGRAMS

Occasionally (currently about once every other
month) AMCEE opens up its satellite network and
transmits a short seminar or longer telecourse on
a C-band transponder as well as on its Ku-band
network. This means that any organization with
access to a C-band down-link can receive the
programs, and even if they do not have access to
such equipment, there are many areas around the
country where participants can come to an AMCEE
member campus to watch the program. Furthermore,
the Hewlett-Packard Corporation has very gener
ously opened many of its plants and offices to

outsiders who wish to participate. These special
"open network" broadcasts receive far wider
promotion than is given the rest of the schedule.
Instead of just being listed in the ~~CEE publi
cations, the Monitor and the Uplink, separate
brochures are published for each program and
mailed to several thousand prospective par
ticipants.

These special broadcasts are usually reserved for
live events such as an April 1986 program on
"Computer Communications and Networking: A Tech
nology Forecast" or a combination of videotape
and live broadcasts such as a June 1986 program
on "Microcomputer Software for Project Manage
ment." The former -- the all "live" programs -
are usually videotaped as they occur and, if the
quality of the programs is high and the content
likely to have a reasonable shelf life, these
videotapes are then advertised for rental and
sale. Although these cassettes do not have the
advantage of the telephone interaction, they can,
nevertheless, be useful to those not able to
watch the satellite broadcast.

The latter type of program -- the combination of
videotape and live -- is a more frequently fol
lowed model. Here, a set of videotaped lectures,
often made just prior to the broadcast, are used
as the backbone of the presentation. We find
that, by videotaping the lectures, the instructor
is subject to less pressure, errors can be cor
rected, and there is time between lectures to
collect thoughts and materials. However, the in
structor remains in the studio after the taping
is completed (or returns at a later date) for the
satellite broadcast. Then, after each videotape
is run, the instructor appears "live" on camera
and takes telephone questions from the par
ticipants. The schedule is arranged so that any
time not used for questioning serves as a brief
intermission before the next videotaped lecture.

We are still developing this mode of operations
the whole concept of dual-band satellite

programs is still relatively new for us -- but
the scheme that appears to be emerging is one in
which we produce the videotapes at a television
studio at the University of Maryland (where we
produce most of the AMCEE videotaped courses) and
then up-link the actual broadcast from one of the
"candid classrooms" across campus at the en
gineering school, which has a Ku-band earth sta
tion, or we take the tapes to the University of
South Carolina (which has, in place, both Ku-band
and C-band earth stations). Exotic as all this
may sound when compared with offering a continu
ing education program at a local college campus,
it is not, marginally, a very costly operation
(because the studios and up-links are already
"there"). Therefore, it does not require a very
large audience to break even (on the order of a
few hundred people).

COMPUTERS AND COMMUNICATIONS

As indicated earlier, among the most popular
courses delivered over the satellite network are
those having to with computers and/or communica-

3

tions. (This is also true to a lesser extent for
our videocassette distribution, but the videocas
sette audience is greater and more diversified;
hence a program on metallurgy might do well on
tape but fail on the network where the clients
are still primarily high-tech companies with a
heavy concentration in the computer field.)
Table 2 lists the programs offered thus far on
the network on computer-related subjects.

Table 2 - Computer Related Courses on the
AMCEE/NTU Satellite Network

Applied Kalman Filtering
Communication Networks
Computer Communications
Computer Communications & Networking
DDN & DOD Protocol Standards
Distributed Processor Communication Arch.
Distributed Telecommunication Networks
Effective Use of Small Computers
Fortran 77
Fundamentals of Data Communications
Gallium Arsenide Integrated Circuits
IEEE 802: Local Network Standards
Integrated" Services Digital Network
Interactive Computer Graphics
Kalman Filtering
Lisp at Work, Parts 1, 2, & 3
Local Area Networks
Local Network Technology & Selection
Microcomputer Software for Project Manage
ment
Microprocessor Interfacing
Packet Switching Networks
Pascal, Part 1
Principles of Modern Software Engineering
Relational Database
Robotics: A Tutorial in Four Parts
16-Bit Microprocessor Programming
Software Management for Small Computers
Software Project Management
Telecommunications & The Computer
Vector Processors & Mini Computers

Neglecting individual lectures -- usually on
management skills topics, these 30 courses repre
sent approximately half of all the courses of
fered on the network during the period from early
September through mid May, 1986. In other words,
all other disciplines made up the other fifty
percent.

CONCLUSIONS

~CEE currently broadcasts its non-credit courses
six hours a day, five days a week on the share
AMCEE/NTU satellite network in the Ku band, for a
total commitment of 1500 hours a year. In addi
tion, AMCEE offers six or more "special" events
each year on both the Ku-band network and on a C
band transponder. These special programs include
both three or four hour seminars as well as two
and three day short courses. Those tentatively
scheduled through June of 1987 are:

November
1986

Computer Organization & Archi
tecture

January

March
May
June

1987
Database Management Software
for Personal Computers
Office Automation
Computer & Network Security
Microcomputer Software for
Project Management: An Update

For these "specials," it is clear that the sub
ject matter is completely devoted to computer re
lated subjects. Should this mode continue to be
as successful as it has proved thus far, AMCEE
will undoubtedly increase the frequency of these
open-circui t transmissions. At the same time,
the Ku-band network continues to grow as more
corporate sponsors and more sites are added, with
the expectation that it, too, will cross over
into the black during 1987.

4

NTU COMPUTER ENGINEERING PROGRAM

Frederic J. Mowle, David G. Meyer, Philip H. Swain

School of Electrical Engineering
Purdue University

West Lafayette, IN 47906

Abstract

Live teleconference from Purdue University
describing the Computer Engineering Program offered
by the National Technological University. Areas to be
covered include the degree program requirements, com
ments by a course instructor, and comments by a
university administrative contact person. A live ques
tion and answer session is planned.

Background Information

The National Technological University (NTU) was
established in Colorado as a nonprofit corporation in
1 984. The academic programs offered by NTU draw
upon approved course offerings from the 21 participat
ing universities, all of which are members of the Asso
ciation for Media-Based Continuing Education' for
Engineers (AMCEE). Although NTU's charter
specifically prohibits offering baccalaureate or doctoral
degrees, NTU offers selected undergraduate classes
from participating universities to assure appropriate
foundation for master's level coursework. NTU uses
advanced educational and telecommunications technol
ogy to deliver instructional programs to graduate
engineers and technical professionals at their employ
ment locations. Each NTU site is operated by a spon
soring organization.

Academic Organization

The National Technological University relies upon
a faculty consisting of consultants selected from the
faculty of each participating institution. These faculty
consultants are organized in discipline groups to form
Graduate Faculties, typically with one representative
in each discipline from each participating institution.
At the present time, NTU offers Master of Science
degrees in five disciplines: Computer Engineering,
Computer Science, Electrical Engineering, Engineering
Management, and Manufacturing Systems Engineering.
Three standing Committees support each of the vari
ous Graduate Faculties. The Curriculum Committee
in each discipline develops study programs and reviews
all courses submitted by the participating universities.
The Admissions and Academic Standards Committee
for each Graduate Faculty sets the policies governing
admission and criteria for students to continue as

CH2345-7/86/0000/0005$01.00 © 1986 IEEE
5

active degree candidates. The Staffing Committee in
each discipline monitors activities of faculty consul
tants to assure that the proper faculty functions are
performed.

Participating Universities

At the present time, the following universities are
cooperating in the various degree programs offered by
the National Technological University. The course
suffix assigned each university is used to aid in the
identification of course offerings.

Course
University Suffix

Boston University V
Colorado State University H
Georgia Institute of Technology J
Illinois Institute of Technology K
Iowa State University U
Michigan Technological University I
North Carolina State University P
Northeastern University F
Oklahoma State University 0
Purdue University M
Southern Methodist University N
University of Alaska G
University of Arizona E
University of Florida R
University of Idaho S
University of Kentucky L
University of Maryland B
University of Massachusetts A
University of Minnesota C
University of Missouri-Rolla T
University of South Carolina D

Method of Delivery

The National Technological University has its
administrative offices on the campus of Colorado State
University in Fort Collins, Colorado. However, the
faculty are located on the campuses of the participat
ing universities and the students are located at their
work sites nationwide. Instructional programs are
delivered by the faculty from the home campuses to
the students through telecommunication technology.

The communication links facilitate student advis
ing, faculty conferences, and special programming.

Briefly, the NTU distribution system is satellite-based,
using a satellite operating in the 12/14GHz (Ku) band.
A series of satellite uplink stations located at partici
pating universities has been installed, and television
receive-only terminals are located at each organiza
tional site of participating graduate students. The
space segment is provided over existing Ku-band
domestic communications satellites. The technical
operation of the network is controlled from a central
headquarters known as the NTU Network Control
Center, where schedules are prepared, satellite chan
nels are monitored for technical quality, and return
communications (from student to instructor) are coor
dinated.

To make optimal financial use of satellite tran
sponder time and the realities of the working student's
class time, many course transmissions are recorded at
the student's site on videotape for use at the conveni
ence of the student. Teleconferencing and electronic
mail, using one of the. packet-switched networks, are
the primary means of interaction between students
and instructors.

Computer Engineering

Program Description. The National Techno
logical University Master of Science Degree Program in
Computer Engineering provides the means for
engineers with a Bachelor of Science in Electrical
Engineering, Computer Engineering, or Computer Sci
ence to complete the requirements for Master of Sci
ence. Applicants are considered only if sponsored by
their employing or affiliated organizations. Applicants
for admission to this program must submit Graduate
Record Examination (GRE) scores. GRE examinations
need only include the aptitude test (morning). Stu
dents may submit the advanced test in Engineering or
Computer Science (afternoon) if they desire. Students
must also provide two or three letters of recommenda
tion. Letters from their supervisor as well as a profes
sor, if the applicant has been out of school for less
than four years, are required. The additional reference
is the student's choice. The Curriculum Committee
designed the approved curriculum around the model
developed and published by the IEEE Computer
Society (1977) and the ACM (1977). However, The
National Technological University Master of Science
Degree Program in Computer Engineering has the dis
tinguishing characteristic of required "breadth" courses
outside the field of computer engineering per se.

The Master of Science Degree Program in Com
puter Engineering consists of. 30 semester credits (or
the equivalent quarter credits) distributed through
three broad categories of courses: Core, Depth and
Breadth Courses. In addition, all successful candidates
for the Master's Degree must participate in a non
credit seminar. The curriculum features substantial
student choice in all three categories of courses,
thereby enabling the students to tailor their programs

6

of study to meet their specific needs and fulfill their
particular aspirations, all within a coherent framework
assuring academic excellence and state-of-the-art
preparation. The Breadth Courses expose the students
to a spectrum of topics. In this way, the University
insures that students become aware of important and
emerging areas that might otherwise be overlooked.
The NTU curriculum in Computer Engineering remains
open-ended with regard to advanced courses in order
to encourage the students to take advantage of
recently evolved courses concentrating on the latest
developments in the field.

, Completion of the curriculum requires approxi-
mately one and one-half years of full-time, graduate
study. Students enrolled through The National Tech
nological University, whose work schedules prevent
full-time study, should expect to fulfill the require
ments in five years by registering for at least two
three-credit courses each academic year.

Academic Advising. Sound and responsive
academic advising constitutes an integral part of every
program of study offered by The National Technologi
cal University. The Admissions and- Academic Stan
dards Committee of the Computer Engineering Gradu
ate Faculty assigns to each admitted student an
academic advisor, who is a regular faculty member
drawn from one of the participating universities and
who contributes to the Master of Science Degree Pro
gram in Computer Engineering. The academic advisor
assists the student to reach informed decisions about
the program of study, including course selections. In
addition, the academic advisor must approve all peti
tions for exceptions to the prescribed program of
study. Communication between the student and the
advisor occurs, in most instances, by telephone,
although other media - including regular mail, elec
tronic mail, and personal contact - are also available,
depending upon the circumstances in each instance.

Curricular Requirements. The National Tech
nological University offers courses in Computer
Engineering and related fields at the "mezzanine" and
graduate levels. A mezzanine course is defined as one
appropriate for undergraduate students with senior
standing or for entering graduate students. However,
only graduate courses will count toward fulfillment of
the Depth Requirements in the Master of Science
Degree Program in Computer Engineering. Further,
candidates for the degree can count no more than 12
credits earned in mezzanine courses to fulfill the
requirements for the Master of Science Degree.

Each student should expect to enroll in ten or
more courses with a minimum of three Core Courses,
four Depth Courses, two Breadth Courses, one Elective
and a noncredit seminar. A total of 30 credits are
necessary for graduation. The required curriculum
consists of five parts.

Core Requirements

Each student must complete at least eight
credits of required Core Courses, with at least one
course in each identified area. Core courses are
divided into three general areas:

1. Software Systems

2. Computer Architecture

3. Algorithms and Data Structures

Depth Requirements

Each student must complete at least four
additional courses consisting of two courses from
each of two areas listed below, and all courses
taken to fulfill the Depth Requirements must be
graduate courses. Depth courses provide instruc
tion on the most advanced and current topics in
seven distinct areas, three of which form the Core
Requirements described above:

1. Software Systems

2. Computer Architecture

3. Algorithms and Data Structures

4. Digital Design

5. Graphics

6. Intelligent Systems

7. Mathematics
Methods

and Computational

With the advice of the academic advisor, the
student should plan a program of study that
assures appropriate depth in at least two areas.

Breadth Requt"rements

Each student must complete at least six
credits in Breadth Courses. Breadth Courses
focus on fields that relate to or support the study
of Computer Engineering, including:

1. Business Applications

2. Computer-Aided Design/
Computer-Aided Manufacturing

3. Communications

4. Control and Robotics

5. Electrophysics

6. Mathematics

7. Signal Processing

8. Theory of Computing

With the assistance of an academic advisor,
the student should plan an integrated program of
study that assures breadth overlaying the depth
achieved in Computer Engineering.

Elective Requirements

Each student must complete at least three
additional elective credits consisting of a Core,
Depth, or Breadth Course to bring the total
credits to 30.

7

Seminar Requirements

Each student must complete one noncredit
seminar offered by The National Technological
University.

Thesis
The National Technological University offers

a non thesis Master of Science Degree Program in
Computer Engineering. However, when desirable
and appropriate, as determined by the student in
consultation with an academic advisor, a thesis,
with a maximum of six credits, can be substituted
for the Elective Course and one of the Depth
Courses.

Undergraduate Bridging Courses

Applications of computers are pervasive today,
affecting the work of most engineers and technical pro
fessionals. It is natural, therefore, for people with very
diverse technical backgrounds to seek additional edu
cation in computing. For that reason, NTU faculty
have identified the undergraduate prerequisites which
are necessary background for entering graduate study
in computer engineering and computer science. Eight
undergraduate bridging courses have been identified.
Detailed outlines of these courses can be found in the
National Technological University Bulletin.

Flow Chart of Undergraduate Computer Science
and Engineering Program

LI L2
Fundamentals of Digital

Compute, Tamm,ng ~ Log'c j"""gn

W MI~ U

Ll
L2
L3
L4

L5
L6

Data -------- Discrete Microprocessors

S''"ctures //' S"uctu,e. \\ Le~:,d p~""'Jgr~:~ing

LS 1/'/ \
Operating '" L6

System Digital Systems Design
p"nc;p,e.~ / Compu,e' Atchitecture

L7
Interfacing

&
Computer
Networks

Fundamentals of Computer Programming
Digital Logic Design
Data Structures
Microprocessors and Assembly Level Program
ming
Operating System Principles
Digital System Design - Computer Architec
ture

L7 Interfacing and Computer Networks
M1 Discrete Structures

The bridging courses are not available for gradu
ate credit.

Courses of Instruction

The National Technological University categorizes
the courses or instruction in accordance with the Core,
Depth, and Breadth Requirements within the curricu
lum in Computer Engineering and arrays the courses
according to the list that follows. The courses are
arrayed by subject matter areas as identified by two
letter prefixes which serve to identify specific subject
matter areas (e.g., SS refers to Software Systems, AC
to Architecture and Computer Design, DD to Digital
Design, et cetera). Courses are numbered as they fall
within each appropriate subsection. The suffixes fol
lowing course numbers refer to section offerings and

. identify the institution offering the· individual sections
of the course.

Core Courses

Software Systems

SS 10-19 Systems Programming

SS 20-29 Programming Languages

Architecture and Computer Design

AC 30-39 Compuiier Architectur'3

AC40-49 VLSI

AC 50-59 Embedded Computer Systems

Algorithms and Data Structures

AD 60-69 Data Structures

AD 70-79 Analysis or Algorithms

Depth Courses

Advanced Digital Design

DD 10-19 Advanced VLSI Design

DD 20-29 Reliable Computation

DD 30-39 Computer Arithmetic

DD 40-49 High Speed Computation

DD 50-59 Data Communications Systems

DD 60-69 Digital Hardwar.e Design

Advanced Computer Architecture

CA10-19 Computer Architecture/ Operating
Systems

CA20-29 Distributed Computer Systems

CA 30-39 I/O and Memory Systems Architec
ture

Systems Programming

SP 10...;.19 Advanced Techniques in Translator
Design

SP 20-29 Advanced Operating Systems

8

SP 30-39 Data"-Base Systems

SP 40-49 Modeling and Performance Evalua
tion

Mathematics and Computational Methods

'CM 10-19 Numerical Analysis

CM 20-:29 Computational Methods for Linear
Algebra

CM 30-39 Partial Differential Equations and
Numerical Techniques for Solving
Them

CM 40--49 Stochastic Queuing Theory and Sta
tistical Analysis

CM50-59 Automata Theory

Advanced Software Techniques

AS 10-19 Gen~raJ :Methods for Artificial Intelli-
gence

AS 20-29. Knowledge-Based Systems

AS30-39 Robotics

AS 40-49 Computer Graphics

AS 50-59 Computer Networks

AS 60-69 Computer Vision

AS 70-79 Programming Languages for AI

Breadth Courses

Electrophysics

EP 10-19 Lasers

EP 20-29 Microelectronics

EP 30-39 Electronic Systems

EP 40-49 Optics

EP 50-59 Field Theory
EP 60-69 Solid State Devices

Communication and Control

CC 10-19 Digital Control Theory

CC 20-29 Digital Communication Theory

CC 30-39 Coding Theory

CC 40-49 Statistical Communications Theory

CC 50-59 Information Theory

CC 60-69 Speech Processing

CC 70-79 Image Processing

Operations Research

OR 10-19 Linear Programming and Its Applica
tions

OR 20-29 Algorithms for Combinatorial Optim
ization

Business Applications

BA 10-1 9 Management Information Systems

BA 20-29 Financial and DE;cision Analysis
Techniques

Mathematics

MA 10-19 Discrete Structures

MA20-29 Combinatorial Analysis

MA 30-39 Stochastic Processes, Queuing
Theory, and Statistical Analysis

MA40-49 Advanced Calculus

Example Programs of Study

The following examples illustrate the flexibility
available to students wishing to specialize in specific
areas of computer engineering.

M.S. In Computer Engineering
Software Engineering Emphasis

Core
SS 15-C
AC30-A

AD70-A

Depth
AD 60-C
AD 61-C
SP 30-C
SP15'-B

SP 20-C

Breadth'
CC 30-F
MA30-A

Elective
SS 20-A

Software Engineering I
Advanced Computer Architec
ture I
Algorithms and. Data Structures

Introduction to Data Structures
Advanced Data Structures
Distributed Data Base Systems
Theory of Programming
Languages
Introduction to Operating Sys
tems

Error Correcting Codes
Probability and Random
Processes

Programming Languages

Credits
2.7 •

3

3

2.7
2.7
3
3

2.7

3
3

~
31.8

* Fractional credits due to conversion of quarter hours
to semester hours.

Computer Architecture E'mphasis

Core Credits
SS 20-A Programming Languages 3
AC30-A Advanced Computer 3

Architecture I
AD 60-B Data Structures 3

Depth
AC 31-A Advanced Computer 3

Architecture II
AC 32~A Testing and Diagnosis of 3

Digital Systems
DD 60-G Advanced Digital 3

Hardware Design
DD 50-A Computer Communica- 3

tions Networks

9

Breadth
CC 20-F
MA30-A

Elective
CA 10-H

Digital Signal Processing
Probability and Random
Processes

Microprogrammingc

Acknowledgements

3
3

3
30

The computer engineering program was planned
and developed under the direction of Harold S. Stone,
aided by the members of the Computer Science and
Engineering Graduate Faculty.

s. K. Chang
Electrical Engineering Dept.
Illinois Institute of Technology

Paul Cohen
COINS Graduate Research Center
University of Massachusetts

John Dickinson
Computer Science Dept.
University of Idaho

Frederic J. Mowle
(Chairman, Computer Engineering

Curriculum Committee)
School of Electrical Engineering
Purdue University

RobertA. Mueller
Dept. of Computer Science
Colorado State University

Troy Nagle
Electrical Engineering Dept.
North Carolina State University

Gerald Peterson
Dept .. of Electrical and

Computer Engineering
University of Arizona

Robert Pettus
(Chairman, Admissions and Academic

Standards Committee)
Dept. of Electrical and

Computer Engineering
University of South Carolina

Randy Reininger
Electrical and Computer Engineering
Oklahoma State University

Sartaj Sahni
(Chairman, Computer Science

Curriculum Committee)
Department of Computer Science
University of Minnesota

Charles Silio
(Chairman, -Staffing Committee)
Dept. of Electrical Engineering

. University of Maryland

Terry Smay
Dept. of EE/CPR E
Iowa State University

David B. Spell
Electrical Engineering Dept.
University of Alaska

Keith Stanek
Dept. of Electrical Engineering
Michigan Technological University

John Staudhammer
Electrical Engineering and Computer

and Information Sciences
University of Florida

John Wakerly
Consultant
Mountain View, CA

Special thanks for the success of the program is
due to the numerous course instructors, advisors, site

10

coordinators, administrative contact persons, and the
staff of NTU who make the program work.

Satellite Presentation
The formal presentation for this session will be

divided into three areas. Professor Frederic J. Mowle,
Chairman of the Computer Engineering Curriculum
Committee, will present an overview of the Computer
Engineering program. Professor David G. Meyer,
course instructor for CA 30-M, Advanced Microproces
sors and System Design Components, will discuss the
NTU program from the viewpoint of a course instruc
tor. Professor Philip H. Swain, Director of Continuing
Engineering Education at Purdue University, will dis
cuss the NTU program from the viewpoint of a Univer
sity Administrative Contact Person.

Additional Information
Additional information on the various NTU pro-

grams can be obtained from:

National Technological University
P. O. Box 700
Fort Collins, CO 80522
(303) 491-6092

THE NTU COMPUTER SCIENCE PROGRAM

SAR TAJ SAHNI

UNIVERSITY OF MINNESOTA

ABSTRACT
This paper describes the Computer Science Master's program
of the National Technological University, Fort Collins,
Colorado.

l.NTU
The National Technological University (NTU) was established
as a non-profit private educational corporation in January
lQS4 in Colorado. Its exclusive mission is to serve the educa
tional needs of graduate engineers and to award master's
degrees in engineering related disciplines. Its charter prohibits
the award of baccalaureate and doctoral degrees. Currently,
NTU offers master's degrees in: Computer Science, Computer
Engineering, Electrical Engineering, Engineering Management,
and Manufacturing Systems Engineering.

NTU was created with a unique mission: provide gradu
ate engineers a quality master's program in engineering that
can be successfully completed by enrollees without leaving
their place of employment. It differs from its parent organiza
tion AMCEE (Association for Media-Based Continuing Educa
tion for Engineers) primarily in that AMCEE does not grant
degrees. Through NTU, it is possible for practicing engineers
to obtain a master's degree no matter how distant they may
be from the university. Further, their progress towards such
a degree is not adversely affected by a transfer within their
company or between employers that are NTU sponsors. Since
all students enrolled in NTU programs must be sponsored by
their employers, NTU students changing employers must
ensure that their new employer will sponsor them.

In order to best serve its mission, NTU has identified
four primary goals [11: "The discovery, dissemination, applica
tion, and preservation of knowledge within designated fields
of study, with special emphasis upon those engineering discip
lines critical to the continued development and implementa
tion of technology appropriate to an information knowledge
in tensive society."

(1)

(2)

NTU has set itself the following seven objectives [11:
The Instructional Objectives
The University encourages and fosters the development
of innovative pedagogical and technological methods to
enhance learning and achievement.

The Creativity Objectives
The University encourages and fosters the development
of creativity among the faculty and students as the most
dynamic response to a rapidly changing technological
society. In an information, knowledge-intensive age,
people must have the developed capacity to glimpse the

CH2345-7/86/0000/0011$01.00© 1986 IEEE
II

future as it unfolds and to act to shape it. The National
Technological University research seminar is directed to
this end.

(3) The Student Relations Objectives
The University stresses the responsibility of the faculty
to the professional as well as instructional needs of the
students and the responsibility of the students for their
own individual growth and development.

(4) The Human Resources Objectives
The University selects as participating faculty only those
persons with reputations for outstanding performance as
teachers and scholars, and offers selected programs to
assist these faculty members in their own professional
development.

(5) The Support Objectives
The University provides the facilities and services essen
tial to the fulfillment of the institutional mission. More
over, the University strives for the refinement and
development of technological means to enhance the qual
ity of the facilities and services.

(6) The Organization and Administration Objectives
The University maintains a supportive organization and
administrative structure that rests firmly upon participa
tory management and academic programs.

(7) The Evaluation Objectives
The University maintains a process of continuous evalua
tion of programs and services to ensure progress toward
the achievement of institutional goals.

There are three distinct aspects to NTU:

(1) NTU Administrative Services
These are responsible for policy, admissions, maintenance
of records (including grades), award of degress, etc. The
NTU office in Fort Collins, Colarode provides these ser
vices.

(2) Participating Universities
These are schools from which NTU obtains the courses
that it provides its students. All courses offred by NTU
are regulary offered to graduate students at the partici
pating universities. These courses are typically offered in
specially equipped classrooms at the participating univer
sity campus. The lectures including any discussion and
question/answer sessions are either broadcast live over
satellite to sites at which NTU students are located or
are taped and then viewed with time delay at these sites.
In the case of live satellite broadcast, there is provision

for a talk back channel. So, it possible for NTU stu
dents to ask questions in real time.

(3) Sponsoring Organizations
These are the entities that are permitted to enroll their
employees in NTU programs. Each sponsoring organiza
tion must maintain suitable equipment at each of its
instructional sites for the receipt and viewing of the lec
tures. To receive courses over satellite, a down link is
needed.

The universities that are participating in the NTU pro
gram are:

(1) Boston University

(2) Colorado State University

(3) Georgia Institute of Technology

(4) Illinois Institute of Technology

(5) Iowa State University

(6) Michigan Technological University

(7) North Carolina State University

(8) Northeastern University

(g) Oklahoma State University

(10) Purdue University

(11) Southern Methodist University

(12) University of Alaska

(13) University of Arizona

(14) University of Florida

(15) University of Idaho

(16) University of Kentucky

(17) University of Maryland

(18) University of Massachusetts

(lg) University of Minnesota

(20) University of Missouri-Rolla

(21) University of South Carolina

The sponsoring organizations are divided into two
categories: corporate subscribers and major site subscribers.
The corporate subscribers are:

(1) AT&T

(2) Digital Equipment Corp.

(3) Eastman Kodak Co.

(4) General Electric Co.

(5) CTE Spacenet Corp.

(6) Hewlett-Packard Co.
(7) Intel Corp.

(8) IBM Corp.
(g) Motorola

(10) NCR Corp.
(11) Tektronix, Inc.

The major site subscribers are:
(12) ALCOA

(13) General Dynamics Corp.

(14) General Instruments

(15) Honeywell, Inc.

(16) Magnavox Co.

(17) RCA Corp.

(18) Sandia National Labs.

. A sponsoring organization may have several sponsoring
Sites. There are approximately 75 sponsoring sites at present.

12

In the remainder of this paper, I shall provide an over
view of the NTU master's program in Computer Science.
This overview is not intended to serve as a substitute for the
NTU Bulletin [11. Persons interested in knowing the exact
admission and graduation reuirements should read this bul
letin carefully.

2. ADMISSION REQUffiEMENTS
To be admitted to the NTU master's degree in Computer Sci
ence program, the applicant must have successfully completed
a Bachelor of Science Degree in Computer Science or a related
field. All applicants are also required to perform satisfactorily
in the aptitude test of the Graduate Record Examination
(GRE). In addition, applicants may be granted provisional
admission to enable them to make-up deficiencies prior to
obtaining regular graduate admission.

3. THE COMPUTER SCIENCE CURRICULUM
The Master of Science Degree Program in Computer Science
consists of 30 semester credits (or the equivalent quarter
credits). These must be appropriately distributed over the
three broad categories of courses: Core, Depth, and Breadth.
In addition, participation in a seminar is required.

CORE COURSES
The general categories for the core courses are:

(1) Algorithms and data structures
(2) Software systems

(3) Computer architecture

(4) Mathematics and theory of computation

(5) Artificial intelligence

DEPTH COURSES
The categories for the depth courses are listed below.
Together with each such category, a sampling of some of the
topics included in the category is provided.

(1) Computer Software
• Structure of higher level languages
• Translators
• Operating systems
• Database systems
• Software engineering
• Programming and algorithms for supercomputers
• Computer networks
• Computer graphics
• Security and protection mechanisms

(2) Computer Architecture
• Computer architecture operating systems
• Distributed computer systems
• I/O and memory systems architecture
• Supercomputer architecture
• CAD tools for VLSI design

(3) Mathematics & Theory of Computing
• Numerical analysis
• Methods for supercomputing
• Design & Analysis of algorithms
• Modeling and performance evaluation
• Automata theory
• Formal languages
• Complexity theory

(4) Artificial Intelligence
• General methods for artificial intelligence
• Knowledge based systems
• Knowledge representation
• Natural language processing
• Computational epistomology
• Logic programming
• Robotics
• Computer vision
• Speech recognition
• Pattern recognition

BREADTH COURSES
The general categories and a sampling of example topics
within these categories are summarized below:

(1) Operations Research
• Linear Programming
• Integer Programming
• Nonlinear Programming
• Queueing Theory
• Dynamic Programming
• Stochastic Methods
• Combinatorial Optimization

(2) Electrical Engineering
• VLSI Technology & Design
• Coding & Information Theory
• Computer Hardware Design
• Computer Communications

(3) Business Applications
• Management Information Systems
• Computer Methods In Management

(4) Mathematics
• Combinatorics
• Graph Theory
• Statistics
• Probability
• Recursion Function Theory
• Logic

NTU is able to provide a very rich selection of courses in
each of the above categories. This stems from the fact that
NTU gets its courses from its participating universities.
These universites together have a combined engineering
faculty in excess of 2,800. The number of different computer
science and related courses taught at these universities
together is far larger than the number of such courses taught
at anyone of these universities. In fact, it is safe to say that
NTU's course offering, in computer science, is richer than that
of any single university in the country.

4. CREDIT DISTRmUTION REQUffiEMENT
The required 30 NTU credits should satisfy the following dis
tribution:

(1) At least one course from each of the five core categories.

(2) At least three courses from anyone of the depth depth
categories.

(3) At least one course from a breadth category.

To meet the needs of students whose Bachelor's degree is
not in Computer Science, NTU offers three bridging courses:

(1) Computer Programming

(2) Discrete Structures

(3) Data Structures and Algorithms

Credits earned for bridging courses cannot be applied
towards the 30 credits required for a master's degree.

13

5. 1985-86 ENROLLMENT FIGURES
While NTU first started offering courses in Fall semester 1Q84,
the Computer Science program became available only in Fall
1Q85. The enrollment figures for the 85/86 academic year are
summarized in Table 1. The entries in this table are total
course enrollment counts. Thus the sum of the number of
students enrolled for credit in each course in the Fall semester
was 232. The actual number of students taking courses for
credit in this semester may be slightly less as it is possible for
one student to take several courses in a given semester. The
number of different courses made available during the
academic year exceeded 130. A little over 40 of these were
actually subscribed to by NTU students.

Fall Winter & Sorinl!: Total
Credit 232 200 432
Audit Q2 105 IQ7

Total 324 305 62Q

Table 1 1Q85/86 enrollment figures

In addition, 16 courses were made available for the summer
1Q86 session. Enrollment figures for this session were not
available at the time this paper was written. As is eVident,
the Computer Science program is off to an excellent start.
Enrollments are expected to climb significantly in the next
few years.

6. MEDIA
NTU is committed to the use of state of the art technology to
provide the best delivery of its courses. Many of the courses
are broadcast live over satellite. The satellite link prvides for
a color transmission of the video. A two way audio channel is
also used. This permits live interaction with remote students.
The remaining courses are viewed with a time delay. These
get to the viewing sites either via satellite transmission during
off peak hours or via video tapes express mailed to the view
ing sites. Live tutorial sessions are organized for courses that
are not broadcast live. This gives students an opportunity for
live interaction with the instructor and/or the teaching assis
tants.

The lectures may be viewed by students at a time con
venient to them. This is true even in the case of live broad
casts as viewing sites have video taping facilities and taping
authorization. This fiexibility is essential to the success of the
NTU program as all its students are full time employees.
Their primary responsibility is is to their employers. With
NTU, students need not organize their work schedules around
their class activities. Rather, the class activities are made to
fit around the work schedule.

Interaction with the instructor and teaching assistants
may take the form of telephone conversations or communica
tion via AT&T mail or the US postal service. Initial data
indicates that only about 10% of the students are currently
using AT&T mail. The use of this powerful electronic com
munications system needs to be encouraged as a convenient
way to ask and answer questions that are of interest to all
students enrolled in a given course. Further, this could pro
vide a fast inexpensive mechanism to get assigments to and
from remote sites. The delay currently involved in doing this
poses a serious problem. NTU is currently exploring the possi
bility of adding an analog signal to the end of its video sig
nals. This analog signal will encode classroom handouts.
Thus, these will become available at the same time as the lec
tures.

7. SUMMARY
NTU has begun a new era of educational delivery. It prom
ises to bring quality education leading to a graduate degree
into the work place. By combining the educational resources
of the country's leading institutions, NTU is able to provide
curricula that is richer than found at anyone of these institu
tions. In fact, the services of NTU could also be beniflcially
used by participating (as well as nonparticipating) universities
to enrich their own offerings.

It is anticipated that by the end of this decade, NTU
will become one of the top producers of M.S. degrees in
engineering.

8. ACKNOWLEDGEMENTS
I am grateful to Dr Lionel Baldwin, President, NTU for pro
viding some of the data used in this paper and also for
authorizing the use of material from the NTU Bulletin [1].

9. REFERENCES

[1] The National Technological University Bulletin, 1086-
1087 Academic Programs, NTU, Fort Collins, Colorado

14

WORKSTATIONS AT CARNEGIE MELLON

Bruce Arne Sherwood

CDEC, Carnegie Mellon, Pittsburgh PA 15213

ABSTRACT
Carnegie Mellon' University intends to deploy

advanced-function workstations for students, faculty, and
staff. The basic goals and the organizational structures
created to attain those goals are described. Several
hundred workstations are currently deployed. There is an
overview of the Andrew and CMU Tutor software
environments.

In 1982 Carnegie Mellon University (CMU)
established the goal of giving all students ready access to
the wealth of information made possible by personal
computers, and providing the' kind of computational
environment that would enhance learning. At the same
time, faculty would use these computers for research and
teaching, and the university itself would benefit, both in
improved administrative functions and more rapid
communications.

Sc:-ne other universities have adopted the goal of
providing every student with a personal computer, but
CMU's plan is unusual in emphasizing advanced
"workstations" which are much more powerful than
typical personal or home computers l

. While these
workstations are rather expensive today, the rapid pace of
computer evolution insures that these tools will be
inexpensive and widely available in the late eighties.
Because it takes significant lead time to integrate any
computer system into university life, Carnegie Mellon
started early to deploy and exploit machines which will
constitute the next generation of personal computers.

Another important component of the Carnegie
Mellon plan is to link these workstations together, giving
students, faculty, and staff immediate access to up-to
the-minute programs and data. Fiber-optics links
between all major campus buildings already exist. By the
fall of 1986, IBM token-ring networks will be installed
inside the buildings to distribute information to offices,
classrooms, and to student residences.

ORGANIZATIONAL STRUCTURE

When the project was conceived, a contract between
Carnegie Mellon and IBM established the Information

CH2345-7/86/0000/0015$Ol.OO © 1986 IEEE
15

Technology Center (ITC) to develop system software to
support large-scale deployment of workstations. lTC, led
by its director and computer scientist James Morris, has
focused on two major aspects of the challenge: (1) a file
system to support several thousand networked
workstations, and (2) a friendly, graphics-oriented
operating framework for users of workstations.
Representatives from IBM work closely with professional
system designers, CMU graduate students, and
consultants from the Department of Computer Science,
doing the basic research and development necessary to
create this large-scale system. While much remains to be
done, the system is already operational and heavily used.
The various system-software components built by ITC
are collectively called the Andrew system2

,3, honoring
Andrew Carnegie and Andrew Mellon.

The university also set up the Center for Design of
Educational Computing (CDEC) to help create
educational applications. The cognitive psychologist Jill
Larkin was the first director of CDEC, and the new
director is the philosopher Preston Covey. CDEC
consults with faculty, provides seed money for
educational projects, develops software tools to assist
educational progranuning, and runs a seminar series and
newsletter. CDEC serves as a liaison between faculty and
lTC, helping both groups. define and refine the computing
environment necessary for education.

The environment for developing educational computer
applications is enhanced by CMU's strong Department of
Psychology with its special strength in cognitive
psychology, the study of thinking. The expertise on
learning from the Department of Psychology, combined
with the technical expertise of members of the
Department of Computer Science, promises to provide
exceptional new opportunities for students to learn and
for faculty to explore new ways to teach; Already,
unusual "artificially intelligent" tutoring programs exist
which will be increasingly useful as Carnegie Mellon
installs workstations capable of handling these complex
programs.

The nature of the new generation of powerful,
sophisticated computers has made it possible for ITC to
develop system software which operates on a variety of
different computers. This will greatly reduce the current
severe problems of obsolesence and of incompatibility
which plague educational computing. To encourage the
kind of sharing that is so important in an undertaking of

this size, CDEC works closely with. the Inter-University
Consortium for Educational Computing' (I CEC), headed
by Ken Friend, who.is stationed at Carnegie Mellon. The
Consortium includes major universities which are strong
in the computing field, such as Brown, Cornell, Michigan,
MIT~ and Stanford. For balance of viewpoints and
needs, I CEC also includes some smaller schools· such as
Vassar and Mills .. Through collaboration among these
universities and colleges; the Consortium hopes to
convince computer· vendors that it is worthwhile to
develop compatible systems. If exceptional educational
software developed at one institution could be readily
adapted to the needs of others, the total equipment
market would be much· larger than it is now.

Older organizations are playing new roles. The user
services section of the university computing center now
offers short courses on how to use and program the
workstations. The university library in association with
CDEC has created' a software library with acquisition and
cataloging functions.

All of these. organizations report to William Arms,
vice president for academic services. John P. Crecine,
senior vice president· for academic affairs, has played a
central role in· formulating policies· and plans concerning
the workstation project.

DEPLOYMENT HISTORY

In January 1985 fifty workstations were placed
around the campus to give faculty an early look at the
system and· to start developing educational applications.
In January 1986 the first public cluster of advanced
workstations was made available for shared student use.
This cluster contained twenty-four IBM RT PC's. By fall
1986 there are expected to be several hundred
workstations on campus, with about a hundred· of them
in publiC clusters. At present, even with quantity
educational discounts workstations cost close to ten
thousand dollars, which precludes individual student
ownership. However, by the· late eighties prices should
drop considerably, enabling. students to buy any of
several brands of' compatible advanced workstations in
the campus computer store.

Although some students were involved as
programmers from the beginning of the project, other
kinds of student use were limited due to lack of public
machines. In the spring of 1986 other students could
begin to take advantage of the new resources 4• For
example, undergraduate architecture students used a
powerful structural design package to synthesize and
visualize buildings, and students in a graduate physics
course on non-linear dynamics used a sophisticated
function plotter.

THE. SOFTWARE·ENVIRONMENT

The machines deployed at CMU (currently including
IBM RT PC's, DEC Vaxstation 2's, and Sun
workstations)' all use the Berkeley Unix 4.2 operating

. system, which is a key to compatibility of applications.

16

The Andrew file system software (called Vice) intercepts
Unix file references· and converts these references into
calls to file servers to which the workstations are
attached. Each file' server' handles about thirty
workstations, and the file servers are connected to each
other by a high-speed backbone link. As a result, a user
can log in to any workstation anywhere on campus and
file access is completely transparent. Whole files are
transferred over the network and cached· on a local' hard
disk. The workstation receives a message from a file
server if the server has a newer version of a previously
cached file. While there exist many implementations of
networked personal computers, Vice· is unusual in being
designed from the beginning to be expandable to several
thousand workstations while providing good security for
data.

The Andrew programmer and user' interfaces (called
Virtue) consist of a window manager, a text-processing
subroutine library, a database subroutine' library, and
applications such as editors, mail, and bulletin boards.
The Andrew window manager will soon be replaced by
the X window manager built by MIT, in order to enhance
compatibility above that provided by the· underlying
Unix. The text-processing subroutine library, called the
Base Editor, provides powerful display and manipulation.
of text, including italics and centering, scroll bars, and
real-time justification within a rectangle. Because it is· a
subroutine.library, not a text editor, it is easy to invoke a
sophisticated text editor inside one's own program. It
also has a marker facility which will keep track of a part
of a file and inform the surrounding program when a
marked section has been changed. The Base Editor
library will soon be replaced by a new "Multi-Object
Environment" which has' the important enhancement of
permitting "insets'" to be contained in documents. These
insets can be equations, graphs, tables, etc. Cutting and
pasting text containing these non-text items will be as
easy as current text operations.

CMU TUTOR

While the system software is written in C, this
language is not well suited for applications programming
by non-expert programmers. To give such people the
ability to create complex interactive graphics programs
which exploit the rich. capabilities of the workstation
environment, Bruce and Judith Sherwood have created. a
programming environment called CMU Tutor5•6•7•8.

While patterned on the MicroTutor language developed
in the PLATO project at the University of Illinois, CMU
Tutor has. enhancements for the workstation
environment, including pop-up menus, variable window
size; mouse support, etc. Thanks to the Base Editor
keeping track of which routines have been changed' and
therefore need recompilation, CMU Tutor operates as an
incremental compiler, which combines the revision speed
of an interpreted language. with the execution speed of a
compiled language. A tightly integrated graphics editor
generates source code from a display created using the
mouse. An on-line help facility not only describes the

language features in detail but provides sample routines
which can be run immediately thanks to the multi
window and incremental-compiler environment.

During the summer of 1986, the Carnegie Foundation
of New York funded four one-week workshops on
advanced-function workstations andCMU Tutor for
faculty and support staff at univerSItIes in the
Interuniversity Consortium for Educational Computing.
The workshops were held at Carnegie Mellon, and in less
than one week many workshop participants created
significant interactive graphics programs written in CMU
Tutor. IBM funded an additional week of workshops for
people from some non-ICEC universities.

Work is underway to ,be able to execute CMU Tutor
programs on popular micros, including the IBM PC and
the Macintosh. A limited authoring capability will also
be available, .although the workstation environment is a
more productive one for the creation of new materials.

REFERENCES

[1] Crecine, J. P. The next generation of personal
computers. Science 231, 935-943 (Feb. 28, 1986).

[2] Morris, J. H., Satyanarayanan ·M., Conner, M. H.,
Howard, J. H., Rosenthal, D. S. H., and Smith, F.
D. Andrew: a distributed personal computing
environment. Communications of the ACM 29,
184-201 (March 1986).

[3] Trowbridge, D. Using Andrew for development of
educational applications. Proceedings of the IBM
Academic Information Systems University AEP
Conference, Alexandria, Virginia, 85-89 (June 1985)

[4] Trowbridge, D. A sampler of educational software
atCMU. Proceedings of the National Educational
Computing Conference, San Diego, 135-142 (June
1986).

[5] Sherwood, B. A. An integrated authoring
environment. Proceedings of the IBM Academic
Information Systems University AEP Conference,
Alexandria, Virginia, 29-35 (June 1985). Here it is
explained, that CMU Tutor gets its name from being
implemented in C, with MU being the Greek letter
for Micro.

[6] Sherwood, B: A., and Sherwood, J. N. CMU Tutor:
An integrated programming environment for
advanced-function workstations. Proceedings of the
IBM Academic Information Systems University AEP
Conference, San Diego (April 1986).

[7] Sherwood, B. A., and Sherwood, J. N. The CMU
Tutor Language. Preliminary Edition. Stipes
Publishing Company, 10. Chester Street, Champaign,
Illinois 61820 (1986).

[8] :Sherwood, J. N. CMU Tutor Reference Manual.
Carnegie Mellon University internal report (1986).
This is a printed version of theon-line reference
manual.

17

INTELLIGENT TUTORING SYSTEMS FOR PROFESSIONALS

ALAN M. lESGOLD

Learning Research and Development Center
University of Pittsburgh

Pittsburgh, Pennsylvania 15260

Abstract

Tools are becoming available for developing intelli
gent tutoring systems to teach professional and
technical jobs. One basic tool is a method for
analyzing jobs that involve considerable problem
solving, such as electronics troubleshooting. A second
tool is a combined device simulation and hypertext
design capability". Combined with recent develop
ments in cognitive instructional science and artificial
intelligence, these tools promise affordable and
efficient computer-based tutors that can speed up
on-the-job learning.

Introduction

So far, most of the intelligent tutoring systems that
have been built have aimed at relatively simple
educational goals. However, it is now possible to
build systems that can address the very job-specific,
complex tasks that professional and technical workers
face in our rapidly changing society. While many
approaches seem worthy of investigation, I favor
job-situated, coached practice as the basic approach.

In such an approach, a series of problem forms are
developed that afford opportunities to exercise the
various bits of .knowledge one wants to teach.
Trainees work through these problems in a cognitively
real simulation environment, receiving co"aching as
necessary. Decisions about which variants of which
problems to present and how to coach are made
intelligently on the basis of aspects of the trainee's
performance. This means that the following
capabilities, among others, are needed to build such a
tutoring system: (a) a curriculum goal structure to
motivate the choice of problem forms and variants;
(b) a cognitively-real simulation of the work
environment, within which problems can be posed; (c)
adequate knowledge about how people at different
levels of skill think and act as they attempt to solve
the problems tha~ will be posed. In the sections that

C H2345-7 /86/0000/0018$01.00 © 1986 IE E E
18

follow, two tools are described that contribute to
developing these components. A task analysis
methodology is described that can drive the
development of the curriculum, as is a tool for
building the simulated work environment.

Effective Problem Space Descriptions: A Tool for
Cognitive Task Analysis

In order to decide what to teach, it is necessary to do
task analyses of the jobs that trained professionals are
asked to perform. Because the jobs a professional
does are largely thinking jobs, cognitive task analyses
are required - we need to know how professionals
think their way through problems. In our own work,
we have found it useful to begin by identifying an
expert who has to contend with the problems
produced by inadequate training. Such a person can
be helpful in identifying classes of problems that the
target group of professionals should be able to solve
but often are not. We then work with the expert to
develop an effective problem space for each such
problem. That is, we ask the expert to describe how
he would solve the problem and then probe deeply
for alternative solution methods that either other
experts or trainees might conceivably take.

We then use a differential empirical strategy to verify
the expert's analyses. We take other experts, new
professionals who are doing well, and new pro
fessionals who are having difficulties and ask them all
to solve the problems for which we have preliminary
effective problem spaces developed. The general
differences between fast-track and slower new
professionals are used to develop a set of goals for the
tutor, its curriculum. The specific differences in
problem solution paths are used as a basis for the part
of the tutor that coaches problem solving perfor
mance. So, a trainee is constantly solving problems
that are known to separate faster and slower new
comers to the profession, and the tutor is prepared to
coach, assist, and demonstrate the steps that
newcomers are likely to find difficult.

A few specifics

The approach my colleagues and I have used can be
made clearer by looking at an example. One of our
projects is to develop a tutor for a particular Air force
specialty in which manual (non-automated) test
equipment is used to diagnose and repair faults in
navigational equipment for a particular airplane, the
F-15. To carry out this project, we needed to find out
what was difficult about this job, which involves
massive amounts of electronic circuitry. Our break
through came not so much from our psychological
expertise but rather from interactions of three of us
(the author, Debra Logan, and Susanne Lajoie) who
had substantial cognitive psychological training with
an electronics expert (Gary Eggan) who had extensive
experience watching novice troubleshooting perfor
mances. He pointed out that it was quite possible to
specify the entire effective problem space, even for
very complex troubleshooting problems. That is, he
could almost completely specify all of the steps that
an expert would take as well as all of the steps that
any novice was at all likely to take in solving even very
complex troubleshooting problems. In this case, the
task was to find the source of a failure in a test station
that contained perhaps 40 cubic feet of printed circuit
boards, cables, and connectors, but various specific
aspects of the job situation constrained the task

sufficiently so that the effective problem space could
be mapped out.

This then created the possibility that we could specify
in advance a set of probe questions that would get us
the information we wanted about technicians'
planning and other metacognitive activity in the
troubleshooting task. For what is probably the most
complex troubleshooting task we have ever seen,
there are perhaps 55 to 60 different nodes in the
problem space, and we have specific metacognitive
probe questions for perhaps 45. Figure 1 provides an
example of a small piece of the problem space and the
questions we have developed for it.

An examination of the questions in the Figure reveals
that some are aimed at very specific knowledge (e.g.,

How would you do this?), while others help elaborate
the trainee's plan for troubleshooting (consider Why
would you do this? or What do you plan to do next?).
Combined with information about the order in which
the trainee worked in different parts of the problem
space, this probe information permits reconstruction
of the trainee's plan for finding the fault in the circuit
and even provides some information about the points
along the way at which different aspects of the
planning occurred. In fact, we went a step further
and also asked a number of specific questions about
how critical components work and what their purpose
is. Finally, when a trainee was headed well away from

19

Again:
Same

Readin

Figure 1
Examples of Problem Space Probes

* Why did you rerun the test?

* Why would you do this?
* Howwould you do it?
* What does it tell you?

* How do you do this?
* Why would you do this?
* Is this what you would do

in the shop?

* How do you do this?
* Why would you do this?
* Is this what you would do

in the shop?

* Why would you do this?

* How do you do this?
* Why would you do this?

* What do you think the problem is?
* What do you plan to do next?

a reasonable solution path, we wouid, at preplanned
points, redirect his efforts back to more fertile
ground.

After reviewing the records of performance in our
tasks, we developed six scales on which we scored
each airman. Each of these scales could be further
subdivided into subscales to permit more detailed and
task-spedfrc-Issues to be acfcJressed. The six scales
were titled plans, hypotheses, device and system
understanding, errors, methods and skills, and
systematicity. Table 1 gives two examples for each
scale of the items for which points could be earned (in
the error scale, more points means more errors and
thus is a lower score).

Table 1
Examples of Items Counted in each Subscale

Plans
• Extend and test a card.
• Trace through the schematic of an individual card.

Hypotheses
• There is a short caused by a broken wire or a bad

connection.
• The ground is missing from the relay.

Device and system understanding
• Understanding and use ofthe external control panel.
• Understanding of grounds and voltage levels in the test

station.

Errors
• Misinterpreting/misreading the program code, called FAPA,

for a test that the test station carries out under computer
control.

• Getting pin numbers for a test wrong.

Methods and skills
• Schematic understanding: Ability to interpret diagrams of

relays, contacts, coils.
• Ability to run confidence check programs.

Systematicity
• The subject returns to a point where he knew what was

going on when a dead end is encountered.
• The path from the power source is checked.

Plans was a count of the number of plans mentioned
by the subject during his problem solving efforts. Any
time that the subject entered a new part of the
problem space, we prompted for a plan, but the lower
skill subjects, especially, often did not have one. That
is, they more or less randomly acted until a plan or
hypothesis came to mind. A count was kept of the
number of hypotheses offered by subjects at various
points in their work. Again, subjects were prompted
for hypotheses at the predetermined boundary points
between regions of the problem space. The high-skill
newcomers entertained more hypotheses, which is
what we would expect given that even they are at
intermediate skill levels. True experts were be
expected to have a more constrained set of probable
hypotheses.

The device and system understanding scale was based
upon specific questions that were put to the subjects
after they had perform~d the troubleshooting tasks.
We asked a fixed set of questions about ea,ch of the
components of the test station that played a role in
the problems we had posed. These questions probed
for knowledge about how the component worked,
what role it played in the test station, what its general
purpose in electronic systems was, and what it looked
like.

The errors scale was simply a count of the number of
incorrect steps taken by the airman in trying to
troubleshoot the system.

The methods and skills measure tallied which of the
procedures needed to carry out the troubleshooting
of the test station were successfully demonstrated by
the subject.

20

Finally, the systematicity measure consisted of a set of
relatively broad criteria gauging the extent to which
troubleshooting proceeded in a systematic manner
rather than haphazardly or without a sense of goal
structure.

This, then, provided a first, relatively global view of
the skills that separated high and low skill first-term
airmen. We found out quite a bit from these analyses.
High skill airmen differed on most of the measures,
except for Plans. Looking a bit more closely, the
higher-skill airmen seemed not to be less inclined to
engage in metacognitive activity; rather, their
planning was more general, less conditioned to the
specific point in a specific problem solution at which
they found themselves. This suggested to us that it
might be necessary for us to teach very much in the
context of the skill domain. It wasn't that the
high-expectation airmen were more likely to use
general planning strategies. Rather, they were only
better at concrete, domain-specific variants of those
planning methods. The missing knowledge to be
taught to less-promising airmen was domain-specific
planning, plus some specific skill components, such as
tracing schematics and using meters for active-circuit
measurement. Thus, we had a basis for specifying our
curriculum.

However, the knowledge coming from the six scales,
or even from slightly more specific tallies, was
insufficient to drive the specification of our problem
types. To do that, we needed to be able to look at
additional qualitative aspects of job-domain perfor
mance. An impressive example of how to do this was
provided by Christopher Roth, an· LRDC student
working at HumRRO in Alexandria, Virginia. He took
our methods and applied them to a slight variant"of
the domain we studied. He also used the same
domain expert (Gary Eggan). However, he spent more
of the total effort comparing the specific problem
space paths of experts and novices. The next few
figures illustrate the yield of this work.

Roth worked with Eggan to develop a collection of
diagnosis problems that were characteristic of real
problems faced in the work environment and that
were likely to be solved correctly by the best
technicians and not by many of the less-skilled first
term airmen. People with experience in handling the
tasks on which many airmen have difficulty tend to
have a good sense of the kinds of problems that are in
this class (problems that are representative of the
domain, solvable by the better technicians, and not
solvable by a substantial number of workers), and
Eggan's advice has proven itself empirically. Figure 2
illustrates the effective problem space that Eggan
helped Roth construct for the problem. It was felt
that the bulk of problem solving activity would fall
within this space, for both experts and less-skilled

Run diagnostics

.t.
Result: Fails
with error
of "nodi"

drive"

workers.

Figure 2
Effective Problem Space

Effective Problem Space

Hypothes,,: Symptom due
to hardware fault

!

Use split· half strategy

Check~heck
byte count byte count line
into console int%ut of MUX adaptor In MU
Result: Bad Result: Bad Resu!t: Stili
byte fount byte fount can 'I OLL

conctude: conctude: Conctude:
Fault Fault Fault

upstream upstream

Conclude: Bad
disc drive

1
Swap components on basis
of ease/probability of fail

use functional analysis

Have system~ Try OLL on
fail over another console.

Result: Can Result: Can't
nOjOLL OLL anTonsole

concTude: Conclude: Fault
Fault NOT in components

common to
both OLLs

~ ~ ~ ~~
pack adaptor cables board

-------.~esult:Still~
can'tOLL 1

Solution

Roth and Eggan then proceeded to run subjects on
this task. The problem was posed verbally to airmen
who had access to the full set of Technical Orders
(documentation for the devices involved). Technicians
·were encouraged to offer their hypotheses, state their
plans, and announce specific steps they would take in
attacking the problem. Whenever an overt step was
stated by a technician, he was immediately informed
of the outcome of that step.

Figure 3 shows the basic results that Roth obtained.
The experts, whose performance is outlined with a
solid line, used a subset of the effective pro~lem
space, avoiding some of the steps that were less likely
to be productive. The novices, whose empirical prob
lem space is outlined in heavy dashes, failed to make
some of the expert moves and did make some moves
that experts would not make, such as swapping a di~c
pack {see bottom left of Figure 3. Further, their
empirical problem space was discontinuous, a set of
islands.

21

Figure 3
Expert and Novice Subsets of Effective Problem Space

Run diagnostics

.t.
Result: Fails
with error
of "no disc

drive"

... --

Effective Problem Space

!
Solution

To better understand what knowledge separated the
experts from the novices, Roth and Eggan then tried
to determine the specific knowledge that experts
used at critical points in the problem space.
Knowledge involved in making a move that experts
make and novices do not is a clear candidate for
inclusion in the curriculum. At the individual problem
tutoring level, a wrong choice at a decision point in
the effective problem space then becomes a mandate
for specific instruction on the knowledge that could
have led to correct performance.

Several things became clear from this work. First,
there will be a lot of variability from one trainee to
the next, so that the coaching for this sort of problem
solving performance cannot be prespecified, com
pletely. Rather, some online intelligence will, be
required. Second, the summary measures o~ plannl~g,
systematicity, etc., do not provide the detail on which
instructional design and specific coaching must be
based. Third, the validity of any conclusion about
what a trainee is doing during an effort to solve one
of our problems must rest on a pattern of logical
relationships among the observed details of per
formance, the expert knowledge of the domain, and

the cognitive psychology of expertise. That is, it is
reasonably easy for an electronics wizard and a
cognitive psychologist to get a good picture of what
knowledge a novice has or does not have, through
cognitive extensions of rational task analysis
approaches. This is a form of diagnosis more like what
a physician does in an individual case than like what a
testing expert does. Fourth, . the scientist can
reasonably ask what empirical support there is for.this
approach. Several successful analyses of technical jobs
have taken place, in three different laboratories, but
continued work is needed.

Simulating the Work Environment

I turn now to a totally different kind of tool, a
softwaretool. Given the goal of building a problem
based tutor, we need to be able to simulate the job
world in which the problem solving takes place. Here,
I also have an interesting discovery to report. Like a
number of laboratories, ours has been working on
tools for simulating devices. By a device, I mean a
network of objects that pass information between
themselves. for example, a resistor circuit can be
thought of as a set of objects, batteries and resistors
perhaps, that pass information about current and
voltage along paths that correspond to wires. To
simulate a resistor circuit, we need to specify a
method for each object that permits it to demonstrate
its behavior. For example, a resistor is an object that,
given modifications in its resistance, changes the
current it will pass at a given voltage, according to
Ohm's Law.

Of course, a device simulation must also model the
behavior of the device as a whole, and that overall
behavior is constrained by properties of its com
ponents, too. Further, simulated of response to
changes must be instructive, which may require a
departure from reality at times, but that is not the
issue I want to address in this paper. What is critical
for the present purposes is that a device model must
be prepared to illustrate both local component
behavior and overall system behavior.

It rapidly occurred to my colleagues Jeffrey Bonar and
John Corbett that this loca/global distinction can be
applied recursively. A computer has as components a
number of subdevices; they in turn are composed of
boards; the boards are composed of chips; many of
the chips are arrays of logic gates. Thus, what we
really have to be able to simulate is an entity that has
an overall functional description and also a descrip
tion in terms of the behaviors of its individual compo
nents. Corbett has built a system that can do this,
called Flowchips. It is still evolving, but we already
know that it is a very powerful tool, both for
providing an environment in which problem solving

22

activity can take place and also for providing
explanatory simulations of complex objects.

The next step in the story represents a stroke of
genius, for which Bonar and Corbett, not I, deserve
the full credit. They realized one day that hierarchical
displays of devices are no different from hierarchical
displays of texts. Indeed, texts can be included as
components of devices, too. They are special com
ponents, perhaps, that don't necessarily change; or
they are labels; or they are function descriptions that
changed as parameter thresholds are crossed, as in
labels on a capacitor that might say charging or
discharging or saturated. They can also be terse
statements of function that can be "opened up" to
reveal more detailed statements of function, just as a
chip might be opened up to reveal its logic-gates
contents.

In the limit, then, a device model is more or less like a
hypertext system. Information is presented at
multiple levels of detail in multiple media (for us,
currently, line drawings and text). However, it also
has some special properties. The entities of which it is
composed are not passive. They propagate changes in
themselve~ throughout the simulation system; they
respond to the student or trainee not only by
elaboration, but also by demonstration, by
explanation, and most importantly by affording
opportunities for manipulation.

In an idea processor, the user can change an entry, but
the change is passive. In the Flowchips system now
under development by Corbett and Bonar at the
Learning Research and Development Center, the user
can make changes that affect the entire system and
can then open up the system to examine those
changes. For example, changing a few switch settings
might totally change which parts of a complex circuit
a~e active and also change the texts that explain what
dl~ferent parts of the circuit are currently doing. It is
this level of device simulation that we believe is
crucial.

One final viewpoint on such change propagations is
worthy of note. If a change that has to do with a
parameter being simulated, such as voltage, can be
propagated through the system then it should also be
possible to propagate changes having to do with
pedagogy, such as advice that a particular student
reads poor~y, has trouble interpreting graphics, speaks
only a pa~lcular language, is a computer scientist, not
an electrical engineer, etc. Hopefully, we can move
beyond our current efforts, which are much more
~unda~e, and consider adding directly to the device
Simulation two other component objects, a student
model and a teacher of sorts.

In a real device, certain changes in parameter values
can be catastrophic. For example, pouring cold water
into a very hot steam plant can be deadly. In the kinds
of device simulations that now appear to be possible,
whether the simulation explicitly makes a big fuss
about such an act should be mediated by an intelli
gent system that decides whether focusing attention
on the catastrophic implications of the last step taken
will be useful in teaching the student. Similarly, while
there are many aspects of a circuit to which an expert
should attend, an active simulation might elide over
some components and concentrate on others to which
a novice should be particularly attentive or which
relate to an active instructional goal.

23

SOFTWARE SYSTEMS ARENA

Software' Engineering

TRACK CHAIR: Prof. Laszlo Belady
MCC "

Unix

TRACK CHAIR: Prof. Domenico Ferrari
University of California at Berkeley

TRACK CO-CHAIR: Dr. Luis Felipe Cabrera
IBM Research Laboratory

Program Testing

TRACK CHAIR: Prof. William Howden
University of California at San Diego

Programming Languages, Compliers
and Environments

TRACK CHAIR: Dr. John White
Xerox Corporation

AN APPROACH TO TYPE ,SAFETY IN A TRAITS SYSTEM

Gael Curry

Sequent Computer Systems

Abstract

This paper extends some of the multiple
inheritance subclassing ideas developed
for use. in early versions of· the Xerox
Star workstation. It first shows how to
capture the class hierarchy in compiler
visible form. Next it shows how to
attribute a useful notion of "type" to
instances. Then it shows how a compiler
and a programmer relate to this approach.

1. Introduction

This paper descr ibes an approach to
supporting type-safe mu~tiple-inhe~itance
object-oriented programm1ng. It 1S the
outgrowth of experience with traits as
supported in the Mesa language for Xerox
Star.

For completeness, the paper will first
describe what traits are, how they were
used in Star, and what the problems were.

Then, it will describe how to embed a
multiple-inheritance class hierarchy in
compiler-visible structures, and discuss
the meaning of type-safety in these terms.

2. Traits

This section reviews the central ideas
behind traits and compares them to similar
facilities in other environments.

2.1. Basic concepts

A "trait" is a property that an object may
have which allows clients to interact with
the object in a certain way. To a client,
a trait appears as a set of operations,
any of which may be applied to any object
carrying the trait. For example, the
trait "stores integer" may have two
associated operations: put_integer and
get~integer.

CH2345-7/86/0000/0025$01.00 ©1986 IEEE
25

A trait does not capture the essence of an
object. It captures the essence of a
property of an object. In this respect it
is different from an "abstract data type".
Trai ts are, however, similar to abstract
data types in the sense that they are
information-hiding encapsulations of
(properties of) objects.

Traits can be mixed rather freely in
objects. Often pr imi tive trai ts are
independent of other primitive traits,
such as "stores integer" and "has name".
Under these circumstances, it is- quite
natural for objects to carry severa1
traits.

Several traits can also be combined into
more complex trai ts. For example,
"is integer variable" could be considered
to be the combination of "stores integer"
and "has name". These compound traits can
then be carried by objects.

A "class" (for a given trait) is something
which generates instances whose only
property is the trait, and, by
implication, its subtraits.

Traits are described in greater detail in
[Curry81] and [Curry83].

2.2. Similarities to Other Environments

The idea of primitive abstractions which
can be combined into more complex ones has
been used elsewhere.

In Smalltalk [Goldberg83], the rough
analog to trait. is "abstract class", a
class without instances. The "carries"
relation on traits corresponds to the
"superclass" relation on classes. See
[Borning82] for a description.

In KEE, the rough analog to trai ts are.
"units". See [Intelli83].

In various versions of LISP, "flavors" are
the analog to "traits" [Weinreb80]. The
LOOPS extension to Interlisp also has
corresponding concepts [Bobrow83],
[Stefik85].

A comprehensive comparison of the various
approaches can be found in [Carnese84].

2.3. Differences from Other Environments

While conceptually similar to the various
other mechanisms previously mentioned,
traits were motivated by different types
of concerns. The approach arose out of
the need to control the complexity in the
Star implementation by increasing the
reusability and sharability of common
program fragments. Subclassing first, and
multiple-inheritance second, helped to
accomplished this.

There was another point of departure. It
was vital that the implementation of
mul tiple-inher i tance be lightweight. For
this reason, message-passing approaches to
supporting multiple-inheritance were
rejected. Message-passing is an expensive
way of implementing inheritance in cases
where the very dynamic binding permitted
by message-passing is not required.

Since it was acceptable to hold the class
structure constant for a particular build
of Star, it became possible to precompute
(at load-time or earlier) all of the
values inherited by a class.

A more subtle difference between traits
and more dynamic systems also exists. The
central traits notion is that of an
abstract specification of a property of an
object; the semantic specifications of
trait operations are the constants. Other
schemes seem to focus more on message
passing; message names are the constants.
At issue is whether alternate methods
selected by a gi~en message ne~~to meet a
given specification.

3. Traits in Star

This section discusses the use of traits
in Star: the programming conventions,
binding times, and type-safety. The
casual reader can skip this section.

Traits were used extensively to build the
early versions of Star. Versions of Star
released in 1983 included some 260
different traits.

The Star programmer dealt with traits as a
pattern of programming conventions over
the Mesa language.

26

3.1. Mesa

Mesa was the systems implementation
language for Star. It is a strongly
typed, modular language [Geschke77],
[Mitchel179]. "Definitions modules"
represent the abstract interface to
"program modules," which implement the
interface.

The strong-typing of Mesa had a deep
influence on the Star programmer. Because
Star was such a large piece of software -
on the order of a thousand program modules
- any support for maintaining and making
comprehensible large software systems was
welcome. The Mesa compiler's support for
strong-typing was invaluable; breaches of
the type system (which traits seemed to
require) were frowned upon. The desire
for a type-safe way of supporting traits
led to the thoughts behind this paper.

3.2. Trait Client Programming Pattern

A trait appeared to its client as a Mesa
definitions module. The module would
contain a set of procedural interfaces for
trait operations. The first parameter of
each procedure was the handle to the
object (allegedly) carrying the trait. It
might be declared as:

"Op: PROC[oH:Handle, t:T]".
and would be invoked as:

"Trait.Op[oH, t];"

It was the client's responsibility to
ensure that, before applying a trait
operation to an object, that the object
did in fact carry the trait. In general,
there were no compile-time or run-time
guarantees that it did. It was a seiious
error when a trait operation was applied
to an object not carrying the trait.

3.3. Trait Implementer Programming Pattern

Implementing a trait was more involved
than simply using one as described above.
The implementer of a trait had to <;>bey
certain programming conventions S1nce
traits were not supported directly by the
language.

Each instance reserved storage for all the
traits that it carried. The conventions
required that each trait declare how much
storage it needed in instances which would
carry it. For example, the trait
"stores integer" would require enough
storage-for one integer in every object
that carried it.

In addition, each class reserved storage
for all the traits that it carried. This
storage was used exclusively for storing
procedure values reflecting the inher i ted
"methods" of the class. The conventions

required that each trait declare how many
overridable operations it had.

A "trait manager" (TM) existed which
represented compile-time and run-time
knowledge of global aspects of the trait
hierarchy.

Each trait declared certain things about
itself to TM (e.g., amount of trait
storage required in each instance carrying
the trait, amount of trait storage
required in each class carrying the trait,
whether the trait would generate
instances, which (sub) traits it carried).
Each trait registered this information
with TM at load-time. Logically, this
could have all happened at compile time.

The TM used this information to determine
the locations of trai t data in instance
storage, and of trait data in class
storage. Trai ts could query TM to
determine where their data was in
instances and classes. For accessing its
data, a trait would ask TM to help it open
a scope onto its data in the instance:

put integer(oH: Handle, i:int]
- p = TM.Data[oH, me];

p.storage = i;

In addition, where carrying traits
(subclasses) were able to override this
trait's methods with their own, the trait
implementer needed to provide a "switch".
The pattern was similar; a trait would ask
TM to help it open a scope onto its data
in the class:

put integer (oH: Handle, i:int]
- p = TM.Ops[oH, me];

p.put_integer[oH, i];

Initialization of instances and classes
was done by explici t bottom-up traversal
of the traits hierarchy by each individual
trait. That scheme was fine in the single
inheritance world (where there was only
one immediately carried trait, or
"superclass") , but broke down completely
for multiple-inheritance. A better
approach would have been for TM to dr i ve
the static initialization of instances and
classes, rather than conversely.

The pattern was too involved to be
satisfactory. The whole scheme could have
been supported much more cleanly by a
compiler (if the information known to the
Star traits manager were only available at
compile-time).

3.4. Pre-calculated inheritance

The class information massaged by TM was
in fact static. All method overriding was
performed at boot-time, and recorded in

27

the class structure. It could as well
have been specified at compile-time (this
is not necessary for type safety as
described below).

3.5. Pre-calculated initial instances

Similarly, statically initialized
instances for each class could have been
calculated at compile-time.

3.6. Optimized instance, class layout

When a trait accesses its data in
instances or in classes, it does so via
TM. It actually has no idea where its
data is with respect to the class or
instance. It is the association of trait
storage with instances that is important,
not the location of the storage. In many
cases, it is possible to arrange that, for
all classes, trait data is in the same
object-relative location (class
independent positioning). This can be
used to generate optimal accesses to trait
data.

For single-inheritance systems, class-
independent positioning is always
possible. For multiple-inheritance
systems, it is easy to show that it is
sometimes impossible if no "holes" are
permitted in instance storage. In
general, class-independent posi tioning of
trai t data in class and instance storage
is excessively expensive.

The Star trait manager originally
calculated a globally optimized layout for
trai t data in instances and classes. A
recompilation of Star with this globally
optimized layout made trait data access
even faster.

3.7. Type-safety

There were many places where the Mesa type
system was breached by the traits
programming convention. We were unable to
find a safe pattern which still retained
the information-hiding benefits.

4. Problems with Traits in Star

While traits worked well enough to get the
job of building Star done, they had
certain drawbacks.

This section describes the major problems
encountered which using traits in Star.

4.1. Traits were unsupported

The most basic problem was simply that
that style of programming was unfamiliar.
As a lang,uage feature it was unsupported
by the production tools

4.2. Runtime support was required

One of the more interesting aspects of
multiple-inheritance is that runtime
support seems to be required to locate
trait data in instance storage (and class
storage), at least when no gaps are
permitted in instance storage. For
single-inheritance systems, the convention
of placing superclass data closest to the
base of instance storage provides class
independent positioning for all traits.
For multiple-inheritance systems, there is
no convention which assures class
independent positioning for all traits.
There will always be a trait whose data
(in an instance) can only be located by
accessing a runtime which can only be
constructed after all traits'
implementations are compiled.

If gaps are permitted in instance storage,
a compile-time database of trait data
locations can eliminate the need for
runtime access.

4.3. Global optimization was performed

The Star traits mechanism went one step
beyond providing a runtime. It tried to
minimize access to the runtime by doing an
analysis of the entire traits hierarchy in
order to achieve class-independent
positioning as often as possible. From a
development standpoint" the optimization
was not a good idea, since addition of a
single new trait could require recompiling
all trait implementations.

4.4. Traits breached Mesa type system

Perhaps the most serious problem with
traits in Star was the fact that its use
fostered systematic breaching of the Mesa
type system.

For the trait client the danger lay in
invoking a trait operation on an object
which did not carry the trai t.
Eventually, a run-time check was added;
the object' s "create type", the highest
level trait it carried, had to carry the
trait introducing the operation.

For the trait implementer, the problem lay
in the way a scope was opened on trait
data in class and instance storage; a
(generic) TM function was used, returning
a pointer which was then coerced into a
trait-specific type.

In practice, surpr isingly, these breaches
did not cause problems very often. Their
existence was disturbing, however.

28

In addi tion, the only checks which could
be implemented were run-time checks. This
deferred detection of what was basically a
type breach to late in the development
cycle.

5. Elements of a Solution

Static typing is always a compromise. In
exchange for compiler support for the more
static aspects of a program, the
programmer gives up some dynamic control.

The most important element of type-safe
multiple-inheritance traits programming is
to embed the trait hierarchy in structures
which are identifiable by a compiler. At
the very least, trait "names" and the
"carries" relation should be visible; the
compiler needs to be able to determine
whether one trait carries another or not.
For type-safety, only this is necessary.
It is also useful if method inheritance
can be precalculated at compile-time;
cases of inconsistent inher i tance can be
resolved by the compiler. It is more
efficient to calculate the value of
statically-initialized instances at
compile-time also.

The second necessary element for type-safe
trait programming is a change of viewpoint
about what "type" is.

Conventionally, variables which hold
values of a given type are tagged with the
"create type" of the variable, reflecting
total knowledge of the characteristics of
the value. For example a var iable which
holds an object of the (earlier-described)
type "is integer variable" would be tagged
with "£5 integer variable". This notion
of type does not help wi th type-safe
traits programming.

An alternate approach is to tag variables
holding values of a specific type with
(sub) traits carried by that type,
reflecting partial knowledge of the
characteristics of the value. In the case
above, a variable holding an object of
type "is integer variable" might be tagged
with "has name".- This tagging allows the
programmer to apply the operation
"get name" (for example) to the object.
Even- though the operation "get integer"
makes sense, it may not be invocable.

Syntactically, one might write:
<var>: Handle CARRYING <trait>

to declare <var> to hold handle values for
objects known to carry <trait>. A more
general approach allows the programmer to
express partial knowledge that an object
carries a set of traits:

<var>: Handle CARRYING <traitlist>.

"Type-safety" for trait clients means that
it is not possible to apply a trait
operation to an object which does not
carry the trait.

6. A Static Trait Hierarchy

This section describes how trait
information can be embedded in compiler
visible structures - trait interfaces. A
trait interface is the means by which
trait clients know the types and
operations introduced by the trait. In
Mesa, a trait interface would be
represented as a "definitions module".

A trait interface contains a single "trait
declaration". A trait declaration
includes a "trait id" and a list of
carried traits (we exclude referential
circularity). Note that a trait interface
may be shared indirectly via different
paths. The importance of the trait
declaration is that it embeds a de
scription of the traits graph (i.e.,
carries relation) in the set of trait
interfaces, in a form which can be
understood by the compiler.

A trait interface contains a number of
operations introduced by the trait and
which can be applied to objects carrying
the trait. These are called "trait
operations". Every trait operation has a
distinguished parameter, which identifies
the object to which the operation is to be
applied. This parameter must be of type

Handle CARRYING <trait>,
where <trait> is the trait being declared.

In a trait interface, each trait operation
is described. For each operation, the
name, input and output parameters and
their types are listed. The semantics of
each trait operation are described. As is
usual with interfaces, the
"implementations" of trait operations are
usually not specified.

A trai t interface specifies whether each
trait operation is rebindable and if so, a
preference for that operation. A syntax
such as:

t: TRAIT [•••];
THandle: TYPE = Handle CARRYING t;
Op: TRAIT PROC[oH: THandle, .•.]

PREFER OpDefault;
could be used. Preferences are not
per~anent bindi~gs. That is, invoking a
reb~ndable tra~ t operation bound wi th
PREFER cannot be guaranteed to invoke the
preference. For example, if the trait
opera~ion is b~ing applied to an object
carry~ng a h~gher level trait which
overrides the preference expressed here
with its own, then the preference of the
higher-level trait will be invoked
instead.

29

Each trait interface specifies preferences
for its rebindable operations. Higher
level traits must be able to override
preferences of traits they carry. A
variant of the PREFER verb can be used.
For example, if the declared trait carries
a trait declared in another trait
interface "T", and "Op" is a rebindable
operation declared in "T", we could use:

T.Op: PREFER OpOverride.
This means that the trait defined here is
"overr iding" the earlier preferences wi th
its own.

This ability of higher-level traits to
override preferences of lower level traits
is the basis for much of the power of
trai ts. In more dynamic subclassing
systems the same purpose is accomplished
by intercepting messages and executing
alternate "methods". In a trai ts system,
this "message-passing" overhead would be
incurred at compile time instead of run
time.

The traits hierarchy implicitly expressed
in the set of trait interfaces defines
operation inheritance paths. It a higher
level trait "Th" carries a lower level
trait "TI", then operations of TI can be
applied to objects carrying Th.

Notice that from the perspective of a
given trait interface, everything about
the trait hierarchy below it is known.
The trait operations for this and all
carried traits are known, and preferences
for rebindable operations for this and all
carried traits can be calculated. If the
trait is a class, the inherited methods
for the class can be calculated and
conflicts resolved.

7. Client Perspective

From a trait client perspective, things
are straightforward. References to objects
are maintained as handles carrying the
needed traits. For example, a "page"
object could be composed of "heading",
"footing" and "body" objects. "page"
trait data could be declared as:

RECORD [

] .
head: Handle CARRYING heading,
body: Handle CARRYING body,
foot: Handle CARRYING footing

An Object whose handle is stored in
page. body may be a good deal more
elaborate than "body" , but for the
purposes of "page", it does not matter.
The "page" object will only deal with the
object at the level of "body" or below.

If a client wishes to apply an operation
introduced by a lower level trait to an
object, the compiler can validate and
perform the necessary coercion, since it
sees the entire traits hierarchy. For
example:

Object.Print[page.body].
In this case, page.body carries the "body"
trait, which we assume carries the
"object" trait. The compiler notices that
the programmer is attempting to apply an
operation introduced by "object" (namely
Print) to an object known to carry the
"body" trait. This is valid exactly when
"body" carries "object", a simple
reachability check on the traits graph.

On those occasions when a programmer
"knows" than an object carries a higher
level trait than the source guarantees, he
may coerce it explicitly. A runtime check
that the object really does carry the
trait can be performed to maintain safety.

8. Applications
The real value of traits is reusability.
Traits offer a way of capturing essential
abstractions more easily than single
inheritance subclassing schemes. In order
to be truly useful this way, traits should
be implemented over some widely used
programming language. In addition to
being based on a widely-used language, an
extensive library of abstractions is
desirable.

The approach taken by the language C++
[Stroust86] is perhaps the best way to
deal with the need. In this case a
preprocessor "virtually" extends a
standard, widely-used language.

Mesa, Modula, and ADA are perhaps the
languages best suited for these
extensions, since they provide strong
typing support already, and support for
interface modules.

With some work, however, the approach may
be applied to FORTRAN as well.

9. Conclusion

This paper has indicated how to extend a
strongly-typed language to support traits
based programming. There are two key
ideas. First, embed the trait hierarchy
in a set of statically defined interfaces.
This potentially eliminates message
passing as a means of implementing
inheritance (since the compiler can now
manage inheritance and type checkin~).
Second, rely for type-safety on a not~on
of "type" which reflects static knowledge
that an object carries a given trait,
rather than the notion of "create type".
The compiler can then assist in automatic
coercion and type-checking, based on its
understanding of the (statically
specified) trait hierarchy.

30

10. References

[Bobrow83]
Bobrow, D. and Stefik, M. The Loops
Manual. Technical Report, Xerox PARC,
December, 1983.

[Borning82]
Borning, A. and Ingalls, D. "Multiple
Inheritance in Smalltalk-80". Proceedings
of the American Association for Artificial
Intelligence, 1982.

[Carnese84]
Carnese, D. "Multiple Inheritance in
Comtemporary Programming Languages",
Masters Thesis, MIT AI Lab, September,
1984.

[Curry81]
Curry. G.; Baer. L.; Lipkie, D.; Lee, B.
"Traits: An Approach to Multiple
Inheritance Subc1assing", SIGOA Conference
on Office Information Systems,
Philadelphia, June, 1982.

[Curry83]
Curry, G.; Ayers, R •• "Experience with
Traits in the Xerox Star Workstation",
IEEE Transactions on Software Engineering,
September, 1984.

[Intelli83]
IntelliGenetics, Inc. "KEE User's
Manual". 1983.

[Geschke77]
Geschke, C.; Morris, J.; Satterthwaite, E.
"Early Experience with Mesa". CACM
20(8):540-553. August, 1977.

[Goldberg83]
Goldberg, A.; Robson, D. Smalltalk-80-
the Language and its Implementation.
Addision Wesley, 1983.

[Mitchel179]
Mitchell, J; Maybury, W; Sweet, R. Mesa
Language Manual. Technical Report, Xerox
PARCo 1979.

[Weinreb80]
Weinreb, 0; Moon, D. Flavors: Message
passing in the Lisp Machine. Technical
Report AIM-602, MIT AI Lab, November,
1980.

[Stefik85]
Stefik, M; Bobrow, D. "Object-Oriented
Programming: Themes and Variations," AI
Magazine, Winter, 1985.

[Stroust86]
Stroustrup, B. The C++ Programming
Language. Addison Wesley, 1986.

Object-Oriented Programming for Macintosh Applications

Larry Rosenstein Ken Doyle Scott Wallace

Apple Computer, Inc.

Abstract

One of the attractions of the Apple® Macintosh ™ is
the uniform user interface across applications.
Users judge a Macintosh program not only by its
functionality, but also by its adherence to the user
interface guidelines. Implementing the standard
user interface is tedious, however, because of the
many details that each developer must program.

This paper describes an object-oriented system,
called MacApp/M that is designed to improve both
programmer productivity and user interface
consistency. MacApp consists of a set of object types
that implement the standard Macintosh user
interface. Programmers customize MacApp not by
editing its source code, but by defining new object
types that override methods in MacApp.

Introduction

Apple's Macintosh computer is noted for the
consistent user interface across applications. Users
judge Macintosh programs not only by their
functionality but also by their adherence to the
established user interface guidelines. For example,
they expect applications to use windows and
pull-down menus, to transfer data from one
program to another, and to provide an undo
operation for every command.

User interface consistency is encouraged by the
Macintosh Toolbox,! which is a set of several
hundred procedures and functions built into
read-only memory. The Toolbox provides the
low-level implementation of the standard user
interface, including windows, menus, and scroll
bars.

The Toolbox does not provide an overall structure for
an application; it is up to each developer to call the
correct Toolbox routines in response to user actions.
Most of the source code needed to implement the
standard user interface is identical in all
applications. In addition, some of it can be tedious

CH2345-7j86jOOOOj0031$Ol.OO © 1986 IEEE
31

to write and debug. The time a programmer spends
implementing the user interface could be better
spent working on the specific features that make the
application unique.

The typical approach to assisting programmers has
been to provide a series of sample programs that
they can modify to suit their needs. We have taken a
different approach by implementing a generic
Macintosh application, called MacApp. MacApp
automatically handles the common user interface
details such as moving, resizing, and scrolling
windows. It is structured so that programmers can .
easily override the standard program behavior and
add application-specific behavior.

MacApp is written using object-oriented program
ming techniques. It consists of a set of object types,
each of which corresponds to an aspect of the
Macintosh user interface, such as a document or
window. An object type defines the behavior of
instances of that type in terms of: (1) the state
information stored in every instance and (2) the
methods that act upon the state information. The
Document type in MacApp, for example, includes
the name of a disk file as part of its slate and
methods for opening the file, reading the document
from disk, and closing the file.

Developers use MacApp by defining descendants of
the basic MacApp object types, which automatically
inherit the standard behavior of MacApp. They
customize MacApp, not by editing its source code,
but by overriding the methods they wish to change.
In the example above, the programmer would define
a descendant of the standard Document object type
and override the method that reads the disk file with
one that can interpret a particular file format. The
methods that open and close the disk file, however,
would be inherited from MacApp.

MacApp is similar in purpose to the Model, View,
Controller classes of Smalltalk-80;2, 3 both provide a
standard framework within which to implement
applications. The design of MacApp was also
influenced by the Lisa® Toolkit,4,5 which was an
earlier object-oriented system developed at Apple for
the Lisa operating system.

Why Object-Oriented Programming?

There are two basic reasons for. using object-oriented
programming in MacApp.

First, object-oriented programmin~ generally
promotes better programming style.5, Programs
are easier to maintain, because the interactions
between objects are through well-defined method
interfaces. Also, code can be more easily reused and
extended through subclassing and inheritance.

The second" reason involves the structure of a
Macintosh application. All applications follow the
same basic structure, at the heart of which is an
event loop. The event loop reads an event from a
queue, classifies it, and then processes it. Pressing
the mouse button, for example, could be interpreted
as choosing a menu command, moving a window,
or selecting an icon, depending on where the user
was pointing at the time.

Since the event loop is common to every application,
it should be implemented once in MacApp and used
by every application. This is a radical change from
the typical application because the primary control
loop of the application resides in MacApp, and is not
implemented by the programmer.

Although MacApp can handle generic actions such
as moving a window, it cannot handle application
specific actions such as choosing an icon ... For the
latter kind of actions, MacApp must make calls to
procedures written by the programmer. This is
inconvenient to do in a conventional programming
language, because a procedure call must specify at
compile time which piece of code to execute.

Object-oriented programming is ideal for this
situation. Sending a message to an object corres
ponds to calling a procedure. The difference is that
the method to be executed is determined at run time,
based on the type of the object. Although the same
effect can be achieved with pointers to procedures,
the resulting programs are more readable and
easier to maintain if they use" object-oriented
constructs.

Object Pascal

MacApp was developed using Object Pascal,7 which
is an object-oriented extension of Pascal. Object
Pascal provides language constructs for defining
object types, similar to the facilities of Simula or
Smalltalk-80.2,3 Object Pascal is descended from
Clascal,4,5 which is an earlier language designed
for the Lisa computer. Two important design goals
of Object Pascal were: (1) to make it as simple as
possible to learn and use, and (2) to integrate the
object-oriented extensions with the rest of Pascal.

An object type definition is written much like a

32

record type definition. For example, the following
defines a Shape object type;

Type Shape = Object
bounds: Rect; "
color: Integer;

Function Shape.Area: Integer;
Procedure Shape.Draw;
Procedure Shape.MoveBy(dh, dv: Integer);

End;

The main difference between a record definition and
an object definition is that the latter can contain
declarations of procedures and functions, which are
the methods of the object type.

Another difference is that an object definition can
contain an optional ancestor type designation. For
example, the following" two object types have Shape
as their immediate ancestor object type:

Type Circle = Object(Shape)
Function Circle.Area: Integer; Override;
Procedure Circle. Draw; Override;
Procedure Circle.SetRadius(radius: Integer);
End;

Type Triangle = Object(Shape)
vertices: Array[1..3] of Point;

Function Triangle.Area: Integer; Override;
Procedure Triangle.Draw; Override;
Procedure Triangle.MoveBy(dh, dv: Integer);

Override;
Procedure Triangle.SetVertices(vl, v2, v3: Point);
End;

The descendent object type inherits all the fields and
methods of its ancestors, and can add new'Relds and
methods. In the definition above, Circle inherits
the bounds and color fields and the MoveBy method
from Shape, and adds the new method SetRadius.
An object type can also override methods defined, by
its ancestor; for example, Circle overrides the Area
and Draw methods.

In this example, Shape is an abstract object type.
There would not be any instances of Shape itself,
only of descendants such as Circle and "Triangle.
The reason for defining a Shape object is to,. establish
a standard interface that all kinds of shapes can
share. As we will see below, it is possible to refer to
generic Shape objects without knowing until run
time if they will actually be Circle or Triangle
objects.

When a programmer declares a variable of a
particular object type, the variable is a reference to
an instance of that type. In the current Object
Pascal implementation, an" object reference is a
pointer to a pointer to the actual object data. (In the
Macintosh terminology, a pointer to a pointer to a
data block is called a handle.)

Fields of an object can be referenced much like fields
of a record. For example:

Var aCircle: Circle;
aShape: Shape;

aCircle.bounds := aRect;
oldColor := aShape.color;

Methods are invoked using the same syntax:

aCircle.MoveBy{10,20);
aShape.Draw;

Since Circle and Triangle .objects inherit all the
properties of Shape objects, they can be used in any
situation where a Shape is required. In particular,
the object reference 'aShape' could refer to a Circle,
or a Triangle. Because aShapeis declared as a
Shape reference, the Object Pascal compiler
restricts accesses to aShape to those that are defined
in .the Shape object type. For example, the compiler
would flag the statement 'aShape.SetRadius(r);' as a
syntax error, since. Shape objects do not define a
SetRadius method. This is different from Small talk,
where the error would not be caught until the
statement was evaluated.

The determination of which method implementation
is called for a particular method call is made at run
time. To illustrate this, consider the following
procedure:

Procedure MoveTinyShapes(aShape: Shape);
Begin

If aShape.Area < medianArea Then
aShape.MoveBy(100, 0);

aShape.Draw;
End;

When the Object Pascal compiler compiles this
procedure it has no- way of knowing whether a
Circle object or a Triangle object (or for that matter
an instance of an entirely 'new Shape subclass) will
be passed to MoveTinyShapes. Method calls such as
aShape.Draw do not directly call a P!lrticular
method. Rather, they call a special method dispatch
routine that examines the object to determine its
type and then refers to memory-resident method
tables to determine which method to call.

MacApp

MacApp is a generic Macintosh application. By
itself, it can be compiled into a runnable program
that would have many features of the Macintosh
user interface. For example, it would support
multiple windows that can be resized and scrolled.
The windows would be blank, however, since
MacApp does not specify what should appear in the
windows.

33

There are six basic object types that MacApp
programmers use:

Application
'Frame

Document
View

Window
Command

Each of these object types correspond directly to an
aspect of the Macintosh user interface.

There is one Application object during the execution
of a program. The Application object receives events
such as mouse presses and distributes them to other
objects. lt also handles desk accessories and any
commands that apply to the application as a whole,
such as opening a new document.

Document objects contain -the data that the program
uses; for example, formatted text or a spreadsheet
model. In addition to providing methods for
manipulating data in memory, it also provides
methods for saving the data onto the disk and later
reading it back into memory. There can be more
than one type of Document object in a MacApp
program: an integrated application -might define
both word processing and spreadsheet Document
types.

The Window, Frame, and View object types all deal
with displaying information on the screen. Window
objects represent Macintosh windows that can be
resized and moved. Frames are used to partition a
window into independent pieces, each of which
contains a View object. For example, MacDraw™
windows contain a tools palette as well as a drawing
area.

View objects translate between the Document's data
structures and an image within a Frame. The
main function of the View object is to draw the data
when its Draw method is called. Before MacApp
calls the Draw method, it sets up the graphics
clipping and translation so that only the desired
portion of the image is drawn. MacApp calls the
same Draw method when printing each page of the
document; in this case, the graphics state is set up
so that the image appears on the printer rather than
on the screen.

The last object type that MacApp programmers
commonly use is the Command. Command objects
provide a convenient framework for implementing
the Undo command, an important part of any
Macintosh application. Command'- objects
encapsulate information about how to execute, as
well as undo, an operation.

When the user selects a command from a menu, the
application -. does not immediately carry out the
operation. Instead, it creates a Command object
and returns that object to MacApp. MacApp will
then send a Dolt message to the Command. The
Dolt method is responsible for carrying out the
user's command and updating the image on the

screen. It also must remember enough information
so that the operation can be undone if necessary.

If the user selects Undo from the menu, MacApp
sends an UndoIt message to the same Command
object. The object restores the previous state of the
Document and again updates the screen image. If
the user selects undo again, MacApp sends the
message RedoIt to the Command object.

A MacApp programmer will define a subclass of
Command for each kind of operation that can be
performed. For example, the Copy and Paste menu
commands would be handled by different Command
types. Often it is possible for one Command type to
handle several menu commands; the Cut, Copy,
and Clear commands are usually similar enough to
each other that a single type of Command object can
be written to handle all three.

In addition to the six basic object types described
above, MacApp also contains support for other
important application features; such as: creating
and using dialog boxes, sending and receiving data
over the AppleTalk network, and recovering from
I/O and out-of-memory errors

Experiences with MacApp

Programmers, both inside and outside of Apple,
have been using pre-release versions of MacApp
since April, 1985. Of the approximately 200 people
who have received MacApp, we have received
comments from about 20 developers who have been
actively using it in serious Macintosh applications.
Three of these applications have reached "beta" test
stage; one is a boat navigation program (which took
six months to develop), another is a recording studio
management program (nine months), and the third
is a stuctured program editor and run time system
(twelve months).

Before MacApp was developed, Macintosh
programmers would spend several weeks reading
Inside Macintosh! and example programs, in order
to understand the structure of an application.
Programmers who begin to use MacApp still spend
several weeks reading the MacApp documentation.
The important difference between the two
approaches is that with the same investment of
learning time, they end up with a much more
functional application. By writing about three pages
of source code, they can have a working application
that has multiple scrolling windows, that reads and
writes documents, and that prints.

Much of the difficulty in learning MacApp comes
from its use of object-oriented programming. It
takes time for a programmer who is not familiar
with object-oriented systems to understand method
calls and inheritance. In addition, MacApp
requires thinking about an application in a different

34

way, since most of the application control structure
is contained in MacApp itself. Once developers
overcome these obstacles, however, they are able to
produce applications more quickly with MacApp
than when using conventional programming
techniques.

Programs written using MacApp follow the user
interface guidelines more closely than most
Macintosh applications. In addition, they are
structured in a way that makes them easy to
maintain and enhance. While developing MacApp,
we talked to many Macintosh developers and
incorporated their ideas and techniques into the
final system.

There is a space and performance penalty for using
Object Pascal. Each method call requires the same
space as a regular procedure or function call; Object

. Pascal programs, however, also require memory
space for method tables (about 3,000 to 5,000 bytes for
a complete application). Method calls are also
slower than regular procedure calls; the extra time
required can range from 50 to 200 microseconds per
method call.

The penalties for using MacApp in a serious
applciation are much less, however, because most of
a MacApp program is written in standard Pascal.
We estimate that there is a 10 to 15% increase in
application size and a 5 to 15% performance
degradation, compared to a program written in
standard Pascal. In most cases, these
disadvantages are outweighed by the reduced
development time and maintenance costs.

At the time this paper was written, we were
beginning to look at ways to reduce the size of
MacApp applications and improve their
performance. Most of this involves standard code
tuning that any application requires before being
released. In addition, we are implementing an
approach that will speed up method calls by
analyzing the object type hierarchy.

Summary

We have developed an object-oriented system called
MacApp that is intended to help programmers
develop Macintosh applications. MacApp
automatically implements the standard features of
the Macintosh user interface and provides a
convenient way for programmers to implement
specific applications. Instead of editing the MacApp
source code, programmers define new object types
that override methods in MacApp, and inherit the
standard behavior.

MacApp is implemented using Object Pascal, a
version of Pascal that includes extensions for
object-oriented programming. The object-oriented
extensions were integrated with standard Pascal, so

that programmers who already know Pascal could
easily learn the language.

Applications written using MacApp follow the user
interface guidelines more closely than most
applications. In addition, MacApp encourages a
program structure that makes applications easier to
maintain and extend.

References

[1] Apple Computer, Inc. Inside Macintosh,
Addison-Wesley Publishing, 1985.

[2] A. Goldberg, and D. Robson, Smalltalk-BO, The
Language and its Implementation,
Addison-Wesley Publishing Company, 1983.

[3] A. Goldberg, Smalltalk-BO, The Interactive
Programming Environment, Addison-Wesley
Publishing Company, 1984.

[4] G. Williams, "Software Frameworks," BYTE
Magazine, December 1984.

[5] K. Schmucker, Object-Oriented Programming
for the Macintosh, Hayden Book Company, 1986.

[6] B. Cox, Object Oriented Programming, An
Evolutionary Approach, Addison-Wesley
Publishing Company, 1986.

[7] L. Tesler, "Object Pascal Report," Structured
Language World, volume 9, number 3.

Apple and Lisa are registered trademarks of Apple Computer,
Inc. MacIntosh is a trademark of McIntosh Laboratory, Inc.,
and is being used with the express permission of its owner.
MacApp and MacDraw are trademarks of Apple Computer,
Inc.

35

CLASSES.VERSUS PROTOTYPES IN OBJECT-ORIENTED LANGUAGES

A.H. BORNING*

* Department of Computer Science, FR-35, University of Washington, Seattle, Washington 98195

Abstract
Smalltalk uses classes to describe the common properties

of related objects. Unfortunately, the use of classes and
metaclasses is the source of a number of complications.
This paper discusses prototypes as an alternative to classes
and metaclasses. In a prototype-based language, copying
rather than instantiation is the mechanism provided to the
user for making new objects. Inheritance constraints are
proposed as a way of representing object hierarchies and
supporting the automatic updating of related objects when
edits are made.

1. Introduction
The Smalltalk-80 language l , as well as a number of other

object-oriented languages, uses classes to describe the
common properties of related objects. Unfortunately,
classes and the class-instance relation are the source of a
number of complications. First, for an object to have a
distinct message protocol, a separate class must be created
for it. If, as in Smalltalk, classes themselves are objects,
then to allow different classes to understand different
initialization messages, each class must itself be an instance
of a different class (called a metaclass in Smalltalk).
Metaclasses add to the complexity of the language; a recent
study2 on difficulties encountered in teaching and learning
about Smalltalk indicates that metaclasses· are uniformly
regarded as the single worst barrier to learnability by both
teachers and students. Second, the emphasis on classes in
the programmer's interface is .at odds with the goal of
interacting with the computer in a concrete way. When
designing a new object, one must fIrst move to the abstract
level of the class, write a class defInition, then instantiate it
and test it, rather than remaining at one level, incrementally
building an object. This problem is most apparent in
systems for graphical or visual programming.

The alternative suggested in this paper is the organization
of the programming environment around prototypes rather
than classes. A prototype is a standard example instance;
new objects are produced by copying and modifying
prototypes, rather than by instantiating classes.

The remainder of the paper is organized as follows. The
following subsections list some sources of complexity in
the current Smalltalk metaclass-class-instance mechanism,
and then describe a small gedanken experiment in language
design, in which prototypes are used instead of classes.
This very simple language has several limitations, and a
more realistic design is presented in Section 2. Following

CH2345-7/86/0000/0036$01.00 © 1986 IEEE
36

this is an enumeration of the advantages and disadvantages
of the proposal. The fInal section provides comparisons
and references to related work.

1.1. Some Sources of Complexity
One source of the complexity surrounding classes in

Smalltalk is the interaction of message lookup with the role
of classes as the generators of new objects, which' gives rise
to the need for metaclasses. Another source is the use of
classes for several different functions.

. In Smalltalk, when an object receives a message, the
mterpreter goes to the object's class and looks in its
method dicti~n~ for a meth?<i for receiving that message.
If a method Isn t found, the mterpreter looks in the class's
superclass, and so on up the class hierarchy. Classes are
themsel~es objects, and to make new objects, one sengs
appropnate messages to classes. In general these messages
wi~l vary from class to class. For example, to make new
po~nts, one wants to send an x:y: message to the class
Pomt, so that the x and y coordinates. for the new instance
can be .passed as .argum~nts. Given the way message
lookup IS done, thiS reqUIres that the class Point be an
instance of a different class from (say) class Rectangle
which should not understand the x:y: message, but rather ~
differen~ initialization message specifIc to rectangles. This
pragmatic need for class-specifIc initialization methods was
satisfied by the introduction of metaclasses: each class is an
instance of a separate metaclass. . However, as noted above
this design decision has had unfortunate consequences fo;
the teachability and learnability of the language.

In regard to the use of classes for several different
functions, some of the roles that classes play in Smalltalk
are as follows:

• generators of new objects

• descriptions of the representation of their
instances

• descriptions of the message protocol of their
instances

• elements in the description of the object
taxonomy

• a means for implementing differential
programming (this new object is like some
other one, with the following differences ...)

• repositories for methods for receiving messages

• devices for dynamically updating many objects
when a change is made to a method

• sets of all instances of those classes (via the
allI nstances message)

While some of the above items are related, it is clear that
classes in Smalltalk are playing mUltiple roles.

1.2. A Gedanken Experiment in Language Design
To help unravel the complexity, let's do a small

gedanken experiment in language design. Considerations of
space and time efficiency are to be ignored for the moment,
to avoid needlessly intertwining semantic and
implementation considerations.

Suppose that objects are completely self-contained, so
that an object consists of state and behavior. One can send
messages to an object asking it for information, asking it to
change its state, or asking it to change its behavior. The
only way to make a new object is to make a complete copy
of an existing object, copying both state and behavior.
Once the copy is made, there is no further relation between
the original and the copy. (Creating new objects by
copying eliminates the need for metaclasses, since creation
and modification messages are sent to prototypes or other
individuals rather than to classes.)

This is a clean model, and would be easy to teach about.
It handles object creation, modification, and representation.
What is missing? First, there is no notion of classification
of kinds of objects, either by message. protocol or by
representation. Second, there is no way to update a whole
group of objects in a similar manner at one time (the
equivalent of such actions as adding new methods to a
class in Smalltalk). These are both important, and so the
model needs to be augmented to support classification and
updating.

2. A Proposal for a Prototype-Based Language
In this section a proposal for a more realistic language is

presented, in which the simple model described above is
augmented to support object classification and updating.
Many of the ideas used here have arisen from the author's

. . dId te 3, 4, 5 work on constraint-onente anguages an sys ms ,
where a constraint describes a relation that must hold. In
this proposal, constraints are used to express inheritance
relations among objects. However, the set of inheritance
constraints used here is limited and straightforward to
maintain, and a general-purpose constraint representation
and satisfaction mechanism is not required.

In this proposed language (as in the language described
in the gedanken experiment), an object has state and
behavior. The state of an object is represented by a set of
named fields. We will on occasion be interested in an
object's field names, and this list of names can be accessed
separately from the contents of the fields. There are two
components of an object's behavior. The first component
is a method dictionary, which is similar to that in

37

Smalltalk, except that there may be several methods for
receiving a given message. (The way in which one method
is chosen, or several are combined, is discussed in Section
3.2.) The second component is a protocol that describes
the set of messages the object declares that it can
understand, the protocols required of the arguments to the
messages, and the protocols of the results returned by the
messages.

New objects are produced by copying other objects.
Thus, to make a new point, one would make a copy of the
prototypical point, with new values substituted for the x and
y fields. Once a prototype has been copied, there would be
no hidden relation between the prototype and the copy; any
further relations that were desired would be explicitly
represented using constraints.

2.1. Inheritance Constraints
The proposed language does not include a general

constraint mechanism. Rather, there is a fixed set of
inheritance constraints-constraints on an object's field
names, methods, and protocol-built into the language.
These are as follows:

• inherits-field-names(x,y). This constraint holds
if every field name of y is also a field name of
x.

• inherits-behavior(x,y). This constraint holds if
all of the methods in y's method dictionary are
also in x's method dictionary.

• inherits-protocol(x,y). This constraint holds if
the protocol of y is a subset of the protocol of
x, i.e., if every message that y can understand
is also understood by x, and if each object
returned by x in response to one of these
messages also obeys the corresponding protocol
declared in y.

In general these three constraints are independent. For
example, an object x might inherit the protocol of y but not
its methods (x would implement the necessary methods in
completely different ways). If an object y does not use all
of its fields, then x can inherit the behavior of y but not all
its field names. Of course, the constraints are not totally
independent-for example, if x inherits behavior from y, all
of the field names used by y must also be field names of x.

Nevertheless, it will often be the case that these three
constraints will be applied together, and so a descendant
constraint is defined as follows:

descendant(x,y) == inherits-field-names(x,y) A
inherits-behavior(x,y) A inherits-protocol(x,y)

2.2. Object Creation Messages
There are two messages available for creating new

objects: copy and descendant. The copy method makes a
complete copy of the receiver and returns it.. There is no
further relation between the receiver and the copy. The
descendant method makes a copy, and also sets up a one-

way descendant constraint between the original and the
copy.

2.3. Examples of Use
In place of the class Point would be a prototype point.

The prototype point would have x and y fields, each
initialized to O. (Alternatively they could be left as nil). It
would understand messages such as +, printOn:, and so
forth. To make a new point, one would evaluate

point x: 4 y: 6

which would make a descendant of the prototype point, and
then set its fields to 4 and 6. The code for point x:y: is as
follows:

x: newx y: newy
t point descendant setx: newx sety: newy

The message setx:sety: is defined as in Smal1ta1k:

setx: newx sety: newy
x+- newx.
y +- newy.

The following messages would build a new kind of
object, three point, and defme an addition method for it.

threePoint +- object descendant.
threePoint hasFields: 'x y z'.
threePoint hasMethod: '+ p

t threePoint x: x + p x y: y + p y z: z + p z'

Naturally, there would be user interface support for the
creation and modification of prototypes. This could be
done using a browser, which could have much the same
appearance and functionality as the browser in the current
Smalltalk system.

3. Implementation
The descendant method should be implemented as a

primitive, and the primitives for new and new: eliminated.
It might also be useful to implement copy as a primitive.
To make new variable-length objects, one would make a
copy or descendant of an appropriate prototype, and then
grow or shrink the copy as needed. It might be useful to
combine copying and growing in descendant: and copy:
methods.

To test the scheme, it could be implemented using the
present Smalltalk bytecode set by simulating the new
primitives. Classes would be given an additional field
named prototypes that points to the collection of prototypes
for that class. (Usually, a class would have a single
prototype, but multiple prototypes are possible.) Below is
the Smalltalk code for simulating Object copy and Object
descendant, along with some auxiliary methods.

38

copy
"if I am a prototype, need to cOPY"!y class;
otherwise just make a simple copy"

self isPrototype iffrue: [t self class copy prototype]
ifFalse: [t self simple Copy]

descendant
self bePrototype. "make sure that I'm a prototype"
t self simpleCopy

simpleCopy
"return a complete copy of me, taking account of
shared substructure. ldentityDictionary is a
dictionary in which == is usedfor key comparison"

t self copyWithDict: IdentityDictionary new

copyWithDict: diet
I copy f I

(dict includesKey: self) iffrue: [t dict at: self]
"make the shell of the new copy, then fill it in"
copy +- self class new.
dict at: self put: copy.
1 to: self class instSize do:

[:i If+- (self instVarAt: i) copyWithDict: dict.
copy instVarAt: i put: f].

i copy

bePrototype
"make me into a prototype, if I'm not already"

I newS elf I
self isPrototype iITrue: [t self].
newSelf +- self class newSubclass prototype.
1 to: self class instSize do:

[:i I newSelf instVarAt: i put: (self instVarAt: i)].
self become: newSelf.

isPrototype
t self class prototypes includes: self

These general methods would be overridden for classes,
and for primitive objects such as numbers.

3.1. Classes
For objects such as points and rectangles, the field

names, method dictionary, and protocol will be the same
for many objects. In an implementation, then, it is
reasonable to group these together into a class. Further,
rather than having multiple methods in a given dictionary,
the methods could be partitioned among sub- and
superclasses, as in Smalltalk. Thus, there would be classes
as well as prototypes. However, classes in general won't
have global names, there won't be any metaclasses, and the
user will usually interact with a prototype rather than a
class.

3.2. Multiple Iuheritance
An object can have descendant constraints that relate it to

several parents, i.e. multiple inheritance is supported. Each
of the three constraints that compose the descendant
constraint (inherits-field-names, inherits-behavior, and
inherits-protocol) establishes the correct relation when
multiple inheritance is used. The only difficult question is
which method (or methods) to execute in response to a
given message, if there are several conflicting inherited
methods. However, this problem arises equally in class
based systems, and the same sorts of choices are applicable.
For simplicity, for the present the rules described in the
Smalltalk multiple inheritance implementation6 are to be
used.

4. Evaluation
In this section, a (doubtless biased) listing of the benefits

and drawbacks of the proposed scheme as opposed to that
in the standard Smalltalk-80 language is presented.

4.1. Benefits
Some benefits of this scheme over the current one are:

• The initial explanation of the language is much
simpler. One can just talk about objects as
having state and behavior.

• Even at a deeper level, there are fewer
concepts-metaclasses are no longer needed. It
is simpler to explain how message lookup
occurs when teaching about the language.

• Fields are automatically given default values in
newly created objects (by copying the contents
of the corresponding field in the prototype).

• A prototype-based language would provide
better support for concrete, visual programming
systems.

• Any object can be given individualized
behavior. This could be useful for example in
debugging, when one might want to set a halt
in the method for one particular object, and not
for all instances of a class.

• The semantics of inheritance are described in
terms of constraints; sharing is· regarded as
simply an implementation technique. This
distinction might be useful when building
distributed systems, systems that run on
multiprocessors without shared memory, object
servers, or the like. In such systems, sharing
would not be the only technique used to
implement inheritance.

4.2. Drawbacks

• The use of prototypes seems natural for things
like windows, but unnatural for such basic

39

objects as integers. What is the prototypical
integer? The decision here is that all integers
are prototypes, that is, that a change to the
methods of any integer affects all integers.
Alternate possibilities are that 0 or 1 is the
prototypical integer, or else that the prototype
is a special integer whose value is undefined.
None of these possibilities seems completely
natural.

• A related drawback is that the concreteness of
prototypes may be inappropriate for describing
such standard data structures as stacks or
queues. Rather than talking about a prototype
stack, one wants to talk about stacks in general.

• There is a danger of inadvertently modifying a
prototype. One can of course inadvertently
modify a class in Small talk, but this seems less
likely since it has a different message protocol
from its instances.

• There is an efficiency problem in regard to
making new objects by copying. For example,
when building a new rectangle the system will
make a copy of the prototype rectangle,
probably only to replace its origin and corner
fields immediately with new values.

. The first drawback listed above applies to the extreme
situations in the language. This seems to be analogous to
the situation in Smalltalk itself. Objects and messages are
a great idea most places, but they seem bizarre for things
like integers ("3 + 4 means sending the message + 4 to the
object 311"). However, the benefits of uniformity. are such
that making 3 be an object that understands messages is the
right choice in Smalltalk.

Regarding stacks and similar data structures, the explicit
existence of classes in this scheme may a help, since one
can still talk about classes if one wants.

Regarding inadvertently modifying a prototype, . I believe
that the solution to this is not to introduce a· different
message protocol for prototypes, but to introduce some
form of protection. For example, one might make
prototypes read-only except in particular environments.
One should also be able to designate some messages (e.g.
setx:sety: for points) as being private, and allow this
message to be sent only by self.

Regarding the efficiency problem, an obvious step is to
code the descendant primitive efficiently. Beyond that, it
appears that code sequences like
point descendant setx: newx sety: newy will occur
frequently. Therefore, in addition to the descendant
primitive, for each object the system might automatically
compile a method for e.g. descendantWithx:y:, which would
accomplish the same thing, but more efficiently. This
would call a new primitive that makes a clone of the
receiver and then sets all of the instance fields in the clone.
(Since this message exposes the object's representation, it is
best regarded as a private initialization message.)

5. Related Work
The idea of prototypes is not new, and discussions of

prototypes from a variety of perspectives appear in the
literature. (However, the idea of using constraints to
establish and maintain inheritance relations· does appear to
be new.)

One . sort of system in which prototypes have often been
used is systems for visual or concrete programming. In
such applications, prototypes are more useful than classes,
since it is more straightforward to display them for viewing
and manipulation by the user; their concreteness also makes
them valuable for less experienced users. Examples of
systems of this sort that have been built in Smalltalk
include ThingLab3,4, Programming by Rehearsal7, the
Alternate Reality KitS, and Animus9, 10.

Languages in the Actor family are general-purpose
programming languages that use prototypes. Rather than
inheritance, the Actor languages use a more general concept
of delegation, in which any object may be delegated to
handle a message for another; Lieberman 11 provides a
useful and readable discussion of· both prototypes and
delegation. LaLonde 12 describes an exemplar-based
Smalltalk (an exemplar is the same as a prototype); this
language allows a given class to have multiple exemplars,
an idea that has been borrowed and used in the design
described here. In Biggerta1k13, an object-oriented
language implemented in Prolog, instances are 1ike classes
in all respects, except that they cannot be further refined.
Finally, prototypes are often used in artificial intelligence
representation languages14 to ,store default or typical
information.

The language proposed in Section 2 does not include type
declarations. However, if type declarations were to be
,added,protocols would be the logical entity to use in the
declaration and checking of type. An object-oriented
language that does have strong typing, along with a
separation of protocol and implementation, is Trellis/OwI15.

Acknowledgements
Thanks to Dave Robson, Randy Smith, Adele Goldberg,

Tim O'Shea, and other members of the System Concepts
Laboratory at Xerox PARC, and to David Notkin and
Andrew Black at the University of Washington. This
research was sponsored in part by the Xerox Corporation,
and in part by the National Science Foundation under
grants MCS-8202520 and IST.:8604923.

References

1.

2.

Goldberg, A.J., and Robson, D., Smalltalk-80: The
Language and ,its Implementation, Addison-Wesley,
1983.

O'Shea, T., "Why Object~Oriented Programming
Systems Are Hard to Learn", Proceedings of the
ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, ACM,
September .1986.

40

3. Borning, A.H., ThingLab -- A Constraint-Oriented
Simulation Laboratory, PhD dissertation, Stanford,
March 1979, A revised version is published as
Xerox Palo Alto Research Center Report SSL-79-3
(July 1979).

4. Borning, A.H., "The Programming Language
Aspects of ThingLab, A Constraint-Oriented
Simulation Laboratory", ACM Trans. Programming
Lang. and Systems, vol. 3, no. 4, October 1981, pp.
353-387.

5. Borning, A.H., "Constraints and Functional
Programming", Tech. report 85-09-05, Computer
Science Dept, University of Washington, September
1985.

6. . Borning, A.H., and Ingalls, D.H.H., "Multiple
Inheritance ·~in·· Smalltalk-80", Proceedings of the
National Conference on Artificial Intelligence,
American Association for Artificial . Intelligence,
Pittsburgh, August 1982, pp. 234-237.

7. Gould, L., and Finzer, W., "Programming by
Rehearsal" , Tech. report SCL-84-1, Xerox Palo
Alto Research Center, May 1984, A shorter version
appears in Byte, vol. 9 no. 6, June 1984

8. Smith, R.B., "The Alternate Reality Kit: An
Animated Environment for Creating Interactive

'Simulations", Proceedings of the 1986 IEEE
Computer Society Workshop on Visual Languages,
IEEE, June 1986.

9. Duisberg, R.A., "Animus: A Constraint Based
Animation System", Proceedings of the ACM CHI
'86 Conference on Computer-Human Interaction,
ACM, Boston, April 1986, pp. 131-136.

10. Duisberg, R.A., Constraint-Based Animation: The
Implementation of Temporal Constraints in the
Animus System, PhD dissertation, University of
Washington, 1986, Forthcoming

11. Lieberman, H., "Using Prototypical Objects to
Implement Shared Behavior in Object-Oriented
Systems' " Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages,
and Applications, ACM, September 1986.

12. LaLonde, W.R., Thomas, D.A., and Pugh, J.R., "An
Exemplar Based Smalltalk", Tech. report TR-94,
Computer Science Department, Carleton University,
May 1986.

13. Gullichsen, E., "BiggerTalk: Object-Oriented
Prolog", 'Tech. report STP-125-85, MCC, November
1985.

14.

15.

Fikes, R., and Kehler, T., "The Role of Frame
Based 'Representation in Reasoning" , Comm.
ACM, vol. 28, no. 9, September 1985, pp. 904-920.

Schaffert, C., Cooper, T., Bullis, B., Kilian, M., and
Wilpolt, C., "An Introduction to Trellis/Owl",
Proceedings of theACM Conference on Object
Oriented Programming Systems, Languages, and
Applications, ACM, September 1986.

Why Properties are Objects
or

Some Reflnements of "is-a"

Stanley B. Zdonik

Brown University
Department of Computer Science

Providence, RI 02912

Abstract

This paper contains several examples
that illustrate' some problems with the is-a
relationship as defined by many object
oriented programming languages. These
problems relate to two distinct areas~ 1. the
confusion between the inheritance of
behavior and the inheritance of representa
tion and 2. the lack of any requirement for
semantic relationships between a named
operation on a type and a replacement
operation with the same name on a subtype.

We indicate how these problems can- be
improved by making some useful distinctions.
We then show how these distinctions can be
built into the system easily by treating pro
perties as first-class objects and using the
basic specialization techniques of the
language to express the differences.

1. The Data Model

We have been developing an object-oriented data
base system that provides a data model that strongly
resembles some of the type systems in many popular
object-oriented programming languages; As a database
system, however, all objects, including the types and
operations, persist beyond the current session and are
sharable between users and user processes. Our system
is also strongly influenced by work in the area of seman
tic database models [ADP, Ch, Co, GAL, HM, lvlBW, S,
SSj.

Our model centers around the notion of a type. A
type is a behavioral template for its instances. The
behavior of a type T is expressed by a set of operations
O(T), a set of properties P(T), and a set of constraints
C(T). The type type defines an operation called

t This research was supported in part by the Office of Naval
Research and the Defense Advanced. Research Projects Agency
under contract N00014-83-K-0146 and ARPA Order No. 4786.

CH2345-7/86/0000/0041$01.00 © 1986 IEEE
41

Instances that can be applied to any type. It returns a
set containing all instances of that type that are
currently in the database. The functions legal
operations and legal-properties return the set of all
operations that can be applied to its argument and the
set of all legal properties that are defined for it argu
ment repsectively. The following condition is always
met by a type definition T:

(x E Instances (T))
(0 E O{T)) (p E P{T)) (c E C{T))

o E legal-operations (x) and
p E legal-properties (x) and
c{x)

Properties, operations, and constraints are all objects in
their own right. That is to say, there exists a type
called Property that defines the general behavior of a
property, a type called Operation that defines the gen
eral behavior of an operation,. and a type called Con
straint that defines the general operational characteris
tics of a constraint. A type is also an object and as
such is an instance of a type called Type that describes
the behavior of all types. Since type Type is a type, it
is an instance of itself.

An operation is an active element in our database.
It is' essentially a piece of code. All operations support
the operation invoke which takes an operation ... and a set

. of arguments as parameters and invokes the given
operation on the set of parameters. Since operations are
code (written in a language like C), in order to use
them, the. system must link any symbols used in this
code to the library routines and other code objects to
which they r~fer. This requires a dynamic linking.
loader.

A property can be conceptualized as a. piece of
string which binds' together two objects. For example,
Cars can have owners. Therefore, we define a property
type that can link a Car to a Person. An instance of'
this property type will link an individual car (e.g., my
car) to an individual owner (e.g., me). All properties
support the operation get-value which, given a property,
returns the value of that property. Get-value (my-car)
returns me.

Constraints are predicates. They are defined on
types and take an instance of the type as an argument.
All instances of a type must always satisfy that type's
constraints.

A type in our model is an abstract data type
[LSAS] in the sense that it defines a private representa
tion that is not visible to any code other than the opera
tions that are defined on that type. The representation
(rep) is an object of some other abstract type. As we
shall see later, the rep is not even available to other
subtypes. The type is, therefore, the unit of modularity.

Inheritance is provided in our system by a special
property that is defined to hold between instances of the
type Type. This property is called is-a and if there is an
is-a property between types A and B such that B is-a A,
then all instances of B are also instances of A. All
behavior (operations, properties, and constraints) that is
defined on A is also defined on B. We say in this case
that B is a subtype of A and A is a supertype of B. It is
possible for a type to have several supertypes from
which it inherits behavior. We call this phenomenon
multiple inheritance. Circularity in the type lattice is
not allowed. It is important in the example that is
presented later to remember that is-a is just another
property.

Object-oriented databases [CM, DGM, MS, MSOP,
Zdl, ZW] differ from their programming language coun
terparts in the following fundamental ways.

1. persistence
2. unique naming
3. sharing
4. transactions

Objects that are created by a process persist beyond the
lifetime of that process. The database system assigns all
objects a unique identifier that is guaranteed to remain
unique even across multiple processes. Any number of
applications can share the objects that reside in this
persistent memory space. In the process of using these
objects a given process can define the boundaries of
transactions that are guaranteed to be atomic and resi
lient and that preserve some set of correctness criteria.
If we . adopt a strong world view, these criteria might
encompass serializability, however, they may also be
defined to be weaker [SZR].

2. The Role of Properties

One of the strengths of the object-oriented
approach is the ability to create new types by specializ
ing the behavior of old types. In our object-oriented
database [ZWl, ZW2] , we treat properties as objects,
thus providing the ability to specialize the behavior of
properties by defining new subtypes of the type Pro
perty. This paper describes this technique and discusses
a few interesting property subtypes as an illustration of
this approach. This example further illustrates how we
might fix what we consider to be a common defect that

42

occurs in some object-oriented systems. This defect
arises from the confusion between the inheritance of
specification and the inheritance of implementation.
The example illustrates how these concepts might be
separated.

It is, of course, possible to get the behavior of sim
ple properties by defining a set of operations on the type
of the object to which the property applies. These
operations would get and set the value of the property.
For example, suppose that the type Person has a pro
perty mother-of that relates a person to his or her
mother. We could achieve same behavior by defining a
get-mother-of and a set-mot her-of operation on the type
Person.

In our view, properties are objects which implies
that as such t~ey can partake in all behavior that
objects in general have. This means that it is possible
to define properties on properties since all object types
have the ability to define properties. This allows us to
model some situations more precisely. Suppose that
John loves Mary. This could be modeled as two
instances of type person with a loves property between
them. If we wanted to assert that the intensity of this
relationship is 8, placing the intensity on either John or
Mary would be somewhat inaccurate. The intensity
does not assert anything about John or Mary by them
selves, but rather, it describes the loves property.

More importantly, by making properties be objects,
we can refine their behavior by defining subtypes for
them. Although there seem to be operations that do not
apply to properties, yet are influenced by their
definitions, a closer inspection reveals that these opera
tions are really more complex composites that make use
of the operations of the property types. For example, all
objects are defined to' have a get-property-value opera
tion. This operation takes an object x· and a property
name p as arguments and returns the value of p if the
type of x is defined to support properties of the type of
p. This is an operation on x that appears not to use the
property object. In reality, the get-property-value
operation is implemented as follows:

get-property-value (x, p) =
get-value (get-property (x, p))

A useful modeling tool is that of a derived property.
A derived property is one whose value is dependent on
other information that is contained in the state of the
object. For example, employees might have a Salary
property which is stored with each employee. They
might also have a FICA-payment property that is not
stored at all. Instead its value is computed as a func
tion of the employee's salary.

It is possible to add the notion of a derived pro
perty to our model by noticing that derived properties
are just like regular properties except that it is not pos
sible to set their values. The derivation function is

embodied in the get-value operation for the property.
We define type property to have a get-value operation,
but no set-value operation. We define a subtype of the
type Property called Setable-property that adds the
set-value property. We then add another subtype of
Property that adds a property to Derived-properties
called the derivation-expression. The get-value opera
tion for derived properties evaluates this expression.

3. Some Important Distinctions

We begin our extended example by pointing out
again that in our system a type exports an interface
that is the only way that other code can manipulate
objects of this type. This is also true for subtypes and
supertypes of a given type. For example, suppose that
the type Toyota is a subtype of the type Car. The
create operation on the type Toyota has a side effect of
invoking the create operation on the type Car and all
types between Car and type Entity (the root of the
hierarchy). Each of these create operations may allo
cate additional storage to store the state of its instance.
Type Car has a move operation defined on it. In
defining a drive operation for Toyota, if we want to
change the position of the car, we must call the move
operation defined at the Car level. The code for Toyota
cannot manipulate the state of the Car variables
directly.

This choice was made to incorporate in our system
the benefits of data abstraction to the fullest possible
extent. It now becomes possible to change the code for
any type without having to modify the code for any
other type (including subtypes and supertypes) as long
as the interface remains unchanged. If the code for type
Car changes but its operations and properties remain
fixed, the operations on type Toyota will still work since
they can only rely on the interface to Car. Of course, if
the code for Car changes, any instances of Car that are
already in the database might be affected. The problem
of coping with this problem has been discussed in [SZ,
Zd2].

In some systems such as Smalltalk [G,GR], it is pos
sible for a subtype to directly access the instance vari
ables of its supertvpes. By saying that B is-a A, type B
inherits "the specification and the implementation from
type A. B acquires all the operations defined on A as
well as all of the storage level representation that is
used to implement type A.

3.1. Behaves-like

We recognize that there are cases in which oux:
strong view of data abstraction may sometimes interfere
with what the programmer really needs to accomplish.
For these somewhat rare cases we make a few distinc
tions about the is-a property. These distinctions will
attempt to separate the inheritance of behavior from the
inheritance of representation.

Our first example of this is a subtype of type Pro-

43

perty called Behaves-like. The is-a property that we
have already described is a subtype of Behaves-like.
Behaves-like makes a guarantee about the specification
of the two types that it relates. If B behaves-like A, B
must have at least the behavior of A. B may add addi
tional behavior (properties, operations, and constraints),
but all of the behavior of A must be supported on B.

Unlike is-a, behaves-like has no side effect of creat
ing instances of the higher-level types. This extra
behavior is added in the definition of the is-a property.
As a result, when B behaves-like A, no additional
storage is allocated for the supertype A if an instance of
B is created.

For example, this might be useful if we wanted to
define two types Stack and Small-stack. Stacks in gen
eral might be represented by a list since that is most
flexible for things that can grow without bound, while
Small~stacks might be represented by an array since we
can require that a small-stack not grow beyond a cer
tain limit. We would then specify:

Small-stack behaves-like Stack

A create operation on the type Small-stack would have
the effect of allocating space for the array and not allo
cating any space for the list that is the representation
at the Stack level. Small stack must reimplement all of
the behavior of the Stack. That's what it means for it
to behave like a Stack. The system does not check this
requirement. We assume that the type definer is a good
citizen.

It is worth pointing out that the same effect could
be achieved by rearranging the type lattice such that a
third type called Generic-stack becomes the supertype of
both Stack and Small-stack. Generic stack would have
a null representation and be non-instantiable. That is
to say that there is no create operation defined on the
Generic-stack type. Generic stack could specify the
standard stack operations (i.e., push, pop, empty) and
the two subtypes could redefine these operations to work
with their respective storage structures.

Although this change works, suppose that a
definition for Stack already existed. Further suppose
that the definition of Small-stack is added at some point·
after many instances of Stack have already been
created. This is common since we are concerned with a
database system with persistent objects. Once a type
has been created, we can assume that there will be
many instances of it in our persistent store. Changing
the type hierarchy, is therefore a very difficult and
error-prone activity since the changed type struct.ure
might not fully suport the old instances. Although work
is being done to ease some of these difficulties [SZ, Zd2],
we would like to minimize the number of times that type
changes occur. The behaves-like property allows us to
retain the old structure, while achieving the behavior
that we want.

3.2. Subsumes

There is another distinction that we often want to
make. This is exemplified by the is-a relationship in
Smalltalk. Here we would like a subtype to have access
to the representation of its supertypes. We define
another subtype of behaves-like called subsumes that
accomplishes this.

Subsumes also guarantees that a subtype have at
least the specifications of its supertypes, but it adds the
ability for the subtype to access any state that is avail
able in the supertype instance. One way of thinking
about the subsumes property is that if B subsumes A,
then A exports it get-rep operation to the B type
module. The get-rep operation takes an object of an
abstract type and returns an object of the concrete type
(i.e., representation type). It is similar to the CLU
[LABMSSS] down operation.

Although this variation of the behaves-like is poten
tially dangerous, we will give an example of where this
kind of capability is necessary. Suppose that we have a
type called Set. The representation of the Set type is an
array. The set type has no operations that can observe
or exploit the fact that an array is an intrinsically
ordered type. Further, suppose that we wish to define a
subtype of Set that is called Ordered-set. If we used
strict data abstraction, we would have to store some
thing like ordered pairs in the unordered set. The first
element of the pair might be the set element and the
second element of the pair might be its position or index.
Because of information hiding, we have been forced to
reinvent the ordering that is already available in the
array data type. This is very inefficient.

Instead, by saying that Ordered-set subsumes Set,
we can allow the code for Ordered-set to access the
array directly. Now this code has the ability to exploit
the natural ordering for the array. Of course the code
for Ordered-set must maintain any rep invariant that is
specified in the Set module. The Ordered-set module
can add additional state of its own if this is deemed
necessary. A create on the type Ordered-set would then
allocate storage for both the Set and the ordered-set.
The difference here is in what is accessible.

We have distinguished three different types of
behavior related to the notion of is-a. We can define
these property types in terms of each other as shown in
Figure 1. Each of the arrows in this picture are
behaves-like properties.

4. Operation subtyping

Another problem with many object-oriented systems
is that the notion of operation refinement is not based
on any semantic properties of the operations involved.
In a language like Smalltalk, one may define an opera
tion Op on a type B that has the same name as an
operation Op that has been previously defined oil type
A, a supertype of B. If x is an instance of B, Op(x) will

44

is -8 subsumes

Figure 1: Distinguished versions of is-a

invoke the definition of Op that is attached to the sub
type. This definition will block the definition that is
provided by the supertype. Here, the paradigm is opera
tion replacement, not operation refinement. There is no
requirement that the two operations named Op bear any
semantic relationship to each other. The only semantic
tie is that they share the same name.

The problem with this undisciplined use of names is
that if we insist that a type hierachy ought to induce a
subset relationship among the sets of all instances of the
types, we are left with a situation in which some
instances of a type may have wildly different behavior
from other instances of the same type. If Orange is-a
Food-stuff, both types might define a squeeze operation.
Squeezing a food stuff is defined to return a firmness
coefficient that is useful for determining how fresh that
item is, while squeezing an orange might have a side
effect which is to produce a refreshing citrus drink.
Although all Food-stuffs support squeezing, some support
it with very different results than others.

We prefer to use a somewhat different technique for
operation (and property) refinement. Our technique is
based on the use of operations and properties that are
subtypes of each other as refinements. Therefore, our
solution to this problem is another example of why it is
useful to treat properties as objects having a type.

We will allow an operation Op2 on a subtype B to
refine an operation Opl on a supertype if and only if
Op2 behaves-like Op1. Notice here that there is no need
to define the two operations as having the same name.
In fact, if an operation Op on B is defined with the same
name as an existing operation Op on A and the two
operation types are not related by a behaves-like pro
perty, the system flags this as an error.

In order for the above definitions to make sense, we
must explore the meaning of operation and property
subtypes a little more closely. What does it mean for an
operation type to be a subtype of another operation
type? What conditions must hold?

Let us suppose that the type Car has a paint opera
tion defined on it. Paint takes two arguments: a car
and a color. Suppose that there is a subtype of car
called Model-T that defines an operation called Mpaint.
Mpaint takes a Model-T and the color black as argu
ments and paints the model-T black. We can now ask
what the relationship between Paint and Mpaint is?

Cardelli [Cal holds that, in general, an instance of a
subtype should be usable anywhere an instance of the
supertype is usable. By this definition, we would say
that Paint is a subtype of Mpaint to see this consider
the following piece of code:

procedure decorate-fleet (p:paint, c:car)

p (c, "black");
end;

mt: Model-T:
decorate-fleet (Mpaint, mt);

Since Mpaint will work very well as the value of p in the
decorate-fleet procedure with a Model-T and "black" as
arguments, Paint will work just as well in the same con
text. This leads us to say that Paint will work wherever
Mpaint works. Paint is, therefore, a subtype of Mpaint.
This is backwards from what intuition would tell us.

Instead we will adopt a point of view in which
Mpaint is a subtype of Paint. This is the case because
all of the constraints on Paint are met by Mpaint but
the opposite is not true. These constraints include the
pre-conditions on the argument list and the post
conditions on the return value. In this way we can say
that the operation subtype inherits all pre-conditions,
post-conditions, and exceptions from the operation
supertype.

We can now give a more precise definition of opera
tion refinement. Assume that B behaves-like A. We will
say that an operation Op2 on B refines an operation
Opl on A if and only if Op2 behaves-like Opl. B inher
its all operations ° defined on A such that ° is not
refined by an operation defined on B.

A type is represented as a 5-tuple (N, 0, P, C, S)
where N is its name, ° is a set of operations, P is a set
of properties, C is a set of constraints, and S is a set of
supertypes. If T 1 = (N1, 01' PI' e1, Sl) and T 2 = (N2'

02' P 2' C2, S2)' then

(op E 01) and..., (op E 02)
iff (op' E 02) such that (op' behaves-like op)

In order for an operation type to be a subtype of
another operation type, it too must obey the rule that it
have at least the behavior of its supertype. That is, the
subtype must inherit all operations, properties, and con-

45

straints (pre-conditions and post-conditions) from the
supertype.

5. Operation Refinement

We would like to define the behavior of new sub
types such that changes in the semantics of operations
(and properties) will not have serious effects on old pro
grams. It would be desirable to have a method that
would allow old programs to function properly in the
face of a changing type lattice.

There is a tradeoff between the amount of informa
tion that we can rely on at compile-time and the ability
for programs to adapt at compile time. The more
assumptions that we build into compiled code, the more
brittle that code will be. In order to allow programs to
adapt at compile time, we are forced to defer certain
decisions until runtime. This often introduces additional
overhead because of the additional runtime checking.
Often this checking can be minimized if our compiler is
intelligent enough to introduce it only where necessary.

We introduce another subtype of the behaves-like
property type called refines. This property is used to
relate operation types. It is like behaves-like for opera
tions except that it introduces an additional piece of
functionality. If B behaves-like A and an operation Op2
on B refines an operation Opl on A (Le., Op2 refines
Opl), then an invocation of Opl with an instance of B
as an argument will cause Op2 to be invoked if all other
preconditions match. The preconditions include the
decalred types of the arguments to Op2. Opl may only
be refined once on a given subtype of A.

An example of this is given below in Figure 2. Here
Porsche behaves-like Car. Wash and Wash-gently are
defined on Car and Porsche respectively. Wash-gently
refines Wash. Suppose that we had the following code:

Procedure spring-cleaning (c:car)

h (II. ") was c, lVOry

end;
p: porsche;
spring-cleaning (p);

Wash

1 refine,

is -a

Porsche

Wash-gently

Figure 2: Example of Operation Refinement

Spring-cleaning is called with a porsche which gets
passed to the procedure wash along with a second argu
ment of ivory. Since both arguments match the precon
ditions for wash-gently, a refinement of wash, the wash
gently code is used instead. This is the behavior that
you might want in the best of all worlds since you have
met all the requirements and would be very dismayed if
your porsche were scratched from the use of conven
tional brushes.

Notice that if in the previous example we had not
used ivory soap or if the wash-gently operation had not
been defined to be a refinment (perhaps it was only
defined to behave-like wash), none of this dispatching
would have occurred. It is available only through the
use of the refines property and only in cases where the
environment is right.

6. Property refinement

All of the above discussion about operation subtyp
ing is applicable to properties. Rather than going
through all of that detail again for properties, we will
give an example of how property refinement would work.

Suppose that we have two types Person and
Porsche-owner with Porsche-owner as a subtype of Per
son. Type person defines an Age property with a con
straint that ages must be integers between 0 and 110.
Porsche-owner refines this age property by tightening
the constraint to be integers between 35 and 45.

Consider the following piece of code:

p: Person;
po: Porsche-owner;

p:= po;
p.age := 60;

Although the last line is legal, since it is possible to set
the age of some people to 60, in the example, p will be
assigned a Porsche-owner. The interpretation of p.age

will get the age property that is defined on Porsche
owner not the one defined on Person. This property is
constrained such that 60 is an illegal value and the
assignment will not succeed.

Property refinement is accomplished by refining the
get-value and the set-value operations on the property
subtype. In the example, the set-value operation for age
of Porsche-owner refines the set-value operation for age
of Person such that set-value on age of Porsche-owner
raises an exception if it is given a value that is not
between 35 and 45.

7. Summary

We have presented some examples of the ways in
which distinctions ought to be made in the treatment of
the is-a hierarchy. We have shown that by treating pro
perties as objects, it is possible to incorporate the
desired behavior into our system in a clean and homo-

46

geneous manner. We have also assumed that is-a is not
a special system-defined resource, but rather that it is
simply another property type that relates objects of type
type.

It should also be emphasized that this work has
been done in the context of an object-oriented database
system. In this paper, we have concentrated on some of
the linguistic characteristics of the data definition and
manipulation languages.

One of the strengths of the object-oriented para
digm is the uniformity with which it treats information.
Here, we have extended the uniformity argument by
stating that properties or relationships should be treated
as objects as well as the more conventional examples.
Other systems have made a similar observation, most
notably the entity-relationship model [Ch] and several
knowledge representation systems [Br1, Br2]. In these
systems as in ours relationships or links are denotable.
The principle difference here is that we have added this
facility to a system that has a very strong notion of
type. We have incorporated this view into a paradigm
in which a type supports the notion of data abstraction
and information hiding. It gives us a modular way to
modify the behavior of a property. We do this by using
the inheritance mechanisms that are available on the
subtree of the type hierarchy that· is rooted at the type
Property. This approach increases the expressive power
of our data modeling language, although it does not pro
vide additional computational facility.

8. References

[ADP] J.M. Smith, S. Fox, and T. Landers, "ADAPLEX:
Rational and Reference Manual", second edition, Com
puter Corporation of America, Cambridge, Mass., 1983.

[Brl] R.J. Brachman, "What IS-A Is and Isn't: An
Analysis of Taxonomic Links in Semantic Networks",
IEEE Computer, October, 1983, pp 30-36.

[Br2] R.J. Brachman, "I Lied about the Trees Or,
Defaults and Definitions in Knowledge Representation",
The AI Magazine, Fall, 1985.

[Cal 1. Cardelli, "The Semantics of Multiple Inheri
tance", in Semantics of Data Types, Lecture Notes in
Computer Science 173, Springer-Verlag 1984, to appear
in Information and Control.

[Ch] P.P.S. Chen, "The Entity-Relationship Model:
Towards a Unified View of Data", ACM TODS 1, 1,
March 1976.

[CM] G. Copeland and D. Maier, "Making Smalltalk a
Database System", Proceedings of the ACM SIGMOD,
Boston, Mass., June, 1984.

[Co] E.F. Codd, "Extending the Database Relational
Model to Capture More Meaning". ACM Transactions
on Database Systems 4, 4 (December 1979), 397-434.

[DGL} K. Dittrich, W. Gotthard, P.C. Lockemann,
"DAMOKLES - A Database System for Software
Engineering Environments", Proceedings of the IFIP 2.4
Workshop on Advanced Programming Environments,
Trondheim, Norway, June, 1986.

[GAL] A. Albano, L. Cardelli, and R. Orsini, "Galileo:
A Strongly Typed Interactive Conceptual Language",
Technical Report 83-11271-2, Bell Laboratories, Murray
Hill, New Jersey, July, 1983.
[G] A. Goldberg. Int'roducing the Smalltalk-80 System.
Byte (August 1981), 14-26.

[GR] A. Goldberg and David Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley,
1983.

[HM] M. Hammer, D. McLeod, "Database Description
with SDM: A Semantic Database Model", ACM TODS
6, 3, September 1981, 351-387.

[LABMSSS] B.Liskov, R. Atkinson, T. Bloom, E. Moss,
J.C. Schaffert, R. Scheifler, A. Snyder, CLU Reference
Manual, Springer-Verlag, New York, 1981.

[LSAS] B Liskov, A. Snyder, R. Atkinson, and C.
Schaffert, "Abstraction Mechanisms in CLU", Communi
cations of the ACM, Vol 20, No.8, August, 1977.

[MBW] J. Mylopoulos, P.A. Bernstein, H.K.T. Wong,
"A Language Facility for Designing Database-Intensive
Applications", ACM Transactions on Database Systems,
Vol 5, No.2, June, 1980, pages 185-207.

[MS] D. Maier, J. Stein, "Indexing in an Object
Oriented DBMS", Technical Report CSjE-86-006, Ore
gon Graduate Center, Beaverton, OR, May, 1986.

[MSOP] D. Maier, J. Stein, A. Otis, A. Purdy,
"Development of an Object-Oriented DBMS", Technical
Report CS/E-86-005, Oregon Graduate Center, Beaver
ton, OR, April, 1986.

[S] D.W. Shipman, "The Functional Data Model and the
Data Language DAPLEX", ACM TODS 6, 1 (1981),
140-173.

[Sc] J.W. Schmidt, "Type Concepts for Database
Definition", in Schneiderman, B. (editor), Databases:
Improving Usability and Responsiveness, Academic
Press, 1978.

[SS] J.M. Smith, D.C.P. Smith, "Database Abstractions:
Aggregation", CACM 20, 6 (1977).

[SZ] A.H. Skarra and S.B. Zdonik,"The Management of
Changing Types in an Object-oriented Database",
Proceedings of The ACM Conference on Object-oriented
Programming Systems, Languages, and Applications,
Portland, OR, September, 1986.
[SZR] A.H. Skarra, S.B. Zdonik, and S.P. Reiss, "An
Object-Server for an Object-Oriented Database Sys
tem", IEEE International Workshop on Object-Oriented
Database Systems, Pacific Grove, CA, September, 1986.

47

[Zdl] S.B. Zdonik, "Object Mangement System Con
cepts", Proceedings of the Second ACM-SIGOA Confer
ence on Office Information Systems, Toronto, Canada,
June', 1984.

[Zd2] S.B. Zdonik, "Maintaining Consistency in a Data
base with Changing Types", ACM SIGPLAN Notices,
September, 1986.

[ZWl] S.B. Zdonik and P. Wegner, "A Database
Approach to Languages Libraries and Environments",
Proceedings of the Workshop on Software Engineering
Environments for Programming-in-the-Large, Harwich
port, Massachusetts, June, 1985.

[ZW2] S.B. Zdonik and P. Wegner, "Language and
Methodology for Object-Oriented Database Environ
ments", Proceedings of the Nineteenth Annual Interna
tional Conference on System Sciences, Honolulu, Hawaii,
January, 1986.

A Systolic Parsing Algorithm for A Visual Programming Language

A. W. Bojanczyk and T. D. Kimura

Department of Computer Science
Washington University
St Louis, MO 63130

ABS1RACT

In this paper we consider a, problem of parsing a two
dimensional visual programming language Shaw and Tell on a
two dimensional array of processors.

A program in Show and Tell is a bit mapped two dimensional
pattern satisfying a certain set of grammatical rules. The
pattern consists of a partially ordered set of rectilinear boxes
and arrows distributed over the space of nxn pixel area. The
corresponding directed graph, the box graph, where boxes are
nodes and arrows are directed edges, may not have a cycle in a
Show and Tell program . .The cycle detection is the most
computationally intensive stage of the parsing section of a
Show and Tell program.

We propose to exploit the concept of systolic array in parsing
of Show and Tell programming language. A given bit pattern
is mapped onto nxn array of mesh connected processors with
one pixel' assigned to one processing element We show an
algorithm for cycle detection which runs in time proportional
to the size of a box graph. The complexity of any individual
processor is independent on n, the parameter describing the
size of the array.

1. Introduction

Thanks to the recent advancement of VLSI technology, high
resolution graphics capabilities have become a dominant
computer interfacing mechanism for end users. Efficient
man-machine communication can be achieved through a
graphic interface because of its high bandwidth. Visual
programming 1 is a new concept in software engineering that
takes advantage of such high bandwidth for designing better
software environments. In avisual.programming language, a
two-dimensional pattern (or an icon) is used to represent
various programming concepts, such as iteration,
concurrency, recursion, and so forth. One key problem in
visual programming language design is to fmd a formal syntax
of such a two-dimensional language and a parsing algorithm
based on the formalism~

A systolic array2 is a collection of identical processing
elements (FE, a CPU with local memory), mesh-connected in
a two dimensional form. Each PE communicates with its
neighbors by passing messages through a thin-wire. There is
no shared memory among the PE's. The concept of systolic
array was proposed to. take advantage of the reduced hardware
cost due to the VLSI technology advancement. Many systolic
algorithms are designed for numeric, database, and textual
applications.

CH2345-7j86jOOOOj0048$01.00© 1986 IEEE
48

We propose in this.paper another application area; a parsing of
two dimensional graphic programming language. A program·
in a such a language is a bit-mapped two-dimensional pattern
satisfying a certain set of grammatical rules." The systolic
parsing problem is to construct a systolic array such that when
a visual program is mapped onto the array with one PE
assigned to one pixel, the array can decide whether the pattern
satisfies the grammatical rules or not. It is desirable for the
array to make the decision in linear time to the size of the
pattern. It is also desirable that the complexity of each PEis
independent of the size of the array.

Show and Tell™ Language3 (STL) is a visual programming
language designed for novice computer users such as school
children and implemented on the Apple® Macintosh TM

personal computer. A STL program is entered through mouse
clicking and it consists of a partially ordered set of boxes and
arrows. Arrows and boxes may not form a cycle in a STL
program. The cycle detection is algorithmically the most
complex component of the parsing section of the STL system.

As a part of our efforts. to find formal specification methods
for visual programming languages (syntax and semantics), we'
are investigating possible systolic parsing algorithms for STL.
In this paper we will present a design of a systolic array that
can detect a cycle in a 'box graph' in linear time to the size of
the graph, where box graph is an abstraction of a STL
program capturing features relevant to the detection of cycles.

In the next section we will briefly introduce STL to provide the
background for the problem. Section 3 will define the
problem in terms of a formal definition of box graph and
systolic array. Section 4 and 5 will describe the results, i.~.,
the design of a finite state machine that can detect a cycle m
linear time to the size of the box graph. Section· 6 will
conclude with possible extensions of the results.

2. Show and Tell Language

Keyboardless programming is one of the main goals of the
STL design. A STL program can be created by using a mouse
only. A keyboard is needed only for entering texual or
numeric data. STL is designed for computer users who are
not familiar with keyboarding.

An STL program consists of nested boxes connecte.d by
arrows. Loops and cycles are not allowed. A box may be
empty or may contain a data value, an icon which is a name of
a system or user-defined operation, or another STL program.
Arrows allow data to flow from one box. to another. An

operation.in a box will be executed when and only when all
incoming values have arrived at the box. Except for this data
dependency there is no inherent sequencing mechanism in
S1L. The semantic model of S1L is based on the concept of
dataflow. However, since there is no loop in an STL
program, once an operation is executed and the result is
registered in an empty box, the"value will never change. There
are no side effects. Thus, STL is a functional parallel
programming language.

An empty box can be filled with a data object. Some empty
boxes are used for communication with the environment of the
program. They are called the base boxes of the program and
are depicted by a thicker box frame. They correspond to
formal parameters of a subroutine in traditional programming
languages. The S1L interpreter executes a S1L program by
filling the base boxes with appropriate solution values.

An S1L program can be named by a user defined icon. Any
MacpaintTM picture can be used as a name. When a box
containing a user defined icon is evaluated by the STL
interpreter, th.e named program will be evaluated, after the
incoming data values are moved into the base boxes of the
called program. An icon in S1L is a subroutine name.
Recursive definition of a program is also allowed.

An example of STL program is given in Figure 1. The
program defines the factorial function recursively. Note that
the program has one input and one output parameter. It
consists of four boxes one of which contains five boxes. The
inconsistent box, which is defined as any box that contains
conflicting information such as "5 flowing into 0", is shaded
by the interpreter. The data flows from the top to the bottom
of the graph. The name of the program is given on the upper
left comer of the editing window. The leftmost column
provides the editing tools for program constructi?n. Any box
that overlaps with other boxes or forms a cycle WIll be rejected
by the editing program of the S1L system.

The language is implemented on the Apple® Macintosh™
personal computer. Using the editing tools provided b~ .the
STL system, a user constructs a prog~an: on the edIt.mg
window through a sequence of mouse clIcking and draggmg.
In .order to draw a box, for example, the user drags the mouse
from the upper-left corner of the box, causing a mouse-down
event, to the lower-right corner, causing a mouse-up event.
The editing program in the S1L system recognizes these two
mouse events and constructs an internal data structure
representing the box, provided that the box is acceptable, i.e.,
the box does· not overlap with other boxes nor forms a cycle
with the existing arrows.

Figure 1: A Recursive SfL Puzzle (Factorial Function)

49

The current S1L system does not have capability of par~ing a
bit mapped image as a STL program. For example, If the

. . TM
factorial program of Figu.re1 ~s c~mstructed by MacPau:t. '
and the resulting MacPamt fIle IS pasted onto the edItmg
window of the STL system, the current STL editor program
will interpretethe image as.a background (comment) i~ge of
some other program, and will not be able to parse the bIt Image
as a STL program. Thus, programming in MacPaint is not
possible with the current STL system.

In this paper we try to solve the problem of finding a parsing
algorithm for two-dimensional representation of STL
programs. One.approach is to ~ind a formal syntax for ~TL
and to construct a parsing algonthm based on the formalIsm.
Our efforts in this direction is reported in a separate paper4.
Another approach is to construct an algorithm which can
accept all and only images that represen.ts a. legal STL
program. We will take the second approach m thIS paper.

3. Problem Definition

In this section we will defme the problem. Our solution to the
problem will be given in the next section. First we will define
the concept of box graph asa syntactic abstracti~n.of STL
program. Then, we will define the concept of· systolzc array as
a model of parallel.computer architecture. Finally we will
define the problem of detecting a cycle in a box graph by an
systolic array in linear time to the size of the box graph.

3.1 Box Graph

A box graph is a collection of boxes and arrows geometrically
distributed over the space of n x n pixel area. No two boxes
overlap with each other. No box contains another box. Every
arrow starts from the boundary of one box and ends on the
boundary of another box. Arrows may intersect ~ith one
another, but they don't branch out. No two arrows mtersect
with a box at the same location. There must be no loops or
cycles in a box graph, i.e., there is no sequence of arrows that
connects a box to itself. Boxes and arrows are composed of
horizontal and vertical line segments. No diagonal lines exist
in a box graph. An example of box graph is given in Figure 2.
Note that a box graph is an abstraction of a STL pr~gram in
hiding the type and the content of each box. Thus, m a box
-graph no nesting of boxes exist. There is no semantics
associated with a box graph.

Figure 2: An Example of a Box Graph

The exact definition of a well formed box graph as a bit image
will be gi"en in the section 3.3.

3.2 Systolic Array

A systolic array is a collection of n x n processing elements
(pE: a CPU with local memory), mesh-connected in a two
dimensional form. See Figure 3. Each processor is a simple
finite state machine with local memory registers. The memory
size of a single processor is independent on n, the parameter
describing the size of the array. The processors communicate
only with their four nearest neighbors, i.e., north, east, south
and west neighbors. Knowing what operations the processors
must perform in order to solve a problem, we define a time
unit to be the maximal time that is necessary for a processor to
perform the most time consuming operation together with
loading and unloading its registers. Like the memory size, the
duration of the - time unit is independent on n. A
synchronization mechanism allows processors to exchange
data at time instants separated by integer mUltiples of a time
unit. We assume that processors are microprogammable. This
allows us to change the set of operations performed by each
processor when necessary. This approach is similar to one
adopted in the PSC projects.

Figure 3: A Systolic Array

3.3 Problem

To design a systolic array of size n x n that can decide whether
a given bit pattern is a well formed box graph or not, in O(n 2)
steps with constant memory requirement for each PE, where
the bit pattern is mapped onto the array with one pixel assigned
to one PE.

A well formed box graph is defined as follows:
(1) A box and an arrow consists of line segments. A line
segment is one pixel wide. A line segment may be horizontal
or vertical, but never' diagonal. Two parallel line segments
must be separated by at least one pixel. An arrow does not
start at a comer of a box.

•••••••••••• ••••••••• • •• • • • •••••• • • • ••• • • • •• ••••••••• ••••••••••••• • • • •••••••••••• • • • • • ••• • • ••••••••• • •••••••••••• •• • • • ••••••••••••
Figure 4: A legal box graph

50

The following configurations are not allowed.

•••••• • • •• • •••••••••••••••• • • •••• • • • ••••• • • ••••••••••
Figure 5: illegal Box Arrow Combination

(2) A box is a rectangle enclosed by line segments. A box
contains nothing and it has at least one empty pixel inside the
enclosure.

••• • • •••
Figure 6: The Smallest Box

(3) An arrow head is represented by extra two pixels as
follows:

• •••••••••••• • • •••••• •••••• • •••••••••• •••••• 1. I •• 1 •• I • · . . I .1 .. 1.. . · .1 I I 1...... . .
• ••••••• 1 • I I... •
• •• • •• .1 I •
• I • • • I ••••••••••
••••••• 1 • • • •

•••••• • I ••••••••••
Figure 7: Legal Arrow Heads

The following configurations are not allowed:

•••••• • • • •••••••••••••••• • •••••• • •••••• • ••• • •• • • •••••• • •••••• •••••••••• •• • • •••••••
Figure 8: illegal Arrow Heads

(4) There must be no cycle. The following is an example of
cycle:

•••••••• • •••••• • • •• • • • •••••••• • ••• • • •• • ••••••••• •• • ••••••• • •• • • • • • •• • • • • • •• • • • • •• • •••••• ••••••• • •••••••• • •• •••• • ••••••••• • ••• • ••••••• • • • • • • • • • • ••••••••• • • • • • ••••••••• ••• •• • • • •••••••• • • • •••••••••
Figure 9: An Example of a Cycle in a Box Graph

3.4 Representation of the Box Graph

A box graph is made up of boxes and arrows (connecting
directed lines). Arrows and boxes in turn are made up of
pixels, single points of rectilinear grid. Although as
individuals the points are indistinguishable, they represent

different elements of boxes and arrows, i.e., corners, T
junctions (which are arrow tails), cross junctions, straight line
segments and arrow heads. These elements form basic
building blocks for any box or connecting arrow.

Decision of what a given non-empty pixel represents can be
made locally by examining its neighbourhood. The
neighbourhood about a pixel consists of all the pixels in a 3x3
window whose center is the given pixel. The pattern of the
neighbourhood determines the role played by each non-empty
central pixel. Figure 10 illustrates possible representation of
basic buildings blocks where l's denote non-empty pixels, O's
empty or background pixels and X's either of these two. There
is also unique pattern code associated with each pattern.

Note that all fifteen patterns are mutually exclusive.

There is a restriction that no arrow can start from a box
corner. This restriction excludes the possibility that a T
junction could represent a box corner and a tail of an arrow
starting from that corner, or that a cross could represent a box
corner and tails of two arrows starting from that corner. See
Figure 11 for illustration.

Cross: Line:
code: 1 2:horizontal 3:vertical

0 1 0 X 0 X X 1 X
1 1 1 1 1 1 0 1 0
0 1 0 X 0 X X 1 X

Corner:
4:NW 5:NE 6:SE 7:SW

0 0 X X 0 0 0 1 X X 1 0
0 1 1 1 1 0 1 1 0 0 1 1
X 1 0 0 1 X X 0 0 0 0 X

T-lunction:
8:north 9:east 10:south 11:west

0 1 0 X 1 0 X 0 X 0 1 X
1 1 1 0 1 1 1 1 1 1 1 0
X 0 X X 1 0 0 1 0 0 1 X

Arrow-head:
12:north 13:east 14:south 15:west

111
111
X 0 X

X 1 1
011
X 1 1

X 0 X
111
111

1 1 X
110
1 1 X

Figure 10: Basic Building Blocks

1 1 111 1
1 1
1 box 1
1 1
1 1 111 111 1

1
1
1
1
1

1 1 1

box

1 1 1

1 1
1
1
1

1 1 111
1
1

not allowed T-junction not allowed cross

Figure 11: illegal Patterns

51

The representation of the arrow head involves two additional
non-empty pixels which are superfluous, they simply help to
identify . the arrow-head. This is not the only possible
identification. There are many other but all, including the one
considered here, have some drawbacks.

4. Recognition of the Box Graph

This section describes the procedure for recognizing a box
graph which is initially defined by a set of non-empty pixels
distributed over a square nxn grid.

The grid is mapped onto the square array of processors with
one grid point assigned to one processor. Each processor has a
pixel register where non-empty pixel is represented by 1 and
background pixel by O.

The recognition of the box graph proceeds in two stages. In
the first stage processors recognize the basic building blocks
by comparing the patterns of the neighborhoods with the
predefined patterns of the basic building blocks. Note
however, that basic building blocks still do not uniquely
determine elernments of rectangles or arrows. A corner may be
the box corner or turning point of an arrow. A line may be a
part of an arrow or a side of a box. Basic building blocks
together with specification whether they belong to rectangles
or arrows form box graph building blocks. In the second
stageof box graph recognition, the processors uniquely
determine the box graph building blocks.

4.1 Identification of Basic Building Blocks

All fifteen patterns defming the basic building blocks (see
Figure 10) are stored in local memories of all processors.
Processors which correspond to non-empty pixels have to
examine their neighborhood in order to determine what
building blocks they represent. Succesive shift operations
bring pixels from the neighborhood to the center processor.
The pattern of the neighborhood is compared to each of the
fifteen basic patterns. If there is a match to any predefined
pattern, the pattern code is stored in the pattern code register
(LPCR) of the center processor and the center processor is
marked as initially recognized. However, for some non-empty
pixels the pattern of the neighborhood do not match the pattern
of any basic building block. This is a side effect of the
representation of the arrow-head. Only the pixels that serve as
identifiers of arrow-heads may find themselves in such
position.

The resulting ambiguity can be solved in the following way.
The processors which were identified as arrow-heads transmit
that information to those neighbors which served as markers
of the arrow-heads. Because all arrow-heads were found, the
markers are not needed any longer and can be erased. The
erasing removes ambiguity. Now, by repeating the matching
process for all "undecided" processors the identification of
basic building blocks is complete, all non-empty pixels know
exactly what they represent.

Note that the identification of the basic building blocks takes
constant time, independent on n, the array size or even the
graph size.

4.2 Identification of the Graph

Once basic building blocks are identified, the array is set to
recognize the box graph. Processors have to decide whether

they constitute a part of an arrow or a box. In order to make
that decision processors must receive enough information
possibly coming from the distant regions.

Prior to the computation all processors are in the initial states.
In the course of the computation the processors change their
states until the final states are assumed. The initial state
corresponds to the starting information possessed by a
processor which, in case of non-empty pixel, is the pattern
code of the basic building block, while for empty pixels the
pattern code is zero. The final state means that a processor
recognized what element of the box graph it represents. The
processor stores the pattern code of the graph building block,
which is the code of the basic building block together with the
indication whether the building block is a part of an arrow or a
box.

For some processors the initial state is also the final state. This
is the case with the processors corresponding to the
background pixels. Similarly, the processors representing
arrow-tails (which are T-junctions), arrow-heads and arrow
crossings are in the final state to begin with. All other
processors need some additional information before they are
able to recognize what element of the box graph they
represent.

All decisions (or state changes) are made based on states of
some processors, bounding processors, lying in the same
vertical and horizontal line as the processor making a decision.
A bounding processor is such that contains information which
may influance states of processors in the same horizontal or
vertical line. First of all, any non-empty processor which is in
the final state is a bounding processors. Comers, T -junctions,
arrow heads and crossings are bounding for a processor which
is connected to any of them by a straight line of non-empty
processors. Any non-empty processor is bounding for another
non-empty processor which is separated from it by a straight
line of empty processors. In Figure 12 a possible situation is
illustrated. Numbers are codes of basic building blocks. The
top, the bottom, the leftmost and the rightmost processors are
the bounding processors for the central processor.

Figure 12: Bounding Processor

The array operates in the synchronous mode. Triggered by the
outside control the processors start executing their individual
programs. The program to be executed depends on the current
state of the processor. All processors pass the data about their
current knowledge to the north, east, south and west
neighbours. Simultaneously, processors receive similar data

52

from the neighbors. Based on the local data and the data
received from the neighbours the processors update their states
and also prepare data to be sent to the neighbours in the next
cycle.

Each processor has four special registers NR,SR,WR and ER
monitoring the states of the bounding processors above,
below, to the left and to the right of it. Figure 13 shows some
registers which are used for graph building blocks recognition.

WR

LPCR

Processor

StateR

NR=North Register
SR= South Register
ER=East Register

WR=West Register

ER

LPCR= Local Pattern
Code Register

StateR = State Register

Figure 13: Processor Registers

The StateR register describes the state of the processor. When
the processor is not in the final state, the content of StateR is
O. The content is A,B,E,H or T if the processor represtents
arrow, box, empty processor, arrow-head or arrow-tail
respectively.

The data which is sent by a processor to its neighbors is a
concatenation of LPCR and StateR registers of either the
processor itself or those of the bounding processors. All
incoming messages are evaluated against the information
possessed by the processor. A decision is made locally
whether the incoming data has higher priority than the
information evaluated by the processor. In the case when the
incoming data has higher priority it is transmitted further in the
same direction it came from. Otherwise, the processor
transmits the locally evaluated data.

The data representing empty pixels have the lowest priority.
The corresponding processors do not perform any
computation but simply shift the incoming data along vertical
and horizontal connections. The data representing non-empty
pixels which are in the final state have the highest priority. The
corresponding processors also do not perform any
computation. They ignore the incoming data but keep sending
the information what (final) part of the box graph they
represent to the immediate neighbors. If both incoming data
and local data represent the final states then, as the incoming
data is ignored, the local data has precedence. In the case
when the incoming data have the same code as the code of the
local data, the local data have the higher priority. The data
representing line have lower priority than the data representing
any other building block. The local data representing any
building block other than line have higher priority than any
incoming data except when the incoming data represents the
final non-empty state and the receiving processor is not in the
final state.

4.3 Arrow Identification

If a processor is not in the final state but one of its non- empty
neighbors is in the final state, then the final state of the
neighbor uniquely determines the final state of the processor.
That is if any of the nearest neighbors (north, south, west or
east neighbor) represents an arrow then the processor must be
a part of that arrow. Similarly, if a neighbor represents a box
then the processor is also a part of that box. Recall that arrow
heads, arrow-tails or crossings are in the final state from the
very begining of the computation. As a consequence, any non
empty processor which is connected to an arrow-head, arrow
tail or crossing will assume the final state A or B on
completion of the first unit of time. Next, one by one,
succesive non-empty processors connected to arrow-heads,
arrow-tails or crossings by a chain of non-empty processors,
will be able to determine their fmal states.

In particular, as the maximal length of any straight, horizontal
or vertical, line is n, then any non-empty processor connected
to an arrow-head, arrow-tailor crossing by a straight line of
non-empty processors will assume the final state in at most n
units of time.

When a processor is a comer connected by a straight (non
empty) line to another comer of opposite orientation then both
comers must belong to an arrow. (Two comers connected by a
line have the same orientation when traversing the line either
only right or only left turns are encountered, otherwise the
comers have the opposite orientation). Similarly, for a
processor representing a line, if both end of the straight part of
the line are comers of oposite direction then the line must be a
part of an arrow. Both cases are easily recognized by one of
the processors lying on the line that joins the two comers. The
processor will receive the information that the opposite
bounding processors are comers of opposite orientation and
recognize that it is a part of an arrow. Next the message will
spread along the line and eventually will reach the comers.

The recognition of a segment of an arrow between two comers
of opposite orientation takes no more than 2n units of time.

The constant two comes from the fact that the information
about two comers is combined in one of the processors lying
in between and next propagated back to the comers.

The only hard situation is when following a line only comers
of the same orientation are met. This can happen with a box or
a spiral, see Figures 14a and 14b below.

1 1 1
1 1 1 1 1 1 1 1 1 1 111 1 0 1
1 1 1 1
1
1
1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 111 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1
1

Figure 14a: Spiral

53

1 1 111 111 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1 111 111 1

Figure 14b: Box.

A box has the property that its interior is "empty". Spiral on
the other hand has one or more coils inside. This makes all
but the innermost coils of a spiral easy to recognize. However,
the innermost coil must end in a box so it is easy to recognize
anyway. The procedure is the following.

As we mentioned before, any non-empty processor which lies
on a line connecting two comers of the same orientation is
either a part of a box or an arrow. However, if there is a coil
inside then any comer of the inner coil will betray that.

Consider a processor which is the part of the outer coil and
which lies on the same vertical or horizonta11ine as the corner
of the inner coil. After at most n units of time (which is the
maximal distance in vertical and horizontal direction in the
array), the processor will have the information that two of its
bounding opposite processors represent corners of the same
orientation, i.e., the processor represents either a part of a box
or a spiral. However, the processor will also receive the
message that there is a corner inside. Hence, the processor
must represent a part of a spiral. This is conclusive, the
processor assumes the final state. That final state is
communicated along vertical and horizontal lines. Passing
through all nonempty processors the information eventually
reaches the two bounding corners which in turn can now
decide that they are parts of an arrow. The procedure is
simultaneously executed for all four sides of all outer coils.

Any spiral can be recognized in no more than 4n units of time.
All outer coils can be recognized in time at most 2n. This is
because at most n units of time are necessary to propagate data
from all three comers to the processor which makes the final
decision. Additional n units of time are needed to propagate the
message back to the comers. The innermost coil has the length
at most 4n and its end must be an arrow-head or an arrow tail.
As the end of the innermost coil is in the final state from the
begining of the computation this fact will propagate along the
innermost coil in time equal to the length of the coil which is at
most4n.

4.4 Box Identification

It remains to find a way for recognizing boxes. Without loss
of generality, consider processors forming upper and left side
of a box. These two sides are bounded by corners of the same
orientation with the upper-left corner being the only common
point. Note that a box is convex and "empty" inside. Thus all
processors lying on the upper and left sides have their
counterparts on the lower and the right sides, only empty
processors separate the opposite sides.

Now consider any north-west corner. This processor initiates
search for a box. A signal is sent from the north-west corner to
all processors forming upper and left sides (including

bounding corners) to check on their counterparts. The signal
propagates along both sides until it reaches the corners.

If any of the two corners has the opposite orientation than the
north-west corner, that corner immediatelly concludes that the
line is a part of an arrow. The corner assumes the final state,
terminates the search and propagates the information back to
the north-west comer. All processors in between, one by one,
assume the final states. Next, the north-west comer assumes
the final state and transmits this information to its neighbors.
Now, the information spreads along the second side, changing
the states of all processors on that side which are not in the
final states into the final states.

On the other hand, if the corner has the same orientation that
the north-west corner, the search continues. The corner which
received the signal from the north-west corner (and has the
same orientation as the north-west comer) replies by sending
boolean value true back to the north-west comer. This boolean
value stops at each processor it passes. Each processor which
the boolean value visits holds it until the check on the
processor counterpart is finished. If the result of the check
indicates that the counterpart may belong to the same box as
the processor, i.e., for the north/west side the south/east
bounding processor represents a line, the boolean value is
passed along the line, towards the north-west corner,
unchanged. Negative check, i.e., for the north side the south .
bounding processor is not a line, indicates that the processor is
a part of an arrow. This is the fmal decision overruling other
actions the processor may contemplate to take. The search is
aborted. The information is sent to the neighbors and
transmited further in succesive units of time. Eventually all
processor on both sides starting from the north-west corner are
informed.

In case when all checks are positive, the north-west comer will
receive the boolean value true. The search along one side is
positive. If also the search along the second side is positive
this means that the interior of the structure is empty. As only a
box has this property, the structure must a box. The north
west corner assumes the fmal state marking the corner as the
box corner. The information is transmited to the neighbors
which will propagate it further until all processors forming the
box are reached. The recognition of the box is now completed.

The recognition of a box takes no more than 4n units of time.
This follows from the fact that the message from the north
west corner must travel to the south-east corner and back to the
north-west corner, which takes at most 4n units of time.

The results of this section can be summed up in the following
theorem.

Theorem 1: A well defmed box-graph given as a colection of
basic building blocks can be recognized in at most 4n units of
time on an nxn array of processors. The size of the local
memory of any processor is independent on n.

5. Cycle Search

Let b be any box in the box graph G. By indeg(b) we denote
the number of arrows pointing at the box b and by outdeg(b)
the number of arrows originating at the box b.

The algorithm for establishing whether a box graph is acyclic
is based on the simple observation that removal of all boxes,
together with arrows originating at or pointing to them, for
which indeg(b)*outdeg(b)=O will leave the subraph cyclic if

54

the graph is cyclic. If a graph is acyclic the procedure will
render the sub graph empty.

The cycle search is initiated by boxes north-west corners. For
every box the computation consits of two local phases,
checking phase, which may be repeated number of times for
the box, and erasing phase, which when entered is executed
only once for that box.

In the erasing phase each north-west corner propagates two
control bits, head and tail, along the box perimeter. The initial
values for these bits are zeros. The value of tail is changed to
one when at least one arrow-tail is found on the perimeter.
Similarly, the value of head is changed to one when at least
one arrow-head is found on the perimeter.

After at most 4n units of time (the maximal perimetr length of
any box), the north-west corner receives both control bits. The
next action depends on the value of the bits. When both are
ones this indicates that indeg(b)*outdeg(b»O, Le., there is at
least one arrow pointing to the box and at least one arrow
leaving the box. The north-west corner sets both bits to zero
and the checking cycle repeats.

In the case when indeg(b)*outdeg(b)=O the north-west comer
initiates erasing phase. A single control bit erase is propagated
along the perimeter and further along all arrows leaving or
pointing to the box up to the point where another box is met.
When a processor receives the control bit 'erase' it marks itself
as erased and transmits the 'erase' bit to all non-empty and not
erased neighbors. When the 'erase' bit is received by a
processor belonging to another box, which must be an arrow
head or arrow-tail, the processor replaces the content of LPCR
register, which is the code of an arrow-head or an arrow-tail,
by the code of a line having the same direction as the direction
of the side the processor represented originally. This operation
removes one arrow-head or arrow-tail from the second box,
possibly changing the product of indeg and outdeg for that
box. The (local) erasing phase terminates at this point,
however a new (local) erasing may start at the second box.

It is clear that if the original box-graph is acyclic, the cycle
search procedure will terminate leaving all non-empty
processors marked as erased. The execution time is
proportional to the total number of marked processors. We
now prove this assertion. To do that we will use the standard
graph terminology. In addition, let card(b) and card((bl,b2»
denote the number of processors forming the box b and the
number of processors forming the arrow (b 1 ,b2),
respectively. Finally, let card(G) denote the total number of
non-empty pixels forming the graph G. We are ready to prove
the main result of the paper.

Theorem 2:
If a box-graph is acyclic then the cycle serch procedure
terminates in time at most 3*card(G).

Proof: Without loss of generality we can assume that G is
connected.

As G is acyclic there is at least one box s, a source box, such
that indeg(s)=O and outdeg(s»O. Similarly, there is at least
one box t, a terminal box, such that outdeg(t)=O and
indeg(t»O.

Consider all source boxes b(1,1),b(1,2), .. ,b(1,i l), and all
arrows starting at these boxes. The arrows point at boxes
b(2,1),b(2,2), ... ,b(2,i2). Choose the source box b for which

the sum of card(b) and card((b,c» of the longest arrow staritng
at that box is maximal. Let it be the box b(l,l) and the arrow
(b(l, 1),b(2, 1». From the description of the cycle search
procedure it follows that after

2 * card(b(l,l» + card((b(1,I),b(2,1)))
units of time all boxes b(l,1),b(1,2), .. ,b(1,i l) and all arrows
which started at these boxes are erased. (We take card(b(l,l»
twice as there are two traverses along the box perimeter, in the
first travers the product of outdeg and indeg is calculated, and
in the second, the erasing phase is processed).

Some of the boxes b(2,1),b(2,2), .. ,b(2,i2) in the resulting
subgraph may now become the source boxes for that subgraph
and some may have been partially or fully erased. Again,
consider all source boxes b(3,1),b(3,2), .. ,b(3,i3) and all
arrows originating at these boxes in the current subgraph.
Note that the intersection of the sets {b(2,1),b(2,2), .. ,b(2,i2)}

and {b(3,1),b(3,2), .. ,b(3,i3)} may be empty. Nevertheless, in
the current subgraph there is at least one source box.
Otherwise the subgraph would have been cyclis which is
impossible as the graph itself is acyclic. Choose the box b and
the arrow (b,c) starting at that box for which sum of card(b)
and card((b,c» is maximal. Let it be the box b(3,1) and the
arrow (b(3,1),b(4,1». After

3 * card(b(3,1» + card((b(3,1),b(4,1)))
units of time all boxes b(3,1),b(3,2), .. , b(3,i3) and all arrows
which started at these boxes are erased. (We count
card(b(3,1» three times as now there may be up to three
trverses along the box perimeter. In the first travers the check
for the product of outdeg and indeg may still be negative. In
the second travers the fact that indeg=O is discovered, and
fmally in the third travers the erasing phase is processed).

As there are no cycles in the graph, the procedure must
terminate on one of the terminal boxes. This happens after

M=[2*card(b(1,1))+card((b(1,1),b(2, 1»)]+ ... +
[3*card(b(2*m-l,I»+card((b(2 *m-l,l),b(2*m, 1 »))]

units of time. But M<3*card(G) which completes the proof.
QED

In the worst case the procedure takes order of n**2 units of
time. The reason for this is that the longest "non-empty" path
cannot exceed the overall number of processor, which is
exactly n**2.

If there is a cycle in the graph, the procedure will not
terminate without the intervention of the outside 'control.
However, we know that after at most 3*n**2 units of time the
acyclic graph would have been erased. Thus after that time, if
there are still not erased processors in the array, the graph
must have cycles.

6. Conclusions

We introduced a concept of a box graph and proposed a
systolic algorithm for an nxn array of processors which
dedects cycles in a well defined box graph. The algorithm is
synchronous and its behavior in the worst case is proportional
to n**2. The memory requierement is constant per each
processor. When a graph is acyclic the algorithm can recognize
that fact in time proportional to the cardinality of the graph.
However, it cannot discover a cycle until "full time" n**2 is
reached. It is an open question whether it is possible to detect
cycle in time, say, proportional to the cardinality of a box

55

graph. This question is related to the another one. We assumed
that the array is synchronous. It is not known to the authors
whether the cycle search procedure could terminate if the array
operated in asynchronous manner.

In our considerations we assumed that the initial box graph
does not have flaws and that no arrow starts or ends at box
corners. The question is whether these assumption can be
relaxed while maintaining the execution time proportional to
cardinality of the graph.

7. References

1 G. Raeder. "A Survey of Current Graphical Programming
Techniques," IEEE Computer, August 1985, pp 11-25.

2 H.T. Kung. "Why Systolic Architecture?," IEEE Trans.
Computer 15(1):37-46.

3 T. D. Kimura, J. W. Choi, and J. M. Mack. A Visual
Language/or Keyboardless Programming. Technical Report
WUCS-86-6, Department of Computer Science, Washington
University, St. Louis, March 1986.

Show and Tell is a trademark of Computer Services
Corporation.

4 W.D. Gillett and T.D. Kimura. Parsing Two-Dimesional
Languages. Proc. COMPSAC86, Chicago, October 1986.

5 A.L. Fisher, HT. Kung, L.M. Monier, and Y. Dohl. "The
Architecture of a Programmable Systolic Chip," J. VLSI and
Computer Systems 1(2):153-169 (1984).

LEARNING, RESEARCH, AND THE GRAPHICAL
REPRESENTATION OF-PROGRAMMING

Robert P. Taylor
Nancy Cunniff

Minh Uchiyama

Center for Intelligent Tools in Education
Department of Communication, Computing and Instructional Technology in Education

Teachers College,. Columbia University
New York, New York

ABSTRACT

Although there are many programming languages, there
are few. alternatives in terms of presentation mode. This
paper describes the programming language· FPL, a graphic
representation of classical programming. The premise behind
the design of FPL is that some novice learners' would benefit
more from a visual presentation of conceptual programming
structures rather than from the traditional textual
representation. FPL' s interactive, _ graphic programming
environment, which supports the learner throughout the
programming process is discussed. This environment
provides a rich research environment for the study of novice
programmers and the effect of this . graphic programming
language. Preliminary research on FPL suggests that this
programming environment has a· positive effect on the
. programs .writtenby novices.

INTRODUCTION

Despite the number of languages available, the learner of
programming· has few alternatives. Though there are many
detailed differences encompassed by the range of most
programming languages available today, .in one pedagogical
sense they afford no variety whatever: all rely exclusively on
text for representing the program. For those teaching
programming :this is unfortunate. It means there is no graphic
alternative for the student who is more visually than textually
oriented.

This paper describes work addressing this problem. It
involvesFPL, a visually represented programming language,
and the interactive FPL environment used by novices for
learning computer programming.

The paper proceeds by successively describing:
1. the contextual background;
2. the. FPL language;
3. the interactive environment in which FPL is used;
4. 'FPL-based research on the learning of programming;
5. concluding observations.

CONTEXTUAL BACKGROUND: GRAPHICS AND
ALTERNATIVES FOR LEARNING TO PROGRAM

The work reported here assumes that a visual approach
to programming is an important alternative for many learners,

CH2345-7/86/0000/0056$01.00 © 1986 IEEE
56

and discusses some appropriate development work and
research based on that assumption. This first section
discusses the foundation for such an assumption.

Classical Prol:ramminl:
Classical programming refers to well-structured

-programming as done ina number of now well-established,
structurally similar languages such as Algol, Basic,Cobol,
Fortran, Pascal or PVl. A casual glance at programs written
in these languages makes one thing immediately obvious: all
are shaped by their adoption of our natural language. All use
words, punctuation, special characters and narrative sequence
to represent programs. In -particular, all use key words to
designate specific, programming structures and to indicate a
program's flow of control.

Classical programming is widely taught in educational
settings. However, it is not clear that the exclusively textual
representation characteristic of all the classical languages can
meet the needs of all types of learners equally well. Although
the sequential, linear nature of language may match the
computer's organization (linear, sequential and rule
governed), it does not necessarily match the way many people
think about problems and problem solving, either on or off
the computer.

Graphics VS. Text
Although little is known about how graphics influence

learning, .intuition seems to suggest that the use of graphic
materials makes learning easier. "It is commonly
acknowledged that the human mind is strongly visually
oriented and that people acquire information at a significantly
higher rate by discovering graphical relationships in complex
pictures than by reading text"l (p. 12).

Educators. have long realized that not all learners have
identical 'learning styles and preferences. Supporting
alternative learning styles by providing a variety of methods
and materials is an important and worthy educational goal.
Teachers and learners of computer programming have not had
alternatives available to them, in one sense, at least. .The
textual focus of all of the commonly available languages
severely limits the learner's options. A language that presents
programming graphically would provide visually oriented
learners with an appropriate. alternative vehicle for learning
about programming.

A Graphical Appro.ach To. Pro.2rammin2
FPL graphically represents programming threugh the set

ef 11 icens, each ef which represents ene pregramming
censtruct Two. icens are textless, the ether nine include text,
in the fenn ef variables and/er censtants. Tegether, the icens
eliminate the need fer key er reserved werds, so. variable
names and censtants are the enly textual elements in an FPL
pregram. Each icen is directly translatable into.
cerrespending text in a traditienal classical language. Fer
example, Figure' 1 shews the icens and their Pascal
translatiens.

In FPL the spatial arrangement ef icens embodies the
flew o.f centrel so.. an FPL program is drawn, net listed.
Because they are entirely textual, traditienal pregram listings
visually suggest sequential actien, regardless o.f the actual
nature ef the pregram flew. By centrast, an FPL drawing
mere immediately indicates the pregram's actual structure.
Refer to. Figure 2 fer a representative FPL program and its
textual Pascal equivalent.

Design Criteria
The design criteria were shaped by the underlying

purpese fer FPL: to. previde nevices with a simple, visually
eriented alternative fer learning classical pregramming.
These criteria can best be summarized by the fello.wing geals:

1. To. reduce classical pregramming censtructs to. a
minimum set reflecting the underlying similarity ef all
languages in this classical greup;

2. To. graphically represent each such censtruct with a
unique icen, and to. represent the legic ef
programming threugh these icens and the manner ef
cennecting and relating them;

3. To. make each icen easy to. draw and remember;
4. To. implement the language in an easy to. use

envirenment that prevides extensive explanatery help
en demand and blocks any errer with an immediate
and precise explanatien.

The resulting system provides an alternative
p~egramming vehicle fer the student whese aptitude favers a
vIsual. rather than a purely textual appreach to. learning and
remembering, in a suppertive editing and testing
envirenment .. It alSo. provides a rich envirenment.fer studying
the programmmg precess.

Readers who. want a mere cemplete descriptien ef the
FPL language sheuld censult Pregramming Prime~, the FPL
icen ~esign crit~ria, sheuld see Tayler's descriptien6

, and
these mterested m the general visual programming centext
sheuld see IEEE's Special Issue en Visual Pregrammingl.

Visual Pro.gramming
Early attempts to. define an alternative mode fer

representing legic in pro.gramming gave rise to. standard
flewc~arts. They beca!De a widely used, pepular vehicle fer
plan~mg and. debuggmg pregram legic and algerithms.
DespIte en-gemg debate ever the usefulness ef this particular
teel, the value ef graphical representatien was recegnized,
and many mere ~ttempts have b,een made to. design viable
t?e~s !er graphIcally representmg pregramming!. One
hmltatlen ef many ef these early visual representatiens is that
they effe~ the pregr~er enly a limited graphical
representatIen; actual. coding must still be dene in standard
textual ferm.

Recent efferts to. expand the use ef visualizatien in
pregramming systems has given rise to. the genre ef "visual
programming, " defined by Graften and Ichikawa3 as

57

ence~passing three di~tinct areas ef research: "graphic
tech~l(J.ues . that. proVIde both static and dynamic
~ultIdimenslOnal vle~s ef seftware, graphics-based very
hlgh-~evel pregrammmg languages, and animatien ef
algenthms. and seftware" (p. 7). The field ef visual
pregramming is a relatively new ene, and much ef the
develepment has focused en systems fer graphic display ef
the pr~gram flow and data values during executien and
debuggmg. Such systems make visual the dynamic nature ef
a pregram. As Graften and Ichikawa3 peint out~ " ... the ability
to. see data flew and centrel structures o.f algerithms and
seftware as they execute will give seftware engineers and
ce~puter scientists an ability to understand and 'feel' the
actIen of s<?ftware er algerithms" (p. 8). Meyers4 has
carefully reVIewed many ef these systems and has devised a
tax<?nemy fer classificatien ef the wide variety ef languages,
envrronments and systems which claim to. be "visual" in one
sense er anether.

~ystems empley~g any ef the currently available visual
techruques can certamly help both nevice and expert
pregramm~rs, but t!te~ eften cenfine the use ef graphic
representatIOn to. a hmlted subset ef the actiens invelved in
the programming. process. What is needed is an integrated
system that prevldes a pregrammer with a graphic tool fer
pregram planning, an interactive, graphic, cemputer-based
mte~ace· fer pregram writing, and a pregram executien
envrrenment that. pennits examinatien o.f memery centents
while ~eeing data flew and centrel structures .. Such. a system
seems Ide~ fer no.vices who. are grappling with understanding
pregrammtng language censtructs at the same time as they are
~g to. understand he~ the cemputer actually acts en the
wntten pregram. An mtegrated, graphically represented
language weuld enh~ce understandin~ and·simplify the cycle
ef pregram cempesltlen, cemprehenslOn and debugging. It
eught to. especially suit these nevices who. are mere visually
than textually eriented~

The grewing interest in visual pregramming suggests
tha~ seme develepers, at least, believe graphic tools make it '
easIer to. understand the cemplex actien ef the cemputer.
Heweve~, while intuitien and anecdetally recerded
ebservatIen may have persuaded many peeple ef the viability'
ef graphical systems, empirical research to. cenfrrm that
viability is still missing.

~ frrm understanding ef the pregramming process, the
behaVIOr ef programmers, and the interactien ef language
graphics and programming achievement can enly fellew th~
develepment ef centrasting alternative envirenments and
well-designed empirical research en their use. As a
~phically represented pregramming,language, FPL and its
Implementatien censtitute such an envirenment The FPL
based research described in the feurth sectien ef this paper is
designed to. illuminat~ specific aspects ef the pregramming
process and thus centnbute to. eur general understanding ef it.

THE FPL LANGUAGE:
A VISUAL REPRESENTATION OF LOGIC

FPL (First Pregramming Language) reflects the structure
cemmen to. the entire family ef classical languages and is
designed to. facilitate. learning that structure. Hewever,
theugh it shares the structure, it does net share the exclusively
textual, keywerd representatien ef that structure. Instead FPL
u~es icenic representatien. The frrst two. figures illustrate the
difference. FIgure 1 presents the eleven FPL icens' and their
eguivalent in Pascal, a representative classical language.
Flg~e 2 breadens the cemparisen by presenting parallel
versIOns ef the same pre gram.

DECLARATIONS

VAR
cnt : INTEGER;

CNT 74 I
EXTERNAL

ASSIGNMENT
TO TRANSMIT

WRITELN (CNT);

END
PROGRAM

END.

COUNT INTEGER 3
SUM INTEGER 4
AVERAGE FIXED 4,2
NUM INTEGER 2

EPISODE

CNT ~
EXTERNAL

ASSIGNMENT
TO RECEIVE

READLN (cnt);

END
BLOCK

END;

I CNT <- 0 I) DATA) II PRINT_DATAII

INTERNAL
ASSIGNMENT FILE OPEN BLOCK

cnt:= 0; REWRITE(dala): PROCEDURE prinLdata
RESET(dala);

(CNT; 10

WHILE

WHILE cnt < 10 DO
BEGIN

END;

END
DIGRESSION

END;

EITHER

IF cnl = 5
THEN

BEGIN

END

ELSE
BEGIN

END

FIGURE 1: FPL Icons
with Poscal translations

PROGRAM test(l NPUT ,OUTPUT);
VAR

count: INTEGER;
sum: INTEGER;
8ver8ge : REAL;
num : INTEGER;

BEGIN
WRITELN('Enter 10 numbers to be 8ver8ged. ,);
sum := 0;
count := 0;
WHI LE count < 10 DO

BEGIN
WRITELN('Enter 8 number: ');
READLN(num) ;
sum := sum + num;
count := count + 1;

END;
8ver8ge := sum I count;
WRITELN('The 8ver8ge is : ',8ver8ge:4:2);

END.

FIGURE 2: FPL PROGRAM
and PASCAL TRANSLATION

58

THE FPL ENVIRONMENT:
STUDIO CREATION AND LAB TESTING

In one respect, FPL goes beyond the scope of many
other attempts at visual programming: the FPL environment
supports the user from the initial problem solving and
computer representation stage through debugging, refinement
and execution. The FPL environment runs on the IBM
PC/XT/AT family of microcomputers and has two parts, a
Studio and a Lab. In the Studio the program is created and
refined. Figures 3, 4, and 5 (discussed further below)
illustrate scenes of work in the Studio. In the Lab, the
program is executed and its execution monitored, via an
animated representation of the program, its I/O, and the
dynamic display of the value of user selected variables.
Figure 6 (also discussed further below) illustrates with a
scene from the Lab. The Studio is discussed first and the
Lab, which is still in prototype, second.

{ }

s x (T) X (R) 0

1-(=======)-' r=====]
- -________ J

y E B D

Locate Tailor View Help Quit I I
/_\ /*\

G Z L T Y { Q

Enter a key letter : _

FIGURE 3: The main prompt line

!; ~ ,t J'"l FP.t! PR~GR8tt ; .. <!,' :

I []:.:.: :::::: <---- 0 I

Enter a TARGET.

Enter for help.

FIGURE 4: Sample icon entry screen

Trunk {2} of TEST
------------------___________________ J _______________ _

I "Enter score number: " : COUNT --/-->

---------~~~~~~~~~~!~~~~~~~~~---
I SCORES[COUNT] <--/--

I
FIT

-------11 --------------------- 11-------
I 11- (SCORES[COUNT] < a) -II I

{3} __ ==========I=========__ {4} I COUNT <--- COUNT + 1 I

I
/_\

To resume I press RETURN

FIGURE 5: Display of 8 single "trunk"

NAME Ef-
-, :. 1 ,. STORm,

~ IslIILlLlv111111
NAME

, PRomn EXECUTIOt!

Student naMe: BILLY

P~ess any key to continue.

FIGURE 6: FPL LAB screen layout

59

The Graphic Studio; Program Creation and Editing
A student working in FPL is encouraged to sketch a

program frrst on paper, planning how to solve the problem.
When ready to enter or edit a version of hislher program, the
student invokes the FPL Studio.

From the studio, the user can create or refine hislher
program by adding new icons or by deleting, replacing or
modifying existing ones. When creating or refining, the user
focuses on a single icon, and the displayed context reflects
this. Figure 4, for example, illustrates a scene from a user's
entry of an "I" or Internal Assignment icon; figure 7, entry of
an "X" or External Assignment icon. Though the user can
easily move in and out of broader visual contexts (see next
section, Program Viewing and Drawing), the immediate one
is that of the single icon. In that context, the user is
graphically prompted for each component of the entry (again,
see figures 4 and 7 for examples), in a set order, based on the
icon type. The user can freely intermix work on any icon
with access to and browsing within the help system (see
section below, System Support Features). The user can exit
from work on any icon via this help system, or following
system detection of any syntax error in the icon entry.

I "Enter score number : "[]--I-->

Enter . (End) : (Concatenate) or I (Tab)

Enter (for help.

FIGURE 7: External Assignment icon prompt

While entering icons, the user is always returned to the main
entry prompt line (see figure 3) once entry of a specific icon
is completed. When refining generally, the user is returned to
a broader prompt to determine if he or she wishes to edit
further, and if so, where. In deciding where to edit, seeing
more context than a single icon is essential. For this, the user
must be able to scan all or part of hislher program.

Program Viewing and Drawing. There are two
different perspectives from which one can view the program
under construction: immediate and global. In the frrst, the
user can see the icons in the trunk currently being worked on.
In the second, the user can view any part of the program
whatever. Thus, though while working on a specific icon the
programmer sees only that one icon, more of the current
program can be viewed on demand.

Immediate viewing (Figure 5) shows one vertical line, or
trunk, at a time, either the one being worked on, or any other
trunk the user chooses. If this doesn't provide sufficient
context, once the user has finished entering any logically
complete version of hislher program, the system can create a
complete drawing of the program to date. At that point,
without leaving the Studio, the user can display the program
on screen (see Figure 8) or stop and print out a drawing of the
program on paper.

60

o
I

FIGURE 8: On-screen draWl ng

Program Preservation. When the programmer finishes
working on a program, it is saved on disk in an intermediate
representation form. At any later time, the programmer can
reenter the Studio, access that program, and work on it
further.

System Support Features. The FPL Studio offers
comprehensive support to the programmer throughout the
programming process by means of several special features
which are similar in many ways to features employed by
other ~rogramming language environments (e.g., Macintosh
Pascal and Smmru:t8).

1. Tailoring by the user. To better reflect the learning
styles and stages of different learners, the system can
be moderately tailored by the user, to control how
often he or she will be prompted to accept or cancel an
entry. The user can select any of three frequency
levels of such verification prompting :

a. Beginning user : user verification required
upon entry of each icon component and upon
completion of each entire icon;

b. Familiar user : user verification required only
at the completion of each entire icon;

c. Competent user : no verification required;
assumes user can edit if required.

The last enables the experienced user to work quickly;
the frrst and second allow less experienced users to
proceed more cautiously, at either of two lesser
speeds.

2. On-line help. The Studio includes a comprehensive
on-line help facility. At any point, the user can get
help by means of a character reserved for this purpose.
The system's response allows the user to either see an
explanation specific to the immediate context, (see
figures 9 and 10 for examples) or by going through a
hierarchical menu structure, to access help on virtually
any aspect of FPL (see figure 11). Following the
invocation of the help system, the user may either
continue from the point of interruption or cancel the
entry or edit attempt which raised the need for help.

Okay, at this point,
here are the alternatives open to you:

Your entry The FPL software response
E Explain the entry just requested
M Display a Menu for various explanations

related to this entry
C Cancel this entry altogether
} Forget the interruption and continue

Enter E, M, C, or

FIGURE 9 Help System main prompt

There are 2 different kinds of external assignments :
T (Transmit) and R (Receive)

The T type transmits information to the external world:

--1-->

while the R type receives data from that world:

<--1--

Enter M for More help on this subject I
S to Skip the rest oftMs help:

FIGURE 10: Sample help message

On which topic would you like

ENTRY
G
D
A
X
I
P

a MENU of explanations?

Subject of Menu
General Interest
Dec I arat ions
Assertions <in whi les and eithers)
eXternal Assignments
Internal Assignments
Prompts at main entry line

forget further explanations

Enter your choice: G, D, A, X, I, P or

FIGURE 11: Help System sub-prompt

3. Context driven error messages. The FPL Studio also
includes immediate, comprehensive syntax error
detection, and follows the detection of any illegal
entry with a message informing the user of the exact
error, explaining why it is an error. It then prompts
the user to either enter an appropriate choice or to
cancel the entry altogether. An example appears in
Figure 12. As a result, every completed FPL program
is free of syntax errors and can be executed. This
comprehensive error screening moves the novice
programmer directly to the logical level of debugging
without waylaying hirn/her in a swamp of
indecipherable or misleading compiler messages.

61

The targe t TYPE and the express i on TYPE do no t agree

NUMERIC <--- STRING

The assignment cannot be made.

Enter A (to enter an Alternative), or
S (to Skip thes icon entirely)

I SCORES [COUNT 1 <--- NAME

Enter

FIGURE 12: Sample error message

for help

The FPL Lab; Executing and Monitoring the Program
Since the FPL Studio always produces executable code,

the learner can immediately execute his/her program upon
leaving the Studio. However, simply executing it in
traditional fashion may do little to help the novice understand
the dynamics of any logical shortcomings. Given the aims of
FPL and the support it provides for program development,
such minimal execution support was inappropriate.
Consequently, we began to develop the FPL Lab, as an
interactive, animated environment for program execution. It
completes FPL as a visual language, rounding out the
planning - entry - execution - debugging - refmement cycle in
a highly visual manner. The FPL Lab described below is a
prototype for the system we are developing.

Screen Design. The FPL Lab divides the screen into
four windows. See Figures 6 and 13 for typical screen scenes
from the FPL Lab. Each window is dedicated to the
presentation of one particular type of information. The
windows are :

1. the user's FPL program drawing (in reduced size);
2. the precise icon being executed;
3. the contents of memory for one variable;
4. the normal I/O of the program.

The largest window, "FPL Program," displays a miniature
version of the program drawing. (To conserve space, all
icons there are reproduced without text, in outline only.) It
reveals the path of program execution by moving a lighted
"l;>lip" about the miniature, from icon to icon, as each icon is
actually executed. Because space is so limited, even in this
miniature form most program drawings do not entirely fit in
this window. To overcome this limitation, the system shifts
the window's contents to show the executing portion of the
program.

Since the Lab drawing of the program is textless, as each
icon is executed, a full scale version of that icon, including
any datanames and constants, is displayed in the "Program
Icon" window.

The "Storage" window displays the data value in
memory for any program variable the user selects, to help
him/her realize how variables work, and to show where and
when data values change.

Dynamic Program Representation. By comparing the
currently displayed icon, the memory values in the storage
window, and the textless program drawing, the user can
clearly see where, why, and when values are getting changed.
In short, the novice programmer "sees" the dynamics of
execution, a prerequisite to developing a real understanding
of what a computer program is.

Modes of operation. The FPL Lab has two modes of
operation: Step Mode and Quick Mode. In Step Mode (see
Figure 12), the program is executed one element (one icon) at
a time at a rate under user control. All four windows are
active to provide maximum visual feedback about all aspects
of the program.

In Quick Mode (see figure 14), only two windows are
active: "FPL Program" and "Program Execution". The user
can watch the blip traverse the miniature program and can see
the normal output and input through the "Program Execution" _
window. This mode does not display individual icons or /'.
storage values. It pauses only for the particular input entries
required by the program, and between pauses it moves at a
fixed and rapid pace.

RESEARCH: ASSESSING THE HELP FPL AFFORDS
NOVICES

FPL was designed originally as a language for novices.
We have continued to focus on that group, and have
developed the FPL environment so that it can be used as a
research laboratory for the study of the learning of
programming.

Visual vs Textual Prol:ramminl:: Bug Studies
Two recently completed pilot studies have indicated that

FPL may help novice programmers avoid some ~rogramming
bugs commonly found in beginners' programs9.1O. Both of
these studies compared programs written in FPL with Pascal
solutions to the same problem. The results of these studies
suggest that FPL's graphic representation may help beginning
programmers avoid some common programming pitfalls.
Specifically, several types of syntax-related conceptual bugs
evident in Pascal programs are eliminated in the FPL
solutions. Also, bugs related to updating and initializations
were considerably more common in Pascal solutions than in
the FPL programs. There were some indications, however,

that there are classes of bugs that appear to be language
independent, and thus have less to do with the language of
implementation than with the programmer's understanding of
the flow of control of the program.

The results of these initial investigations were intriguing,
and we plan to continue this line of research with an eye
toward identification of ways of helping novices to avoid
conceptual bugs and to develop methods of effective
debugging. We think that development of a tool such as the
FPL Lab may be an important step in this process of
identification.

Study of On-Line Help and Errors
We have also recently completed a pilot study of FPL's

on-line help systemll • The study investigated the use of the
help system by experienced and inexperienced computer
users. The results indicated that although computer
experienced users seemed to use the help facility more than
inexperienced users, by the end of several weeks of work
using FPL, most users no longer asked for help at all.

For extended analysis of both the help and error sub
systems, the system records, by date and user identification
number, all help requests and error messages generated.
Analysis of this usage data pinpoints user difficulties with the
system, and provide general insight into the process of
learning programming. The resulting information is being
used to inform instructors about difficulties they are having
with introductory programming assignments.

Influence of Graphics on Learning
We continue to be intrigued by the influence of graphics

on learning, particularly in relation to programming. To
investigate the effect of the graphical interface of FPL, we are
beginning to study how learners with different learning
aptitudes use it. For example, we are investigating whether
learners with high spatial aptitudes understand and learn
programming more effectively when using this visual

FFL fRDGRAn . .' PRDGRAM ICDN r , ! ' , .

I L.-A G_EGR_OUp ___ --Jif-
S TDRAGE\ •

~ []
AGEGROUP

PROGRAM mCUTION

Student na~e: BILLY
Class (A/~t o~ M/ath): A
Age g~oup (1) o~ (2): 1

P~ess any key to continue.

FIGURE 13: FPL LAB I STEP MODE

62

I : ,. - FfL fROG~An •

S tuden t naMe: BILL~
Class (Wath 01' A/I't):

FIGURE 14: FPL LAB / QUICK MODE

approach than when using a traditional textual approach. One
study now in design will compare comprehension of FPL
programs with comprehension of programs written in a
textual language.

We are also in the process of developing a non-graphic
version of FPL to be used in a full-scale study of novice
programmers. It will preserve the interface design as much as
possible, limiting the changes to replacement of the graphic
icons by key words. This will facilitate a comparative study
of a graphic and non-graphic language without the
confounding effects introduced by comparing subjects using
two entirely different editing and execution environments.
Such a study will address the question of whether a graphic
approach to programming is really more appropriate for some
learners than is a traditional, textual approach. Through a
group of such studies, we hope to prove that alternative ways
of teaching and learning programming are important in light
of the fact that learners are so different one from another.

SUMMARY

This paper describes the graphically represented
programming language FPL, the environment in which the
FPL user works, and some preliminary evaluative research.
The premise for the development of this system is that for
many learners, a language and environment that provides a
consistent, graphical representation throughout the
programming process is an appealing and effective
alternative. We theorize that the consistent visual approach
of FPL makes the abstract world of computer programming
more concrete, and consequently, helps at least some novices
to learn to program more easily and more effectively.
Furthermore, because we believe that it can be empirically
demonstrated, we have begun a series of studies aimed at
testing our theory.

Although our preliminary research does not conclusively
prove that FPL improves a novice's learning of programming,
it certainly suggests that this alternative, graphic approach to
improve the lot of the visually-apt, would-be programmer
merits further exploration.

63

References
[1] Raeder, G. (1985, August). A survey of current graphical
programming techniques. IEEE Computer (pp. 11-25.)
[2] Schneyer, R. (1984). A survey of graphic algorithmic
representation techniques. Interface. Spring. (pp. 38-48).
[3] Grafton, R. B., Ichikawa, T., eds. (1985, August). Special
Issue on Visual programming IEEE Computer. (pp. 6-9.)
[4] Myers, B. A. (1986). Visual Programming, programming
by example and program visualization: A taxonomy. Human
Factors in Computer Systems: Proceedings of CID'86 (pp. 59
- 66).
[5] Taylor, R. P. (1982). Programming primer. Reading
MA.: Addison-Wesley. '
[6] Taylor, R. P. (1985). FPL: Graphical representation of
cla~sic~ programming. Teachers College, Columbia
UmversIty: Department of Communication, Computing and
Instructional Technology in Education.
[7] Macintosh Pascal. (1984). Lexington, MA: Think
Technologies. --
[8] Zelkowitz, M. (1986). The SUPPORT Environment for
the IDM PC. University of Maryland.
[9] Cunniff, N., Taylor, R. P., and Black, J. B. (1986). Does
programming language affect the types of conceptual bugs in
novices programs? A comparison of FPL and Pascal. Human
Factors in Computer Systems: Proceedings of CID'86 (pp.
175 - 182).
[10] Cunniff, N., Taylor, R. P., and Taylor, S. J. The effect of
programming language on the conceptual bugs in novices'
programs: A comparison of FPL and Pascal. (In press.)
[11] Taylor, S., Taylor, R.P. & Cunniff, N. (1985). The use
of on-line help in a programming environment. Teachers
College, Columbia University: Department of
Communication, Computing and Instructional Technology in
Education.

COMMAND LANGUAGE SUPPORT FOR APPLICATION PROGRAMS

Christine Genet

Grumman Data Systems Corporation
1000 Woodbury Road

Woodbury, New York 11797

ABST·RACT

Efficient data analysis programs,must maxi
mize the productivi ty· or the data analyst/
compute~ combination. To do this, the ana
lysts must be abl~ to use the p~ogram
easily and efficiently. Thus, the human
computer interface .is crucial to the design
of an effective data analysis program. We
develop an interpreter entitled KEYLAB that
allows an application programmer to create
programs driven by an English-like command
language that is based on the functional
decomposition of the applications require
ments. We also develop a code generator
named"Keystone that creates the code neces
sary for the human-computer interface. The
combination of these two programs allows a
programmer to develop an application pro
gram wi th minimum effort and maximum uni
form connection to functional requirements.

INTRODUCTION

Several types of human-computer interfaces
exist in industry today. These include
menu-driven systems, fill-in-the-blank
systems, and parametric systems. Menu
driven systems are common in thff micro
computer industry where users tend to be
novice computer users. Parametric systems
are used in applicati"ons such as airline
reservation systems. Fill-in-the-blank
systems are common in engineering environ
ments since these applications require
input of alphanumeric va~uest integers, and
floating point values 1. KEYLAB (the
KEYword LAnguage Builder) is an interpreter
that helps application program designers
create a system that is controlled with
keyword commands, yet has characteristics
of a fill-in-the-blank system. The appli
cation program designer designs the command
language so that the number of user type
ins is minimi zed, thus mak ing the program
eas ier to use. A programming aid enti tIed
Keystone uses the command language design
specification and generates the Fortran 77
code necessary to provide "the specified
command language. These programs have

CH2345-,-7/86/0000/0064$01.00 © 1986 IEEE
64

proven to be useful for our applications.

In a KEYLAB program, the user controls the
program flow by entering a series of. key
words and their associated arguments. The
complete set of keywords for a given appli~
cation program is called a command lan
guage. The KEY LAB parser detects syntax
errors in the command string and immediate
ly issues error messages to the user.

Command languages are based on the func
tional decomposi tion of the problem.. When
the program designer designs the command
language, he takes human factors into ac
count to try and make the command language
more useable. Thus, the final command lan
guage is somewhat different from the origi
nal functional decomposition.

An example of a simple command language is
given by the following structured list. The
strings in quotations are short descrip
tions of the keyword functions.

ARTIST
PICTURE
SET

ROW
HELPSET
COLUMN
BRUSH
SCREEN

STOP
HELP ART
DISPLAY
DRAW

"Display the picture"
"Set variables"
"Screen rows"
"Display HELP"
"Screen columns"
"Drawing symbol"
"Background symbol"
"Terminate program"
"Display HELP"
"Display variables"
"Draw Xl,Yl to X2,Y2"

A code generator named Keystone reads this
structured list and generates Fortran code
wi th stub-subroutines at each leaf of the
tree (e.g. ROW, COLUMN). The programmer
then completes the Fortran code for each
stub so that his program performs the de
sired function. If a keyword (ex. ROW)
requires input,' then the programmer "adds' a
call to a KEYLAB subroutine to get this
input. The programmer compiles the Key
stone~generated. code, and his own code and
then links it to the KEYLAB library of
subroutines to complete the application
program. Using Keystone leads to more co-

he rent "Sof.tware design since the applica
tion programmer concentrates primarily on
coding the analytic sections of the code
instead of on coding the human-computer
interface.

Command languages have proven to be an
effective human-computer interface for
various data analysis programs at Grumman.
TASK~.f. an advanced aircraft flutter anal-
ysis program 2 has used the KEY LAB proto
type for three years and several new KEY LAB
codes are being developed now. Both appli
cation programmers and program users are
satisfied with the KEYLAB and Keystone
programs.

KEYLAB - The KEYword LAnguage Builder

The application program users control KEY
LAB pr.ogram execution by typing keyword
commands in·response to prompts. The combi
nation of a command language heirarchy and
programmer-added syntax specify the valid
sequences of commands. KEYLAB scans the
input string from left to right without
backtracking. KEYLAB terminates scanning
and issues a message immediately when it
finds a syntax error. KEYLAB also contains
simple help facilities to help the user.

PROGRAM FLOW

The command language heirarchy can be
thought of as a set of connected diction
aries of command keywords. Each dictionary
in the command language 1's called a mode,
and each mode contains keywords which
either link to other modes, or cause execu
tion of one of the program's analytical
functions. The tree structure in Figure 1
depicts a- command language heirarchy wi th
seven dictionaries: COMMAND, INPUT, OUTPUT,
TABULAR, GRAPHIC, INTERACTIVE, AND TAPE.

The user controls the branching through
these modes by entering keywords. When the
user types "OUTPUT GRAPHIC" from the com
mand level, execution transfers to the
GRAPHIC mode. If the user then wants to
execute a command in the INTERACTIVE mode,
he must enter a keyword which transfers
execution to the COMMAND mode (e.g. INPUT).
The user then enters the keywords to trans
fer program execution through the INPUT
mode to the INTERACT IVE mode. KEYLAB pro
vides no facili ty to transfer- program exe
cut ion from the GRAPHIC mode to the INTER
ACTIVE mode without first returning to the
top of the command level tree structure.
The command language designer takes this
into account when he designs the command
language heirarchy.

KEYLAB FEATURES

When users forget
they can type in a
program execution

what keyword to type,
"?" at any point in the
to see the currently

65

LEGEND:

MODEQ

Figure 1. Example Command Language Design

available keywords. Also, if they are not
at the top of the runctional decomposition,
"??" shows the keywords that the user can
type up to the top of the decomposi tion.
For example, if the user is in the- INPUT
mode in Figure 1 and enters "?", he will
see:

THE CURRENTLY AVAILABLE KEYWORDS ARE:

INTERACTIVE TAPE

If he enters "??" from the same point, he
will remain in the current level and see
keywords up to the top level.

THE CURRENTLY AVAILABLE KEYWORDS ARE:

INTERACTIVE
INPUT

TAPE
OUTPUT

They can also type in any keyword with the
substring HELP to list out the keywords
with a brief description. For the simple
command language in the introduction, typ
ing in HELPSET yields the following HELP
screen:

ROW - Number of rGWS in screen
COLUMN Number of columns in screen
BRUSH - Drawing symbol
SCREEN - Background

KEYLAB has a feature that allows the users
to create their own procedures. Procedures
specify a sequence of program functions to
solve a specific problem. The users can
create these procedures before they run the
KEYLAB program by using the system editor.
They can also create these procedures by
using the KEYLAB procedure line editor

named KEDIT. KEDIT lets the users edit
procedures while they are running the ap
plication program. Thus, a user executes a
procedure interactively by typing in the
procedure name. He then examines the re
suI ts, modi f i es the procedure wi th KEDIT
and reruns the procedure. KEYLAB checks
procedure as well as interacti ve type-in
syntax.

KEYLAB stops parsing the input string when
a syntactically incorrect token is encoun
tered. For example, if the user types in
"ROW 20 C01", KEYLAB detects an error on
the third token in the str ing. Since it is
an undefined keyword, KEY LAB stops parsing
the string, issues an error message, and
reprompts the user. This ensures that the
system is reliable regardless of a user
error in keyword syntax 3 •

The application program detects other er
rors such as range checking errors and
syntax errors and directs KEY LAB to issue
an error message. For example if the user
types in "SET A -5.0" and the valid range
for A is 10 < A < 20, then the application
program tells KEY LAB to stop parsing the
string. KEYLAB then issues the error mes
sage, and reprompts the user.

DESIGNING A COMMAND LANGUAGE

Previous sections mentioned that a command
language for a program is based on the
furtctional decomposition of the program,
but is modified to account for usability.
The command language design process is non~
trivial and is essential for an effective
-application program design. This is a four
step process.

The first step is to organize the require
ments for the program on paper. The second
step is to decompose the overall problem
into a tree diagram and to assign keywords
to ~ach function on the tree diagram. The
third step is to mInImIze the number of
keywords that the user has to type in. The
fourth step is to develop the command syn
tax requirements for the command language
by imposing a logical order on the keyword
type-ins. This section describes each step
in the command language design process for
an example program named Artist.

The method of organizing requirements for a
given software system is chosen by the
application program designer 4 . Here, we
state the objective of the program and then
describe the functions in the program that
accomplish this objecti vee The Artist ob
jective is:

Artist allows the program user to
draw lines on a terminal screen.

To do this, the program user must be able

66

to do the following:

Choose the number of rows on screen
Choose the number of columns on screen
Choose a brush symbol
Choose a background symbol
Draw a line from X1,Y1 to X2,Y2
Display what was drawn
Display all variables that were chosen
Terminate the program

The second step in the command language
design process is to organize these re
quirements into a functional decomposition.
In our case, we will create a decomposition
wi th four modes; SET, KEDIT, .DISPLAY, and
ARTIST. The ARTIST mode contains the key
words SET, STOP, KEDIT, HELPART, DISPLAY,
and DRAW. The SET mode contains the key
words ROW, HELPSET, COLUMN, BRUSH, and
SCREEN. The DISPLAY mode contains the key
words COLUMN, BRUSH, PICTURE, HELP, SCREEN,
and ROW. The SET mode allows the user to
set values for the desired variables. The
DISPLAY mode allows the user to vi ew . what
he has drawn and the variables that were
set. The STOP keyword allows the user to
terminate the application program. The
KEDIT keyword allows the user to make use
of the· KEYLAB run-time editor. The HELP
keywords display a list of the current
keywords and their def ini tions. The DRAW
keyword allows the user to specify a start
ing and ending point for a line. Figure 2
shows the entire functional decomposi tion
for Artist.

The thi rd step in command language des i gn
is to try to minimize the users type-ins by
changing the decomposition. This is easily
done by following two simple rules:

1. Decrease the depth of the decomposition
by eliminating modes

2. Change the functionality of keywords to
eliminate keywords.

If the user ran the program corresponding
to the functional decomposi tion in Figure
2, he would have to type in the following
command string to set all of the desired
variables and display them.

SET ROW 10 COLUMN 20 BRUSH "*" SCREEN
"." DISPLAY ROW COLUMN BRUSH SCREEN

To draw a line on the screen, the user
would type in the command string:

DRAW 1,1 5,5 DISPLAY PICTURE

To simplify this command string we can add
a keyword to the ARTIST mode named PICTURE
that displays the picture, and we can
change the DISPLAY mode into a keyword that
displays all of the variables that were
set. This modified decomposi tion is shown
in Figure 3.

LEGEND:

MODE 0
KEYWORD c:::J

Figure 2. Artist Functional Decomposition

Figure 3. Command Language Design

The new command s tri ng to set and di splay
all of the variables with four fewer tokens
than before is:

SET ROW 10 COLUMN 20 BRUSH "*" SCREEN
If.If DISPLAY

The new command string to draw the line is:

DRAW 1,1 5,5 PICTURE

With this acceptable sequence of type-ins,
the program designer now adds rules to the
command syntax so that the user is forced
to type in keywords in the correct order.
For example, the user should not draw until
he has selected both brush and screen sym
bols. This means that the programmer
doesn't let the user execute the DRAW com-

67

mand until BRUSH and SCREEN have been set.
This sy~t~x is known as Reverse Polish
Notation 5 and helps to minimize the user
type-ins. In our example, the syntax rules
are:

1. Set BRUSH before DRAW.
2~ Set SCREEN before DRAW.
3; Set ROW before DRAW.
4; Set COLUMN before DRAW.
5; DRAW before PICTURE.

This completes the Artist command language
design. In Artist, we have only considered
the case of one user input per keyword as
in the case of ROW, or COLUMN. When more
user inputs are desired per keyword, then
the command language designer has to con
sider the possibility that the user may

want to go back and change only one vari
able out of the entire string of inputs.
Guidelines that we have found useful are:

1. When your program user is not likely to
change ,one variable at a time (no mis
takes), then you can program up to
approximately seven inputs per keyword.

2. When your program user
change one variable at
change only one parameter
sis) then it is better to
one input per keyword.

is likely to
a time (to
in an analy
program only

The following section describes how to take
your final command language design, gener
ate a code skeleton using Keystone, and
then add the code necessary to complete the
application program.

KEYSTONE

Keystone allows the application program
designer to specify a command language and
generate an executable program skeleton
that runs with the specified keywords. The
application program designer then adds the
keyword functionali ty and syntax to com
plete the application program.

The programmer writes the command language
design in the Keystone input file. Succes
si ve indentations in this file correspond
to successive levels in the tree diagram.
The input file for the example program
Artist is shown in Figure 4.

ARTIST
PICTURE
SET

ROW
HELPSET
COLUMN
BRUSH
SCREEN

STOP
KEDIT
HELPART
DISPLAY
DRAW

Figure 4. Artist's Keystone Input File

Keystone reads this structured list and
generates Fortran code with stub-subrou
tines corresponding to each keyword at each
leaf of the tree (e.g. ROW, COLUMN, LINE,
DISPLAY). The stub-subroutines contain
p'rint st"atements to whi ch the programmer
later replaces wi th the code for the key
word function. A stub subroutine looks like
this:

SUBROUTINE row
Print (6, *) 'Code for ROW goes here'
RETURN
END

68

The programmer compiles this code and links
it to the KEYLAB library. He then runs this
skeleton via the command language that was
specified in the functional decomposition.
Thus, when the programmer runs the program
corresponding to the decomposi tion in
Figure 3 and types in the commands "SET ROW
COLUMN DISPLAY", the program outputs the
following lines:

The code for ROW goes here
The code for COLUMN goes here
The code for DISPLAY goes here

As the programmer develops analytical por
tions of the code, he substitutes them for
the Keystone-generated Print statements. If
the keyword requires input of a real,
integer, or alpha- the programmer adds a
call to a KEYLAB routine. This call tells
KEYLAB what type of input (e.g. real input,
alphanumeri c input) to expect" the user to
enter at this point. To make sure that the
program is reliable "regardless of an error
in the value of a number input, the appli
cation program must check that the number
input by the user is within a certain
range. The program then calls a KEYLAB
subroutine that Issues an error message
such as "0 < ROW < 20".

The programmer also adds code so that the
syntax specified in the command language
design is present in the final application.
For example, the program must check to make
sure that the user SETs all variables such
as SCREEN, ROW, COLUMN, and BRUSH before he
attempts to DRAW a line. Thus, the user
runs the application with the keywords
specified by the program designer and the
syntax imposed on the command language
heirarchy.

EXPERIENCE WITH USE

In general, application program users,
programmers, and managers have been satis
fied with the capabilities of KEYLAB and
Keystone as a method of human-computer
interaction and as a code generation pro
gramming aid. These programs have been used
successfully in data plotting application
programs, aircraft trajectory estimation,
flutter analysis, and others. '

Program users find that it is easy to con
centrate on their analysis while they are
controlling the application program with
keyword commands. They also like consis
tency of the human-computer interface
across applications. Once they know KEYLAB
features from learning one KEYLAB program,
they can easily learn another KEYLAB pro
gram. Users like the procedure file capa
bil i ty si nce it allows them to set up a
procedure wi th large groups of frequently
executed commands and interacti vely enter
any additional input that they need to
complete the analysis. They can use these

same procedures in ei'ther the interacti ve
or batch mode.

The programmers' programming time is con
centrated on the analytical sections of the
code instead of on the human-computer in
terface details. Programmers also tend to
produce easily maintainable code since the
command language structure forces the pro
grammers to write modular code. Also,
programmers who write ANSI-standard Fortran
77 write portable code since the generated
code is all portable.

From a manager's perspective, the Keystone
input file provides a quick and simple way
to verify that a given application program
satisfies all of its functional require
ments. This input file can be used to pro
vide a working skeleton of the human
computer interface to the end-user before
the programmer adds the functionali ty to
the keywords. Thus, the user interface can
be designed and tested separately from the
analytical portions of the code.

The primary complaint with the existing
system is that Keystone is initially frus
trating to use because the input file
structure is error-prone. Once a programmer
has developed a successful template input
structure, this problem is alleviated and
Keystone users are generally satisfied with
the ease wi th which they can subsequently
modify their command language structure by
adding or deleting modes and keywords.

The input file structure to Keystone could
be changed to a less error-prone type of
input file such as the Backus-Naur form
(bnf) 6 - Curren tly, the Keys tone code
generator is adequate for even our largest
(25,000 Fortran lines) stand-alone applica
tion programs so there is no reason to
change the input file structure at this
time.

It will probably be useful to incorporate

some table-driven range-checking into KEY
LAB so that the application programmer
doesn't have to add code to check the range
of user input. Thus, KEYLAB would then
detect both type and range errors. This
would place the burden of making sure the
system is reliable regardless of user error
on the KEY LAB interpreter instead of on the
application programmer and would provide
more consistent error messages to the user.

CONCLUSION

The KEY LAB interpreter provides a conven
ient and simple way to control a scientific
application program. The command language
design and the KEYLAB features add to the
flexibility of the application program.

Command language designers go through a
four-step process when they design a com
mand language. First, they organize the
requirements for the program on paper.
Second, they organize the problem in to a
tree design and assign Keywords to each
function. Third, they minimize the number
of keywords. Finally, they impose rules on
the command language structure to create a
language syntax.

The Keystone program allows a program de
signer to quickly implement a language
design into executable code. Once the com
mand language is finalized, the programmer
adds the analytical sections of code and
the command syntax to the program. Also, if
the command language design is changed
later, the input file can easily be modi
fied to account for these changes.

Both users and application programmers are
satisfied with the KEY LAB interpreter and
the Keystone code generator. In the future,
however, the Keystone input file structure
may be changed to make it less error-prone.
KEY LAB may also be modified to detect out~
of~range input errors.

REFERENCES

(1) Schneiderman, Ben, Software Psychology:
Human Factors in Computer and Informa
tion Systems, Little, Brown, and Co.,
Boston, Massachusetts, pp. 238-241 ,
1980.

(2) Russo, M.L., Richards, P.T., and
Perangelo, H. J. , "Identification of
Linear Flutter 'Models," presented at
the AIAA 2nd Flight Testing Conference,
Las Vegas, Nevada, November 16-68,
1983.

(3) Wasserman, Anthony 1., Pircher, Peter
A., Shewmake, David T. "Building Reli
able Interacti ve Information Systems",
Vol. SE-12, p. 147, 1986.

69

(4) Barnard, H. , Metz, Robert F. , and
Price, Arthur L., "A Recommended Prac
ti ce for Descr i'b ing Software Des igns:
IEEE Standards Project 1016" IEEE
T~ansactions on Software Engineering,
Vol. SE-12, pp. 258-263, 1986.

(5) Tenenbaum, Aaron M., Data Structures
Using Pascal, Prentice Hall, Inc.
Englewood Cliffs, New Jersey, 1981.

(6) Pratt, Terrence W., Programming Lan~
guages: Design and Implementation,
Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, pp. 301'-308, 1975.

ARTIFICIAL INTELLIGENCE ARENA

Artificial Intelligence Technology

TRACK CHAIR: Dr. Elaine Kant
Schluinberger Doll Research Center

Computer Vision

TRACK CHAIR: Prof. John Kender
Columbia University

Robotics

TRACK CHAIR: Prof. Richard Paul
University of Pennsylvania

Rule Based Systems

TRACK CHAIR: Prof. David Rine
George Mason University

Natural Language Processing

TRACK CHAIR: Prof. Robert Wilensky
University of California at Berkeley

SURVEY OF IMAGE QUALITY MEASUREMENTS

Ikram E. Abdou - Nicolas J. Dusaussoy

Department of Electrical Engineering
University of Delaware

Newark, DE 19716

ABSTRACT

Image quality iB one of the mOBt important fac
torB in the evaluation of any imaging BYBtem. This
measure can be uBed to compare the performance
of the different BystemB and to select the appro
priate proceBsing algorithm for any given appli
cation. Image quality can be defined in general
termB aB an indicator of the relevance of the in
formation preBented by an image to the taBk we
seek to accomplish UBing thiB image. Although
there are many techniqueB developed to measure
image quality, little has been done to unify the
variouB conceptB, or to test their relevance to Bpe
cific applications. In this paper, we addresB the
variouB iBsueB related to image quality. We begin
with a Burvey of the various fact orB that should
determine the image quality ·meaBureB. Then, we
review and analyze the different analytical meth
ods used in measuring the image quality for both
image processing and image understanding appli
cationB. We survey experimental approaches to
evaluate image quality in another Bection. Finally,
we diBcUBS some of the advantages of image quality
measurementB.

1. INTRODUCTION

The most important factors in the evaluation of any
imaging system are the system cost, the processing speed,
and the quality of the produced images. While the system
cost and speed are dependent on many factors including
the advancement in technology and the progress in hard
ware and software implementation, the image quality is
a technology-independent measure, which can be used to
compare the performance of the different systems and to
select the appropriate processing algorithm for any given
application. Image quality is determined by the relevance
of the information presented by the image to· the task we
seek to accomplish using this image. Image quality can
be divided into image fidelity, which measures the depar
ture of a processed image from some standard image, and
image intelligibility, which denotes the ability of man or
machine to extract relevant information from an image. 1

Image quality is calculated for various applications
of imaging systems for which three different aspects of
quality evaluation appear. First, quality evaluation tech
niques are necessary to measure the performance of an
imaging device; the high performance of a system is usu
ally indicated by the good quality of the final product.
The second aspect is that quality evaluation techniques

CH2345-7/86/0000/0071$01.00 © 1986 IEEE
71

are the basis for the design of any image processing or un
derstanding system as they form the framework for the
optimization of the system. Finally, a very important
aspect is assurance; quality assurance receives great at
tention because in many cases, it is necessary to ensure
the presence or non-presence of features of interest in an
image.

The techniques developed to measure image quality
depend on the field of application. As we will see later,
such applications are diverse and, therefore, there is no
single standard procedure to measure image quality.
However, there are some basic concepts that are reHected
in the image quality measures. A summary of these ideas
is given in [1, 2, and 3].

In this paper, we address the various issues related
to image quality. We begin with a survey of the various
factors that should be considered in determining image
quality measures. Then, we review and discuss the dif
ferent analytical methods used in measuring the image
quality for both image processing and image understand
ing techniques. We survey experimental approaches to
evaluate image quality, in another section. Finally, we
discuss some of the advantages of image quality measure
ments.

2. FACTORS DETERMINING IMAGE QUALITY

In defining image quality, there are various factors re
Hecting the field of application, the end user, the param
eters and characteristics of the system being evaluated.

2.1. The Field of Application

The field of application should affect the choice of an
image quality measure because it determines the charac
teristics of the imaging task we would like to evaluate.
These characteristics, specific to each field, are very well
known in various applications including text reproduction
that deals with binary images,4,5 medical radiology,6,7,8
industrial inspection,9,10 and aerial photography.3 Prac
tical image quality measures must evaluate these charac
teristics and therefore, may vary according to the field of
application. More general areas, where the evaluation of
image quality is also of prime importance, such as image
transmission,l1 general optical systems,2,12 and electronic
image display,13 deal with several kinds of images. Qual
ity measures should evaluate the overall performance of
these systems. They are usually standard methods that
can be used in most applications of these systems and they
resume to rate image fidelity and image intelligibility.

2.2. The End User of the .System

Another important factor in evaluating image quality
of a system is the end user which can be a human ob
server or a computer . The measures we use should reflect
this fact. H the end user is human, the quality measures
should be based on a psychophysical model. However, be
'cause of .the difficulties encountered'in taking subjective
measurements, many researchers worked on establishing
relations between subjective evaluation and some quan
titative figure of merit.a,IS On the other hand,if the

. images are processed by. a computer ,the image quality
canbe.based on the classification accuracy of the·system.
One example is the use of receiver operating characteris
tic to evaluate diagnostic systems. 16 We believe that it is
much easier to develop quantitative models for automated
analysis systems, and we will discuss some of these ideas
in a .following section.

2.3. System Parameters ·and Characteristics

The various ,physical and mathematical parameters re
lated to the specific application also need/to .be consid
ered. For instance, in· computerized tomography I 7 , there
are a set of parameters relating to the signal being de
tected and to the imaging and displaying system. In this
case, the object parameters such as size,shape, and con
trast, and also the image forming parameters such as the

'spatial strength of signals used, the rate of collecting data,
and noise. are considered in the evaluation of the system.
H the images are intended for a human observer, we need
to define the display system, the viewing conditions, and
the observer a priori knowledge. Of course, a more quan
·titative model can be established to determine the impor
tant : image characteristics if the' images are going to be
processed automatically. All' these· parameters affect the
success of an 'imaging system, and should ·be ,included in
any evaluation.

Furthermore, .several characteristics of the imaging
system provide' a guide to determine ,the useful quality
measures. These are linearity, .isotropy, contrast sensi
tivity, spatial invariance, spatial resolution, and also the
image cbaracteristicssuch as uniformity and sharpness.

3. ANALYTICAL METHODS

. In the previous section, we discussed the various fac
tors that can. be, considered in 'evaluating the quality of an
image. In this section, we describe the different methods
used ·to evaluate the image quality. 'We consider both im
age processing .and image understanding techniques. In
image, processing, an input image is transformed to an
output image in which -features are enhanced, while in
image understanding, the goal is 'to ·extract meaningful

-information· and to derive a, description of the scene .. To
achieve this goal, image understanding systems incorpo
rate many scientific ,disciplines including image process
ing, pattern recognition, artificial . intelligence , physics,
and neurophysiology.ls

In the design and the evaluation of <cither technique,
we can use either analytical'or experimental'methods. In
the analytical approach, models are developed to describe
the interaction between the imaging device and some sim
ple and standard signals; these'models are used to predict

72

the performance in practical applications. This approach
is· more general and does not require expensive equip
ment. However, ·because.of the approximation involved
in applying it, . the results obtained may not accurately
reflect the actual performance. Also, in many cases, ,we
need to use simulation methods to measure the system
response for the signals of. interest because the complex
ity of the system makes the analytical solution extremely
difficult. In the experimental approach, test patterns -or
phantoms- are built to represent the various objects of in
terest; performance is then measured by either rating the
images using human observers or by introducing a figure
of merit which takes the different imaging parameters into
account. I

In this section, we begin with a discussion of the ana
lytical methods that are used to evaluate image processing

. systems. Then, we ,describe in detail the different models
used to evaluate the performance of an image understand
ing ,system. In the following section,we will survey some
experimental methods used·in both image processing and
image understanding systems.

3.1. Image Processing Systems

,In measuring the 'performance of an image processing
system, ,we distinguish between tWOt.cases .depending on
the ratio of the energy of the signal to that of the noise. H
the signal..;to-'noiseratio (SNR) is high, the system per
formance is basically defined in terms of parameters such
as the point spread function and the modulation trans
fer function. When the SNR is low, factors such as noise
equivalent quanta, and the detection efficiency determine
the system performance. The contrast can also be a tool
to distinguish noiseless from noisy systems. Wagner de
fines. a noiseless system as one processing high contrast
images in contrast to noisy system processing low con
trast images.19 In the following section, we review meth
ods that apply to noiseless, ,and noisy systems.

3.1.1. Noiseless System

When the SNR is high, system performance is deter
mined by the sharpness and clarity -of the images pro
duced. Another important factor is the ability to resolve
close patterns and to detect small size objects. A set
of measurements' in the spatial and frequency domains
allows us to predict system performance. for the above
mentioned signals. We begin with the spatial-. measure
ments.

a. Spatial response measurements

. The spatial response is one 'method that can be used
. to· measure the image quality. The spatial response can
be defined in terms of the response to an input point
source 6(z, y) 'which is.known as -the point spread func
tion (PSF) -of the system;3,20 The point spread function is
also known by other names such as the impulse response,
Green's function, or Fraunhofer diffraction pattern 3. " In
optics, the PSF can be determined by the. image ofa
star" conSidering the star as a point source. The PSF can
'be'seen as the degradation caused by the 'system on the
point. source (b!urring effect).' Similarly, ~he line' spread
function (LSF) IS determmed when the pomt source is re
placed by a line iI;tfinit;ly long ~d narrow.H the input
IS .an abrup~ 'step m bnghtness, I.e. a straight edge, then
the output IS the edge spread function (ESF).

The spread functions are a good basis to assess char
acteristics of the image processing teclmique. Spatial res
olution can be deduced from the PSF. For instance, in
optics, the PSF isa diffractio~ pattern w!th minimas and
maximas, and the central bright patch 15 known as the
Airy disc. The Rayleigh's criterion gives the resolution as
the radius of the Airy's disc.2 The shape, size, and diam
eter of the' central lobe of the PSF not only are related
to the spatial resolution, but also to the sharpness of the
images being produced. Another characteristic, isotropy,
applies if thePSF exhibits central symmetry.

Although, the spread functions are simple and,easy to
determine in many applications, their use is limited to
linear and spatial invariant systems. When these charac
teristics apply, the spread functions are really appropriate
to the evaluation task, because they completely describe
the performance; the system response to any arbitrary
input image can be determined in terms of a convolution
with the impulse response. On the other hand, if they do
not apply, the determination of the performance is more
delicate, and may be completely inaccurate.

The various spread functions are related for linear and
spatial invariant processing teclmiques. First, it should be
noted that· the PSF has two dimensions, while the ESF
and LSF have one. However, LSF and ESF exist for eac,h
line or edge. orientation. H P S F(x, y) represent the im
pulse' response at a point of spatial coordinate (x, y), and
LSF(x') the line spread Junction for a line of orientation
y', where x' is orthogonal to y' then, the LSF, is the inte
gral of the PSF in the direction y':21

1
+00

LSF(x') = -00 PSF(x,y) dy'. (1)

Moreover, the LSF is the derivative of the ESF:

LSF(x') = d!,ESF(x'). (2)

For isotropic systems, the LSFs and ESFs at· different line
and.edge orientations are all identical because the PSF is
rotationally invariant.

Another method to measure the spatial response is the
resolving power which indicates the ability to discriminate
fine details in an, image.3 ,13. Resolving power is expressed
in terms of discernible line pairs per unique distance. The
resolving power is easy to measure and can be applied to
nonlinear as well as linear systems; therefore it is widely
used in spite of the many questions in regard to its ac
curacy. Resolving power - or resolution - alone is, not a
sufficient measure for determining the relevance of the in
formation presented by an image.22 Although a practical
and convenient· guide. to the performance, it is unreliable
if it is used as a unique.· measure. Resolving Power is
different for objects of various shape, size and contrast;
hence the resolution in real images may be considerably
different from the resolution measured.

Other spatial measurements that are helpful in deter
mining the system performance, are the image uniformity,
which measures the amplitude distortion for' constant re
gions, and the system sensitivity, which determines the
smallest amplitude that can be detected.23,24

b. Frequency response measurements

An important contribution' to' the evaluation of im-·
age quality has resulted from the two dimensional FoUrier
analysis. ill the Fourier domain, another category'offunc-

73

tions are defined: the transfer functions.
The Fourier transform of the PSF gives the optical

transfer function (OTF):

OTF(u,v)= !/PSF(x,y)exp (27ri(ux+ vy)) dxdy. (3)

In general, the OTF is a complex function for which
the International Comission on Optics defines its magni
tude as the modulation transfer function (MTF)· and its
phase as the phase transfer function (PTF):

OTF(u,v) = MTF(u,v) exp (i PTF(u,v)) . (4)

The term optical may seem to restrict these very gen
eral definitions to optical systems. However, the methods·
of treating an optical image are analogous to those of pro
cessing a. signal. Transfer.functions can serve to predid -' .. -
the quality of the formed images for any systems with few
exceptions. They have the same inconveniences as those
of the spread functions for which linearity and spatial in
variance are necessary conditions to ensure confidence in
the evaluation of the-quality.

Indeed, they considerably simplify the analysis of sys
tems whose characteristics are linearity and spatial invari
ance, because the OTFs and MTFs of a series of separa
ble cascaded systems can be obtained by multiplying the
OTFs andMTFs of each individual subsystem:1,25

OTF(u,v) = IT OTF.(u,v). (5)

Conversely, the PSF requires convolution, a tedious pro
cess, of the separate PSFs. Just as the PSF, the OTF is
a complete function to determine the output, 0 of a sys
tem; the response is easily computed in terms of a product
in the spatial-frequency domain of the input I with the
OTF:

O(u, v)= I(u, v) x OTF(u, v). (6)
The OTF specifies the output that result from sinusoidal
pattern input (as the PSF is.the output that result from.
a point source) for all spatial frequencies; The sinusoidal
pattern input undergoes changes in modulation expressed.
by the MTF and in phase-expressed by the PTF, function
of its spatial frequencies uand v. Its profile remains un
altered because no harmonic distorsions are introduced.
Burgess, noticed that the Fourier_ transform of the LSF
gives a cross section of the OTF' at the same angle.26 For
isotropic systems, all LSFs_ are identical; therefore the
OTF is rotationally invariant as the PSF.

The MTF can be determined by measuring the ratio
between the output and the input of a sinewave function.,
However, in some applications, it is easier to measure the
squar.e-wave response -function (SWRF) and· then deter-
mine theMTF in terms of theSWRFcomponents. 21
Another frequency response function that can. be applied
to linear and nonlinear systems is the. contrast function. 28

Some of the image quality parameters in the frequency
domain are; the amount of the amplitude, phase, and
harmonic distortion, and the high- frequency cutoff.3

3.1.2. Noisy images

Any component of the signal that does not convey reI,..
evant information -cari. be considered noise. Examples of
noise are the' fluctuation in the source signal, random
ness in the detector output, and superimposed structures

which are not related to the signals of interest.29 IT these
variations are relatively large compared to the signal, they
will be the limiting factor in the performance of the imag
ing system. Therefore, it is necessary to develop the ap
propriate tools to evaluate noisy systems. Such tools are
derived from a statistical analysis, the basis of the theory
of signal detection. One of the characteristics of a noise
bound system is the smallest signal difference that can be
detected. 19,30

In dealing with noise, one simplified model considers
the noise at various locations to be independent. For
this model, a siniple technique is to evaluate the stan
dard deviation u that measures the spread of the noise
values. In computerized tomography, the noise isevalu
ated by experimentally measuring u. A tmiform phantom
composed from only one material is scanned and recon
structed. Then, the sensitivity to the noise can be studied
by estimating the standard deviation u:

(7)

where ji. is the sample mean and N the numbe~ of pixels.
The advantages of using a uniform phantom is that the
reconstructed image is free of artifacts and distortions.
Therefore, u is related only to the quantum and scat
tered noise. For certain reconstruction techniques, it is
theoretically possible to relate the noise in projections to
that in the reconstruction image.31

Such an assumption is not always true, especially af
ter the noise is processed through the system. A more
powerful descriptor related to the noise correlation is the
noise power spectrum or Wiener spectrum.32 The Wiener
spectrum is determined by the Fourier transform of the
autocorrelation function that indicates how the noise is
correlated from point to point (Wiener-Khinchin theo
rem). The Wiener spectrum deals with all the various
kind of noise appearing in the system and, furthermore,
at various spatial frequencies. For instance, the Wiener
spectrum W 0 (u, v) at the output of a linear system is
easily related to the Wiener spectrum WI (u, v) at the in
put, MTF of the system, and additional noise components
W,,(u,v} at the output:

Wo(u,v) = WI(U,V) X MTF2(U,v) + W,,(u,v). (8)

Another more accurate model to measure the perfor
mance of imaging detectors for which the noise structure
is taken into consideration, is the noise equivalent quanta
(NEQ) and detective quantum efficiency (DQE}.33 The
noise equivalent quanta measures the ratio of the effective
number of information bearing quanta used to form an
image, and the detective quantum efficiency determines
the efficiency of the photon detectors in terms of the ra
tio of NEQ to the actual number of quanta used. These
descriptors combine together the MTF, the Wiener spec
trum, and the sensitometric response of the system.

3.2. Image Understanding Systems

The idea of applying some image understanding mea
sures to evaluate the image quality was introduced a few
decades ago. However, the emphasis was on human image
understanding. Recently, automatic image understanding
has become feasible, and, for some specific applications,
is the only practical solution. IS In [34], an example of an

74

automated computer tomography system is given. It is
important to note, however, that very little has been done
in this area, and more work is needed. In this section, we
survey some of the methods that can be used to evaluate
the performance of image understanding systems. This
includes definitions of detection, orientation, recognition,
and identification; the receiver operating characteristic
(ROC); and measures based on information theory. In
addition to these methods, any of the image processing
techniques can be also used in evaluating image under
standing systems.

3.2.1. Detection. orientation. recognition. and
identification

The process of extracting information is called acqui
sition. There are different levels of acquisition which de
pend upon various parameters: size, contrast, noise, tar
get and background characteristics, viewing conditions,
automatic procedures, etc. Johnson considered the case
when human observer processes the information and di
vide the acquisition into four categories: detection, orien
tation, recognition, identification. IS

a. Detection: an object is present, but the recorded infor
mation is insufficient to assign a class to it.
b. Orientation: an object is present and its orientation,
symmetry, or asymmetry are discerned.
c. Recognition: this is the first level of sorting the de
tected object into classes (house, man, animal, car, ...).
d. Identification: this is the second level of sorting the
detected object into elements of specific classes (motel,
policeman, dog, jeep, ...).

These four levels correspond to different levels of im
age quality: the first level requires the lowest quality; the
last, the highest.

Johnson conducted a set of experiments to measure
the minimum number of resolvable lines across the crit
ical dimension of various targets required for each level
of acquisition. Then, he produced tables giving the min
imum number of resolved lines per minimum dimension
of a specific object necessary at a stated level of acquisi
tion. He found that, if the experimental conditions are the
same for the targets and the test bars, the transformation
targets into the number of resolved line pairs per critical
dimension is independent of contrast and scene noise. His
experimental results· show that an object is detected for
about 1 line pair, oriented for about 1.5, recognized for
about 4, and identified for about 6.5 line pairs per critical
object dimension.

Other methods to measure human performance are
given in [35, and 36].

3.2.2. Receiver Operating Characteristic

The receiver operating characteristic (ROC) measu
res the relation between the probability of false alarm
and correct detection as the decision level is changed. It
is a useful tool for measuring image understanding per
formance when the image description is limited to few
choices, such as the existence or nonexistence of abnor
mality in a patient,16 or deficiency in a product. The
ROC is more suitable for automatic image understanding
systems.

3.2.3. Information theory measures

In some image understanding applications, we want to

find the lowest level of signals that can be used to detect
a given object. In other applications we may want to
find the smallest features that can be detected. In either
case, information theory may be helpful in establishing
such bounds because it can relate the parameters of the
system to the information required.

The information we would like to acquire may be small
areas of size a (pixels) needed to be resolved and small
density changes d over the area a needed to be detected.
This information may be accepted with a tolerable prob
ability P. P can be defined by i where R is the number
of pixels in which on the average one pixel will be classi
fied incorrectly. The information required is represented
by the triplet (a, d, P). Thus, the parameters should be
determined to obtain the desired information in terms
of (a, d, P). For instance, the exposure E necessary to
record the features of interest can be related to (a, d, P).
Examples of work in this area are given in [37, and 38].
Clearly, this analysis can be applied to either manual or
automatic processing systems.

3.2.4. Image Segmentation measures

Many image understanding systems require di,!iding
the Bcene into segments which have similar properties, as
a first step toward classification. These properties may
describe each pixel independently such as the signal inten
sity, or relate to a local area such as texture.39 Recently,
some effort was directed toward the performance evalua
tion of such systems. Methods to evaluate edge detection
operators was described in [40]. In [41] v~ious ~exture al
gorithms were compared. General analysIS of Image seg
mentation techniques were reported in [42, and 43]. Judg
ing by the existing literature, it is clear that more needed
to be done, especially in unifying these results with tho.se
obtained for image processing systems. All the work dis
cussed so far corresponds to what is known as low level
image understanding systems, because they make little
use of the knowledge available about the contents of the
scene. A more difficult problem is the analysis of high
level image understanding systems; a survey of such sys
tems with some qualitative comparison is given in [44].

An example is the work on low level image segment
ation.43,45 In this work, a segmentation error that mea
sures the distance between two different segmentation
outputs is used as a measure of performance. These mea
sures are used to evaluate a segmentation system that
divides images into areas and lines. Such methods are ex
tremely important for the development of a reliable image
analysis model.

4. EXPERIMENTAL METHODS

All the image quality measures, described in the pre
vious section, are analytical. In this section, the experi
mental approach to measuring image quality is described.
This approach is flexible and in many cases more accu
rate than the analytical model, because it can be made
as close as possible to the actual application. Its dis
advantage is that it is more costly and time consuming.
In the early stages of design, experimental methods are
based on simulation of the system. Later on, the same
measurements are made using the actual system. Such
measurements are usually more accurate and expensive
than the analytical measurements.

75

Experimental measurements are usually made on test
patterns that represent the interesting features in the im
ages being processed. They can be as simple as a bar
chart· or as complicated as a 3-dimensional body phan
tom. The following are examples of such test patterns.
a. Resolving power charts.3

b. Spatial resolution patterns.17,28

c. Star test patterns.26

d. Perceptibility measurement patterns.46

e. Organ phantoms patterns.28,31

f. Industrial patterns.47,48

Basic resolution patterns consist of parallel bars hav
ing the same size and shape, with a spacing between bars
equal to their width. These basic resolution patterns can
be assembled in groups of different characteristics (con
trast, size, orientation) to form the resolution test chart.
Instead, a circular test pattern made of equally spaced
wedges of identical sizes can be built to form a star pat
tern. The advantages of such a test pattern is that the
density along a circle centered at its center is a square
wave which has a spatial frequency proportional to the
number of constituting wedges and to the inverse of the
radius r of the circle. The patterns (a-d) are examples
of charts constituted of bars and wedges. On the other
hand, patterns or phantoms (e-f) represent as close as
possible the objects (body tissues, industrial parts, ...)
in the real application. They can be very complex and
diverse depending on the application.

4.1. Qualitative methods

Any of the previous patterns can be processed using
the imaging system being evaluated, and the performance
can be measured either qualitatively or quantitatively. In
the qualitative approach the processed images are shown
under the same conditions to a group of observers who are
asked to judge their quality. The observers may be cho
sen from expert or non-expert viewers. 1 Ultimately, qual
itative methods are used as simple, natural, and some
what reliable methods. However, to ensure confidence in
the judgements, many observers must participate, which
makes the qualitative methods cumbersome to employ.
Although these subjective methods are suitable for the
complicated test patterns described in e and f, they may
also be applied to any of the other test patterns.

4.2. Quantitative measures

A better way for measuring the image quality for the
patterns (a - d), is to introduce quantitative measures.
These measures can be the resolution limits or the mod
ulation transfer function. Also, it can be a one num
ber merit function chosen such that it correlates with a
subjective evaluation. 1 Examples of merit functions are
the mean absolute error and the mean square error. The
mean absolute error is defined in the general form:

MAE= JJa h(!(x,y)) -,(/(x, y))1 dxdy , (9)
JJa h(!(x,y))ldxdy

and the mean squared error is:

MSE= (IIab(!(X,Y)) -,(/(x,y))]2 dxdY) l. (10)
JIab(!(x, y))]2 dx dy

where '"1 is an arbitrary operator, I the original image
and j the degraded image. The domain of definition of
I is a. They are the standard measures used to judge
various processing techniques. Several transformations
have been determined for the operator '"1 in order to com
pare the performance of the systems intended for human
observers. 1 To get more reliable measures '"1 must be
adapted to important factors such as the end user of the
system.

5. USE OF IMAGE QUALITY MEASURES

In the previous sections, many measures of image qual
ity were reviewed. In turn, we would like to discuss the us
age of quality measures; quality measures can be applied
to evaluate, to design, and to control imaging systems.
We consider these three different important applications
separately.
&. Performance evaluation. Image quality measures are
used to evaluate the performance of processing and under
standing techniques. It is important to use standard and
qualified evaluation methods with confidence to compare
several imaging systems.
b. Design and optimization. A second application of im
age quality measures is the design and the optimization
of imaging systems. It is very important when we design
a new system to minimize its cost, and also to maximize
the processing speed and image quality. Therefore the
design engineers must be able to choose optimum pa~am
eters that satisfy image quality requirements.
c. Control. A more efficient system requires quality mea
sures that can serve to control in real time the parameters
of the system. Such a system is adaptive to the input im
ages and can select the optimum parameters that produce
the best image quality. These quality measures must esti
mate the relevance of the output information in real time
to adapt the system parameters or the processing algo
rithms. Moreover, since they control the system, a large
confidence in using them for this purpose is required. It
is important to note that in certain field, particularly in
image understanding, a successful search for new mea
sures that can do this job without a reference to standard
images is required.45

6. CONCLUSION

In this paper, we described the various factors that
should determine the image quality measures. In addi
tion, we discussed many of the methods that are used in
the evaluation of image quality, for both the image pro
cessing and image understanding applications.

Many methods have been developed for the image
processing application. They correspond to various ap
proaches either analytical, such as spatial response mea
surements and frequency response measurements, or ex
perimental. These measures have been adapted to many
fields of application. However, there is still a need to in
troduce a unified model for the measurement of image
quality and develop standard test patterns or test objects
to compare the performance of various imaging systems.

On the other hand, very little has been done in the im
age understanding area. Major design measures that reli
~bly indicate the performance of any image understanding
technique still need to be developed. With the increas
ing interest in automatic image understanding. standard
test patterns should be defined and used to measure the
performance of various image understanding techniques.

76

This will help in comparing the algorithms developed at
different research centers.

Finally, judging from the existing literature, it is clear
that while image quality evaluation has been applied to
many areas such as medical radiology, aerial photography,
industrial inspection, and design of optical systems, more
work is still needed. We hope that this paper will inform
the scientific community about the need for such work.

ACKNOWLEDGEMENTS

This work is supported in part by the University of
Delaware Center for Composite Materials, funded by the
NSF Engineering Research Centers under Grant CDR-
8421409, and the University of Delaware Industrial Part
ner Program.

REFERENCES

[1] W. K. Pratt, Digital Image Processing, Wiley
Interscience, New York, 1978.

[2] W. B. Wetherell, "The Calculation of Image Qual
ity" , in Applied Optics and Optical Engineering, Vol.
VITI, R. Shannon, J. Wyant, ed. Academic Press,
New York, 1980.

[3] G. C. Brock, Image Evaluation lor Aerial Photogra
phy, The Focal Press, London, 1970.

[4] D. M. Costigan, Electronic Delivery of Documents
and Graphics, Van Nostrand Reinhold, New York,
1978.

[5] J. C. Stoffel, Ed., Graphical and Binary Image Pro
cessing and Applications, Artech House, Dedham,
MA,1982.

[6] A. G. ~aus, Ed., The Physics of Medical Imaging:
Recordmg System Measurements and Techniques,
American Assoc. of Physicists in Medicine, New
York, 1979.

[7] R. G. Waggener and C. R. Wilson, Eds., Quality
Assurance in Diagnostic Radiology, American Assoc.
of Physicists in Medicine, New York, 1980.

[8] Quality Assurance in Nuclear Medicine, World
Health Organization, Geneva, 1982.

[9] D. A. Garrett and D. A. Bracher, Real-Time Ra
d~ologic Imaging: Medical and Industrial Applica
tIons, American Society for Testing and Materials,
Philadelphia, 1980.

[10] R. S. Sharpe, et al., Eds., Quality Technology Hand-
book, 4th Ed., Butterworths, London, 1980.

[11] W. K. Pratt, Ed., Image Transmission Techniques
Academic Press, New York, 1979. '

[12] L. R. Baker, Ed., Quality Assurance in Optical 8
Electro-Optical Engineering, Proc. of SPIE, Vol. 73
1973. '

[13] L. M. Bib erman, Perception of Displayed Informa
tion, Plenum Press, New York, 1973.

[14] H. L. Snyder, "Image Quality and Observer Perfor
mance," in Perception of Displayed Information, L.
M. Biberman, Ed., Plenum Press, New York, 1973.

[15] F. A. Rosell, and R. H. Willson, "Recent Psycho
physical Experiments and the Display Signal -to
Noise Ratio Concept", in Perception of Displayed
Information, L. M. Biberman, Ed., Plenum Press,
New York, 1973.

[16] C. E. Metz, "Applications of ROC Analysis in Di
agnostic Image Evaluation" , in The Physics of Med
ical Imaging: Recording Systems Measurements and

Techniques, A. G. Haus, Ed., American Assoc. of
Physicists in Medicine, New York, pp. 546-572, 1979.

[17] K. E. Weaver, andD. J. Goodenough, "Imaging Fac
tors and Evaluation - Computed Tomography Scan
ning" , in The Physics of Medical Imaging: Recording
Systems Measurements and Techniques, A. G. Haus,
Ed., American Assoc. of Physicists in Medicine,
New York, pp. 309-355, 1979.

[18] L. E. Druffel, "Summary of the DARPA Image Un
derstanding Research Program", in Pattern Recog
nition Theory and Applications, J. Kittler, et al.,
Eds., D. Reidel Publishing Co., Holland, pp. 265-
281,1982.

[19] R. F. Wagner, "Toward a Unified View of Radio
logical Imaging Systems. Part IT: Noisy Images",
Medical Physics, Vol. 4, No.4, pp. 157-174, 1977.

[20] S. Rowland, "Computer Implementation of Image
Reconstruction Formulas" , in Image Reconstruction
from Projections, G. Herman Ed., Springer Verlag,
Berlin, 1979.

[21] G. K. Sanderson, "Image Assessment: LSF and
MTF", in The Physics of Medical Imaging: Record
ing Systems Measurements and Techniques, A. G.
Haus, Ed., American Assoc. of Physicists in Medi
cine, New York, pp. 118-137, 1979.

[22] P. Rosenberg, "Detection, Detectability and Recog-
nizability" , Photogrammetric Engineering,
Dec. 1971.

[23] J. R. Wolff, "Calibration Methods for Scintillation
Camera Systems" , in Quantitative Organ Visualiza
tion in Nuclear Medicine, P. J. Kenny, and E. M.
Smith, Eds., University of Miami Press, Coral
Gables, FL, pp. 229-259, 1971.

[24] W. J. MacIntyre, et al., "Report of the ICRU Task
Group on Scanning", in Quantitative Organ Visu
alization in Nuclear Medicine, P. J. Kenny, and E.
M. Smith, Eds., University of Miami Press, Coral
Gables, FL, pp. 167-184, 1971.

[25] M. L. Giger, and K. Doi, "Investigation of Basic
Imaging Properties in Digital Radiography. 1. Mod
ulation Transfer Function", Medical Physics, Vol.
11, No.3, pp. 287-295, 1984.

[26] A. E. Burgess, "Interpretation of Star Test Pattern
Images," Medical Physics, Vol. 4, No.1, pp. 1-8,
1977.

[27] G. T. Barnes, "The Use of Bar Pattern Test Objects
in Assessing the Resolution of Film/ Screen Sys
tems", in The Physics of Medical Imaging: Record
ing Systems Measurements and Techniques, A. G.
Haus, Ed., American Assoc. of Physicists in
Medicine, New York, pp. 138-151, 1979.

[28] R. Sarper, "Evaluation of Imaging Factors in Nu
clear Medicine" , in The Physics of Medical Imaging:
Recording Systems Measurements and Techniques,
A. G. Haus, Ed., American Assoc. of Physicists in
Medicine, New York, pp. 390-408, 1979.

[29] R. S. Holland, "Fundamentals of Radiographic
Noise" , in The Physics of Medical Imaging: Record
ing Systems Measurements and Techniques, A. G.
Haus, Ed., American Assoc. of Physicists in Medi
cine, New York, pp. 152-171, 1979.

[30] P. Sprawls, The Physics and Instrumentation of Nu
clear Medicine, University Park Press, Baltimore,
1981.

[31] L. Shepp, and B. Logan, "The Fourier Reconstruc
tion of a Head Section", IEEE Trans. on Nuclear
Science, Vol. NS-21, pp. 21-43, June 1974.

[32] M. L. Giger, K. Doi, and C. E. Metz, "Investigation

77

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

of Basic Imaging Properties in Digital Radiography.
2. Noise Wiener Spectrum", Medical Physics, Vol.
11, No.6, pp. 797-805, 1984.
J. M. Sandrik and R. F. Wagner, "Absolute Mea
sures of Physical Image Quality: Measurement and
Application to Radiographic Magnification", Medi
cal Physics, Vol. 9, No.4, pp. 540-549, 1982.
J. Winter, "Automated Computer Tomography Im
age Analysis Using Contour Map Topology", IEEE
Trans. on Medical Imaging, Vol. MI-3, No.4, pp.
163-169, Dec. 1984.
J. A. Bencomo, L. M. Marsh, and T. J. Morgan, "An
Evaluation of Digital Processing Capabilities for Im
proving Detection of Low Contrast Round Objects in
a Radiography by Contrast Detail Diagrams" , Proc,.
of the SPIE, Applications of Digital Image Process
ing VIT, San Diego, pp. 379-383, Aug. 1984.
A. E. Burgess, R. F. Wagner, and R. J. Jennings,
"Human Signal Detection Performance for Noisy
Medical Imaging", Inti' Workshop on Physics and
Engineering in Medical Imaging, Pacific Grove, CA,
pp. 99-105, March 1982.
I. Brodie and R. A. Gutcheck, "Radiographic Infor
mation Theory and Application to Mammography" ,
Medical Physics, Vol. 9, No.1, pp. 79-95, 1982.
I. Brodie and R. A. Gutcheck, "Radiographic In
formation Theory: Correction for X-Ray Spectral
Distribution", Medical Physics, Vol. 10, No.3, pp.
293-300, 1983.
R. M. Haralick, "Statistical and Structural
Approaches to texture.", Proc. of the IEEE, Vol.
67, No.5, pp. 786-804, May 1979.
I. E. Abdou, and W. K. Pratt, "Quantitative Design
and Evaluation of Enhancement / Thresholding Edge
Detectors" ,Proc. of the IEEE, Vol. 67, No.5, pp.
753-763, May 1979.
R. W. Cormers, and C. A. Harlow, "A Theoretical
Comparison of Texture Algorithms", IEEE Trans.
on Pattern Analysis and Machine Intelligence, Vol.
PAMI-2, No.3, pp. 204-222, May 1980.
E. L. Hall, Computer Image Processing and Recog
nition, Academic Press, New-York, 1979.
M. D. Levine, and A. M. Nazif, "An Experimental
Rule-Based System for Testing Low Level Segmenta
tion Strategies" , in Multicomputers and Image Pro
cessing, K. Preston Jr., and L. Uhr, Eds., Academic
Press, New York, pp. 149-160, 1982.
T. O. Binford, "Survey of Model-Based Image Anal
ysis Systems", The IntI' Journal of Robotics Re
search, Vol. 1, No.1, pp. 18-64, Spring 1982.
A. M. Nazif, and M. D. Levine, "Low Level Image
Segmentation: An Expert System", IEEE Trans.
on Pattern Analysis and Machine Intelligence, Vol.
PAMI-6, No.5, pp. 555-577, 1984.
R. Bollen, "Evaluation of Image Quality Perform
ances of Radiographic Systems by the Perceptibil
ity Curve (PC) Method", in The Physics of Medi
cal Imaging: Recording Systems Measurements and
Techniques, A. G. Haus, Ed., American Assoc. of
Physicists in Medicine, New York, pp. 588-613, 1979.
F. Hopkins, and I. Morgan, "X-Ray Computed To
mography for Aerospace Components", Scientific
Measurement Systems, Technical Report, January
1983.
P. Burstein, R. Mastronadi, and T. Kirchner, "Com
puterized Tomography Inspection of Trident Rocket
Motors: A Capability Demonstration", Materials
Evaluation Journal, pp. 1280-1284, November 1982.

ADDITIONAL REFERENCES

- R.B. Arps,et al., "Character Legibility versus Reso
.lution in Image Processing of Printed Matter", IEEE

Trans. Man. Machine Systems, Vol. MM:S-10, No.3,
pp. 66-71, Sept. 1969.

- P. C. Btmch, et al., "A Free Response Approach to the
Measurement and Characterization of Radiographic
Observer Performance," Proc. of SPIE, Application
of Optical Instrumentation in Medicine, VI, Vol. 127,
Boston, MA, pp. 124-135, Sept. 1977 .

. - B. Chiang, et al., "Spatial Resolution in Industrial To
mography" , IEEE Trans. on Nuclear Science, Vol. NS-
30, pp. 1671-1676, April 1983. .

- R. T. Chin, and C. A. Harlow, "Automated Visual In
spection: A Survey", IEEE Trans. on Pattern Analy-
3is and Machine Intelligence, Vol. PAMI-4, No.6, pp.
557-573, 1982.

- G. Cohen, and F. A. DiBianca, "Information Content
and Dose Efficiency of Computed Tomographic Scan
ners", in The Physics of Medical Imaging: Recording
System3 Measurements and Techniques, A. G. Haus,
Ed., American Assoc. of Physicists in Medicine, New
York, pp. 356-365, 1979.

- N. Dusaussoy, "Performance Evaluation of Parallel Pro
jection Computerized- Tomography", M. Sc. Thesis,
University of Delaware, 1986.

- E. M. Granger, and L. R. Baker, Eds, "Image Quality:
an Overview" ,Proc. of SPIE, Vol. 549, July 1985.

- R. Halmshaw, "Fundamentals of Radiographic Imag
ing," in Real- Time Radiologic Imaging: Medical and
Indwtrial Applications, ASTM STP 716, D. A. Gar
rett, and D. A. Bracher, Eds., American Society for
Testing and Materials, pp. 5-21, 1980.

- R. Y. Han, and R. J. Clark, "Characterization and
Evaluation of Automatic Target Recognizer Perform
ance," Proc. of the SPIE, Applications of Digital Image
Processing VII, San Diego, pp. 341-351, Aug. 1984.

- K. M. Hanson, "Detect ability in the presence of Com
puted Tomographic Reconstruction Noise", Proc. of
SPIE, Application of Optical Instrumentation in Medi
cine, VI, Vol. 127, Boston, MA, pp. 304-312, Sept.
1977.

- G. Herman, Image Reconstruction from Projections,
Academic Press, New York, 1980.

- L. Kaufman, "Nuclear Medicine Imaging," in Medical
Imaging Technique3. A Comparison, K. Preston, Jr., et
al., Eds., Plenum Press, New York, pp. 263-285, 1979.

- W. Kropatsch, "Segmentation of Digital Images Using
A Priori Information about the Expected Image Con
tents" , in Pictorial Data Analysis, R. M. Haralick, Ed.,
Springer Verlag, Berlin, pp. 107-132, 1983.

- J. D. McGee, D. McMullan, andE. Kahan, Eds., Photo
Electronic Image Device8, Academic Press, London,
1966.

- J. D. McGee, D. McMullan, E. Kahan, and B. L. Mor
gan, Eds., Photo-Electronic Image Devices, Academic
Press, London, 1969.

- J. D. McGee, D. McMullan, and E. Kahan, Eds., Photo
Electronic Image Devices, Academic Press, London,
1972.

- P. R. Moran, "A Physical Statistics Theory for De
tectability of Target Signals in Noisy Images. 1. Math
ematical Backgrotmd, Empirical Review, and Develop
ment of Theory", Medical Physics, Yol. 9, No.3, pp.
401-413, 1982.

- C. Parma, et al., "Experiments in Schema-Driven In
terpretation of a Natural Scene", in Digital Image Pro-

78

cessing, J. Simon, and R. Haralick, Eds., D. Reidel
Publishing Co., Holland, pp. 449-509, 1981.

- G. U. V. Rao, "Measurement of Modulation Transfer
Functions," in Quality Assurance in Diagnostic Radiol
ogy, R. G. Waggener and C. R. Wilson, Eds., American
Assoc. of Physicists in Medicine, New York, pp. 79-
104, 1980.

- P. Reimers, et al., "Recent Developments in the Indus
trial Application of Computerized Tomography with
Ionizing Radiation", Journal of NDT International, Vol.
17, No.4, pp. 197-207, Aug. 1984.

- H. Roehrig, et al., "X-Ray Image Intensifier Video Sys
tem for Diagnostic Radiology: Part 1, Design Charac
teristics", Proc. of SPIE, Application of Optical In
strumentation in Medicine, VI, Vol. 127, Boston, MA,
pp. 216-225, Sept. 1977.

- C. Scheid, "Performance Measurements of Fluoroscopic.
Systems," in Real-Time Radiologic Imaging: Medical
and Industrial Applications, ASTM STP 716, D. A.
Garrett, and D. A. Bracher, Eds., American Society
for Testing and Materials, pp. 168-179, 1980.

- G. Seeley, et al., "Psychophysical Evaluation Corre
lated with System Measures: Part 2," Proc. of SPIE,
Application of Optical Instrumentation in Medicine,
VI, Vol. 127, Boston, MA, pp. 226-231, Sept. 1977.

- P. F. Sharp, "Physical Limitations to the Quality of
X- and Gamma Ray Images" , in Technical Advances in
Biomedical Physics, P. P. Dendy, D. W. Ernst, and A.
Sengtm,· Eds., Martinus Nijhoff Pub, The Hague, pp.
219-234, 1984.

- P. F. Sharp, "The Presentation of Photon-Limited Im
ages," in Technical Advances in Biomedical Physics, P.
P. Dendy, D. W. Ernst, and A. Sengtm, Eds., Martinus
Nijhoff Pub, The Hague, pp. 235-258, 1984.

- R. Shaw, "Some Modem Aspects of Image Evaluation" ,
in The Physics of Medical Imaging: Recording System3
Measurements and Techniques, A. G. Haus, Ed., Amer
ican Assoc. of Physicists in Medicine, New York, pp.
390-408, 1979.

- F. C. Southon, "CT Scanner Comparison", Medical
Physics, Vol. 8, No.1, pp. 62-75, 1982.

- P. Sprawls, and J. C. Hoffman, "Image Quality in Co~
puterized Axial Tomography", Proc. of SPIE, Appli
cation of Optical Instrumentation in Medicine, IV, Vol.
70, Atlanta, GA, pp. 310-316, Sept. 1975.

- S. R. Sternberg, "Industrial Morphology" ,Proc. of the
SPIE, Applications of Digital Image Processing VII,
San Diego, pp. 202-213, Aug. 1984.

- E. Takenaka, T. Iinuma, and M. Inoue, "New Phan
toms for Measuring Low Contrast Resolution and Com
parison of Several CT Scanners when Using Them",
Proc. IntI. Workshop on Physics and Engineering
in Medical Imaging, Pacific Grove, CA, pp. 203-208,
March 1982.

- J. P. J. de Valk, "Diagnostic Processing and Analysis of
Medical Images", in Technical Advances in Biomedical
Physics, P. P. Dendy, et al., Eds., Martinus NijhoffPub,
The Hague, pp. 271-286, 1984.

- M. V. Yester, and G. T. Barnes, "Geometrical Limi
tations of Computed Tomography (CT) Scanner Reso
lution", Proc. of SPIE, Application of Optical Instru
mentation in Medicine, VI, Vol. 127, Boston, MA, pp.
296-302, Sept. 1977.

- I. T. Young, "The Use of Digital Image Processing
Techniques for the Calibration of Quantitative Micro
scopes", Proc. of the SPIE, Applications of Digital
Image Processing, Geneva, Switzerland, pp. 326-335,
April 1983.

A Spatial Knowledge Structure for Image Information Systems
Using Symbolic Projections

Shi-Kuo Chang and Erland Jungert*
Information Systems Laboratory
Department of Computer Science

University of Pittsburgh

ABSTRACT: We present a new pictorial data
structure for lmage information systems.
This pictorial data structure consists of a
run-length encoded basic data structure for
images, symbolic projections representing the
orthogonal relations among objects or sub
objects in an image, and rules to derive com
plex spatial relations from the symbolic pro
jections. Based upon this approach, a
knowledge-based image information system can
be designed, which supports spatial reason
ing, image information retrieval, and image
manipulation.

1. Introduction

Image information systems (lIS) are
heavily dependent on how images are stored in
an image database according to certain pic
torial data structures. Many different pic
torial data structures have been proposed:
some are pixel-oriented [CHOCK84], some util
ize quadtrees or their variants [SAMMET84],
and some are vector-based [JUNGERT85]. To
make an image information system more intel
ligent and more flexible, it is important
that the system be capable of integrating a
knowledge-base into its pictorial data struc
ture. The pictorial data structure should
also be object-oriented, so that users can
easily retrieve, visualize and manipulate
objects in the image database.

In this paper, we present a new approach
for image information system design, based
upon a pictorial data structure using symbol
ic projections [CHANG86]. The basic data
structure for image encoding is the run
length code (RLC) [JUNGERT86]. The technique
of symbolic projection is used to generate a
description of the RLC-encoded symbolic pic
ture [CHANG86]. When the objects have com
plex shapes and their minimum enclosing rec
tangles overlap, orthogonal relations can be
found to preserve basic spatial relations.
Production rules can then be applied to
derive more complex spatial relations from
the 2D string representation of symbolic pro
jections. Based upon this approach, a
knowledge-based image information system can
be deSigned, which supports spatial reason
ing, image information retrieval, and image
manipulation.

CH2345-7j86jOOOOj0079$Ol.OO© 1986 IEEE
79

Figure 1 is the schematic diagram of an
image information system with the proposed
pictorial data structure. The icon-oriented
user interface utilizes the following modules
to perform its function:

-simple query processor: retrieves ob
jects based upon their names or
coordinates.

-knowledge-based query processor:
processes complex queries involving
spatial relations.

-spatial operators: for creating new
objects or testing certain spatial
relations.

-image overlay system: performs image
display, window management and
image overlay.

-image generator: converts RLC struc
tures into images.

I
I

Icon-User-Interface I

I

Image
Display
System

Working Memory DBMS

Figure

Image
Database

Knowledge
Base

Schematic Diagram of an image
information system

Raw images are stored in an image data
base. The image attributes, the symbolic
prOjections, and the RLC encoded images are

stored in a pictorial database managed by the
DBMS (database management system). The pro
duction rules are stored in the knowledge
base and managed by the KBS (knowledge-base
management system). A working memory is used
to keep all temporary data, such as newly
created objects, extracted orthogonal rela
tions, derived spatial relations, and other
kinds of application-dependent data.

The image information system with the
proposed data structure is especially suit
able for geographic information systems, but
it will also be suitable for many other ap
plication areas.

2. Basic Data Structure using Run-Length
Codes

Run length code has been used primarily
for compacting image data. It can be used as
a basic object-oriented data structure in
image information systems. The principle of
the data structure is illustrated in Figure
2. In this example, map overlays are used.
A map overlay is an image used for map pro
duction and contains normally just one single
object type, e.g., lakes or forests~ Figure
2 show s that cont.rary to' the general RLC, the
information outside the objects is not saved.
Only the object information or the object
lines that belong to an object are saved.
However, so far we cannot talk about objects,
just about lines belonging to an object of
some type. For each line we keep the coordi
nates of its starting point, the length of
the line and the type of the. object to which
the line. belongs. This structure is well
adapted to a relational database. The rela
tional scheme of the run-length coded lines
is:

RLC - C (3, ~, length, type, nc)

where the identifying key is underlined.

of objects and will be discussed further
below.

So far we have only discussed object
types which are spatially distributed in such
a way that it is possible to "walk" around
them, i.e., they are closed object types.
The RLC encoding is, however, also valid for
object types that are linear, e.g. roads, or
of point type, e.g. landmarks. For these
types, the lines are always one pixel long.
The latter types are triv ial compared to the
closed types. It has to be pointed out that
the linear object types are equivalent to
vector structures. The relations for the
linear and the point types are respectively:

RLC - L

RLC - P

3, ~, type, nc)

3, ~, type, nc)

In an object-oriented system, all ob
jects must be identified in an uniform way.
This can be done either by using the name of
the object or' by using unique coordinates.
Here both methods are used. Names' are used
because the users are more familiar with
them.

In order to si~plify retrieval of ob~
jects in the database each object in the
database will include coordinates that
correspond to the minimum enclosing rectangle
of the object. Figure 3 illustrates the
correspondence between the object and the
rectangle.

Figure 3 Minimum enclosing rectangle of
an object and its key.

The object relations corresponding to
the description given above will include not
only the given attributes but also applica
tion dependent attributes, e.g. the depth or
ph-value of a lake. However, such attributes
will not be discussed further here. An ob
ject relation for closed object types will
therefore look like:

Figure 2 Run-length encoding of image. OBJ - CR (.H.am~,l.k, .xk, nc, Y1, X1, Y2, X2)

To identify each single line, only the
coordinates of the starting point of each
line are needed. As will be seen later the
order of the coordinates are of importance.
The attribute:nc, ,is used-for identification

80

The relations for linear and point ob
ject types will be similar although there are
no rectangles, needed, for the point object
types.

The nc attribute is a.unique integer

attribute that corresponds to the name of the
object. Since RLC relations always include
this attribute, there is a logical link
between each RLC-line and the object in the
object relation.

By using run-length encoded data a user
can define an image (such as a map) covering
a certain area and display it. Furthermore,
it is easy to display the data, because com
pared to e.g. vector data the problem of cut
ting the image in order to make it fit into
the display device is just a question of cut
ting horizontal run-length lines.

(R) ~.D~: Suppose 01 and 02 are two overlap
ping objects of closed type .(i.e. the boun
dary is a non-self~intersecting closed
curve). As illustrated in Figure 5a, the
union of these two closed objects, 01 U 02,
can be constructed by combining the RLC for
each specific y value as follows (assuming x1
=< x2):

01: y, x 1, m
02: y, x2, n

01 u 02: y, x 1, m ; x 2, n
y, x1, x2+n-x1

(for x1+m<x2)
(for x1+m)=x2)

(12) 1.D.t~.Q.t.i..Q.D: Suppose 01 and·02 are two
An important advantage in using the RLC overl~pping objects of closed type. As il

data structure is that since the lines are lustrated in Figure 5b, the intersection of
first ordered with respect to their y- these two closed objects, 01 n 02,.can be
coordinates, all lines on a certain y-level- constructed by intersecting the RLC for each
can be accessed in sequence. Therefore, all ·specific· y value :as follows (assuming x1 =<
lines within the interval [Ymax, Ymin] can be x2):
read in sequence and the lines displayed in
the same sequential order. Consequently, the
process of displaying and reading image data
is always done in sequence and it does not
have to be changed when handling the same
relation. This process is illustrated in
Figure 4.

RLC-database

Ymi

Y max r-------,

I:!rection)

presenta
tion

of
search

Y min ~_---;;,........
,xmjp xma;.t I

direction

Figure 4

\JJ
Sequential presentation of image
data from RLC.

The RLC structure has ,some additi.onal
advantages for map .presentation. First, the
method is scale independent for at least some
scale intervals. Hence it is fairly' simple
to implement zooming. Second, ther~ is no
need to" implement any "fill" operations for
th~ displaying of objects, because filling
will be performed. automatically when inter
preting RLC objects. Similarly, the holes
inside an object will be generated automati
cally when the object is displayed.

3.iSpatial Operators on RLC Objects

The creation of new objects from exist
ing RLC objects can be ~one by set theoretic
operations such as union, intersection, ex
clusive or, etc.

81

01: y, x1, m
02: y, x2, n

.01 n 02: y, x2, x1+m-x2
no line

(for x1+m)'=x2)
(for xt+m<x2)

(.Q) ll.Ql.Ylill .Q.z::: As illustrated in Figure
5c, the exclusive-or of two overlapping
closed objects can be constructed as follow s
(~ssuming x1 =< x2):

(a) (b)

81 / °2 ~------E
)'lxl

01 O2

(c)

. (d)

l 01 ~
1~
Z; ;:,:1 X": Xz

n'''l . 'X,
13

02 .

(e)

(,n

Figure 5 Spatial ~perators ~n RLC objects

01
02

01 xor 02

y, x1, m
y, x2, n
y, x1, x2-x1; x1+m, x2+n-x1-m
(for x 1 +m>=x2)
y, x1, m; x2, n
(for x1+m<x2)

The above described operators can be
used to create new objects from existing
objects, or to test the relationships among
objects. For example, to decide whether an
object 01 is contained in another object 02,
it suffices to show that 01 U 02 = 02, or
equivalently, 01 n 02 = 01. Using this test,
we can find the objects situated inside
another closed object, for example, the is
lands inside a lake. The complement of an
object 01 contained in another object 02 can
be found by 01 xor 02.

To decide whether a point object (or a
linear object) 01 is contained in another
object 02, we can check the RLC for each
specific y value as follows:

01: y, x1
02: y, x2, 11

Test: x2 =< x1 =< x2 + n

(,g) lJ.sU:.iz..QD.t.a.l .E.lll.n~j.Q.n: Suppose 01 and 02
are two nonoverlapping closed objects. As
illustrated in Figure 5d, the horizontal
extension of 01 and 02 can be constructed as
follows:

01: y, x1, m
02: y, x2, n

01-02: y, min(x1,x2), (max(x1+m,x2+n)
-min(x1,x2»

In the above, min(x,y) = x if y is unde
fined, and max(x,y) = x is Y is undefined.

<.~) ~li.Q.a.l j;~ll.n~j.Q.D: Similarly, we can
define the vertical extension of two nonover
lapping closed objects 01 and 02, as illus
trated in Figure 5e. To facilitate computa
tion, the vertical RLC for 01 and 02 should
first be found. The vertical extension of 01
and 02 can be constructed as follows:

01: x, y1, m
02: x, y2, n

01102: x, min(y1,y2), (max(y1+m,y2+n)
-min(y1,y2»

Figure 5f illustrates an alternative way
to compute the vertical extension by first
finding x' = max(x1,x3) arid x" = min(x2,x4),
and then ~aking the union of the two shaded
areas and the rectangle (x',x"; y2,Y3).

4 •. Symbol ic Proj ections

We now describe the methodology of sym
bolic projections [CHANG86]. Let V be a set
of symbols, or the vocabulary. Each symbol

82

could represent a pictorial object, a pixel,
etc. A 112 .§.t.r.1.ng over V is any string x1 x2

xn, n >= 0, where the xi's are in V. A
212 ~.t.r.1.ng over V, written as (u,v), is a pair
of 1D strings.

We can use 2D strings to represent pic
tures in a natural way. As an example, con
sider the picture shown in Figure 6.

I d I
-----------~-I b I c I

1 a I a I

Figure 6 A symbolic picture f

The vocabulary is V = {a, b, c, d}. The
2D string representing the above picture f
is,

(u,v) = (a d < a b < c , a a < b c < d)

In the above, the symbol '<I denotes the
left-right spatial relation in string u, and
the below-above spatial relation in string v.
Therefore, the 2D string representation can
be seen to be the ~.J!.m~.Q.lj.Q .P.r..Qj~~.t.i.Q.n of pic
ture f along the x- and y- directions.

A ~.J!mb.Q.l.i~ .P.i.Q.t~.r~ f is a mapping'M x M
-> W, where M = {1, 2, ••• , m}, and W is the
power set of V (the set of all subsets of V).
The empty set {} then denotes a null object.
In Figure 6, the "blank slots" can be filled
by empty set symbols, or null objects. The
above picture is,

f(1,1) = {a}

f(2,1) = {a}

f(3,1) = {}

f(1,2) = {}

f(2,2) = {b}

f(3,2) = {c}

f(1,3) = {d}

f(2,3) = {}
f(3,3) = {}

In [CHANG86], we have shown· that given
f, we can construct the corresponding 2D
string representation (u,v), and vice versa,
such that all left-right and below-above spa
tial relations among the pictorial objects in
V are preserved. In other words, let R1 be
the set of left-right and below-above spatial
relations induced by f. Let R2 be the set of
left-right and below-above spatial relations
induced by (u,v). Then R1 is identical to
R2, for the corresponding f and (u,v).

2D string representation provides a sim
ple approach to perform subpicture matching
on 2D strings. The .rR.D~ of each symbol in a
string u, which is defined to be one plus the
number of '<I preceding this symbol in u,
plays an important role in 2D string match
ing. We denote the rank of symbol b by r(b).
The strings "ad<b<c" and "a<c" have ranks as
shown in Table 1:

string v string u

a d < b < c a < c
1 1 2 3 1 2

Table Ranks of strings

A substring where all symbols have the
same rank is called a l~~Rl ~~~~~Iinz.

A string u is ~~n~~~ in a string v,
if u is a subsequence of a permutation string
of v.

A string u is a ~~~~-j lD ~~~~~~~D~~ of
string v, if (a) u is contained in v, and (b)
if a1 w1 b1 is a substring of u, a1 matches
a2 in v and b1 matches b2 in v, then
(type-O) r(b2)-r(a2»=r(b1)-r(a1) or

r(bn-r(a1)=0
(type-1) r(b2)-r(a2»=r(b1)-r(a1»0 or

r(b2)-r(a2)=r(b1)-r(a1)=0
(type-2) r(b2)-r(a2)=r(b1)-r(a1)

Now we can define the notion of type-i
(i=0,1,2) 20 subsequence as follows. Let
(u,v) and (u',v') be the 20 string represen
tation of f and f', respectively. (u',v') is
a ~~~-j 2D ~~~~~~n~~ of (u,v) if (a) u' is
type-i 10 subsequence of u, and (b) v' is
type-i 10 subsequence of v. We say f' is a
~~-j ~-~i~~~ of f.

In Figure 7, f1, f2 and f3 are all
type-O sub-pictures of f; f1 and f2 are
type-1 sub-pictures of f; only f1 is type-2
sub-picture of f. The 20 string representa
tions are:

f (ad<b<c, a<bc<d)
f1 (a<b, a<b)
f2 (a<c,a<c)
f3 (ab<c, a<bc)

I d I

I b I c I

I a I

f

I b I I c I I b I c I

I a I I a I I a I

f1 f2 f3

Figure 7 Picture matching examples

Therefore, to determine whether a pic
ture f' is a type-i sub-picture of f, we need
only determine whether (u',v') is a type-i 20

83

subsequence or (u,v). The picture matching
problem thus becomes a 20 string matching
problem. Efficient 20 string matching algo
rithms have been developed [CHANG86] and
applied to pictorial information retrieval
problems.

5. Orthogonal Relations

All run-length encoded objects have the
minimum enclosing rectangle available, hence
three types of spatial relations between
objects can be identified. These are for
obj ects with:

-nonoverlapping rectangles
-partly overlapping rectangles
-completely overlapping rectangles

The case with non-overlapping rectangles
is trivial and will never cause any problems
because the object relations are simple. The
other two might sometimes cause problems,
especially when one of the objects partly
surrounds the other. Figure 8 demonstrates a
problem of this type. The fundamental issue
here is to find a method that easily
describes the relations between the objects.
The method is called orthogonal relations,
because it deals with spatial relations that
are orthogonal to each other.

Figure 8 Two objects with overlapping
HERs

The basic idea is to regard one of the
objects as a "point of view object" (PVO) and
then view the other object in four direction
(north, east, south, west). Hence, at least
one or at most four subparts of the other
object can be "seen" from the PVO. The part
of the object that actually is "seen" is in
the interval where the two rectangles over
lap, partly or completely. This is illus
trated in Figure 9 and Figure 10. The sub
object can be regarded as point objects, i.e.
the centroid of the rectangle that enclose
each subobject. It is a fairly simple opera
tion to identify and generate these points
from the RLC. The next step is then to iden
tify the relation between the objects by
using the 2-0 projection method described in
section 3.

Figure 9

Figure 10

The PVO and its corresponding
orthogonal relations

The PVO and its corresponding
orthogonal relations for partly
overlapping MERs

Each one of the sub-objects constitutes
an orthogonal relational object of the origi
nal object and since they are regarded as
pOints, a sparse vector description of the
original object is generated. From this
viewpoint it does not matter whether the ori
ginal object is of closed or linear type.
This makes the methods powerful. However, it
is of importance that the subobjects are
interpreted correctly. Figure 11a shows a
correct interpretation of a north and a west
segment while the interpretation of the same
element in Figure 11b is erroneous. The
natural interpretation is to look clockwise.
Hence, nine different combinations can be
identified.

2 points: N

3 pOints: N
-

4 points: N

/

" /
WJ(

Figure 11

- E, E - S, S - W, W - N

- E - S, E - S - W, S - W - N, W
N - E

- E - S - W

N

~
N

K..

I
X wI(. PYC X J

PYC " /

(b)

A correct (a) and an erroneous
(b) interpretation of orthogonal
relations

84

No other interpretations are allowed.
It is also possible to regard the element in
between the orthogonal ones. But this is not
necessary since enough information is avail
able anyway (see Section 5 for further dis
cussions).

The technique of finding orthogonal
relations is described in the following algo
rithm.

Procedure Ortho(x,y)
begin

I*Ortho(x,y) finds orthogonal relations
of object x with respect to object y*1

I*find the minimum enclosing rectangles*1
find Mer(x); find Mer(y);

I*find four relational objects of object y
intersecting the extensions of object x*1

y-W = W-extension(Mer(x» n Mer(y);
y-E = E-extension(Mer(x» n Mer(y);
y-N = N-extension(Mer(x» n Mer(y);
y-S = S-extension(Mer(x» ft Mer(y);

return({y-W,y-E,y-N,y-S});
end

6. A Knowledge-based Approach to Spatial Rea
soning

From the 2D string representation, we
can derive the spatial relations without any
loss. From these spatial relations, we can
derive even more complex spatial relations.
Therefore, combining the 2D string represen
tation with a knowledge-based system, we can
provide flexible means of spatial reasoning,
image information retrieval and management.

The knowledge-based approach to spatial
reasoning is illustrated by two examples
below.

]~~m~~ 1: An island outside a coast line.

Figure
relations.
then

12 illustrates
The 2D symbolic

U C1 < C2 i

V C2 < C1 i

the orthogonal
projections are

The following rule is now applied

if U r1 < r2 p and V : r2 < r1 p

then

** facts ** (south rp) (west r p)

** verbalization ** "The object <p> is
partly surrounded by the object <r> on its
south and west side".

Figure 12 The orthogonal relations between
an island and a coastline.

When applying this rule to the example,
r will be substi tuted by C and p by i, i. e. ,
(south C i) and (west C i). These facts are
now stored in the fact database. The verbal
ization is sent to the user.

~~~m~l~ 2: A forest near a lake. 

In Figure 13, L1, L2 and L3 illustrates 
the orthogonal relational objects which are 
part of the lake. The 2D symbolic projec
tions are: 

U L3 < F L1 < L2 

V L3 F L2 < L1 

This is matched with the following rule 

if U : r1 < p r2 < r3 and V : r1 p r3 < 
r2 

then 

** facts ** (west r p)(north r p)(east r p) 

** verbalization ** "The object <p> is 
partly surrounded by the object <r> on its 
west, north and east side". 

In this example, we will substitute p by the 
Forest f and r by the lake L. 

By successively applying rules that 
correspond to each one of the basic orthogo
nal relation types, it is possible to identi
fy all object-to-object relation. For ex~m
ple, the fact identified in Example 2 is 
(west L F), (north L F) and (east L F). 

7. Discussion 

As mentioned in Section 1, an image 
information system should support both simple 
query processing and knowledge-based complex 
query proce ssing. Complex query processing 
may involve the generation of objects using 
set-theoretic operators described in Section 
3. For example, we can retrieve all type-1 
and type-2 objects within a specified area, 
and generate the union (or intersection) of 
these objects. As illustrated in Figure 14, 
the icon-oriented user interface is well
adapted to this task. By searching the 
knowledge-base and matching against the sym-
·bolic projections, we can answer complex 
queries such as: 

"find all objects to the south of X" 
"find all spatial relations between 
objects X and Y" 

A pictorial example of such queries 
using an icon-oriented approach will allow 
the user to have a friendly and intuitively 
meaningful way for specifying queries. The 
pictorial query can then be transformed into 
symbolic projections and used to retrieve 
matching pictures in the database. 

Generally speaking, expert systems are 
not particularly good at handling spatial 
data [WATERMAN86]. Symbolic reasoning is 
generally not possible because this type of 
data requires large amount of memory to keep 
track of the various spatial relations. 
Moreover, this process is normally slow when 
conventional methods are used. Orthogonal 
relations represented as chains of 2D symbol
ic projections constitute a basis for effi
cient use of spatial knowledge. For example, 
another potential application is path finding 
in a map. The symbolic projections can be 
used by a planning expert system to generate 
an approximate route. The approximate route 
can then be algorithmically refined to a 
definite path using previously developed 
algorithms [LOZAN083, WONG86]. The proposed 
pictorial data structure therefore can be 
very useful in designing expert systems for 
spatial reasoning, as well as knowledge-based 
image information systems. 

Figure 13 The orthogonal relations between 
a forest F and a lake L. Figure 14 Icon-oriented user interface for 

image manipulation 

85 



.B.e!.e.r.e.D~.e~: 

[CHANG86] S. K. Chang et. al., "Iconic Index
i~g by 20 Strings", Proceedings of IEEE 
Workshop on Visual Languages, Dallas, Texas, 
June 25-21, 1986. 

[CHOCK84] M. Chock, A. F. Cordonas and A. 
Klinger, "Database Structure and Manipulation 
Capabilities of the Picture Database Manage
ment System (PICDMS)", IEEE Trans. on Pattern 
Analysis and Machine Intelligence, Vol. 6, 
No.4, July 1984, 484-492. 

[JUNGERT85] E. Jungert et. al., "Vega - A 
Geographical Information System", Proc. of 
the First Scandinavian Research Conference on 
Geographical Information Systems, Linkoping, 
Sweden, June 13-14, 1985. 

[JUNGERT86] E. Jungert, "Run Length Code as 
an Object-Oriented Spatial Data Structure", 
Proceedings of IEEE Workshop on Languages for 
Automation, Singapore, August 21-29, 1986. 

[LOZAN083] T. Lozano-Perez, "Spatial Plan
ning: a Configur~tion Space Approach", IEEE 
Trans. on Computers, Vol. C-32, No.2, Feb. 
1983. 

[SAMMET84] H. Sammet et. al., "Processing 
Geographic Data with Quadtrees", Seventh 
International Conference on Pattern Recogni
tion, Montreal, Canada 1984. 

[WATERMAN86] D. 
.E.x~.r.t .sl:~m~ , 
Mass., 1986. 

A. Waterman, A 
Addison Wesley, 

.Q.Yi.d~ .t.Q 
Readings, 

[WONG86] E. K. Wong 
Hierarchical Orthogonal 
Three-Dimensional Path 
Robotics and Automation, 
March 1986, 43-53. 

and K. S. Fu, "A 
Space Approach to 

Planning", Trans. on 
Vol. RA-2, No.1, 

T~s research was supported in part by NSF 
Gr~~t DMC-8510804 and NRL Contract 
~00014-86-C-2038 of U.S.A~, and by FFV elek
tronik AB of Sweden. 

·~~t.e: Dr. Erland Jungert is with FFV Elek
tronik AB, Linkoping, Sweden. 

86 



DOCUMENT IMAGE UNDERSTANDING 

Sargur N. Srihari 

Department of Computer Science 
State University of New York at Buffalo 

Buffalo, NY 14260 

ABSTRACT 
A digital document image is an optically scanned and 

digitized representation of a printed page that consists of blocks 
of text, line drawings, half-tone pictures, and icons. Document 
image understanding is a goal-oriented problem involving 
detecting and interpreting different blocks and coordinating the 
interpretations to achieve an end result. We examine several 
solutions to subproblems in document understanding tasks. The 
subproblems range from pixel processing issues to symbolic 
linguistic reasoning to global control. 

1. INTRODUCTION 
A document image is a visual representation of a printed 

page such as a journal article page, a magazine cover, a 
newspaper page, etc. Typically, it consists of blocks of text, 
i.e., letters, words, and sentences that are interspersed with half 
tone pictures, line drawings, and symbolic icons. A digital 
document image is a two-dimensional array representation of a 
document image obtained by optically scanning and raster 
digitizing a hard copy document. It may also be an electronic 
version that was created in that form, say, for a bit-mapped 
screen or laser printer. An example of a document image is 
shown in Figure 1. 

Document image understanding (or simply, document 
understanding) is a goal oriented problem that may involve 
interpreting photographs (which is a vision problem), 
interpreting text (which may involve natural language 
understanding), interpreting line drawings such as graphs, in 
such a way that the interactions of the different components is 
accounted for. Some examples of document understanding 
tasks are: (i) integrate the pictorial content of a newspaper 
photograph with accompanying narrative title, (ii) determine the 
paste-on destination address on a colorful magazine cover: it is 
necessary to locate and orient the most plausible textual block, to 
read it and verify that it has the correct syntax, and (iii) make 
inferences from an annotated x-y plot. 

Document understanding implies the correct recognition of 
each of its constituent components. The recognition has to be 
both in terms of high level components such as columns and 
paragraphs, as well as in terms of low level components such as 
words and lines in the case of text; curves, rectangles, and solids 
in case of graphics; and image regions in case of half-tone 
pictures. 

Document image analysis is the task of deriving a high level 
representation of the contents of a document image. The spatial 
structure of a document can be represented in several ways. 
Two representations of the image of Figure 1 are shown in 
Figure 2. The first is an analogical representation that gives the 
spatial extent of blocks including paragraphs and the second is a 
propositional representation in the form of a partial semantic 
network whose nodes represent document entities and arcs 
represent relationships. Each of them assumes blocks as units 
where each block can be associated with details like size, shape, 
number of black pixels and texture. information. This 

CH2345-7j86jOOOOj0087$Ol.OO© 1986 IEEE 
87 

Frtill •• COI.ollo. 01 Sep ... b .. Elec:lrI .. 1 Conl •• 11 

Figure 1. . An example of a document image. 
information can then be utilized to discriminate between blocks. 
Methods for deriving the blocks can take advantage of the fact 
that the structural elements of a document, i.e., columns, 
paragraphs, titles, figures, lines of text, symbols, etc., are 
generally laid out in rectangular blocks aligned parallel to the 
horizontal and vertical axes of the page. 
Document Understanding Components 

Document understanding involves the use of several types 
of knowledge including visual, spatial, and linguistic. In 
determining objects from the background, say, by thresholding 
or by edge detection and grouping, the parameters necessary to 
perform such operations constitute visual knowledge. Labeling 
regions ~nvolves the use of spatial knowledge, e.g., the layout 
of a tyPICal document. Determining the font and identity of 
characters also involves spatial knowledge, i.e., the structure of 
textual symbols, words, and the distinguishing characteristics of 
each font. Reading words in blurred or poorly registered text, is 
a proces~ that involves spatial as well as linguistic knowledge, 
e.g., leXIcon of acceptable words. Determining the role of a 
bloc,k of text, .e.g., "is this a titl~?," is a process requiring 
spatial, syntactIc as well as semantic knowledge. Considerable 
interaction among different types of knowledge may be 
necessary. For instance, assigning a role to a textual region may 
require not only knowledge of spatial layout, but also an 
analysis of its textual syntax and semantics, and an interpretation 
of neighboring pictorial and iconic regions. 

The various processes necessary for document analysis are 
shown in Fig. 3. The task has been divided into three phases. 
Phase 1 consists of two steps: optical scanning and digitization 
and ~inarization. Phase 2 consists of block segmentation and 
labelIng. The result of phase 2 is a set of regions. (possibly 
overlapping) labeled as text, graphics, half-tone, etc. Phase 3 
consi~ts of several parallel operations for processing text, 
~raphIcs, and half-tone images. Document understanding 
mvolves feedback paths not shown in Fig. 3. . 



D 
I I 

110 I I 

I: :1, 

Figure 2. Document image representations. 

_I -I; 
.'1---

Figure 3. Document Understanding Components. 

2. SCANNING AND BINARIZATION 
An optically scanned document image is usually an integer 

(gray-valued) array; it is obtained by a process of spatial 
sampling and simultaneous conversion of light photons to 
electric signals. A high-resolution bit map is sufficient to 
capture shades of gray in the eye of the human perceiver (such 
images 'are called half-tone). An optically scanned document 
image can be converted into a bit map by a global thresholding 
operation: pixel values below the threshold are deemed to be 
black (value 1) and those above deemed white (value 0). The 
threshold itself can either be predetermined or calculated from 
the image histogram, e.g., the valley of a bimodal histogram. 

A global threshold, i.e., one that applies to the entire 
image, may sometimes beinipossible to obtain due to varying 
background color. One solution is adaptive thresholding which 
is to compare the gray value of the pixel to the average of the 
gray values in some neighborhood about the pixel. If the pixel 
is significantly darker than the neighboring pixels, it is called 
black; otherwise it is white. One such adaptive thresholding 
algorithm [14] that is appropriate for a printed document 
considers' a 9 x 9 region around a pixel (x, y).' The central 3 x 3 
region including (x, y) is called A 1 and four 3 x 3 regions 8-
connected to A I are jointly called A2. The average pixel value of 
Al is compared to the weighted average pixel value of A2. The 
idea in choosing the regions in this manner is that of a black 
pixertIiaHs part of a line of text should only be compared to the 
white spaces above and below the line. 
Color 

A document with significant colored regions is usually 

88 

scanned as three gray level images with red (R), green (G), and 
blue (B) filters. A colored image can be converted into a single 
bit map by approximate methods. Color thresholding is useful 
to extract regions of a particular color. Thus if the objective 
were to determine the address label which is known to be white 
then one can focus only on the white regions and perform 
further feature tests (e.g., rectangularity, presence of text) [21]. 
Resolution 

Scan resolution is of importance in document 
understanding. Scanning resolution for text and line drawings 
can be decided as follows. The width of a typical character 
stroke is about 0.2mm (0.008 inch), with some of the widest 
strokes up to about 1mm; a 10-point character measures about 
0.5mm (0.014 inch) between ascender and descender lines. A 
sampling rate of 240ppi corresponds to about O.lmm/pixel 
which guarantees that at least one pixel will fall totally within the 
stroke; this resolution corresponds to 33 pixels between the 
ascender and descender lines. In the case of engineering 
drawings the minimum line width is approximately 0.3mm. 
Thus the minimum resolution needed is approximately 100 ppi. 

3. BLOCK SEGMENTATION 
Approaches for segmenting document image components 

may be roughly divided into techniques that are top-down or 
bottom-up. Top-down techniques divide the document into 
major regions which are further divided into sub- regions, etc. 
They often use knowledge about document structure, e.g., that 
the layout is in the form of rectangular blocks. Bottom-up 
methods progressively refine the, data by layered grouping 
operations. Although -no 'practical system takes a pure approach, 
every system can be identified as being predominantly aligned 
with one of the two philosophies. 

3.1. Top-Down Approaches 
We will describe three top-down approaches: smearing, 

projection profIle cuts, and the Hough transform. 
Smearing 

The smearing technique [24] involves scanning documents 
as black/white images A run-length smearing algorithm (RLSA) 
then operates on the image under which any two black pixels 
(l's) which are less than a certain threshold t apart are merged 
into a continuous stream of dark pixels. White pixels (O's) are 
left unchanged. For example, if the input sequence was 
00011000001100100001 and the value of twas 3 then the result 
of the RLSA on this sequence would be 

11111000001111100001. 

The RLSA is first applied row.-by-row and then column
by-column, yielding two distinct bit maps. The two results are 
then combined by applying a logical AND to each pixel location. 
The resulting RLSA image contains a smear wherever printed 
material appears on the original image. The thresholds tx and ty 
in the two directions need not be the same. The segmentation is 
expected to yield blocks each of which should contain only one 
type of data (text, graphics, half-tone, etc.). 
Projection Profile Cuts 

Based on the observation that printed pages are primarily 
made up of rectangular blocks, a page can be recursively cut into -
rectangular blocks. Thus the document is represented in the form 
,of a tree of nested rectangular blocks. The application of cuts is 
based on the configuration of the pixels. A "local" peak detector 
is applied to horizontal and vertical "profiles" to detect local 
peaks (corresponding to thick black or white gaps) at which the 
cuts are placed; it is local in that the width is determined by the 
nesting level of the recursion, e.g., gaps between paragraphs are 
thicker than those between lines [11,25]. 

A complete hierarchical recursive tiling of a page can be 



represented as a tree. An X-Y tree, is obtained by using 
horizontal or vertical partitions at alternating levels of the tree. 
The root represents the entire page and can be considered either a 
single horizontal or vertical partition. The succeeding nodes, 
and finally the leaves are obtained by a process of alternating 
horizontal and vertical cuts. The number of horizontal or vertical 
cuts placed at each level is variable, so the resulting tree is not 
binary. A node that represents a horizontal (vertical) partition 
has a set of descendents that represent a complete vertical 
(horizontal) tessellation of the parent node. 
Hough Transform 

A document typically contains several straight lines. 
Forms and tables contain solid lines. Line drawings, e.g., block 
diagrams, predominantly have straight lines. Columns of text 
are separated by straight rivers of white space. Text usually 
consists of several parallel textured thick lines. 

The Hough transform is a technique for detecting 
parametrically representable forms, e.g., straight lines, in noisy 
binary images. It involves transforming each black pixel (x, y) 
in the original image into a curve in the parametric space. In the 
case of detecting straight lines the transformation used is K = x 
cos T + y sin T. For each point (Xi, Yi), T is varied from 0 to J 
to yield the corresponding curve in the (K, T) space. An array 
of accumulators is set up by quantizing values of K and T. The 
accumulators corresponding to values of (K, T) yielded by the 
transformation are incremented by one. It can easily be shown 
that if points are collinear along the line specified by parameters 
(Ko, To), then each such point (xi> yO will necessarily increment 
accumulator (Ko. To). Thus each value in the accumulator array 
corresponds to the strength of evidence for a straight line with 
the .corresponding parameters. For a 512 x 512 image, K 
values extend from -368 to +368 (This value is arrived at by 
assuming the origin of the (K, T) space to be at the center of the 
512 x 512 image and hence the maximum value ofK is 256 x 
2). 

The accumulator array resulting from applying the Hough 
transform to a portion of the document image of Figure 1 is 
shown in Figure 4. The portion corresponds to the "abstract" in 
the left column. In general the array can be checked for the 

particular orientation which has the maximum number of 
transitions to and from a minimum value. Transitions 
corresponding to text are usually regular and uniform in width 
and thus are easy to identify. In the case of text containing both 
upper and lower case, they register a maximum value at the 
center lin~ of the characters and slightly lower values 
corresponding to the ascender and descender lines. Textuallines 
have anot~er.property that there are "white" lines perpendicular 
to the begmmng and ending columns and this information can be 
used to confirm line orientations. First, the number of vertical 
columns in a page needs to be determined because a multi
column page may not have any (K, T) orientation with low 
counts. Subsequently, the spacings between the text lines can 
be identified, on the basis of the average width of significant (K 
T) values for a particular T. ' 

The distance histograms along the line and its 
perpendicular orientation can be used to get the inter-word and 
inter-line distances. By incorporating these, the thresholds for 
the run-length smearing algorithms can be· derived and big 
blocks of data can be grouped together [16]. 

3.2. Bottom-Up Approaches 
Bottom-up analysis is based on successive steps of 

refinement of the input image. The image is first processed to 
determine the individual connected components. At the lowest 
level of analysis, there would be individual characters and other 
large figures. In the case of text the characters are merged into 
words, words. are merged into lines, lines into paragraphs and 
paragraphs mto even larger blocks, if such a merging is 

89 

possibl.e. In a bottom-up technique it is usually necessary to 
dete~ne whether a connected component is a part of: text, line 
drawmg, or threshold region of a half-tone picture. Possible 
features for performing this classification are: size, branching 
structure, topology, and shape measures. 
Size 

A commonly used method is to determine the size of a 
component, by counting the number of pixels, and consider it 
not to be a character if it lies within a range. A disadvantage of 
this method is that the size of characters has to be known 
beforehand, which is not always possible. However, size is a 
useful first feature. 

Figure 4. The Hough Transform c..~·;_:li.:~iai.or array. Text lines 
appear as a series of peaks in the 0° column. 

Branching Structure 
The geometrical complexity of an object can be measured 

in terms of the number of linear components (branches) that the 
figure is composed of. If the complexity is high then the object 
is probably part of a line drawing, half- tone picture, or form, 
i.e., it contains too many branching structures to be a printe.d' 
character. An algorithm can be designed to determine 
geometrical complexity of several components while the image is 
scanned raster fashion. This is done by keeping track of the 
several components in each line and their connectivity with 
respect to components in the previous line. A description of 
each connected component consisting of, say, its size, location, 
horizontal and vertical extents is maintained. Clusters of 
structures of similar type can then be identified. An example of 
this clustering approach is shown in Figure 5. A pass is made 
on the binary data to determine all connected components, which 
are individual characters. On the basis of proximity, size and 
other features the characters are merged into lines [2]. 

Topology 
The topological properties of a component are useful in 

determining if it is a character. The- Euler number of a binary 
image is defined as the number of components. minus the 
number of holes. For a component which is a character the 
Euler number is one (1), zero (0), or negative one (-1) . .f!t.. fast 
algorithm can be designed for computing the Euler number of a 
binary image. More generally, the adjacency tree of a binary 
image contains all topological information (Figure 6). 

Control for Bottom-Up Grouping 
The order of application of different operators can be based 

on their complexity, e.g., most characters can be quickly 
determined by their component size. However if characters 
touch a line, as often in the case of line drawing graphics, the 
characters have to be segmented from lines. One technique. for 
segmenting characters from line structures is to determine the 
high neighborhood line density (NLD) areas in the line 
structures [8]. Such areas are candidates. 



~ 

;;:'3' Ex 

~ 

I ;:; _eo; 
1-:. -.~----~.-=.-=.-! 
~::;:;:-~ 

~ 

Figure 5. Bottom-up groupi~g tec!mique. Chru::acter blocks ~e 
merged into words, words mto hnes, etc. usmg a clustenng 
technique. 

" 

I 
'j' 

I 

I .,,-" 

II I I I 
"""" ................ :: 

.. , 

Figure 6. Adjacency tree: (a) input graphics, (b) outermost 
component ab (c) inner component a1 b and (d) complete 
adjacency tree. 

the application of different operators for bottom-up 
grouping can be coordinated by a production system. Examples 
of specific rules in such a system are: 
if connected components [ers size [s] is larger than tJ 

then the component is graphics with likelihood L1, 

if neighborhood line density (NLD) on graphics is high, 
then the high NLD area is a character area with likelihood 0.. 

A sketch of control flow follows: 
1. Size, position, and direction data of every connected 

component is collected. 
2. The components are classified according to size into 

graphics, characters, and noise and their likelihoods are 
determined. 

3. Character components are grouped together as character 
areas using vector distance rules. 

4. High NLD areas in graphics component~ are. sep~ated out as 
char~ters touching lines and theIr hkehhoods are 
determined. . 

5. If another character exists near the touching character area its 
likelihood value is increased. 

6. The cut-off part in a faded line is repaired. 

4. LABELING 
Blocks determined by a segmentation process usually need 

90 

to be labeled in a subsequent step. There are several techniques 
for classifying a given block into one of a small set of 
predetermined document categories. 
Statistical Approach 

Simultaneously with component coloring, the following 
measurements are taken: total number of black pixels in the 
segmented block, minimum x-y coordinates of a block and its 
x-y lengths, total number of black pixels in the original image 
for the block, and number of horizontal white-black transitions 
in the original image block. 

The next step is to classify each block according to 
content. This is done by computing several features for each 
block from the above measurements and then using a linear 
pattern classifier. The features computed are: the height of a 
block, its eccentricity, the ratio of the number of black pixels to 
the area of the surrounding rectangle, and the mean hQrizontal 
length of the black runs in the original data from the block. 

A block is determined to be text if it is a textured stripe of 
mean height H m and mean length of black run R m' The 
distribution of values in the R -H plane derived from sample 
documents are observed to determine the discriminant function. 
Low R and H values represent regions containing text. To 
determine the threshold values of Rand H that define the text 
region in the R-H plane, an adaptive method is used. This 
method estimates Rm. Hm and the standard deviation of Rand 
H. These values are then used to classify the various blocks by 
using the following pattern classification scheme that assumes 
linear separability: 

• Text: 
if R < C21 x Rm and H < C22;( Pm.. 

• Horizontal solid black lines: 
if R > C21 x Rm and H < C22 x H m' 

• Graphic and Half-tone images: 
if E > 11 C23 and H > C22 x H m' and 

Vertical solid black lines: 
if E < 1 I C 23 and H > C 22 x H m • 

A Distance Mapping Shape Measure 
A shape measure for determining whether a component is a 

character, line drawing, or thresholded gray-level image is as 
follows [22]. Given a connected component S frrst a distance d 
is computed for each pixel of S as follows. Distance d is a 

function of the two Cartesian coordinates x, y «x, y) E S) and 

an angle <p measured from the x axis (00 

~ cp 1800

). It is defined 
as the length of a line segment B IB2 that passes through the 

point (x, y) of S and makes an angle <p with the horizontal. The 
two opposite border points B 1, B2 of S are such that the line 
segment B1B2 is entirely inside S. Three distance mappings are: 

Dmin (x, y) = mincp[d(x, y ,cp)], or the length of the shortest 
chord through (x, y), 

D max (x, y) = maxcp[d(x, y, cp )], or the length of the 
longest chord through (x, y), and Decc (x, y) = Dmax (x, y) I 
Dmin (x, y). 

These mappings reflect geometrical properties of objects 
within binary images. By averaging D min within S the mean 
minimum border to border distance dmin can be calculated. This 
provides a fairly good estimate for the mean line thickness of 
line shaped patterns. To discriminate between line shaped 
patterns and more compact ones, the average of D ecc ,decc is a 
useful measure. Similarly, ,dmax reflects the mean maximum 
border to border distance. 

Further shape factors are desirable: dmin can' be used to 
derive a shape factor which equals one for the most compact 



pattern, an ideal circle, and is greater than one in all other cases: 
/1 = A / d2

min with C 1 = 16 / 9n in continuous space (or 
number of pixels in disscrete space). This global measure 
reflects the "line shapeness" of pattern, i.e., their compactness 
independent of A more specific characterization can be obtained 
by means of additional features, e.g.,/z = C2 x A / d-2

max with 

C2 = 4/ n in continuous space (1.2.388 in discrete space) 
which is invariant with respect to the size of the pattern. Unlike 
/1' h is capable of discriminating a straight line from an L
shaped line having about an equal number of pixels and about 
equal line-thickness. 
Handwriting versus Print Discrimination 

Given a region that contains either printing or cursive 
script, a method can be devised to determine its nature by 
observing regularities of white-to-black and black-to-white 
transitions. Figure 7 illustrates. 

, 
• 

(a) 

_uo-
.;r, # ,~.M~". 
J',,',- A-- ,;G/ 

~7;O 
c:k~, .£ 30.326 

hI 

Figure 7. Printed text can be distinguished from cursive 
script by determining regularities: (a) printed text and 
histogram of black-white transitions in vertical direction, (b) 
cursive script and corresponding histogram. 

The method involves computing several filter histograms 
of the test region. One example of a filter is a white-to-black 
transition separated from another white-to-black transition by n 
units along the horizontal direction. The histogram is obtained 
by counting the number of such transitions that occur for each 
value of n. Different histograms are obtained by considering a 
white-to-black transition separated from a black-to-white 
transition in the horizontal/vertical directions. The histograms 
for printed text tend to have several regular peaks while 
handwriting tends not to have such peaks. Thus the test 
becomes one of classifying the histogram as regular/irregular. 
The classification can be done either by treating the histogram 
itself as a feature vector or by extracting an appropriate feature 
vector from the histogram. 
Rule-Based Approach 

A method of associating labels like line-of-characters, 
paragraph, title, author, abstract, text columns or text lines, 
column, photo, etc., to the blocks on the basis of their extent, 
absolute and relative position is then needed. This can be done 
by a rule-based expert system that uses a knowledge-base 
comprising layout and composition rules for specific classes of 
documents [11]. Using physical (syntax) information, the rule
based system proceeds on its labeling of the blocks (referred to 
3!\ semantics).. These rules can determine line-of-charact~rs, 
paragraphs, columns, photos etc. using concepts of width, 
aspect ratio, number of cuts, number of siblings at a particular 
stage and other such related information. Rules are of the 

91 

following type: 
• line of characters: sequence of adjacent character blocks of 

some height, separated by character-segmenting rule, 
• paragraph: sequence of blocks of line-of-character of same 

length, separated by line finding rule, 
• column: large blocks with approximately equal frequency of 

"I" and "0" pixels, and 
• photo: sequence of paragraph blocks of same width, 

separated by paragraph-cutting rule. 
For a complete consistent set of rules, the l~beling process 

has worst case complexity equal to the product of the number of 
blocks and the number of labels. 

5. GRAPHICS PROCESSING 
Line drawings and tables are commonly encountered in 

documents. Their analysis involves a raster to vector 
conversion. The aim of a raster to vector process is to convert a 
binary pixel representation of line-work into a connected set of 
segments and nodes. A segment is typically a primitive such as 
a straight line or a parametric curve. Straight lines in vector 
form are specified by their start positions, extent, orientation, 
line width, pattern, etc. There have been several different 
approaches to vectorization, including: pixel- based thinning, 
run-length based vectorization, and contour-based axis 
computation. 

Pixel-based thinning algorithms require multiple passes 
through the data set. During each pass object pixels are deleted 
based on local neighborhood criteria. Such methods gradually 
thin thereby thinning the image down to unit width (Figure 8). 
A single pass algorithm could be obtained by using a set of local 
3 x 3 operators and applying them in a quasi-parallel manner to 
generate a marked skeleton; quasi-parallel application means 
dividing the image into four disjoint sub-images and applying 
the operators to each sub-image in turn [5]. These techniques are 
slow as they operate on individual pixels rather than on groups 
of pixels. Also a lot of time is wasted in looking at white pixels 
more than once; only about ten percent of the pixels on any page 
of text are black and hence this wastage is quite considerable. 

Run-length based vectorization [15] differs from pixel
based thinning in that the image does not go through multiple 
passes to get at a thinned image of unit width. Instead, vectors 
are drawn with certain approximations resulting in this. The 
method aims at this by tracking the black segments along scan 
lines and using aggregates of such segments to operate upon. 
The algorithm achieves the objective by converting the input run 
length encoded image into a graph and analyzing the graph. The 
graph also has information which could be used to provide many 
more useful features for character recognition. It is found that 
this method works better for lines perpendicular rather than 
parallel to scan lines. The complexity of pixel based thinning is 
of the order of the number pixels. The complexity of run-Ie~gth 
based thinning is approximately of the order of the number of. 
run length code segments. 

Some problems that need to be specially examined are 
handling of dotted lines, determining end points of lines, 
effectiveness of thinning, determination of vector intersection 
and curve fitting versus piecewise linear approximation. Issues 
in understanding of graphics are discussed in [3, 4, 10]. 

6. TEXT RECOGNITION 
A text recognition or reading technique takes an image of 

text and maps it into an ordinal machine representation, e.g., 
ASCII. Methods of reading text can be divided into two related 
but distinct categories: isolated character recognition and 
character recognition in context. When the types of font are 
known a priori, or when few fonts are encountered, a highly 
reliable. isolated character recognition technique can be designed. 



Figure 8. Example of Thinning Line Drawings. 
Isolated character recognition involves extracting a set ot 

predetermined features from the character image. The features 
used are chosen for their ability to discriminate between classes. 
For instance, character height in millimeters is useful for 
distinguishing between lower case letters with ascenders, (e.g., 
b, d, h, k, 1, t) and letters without, (e.g., a, c, e, n, 0, r, s, u, 
v, w, x, y, z). Thus the character is regarded as a point x in a 
multi-dimensional feature space. Classification is accomplished 
by using discriminant functions which effectively partitions the 
feature space; typically each class i has an associated 
discr~minant function di and x is assigned to the class that 
maximizes di (x). The discriminant functions di, or their 
parameters, are determined statistically from a large set of 
samples during a training phase. Character recognition 
techniques quite often use only binary-valued features. since 
they lead to simpler feature representation and discriminants 

6.1. Isolated Character Recognition 
Typical of such a method is one [17] that treats a binary 

character image on a 16 x 16 grid as a 256-element binary 
feature vector x. The classifier uses second order polynomial 
discriminant functions derived using least mean squared error 
considerations. The form of the discriminant function is: di = 

aOi + aliYl + a2iY2 + ... + amiYm , where Yi are either 
components of x or products of pairs of components. Since the 
number of such terms is large, (Le., 256 + 256C2), only a subset 
is used. Approximately m = 1200 is determined where the pairs 
of pixels are heuristically chosen. In the 16 x 16 raster field, 
more pairs are chosen at the center than in the periphery. The set 
of coefficients aji are represented as a matrix A of size k x m. 
Thus the computation of the k discriminant functions can be 
expressed as the matrix multiplication: d[k x 1] = A[k x m] . 
y[m x 1] . The index of the member of d which is closest to 
unity is the class to which the input is assigned. 

6.2. Character Recognition in Context 
In most printed documents characters hardly ever appear in 

isolation. Several approaches to recognizing characters in 
context are known [19]. Contextual infonnation is usually in the 
fonn of a lexicon of acceptable words. It can also be in the fonn 
of n-grams, i.e., legal letter types, or letter transition 
probabilities. 

One approach is to recognize characters of words and then 
post process (correct) any errors by using a lexicon of words 
and a distance measure between words. Another approach is to 
use lexical information to limit the number of possibilities in 
recognizing individual characters to find the nearest word. This 
is done by weighting the choices for a given character by (i) its 
occurrence in the lexicon and (ii) its frequency of occurrence in 
the text. Thus the unlikely choices are eliminated and the 

92 

resultant is guaranteed to be in the lexicon. Integrating 
contextual information into the character recognition process 
leads to better performance than the two step approach of 
character recognition followed by error correction [20]. The 
third approach is to extract features from the entire word and 
attempt to classify it using a lexicon organized by word feature. 
A simple set of features are used in a first level analysis to select 
a neighborhood of words and a more detailed analysis 
discriminates between a small subset of character classes [6]. 

6.3. Type Font Analysis 
A document analysis system needs to distinguish between 

text of different fonts. In the terminology of typography, a font 
is a collection of upper and lower case letters and special 
characters of one particular typeface, style, and size. The 
tvoeface determines the overall design of one character shapes. 

The style refers to the average stroke width of the characters 
~ol~ace versus lightface (nonnal), and the posture of the body: 
ItalIC versus roman. 

The task of character recognition is considerably simplified 
if the font is detennined ahead of recognition. Variability of 
characters is due to two sources: the type font and noise. Given 
the English alphabet in several fonts, the style of any given 
letter, say "B," is different in each font. However within any 
one type font certain aspects of the style of the "B" are identical 
to the stylistic aspects of the other characters in that font, e.g., 
the lower left sides of "B" and "D." By providing a framework 
within which this repetition of stylistic aspects in a type font can 
be expressed explicitly, it can be used subsequently to augment 
the recognition algorithm, e.g., knowing the font, a decision 
procedure for that font can be applied. 

Detennining the stylistic consistency of a given font 
involves finding elements such as serifs and then finding their 
relationships to strokes to which they are joined. A set of rules 
for type font analysis considering only machine printed fonts 
taken from the Roman and sans-serif families is given in [1]. 

6.4. Linguistic Analysis 
The role of language in the recognition of images of text 

has been little explored beyond the word level. Here we 
describe a linguistic approach to recognize whether a given two 
dimensional block of text is an address. If it is an address, a 
parse tree is obtained. The method exploits spatial infonnation 
in its analysis, i.e., the space between words or lines is 
important. 

In determining the destination address on a mail piece 
image with several two-dimensional blocks of text, it is 
necessary to syntactically analyze the recognized characters in a 
candidate block by using spatial infonnation such as character, 
word and line spacing [21]. A system has been developed to 
perform this syntax analysis by attempting to parse (label) 
sub elements of the block of text and produce a parse tree 
representing the labeling of the constituents [13]. This labeling 
identifies words corresponding to the city, state, zip code, and 
street name, among others. Several significant changes have 
been made to a standard Augmented Transition Network (ATN) 
parser [18] including word abbreviations, spatial feature 
analysis, and heuristic parsing. 

This module takes as input a sequence of lines of sentences 
(subsequently called a sentence block). This input, in the form 
of ACSII characters, is then preprocessed to record the number 
of horizontal blocks before each word and record this spatial 
infonnation as lexical features of the input word. A similar 
preprocessing operation is perfonned to record the vertical 
spacing between lines in the block but with the spatial separation 
recorded as a special word inserted directly between the line of 
the input and later handled as another word in the input stream. 
This provides the parser with spatial information needed to 
check if a word or line is "too far away" from the remaining 



words to be considered. 
This preprocessed sentence block will be accepted by the 

parser if and only if the sentence block has the syntax of an 
address block. If the input sentence block is acceptable in terms 

. of t?e gr~ar and lexicon, theri the structure (parse tree) ·of the 
regIon ~ill be passed 1.<> th~ generalized rule-based region labeler 
for use In the determmation of the correct sending address as 
opposed to the return address. 

The address recognition module incorporates the four 
assumptions described below: 
1. When a block in initially segmented and passed to this 

address ~ecognition unit, .e~traneous printed material may be 
present In t?e block. ThIS IS dealt with by adding heuristic 
arcs (descnbed below) to the grammar which will allow 
c~de ~tching of the beginning of each line and result in the 
sklppmg of the remainder of the text line suing the 
generalized TO arc [18]. 

2. If the tex~ block contains an ambiguous address, then the 
~)Utput w~l1 be a parse tree representing all possible 
mterpretations of the block. 

3. This unit will not perfo~ context matching between the city, 
state, and street name With the five of nine digit zip code 
Context checking is also not performed between othe; 
com!?<;ments of the address since it is not a necessary 
condition for a text block to be an address block. 

Parser M odijications 
~he major c.hanges to the standard parser include the 

capt~nng of spatlal features such as end of line and word 
spacmg, ~d the addi~on of abbr~viation handling . 

. . Spatzal Propertzes: A major parser modification was the 
additlon of a spatial acquisition mode for capturing the number 
of space~ before each word and adds this spatial information to 
~ach leXIcal form of the current input word. This information 
I~cludes the number of blank spaces prior to a word the 
dIstance to the left! top, an~ ri~ht margins and also the length of 
the wor~. Below IS a partial mput to the parser after the initial 
conv~rslOn ~f physical spaces in the input to lexical features 
assocIated WIth the words. 

(buffalo«(root. buffalo) 
(ctgy . city) 

... ) 

(parts. 1) 
(head-space 3) 
(left-margin-space 3) 
(top-margin space 0) 
(word-length 7) 
(right-margin-space 29) 
(line-length 32») 

If ve~cal sp~cing is. present in the input, then the block will be 
hneanzed WIth the msertion of a new line word of the form: 
@nnnn where @ represent the start of a new line, and the nnnn 
represents the.nu.mber of.units (lines) in the vertical spacing. 

Abbrevzatzons: Smce many of the words in an address 
block are abbreviations such as Ave, St, NY, PA, S, N, W, a 
method was developed to associate these abbreviations with their 
expan~e~ forms. ~o facilitate the lexical look-up of 
abb~evlation~ and aVOId the repetition of lexical words with 
snrul.ar mearung, a new property was used to equate a word with 
a senes of other words. 

A grammar corresponding to the bottom two lines of a 
standar~ address has includes the structures of the PO box, 
street, CI~, and state ~elds as well as the five (or nine) digit zip 
code. Th~s grammar IS complicated by the possible presence of 
punc~uatlon between wor~s and the spatial information 
~entlon~d ~b~ve. Sometlmes the punctuation and spatial 
mformatlon IS Important. For instance, if a comma is present, 

93 

then it is a separator between the city and state name. Also, if a 
new line word is present, then it is most likely the termination. of 
a multiple word phrase such as a city, state, or street name. 

. The gra~, in addition to containing arcs representing 
the bottom two lines of a standard address also contains heuristic 
rules for detecting and skipping other possible input lines. That 
is,. if the first word on a line is a personal title (Dr., Mr., Ms., 
MISS, or Mrs.), or a personal first name, then the remainder of 
the line would be ignored. Another skipping rule is for the 
detection of a standard presort codes usually present on the top 
line of an address block. 

For a sentence block to be parsed as an address region, 
several constituents must be identified. For instance, if more 
than one line is present in the address region, then the 
city/state/sip line must start on a new line. Another necessary 
element for a block to be parsed as an address block is the 
presence of a state name followed by a zip code (either on the 
same input line of on the following input line). 

The grammar, initially, makes one pass through the input, 
attempting to locate a possible state name. If a state name is not 
found, then the parse will fail. If, however, a state name is 
found, then the state name and line number are recorded for later 
processing and a second pass is made through the input utilizing 
a more robust grammar for detection of other constituents. This 
preliminary detection of the state name provides an efficient 
means for detecting a necessary component of the address and 
reduces the computational cost of parsing the entire address 
region. 
Lexicon 

The lexicon contains generally five different types of 
entries corresponding to the street, city, and state names, street 
keywords (such as avenue, street, circle, parkway), and other 
keywords most often present in the address region of mail pieces 
such as personal names and titles. As was mentioned 
previously, the lexicon need not contain all possible street and 
city names but parses of an input sentence blocks containing 
these "missing" cities of street names would result in weak 
parses. 

The grammar entails 106 states, 178 arcs, and a small text 
lexicon which contains 188 unique words with entries for all 50 
states (and their abbreviations), 32 cities, 20 street names, and 
20 street keywords. To judge the effectiveness of the keyword 
approach in guessing a city name, the Directory of Post Offices 
(DOPO) data base was used. A total of 25,630 on word city 
names were encountered with over thirty percent (7,843) of 
these city names ended in the above mentioned letters. For two 
word city names. 7.437 cities were encountered with over 

seventy-four percent (5,522) of these having first or last words 
as those mentioned above for two word city names. This shows 
that. these patterns are a good indication of a city name, however, 
testmg was also done to compare the number of English words 
(advertising material) that would be wrongly mapped into a city 
name based on these rules. Using the Brown Corpus containing 
43,264 English words, a total of only 79 (0.18%) English 
words matched the one word patterns. A comparison of the two 
word pattern was not possible with the lack of contextual 
information in the corpus. 

The parses of an input sentence which has been accepted 
using the grammar and lexicon is shown below, where the 
preprocessed input sentences are also stored in the parse tree as 
the first element using the form mentioned above. 

(address(input-sentence 
(112411 main @2 n 1.1 java n 1.1 y 1.115210211;141281) 
(line starts (00») 
(spatial (word (0 W4 1 W4 0 WI 0 WIIW4 1 WI 0 WI 

OWl OWll W5 OWl OW4» 
(line (L9 2 L23»» 

(prepass (states«state (state-name (new york» 



(puncts (1.11.1»» 
(level (01») 
«street-line (street-number 112411) (direction nil) 

-(street-name maiii) (street-keyword nil) 
(apartment nil) (puncts nil) (street-guess nil» 

(bottom-line (city (city name (nortbjava» 
(parts 2 (puncts (1.1 nil» (guess t» 
(state (state-name (new york» (puncts (1.11.1») 
(zip (zip-location after-state) 

(ninezip 11510241281) (fivezip nil»»). 

7. PICTURE PROCESSING 
A document image understanding system needs to integrate 

the information contained in photographs with the information 
contained in other fields such as with the text and line drawings. 
Often an understanding of the photographs is critical to 
understanding the narrative. Deriving descriptions of the 
contents of photographs is the subject of many computer vision 
projects today. 

8. CONTROL STRUCTURES 
The coordination of several processes is of central 

importance in a document understanding system. The control 
structure allows the application of the appropriate process. For 
instance, there may be more than one way of binarization. The 
method to be applied is determined by the control structure. 

Several efforts towards designing control structures for 
document unde~tanding are described [8, 9, 12, 23]. A method 
based on production systems and blackboard communication 
first proposed in the context of speech understanding holds 
promise for document understanding. 

The mechanism described in [8] is based on a production 
system. When the production system needs data the mechanism 
causes the appropriate module to start collecting data. In this 
mechanism each connected component is treated as a data unit. 
~n array, which is a specialized blackboard is used for the 
'read/write area in both the production system and program 
modules. The blackboard is made up from three planes of 
identically sized arrays. Data, indicators, and program modules 
names and arguments are respectively stored in these planes. 
Data concerning positions, size, likelihood, and attributes for 
connect components are stored in the first data plane. The 
indicator plane indicates whether or not the value in the 
corresponding position in the first plane has already been 
collected. When the production system requires some data for 
matching, the indicator is checked frrst. If the desired data has 
already been collected, the values in the data plane are 
transferred to the production system. In the case where the data 
has not yet been collected, the program module stored in the 
third plane is activated and its function is carried out. The 
program module function determines the data and forwards the 
values to the data array. 

Advantages of using production systems in document 
understanding are: 
• easy to apply either an additional technique to an object that 

is hard to interpret with only one technique, or a retry 
process having modified parameters, 

• processing knowledge is expressed as rules, thus software 
maintenance (e.g., modifying or patching of a program) 
becomes easier, and 

• as the processing is not carried out over the entire picture 
uniformly, but only in necessary segments, high efficiency 
is obtained. 

An Expert System 
A production system that is organize9 with different levels 

of production rules that perform an analysis of a document 
image, and interpret and classify the various regions of printed 
matter on the document is given in [12]. The control flow is as 

follows: the document is first digitized and the resulting digital 
image is segmented to obtain data about the various printed 
regions in the document. This data includes the intrinsic 
properties (e.g., shape, size-:-aspect ratio, etc.) of each ·of the 
identified regions, as well as the spatial relationships between 
the various identified regions in the document image. The 
control structure then uses the knowledge base to examine this 
data, and attempts to arrive at a consistent classification for each 
of the identified regions, or blocks. The system consists of 
three levels of rules. 

If the data from the initial segmentation of the image is not 
sufficient for an unambiguous interpretation of the document 
image, then the system decides to obtain more data from the 
given image. Thus, any further image processing operations 
that are required are progressively invoked under the supervision 
of the inference engine. These operations could include further 
segmentation of the image, color fIltering, text reading, etc. 

A goal-driven (top-down) approach is used by this system, 
which uses a hypothesize-and-test strategy for arriving at its 
conclusions. Thus, the system makes hypotheses about 
different intermediate conclusions and chains backwards through 
the rules in order to test the hypotheses. In trying to satisfy a 
hypothesis, some other hypotheses may be generated which 
must first be tested before the original hypothesis can be 
considered to be justified. Thus, an entire set of backward
chaining processes are set up, and the system only reaches a 
satisfactory conclusion when all these processes have run to 
completion. 
The Knowledge Base 

94 

The knowledge base consists of a set of rules that embody 
knowledge about the general characteristics about document 
images. These rules are expressed in terms of predicates in first 
order predicate logic. The rules in the knowledge base are 
Knowledge rules. These rules define the general characteristics 
expected of the usual components of a document image, and the 
usual relationships between such components in the image. The 
usual relationships, e.g., the title being above the author names, 
the abstract being above the first paragraph of text, the footnotes 
being at the bottom of the page, etc. are generally true of such 
documents. Intrinsic properties, like the block-to-white pixel 
ratio for half-tone figures in the image being larger than the 
corresponding ratio for text, are also true in general for such 
blocks. From such known facts about these kinds of document 
images, rules are constructed that can be used by the inference 
engine to make inferences about the various identified blocks on 
the given document image. 
The Control Structure 

The control structure for the expert system consists of an 
inference engine which uses the knowledge base to make 
unambiguous inferences about the classification of various 
blocks in a given document image. The inference engine is also 
rule-based, and contains two levels of rules: Control Rules and 
Strategy Rules. These rules regulate the analysis of the 
document image, and decide when a consistent interpretation of 
the image has been obtained. The inference engine uses a top
down approach in arriving at its solution, since the solution 
space is not very large, and a lot of knowledge exists (in the 
knowledge base) about the domain. A backward-chaining 
process is used by the control structure. 

The rules comprising the inference engine are also coded in 
terms of predicates in first-order predicate logic. The control 
structure determines the order in which these rules are executed 
in order to test various conditions effectively. Control rules can 
be focus-of-attention rules or meta-rules. For example, at any 
given stage of the analysis, control rules can decide that all the 
relevant knowledge rules for footnotes be executed so as to test 
whether the given block is a footnote. Strategy rules can guide 
the s~arch in a more general way, i.e., they can determine what 



strategy is to be followed at any given time for analyzing the 
image.' :This means that the strategy rules determine what the 
order of ~xecution of the control rules will fie. 

Representation of Uncertainty 
The system has to deal with many situations where a 

combination of rules, rather than a single rule, lends credence to 
a particular hypothesis. Thus, the success of each of these rules ' 
adds evidence towards that hypothesis. If the total evidence 
~btained !r~m~_the successful rules is sufficiently high, then the 
hypothesis is assumed to be true, and the next stage in the 
analysis process can then be tackled with the assumption that the 
given hypothesis has been confirmed. To deal with such a 
scenario, each Knowledge Rule in the system is given a certain 
confidence value between 0 and 1. When the knowledge rules 
for testing the characteristics of a certain type of block are 
executed, the confidence values for all the rules that succeed are 
added up. The sum thus obtained indicates the certainty factor 
for the conclusion obtained from the control rule which invoked 
these knowledge rules. This certainty factor is used for the 
purpose of ordering the conclusions at any given stage so that 
the more likely conclusions can be examined in further detail 
before the less likely ones. This has the effect of making the 
search process more efficient, thus reducing execution time in 
the system. 
Discussion 

The wisdom of using production rules to represent 
knowledge has been the topic of discussion among many AI 
researchers. In the domain document understanding, a rule
based system is extremely elegant because unlike natural scenes, 
documents are very structured in character, and thus knowledge 
about features of documents can be very effectively formulated 
in terms of production rules. There are other advantages to 
using production rules in document image understanding. First, 
it is easy to apply either an additional strategy to a region that is 
hard to interpret with only one strategy, or a retry process 
having modified parameters. Second, software maintenance 
becomes easier, since addition/modification of rules is a 
relatively simple process that does not disrupt the rest of the 
system. Third, in a production system the processing is not 
carried out over the entire image uniformly, but only on 
necessary segments; thus, high efficiency is achieved. All these 
reasons make production rule-based systems eminently suitable 
for use in the domain of document understandin~; 
9. DISCUSSION 

Document image understanding is a task that begins with 
pixel processing and ends with complex symbolic reasoning. 
Thus it is an area of research that draws upon techniques of 
image processing, pattern recognition, computer graphics, 
natural language processing, and artificial intelligence. There is 
an intense level of activity in this field in Japan and in Europe. 
Interest in this topic is also growing in the United States. 

Several of the components for building a document 
understanding system are now well-understood, e.g., 
component detectors, line detectors, single font character 
recognizers, text parsers, etc. Several other components need to 
be refined, e.g., techniques for text region determination. 
Multifont character recognition without operator input will 
continue to be a challenging problem for the foreseeable future. 
The problem of raster to vector conversion of line drawings is 
not as formidable but several problems remain, e.g., handling of 
dotted lines, global considerations in thinning, etc. 

The coordination of component processes is a problem that 
has been addressed in other domains such as speech 
understanding. The coordination of document understanding 
processes will have to be done using similar techniques with 
access to domain knowledge. Due to advances in several related 
areas it can be concluded that document analysis is now a task 
that is well defined and of a moderate level of complexity. Thus 

95 

,the pr~spects of tangible results are reasonably good. 

ACKNOWLEDGEMENT 
Several members of the Document Image Understanding 

Group at Buffalo contributed to this work. In particular, Jon 
Hull, Debashish Niyogi, Paul Palumbo, Joseph Piazza, Steve 
Tylock, and Ching-Huei Wang. Gregory Zack of Xerox 
Webster Research Center provided the impetus for this work and 
many suggestions. This work was supported in part by the 
United States Postal Service contracts 104230-84-D0962 and 
104230-85-M3349. 

10. BIBLIOGRAPHY 
[1] C. Cox, B. Blesser and M. Eden, The application of type 

font analysis to automatic character recognition, Proc. of 
Second IJCPR, Copenhagen, 1974,226-232. 

[2] W. Doster, Different states of a documents content on the 
way from the Gutenbergian world to the electronic world, 
Proc. Seventh ICPR, Montreal, 2, 1984,872-874. 

[3] M. Ejiri, T. Miyatake, S. Kakumoto, S. Shimada, and H. 
Matsushima, Automatic recognition of design drawings 
and maps, Proc. Seventh ICPR, Montreal, 2, 1984, 1296-
1305. 

[4] R.P. Futrelle, A framework for understanding graphics in 
technical documents, Proc. IEEE-CS Expert Systems in 
Government Symposium, McLean, VA, 1985,386-390. 

[5] J.F. Harris, J. Kittler, B. Llewellyn, and G. Preston, A 
modular system for interpreting binary pixel 
representations of line structured data, in J. Kittler, K.S. 
Fu, and L.F. Paul (eds.), Pattern Recognition Theory and 
Applications, D. Reidel, 1982,311-351. 

[6] J.J. Hull and S.N. Srihari, A computational approach to 
visual word recognition: hypothesis generation and 
testing, Proc. IEEE-CS Conference on CVPR, Miami 
Beach, 1986, 156-161. 

[7] K. Inanaga, T. Kato, T. Hiroshima, and T. Sakai, 
MACSYM: A hierarchical parallel image processing 
system for event- driven pattern understanding of 
documents, Pattern Recognition, 17(1), 1984,85-108. 

[8] K. Kubota, O. Iwaki, and H. Arakawa, Document 
understanding system, Proc. Seventh ICPR, Montreal 1, 
1984,612- 614. 

[9] I. Masuda, N. Hagita, T. Akiyama, T. Takahashi, and S. 
Naito, Approach to a smart document reader system, Proc. 
IEEE-CS Conference on CVPR, San Francisco, 1985, 
550-557 

[10] F.S. Montalvo, Diagram understanding: the intersection 
of computer vision and graphics, Mass. Inst. of 
Technology, AI Memo 873,1985. 

[11] G. Nagy, S.c. Seth, and S.D. Stoddard, Document 
analysis with an expert system, Proc. Pattern Recognition 
in Practice II, Amsterdam, June 19-21, 1985. 

[12] D. Niyogi and S.N. Srihari, A rule-based system for 
document understanding, Proc. AAA/-86: Fifth National 
Artificial Intelligence Conference, Philadelphia, 1986. 

[13] P. Palumbo and S.N. Srihari, Text parsing using spatial 
information for recognizing addresses in mail pieces, Proc. 
Eighth ICPR, Paris, 1986. 

[14] P. Palumbo, P. Swaminathan and S.N. Srihari, Document 
Image Binarization: comparison of techniques, Proc. SPIE 
Symposium on Digital Image Processing, San Diego, 
1986. 

[15] T. Pavlidis, A hybrid vectorization algorithm, Proc. 
Seventh ICPR, Montreal, 1, 1984,490-492. 



[16] A. Rastogi and S.N. Srihari, Recognizing textual blocks in 
document images using the Hough transfonn, TR 86-01, 
Dept. of CS, SUNY at Buffalo, 1986. 

[17] J. Schunnann, A multifont word recognition system for 
postal address reading, IEEE Trans. Computers, C-27, 8, 
1978, 721-732. 

[18] S.C. Shapiro, Generalized augmented transition network 
grammars for generation from semantic networks, 
American J. of Computational Linguistics, 8(1), 1982, 12-
25. 

[19] S.N. Srihari, Computer Text Recognition and Error 
Correction, IEEE Computer Society Press, Silver Spring, 
MD,1984. 

[20] S.N. Sriharl, J.J. Hull, and R. Choudharl, Integrating 
diverse knowledge sources in text recognition, ACM 
Transactions on Office Information Systems, 1(1), 1983, 
68- 87. 

[21] S.N. Srihari, J.J. Hull, P.W. Palumbo,D. Niyogi and C
H Wang, Address Recognition Techniques in Mail 
Sorting: Research Directions, TR85-09, Dept. ofCS, 
SUNY at Buffalo, August 1985. 

[22] F.M. Wahl, A new distance mapping and its use for shape 
measurement on binary patterns, Computer Vision, 
Graphics and Image Processing, 23, 1983,218-226. 

[23] C-H. Wang and S.N. Srihari, Object recognition in 
structured and random environments: locating address 
blocks on mail pieces, Proc. AAAI-86: Fifth National 
Artificial Intelligence Conference, Philadelphia, 1986. 

[24] K.Y. Wong, R.G. Casey and F.M. Wahl, Document 
analysis system, IBM Journal of Research and 
Development, 26(6), November 1982,647-656. 

[25] H. Zen and S. Ozawa, Extraction of the fair document 
from mixed mode manuscript, Proc. Conference CVPR, 
San Francisco, 1985,544-549. 

96 



LIVING IN A DYNAMIC WORLD 

R.L. ANDERSSON 

AT&T Bell Laboratories 
Crawford's Corner Road (Rm. 4B607) 

Holmdel, NJ 07733 

ABSTRACf 

Today's robot systems take an egocentric view of the world, 
assuming that the world is largely static and changes from state 
to state only in response to robot actions. To a large extent, this 
is a consequence of the limited bandwidth of current 
environmental sensing systems, in particular, doing any kind of 
vision takes most of a second or more. 

We have designed and constructed a vision system based on 
a VLSI chip that locates objects at the full 60 Hz camera frame 
rate. Two systems provide a three dimensional description of 
object motion. In this environment, the robot must be capable of 
a sense of time: it must consider new data in the context of the 
old, and it must be aware of the temporal characteristics of its 
mechanism and processing electronics. We are exploring these 
concepts by creating a robot ping-pong player. 

1. INTRODUCfION 

Conventional robots live in a world that changes in very 
discrete steps, in response to clearly defined causes. Robot 
actions are interlocked with status lines and control signals to 
the outside world: 

move_to input_bin 
waitJor part...,present 
withdraw part 
move_to punch 
activate punch 
waitJor punch_done 
withdraw part 
waitJor output_empty 
move_to output_bin 
release part 

All events of interest are either directly sensed or directly 
caused by the robot, typically requiring a large number of 
discrete binary sensors. Sensors like vision can be brought into 
this framework by suitably restricting their functionality to 
discrete events (their function is also limited to start with), for 
example: take a picture now, the part is missing, the part is bad, 
or a good part is at (10 cm, 15 cm, 45 deg). The program can 
be represented by a simple finite state machine, and the time 
variable is effectively suppressed. We will refer to this model of 
programming as the discrete time approach. Although we can 
solve many useful tasks this way, it begins to break down as the 
robot, task, and environment become more sophisticated. 

Consider retrieving an object from a conveyor belt. The 
manipulator must be at the right place at the right time at the 

CH2345-7/86/0000/0097$01.00 © 1986 IEEE 
97 

right velocity to make a smooth pickUp. The conventional 
approach is to take a single snapshot of an object to find its 
position, then update its position using an encoder mechanically 
mounted on the conveyor belt. Paul [IO] illustrates servoing to a 
moving frame of.reference such as a conveyor. Pragmatically, 
this may be fine for many low accuracy applications, but 
suppose one would like to pick up the object using visual 
information exclusively. One approach is that of Weiss [I 1], 
who considers servoing directly based on visual feedback, though 
our eventual application precludes this. 

An alternative approach which appears similar to how a 
person might perform the task is to try to lead the object by a 
distance proportional to the expected time to get there at some 
reasonable expenditure of energy. As the arm approaches the 
object, we can refine its target position based on the currently 
observed object position and the arm's position and velocity. In 
contrast to the previous discrete time model, this strategy is a 
continuous time approach. 

Continuous time systems require high sensor bandwidth -
many sensor data points per second, and low latency - the time 
from the acquisition of data until it is applied to the control 
output. The latency is often significantly larger than the 
reciprocal of the bandwidth due to the use of pipelined parallel 
processing. In the case of single shot events, latencies include the 
fixed overhead of initiating and completing an operation. 

The system latency is the sum of latencies due to the sensors, 
the processors, and the actuators. The real world doesn't stop 
while each latency expires, so in a rapidly changing 
environment, the sensor data is incorrect by the time the 
actuator reaches a position based on that data. An object 
moving at only a meter per second (moderate walking speed) 
moves a millimeter per millisecond, so a millisecond error will 
cause most assembly operations to fail, and an error of one robot 
trajectory generator cycle causes a 2-3 cm error, enough to 
totally miss an object to be picked up from the conveyor. Since 
people perform assembly operations at up to 15 m/sec, timing 
into the tens of microseconds range might be required. 

We are interested in creating systems which can operate in 
situations with tight timing, position, and velocity constraints 
characteristic of a continuous time environment. The work 
described here is only part of a larger effort to make more 
intelligent robot controllers. In this paper we will scrutinize the 
requirements of a sense of time and outline a hardware and 
software approach to achieving it. We will begin by discussing 
our test problem in more detail. 



2. ROBOT PING-PONG 

As a sample problem, we have chosen a robotic form of 
ping-pong proposed by Billingsley [4,81. Ping-pong requires low 
latency in the sensors, actuators, and processing stages, and 
accurate system timing if the ball is to be directed along the 
desired trajectory. The robot controller must be capable of 
satisfying simultaneous position, velocity, and acceleration 
constraints. 

The modified ping-pong table is shown in Figure 1. It has 
been scaled down from a standard table to make it easier for 
(stationary) robots. The rules are generally structured to make 
the game as feasible as possible, and to make it possible for any 
successful robots to be able to play each other. For example, the 
ball must pass through each end of the table; no shots off the 
side are allowed, and both robots and the background must be 
black. 

Ball velocity can approach 10 meters per second, so available 
response time can range down to 0.2 seconds. A typical value is 
more like 0.4-0.5 seconds. Required paddle velocity is 1-2 
m/sec, tightly controlled as a function of direction. The paddle 
velocity need not be too high as the outgoing ball velocity is 
twice the paddle velocity plus the incoming velocity, subject to 
the elasticity of the paddle/ball. 

Complexity is added to the system by the mechanical 
configuration of the robot. The robot/paddle configuration must 
be able to cover a large (relative the robot's size) position and 
orientation set, and able to generate a controlled high speed 
motion at each point with minimal windup. 

To generate the required speed and reach, we use a PUMA 
260 robot with the paddle at the end of a roughly 0.5 meter 
stick perpendicular to joint six. A relatively slow motion of joint 
six provides large paddle speeds. The robot is hung upside down 
to keep the robot base from getting in the way. The paddle 
swings down on the ball rather than up. The robot positioning 
informally maximizes the usable working volume. Other robots 
with a larger reach, such as the PUMA 560, lack the necessary 
speed. SCARA robots are fast enough but don't have six 
degrees of freedom. 

Ping-pong requires only 5 degrees of freedom, but the robot 
produces six. The free dimension corresponds to rotating the 
handle of the paddle in the plane of the paddle surface. Since 
the robot's wrist is half a meter away, the paddle orientation has 
a drastic effect on reachability and orientability, and picking it 
well is essential to good performance. 

For simplicity, we ignore both spin and drag in trajectory 
calculations. The paddle velocity may be computed in closed 
form by requiring the paddle velocity to be normal to the paddle 
surface. Incoming and outgoing spins will require approximate 
techniques, perhaps with learning (iterative numerical solutions 
would be too slow). 

2.1 Computer System Architecture 

Our system is physically distributed over several processors. 
Each processor consists of a Pacific Microsystems PM68K 
processor (SUN-type 68000 based), a SKY Computers floating 
point board, 1 MB of memory, a network interface, a clock 
board we will discuss later, and miscellaneous 110 devices. The 
network is a custom small-area network featuring high 
bandwidth and low latency [11. Star connections fan out from a 
backplane bus to the individual processors. 

98 

Figure 1. Robot ping-pong table. 

The processor runs a multi-tasking operating system designed 
for real time performance, but with UNIX@ (AT&T Bell 
Laboratories) look-alike calls [51. The primary intertask (intra
or inter- processor) communications structure is a channel, a 
form of bi-directional UNIX pipe. A short (say 10 byte) 
message may be sent from one processor to another in about a 
millisecond, including all software overhead. 

Software is written on a microVAX@ (DEC) host running 
Unix, and downloaded into the 68000's for execution. The 
68000s may access files on the host, typically to read calibration 
data and write debugging output. 

2.2 Software Architecture 

Although the network is homogenous, we overlay a structure 
by means of the channels we open, and the allocation of 
peripheral devices to processors. The allocation is performed "by 
hand" based on observed execution times for different systems 
components. The structure for robot ping pong is shown in 
Figure 2. Rtd is a specialized debugger, "chief' is a sequencer, 
and the SP2000 is a video tape system, the Kodak/Spin Physics 
Motion Analysis System, able to record 2000 full frames per 
second. Debugging tools are an important factor in constructing 
working systems. 

Two vision processors drive two moment generator systems 
each, such that each processor has a stereo pair. One pair is 
looking at the far side of the table, one at the near side to 
achieve the proper field of view. All four cameras are genlocked 
together, so the vision processors can synchronously output an 
(x ,Y ,z) triplet or "I don't see anything" at the 60 Hz frame rate. 
The image being processed is quite simple, consisting solely of a 
white ball against a black background. However, the ball can 
be greatly blurred due to its motion relative the camera. The 
vision system will be described in greater detail in a following -
section. 

The next processor ("tranal") takes the (x ,Y ,z) data and 
segments and fits it on the fly to create parabolic segments. The 
trajectory data is predicted forward to find the intersection of 
the trajectory with a fixed vertical plane at the end of the table, 
which serves as a common "point of reference." This intersection 



Chief 

Tranal 

Figure 2. Task Structure. 

SP 
2000 

Robot 

data is then passed on to the final processor, the robot controller, 
still at the 60 Hz rate but with some additional latency. 

2.3 Robot Controller Architecture 

The robot itself is a Unimation PUMA 260. However, the 
electronics have largely been replaced. The LSI-ll and six 
6503s normally controlling the robot have been replaced with a 
total of four 68020 based machines: one is a PM68K machine 
with a 68020 daughterboard, the other 3 are custom machines 
also with 68020 daughterboards (Figure 3). The standard 
PM68K processor serves as the main process~r. Two c~s.tom 
boards serve as joint processors, each controlhng three Jomts. 
The third slave processor is strictly computational, off-loading 
the main processor. The memories of the slave proce~sors are 
accessible to the host but not vice versa, and slaves can mterrupt 
or be interrupted by the host, but not each other. 

To execute a typical motion, the program running on the 
main processor (the "user" program) calls up a motion initiator 
which performs the initial planning, computing variables for the 
path interpolation. The data is placed in the computational 
slave's memory, where the slave uses it to compute way poin~s 
along the trajectory at a "major cycle" rate, say 16 msec, m 
response to interrupts generated by the main processor. T~e 
way points are sent to the joint processors by the ~am 
processor. The joint processors are interrupted at a "mmor 
cycle" rate of 1 msec by an external .s~urce, causing .the servo 
function to be executed. One of the Jomt processors mterrupts 
the main processor every sixteenth minor cycle to create the 
major cycle. 

The purpose of this involved structure is to minimize the 
amount of work required of the main processor to support 
ongoing motions, maximizing the time available for planning, 
while keeping the details visible to the planner. A totally ~hared 
memory' architecture would even further reduce the nUlsance 
work required of the main processor. 

3. REAL TIME VISION WITH MOMENTS 

The cornerstone of the research described in this paper is a 
vision system which operates in "real time. n The system provides 

99 

Sun 
68020 

SKY 
FFP 

1MB 
RAM 

S/Net 
Intf'c S/Net 

Multi
~~------~-------r-------r----~Bus 

Slave 
Proc 

Joint 
Proc 
1-3 

Intf'c 
1-3 

1 2 3 

Joint 
Proc 
4-6 

Intf'c 
4-6 

4 5 6 
Joints 

CLOX 

. Figure 3. Robot controller architecture. 

To 
Other 
Clox's 

data with a sufficiently high bandwidth and sufficiently low 
latency that the data may be regarded as continuous for the 
class of problems we wish to consider, those involving interaction 
with a relatively macroscopic robot arm. A real time system is 
one that does its job in a time determined by external 
constraints, not just a system which is fast. Such a system can 
be used to watch moving objects, both in a conventional sense, 
or in more specialized domains such as aligning holes to be 
punched, or the apparent motion may be induced by the motion 
of the camera, when the camera is mounted on a robot arm or 
positioner. We would like to construct systems capable of 
extracting information· useful for manipulation and inspection 
from gray scale images of three dimensional scenes in real time. 

In general, we need to have full six dimensional information 
about the scene, three translational degrees of freedom 
describing object position, and three rotational degrees of 
freedom describing object orientation. For a vision system 
watching unknown objects, at least two camera. views are 
required to extract the six degrees of freedom, i.e. stereo 
(binocular) vision is required. Ping-pong balls are rotationally 
symmetric (three degenerate degrees of freedom), therefore only 
the three translational degrees of freedom need be computed. 
The 3-D vision system must first process each two dimensional 
monocular image, then combine the results to form the three 
dimensional analysis. Let us take a brief look at existing vision 
systems. 

Commercial vision systems are monocular, and most are 
capable of processing only binary images, typically by 
thresholding and run length compressing the image to reduce the 
amount of data before storing it in a fairly general purpose 
processor. Once read in, the data is processed for many tenths 
of a second before some decision is made. The canonical basis 
for these schemes is [6]; there are many current commercial 
imitators. Most of these systems are too slow to even be 
considered for continuous time robot control, but some. systems 
using specialized hardware are approaching this regime. The 
extensibility of these binary image schemes into the gray scale 
three dimensional world is limited, however. 



Image processing algorithms used for satellite image 
processing and television graphics, for example, can sometimes 
be made to run in real time with appropriate hardware when 
they operate on only local areas of the image. These algorithms 
take an image as input, and produce an image as output, such as 
an edge finding operator that produces a "line drawing." Such 
algorithms are not directly useful for robotics as they don't 
reduce the amount of information which needs to be processed, 
although they may simplify subsequent feature extraction 
operations. Reducing the amount of data to be processed without 
eliminating essential image content is fundamental to processing 
images in real time. 

Research systems typically read a gray scale image into a 
frame buffer before processing it for several seconds, minutes, or 
even hours. Both two and three dimensional systems are under 
study. Although these systems are steadily advancing in 
capability, their low processing rate precludes their use for robot 
control. As research continues, we expect more of the features 
of these systems to be integrated into hardware running at real 
time rates. 

A primary objective in constructing the vision system to be 
described was to build a system capable of processing simplified 
scenes at the "real time" rate necessary to use the data for robot 
control, to see what sort of system was necessary, and what 
would happen when we tried to use it. The overall approach is 
to make a "feature extractor" capable of extracting certain 
useful information from a complete video image streaming by at 
60 frames per second, without having to store it for later 
processing. More complicated systems might be built by 
combining mUltiple types of feature extractors operating in 
parallel with multiple image processors connected in series. 
Once we can perform the necessary monocular processing at the 
proper rate on a reasonable sized piece of hardware, we can 
duplicate monocular processors and add further processing to 
generate the full three dimensional data. We'll start off by 
describing the monocular processing. 

3.1 Moment Generator 

Moments have been in use in computer vision for some time 
[7,9], and their use in physics and statistics goes back much 
farther. The equation defining the moments Mm,n of an intensity 
array a j J is: 

Mm,n - ~ajJimr 
iJ 

where m+n (m,n ~O) is the order of the moment, i is the 
column, and j is the row. 

The zero through second order moments are sufficient to find 
the area, center of gravity, angle to major axis, and standard 
deviation along major and minor axes for an object, 
approximating the object as an ellipse. Second and higher order 
moments may be combined to form invariants which are used to 
characterize an object for purposes of discriminating among 
members of some set of objects. 

The amount of time required to compute gray scale moments 
has hindered their use. On a VAX 111780 with floating point 
accelerator, a direct calculation.of the zero through second order 
moments of a 256*256 image takes 6.5 seconds. 

The moment computation has been integrated onto a VLSI 
chip capable of computing a single zero through second order 
moment of a gray scale image in real time. Since there are six 
such moments, the moment processor module contains six chips. 

100 

A number of techniques have been used to make the chip 
possible, which will be discussed below. 

3.1.1 Power Vector Generation. We consider moment 
generation as a dot product: 

(2) 

where the elements of the vectors are in the same order as a 
normal TV scan: t=i+256j. The element P;,j of P will be 
referred to interchangably with Pi+256j. 

The equation defining pm,n is 

(3) 

The element PtO,O is one for all t. The first order moments 
require a counter for either x or y, depending on the moment. 
We can write the next value of each second order p as a 
function of the previous one, for example: 

with special cases for top of screen and left margin. We can 
build an iterative ji generator composed of a single counter, a 
shifter, an adder, some "and" gates, and a small control 
programmable logic array (PLA). 

3.1.2 Bit Decomposition. We can decompose ii as 

ii = 27ii7 + 26ii6 + ... + iio (5) 

If we substitute equation (5) into (2) and distribute, we obtain: 

Mm,n == 27(ii7,ji"',n) + 26(ii6,ji"',n) + ... + (iio,ji"',n) (6) 

Computation of the dot products in Equation (6) requires only 1 
by n bit multiplication, which may be implemented by n "and" 
gates, where n is the number of bits in p. 

At the end of each frame, we must compute 

Mm,n - 27F7 + 26F6 + ... + Fo (7) 

where 

(8) 

Equation (7) can be evaluated only once per frame (60 times 
per second) using Horner's Method of polynomial evaluation. 
The calculation is performed by the vision processor which 
controls the system. 

The Fk accumulators are identical, simplifying the layout of 
the chip. The bitwise decomposition used to obtain fast 
operation also provides significant flexibility, making possible the 
computation of moments of different regions at the same time, 
for example. 

3.1.3 Implementation. The techniques described above allow a 
moment generating I.C. to be constructed (Figure 4). The chip 
was designed using the MULGA symbolic layout system [12] in 
a 2.5 micron CMOS process and contains 10,214 transistors. 

Six moment generator chips are placed on a Multi-BusS 
(Intel) board with associated support logic. A preprocessor 
works independently on the intensity for each Fk bit, "and"-ing 
together an intensity map output and a location map output. 

The intensity map converts intensity values to the desired 
precision and alignment. The map may implement binary 
thresholding, intensity windowing, non-linear response 
correction, or any combination of the above, for example. The 
intensity map may be used to correct for scene illumination 



},~ \" :' 

~' 

~'~ 
~ .. , ." 'U .' ~ 

I 

--... -----
II: III1IIII 

Figure 4. Moment generator chip. 

problems or changes. 

The location map defines the region of activity of each Fk ; a 
bit is on if that Fk is to be activated at that position on the 
screen. To reduce the size of the location map, and simplify the 
host's job, regions are quantized into 8 by 8 pixel blocks. 

Additional information on the chip design may be found in 
[2], and on its use in [31. 

3.2 Three Dimensional Processing 

Two moment generator systems are capable of processing the 
images from a pair of TV cameras at the full 60 Hz rate. 
Moments are a linear operator that commutes with other linear 
operators, so in theory, the moments of the background could 
simply be subtracted from the moments of the image, leaving 
the moments of the ball. In practice, noise from the camera and 
analog front end dominates the signal from the ball. 

Instead, the intensity maps are used to separate object and 
background as follows. Intensities below a certain threshold are 
clipped to zero, saying in effect that anything sufficiently black 
should be ignored, in particular, various highlights off the 
backgrounds and supporting structures. On the other hand, any 
intensity above the threshold is considered as a gray scale value 
(relative the threshold). Importantly, this means that as the 
image of the ball is smeared towards black by the motion blur, 
the ball doesn't suddenly vanish, and the gray scale processing 
effects anti-aliasing, improving the numeric quality of the 
resulting centroids. 

In the thus simplified scenes, once the vision processor has 
executed Equation 7 several times and performed 

_ M}'O 
x - -- (9) MO,o 

_ MO,} 

Y - MO,o 

the location of the centroid is known in each image. While the 
second order moments aren't needed to find the location of ping 
pong balls, it is interesting to notice that they contain 
information about the motion blur that can be recovered 

10J 

quantitatively. 

Given that we have only a single object in the field of view, 
the standard problem of stereo vision, finding corresponding 
points in the two images, is eliminated. Since the orientation of 
the cameras is hard to control in practice, rather than a 
disparity based calculation, we represent each camera as a 4x3 
matrix, and find the ball location by solving four equations (one 
for each coordinate of each camera) in three unknowns (x, y, 
z) using least squares. The calculation can be done in closed 
form in 3 msec on the 68000/SKY combination. 

3.3 Experiment: Catching Balls 

The three dimensional vision system and robot controller 
function, and have been used to conduct a preliminary 
experiment: catching a hand thrown ping pong ball in a 
styrofoam coffee cup. The system reliably caught balls on 
trajectories resulting in viable robot configurations. The 
program made no attempt to catch balls that were not catchable 
by its straightforward strategy. Work progresses on replacing 
the "user" robot program for catching with a much more 
sophisticated one for hitting the ball, but the other system 
components remain largely unchanged. 

This initial experiment verified the operation of the vision 
system and robot controller, and served as an impetus for the 
analysis in the following sections. 

4. LOW LEVEL EFFECTS OF TIME 

As soon as the rate of change of the environment becomes 
comparable to the time constants of the components of the 
robotic system, we have to consider its effect on every part of 
the system, from sensor to processor to actuator. The next 
several subsections will detail these effects for each component. 

4.1 Sensors 

Unless the variables we are sensing are constant over time, 
any particular sensor output is meaningless unless associated 
with some particular time. The statement (sensor output) "the 
ball is 3 feet off the table" is useless, as it is inaccurate as soon 
as generated.· Sensor values must be stamped with the time at 
which they are taken, as this defines the only time they have any 
validity. 

Furthermore, the design of the sensor must be compatible 
with rapidly varying inputs, and able to define a precise 
timestamp for a given sensor reading. For example, sample and 
holds on the inputs to analog to digital converters prevent 
incorrect results from being generated, and the sample/hold's 
control input defines the sampling time very precisely. 

Vision systems are no exception to the rule. TV cameras are 
designed for relatively slowly changing scenes. The electrical 
output of a camera is some complex function of the time varying 
light input over the time interval (-oo,now) depending on the 
type of camera. 

For example, vidicons have a decay function such that the 
output at any time might be affected by some bright image 
many frames ago, in effect, the same as the persistence effects 
seen on CRT displays. Each point of the image is sampled at a 
different time as the beam sweeps over it, so a vertical bar 
moving horizontally generates pictures of a diagonal bar. This 
clearly makes the image interpretation process more complex. 

On the other hand, CCD cameras operate as pipelined 
device, integrating one image while reading out the previous one. 



There is no coupling from one image to the next, and no time 
varying response characteristics. Every pixel is effectively 
sampled at the same time. Because the electrical output due to a 
photon is not (strongly) dependent on the interval from its 
arrival to the end of the sampling interval, the center of gravity 
of a blurred image represents the average center of gravity 
during the sampling interval. For objects moving at essentially 
constant velocity over a sampling interval, we can assert that the 
object was at the center of gravity of the blurred image at the 
midpoint (center of gravity) of the sampling interval. The 
center of gravity is not affected by the motion blur from CCD 
cameras, so we can further assert that at the. middle of the 
integrating interval of the frame, the object really was at the 
computed location. In addition to their better accuracy versus 
vidicons, this is another good reason for using CCO cameras 
(which we do). 

4.2 Actuators 

The primary question with actuators is understanding just 
what the temporal component of a command signal is. For 
example, consider a simple binary output to close a gripper. The 
semantics of this signal have an implied "now" component: close 
it now! However, from a planning perspective, for example a 
program trying to minimize robot cycle time, these semantics 
are unhelpful, as the gripper may in fact take forever to close. A 
conservative designer in a discrete time architecture might even 
put in a microswitch that says "the hand is now closed," which 
may ensure that the system works, but does nothing to help 
planning. 

What we really would like to be able to assert is that after a 
certain period of time, a certain state will result. In the gripper 
example, this means we should be able to assert that after 50 
msec perhaps, the gripper will be closed. By making this 
additional piece of information available to the system, we make 
possible additional optimizations such as starting to close the 
gripper before the manipulator has arrived at the part. 

Of course, adding more arbitrary time constants to a system 
isn't desirable, which indicates the utility of systems modeling: 
we need to have good models of our actuators, whether they are 
binary actuators or whole manipulators. The gripper-closed limit 
switch is an aid to making models. 

When applied to servo systems, the control signals may 
similarly be given temporal characteristics, one common 
example being the position waypoint to which a servo is trying to 
position the joint. In our system the semantics of the waypoint 
from the trajectory generator to the servo is that the servo 
should position the joint at the specified position at exactly the 
start of the next major cycle, when the next waypoint is 
specified. 

In order for the servo system to be successful at convincing 
the joint to arrive at the specified destination at the specified 
time, various perturbing torques must be compensated. The 
output torque which must be generated to make an action occur 
must be supplied by the terms found in the servo equation of the 
joint. If the torque actually required by the manipulator differs 
from that computed by the servo function with no errors, the 
torque discrepancy must be "made up" by terms that are present, 
generally by a position or velocity error as the joint is moving. 
For example, the velocity damping necessary for stability will 
cause steady steady state position errors (lags) unless the desired 
velocity is fed forward into the servo equation [10]. Similar 
effects arise due to acceleration, friction, gravity, and inertial 

102 

couplings between joints. Integrators can help, but only under 
quasi-static conditions, and make performance worse in rapidly 
changing conditions. 

To summarize the section, we must add temporal semantics 
to the control signals sent to actuators, and we should develop 
good models of the system's response to the control signals. The 
better the models we have, the better the system performance. 

4.3 Processing 

Software events are not dependable in a multiprogramming 
environment because they are subject to the vagaries of the 
scheduling of device interrupts, the execution of higher priority 
tasks, and refresh interrupts. Newer processors are subject to 
additional factors such as instruction and memory management 
cache hits which are variable depending on previous events. 
Accordingly, we can't count on the processor performing the 
same repetitive action at the same relative time. Events can be 
well defined only by the hardware, not by software. 

The imprecision of software controlled events suggests that 
we should be careful to build robot peripheral devices such that 
the application of control signals or latching of sensor readings is 
performed by hardware clocks, rather than under software 
control. Rather than having an interrupt request the program to 
directly read a value, we should have the interrupt latch the 
value into a register, which is then read by the program. 
Likewise, outputs should be latched by the peripheral devices 
under software control, but not applied to the actuators until the 
next hardware servo clock. As well as protecting against other 
competitors for CPU cycles, an additional level of latching 
isolates data dependencies in the control algorithm timing (we 
may even use different algorithms at different times) from 
affecting actuator timing. This amounts to pipelining the system. 
The slight additional cost of a register is compensated by the 
gain in repeatability of timing. Our robot controller is pipelined 
both at the major cycle rate and at the minor cycle rate. 

The processing system also has significant latencies which 
must be taken into account. At some point in time, the software 
must commit to generating a control signal for some specific 
time. For example, consider changing the target of a robot 
motion while the arm is moving. To obtain a smooth trajectory, 
the preliminary setup calculations used to drive the trajectory 
interpolation must be evaluated based on some assumed initial 
position and time in the future. The program must know its 
execution time from the commit point to actually generating the 
control signal. This time should be minimized to reduce the 
number of potential interferences. 

Once again, the more the program "knows," the better its 
performance. If the processing can be broken into two sections, 
an invariant portion that doesn't depend on the time varying 
variables and can be done first, and a second (minimal) section 
which does require this information, the program can obtain a 
timestamp at the completion of the first section reflecting the 
actual prevailing conditions. This time varying code can make 
the system hard to debug, but eliminates stored latency times, 
which must be conservative and tend to become outdated. 

A sufficiently well controlled program may also be able to 
predict that the processor will be occupied by an interrupt for a 
certain time, and be able to compensate its own latency estimate 
accordingly. Clock driven interrupt processes can easily be 
predicted based on the. time of their last occ1,lrrence and 
frequency. 



4.4 The 'Oox' Board 

We need to make accurate timing information available to 
the processor. Even though most microprocessor systems have 
free running timers (clocks) that are readable by software (often 
with substantial overhead), they are not useful for timestamping 
sensor or actuator data. The presence of software in the 
measurement path guarantees inaccuracy, because the processor 
may execute a fairly arbitrary sequence of instructions between 
the time of occurrence of the event and the time the software 
reads the timer. 

In a real robotic system like ours for ping-pong, the sensors 
and actuators are distributed across multiple processors. 
Humans have trouble getting to meetings at the same time 
because we all have wristwatches with a different time (though 
this isn't the only factor at work). Likewise, in a distributed 
microprocessor system each processor has its own time, and 
times from different processors are not comparable. What we 
need to maintain a consistent view of time across the system is a 
"wall clock" accessible to all processors at once. 

We implement the wall clock with a specialized "clox" board 
that resides in each processor, and a specialized clock bus 
connecting them. A wall clock must have the same value at 
each instant to each processor on a network. At first glance, this 
may seem to require that the clox boards be connected by a 
large number of wires, one for each bit. Since a clock has only 
two degrees of fteedom, only two signals are actually required: 
one to specify the rate, and one to specify the offset. The 
simplest implementation uses one wire to carry an actual 1 Mhz 
hardware clock (square wave), and another to carry pulses one 
clock long to effect synchronization. One board is selected to 
generate the clock signal for all of the boards. Its clock 
frequency may. be externally calibrated to ensure that the 
absolute accuracy is commensurate with the resolution. We are 
implementing the wall clock by a network of synchronized 
wristwatches. 

Each processor must have a way of determining the 
occurrence times of events in devices attached to it. In general, 
this would require that a wire be attached to some suitable 
signal in the device and to the clox board, but this isn't 
particularly convenient. As an implementation technique, we can 
instead monitor activity on the processor's interrupt lines, which 
are generally driven directly from the same hardware signals we 
need to monitor. This has the advantage of not requiring odd 
wires jumping around between boards. An interrupt line must be 
dedicated to each signal the clock board is to be used to 
. monitor. An event register latches the time of occurrence of the 
interrupt transition for subsequent reading by the processor 
when it handles the interrupt. 

The clox board contains a software readable clock register 
which may be used by programs for time variant decision 
making. In addition, it is useful to be able to obtain software 
event times for diagnostic purposes: how long does this routine 
take on average? at most? Because of the simplicity of the 
access protocol, we need not call it via an operating system trap. 
The low cost of access means that we may routinely track 
execution times. 

A novel consequence of having a "wall clock" is that software 
event occurrence times may be compared across processors, 
directly measuring software latencies across the network, for 
example. Such numbers may be obtained even for rare single 
shot situations. A simple example measures the latencies of a 

103 

processor to processor write. Processor A executes: 

timel = now 0; 
write (channel, buffer, count); 
time2 = now 0; 

and processor B executes: 

time3 = now 0; 
read (channel, buffer, count); 
time4 = now 0; 

where now is a macro that gets the current time. By examining 
the times 1-4, we can easily determine: the execution time of the 
write, the execution time of the read, whether the read or the 
write began first, and most importantly, the time from when 
processor A started sending the data to the time processor B had 
it and could perform further processing. 

5. TOWARDS A SENSE OF TIME 

In the previous sections, we have taken a detailed look at the 
microscopic treatment of time. In this section, we'd like to take 
a broader look at the overall implications and trends. 

5.1 Knowledge of Manipulator Capabilities 

A recurring theme was the need for the system to know more 
information about itself: sensor characteristics, actuation delays, 
processing latencies. The same need is present in higher levels of 
the system, not only for timing related information, but general 
knowledge about robot capabilities as well. 

Present robot controllers are sadly ignorant of their own 
capabilities in the temporal sense. Most controllers can compute 
that they can move to certain position, but not be able to specify 
the time required to do so, or be able to make the motion occur 
in a prespecified length of time. The former capability is 
necessary to evaluate alternative motions or plan intercepts with 
moving objects, the latter to be able to execute them. 

We have these capabilities in our system, but only in a crude 
sense, treating each joint as decoupled and with only a rough 
joint performance figure. For maximum accuracy and thus 
performance, we need to be able to model the robot dynamics, 
including actual actuator torques, inertias, and couplings. As the 
specification of the motion becomes more complex, such as 
straight line motion or a series of continuous motions, it becomes 
more and more difficult to predict the motion time without 
actually executing it, at least in simulation. 

5.2 Continuous Sensor Integration 

New data can be generated by sensors like the moment 
generator at a 60 Hz rate. If we evaluate each data point 
independently, we suffer the expense of generating an entirely 
new plan for each data point, and the risk that the series of 
plans may be incompatible with one another. A better approach 
is to evaluate new data in the context of the old. 

The processing time required to generate an initial plan is 
almost certainly much greater than the time required to fine 
tune an existing one. In robot ping pong, the initial plan requires 
selecting the desired return, appropriate robot configuration, and 
a series of trajectory segments. As new data on the ball 
trajectory becomes available, tuning a few details may suffice to 
update the plan. 

On the other hand, when a sudden discontinuity in input 
data occurs, for example, after a ball bounces with a lot of spin, 
we must take a drastically different action. Rather than picking 



a totally new plan, we should operate within the confines of 
actions we have already taken, as the arm will be in motion, and 
this constrains the possible destinations. The decision criteria for 
making a switch in overall plan should be expressed in terms of 
the actions, not the input data, so that we avoid needless 
thrashing. 

The process of understanding new data in the context of the 
old and making incremental refinements in the planned actions 
seems much more similar to a human's continual perception of 
time than the discrete time approach of robot controllers. 

The work described in the section is still in progress, and is 
being driven by the observed needs of the task. The natural 
requirement for self-knowledge, especially about processing 
capabilities, is an interesting development which bears further 
observation. As the tasks get more complicated, the amount of 
self-knowledge must increase. Perhaps this is a step (albeit a 
small one) in the direction of machine self-awareness. 

6. CONCLUSIONS 

As we improve robot performance and increase the 
complexity of robot tasks, we will need, to change the way we 
think about robots from an event driven perspective to a 
continuous time model. The development of real time sensor 
systems is accelerating the trend. We can start now by paying 
careful attention to the sources of timing related effects. 
Ultimately, robot systems will have to be able to understand the 
dynamic nature of the world they live in. 

7. ACKNOWLEDGEMENTS 

Robotics is a multi-disciplinary field; I've been fortunate to 
be able to stand on the projects of many other researchers. 
Thanks to Bob Gaglianello and Howard .Katseff for Meglos, and 
Brian Ackland and Neil Weste for MULGA. Thanks also to 
John Jarvis for helping all this take place, and Richard Paul for 
letting me tap his formidable experience. Special thanks to 
Richard Seide and George Whyte for admirable work as 
construction crew. 

REFERENCES 

[1] S.R. Ahuja, "S/Net: A High Speed Interconnect for 
Multiple Computers," ,IEEE Journal of Selected Areas 
in Communication, SAC-I, No.5, November 1983, p. 
751-756. 

[2] R.L. Andersson, "Real time video moment generator 
chip,"in N. Weste, K. Eshraghian, "Principles of 
CMOS VLSI Design: A Systems Perspective," 
Addison-Wesley, 1985, p. 407-424. 

[3] R.L. Andersson, "Real Time Gray Scale Video 
Processing Using a Moment Generating Chip," IEEE 
Journal of Robotics and Automation, Vol. RA-l, No. 
2, June 1985. 

,[ 4] J. Billingsley, "Machineroe joins new title fight," 
Practical Robotics, May/June.1984, p. 14-16. 

[5] R.D. Gaglianello, H.P. Katseff, "Meglos: An Operating 
System for a Multiprocessor Environment," 
Proceedings of the 5th International Conference on 
Distributed Computing Systems, May 1985. 

[6] G.J. Gleason, G.J. Agin, "A Modular Vision System 
For Sensor-Controlled Manipulation and Inspection," 

[7] 

[8] 

[9] 

[10] 

[111 

[ 12] 

104 

Proceedings of the 9th International Symposium on 
Industrial Robots, SME/RIA, p. 57-70, March 1979. 

M. Hu, "Visual Pattern Recognition by Moment 
Invariants," IRE Transactions on Information Theory, 
IT -8, February 1962, p. 179-187. 

D. Loewenstein, "Computer Vision and Ranging 
Systems for a Ping-Pong Playing Robot," Robotics 
Age, August 1984, p. 21-25. 

A.P. Reeves, A. Rostampour, "Shape Analysis of 
Segmental Objects Using Moments," Proceedings of 
the IEEE Computer Society Conference on Pattern 
Recognition and Image Processing, p. 171-174, August 
1981. 

Paul, R.P., "Robot Manipulators, Mathematics, 
Programming, and Control, "MIT Press, 1981. 

L.E. Weiss, A.C. Sanderson, C.P. Neuman, "Dynamic 
Visual Servo Control of Robots: An Adaptive Image
Based Approach," IEEE International Conference on 
Robotics and Automation, March 1985, p. 662-668. 

N.H.E. Weste, "Virtual Grid Symbolic Layout," 
Proceedings of the 18th Design Automation 
Conference, June 1981, p. 225-233. 



eMU Sidewalk Navigation System: 

A Blackboard-Based Outdoor Navigation System 

Using Sensor Fusion with Colored-Range Images 

Y. Goto,· K. Matsuzaki 

I. Kweon, T. Obatake 

Robotics Institute, Carnegie-Mellon University 

Pittsburg, PA. 15213 

Abstract 

We describe the eMU Sidewalk Navigation System, which can 
drive a vehicle in the outdoor environment of the eMU campus. 
The system includes all modules necessary for outdoor navigation 
-- modules for route planning, local path planning, vehicle driving, 
perception, and map data. The perception module uses sensor 
fusion with color and rage data to analyze complex outdoor 
scenes accurately and efficiently. 

1. Int roduction 
The goal of the eMU SCVision group is to create an autonomous 

mobile robot system capable of operating in outdoor 
environments.1 The complexity of the environment requires the 
system to have a powerful perception ability, capable of analyzing 
natural objects, and a planning ability which can work in non· 
uniform conditions. Because this navigation system will be very 
large. we need mechanisms to combine programs into whole 
systems and mechanisms for parallelism in computation. 

We already have several systems towards the goal: a road 
following system with color classification [5], road network 
navigation with a simple map [1], scene analysis with a laser range 
sensor [2], and the blackboard [4]. 

The eMU Sidewalk Navigation System is a milestone system 
toward our goal. In this ~ystcm, we focu~ on two points. The first 
is to build a whole system based on a good system architecture so 
that the system is both complete (containing every necessary 
module) and efficient. We achieve that goal by adopting a 
blackboard-based architecture. The second point is to create 
perception modules with sensor fusion that work well in our 
outdoor environment. 

The test site for the eMU Sidewalk Navigation System is the 
eMU campus, containing a network of sidewalks and 
intersections, along with grass, slopes, and stairs. The system can 
drive the vehicle through these objects to get to its destination. 

1ThiS research was sponsored by the Defense Advanced Research Projects 
Agency, DOD, through ARPA Order No. 5351. and monitored by the U. S. Army 
Engineer Topographic Laboratories under contract DACA 76-85-C-0003. The 
views and conclusions contained in this document are those of the authors and 
should not be interpreted as representing the official policies. either expressed or 
implied. of the Defense Advanced Research Projects Agency or of the U.S. 
Government. 

CH2345-7/86/0000/0105$01.00 © 1986 IEEE 
105 

2. System Architectu re for the Outdoor 
Navigation System 

2.1. Hardware Configuration 
The hardware for the eMU sidewalk navigation system consists 

of three SUN-3 workstations. the vehicle, the color TV camera, and 
the laser range sensor. The workstations are linked together with 
Ethernet, and the workstations and the vehicle are linked with 
radio communication. Figure 1 shows the vehicle called 
Terregator. 

2.2. System Architecture 

2.2.1. Stages of Navigation 
In order to create a reasonable system architecture, we have to 

start by analyzing outdoor navigation. 

If the navigation system uses only one uniform navigation mode, 
the system architecture issue is not essential. But, in general, 
outdoor navigation includes several navigation. modes. The 
example shown in Figure 2 illustrates this situation. The vehicle 
running from the starting point to the destination has to follow the 
road, turn at the intersection, climbing the slope and cross the 
terrain. Turning at the intersection needs a more complex method' 
to drive the vehicle than following the road. Perception for 
crossing the terrain is different from perception for turning at the 
intersection. In following the road we can use assumption that the 
ground is flat, which makes perception' easier. But Climbing the 
slope does not satisfy this assumption. This is one reason why the 



Figure 2: Outdoor Navigation 

outdoor navigation system needs good system architecture. 

We decompose navigation into two processing stages. The first 
stage is the route planning stage, and the second stage is local 
navigation. In the route planning stage the system selects the best 
navigation route, from several possible routes to get to the 
destination from the starting point. The system divides the whole 
route into a sequence of route segments. In each route segment, 
objects on which the vehicle can run are constant. The navigation 
system can drive the vehicle using a single uniform driving mode, 
for example, following the road or turning at the intersection, and 
a single perception mode. In this stage, using the map data is 
essential. 

Local navigation is navigation within one route segment. In the 
local navigation stage, the navigation mode is constant and the 
main task is to drive the vehicle along the route segment. Local 
navigation uses perception to find a safe passage for the vehicle, 
and to determine the actual vehicle driving path. 

In contrast, our earlier and simpler navigation system did not 
have the route planning capability and has only. one navigation 
mode for local navigation. 

The system architecture of the CMU sidewalk navigation system 
is indicated in Figure 3. We decomposed the whole system into 
several modules. The modules indicated with blocks are separate 
processes, running independently, and communicating with each 
other through the BLACKBOARD. In selecting this decomposition 
of the whole system into these modules, we followed the principle 
of information hiding. The CAPTAIN module and the MAP 
NAVIGATOR module are responsible for the route planning, and 
they do not know the result of perception or how to drive the 
physical vehicle. The PILOT module, the PERCEPTION module 
and the HELM module are responsible for the local navigation, 
and they do not know the destination, the whole route, or the 
sequence of route segments. What they know is limited to only 
one route segment at one time. We will explain the system 
architecture in detail in the following sections. 

2.2.2. The Blackboard-Based Architecture 
Our BLACKBOARD provides modules with communication and 

synchronization facilities [4]. Using a blackboard-based 
architecture brings two main advantages to building our 
navigation system. 

106 

CAPTAIN PILOT 

MAP 
NAVIGATOR ERCEPTIO 

NAVIGATION 
MONITOR 

Figure 3: System Architecture 

HELM 

The first advantage is parallelism in execution. We decompose 
the whole system into several parallel modules. Because the most 
time consuming operation is perception, it is an independent 
process, the PERCEPTION module, running on its own machine, 
and not disturbing other modules. Because the HELM module 
which drives the physical vehicle needs real-time response, it is 
another separate process. Communication and synchronization 

of all modules are handled by mechanisms of the BLACKBOARD. 

The second advantage is that using a biackboard makes it easier 
to combine several programs into a whole system. Our. 
BLACKBOARD provides a good mechanism to connect modules, 
and limits the interactions among modules. For instance, each 
module can work in its most natural and convenient coordinate 
frame, with the BLACKBOARD converting among reference 
frames. We use the principle of information hiding so that the 
interfaces between modules are small. This keeps communication 
costs low and allows good modularity. The details of the 
BLACKBOARD are explained in following sections. 

2.3. Module Structure 
In this subsection we explain each module. 

2.3.1. The CAPTAIN Module and the Mission 
At the upper level of the system is the CAPTAIN module that 

receives instructions from the controlling person and oversees the 
mission. The mission consists of a number of steps, and the 
CAPTAIN sequences through the steps. For each step, there is a 
destination that tells where to go and one or more constraints that 
tell how to go. For example, "go to intersection D" gives a 
destination and "keep right" gives a constraint. Each mission 
step also has a trigger condition and an action which will be 
executed if the trigger condition is satisfied. Triggers can be used 
to move on to the next mission step when one step is completed. 

The CAPTAIN sends the destination and the constraints of each 
mission step to the MAP NAVIGATOR one step at a time, and gets 
the result of mission step, success or fail, from the MAP 
NAVIGATOR. 



2.3.2. The MAP NAVIGATOR and Route Planning 
The MAP NAVIGATOR does the route planning based on a 

destination and a constraint sent from the CAPTAIN, gives the 
PILOT directions for driving along the route, and reports the .result 
of the mission to the CAPTAIN. 

The MAP NAVIGATOR contains two main parts, the ROUTE 
SELECTOR, and the ROUTE SEGMENT DESCRIBER (see Figure 
4). The ROUTE SELECTOR creates the route plan, and 
decomposes it to a sequence of the route segments so that each 
route segment has only one navigation mode. The current system 
has several navigation modes: follow-road, turn-at-intersection, 
go-through-intersection, and go-through-s/ope. Our future system 
will have another navigation mode, cross-country, in order to 
navigate on open terrain. 

The ROUTE SEGMENT DESCRIBER generates the description 
of the route segment. The purpose of route segment description 
is to provide the PILOT with the information necessary for 
navigation within the route segment. It includes path objects (e.g., 
pieces of road, intersections), navigation modes, the conditions to 
exit from the route segment, the constraints to drive the vehicle, 
and object descriptions. Path objects are the objects on which the 
vehicle should run. Object descriptions describe the location and 
the shape of the objects (such as landmarks) which the 
PERCEPTION module can see while running on the route 
segment. This description is created by copying a part of the Map 
data, and is used as a prediction for the PERCEPTION module. 
One important point is that only the MAP NAVIGATOR maintains 
the Map data. 

The route segment description is sent to the BLACKBOARD and 
forwarded to the PILOT. When the PILOT finishes the route 
segment, it reports the result. If the result is success, the ROUTE 
SEGMENT DESCRIBER sends next route segment description. 

CAPTAIN 

ROUTE 
SELECTOR 

ROUTE SEGMENT 
DESCRIBER 

PILOT 

Figure 4: The MAP NAVIGATOR Module 

107 

2.3.3. The PILOT and Local Path Planning 
The PILOT, the PERCEPTION and the HELM work together for 

local navigation. The PILOT operates continuously to conduct the 
navigation within the route segment. The PILOT contains several 
sub· modules that form a sequence as shown in Figure 5, to 
process each area to be traversed. 

PERCEPTION 

HELM 

Figu re 5: The PILOT module 

The DRIVING MONITOR, the top level of the PILOT, receives 
route segment descriptions whenever a newly 'created route 
segment appears in the BLACKBOARD. The DRIVING MONITOR 
breaks the route segment into pieces called driving units, so that 
the PERCEPTION can detect one drivi.ng unit separately (see 
Figure 6). The DRIVING MONITOR builds a driving unit 
description for each driving unit, describing the location of the 
driving unit and the objects which PERCEPTION should see. 
Following the principle of information hiding, the driving unit 
description tells where and what objects the PERCEPTION should 
see, but it does not tell how to detect them. 

The DRIVING UNIT FINDER works as an interface to the 
PERCEPTION, getting the newly created driving unit description 
from the DRIVING MONITOR and sending it to the PERCEPTION 
through the BLACKBOARD. If the result of perception is written in 
the driving unit description in the BLACKBOARD, the DRIVING 
UNIT FINDER retrieves it into the PILOT. 

The POSITION ESTIMATOR determines the vehicle position 
using position estimations generated both by perception and by 
dead reckoning. Wilen PERCEPTION sees objects which can be 
landmarks, PERCEPTION can estimate the vehicle position using 
predicted object locations and shapes. For example, stairs and 
intersections are good landmarks. Sidewalks are not sufficient as 
a landmark, because PERCEPTION looking at only a sidewalk 
cannot tell the location along a sidewalk. It can tell only the 
distance from the edge of a sidewalk. Therefore, the position 
estimation by the PERCEPTION is sometimes complete and 
sometimes is not complete. The position estimation by dead 
reckoning is given by the HELM. The POSITION ESTIMATOR 
combines both of them and determines the vehicle position. 



The BLACKBOARD stores two kinds of vehicle positions. One is 
perceived vehicle position, and the other one is moving vehicle 
position. Because the perceived vehicle position is estimated by 
only the POSITION ESTIMATOR once per driving unit, it is 
discrete. On the other hand, the moving vehicle position is 
estimated by not only the POSITION ESTIMATOR but also the 
HELM using dead reckoning. Because the HELM updates the 
moving vehicle position frequently, it tells the vehicle current 
position. Because both positions are stored in the BLACKBOARD, 
all modules can use them. Currently they are used by the 
PERCEPTION and the LOCAL PATH PLANNER. 

The DRIVING UNIT NAVIGATOR plots local path constraints in 
the driving unit using the result of perception and the driving 
constraints given by the MAP NAVIGATOR. 

The LOCAL PATH PLANNER gets the local path constraints and 
creates the local path plan from the vehicle's current position, 
through all intervening driving units, reaching to the far edge of 
the newly scanned driving unit. Because the vehicle is not in the 
newly scanned driving unit, the LOCAL PATH PLANNER keeps the 
old local path constraints to calculate local path plan, and 
discards them if they are not necessary. The algorithm for local 
path planning is based on Lozano·Perez's method [3]. This 
method generates a sequence of line segments, which the LOCAL 
PATH PLANNER converts to a smooth path. Therefore, the 
vehicle turns along a curved line. The generated local path plan is 
passed to the HELM through the BLACKBOARD. 

1:1 (-~ 
rt 

(a) time = t1 

I Ie d= 
(b) time = t2 

I I 09= 
(c) time = t3 

* (d) time = t4 

Figu re 6: Process Sequence in the PILOT 

108 

Figure 6 illustrates the process sequence in the PILOT. The 
black painted box is the vehicle. The bold line indicates the driving 
unit detected by the PERCEPTION already. The dotted line shows 
the driving unit newly created by the DRIVING MONITOR. At time 
t1 the DRIVING MONITOR creates new driving unit description and 
sends it to the DRIVING UNIT FINDER. The DRIVING UNIT 
FINDER sends it to the PERCEPTION .. When the vehicle reachs 
the best place to detect the required driving unit, the 
PERCEPT-ION inputs image data with the sensors ( time t

2
). The 

thin line shows the sensor view frame. At time t, the 
PERCEPTION finishes processing and reports the object stapes 
and the vehicle position. The DRIVING MONITOR starts creating 
next driving unit description. And at time t4 the LOCAL PATH 
PLANNER generates new local path plan and passes to the HELM. 

2.3.4. The HELM and Driving the Vehicle 
Whenever a new local path plan appears in the BLACKBOARD, 

the HELM discards the old path plan and picks up new one. The 
HELM converts the local path plan, which tells only trajectory, into 
vehicle driving commands, and feeds them to the vehicle. In 
addition to driving the vehicle, the HELM is responsible for 
maintaining the vehicle moving position stored in the 
BLACKBOARD. Because the task of the HELM needs quick 
response to control the vehicle, it is implemented as an 
independent process. 

2.3.5. The PERCEPTION Module 
PERCEPTION picks up a driving unit description from the 

BLACKBOARD when a new one appears. PERCEPTION has two 
tasks: detecting navigable passages, and, if possible, estimating 
vehicle position. The details of PERCEPTION are explained in the 
next section. 

2.3.6. The BLACKBOARD 
The BLACKBOARD provides the modules with facitilies for 

communication and data management. Our BLACKBOARD looks 
like a traditional blackboard, with several additional properties that 
make it useful for navigation: 

1. parallel asynchronous execution of modules. 
This property makes it possible to execute all modules 
in parallel. 

2. transparent networking between processors. 
This property makes it easier to build interfaces 
between modules. 

3. no pre-compilation of data retrieval 

specification. This property makes it easier to pick 
up desired data from the BLACKBOARD. 

4. geometriC reasoning. Coordinate transformation 
and geometric calculations are done by the 
BLACKBOARD. Data retrieval from the 
BLACKBOARD with geometry is used in several 
places. 



2.3.7. The MAP 
The MAP is the main data base in our navigation system. It 

consists of two parts, GEOGRAPHICAL MAP and OBJECT DATA 
BASE. 

The GEOGRAPHICAL MAP is similar to usual maps which we 
use in daily life, and tells object locations with their outlines. The 
MAP NAVIGATOR uses the GEOGRAPHICAL MAP to pick up 
objects belonging to the route segment. Figure 7 shows current 
GEOGRAPHICAL MAP. 

The OBJECT DATA BASE stores the object descriptions. 

1. Perception Feature: Both of the object's three 
dimensional shape and its color are stored to produce 
object description for the PERCEPTION. Three 
dimensional shape is expressed with surfaces. 

2. Role in Navigation: Some objects can be landmarks, 
and other objects can be paths., Therefore, the 
OBJECT DATA BASE indicates roles of objects: 
landmark, path, obstacle and no meaning. Also, 
navigation costs on objects are stored. These data 
are useful when the MAP NAVIGATOR performs route 
planning. 

The MAP is stored in the BLACKBOARD and accessed only by 
the MAP NAVIGATOR. Currently we assume that the MAP has all 
necessary information and it is correct and complete. But our 
future work will include "map revising", starting with an 
incomplete map, and updating it during navigation. 

(a) whole GEOGRAPHICAL MAP 

~H'H1~:j...--...Jg-H~~--'Swa Ik20 

(b) stairs and slope 

Figu re 7: The GEOGRAPHICAL MAP 

109 

2.3.8. The NAVIGATION MONITOR 
The NAVIGATION MONITOR is a graphics system which 

displays the current navigation situation. It displays the route 
segment, the driving unit, the sensor view frame, the vehicle 
position, and the local path plan. Because the NAVIGATION 
MONITOR is implemented as an independent process, it does not 
disturb other modules. Whenever the data to be displayed appear 
on the BLACKBOARD, the NAVIGATION MONITOR retrieves and 
displays them. 

3. Perception Using Colored-Range Image 

3.1. Requirements and Approach 
The basic problem for the perception is caused by the 

complexity of outdoor scenes. Some objects have very 
complicated shapes and colors from which it is difficult to extract 
surfaces or edges. This requires powerful sensors and algorithms 
for object detection. Also, the processing time of the perception is 
critical, because it eventually constrains vehicle speed. Even if we 
have a very powerful perception program which can detect 
complicated objects, it will be computationally expensive. 
Therefore, having a single powerful object detection program is 
not an adequate solution. 

To overcome these difficulties, we take a· sensor fusion 
approach. There are several types of sensor fusion methods [4]. 
This PERCEPTION module uses two types of sensor fusion. 

The first type is low level sensor fusion, doing segmentation 
using color and range ,data simultaneously. We call the image 
which has color information In addition to . range values a 
COlored-range image. Using this method, we can segment objects 
with uniform color but varying surface orientation, 'as well as 
objects with smooth surfaces and varying colors. This method is 
used to analyze complicated scenes. 

The second type of fusion is a higher level sensor fusion or 
sensor selection. The PERCEPTION module has both a 
colored-range segmentation program, mentioned above, and a 
color segmentation program, and uses these programs selectively. 
The former program can extract segments in complicated scenes, 
while the later program is adequate for simple flat scenes and 
uses much less processing time. This type of sensor fusion 
achieves both powerful perceptual ability and fast processing. 

3.2. PERCEPTION Module Architecture for Sensor Fusion 
The PERCEPTION receives perceptual requests from the PILOT, 

and analyzes sensor data to compute its response. The main 
effort to design the PERCEPTION module is how to combine 
several types of sensors and sensor data processing modules into 
one system and make them work efficiently. We designed a 
hierarchical structure and a monitor module which manages all 
parts of the hierarchy. 

Figure 8 illustrates the structure of the PERCEPTION module. 
This is composed of the PATCH MAKER, the OBJECT FINDER, 
the POSITION CALIBRATOR, and the PERCEPTION MONITOR. 
Sensor data go through in the order of the PATCH MAKER, the 
OBJECT FINDER, and the POSITION CALIBRATOR. 



The data interface between each module is designed to be 
independent of the algorithms used by each module. This allows 
each layer in the hierarchy to have several modules based on 
different algorithms. In"the current system, the PATCH MAKER 
includes two types of segmentation modules, and one object 
finding module can work on the results of both segmentation 
modules because of the common data interface. The 
PERCEPTION MONITOR is a key for this hierarchical processing. 
We describe it in detail in the next section. Other modules are 
explained in following paragraphs. 

Co~rol 
Parameters 

. -------------------, 
: PILOT I 
I I L____ _ ___ ~ 

Figu re 8: Structure of PERCEPTION Module 

3.2.1. The PATCH MAKER 
As a segmentation module (PATCH MAKER), this system has a 

color segmentation module, a range segmentation module, and a 
COlored-range segmentation module. The color segmentation, the 
range image segmentation, and colored-range image 
segmentation are described in Section 3.4. 

The data structure which holds patch data is common to both 
segmentation modules. These data include color type, surface 
type and normal, polygons for boundary shape, and relation to 
neighbQr segments. 

3.2.2. The OBJECT FINDER 
The OBJECT FINDER identifies each segment as a part of a 

predicted object. This algorithm is described in rule-base style, 
with two kinds of rules. One kind identifies detected segments as 
parts of predicted objects, and the other type of rule finds the 
actual correspondence between perceived and. predict~ 
polygons. In other words, the first set of rules deals with symbolic 
matching, while the second knows about detailed geometry. 

The OBJECT FINDER uses a WORKING MEMORY. The PATCH 
MAKER assigns the Patch data into the WORKING MEMORY. 
Also, the PERCEPTION MONITOR assigns predicted obje~t shape 
and feature data into the WORKING MEMORY. These data 
include color, surface type, and shape. The OBJECT FINDER 
uses WORKING MEMORY data to match predicted with detected 
data. 

110 

3.2.3. The POSITION CALIBRATOR 
The predicted objects are described in the current coordinate 

system, but the vehicle coordinate system is used to describe the 
detected objects. The POSITION CAUBRA TOR then computes 
the vehicle position in the current coordinate system, applying the 
transformation matrix between two coordinate systems. The 
problem for this computation is that the predicted object shape 
and the detected object shape are not same because of 
imperfections in the MAP and the perception. Therefore, the 
POSITION CALIBRA TOR has to find the most appropriate 
matching for these two shapes . 

To get the best matching point, the POSITION CALIBRATOR 
calculates the distance between the predicted vertices and the 
detected vertices of object polygons, and finds the position which 
minimizes the distance. Sometimes, a scene is composed of only 
parallel lines (e.g., sidewalk) or a point (e.g., tree), which are 
insufficient to decide a matching point. In this case, the 
POSITION CALIBRATOR derives a line equation on which the 
vehicle is located instead of a point for vehicle position. 

3.3. The PERCEPTION MONITOR 
The PERCEPTION MONITOR has two major roles: 

communication with other modules (the PILOT) and control of 
internal submodules. As mentioned before, a design principle of 
this system is to provide a common structure for different sensors 
and algorithms. This tends to make the module interface rather 
high level. For example, an image input position is usually decided 
by an external module using sensor parameters. However, iHhere 
are several types of sensors with different view angles, the 
common interface for those modules will be where the 
PERCEPTION should see instead of where the PERCEPTION 
should look from. This means the PERCEPTION module itself 
has to decide where the best position is from which to see the 
requested place. The communication with other modules means 
doing such kinds of interpretation between the high level module 
interface commands and actual commands to internal 
submodules. 

Control flow of the perception process is rather simple. It 
progresses in order of segmentation, object finding, and position 
calibration. The PERCEPTION MONITOR activates the PATCH 
MAKER, the OBJECT FINDER, and the POSITION CALIBRATOR 
in this sequence. The functions for the interpretation of the high 
level commands from the other planning module (the PILOT) are 
described in following paragraphs. 

3.3.1. Selection of Sensor and Segmentation Modules 
The PILOT requests what objects to see, but does not say which 

sensor should be used. The PERCEPTION MONITOR decides 
which sensor and segmentation module is the best for the 
requested objects. The current system has two ~ensors and 
segmentation modules. If all requested objects are sidewalks or 
intersections on a flat plane, the PERCEPTION MONITOR selects 
the color segmentation module as a PATCH MAKER. If three· 
dimensional objects such as stairs, and slopes are included in the 
requested objects, the PERCEPTION MONITOR selects the 
colored-range segmentation module. 



3.3.2. Decision of View Frame and Resolution 
The PILOT requests to see objects as Quickly as possible within 

a tolerable error allowance, but does not specify the resolution or 
view frame of PERCEPTION. The view frame of PERCEPTION 
depends on a tolerable error allowance for the PERCEPTION. If 
the error allowance is small, a meaningful view frame will be 
limited to near the vehicle, even if the view angle of the sensor 
covers a greater area. Also, the view frame is a function of 
PERCEPTION resolution. If the resolution is very fine, the view 
frame can be wider, keeping the same error allowance. 

An interesting point is that the processing time of the 
PERCEPTION is a function of the resolution. Therefore there are 
two typical strategies for equal error allowance. One is a seeing a 
closer area with rough resolution in a short time. The other is a 
seeing a farther area with fine resolution in a longer time. The 
PERCEPTION MONITOR decides the optimal view frame and the 
resolution which allows the vehicle to run at maximum speed. 

Figure 9 shows the relation between the velocity (V) and the 
distance the vehicle can run in one cycle (perception distance, D) 
for several error allowances. We got this result from two relations: 
the relation of resolution and the maximum perception distance 
for equal error allowance, and the relation of the resolution and 
the processing time (T). Velocity is defined as V=DIT. 

VeJocity[m/sec] 

1. 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

OJ 

q2 Ql 
I I 
I I 
I I 

.0_ 0 +.,---t-------V2 

/.: ..... : .'.: 
.' '. ....-----Vl (0........ ." .. -.. 

/. 0 • • ......... ... -.. .. 
/ 

•• •• #) - •. 

O. 

•.... ... .... .. 
/ ...... , ·0... ...... ". . • . Error: O.5[m] ... ..... -. . . . 

,. • ••• '. • '. .Error: O.4[m] 
••••• • wor: 0.2tm1 Error: 0.3[m] 

• 'Error: O.I[mj 
0.1 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 
Perception Distance [meter] 

Figu re 9: Distance and Velocity by Error Allowance 

It is interesting to note that Figure 9 indicates that the maximum 
speed point of our system is at a rather short distance and low 
resolution. When the vehicle runs at a speed of V1, the best 
perception distance and resolution is at" Dr This is because the 
PERCEPTION can see the widest area at that point. This increases 
the chance of finding landmarks or obstacles. Then, if the vehicle 
tr1's to run faster (at speed of V ), the perception distance 
becomes shorter (D

2
). This shows t~at as speed increases, the 

vehicle becomes short-sighted. 

The PERCEPTION MONITOR has a data table in which are 
stored the values of optimal resolution and perception distance for 
the error allowance. Using this table, the PERCEPTION MONITOR 
provides the optimal resolution and perception distance. 

III 

3.3.3. Decision of Image Input Position 
The PILOT indicates which region the PERCEPTION should see, 

but does not indicate when the PERCEPTION should see it. This is 
~ecause the view frame of the PERCEPTION depends on the 
sensor used, and the PILOT does not know which sensor will be 
used. Furthermore, when the PERCEPTION uses a pan and tilt 
mechanism, only the PERCEPTION can decide image input timing 
and position. 

The position decision algorithm has two steps. First, this module 
simulates the view frame and the vehicle's future path which is 
posted in the BLACKBOARD by the LOCAL PATH PLANNER. 
When the simulated view frame covers the region which the PILOT 
has requested the PERCEPTION to see, this vehicle position is 
defined as the image input position. Second, this module 
monitors current vehicle position by watching the moving vehicle 
position on the BLACKBOARD. And, when the moving vehicle 
position reaches the image input position, this module controls 
sensors to take an image. 

3.3.4. Creation of Segmentation Parameters 
To have good segmentation results, we need not only 

appropriate segmentation parameters, but also good algorithms. It 
is very difficult to know appropriate parameters unless 
PERCEPTION has scene knowledge. In this system, the PILOT 
predicts objects for the PERCEPTION, but the description is 
general and does not indicate segmentation parameters for the 
objects. 

THE PERCEPTION MONITOR creates appropriate parameters, 
and the segmentation modules use them. Currently, the 
PERCEPTION MONITOR creates color type and minimum area of 
segments as segmentation parameters. For example, if the 
predicted objects are only a sidewalk and grass, the PERCEPTION 
MONITOR decides that types of color are GRA Y and GREEN, and 
reports them to the segmentation module (the PATCH MAKER). 
Another example is the minimum area for segments. If there are 
no small predicted objects, the PERCEPTION MONITOR sets a 
rather large value for minimum segment area. This eliminates the 
noisy segments, and makes a simple segl)lent list which is easy to 
analyze in the later object finding phase. 

3.4. Colored-Range Image Analysis 
It is very difficult to recognize complex objects in outdoor scenes 

using only one kind of sensor, but several different sensors can 
provide a lot of clues about the environment. For example, use of 
both range data and color images provides a very powerful vision 
system for outdoor scene analysis, because range data provide 
information about the geometry of a scene, and color images 
provide an important physical property of objects. In order to use 
these different sensor data, we must integrate them using sensor 
fusion techniques. Tne registration between range data and color 
images can be a first step to sensor fusion. In the following 
sections, we describe the registration algorithm for color and 
range image, the segmentation procedure for range data, the 
color segmentation algorithm, and how to use a colored-range 
image to recognize stair~ and slopes. 

3.4.1. Registration 
We must know the relative positions and orientations of the color 

camera with respect to the range scanner to register range data 
into camera-centered coordinates. These can be computed using 
a calibration procedure. The calibration step consists of initial 
value estimation and optimum value finding procedures. In the 
initial value estimation step, the measured angles are used to 
simplify the problem, so the position of the camera relative to the 
range scanner and its focal length are the only unknown 



parameters. The unknown parameters are computed by solving a 
least-squares criterion. Once the initial values of the camera 
parameters are computed, we can obtain more accurate 
parameters using a modified Newton-Gauss method. In the 
experiment, the wide-angle lens is used to capture color images, 
which prevents us from using a linear perspective transformation 
for projection. Use of a third-order polynomial for projection 
provides good registration. The projection model is developed 
through a conventional camera calibration procedure. Since the 
camera/scanner transformation and the perspective 
transformation are computed, the range data can be registered 
with the color image. This is done by applying the transformation 
to each point of the range image, so the corresponding pixel point 
in the color image can be' computed. The color intensity for th~ 
computed pixels in color image then are assigned to the range 
image. The registration procedure is illustrated in Figure 10. 

(a) Range image 

(b) Original color image 

(c) Cotored-range image 

Figu re 10: Colored· range Image Registration 

112 

3.4.2. Range Image Segmentation 
The range segmentation module generates surface segments 

using three basic attributes at each pixel: jump edges, surface 
normal, and surface curvature. Each segmented region has a 
surface normal vector, a surface curvature, 3-D edges, and a label 
indicating smooth region or rough region. The detailed algorithm 
for range data analysis can be found in Hebert's recent work [2]. 

3.4.3. Color Segmentation 
The color segmentation module uses Wallace's color 

classification algorithm [5] which uses a standard quadratic 
discrimination function for multivariate normal distributions of 
mean vectors and covariance matrices for the Red, Green, and 
Blue components of an image. This module cannot detect 3-D 
position data for segments. However, when we assume all objects 
are on a flat ground plane, this module can calculate 3-D values 
for segments using the relation between the perspective image 
and the scene [1]. 

3.4.4. Overlap Segmentation 
The registration process creates an image in which each pixel 

has a color value and a range value. The segmentation for the 
colored-range image is done as illustrated in Figure 11. First, the 
color label and the surface label are obtained by color 
segmentation and surface segmentation. Then, the color-surface 
label for each pixel is obtained by an AND operation of the color 
label and the surface label. Overlap segmentation is done using 
this label value. 

I Color . 
Image 

COlor] Classification 

Color type 

Labeling J by Color 
... ; 

~~ i;~ ii~ ii: :~~ i~~ i~: ~: :~~ 
1: II: 12: 12: 12: 12: 12: ,I; 13: 
I; :1; :2; :2; i2~ :2~ :2~ l' :3~ 
1: II: 12: 12: 12: 12: 12: 3; 13: 
1: 11: 12: 12: 12: 12: 12: .1: 13: 

I 

I Range 
Image 

Surface Classification 
.... .; 

Surface normal 

Labeling by Surface 
; 

Color & Surface Classification 
.... .; 

:;~ i i:: i:i i ~:~ i ~:: 2) 1 U '. ~:~ i ~:: 
1:1 i 1:\ 2:1: 2> i 2:1 '. 3:8 i 3;8 
1:) 1 t:l n I 2:1 I 2:1 .) I. 3;8 I 3;8 
1:1 : 1;\ 2;1 i 2) : 2) _ (, L , 3:8 I 3:8 
1:1 1:1 n 2:1 2:1 L, L, 3;8 I 3;8 

Labeling by Color & Surface 
..... 

1 1 r 2 1 3 3 9 9 

1 1 2 2 2 oj 9 9 
1 1 2 2 9 9 

J 1 I ' ? Q 

1 1 2 2 9 
1 1 2 2 ~ 9 

Figu re 11: Overlap Segme'ntation by Color a'nd Range Data 



3.4.5. Result of a Real Scene Analysis 
One good example to show the effectiveness of the 

colored-range segmentation module is a slope and stairs scene of 
a campus sidewalk. The slope and the stairs are made of concrete 
and have the same gray color. The slope and road-side grass are 
on almost the same plane. Therefore, segmentation using only 
color can not separate the slope and the stairs, and segmentation 
using only range can not separate the slope and the road-side 
grass. Overlap segmentation using colored-range image can 
extract the slope which is only navigable region in this scene. 
Figure 12 shows the results of color segmentation, range 

segmentation, and colored-range segmentation drawn with 
polygons. 

( reen 

gray 

(a) Color segmentation 

(b) Range segmentation 

(c) Colored-range segmentation 

(d) COlored-range segmentation projected on x-y plane 

Figure 12: Colored-Range Segmentation 

4. Conclusion 

1 

We have developed the Sidewalk Navigation System which can 
drive the vehicle on the test site, the CMU campus. Because our 
test site involves sidewalks and intersections, slopes, stairs, and 
grass, the navigation system should have ability to select the best 
navigation mode depending on the situation. Our arcnitecture 
works well in this environment, using both route planning and 
local path planning, selecting vehicle driving mode, and selecting 

113 

sensors. The scene which includes the stairs, the slope, and the 
grass is hard to detect with only a TV camera or only. a range 
sensor. But our perception module can analyze even this scene 
using sensor fusion with color and range data. And sensor 
selection dependent object prediction saves computation time. 
Our current system demonstrates the. framework of an outdoor 
robot navigation system. 

, Our future work will include pipeline processing in the PILOT 
module, expanding the PERCEPTION module to detect other 
objects, and map revising. And we will add a capability for 
cross-country navigation. 

Acknowledgements 

The CMU Sidewalk Navigation System is created as a part of the 
Strategic Computer Vision Project at CMU. This system includes 
several programs produced by project members. The 
BLACKBOARD was produced by Steven Shafer, Anthony Stentz, 
and Charles Thorpe [4]. The color classification program was 
based on the code made by Richard Wallace [5]. The range image 
segmentation program was made by Martial Hebert [2]. The 
system architecture design is based on the proposal by Steven 
Shafer, Anthony Stentz and Charles Thorpe [4]. 

We would like to thank Regis Hoffman for creating the LOCAL 
PATH PLANNER, Paul Allen for writing the NAVIGATION 
MONITOR, and Ralph Hyre for useful blackboard facilities. 
Thanks to Mike Blackwell, ~evin Dowling, and .James Moody for 
hardware, system interface,' and video support. The civil 
engineers Red Whittaker, Chuck Whittaker, Francois Bitz, Steve 
Berman, and Kai Lee developed and maintain the Terregator 
vehicle. 

[1 ] 

References 

Wallace, R., Matsuzaki, K., Goto, Y .• Crisman, J., Webb, J., 
Kanade, T. 
Progress in Robot Road-Following. 
In Proceedings 1986 IEEE International Conference on 

Robotics and Automation, page~ 1615-1621. April, 
1986. 

[2] Hebert, M. 

[3] 

[4] 

[5] 

Outdoor Scene Analysis Using Range Data. 
In Proceedings 1986 IEEE International Conference on 

Robotics and Automation, pages 1426-1432. April, 
1986. 

Lozano-Perez. 
An Algorith for Planning Collision Free Paths Among 

Polyhedral Obstacles. 
In Communications of the ACM. October, 1979. 

Stentz, A., Shafer, S., Thorpe, C. 
An Architecture for Sensor Fusion in an Autonomous Land 

Vehicle. 
In Proceedings 1986 IEEE International Conference on 

Robotics and Automation, pages 2002-2011. April, 
1986. 

Wallace, R. 
Robot Road Following by Adaptive Color Classification and 

Shape Tracking. 
In Forthcoming in Proceedings 1986 AAAI. 1986. 



ERROR MODELLING IN STEREO NAVIGATION 

Larry Matthies and Steven A. Shafer 

Computer Science Department 
Ca rnegie-Mellon University 

Pittsburgh, PA 15213 

Abstract 

In stereo navigation, a mobile robot estimates its position b~ 
tracking landmarks with on-board cameras. Previous systems for 
stereo navigation have suffered from poor accuracy, in part 
because they relied on scalar models of measurement error in 
triangulation. This paper shows that using 3-D gaussian 
distributions to model triangulation error leads to much better 
performance. The paper describes how to compute the error 
model from image correspondences, estimate robot motion 
between frames, and update the global positions of the robot and 
the landmarks over time. Simulations show that compared to 
scalar error models the 3-D gaussian reduces the variance in robot 
position estimates and better distinguishes rotational' from 
translational motion. A short indoor run with real images supported 
these conclusions and computed the final robot position to within 
2% of distance and one degree of orientation. These results 
illustrate the importance of error modelling in stereo vision for this 
and other applications. 

1 Int roduction 
Consider a robot given the task of going from A to B. At a coarse 

level its route is planned from a pre-stored map, while at a fine I~vel 
the route is determined by sensor information gathered along th~ 
way. Incremental motion estimates are integrated to keep track of 
the robot's position in the map, which in turn is used to predict 
upcoming landmarks, hazards, or arrival at the destination. 

To realize this scenario, a robot needs sensors that can measure 
its position and detect the presence of 3-D objects nearby. Stereo 
vision can provide both kinds of information. Stereo matching at 
one point in time provides a local 3-D model for route planning and 
obstacle _avoidance. Selected points in this model become 
landmarks that are tracked by the stereo system to monitor the 
robot's progress. Using to stereo in this way, to detect nearby 
objects and to estimate the motion of the robot, is whaf we refer to 
as stereo navigation. 

This research was sponsored by the Office of Naval Research 
under contract N00014-81-K-0503 and by the Defense Advanced 
Research Projects Agency under contracts DACA 76·85·C-0003 
and F33615-84-K-1520. The views and conclusions contained in 
this document are those of the authors and should not be 
interpreted as representing the official policies, either expressed or 
implied, of ONR, DARPA, or of the U.S. Government. 

CH2345-7/86/0000/0114$01.00 © 1986 IEEE 
114 

We are Interested in stereo in this scenario for a number of 
reasons. First, other motion sensors can be in error, such as shaft 
encoders when wheels slip or loose contact with the ground. 
Second, other sensors, such as sonar and radar, can be 
inappropriate for reasons of concealment, possible confusion with 
the broadcasts of other robots nearby, or because color and 
reflectivity information are important. Lastly, we are interested in 
stereo per se and believe that methods developed for this domain 
can be transferred to other applications. 

Methods for extracting shape and motion information from image 
sequences can be classified as correspondence· based or flow
based. Correspondence methods [7, 11, 18, 24] track distinct 
features such as corners and lines through the image sequence 
and compute 3·0 structure by triangulation. Flow·based meth9ds 
[1,25] treat the image seqw:mce as function J(x,y,t) of row, 
column, and time, restrict the motion between frames to be small, 
and compute shape and motion in terms of differential changes in I. 
This paper deals with error modelling issues in the correspondence 
paradigm. 

One of the first systems for correspondence· based stereo 
navigation was that built 'by Moravec [18]. This system moved a 
robot in a stop·go-stop fashion, digitizing and analyzing images at 
every stop. 'Features were matched in stereo images to build a 
world model consisting of 3·0 points. After moving and acquiring 
more images, the points in the world model were matched in the 
new images to find their coordinates relative to the new robot 
location. A least squares procedure was applied to the differences 
between the new and point locations to infer the actual motion of 
the robot. The contribution of each landmark point to this motion 
estimate was multiplied by a scalar weight that varied inversely with 
the distance to the point. 

In earlier work with Moravec [17], we found the motion solving 
part of this system to be somewhat inaccurate and unsta,ble. This 
has been a common experience with visual motion. solving 
algorithms in general. In the case of correspondence-based 
algorithms, this can partly be attributed to inadequate modelling of 
measurement error in triangulation. In triangulation, 3·0 structure 
is computed by finding the intersection of rays projected through 
corresponding points in two images. Small errors in locating the 
matching image points changes the direction of these rays and 
leads to errors in the inferred 3·0 location of the point. Scalar 
weights do not adequately model this error and lead to poor 
performance in subsequent motionpomputations based on the 
point's location. More sophisticated methods have been used in a 
number of places. In photogrammetry [20], 2·0 and 3·0 normal 
distributions are used to model error in image coordinates and 3·0 
point locations, respectively. Gennery [11] has used 2·0 normal 



distributions of· image coordinates in camera calibration for 
computer vision. . Hallam [15] used normal Hrror models in 
conjunction with Kalman filters to track points and estimate robot 
motion from sonar data. Broida and Chellappa [5] used similar 
methods to track a known object in monocular image sequences. 
This paper shows how these methods can be applied to stereo 
navigation and demonstrates that they lead to markedly better 
performance. 

The system described in this paper is shown in figure 1. The 
structure is very similar to that used in [18]. The main data 
structures are a set of 3-D points Pi' called the local model and 
described in robot-centered coordinates, and the robot's current 
estimate of its position in some fixed, global reference frame. The 
points in the local model are obtained by stereo matching are used 
as landmarks. When a new stereo pair is digitized, points 'from the 
local model are matched in the images to determine their current 
locations Qi relative to the robot. A motion solving algorithm 
estimates the rotation and translation (R and T) relating the new 
and old coordinates. The model updating system transforms the 
old local model into the current coordinate frame and combines it 
with the new points to create a new local model. Finally, 'the motion 
estimate is used to update the robot's global position. The cycle 
then r~eats with the acquisition of a new .pair of images. 

Figure 1: System block diagram 

Section 2 shows how to model triangulation error in the stereo 
matcher with 3-D normal distributions. In section 3 this is 
incorporated in an algorithm for finding the rotation and translation 
between successive stereo pairs. The covariance matrix of thi~ 
transformation is used in section 4 to update the local model with 
Kalman filters and in section 5 to estimate the robot's global 
position uncertainty. Simulations described in section 6 show that 
compared to scalar error models this system reduces the variance 
of position estimates and better distinguishes rotational motion 
from translation. An experiment with real images, using 54 stereo 
pairs covering 5.4 meters and fully automatic feature tracking, 
supported these conclusions and computed the final robot position 
to within 2% of distance and one degree of orientation. 
Conclusions are summarized in section 7. 

2 Modelling stereo triangulation error 

The geometry of stereo triangulation is shown in figure 2. For the 
moment we consider just the case of 2-D points projecting onto 1·d 
images. Two cameras are placed at offsets of ±b from a coordinate 

115 

system centered between the cameras. Suppose point P projects 
onto the left image at Xl and the right image at x,. Because of 
errors in measurement, the stereo system will determine XI and x, 
with some error. The error can come from many sources, including 
quantization of the image, photometric and geometric distortion in 
the camera, and the effects of perspective distortion on the 
matching algorithm. This error in turn causes the true location of P 
to be inferred with some error. Figure 2 illustrates this for errors 
caused by image quantization; because of resolution limits, the 
estimated location of P can lie anywhere in the shaded region 
surrounding the true location [22]. Additional random effects will 
cause this region to have less sharp boundaries, but the general 
shape will be similar. We want to take this uncertainty into account 
in any reasoning based on measurements of P. 

Three approaches to modelling such uncertainty are discrete 
tolerance limits, scalar weights, and multi-dimensional probability 
distributions. Tolerance regions are often used, in object 
recognition and motion planning [4, 6, 14]; however, they are 
inappropriate for our application because of the combinatorial 
nature of the algorithms they require, the stochastic nature of 
matching errors, and the need to filter time sequences of data. 

The idea behind scalar weights is that uncertainty grows with 
distance, so it can be modelled by weighting points inversely with 
distance [18]. However, as figure 2 shows, the uncertainty induced 
by triangulation is not a simple scalar function of distance to the 
point; it is also skewed and oriented. Nearby points have a fairly 
compact uncertainty, whereas distant points have a more elonga~ed 
uncertainty that is roughly aligned with the line of sight to the point. 
Scalar error measures do not capture these distinctions in shape. 

Normal distributions are commonly used in photogrammetry 
[20] and navigation [10, 26] to model uncertainty in two and three 
dimensional data. In computer vision, they have been used to 
model error in coordinates of image correspondences [11], 
monocular object tracking [5, 12], navigation and tracking with 
sonar [15], and recently in stereo work similar to ours [9]. To model 
triangulation error, we begin by treating image coordinates as 
corrupted by 2-D, normally distributed (ie. gaussian) noise and 
derive from this a distribution of the error in the inferred 3·0 
coordinates. Because triangulation is a non-linear operation, the 
true 3-D distribution will be non-gaussian. We approximate this as 
gaussian because it is simpler and gives an adequate 
approximation when the distance to points is not extreme. We will 
discuss shortly the cases where this breaks down. 

Figure 2: Stereo geometry showing triangulation uncertainty 



We will now show the details of the triangulation and error model 
calculation for the general case of 3·0 points projecting onto 2·0 
images. Let the image coordinates be given by I = [xI' YI ] and 
r= [x"Y,] in the left and right image, respectively. Consider these 
as normally distributed random vectors with means ILl and IL, and 
covariance matrices VI and V ,respectively. From I and r we need 
to estimate the coordinates [x, Y, Z]T of the 3·0 point P. We take the 
simple approach of using the ideal, noise· free triangulation 
equations P = [X, Y, Z]T = f(l, r) or 

x == b(xi + .'I)/(x,- x,) 

Y == b(x( + x,)/(x(- x,) 

Z == 2 bl.(x( - x,) 

(1) 

(assuming a unit focal length) and inferring the distributions of X, Y, 
and Z as functions of random vectors I and r. If equation «1» was 
linear, P would be normal [8] with, mean JJ.

p 
= f(/L/,IL,) and 

covariance 

V = J[ VI 0 ] JT 
p 0 V , 

(2) 

where J is the matrix of first partial derivatives of for the Jacobian. 
Since fis nonlinear these expressions do not hold exactly, but we 
use them as satisfactory approximations. 

The true values of the means and covariances of the image 
coordinates needed to plug into (1) and (2) are unknown. We 
approximate the means with the coordinates returned by the stereo 
matcher and the covariances with identity matrices. This is 
equivalent to treating the image coordinates as uncorrelated with 
variances of one pixel. Better covariance approximations can be 
obtained by several methods [2, 11]. 

-8-
Figu re 3: Quantization error with normal approximation 

What does this error model mean geometrically? Constant 
probability contours of the distribution of P describe ellipsoids 
about the nominal mean that approximate the true error 
distribution. This is illustrated in figure 3, where, the ellipse 
represents the contour of the error model and the diamond 
represents quantization error of figure 2 For nearby points the 
contours will be close to spherical; the farther the points the more 
eccentric they become. A covariance matrix with structure V = wI, 
equal to a scalar times the identity matrix, describes only spherical 
contours. This is the difference between attaching scalar weights 
to 3·0 coordinate vectors and using the full 3·0 distribution; that is, 
scalar weights are equivalent to spherical covariances whereas the 
full distribution permits ellipsoidal covariances. In the balance of 
the paper we will often refer to scalar weights as a spherical error 
model and the full distribution as an ellipsoidal error model. 

Where the gaussian approximation breaks down is in failing to 
represent the longer tails of the true error distribution. The true 

116 

distribution is skewed not unlike the diamond in figure 3, whereas 
normal distributions are symmetric. The skew is not significant 
when points are close, but becomes more pronounced the more 
distant the points. A possible consequence is biased estimation of 
point locations, which may lead to biased motion estimates. We will 
return to this issues section 6. 

3 Solving for robot motion 
The previolls section showed how to model measurement e'rror in 

stereo triangulation. In this section we show how to incorporate the 
error model into an algorithm for estimating the motion between 
successive stereo pairs. We will begin by showing how motion is 
computed with scalar weights, then derive an algorithm based on 
the 3·0 gaussian error model, and finally give this algorithm a 
geometric interpretation. 

Refering back to figure 1, at this stage in the cycle the robot has 
two sets of 3·0 points that have been obtained by stereo matching: 
a local model of points Pi defined relative to its previous position 
and the coordinates Qi of these points relative to its current 
position. The correspondences between Pi and Qi are known, but 
the motion between them is not. Parameterizing the rotation in 
terms of Euler angles, we have a set of equations 

Q.= RP.+ T 
I I 

in which Pi and Qj are known point vectors, R is the matrix of the 
unknown rotation, and Tis the unknown translation. 

Using scalar weights, one finds Rand T by expressing the errors 
of fit by 

minimizing the weighted sum of squares 

(3) 
n 

I:: wietei 
i=1 

where Wi are the weights. Although the rotation makes this 
optimization problem nonlinear, it has a closed form solution [19]. 
A solution for case where the rotation is parameterized by 
quaternions is given in [16]. 

As will be shown in section 6, the scalar model of uncertainty 
embodied in equation (3) leads to poor performance. Using the 3·0 
gaussian error model the solution takes a similar, but more 
complicated form. For simplicity we begin with tlie case of 
translational motion. The simplified motion equation is 

which we may rewrite as 

to emphasize the role of M j = Qi - Pi as measurements of T. From 
section 2, Pi and Q

i 
are modelled as normally distributed random 

vectors with covariances U. and V., respectively. Therefore, M, will 
I I 

also be normally distributed with covariance Ui + Vi' Now i we 
consider Mi to be a sequence of noisy measurements of T, each 
corrupted by noise with zero mean and covariance Ui + VI' 
application of the maximum likelihood method leads to minimizing 
the following expression over possible values of T[8]: 



n 

LetWiei (4) 
1=1 

where tl = Mi - Tand Wi = (UI + V)-l. The solution to this is 

T = (~;=1 Wi)-l ~;=l WjMi 

and the covariance matrix of the estimation errors is 

The covariance matrix can be analyzed to assess the quality of the 
motion estimate. It is also used later in modelling the uncertainty of 
the robot's global position estimate. 

An intuitive interpretation of equation «4» is shown in figure 4. 
The weight matrices Wi function as norms that measure distance 
differently for each point. Error vectors making equal contributions 
to the total error of fit lie on ellipsoidal contours. For example, in 
figure 4, residuals ta and tb contribute equalr, to the total error but 
t contributes more because t TWt = tb Web < t TWt . This c a ace 
effectively gives more weight to errors perpendicular to the line of 
sight than parallel to it, which, given the nature of stereo, is what we 
would like to do. The "spherical" error model obtained by using 
the scalar weights of equation (3) has the obvious mnemonic 
meaning that residual vectors making equal contributions to the 
total error lie on. spherical contours. This distinction is what gives 
the ellipsoid model its power. 

Figu re 4: Interpretation of weight matrix 

Generalizing this method to handle rotation is complicated by the 
fact that the equations become nonlinear. The function to be 
optimized takes the form 

n 

LetWi£i 
1=1 

with e i = Q; - R P; - T 

and Wi = (R U1RT + V)-l 

(5) 

We have not been able to find direct solutions to this problem or 
even to approximations in which Wi is not a function of R. Our 
approach has been to use the direct solution for scalar weights to 
get an initial approximation, then to iterate on linearizations of 
equation (5). Linearization methods for solving least squares 
problems are described in [13]. 

117 

To recap, this section incorporated the error model of section 2 in 
an algorithm for finding the rotation and translation between two 
3·0 points sets. The algorithm replaces the scalar weights of 
equation (3) with weight matrices based on the covariances of 
corresponding points. When the motion is purely translational, the 
problem is linear and has a direct solution, but when the motion 
involves rotation we resort to an iterative solution. The error 
covariance of the motion solution will be used in the following two 
sections in updating the robot's local model and global position 
estimate. 

4 Updating the local model 
So far we have described how to model error in triangulation and 

how to solve for the motion between two successive stereo pairs. 
This section deals with how to process a long sequence of stereo 
pairs. At issue is how to avera~le information from successive 
images to achieve more accurate landmark localization and 
consequently more accurate estimates of robot position. 

An appropriate tool for this is the Kalman filter [10]. In filtering 
terminology the quantity to be estimated is called the "state", and 
when a measurement is taken the filter updates the current estimate 
of the state. Kalman filters incorporate known statistical properties 
of the measurements into the update process and produce error 
covariances for the state estimate. They are widely used in 
terrestrial and aerospace navigation and guidance applications 
[10,26]. In computer vision they have been used in object 
recognition [3], tracking of known objects with monocular image 
sequences [5,12], and for robot navigation and object tracking with 
sonar data [15]. 

In our. application, the state consists of the locations of the 
landmark points in the local model. A question arises as to whether 
the landmarks should be represented in a global, stationary frame 
of reference or in a local, moving, robot-centered frame. In ·either 
case, the update involves transforming coordinates from one frame 
to the other and applying the filter. If a fixed number of landmarks 
are being tracked, there is no difference in cost between the two. 
There will be a difference in the uncertainty of the resulting model; 
this difference depends on the relative uncertainties of the old 
model, the new measurements, and the intervening motion. We 
have not completed an analysis of this situation, but are currently 
keeping the landmark model in robot-centered coordinates. 

The update involves transforming the old local model to the 
current coordinate frame, inflating its uncertainty to account for the 
uncertainty of the transformation, and filtering the old model with 
the new measurements to create the updated model. Let Pt- 1 

be 
the coordinate vector of a single point in the old local model at time 
(I - 1) and let V

t
-

1 
be its covariance. For purely translational 

motion, P
t
-

1 
is transformed to the current frame by 

(6) 

where T is the translation from time (t - 1) to time t. The translation 
has an error covariance matrix V T so the transformed point has 
covariance 

(7) 

where V T is the error covariance of the translation. Equation (6) 
introduces some correlation between points tllat is not accounted 
for in (7), but we assume this is small enough to ignore. To extend 
this to rotation, we rewrite equation (6) as 



GJ' =RP +T 1-) 1-1 
(8) 

This i~ nonlinear, ~o to compute. "'-;-1 we proceed by analogy to 
equation (2); that IS, we pre-multiply the covariance of R, T, and 
1'1-1 by the Jacobian of the transformation and post-multiply by the 
Jacobian transposed. Since we treat Pt-l as uncorrelated with R 
and T, this leads to 

r = J V J T + R V RT 
1-1 m m m t-l 

where J m contains the derivatives of (8) with respect to the motion 
parameters and V m is t~e covariance of the motion parameters. 

Now let Q
I 
be the measurement of the same point at time t and. let 

VI be the covariance of this measurement. Some manipulation of 
the basic Kalman filter equations leads to the following estimates of 
the updated point location and covariance: 

(9) 
V

t 
= ("'-;_1-1 + V

t
- 1)-1 

Pt = GJ'1_l + VPt-
1
(QI- GJ't-l) (10) 

The intuition behind equation (10) is as follows. The second term 
takes the difference (QI- GJ't-l) of the new measurement from the 
old estimate, weights the difference by VPt-t, and applies the 
result as an update to the old estimate GJ'1_l' Matrix V

t
-

1 will be 
"larger" the more precise the new measurement, giving it more 
weight in the update, and smaller the less precise the 
measurement, giving it less weight. Conversely, V

t 
will be small if 

the old estimate is precise and large otherwise. Hence if the old 
estimate is already good, the new measurement receives little 
weight; if it is poor, the new measurement receives more weight. 

The procedure we have described assumes that the error in the 
motion estimate is uncorrelated with the error in the landmark 
points. When the motion estimate is obtained by using the methods 
of the previous section this will not be true, although if other 
sensors are also contributing to the motion estimate it will be 
approximately true. This is an issue we are investigating. 

5 Updating the global robot position 
By using the modules discussed in the previous sections, the 

robot computes estimates of its motion between successive stereo 
pairs. Combining these to estimate its global position is a simple 
matter of concatenating the transformation matrices. It may also be 
desirable to estimate the uncertainty of the global position, which 
can be done by propagating the covariance matrices of the 
incremental motions into a covariance of the global position. For 
translation this is also very simple. If the the global position at time 
(t - 1) is T and the next incremental translation is T, then the 
next globarposition is I 

(11) 

Since this is linear, if the incremental translation estimates have 
uncorrelated, zero mean gaussian errors, then T will also have 
zero mean, gaussian error with covariance given b/t 

where V and VI the covariances of T and Tt' respectively. 
The cas~-of motion in the plane, there gi11e two parameters for 

118 

translation and one for rotation, has been dealt with by Smith and 
Cheeseman [21]. In summary, one obtains anequation analogous 
to (11) in which the three parameters of the global position are 
expressed as functions of the previous position and the incremental 
motion. These are nonlinear and error propagation is done by 
linearization. For general motion in three dimensions, this is not 
straightforward with the Euler angle representation of rotation we 
have used here. In this case other parameterizations of rotation, 
such as quaternions, may be preferable [9, 26]. We are exploring 
this further. 

6 Performance 
Our evaluation to date has concentrated on comparing the use of 

the spherical and ellipsoidal error models in the motion solving 
methods of section 3. Results of tests with simulated and real data 
are described below. 

6.1 Simulations 
Three sets of simulation data will be presented. The first set is a 

base case that compares the standard deviations of position 
estimates obtained with each error model for a single step of 
vehicle motion. That is, it considers motion between only two 
consecutive stereo pairs. It illustrates the difference in the 
variability of position estimates with each model and reveals 
different amounts of coupling between translation and rotation with 
each error model. The second set of data also considers only two 
consecutive stereo pairs and tests limiting performance by tracking 
progressively more distant points. The last set examines both long 
range performance over many images and the effect on 
performance of different stereo baselines. 

The simulations were generated as follows. The "scene" 
consisted of random points uniformly distributed in a 3-D volume in 
front of the simulated cameras. Typically this volume extended 5 
meters to either side of the cameras,S meters above and below the 
cameras, and from 2 to 10 meters in front of the cameras. The 
cameras themselves were simulated as having 512x512 pixels and a 
field of view of 53 degrees. The baseline for most simulations was 
0.5 meters. Image coordinates were obtained by projecting the 
points onto the images, adding gaussian noise to the floating point 
image coordinates, and rounding to the nearest pixel. These 
coordinates were input to the triangulation and motion solving 
algorithms. For the ellipsoidal error model, covariance matrices 
were computed as described in section 2. . In the scalar case, 
weights were derived by taking the Z variance from the covariance 
matrix. Scalars obtained by several other methods were tried and 
found to give very similar results. These include the volume and 
length of the major axis of the standard error ellipsoid and 
Moravec's half-pixel shift rule [18]. 

The first set of simulations determined the standard deviation of 
the estimated motion between two consecutive stereo pairs when 
the true motion was one meter. The results are shown in figures 5 
and 6 plotted against the number of points used to compute the 
motion estimate. In both figures, the top three curves were 
obtained with spherical modelling and the bottom three with 
ellipsoid. Tilt implies rotation of the camera up or down, pan is the 
rotation about the vertical axis, and roll the rotation about the 
camera axis. The standard deviations obtained with the ellipsoidal 
model are considerably less than those with the spherical model. 
The size of this difference will vary; it will be larger when the 3-D 
points are further from- the cameras and smaller when they are 
closer. This is because the spherical error model is a reaSonable 
approximation to the triangulation error when points are close, but 
not when they are distant. Another thing to note is that with the 
spherical model roll and forward translation are estimated better 



0.50 

0.25 

~" ," ~'':.:.':.:,.:.:" ••••• •••••• ••• U •••••••• U. 

O.OO~------~--------~--------~------~ 
o 10 20 30 40 

Number of points 

Figu re 5: Simulation 1, rotations 

'U)0.12 
~ 
CI) 

Q; .s 
~ 

Lateral translation 
Vertical translation 
Forward translation 
B ~ 

'ti iii 0.09 B 
B 

0.06 

0.03 

~ 
'.~ 

~---- -91 .......... 
O.OO~------~--------~--------~------~ 

o 10 20 30 40 
Number of points 

Figure 6: Simulation 1, translations 

119 

'U) 1.4 ... 
CI) 

Q; .s 
t::: 

~ 
1.2 

1.0 

0.8 

True forward motion 
Ellipsoidal estimate 
Spherical estimate 

;' ::',,~ T·~',. - -... !.'\ .. ~, - - - - - __ _ 
. ....: ...,: ....,'~ ..... \ 

fl.,,, ...... \ "'~ . '" 
t i ~ " · . '" . . ,. 

t • ". 

.. , 
, , , . 

" " 

0.6~----~------~------~------~------~ 
o 

1.0 

0.5 

0.0 
o 

10 20 30 40 50 
Min point distance (meters) 

Figure 7: Simulation 2, bias 

......... 
.... -,-

..... 
.... ........ . 

.-. .... 

..... ~ ... 
// .. / ..... 

EJlipsoidal estimate 
Spherical estimate 

. . 

--------------------
10 20 30 40 50 

Min point distance (meters) 

Figure 8: Simulation 2, standard deviation 



than the other parameters, but with the ellipsoidal model all 
parameters are estimated equally well. This is because lateral 
translations and panning rotations have coupled effects on the 
errors of fit, as do vertical translations and tilting rotations. Using 
an ellipsoidal error model appears to reduce this coupling. Lastly, 
note that for a given level of performance fewer points are needed 
with the ellipsoidal model than the spherical, offsetingthe greater 
expense of the iterative motion solution needed in the ellipsoidal 
case. The exact relationship will depend on the camera 
configuration. 

The second set of simulations also dealt with the estimated 
motion between just two stereo pairs. It examined the effect of 
increasing the distance to points in the scene, or equivalently to 
reducing the maximum disparity in the image. Figures 7 and 8 
illustrate the results. Twenty points were generated in a volume 
spanning 4 to 50 meters in front of the cameras, giving disparities 

ranging from 2 to 32 pixels or 0.5% to '6% of image width. The 
volume was gradually shrunk by moving the near limit from 4 meters 
back until all points were 50 meters away, so that all disparities 
were on the order of 2 or 3 pixels. Figure 7 shows the mean value 
of the forward translation estimate as a function of the minimum 
distance to the points and figure 8 the standard deviation. The true 
forward motion. was one meter. Looking at the means, with the 
ellipsoidal error model there is a consistent underestimation of the 
true motion that gets worse as the disparity shrinks. With the 
spherical error model the behavior is erratic. The jagged nature of 
the curve for the spherical model is due to the contribution of image 
quantization to the noise in the image coordinates. As a 3-D point 
moves smoothly away from the cameras, image quantization will 
lead the triangulation to alternately under- and overestimate the 
true distance to the point (see [22] for a good illustration). This in 
turn affects motion estimates based on tracking the point. 
Apparently the ellipsoidal model smooths out this effect. Figure 8 
shows that the standard deviation of the motion estimates increases 
quite rapidly with shrinking disparity in the spherical case, but much 
less rapidly in the ellipsoidal case. On the whole, the breakdown 
with distance shown by the spherical error model is consistent with 
common experience in computer vision; this makes the stability 
shown with the ellipsoidal model come as quite a surprise_ 

Whereas the first two sets of simulations looked at motion 
estimates between only two consecutive stereo pairs, the last set 
looked at motion over a long sequence of images. There were two 
purposes for these simulations. The first was simply to confirm the 
results of the single-step simulations. The second was to test a 
hypothesis suggested by the previous simulation: that for 

. equivalent performance, the ellipsoidal model may permit the use of 
a shorter stereo baseline than the spherical. This is an important 
consideration, because length of the baseline directly affects the 
difficulty of stereo matching. Figure 9 shows the standard deviation 
of the estimated distance as a function of the true distance. Here 
the simulated travel between images was 0.64 meters, so the figure 
represents about 90 simulated images. It shows curves for a 0.5 
meter baseline with the spherical model and 0.125, 0.25, and 0.5 
meter baselines for the ellipsoidal model. Comparing the curves for 
0.5 meter baselines, the ellipsoidal model does outperform the 
spherical. It appears that the curves may eventually run p~rallel, so 
that the difference between the methods would be an additive 
constant rather than multiplicative. Looking at the effects of 
different baselines, results with the ellipsoidal model are still better 
than the spherical model with a 0.25 meter baseline, though not 
with 0.125 meters. Based on standard deviations of position, it 
does appear possible to use a shorter baseline. However, another 
factor involved is bias of the motion estimates. As seen in figure 7, 

~0.16 Ellipsoidal, 0.5 m baseline 
Ellipsoidal, 0.25 m baseline 
Ellipsoidal, 0.125 m baseline 

"
CD -CD 

~ Spherical, 0.5 m baseline all 

120 

0.08 

0.04 

,,' ". 
"..", ,. 

.",' 
"." 

. ".' 
" . 

".0/' ". 
".' 

,,' 
/./.". . ...................... . 

/ ....... . " .. ,........ .....- .. .""... " ,.-" .. ---- .. 
i .. ···· .. ,..-,,/ 
i'" ./ .' .... .,.-'., .. / ".,' . i ."" .' ,.,-",-... - .. . .~ ... .",....,. ... """"" 

i / -" j,/" •• ----••• - ••• 
v' 

O.OO~------~------~------~------~ 
o 15 30 45 60 

Distance travelled (meters) 

Figu re 9: Simulation 3, effect of baseline 

increasing the ratio of object distance to baseline tends to cause 
motion estimates with both error models .to underestimate the true 
distance. In general we have found that the narrower the baseline, 
the more motion is underestimated. The same occurs when we 
increase the variance of the simulated noise in the image, 
coordinates. This appears to result from a net underestimation of 
the distance to points in space. Simple compensation schemes 
appear to work when only the only error in image coordinates 
comes from quantization, but are less adequate as the noise 
variance grows. This requires further investigation. For the 
moment we just note that bias can be a problem with short 
baselines or non-trivial noise levels. 

6.2 Real images 
In order to verify the simulations on real images, we used both 

error models to estimate the position of a stereo-equipped robot 
travelling across the floor of our lab. The scene is pictured in figure 
10. The robot was driven straight forward in 54 steps of slightly less 
than 10 centimeters each. The cameras were on a 20 centimeter 
baseline and had a 36-degree field of view. The FIDO' feature
tracking system [23] was used to track points through the image 
sequence and the resulting set of matched image coordinates were 
input to the algorithms described earlier to estimte the robot's 
position at each step. We will briefly describe the operation of FIDO 
before discussing the results of the experiment. 

FIDO uses the Moravec interest operator and coarse-to-fine 
correlation algorithm to pick and match point features in stereo 
pairs. The interest operator is applied to one image of a stereo pair 
to pick. points in where intensity varies in all directions; typically 
these are sharp corners or intersections of lines. The correlator 
finds these points in the other image of the stereo pair. To find the 
same points in subsequent stereo pairs, an a priori motion estimate 
is used to predict the location of the point into the new images, a 



Figu re 10: One image from lab sequence. 

constraint window is defined around the predicted location based 
on the the uncertainty of the motion estimate, and the correlator is 
applied to find the position of best match within the constraint 
window. Incorrect matches are culled with a threshold on the 
correlation coefficient and with a 3-D error heuristic called the "3-D 
prune" stage. This heuristic uses the fact that under rigid motion 
the distance between two 3-D points does not change over time. 
Points which appear to violate this condition are discarded. The 
advantage of this test is that it does not require knowledge of the 
motion between stereo pairs. Points that survive this test become 
input to the motion solving algorithms. In the experiments to follow, 
between 30 and 40 points usually remained. 

Figure 11 compares the true motion to the position estimates 
obtained with the spherical and ellipsoidal error models. For this 
figure a "planar" motion solver was used that .solved only for the 
parameters of motion in the plane, that is two degrees of translation 
and one of rotation. The line of heavy dots shows the true position 
at every step, the path marked with circles shows the positions 
estimated with the spherical model, and the path marked with 
diamonds shows the same for the ellipsoidal model. The final 
position estimated with the ellipsoidal model was correct to within 
2% of the distance and one degree of orientation. With the 
spherical model the corresponding figures are 8% and seven 
degrees. 

In order to gauge the effect of noisier image matches, we adjusted 
the threshold of the prune stage so that progressivly fewer points 
were discarded. The general effect was to increasingly 
underestimate the distance travelled, which is consistent with the 
results of increasing the random noise level in the simulations. 
Figure 12 shows what happened when the prune stage was entirely 
disabled, leaving only the correlation threshold to detect matching 
errors. Estimates with the spherical model are initially very bad. 
We attribute this to matching errors caused by large depth 
discontinuities around the foreground objects. When these objects 
fall out of view, the estimates are better behaved. The behavior with 
the ellipsoidal model is much less erratic, though biased. 

Finally, we repeated the first experiment (ie. clean data) with the 
algorithm that computes all six degrees of freedom of motion. The 

121 

D 

Figu re 11: Results with clean data 

results were in accord with the planar case, with roughly the same 
levels of error in the final position estimate. It was notable that with 
the spherical model the error in roll was less than a degree, while in 
the other rotations it was between five and twelve degrees. This is 
consistent with the observation made from the first simulation about 
coupled rotation and translation; 

7 Conclusions 
Comparing motion estimates obtained with the spherical (scalar)· 

and ellipsoidal (3-D gaussian) error models, under the relatively 
long object distance to. baseline ratios we examined there is no' 
question that the ellipsoidal model is preferred. Simulations 
showed that position estimates with the ellipsoidal model had less 
variance and live trials confirmed that they were more accurate and 
less influenced by matching errors. With short object distance to 
baseline ratios this distinction will diminish, and applications that 
can engineer this situation may be able to obtain satisfactory 
performance with the cheaper scalar error model. We suspect that 
many applications will be such. that the 3-D gaussian model will be 
valuable. 

A caveat to the results we have described is the possibility of bias 
leading to underestimation of position. This results from high noise 
levels in image match coordinates and from large distances to 



objects. We attribute this effect to the non-gaussian nature of the 
true error distribution in these situations. This can be dealt with 
either by ensuring that the noise level is low or by explicitly 
modelling the non-gaussian error. The low noise level can probably 
be achieved in many situations with the" use of matching 

D 

o 

Figure 12: Results with noisy data. 

constraints, calculating match coordinates to sub-pixel resolution,; 
and effective error detection methods. Where this cannot be 
achieved, better modelling is an area for further research. 

There remains the question of whether use of ellipsoidal error 
models tolerates shorter baselines than use of spherical error 
models. To date we have only tested this in simulation. Based on 
variance of the position estimates, a shorter baseline is possible. 
However, the bias issue is unresolved. 

Perhaps the most valuable result is demonstrating that accurate 
position estimates can be achieved in a fully automatic system 
when an adequate error model is used. The true motion in the 
examples we showed was pure translation, but we believe that the 
results will hold for general motion and preliminary simulations bear 
this out. With matching to sub· pixel resolution, matching of 
extended features instead of points, and more sophisticated error 
detection, it may be possible to obtain much better performance 
than that quoted here. Another interpretation of our results is that 
they show the importance of error modelling in stereo and probably 
other aspects of vision. One area we plan to explore this is in shape 
from stereo, beginning with the local update paradigm of section 5. 

122 

Acknowledgments 

We are indebted to Hans Moravec for making us aware of Kalman 
filters, Peter Highnam for introducing us to Schonemann's 
algorithm, and Takeo Kanade for pOinting out the possibility of 
using a shorter baseline. 

References 

[1] G. Adiv. 

[2] 

[3] 

Determining three-dimensional motion and structure from 
optical flow generated by several moving objects. 

IEEE Trans. on Pattern Analysis and Machine Intelligence 
PAMI-7(4):384·401, July, 1985. 

P. Anandan and A. Weiss. 
Introducing a smoothness constraint in a matching 

approach for the computation of displacement fields. 
In Proc. of ARPA IUS Workshop, pages 186-197. SAIC, 

December, 1985. 

N. Ayache and 0.0. Faugeras. 
HYPER: A new approach for the recognition and positioning 

of two-dimensional objects. 
IEEE Trans. on Pattern Analysis and Machine Intelligence 

PAMI-8(1):44-54, January, 1986. 

[4] H.S. Baird. 
Model-based Image Matching Using Location. 
MIT Press, Cambridge, Mass., 1985. 

[5] T.J. Broida and R. Chellappa. 
Estimation of motion parameters from noisy images. 
IEEE Trans. on Pattern Analysis and Machine Intelligence 

PAMI·6(1):90·99, January, 1986. 

[6] A.A. Brooks. 
Symbolic reasoning among 3-D models and 2-d images. 
Artificallntel/igence 17:285-348, 1981. 

[7] L. Dreschler and H.-H. Nagel. 
Volumetric model and 3D trajectory of a moving car derived 

from monocular TV frame sequences of a street scene. 
Computer Graphics and Image Processing 20:199-228, 

1982. 

[8] T.F. Elbert. 
Estimation and Control of Systems. 
Van Nostrand Reinhold Co., New York, NY, 1984. 

[9] 0.0. Faugeras, N. Ayache, B. Faverjon, F. Lustman. 
Building visual maps by combining noisy stereo 

measurements. 
In IEEE Int'I Conf. on Robotics and Automation, pages 

1433-1438. IEEE, April, 1986. 

[10] A. Gelb (editor). 
Applied Optimal Estimation. 
MIT Press, Cambridge, MA, 1974. 

[11] D.B. Gennery. 
Modelling ttle environment of an exploring vehicle by means 

of stereo vision. 
PhD theSis. Stanford University. June, 1980. 



[12] D.B. Gennery. 
lracldng known three·dimensional objects. 
In Proc. of AAA/, pages 13-17. AAAI,1982. 

[13] P.E. Gill. W. Murray. and M.H. Wright. 
Practical Optimization . . 
Academic Press, 1981. 

[14] W.E.L. Grimson and T. Lozano-Perez. 
Model·based recognition and localization from sparse range 

or tactile data. 
International Journal 01 Robotics Research 3(3):3-35, Fall. 

1984. 

[15] J. Hallam. 
Resolving observer motion by object tracking. 
In Int'I Joint ConI. on Artificial Intelligence. 1983. 

[16] M. Hebert. 
Reconnaissance de formes tridimensionel/es. 
PhD thesis, L'Universite de Paris·Sud. Centre d'Orsay. 

September, 1983. 

[17] l.H. Matthies and C.E. Thorpe. 
Experience with visual robot navigation. 
In Proc. of IEEE Oceans'84 Cont.. IEEE, Washington, D.C., 

August, 1984. 

[18] H.P. Moravec. 
Obstacle avoidance and navigation in the real world by a 

seeing robot rover. 
PhD thesis, Stanford University, September, 1980. 

[19] P.H. Schonemann and R.M. Carroll. 
Fitting one matrix to another under choice of a central 

dilation and a rigid motion. 
Psychometrika 35(2):245-255, June, 1970. 

[20] C.C. Slama (editor-in-chief). 
Manual of Photogrammetry. 
American Society of Photogrammetry, Falls Church, Va., 

1980. 

[21] R.C. Smith and P. Cheeseman. 
On the representation and estimation of spatial uncertainty. 
Technical Report (draft), SRI International, 1985. 

[22] F. Solina. 
Errors in stereo due to quantization. 
Technical Report MS-CIS-85-34, U. Pennsylvania, 

September, 1985. 

[23] C.E. Thorpe. 
Vision and navigation for a robot rover. 
PhD thesis, Carnegie-Mellon University, December, 1984. 

[24] R.Y. Tsai and 1.S. Huang. 
Uniqueness and estimation of three-dimensional motion 

parameters of rigid objects with curved surfaces. 
IEEE Trans. on Pattern Analysis and Machine Intelligence 

6(1):13-26, January, 1984. 

[25] A.M. Waxman and J.J. Duncan. 
Binocular image flows. 
In IEEE (editor)" Proc. of Workshop on Motion: 

Representation and Analysis, pages 31-38. May, 1986, 
May, 1986. 

123 

[26] J.R. Wertz (ed). 
Spacecraft Attitude Determination and Control. 
D. Reidel Publishing Company, 1978. 



AUTOMATIC GRASP PLANNING: AN OPERATION SPACE APPROACH 

Matthew T. Mason 
Randy C. Brost 

Computer Science Department 
Carnegie-Mellon University 

ABSTRACT 

During grasping motions, frictional forces and geometric 
constraint can combine to eliminate uncertainty in the lo
cation of the object. This paper incorporates the mechanics 
of friction and constraint in automatic planning of grasping 
motions. Our approach to automatic planning is centered 
on the use of operation spa.ce, which can be constructed for 
any parameterized class of operations. This approach was 
applied by Brost [1986] to plan planar parallel-jaw grasping 
motions. We extend Brost's work .to include the finite di
mensions of the fingers and the finite lengths of the motions. 
We explore the conditions for a successful grasp, and derive 
constraints in the operation space. An operation satisfyin$ 
all of the constraints should produce the required result. 

I. INTRODUCTION 

Au important aspect of a grasping operation is how it deals 
with uncertainty in the initial location of the object. In 
many applications, the orientation and position of an ob
ject will vary slightly from predicted values. At the least, a 
grasping operation should succeed despite such uncertainty. 
At best, we may be able to CQnstruct a grasping opera
tion that eliminates the uncertainty. This paper focuses 011 

grasping operations that eliminate the uncertainty mechani
cally, by the aligning and centering motions that occur when 

an object is pushed and squeezed between two fingers. 

To plan grasping motions, we adopt the operation-space 
approach of Brost [1986], and extend it to address a broader 
set of issues. Brost explored the conditions for stability and 
convergence of object orientation, assuming that the fingers 
are wide enough, and approach from a great enough dis
tance. To address the finite width and stroke of the fingers, 
we must construct bounds on the translations of the object, 
and incorporate these bounds in the planning process. 

The central planning mechanism is the opera.tioll spa.ce. 
For any parameterized class of operations, we can define the 

CH2345-7/86/0000/0124$01.00 © 1986 IEEE 
124 

operation space to be the space whose dimensions corre
spond to the parameters of the Class. Each point in the 
space corresponds to a particular operation. A typical op
eration space constructed by Brost is shown in figure 1. For 
this diagram, the fingers are modeled as infinite half-planes, 
and the duratio~ and speed of motions are not addressed. 
A two-parameter operation results, which can be viewed as 
a mapping from parameter values to final object configura
tions. This mapping is represented explicitly in the opera
tion space, simplifying the choice of an appropriate pair of 
parameter values to obtain a desired outcome. 

The operation-space approach involves three steps: 

1) Define a parameterized operation. Each parameter 
defines a dimension of the operation space. 

2) Develop the mechanics of the operation, combining 
models of the task and the operation. 

3) Express the resuHs as a mapping from the operation 
space to task outcomes. For any desired outcome, se
lect a parameter value-set from the region that maps 
to that outcome. 

Some forms of uncertainty are easily incorporated. For 
example, if uncertainty in one of the parameters is present, 
we can simply select a point that is not too close to the 
limits of the feasible region. This is equivalent to shrinking 
the feasible region before selecting a point. Other forms of 
uncertainty must be included in the mechanics of the oper-

ation. 

Brost modeled the fingers as infinitely wide half--planes, 
approaching from infinity-planning the initial position was 
not an issue. In this paper, we assume t.hat tlte two fingers 
have a finite width, and an initial position must be planned. 
Figure 2 shows part of the resulting four-dimensional opera~ 
tion space. As we shall see, the constraining relations among 
the parameters are not as simple as Brost's, but they are still 

fairly simple. 



o ---?<\-

90 

-90 .... __ .... ~ 

, 
-90 90 

(al 

Figure 1. A two-parameter operation space for. pushing, ZhO 

from Drost [1986J. The diagram shows the mapping from 
combinations of finger angle (~) and pushing dir.ection (5) to 
resultant configurations of a triangle. 

I.A. Previous work 

This paper draws primarily on research in the mechanics of 
pushing, and planning of pushing and squeezing motions. 
Mason [1982, 1986] explored the mechanics of pushing, and 
demonstrated automatic planning of push-grasp operations. 
Fearing [1984] incorporates the mechanics of pushing, and 
explores acquisition and stability of grasping with point fin
gers. Mani and Wilson [1985] address planning of a sequence 
of pushes to orient objects, and construct an operation space 
for pushing. Brost [1985, 1986] constructed operation spaces 
for three different grasping operations. Peshkin and Sander
son [1986] improved on Mason's analysis of pushing. 

A number of other issues arise in the context of grasp
ing, including control of a grasped object, mechanical prop
erties of grasp configurations, and finding feasible grasp con
figurations. A short survey of this area should include Hana
fusa and Asada [1977], Lozano-Perez [1976, 1981], Salis
bury [1982], Cutkosky [1985], Asada and By [1985], Kerr 
a.""ld Roth [1986], Abel, Holzmann, and McCarthy [1985]. 

There are a number of precedents in the use of opera
tion space. Our operation space is a direct extension of the 
spaces constructed by Brost [1986]. Mani a..'ld Wilson [1985] 
independently constructed a pushing space. Kerr and Roth 
[1986] defines a space whose dimensions are the magnitudes 
of internal forces in a grasp; and the jamming and wedging 
diagrams of Simunovic [1975] and Whitney [1982] have the 
same character. 

The operation space approach is similar to the use of 

125 

- 4.0 

(e) -90 

Figure 2. A four-parameter operation space for a puah
grasp. Desides the finger angle ¢ and pushing direction 6 
used by Drost, we include the initial position of the reference 
finger (XI&O,YhO). Constraints arise (a) in 4>--5 space, (b) in 
YhQ-q, space, and (c) in XhO--cP-5 tlpU(;C. The region represent
ing succctlsflll operations is the intersection of regions shown 
in (a), (b), and (c). 

configuration-space for robot path-planning [Lozano-Perez 
1981]. If we view "being there" as an operation, then config
uration space is the corresponding operation space. A more 
useful operation is a straight-line motion, which is charac
terized by the initial and final configurations. The operation 
space would be C xC, where C is the configuration space. 

Similarities also hold with recent work in fine-motion 
planning [Lozano-Perez, Mason, and Taylor 1984, Mason 
1984, Erdmann 1984]. Assuming a simple,fixed, model of 
compliance, and a known task geometry, the robot path for 
a single motion command is completely characterized by an 
initial configuration and a nominal velocity. 



J 

:. zs 

(1) (2) (3) 

Figure 3. The push-grasp. The first finger pushes a dis
tance d in direction 0, until the object is aligned with the 
finger. Then the second finger squeezes the object. 

II. ANALYSIS OF THE OPERATION 

Brost [1986] addresses three operations: push-grasp, squeeze· 
grasp, and offset-grasp. We will extend his results for the 
push-grasp, then briefly consider variations required for the 
other two operations. The push-grasp (see figure 3) pushes 
the object until. it is stably aligned with the finger, then 
squeezes the object with the second finger. The general form 

is: 

1) Move the hand to an initial position (XhO, YhO) and 
orientation 4>, above the object; 

2) Move down close to the table; 

3) Translate the hand in direction 0 for a distance d with 

velocity V; 

4) Close the fingers, and translate the hand to hold the 

reference finger still. 

We will treat the push-grasp as a four-parameter operation 
(XhO' YhO, 4>, 0). A lower bound for the pushing distance d 
arises as a by-product of our analysis. See Mason [1985] for 
an approach to producing bounds on the pushing velocity 
v. The initial position and orientation of the hand are ex
pressed in a coordinate system fixed in the object, i.e. they 
represent relative position and orientation. Uncertainty in 
the object's initial location are equivalent to uncertainty in 

the parameters of the operation. 

We will require the planner to verify that the following 
necessary conditions are satisfied: 

• geometrical conditions: fingers clear object at initial 
position and orientation; 

• convergence and stability: object converges to desired 
orientation relative to the fingers, and is stable in the 
final orientation; and 

• finite motion limits: object does not roll or slide past 
the face of a finger. 

126 

. 
• '----(ZhO. !/hO)----. 

.. 

Figure 4. Notation for the push-grasp. Two coordinate 
frames are located at the object center of gravity. The x'-y' 
frame is fixed with respect to the object. The x-y frame is 
aligned with the fingers. 

I1.A. Geometrical conditions 

First we address the problem of preventing undesired colli
sions, and producing the desired collision, between the fin
gers and the object. For this problem, the operation-space 
reduces to configuration-space. Using the notation of fig
ure 4, the constraints are: 

Ti sin(Oi + 4» - 8 < YhO < Ti sin(Oi + 4» 

for all i. This means that YhO must fall between two sets of 
sine waves, as shown in figure 2(b). 

IIoBo Convergence and stability oC orientation 

This is precisely the problem addressed by Brost [1986], 
based on the earlier work of Mason [1982, 1986]. Assuming 
negligible inertial forces and Coulomb friction, the direction 
of rotation is determined by the coefficient of friction, the 
center of gravity, the direction of the finger motion, and the 
contact geometry. Stability and convergence are obtained 
for any operation inside the simple constraints shown in fig
ure 2(a). 

IIoCo Finite fingers and finite pushing distance 

The finite translations of the object are important in two 
respects. First, if our previous analysis is to be valid, we 

must ensure that each finite-width finger has the effect of an 
infinite half-plane. This means that the object must never 
make contact with an edge of the finger-face. Second, we 
must have an upper bound on the distance traveled during 
the rotation, so we know how far to push. 

The primary complication is indeterminacy. We do not 
expect to know the distribution of support forces between 
the object and the table. Although the rotation direction is 
determined, the rotation rate, and the translational compo
nents of the motion, are not determined. Our first require-



(b) 

(e) 

Figure o. In order to bound the translational motion of 
the object, we require bounds on the instantaneous rotation 
center. We will use bounds arising from a variety of con
siderations. (a) shows the rotation center cannot fall inside 
the perpendicular bisector of the line connecting the contact 
point with the center of gravity. Nor can it fall outside a 
parallel line of distance (p~r)2 from the contact, where r is 
the 'radius of a circle circumscribed about the support, and 
p is the distance from the contact to the center of gravity. 
(Peshkin and Sanderson [1986] have improved this bound 

. close to p + .c..) For a fixed 4>, this defines a band-for 4> 
varying over :ome interval, this defines a "bow-tie". Con
straint (b) arises from considering the angle of force at the 
contact. Assume that the force is in the direction 1R, a ro
tation cent\!r outside band R would give rise to net forces in 
a direction orthogonal to the hypothesized direction of force. 
If the contact force can actually lie anywhere "inside the fric
tion cone, we sweep the band to obtain another bow-tie. (b) 
also includes the result from [Mason 1982] that the rotation 
center carmot fall inside the friction cone. For constraint (c), 
we construct a line perpendicular to the finger velocity. Ro
tation centers above that line must be in region R of (b), 
and rotation centers below the line must be in region L of 
(b). (d) shows an example combining the constraints for a 
fixed 6. 

ment, then, is to obtain at least some bounds on the possible 
motions. Figure 5 shows the bounds that we will use. 

Given some bound on the possible rotation centers, we 
can proceed as follows. Circumscribe a rectangle, aligned 
with the finger face, about the set of possible rotation cen
ters. Let the coordinates of the rectangle edges be x;t, x;:, 
yt, y;:. It is easily shown that 

_ < dx < + 
Yr - d4> '- Yr , 

_ x+ < dy < -x-
r - d¢ - r 

where (x,y) describes the trajectory of the object vertex. H 

127 

we compute these bounds for some fixed 6, letting 4> vary 
over some interval, we can bound the variations in x and y: 

yt ll4> ~ llx ::; Y;: ll4>, 

- x;: llel> ~ lly ::; -xi ~4>. 

for ll4> < 0, as in the example. Let the origin be placed 
at the initial location of the contact vertex, then the final 
location is in the bounding rectangle [x-, x+] X [y-, y+], 
where 

x- = yt ll.4>, 

x + = Y;: ll.4>, 

tr = -x;: ll.q" 

y+ = -xt ll.4>. 

for ll4> < 0. Although the details are not presented here, the 
bounds on the rotation center, Y;: etc., are simple trigono
metric functions of 6. Hence the bounds on the contact 
vertex, x- etc., are trigonometric functions of 6, and linear 
in 4>. 

We can be confident of ll¢ rotation by pushing at least 
as far as y+ in the y-direction. However, it is almost certain 
that the rotation will be completed before the motion is 
complete, so we must also consider the pure translation of 
the object after rotation ceases. It is easily shown that if 
161 ::; a, where a = tan-1 J.L, the object will translate in 
direction 6, otherwise it will translate in direction a. 

These observations are summarized in figure 6. The 
path of the contact vertex, and the contact edge after ro
tation is complete, is bounded by a polygonal region of the 
plane. Letting (Xi, Yi) be a vertex of the bounding polygon, 
we can write 

Xi -w < XhO+Yitan6 < xi+w, 

The Xi are 0, x-, or x+ + l, where l is the length of the 
edge, and the Yi are 0, y-, or y+. These are all simple 
trigonometric functions of 6, and linear in ¢. In general, we 
obtain constraints of the form, 

where the fi(6) are trigonometric functions, and the Ci are 
constants. Figure 2( c) shows an example of these constraints 
plotted in the operation-space. 

This analysis suffices for simple push grasps involving 
rotation about a single contact vertex. A more general anal-



r 

L. _______________ SM ________________ ~ 

Figure 6. The region 12345 bounds the possible locations of 
contact of the object with the finger. A sufficient condition 
is that the area swept by the finger include this region. Also 
shown is the contact region for a typical motion. A shows 
the locus of the contact vertex as the objcct rotates, and B 
shows the region of contact after the rotation is complete. 

ysis is required for complex grasps where the object m.ay 
roll from one vertex to the next. The basic idea would be 
to repeat the above analysis for each vertex, and splice the 
envelopes together. 

I1.D. Related operations: squeeze-grasp and offset-grasp 

The analysis of the push-grasp almost encompasses two sim
ilar operations, the squeeze-grasp and the offset-grasp. Both 
motions dispense with the preliininary pushing motion, and 
rely on pure squeezing for alignment and· centering of the 
object. The offset-grasp requires that the reference finger 
makes first contact with the object, while the squeeze-grasp 
is indifferent to which finger hits first. The main difference 
in constructing the operation spaces is that a different set of 
rotation center bounds are required. ~otation center bounds 
for an example problem proved to be somewhat simpler than 
the bounds described in figure 5. 

Ahel, J. :\\., Holzmann, W., and :\IcCarthy, J. M. ]985. "On 
Grasping Planar Objects with Two Articulaten Fingers," 
ProcceC/illgs of tllC 1!J1i5 IEEE Illternatiollal Conference 011 

llo/)otics and Autolllation, St. LOllis. 

Asada, H., and By, A. B. ]!J85. "Kinematics of Work· 
part Fixtllring," Procecdings of t/IC 1985 IEEE Internationar 
COlderellce on Robotics and Automation, St Louis. 

128 

Brost, H. C. 1985. "Planning Robot Grasping Motions in 
the Presence of Unc<!rtainty," CMU-RI·TR-85-12, Robotics 
Institute, Carnegie-Mellon University. 

Brost, R. C. 1986. "Automatic Grasp Planning in the Pres
ence of Uncertainty," Proceedings 01 the 1986 IEEE Interna

tiollai Conierence on Robotics and Automation, San Fran
cisco. 

Cut kosky, M. R. 1985. "Grasping and Fine Manipulation for 
Automatcd Manufacturing," PhD thesis, Carnegie-Mellon 
University. 

Erdmann, M. A. 1984. "On Motion Planning with Un
certainty," TR-8l0, Artificial Intelligence Laboratory, Mas
sachusetts Institute of Technology. 

Fearing, R. S. 1984. "Simplified Grasping and Manipula
tion with Dext.rous Robot Hands," American Control Con

ference, San Diego. 

I1anafusa, 11., alld Asada, H. 1977. "A Robotic Hand with 
Elastic Fingers and it~ Application to Assembly Process," 
IFAC Symposiulll on Information and Control Problems in 

Manllf'lcturing Technology. 

Kerr, J., and Roth, B. 1986. "Analysis of Mu\tifingered 
Hands," Int.efllational JOllrual of Robotics HesearclJ, ,1(4). 

Lozano-Perez, T. 1976. "The Design of a Mechanical As
sembly Systelll," TR-397, Arlificialintelligcnce Laboratory, 
Massachusetts Institute of Technology. 

Lozano-Perez, T. 1981. "Automatic Planning uf Manipula
tor TrallSfer Movements," IEEE Transactions on Systems, 

Man, and Cybernetics, SMC-ll(10). 

Lozano-Perez, T., Mason, M. T., ann Taylor, R. n. 1984. 
"Automatic Synthesis of Fine -Motion Strategies for Robots," 
International Journal of Robotics Researc11 3(1). 

Mani, M., and Wilson,· v..'. R. D. 1985. "A Programmable 
Orienting Systelll for Flat Parts," ProceediJlgs, NAMRI XIII, 

Berkeley. 

Mason, M. T. 1982. "Manipulator Grasping and Pushing 
Opcrations," AI· TR·fl90, Artifidal Intelligence Laboratory, 
Massachusetts Institute of Tcchnology. 

Mason, M. T. 1981. "Automatic Planning of Fine Motions: 
Correctness ann Completcn<!ss," Proceedings, IEEE Inter

llatiollal Confcrence Robotics, Atlanta. 

Mason, M. T. 1985. "On the Scope of Quasi-Static Push
ing," 3rd International Symposium· 011 Robotics Research, 

Gouvieux. 

Mason, M. T. 1986. "Mechanics and Planning of Manipula. 
tor Pushing Operations," International JourIlal of Robotics 

Researcll, 5(1). 

Peshkin, M., and Sanderson, A. 1986. "Manipulation of a 

Slidin{; Object," proceedings, 19R6 IEEE Int,crnatiollal Con

f(~rellce 011 Ro"otics alld j\u/()lIIatioll, San Francisco. 

Salisbury, J. K. 1!l82. "1\incllIatic and Force Analy~is of 

Artil:lllated Hands," PhD thcsis, Department of Mcchanical 
Engineering, Stanford University. 

Sinlllllovic, S. N. 1975. "Force Information in Asscmhly 
Proce~ses," Proceeclillgs, 5tll Int.crnatiollal SymposiuIIl 011 

Industrial Robots. 

Whitney, D. E. ]982. "Qllasi·Static Assembly of Compli
antly Supported Higid Parts," Jou/"11.11 of DYll.1111ic Systems, 
A1easllrclllcllt, aud Control 104:65. 



Constructing Stable Force-Closure Grasps 

Van-Due Nguyen 1 

Artificial Intelligence Laboratory 
Massachusetts Institute of Technology 

Cambridge, MA 02139 

Abstract 

This paper addresses the problem of synthesizing planar grasps 
that are force-closure and stable, with point contacts with fric
tion. The synthesis of force-closure .grasps constructs ind~pen
dent regions of contact for the fingertips, such that the motion of 
the grasped object is totally constrained. The synthesis of stable 
grasps constructs virtual springs at t~e con~acts, such ~hat the 
grasped object is stable, and has a desired stiffness matrIX about 
its stable equilibrium. 

A force-closure grasp implies equilibrium grasps exist. In the 
reverse direction, we prove that non-marginal equilibrium grasps 
with at least two point contacts with friction are also force-closure 
grasps. Next, we prove that all force-closure grasps can be made 
stable, by using either active or passive springs at the contacts. 

The paper presents fast and simple algorithms for directly con
structinIT stable force-closure grasps based on the shape of the 
grasped °object. It develops a simple I?eometric rel~tion betwe~n 
the stiffness of the grasp and the spatial configuratIOn of the vir
tual springs at the contacts. The stiffn~ss of th~ gra~p depen~s 
also on whether the points of contact stick, or shde Without friC
tion on the edges ofthe object. 

This report describes research done at the Artificial Intelligence Lab
oratory of the Massachusetts Institute of Technology. Support for the 
Laboratory's Artificial Intelligence research is provided in part by the 
System Development Foundation, and in part by the Advanced Re
search Projects Agency of the Department of Defense, under Office of 
Naval Researchcontacts NOOOl4-85-K-0124. 

IThe author is currently with General Electric Corporate Research and 
Development Center, in Schenectady, New York. 

CH2345-7/86/0000/0129$01.00 © 1986 IEEE 
129 

1 Introduction 

Robot end effectors have evolved from simple parallel grippers 
to multi-finger hands to provide greater flexibility and dexterity 
in manipulation and assembly operations. Robot hands come in 
many shapes, but they all have in common the ability of be
ing programmed and servoed from a computer. To take full 
advantage of the dexterity offered by multi-purpose hands, we 
need to be able to not only analyze a grasp but &ynthe&ize it. 
In other words, we would like to condruct grasps that have such 
features as feasibility, reachability, force-closure, equilibrium, sta
bility, compliance, etc ... 

This paper addresses the problem of synthesizing grasps that are 
force-closure, equilibrium, stable, and compliant. Synthesizing a 
force-closure grasp is equivalent to finding places to put the con
tacts, such that these contacts totally constrain the motion of 
the grasped object. The contacts between the fingertips and the 
object are modeled as point contacts with friction. Constructing 
an equilibrium grasp is synthesizing the forces and moments at 
the contacts, such that the object is in equilibrium. Construct
ing a stable grasp is finding the independent virtual springs at 
the contacts, such that the grasp has a positive definite stiffness 
matrix. Constructing a compliant grasp is maping the desired 
stiffness matrix at the grasped object into the stiffness matrices 
at the fingertips and at the finger joints. The compliance model 
used is a generalized spring. We also explore how slip affects the 
force-closure and stability properties of the grasp. 

1.1 A Grasp Planner 

A Grasp Planner can construct a stable grasp G on a set of n 
edges or fnces as follows: 

• Synthesize a set of grasp points {PI! ... , Pn } .for which the 
grasp G at these grasp points is force-closure. Better yet, we find 
the optimal set of independent regions of contact {81, .•. , 8n } for 
the given n grasping edges or faces. The regions are independent 
from each other, in the sense that as long as we pick grasp point 
Pi in region 8i the resulting grasp G = {PI, ... , Pn } is always 
force-closure. The set is optimal in the sense that the set of 
independent regions has the largest miminum radius for the given 
set of grasping edges or faces. We then pick the mid point of the 
region 8i as the optimal grasp point Pi. 
• Synthesize a corresponding set of virtual springs, such that 
grasp G-is stable. Each virtual spring has stiffness ki and com
pression O'io. We prove that the stiffnesses k/s and compressions 
O'io'S of the virtual springs can always be chosen so as to make the 
grasp stable. We can also construct the set of virtual springs such 
that the grasp has some desired compliance center and stiffness 
matrix. 



Figure 1: Examples of force-closure grasps found by the synthe
sis. 

Figure 2: Examples of stable grasps found by the synthesis. 

Figure 1 shows examples of force-closure grasps found by the 
algorithms. The independent regions of contact are highlighted 
with bold segments and circles. The grasp is force-clqsure no 
matter where the finger tips are placed in these regions. This 
flexibility is of great importance in manipulation since we always 
have positioning errors and many other uncertainties. 

Figure 2 shows examples of stable grasps constructed by the algo
rithms. The stiffness matrix at the grasped object is mapped into 
the virtual springs at the contacts. These virtual springs are re
sponsible for generating restoring forces and moments whenever 
the grasped object is displaced from its stable equilibrium. 

1.2 Other Related Works 

Related works can be grouped as follows: 
• Feasible and reachable grasps. - Feasibility and reachability 
problems can be solved using the Configuration Space approach 
(Lozano-Perez 1983), which grows the grasped object into a con
figuration obstacle in higher dimensional space, and inversely 
shrinks the fingers into a configuration point. The two problems 
become a search respectively for a feasible configuration point, 
and a path to that feasible point, such that the path does not 
intersect the configuration obstacle (Lozano-Perez 1976, 1983). 
• Force-closure grasps - Force-closure and total freedom cap
ture the main constraint between the fingers and the grasped 
object. Ohwovoriole analyzed the geometry of the different re
pelling screw systems, and use the results to analyze systems of 
contacting bodies such as an object grasped by a set of fingers, 
or a pin being inserted into a hole (Ohwovoriole 1980, 1984). 
Related to force-closure is the solution of systems of linear in
equalities (Kuhn and Tucker 1956). 

130 

Cl Form-closure grasps - A grasp is form-closure if the grasped 
object is totally constrained by the set of contacts, irrespective of 
the magnitude of the contact forces. Reuleaux (1875) proved that 
a 2D grasp needs at least four point contacts for form-closure. 
Lakshminarayana (1978) showed tL;t a 3D grasp needs at least 
seven point contacts. Form-closure can be viewed as force-closure 
with frictionless contacts only. 
• Equilibrium grasps - There are many works on analyzing the 
equilibrium of forces in a grasp with different types of contact 
(Salisbury 1982), with flexible contacts (Cutkosky 1984), or with 
friction (Abel, Holzmann and McCarthy 1985). Finding a good 
grasp is often formalized as a search of the space of all grasps 
with some goal function, such as optimum for internal forces 
(Kerr 1984), or security of grasp (Jameson 1985). 
• Stable grasps - A stable prehension of a planar hand on a 
polygon can be found by centering the hand on the center of mass, 
and check for grasps that are stable with respect to rotation, then 
stable with respect to translation (Hanafusa and Asada 1977), 
(Asada 1979). Baker, Fortune and Grosse (1985) proved that 
stable grasps on a convex polygon exist, and presented efficient 
algorithms that require no incremental search. 
• Compliant grasps - We can have active stiffness control of the 
fingers and the grasped object by using the Grip and Jacobian 
matrices as in (Salisbury and Craig 1981), (Salisbury 1984, 1982), 
or build in some proximity damping as in (Jacobsen, Wood, 
Knutti and Biggers 1985). Grasps can be achieved easily with 
active compliance and bounded slip at the fingers as in (Fear
ing 1984), or by exploiting the friction and passive compliance 
of the object· with the fingers and the environment as in (Ma
son 1982, Brost 1986). Grasping a peg and inserting it into a hole 
is currently done best with a passive compliance wrist known as 
the Remote Center of Compliance (Whitney 1982). 

2 Constructing Force-Closure Grasps 

2.1 Representing Contacts and Grasps 

Figure 3 depicts the different types of planar contacts with fric
tion. The first column describes the physical contact with the 
finger on top and the grasped object below it. The second and 
third columns describe respectively the wrench convex, repre
senting the range of forces that can be applied to the object, and 
the twist convex, representing the total freedom of the object. 
Each convex is represented by a minimal set of generating vec
tors. The twist convex is computed by taking the dual of the 
wrench convex. 
a. Point contact with friction - The friction cone at the point of 
contact shows the range of pure force that can be applied through 
the point contact. The wrench convex has t~vo wrenches which 
are along the two extreme rays of the friction cone. Any force 
pointing inside this friction cone can be written uniquely as a 
positive combination of the these two wrenches. The twist convex 
has two unisense translations, each reciprocal to one wrench and 
repelling to the other. It also has a free rotation about the point 
of contact as above. 
b. Edge contact with friction - It is well known that, for rigid 
objects, any force distribution along the segment of contact is 
equivalent to a unique force at some point inside the segment. 
This unique force is mathematically the positive combination of 
two ranges of force at the two ends of the segment of contact. 
Specifically, the wrench convex of an edge contact with friction 
is equivalent to the convex sum of two wrench convexes, each 
represents a point contact with friction at one end of the edge of 
contact. 
c. Soft finger contact - From a force-closure point of view, a soft 
finger contacting an edge is the same as an edge contact with fric
tion. The pressure distribution is irrelevant to our current focus, 
which is concerned with whether the object can be constrained 



;;;;;/;;;; 

Figure 3: Planar contacts with friction and their twist and 
wrench convexes. 

with the given contacts, rather than how much force should the 
fingers apply to the object. 

A soft finger becomes more useful when it contacts on the inside 
or outside of a corner. Figure 3.c shows a soft finger contacting 
on the outside of a corner. The wrench convex is the convex 
addition of two convexes, each describes the edge contact with 
friction on one side of the corner. This wrench convex can be 
approximated by a much larger friction cone. 

Gravity is not a contact, but it does playa role in constraining 
the total freedom of the object. For example, a box is immobile 
on a table because the force of gravity is holding it down to the 
table. We can view the box as being grasped, or more exactly 
constrained, by two contacts: a plane contact between the bot
tom of the box and the table, and an imaginary point contact at 
the center of gravity of the box. 

Twist and wrench convexes are two dual representations for con
tacts. We can add wrench convexes from all the contacts or 
intersect the corresponding twist convexes to find the resulting 
wrench or twist convex of the grasp. We have two dual view 
points: 
• A constraint view point. - Wrench convex describes the set of 
forces and moments which constrain the object. A total wrench 
convex means we can arbitrarily apply any force and moment 
on the object, and so we can grasp it, instantaneously rotate or 
translate it in any way we want . 
• A freedom view point. - Twist convex describes the total 
freedom of the object. A total twist convex means the object can 
freely move relative to the fingers. A null twist convex means the 
object cannot break contact without external work against the 
contact forces exerted by the fingers. 

For planning grasps, wrench convexes are definitely more efficient 
since generating wrenches can be deduced readily from the type 
of contact, and we can just take the union of all the generating 
wrenches to describe the grasp. The twist convex representation 
is more efficient for describing the total freedom at the end effec
tors of linked manipulators. The infinitesimal motions and the 
velocities of the end effector due to each joint are 'added'. The 
end effector can have arbitrary motion if the twist convexes of 
all the joints 'add up' to a total convex. 

131 

2.2 Resisting Translation and Rotation 

The force closure problem can be formulated as solving a system 
of linear inequalities: 

(1) 

where the columns of W are generating wrenches collected from 
all the contacts of the grasp. We can design a generate-and
test algorithm which enumerates all the possible grasps, and test 
each grasp by solving the above system of linear inequalities. 
We get a force-closure grasp if and only if there is no .non-zero 
solution to the above system, i.e. zero total freedom. There 
are two main objections to this scheme: first, the set of possible 
grasps is infinite; second, the grasp synthesis uses an analytical 
formulation which does not exploit the geometry of the domain. 

Polygonal objects have straight edges; contacts on straight edges 
have wrench convexes whose representations can be split into a 
convex set for the point contact, and a convex cone for the range 
of force directions. This property applies only to polygonal and 
polyhedral objects. A force (resp. infinitesimal rotation) is a line 
vector while a torque (resp. infinitesimal translation) is a free 
vector which does not depend on the point of contact. Our key 
contribution is to make the force-closure constraint explicit for 
polygonal objects. 

Theorem 1 A aet of wrenchea W can generate force in any 
direction if and only if there exida a three-tuple of wrenchea 
(WI! W2, W3) wh06e reapectil1e force directiona fll f2' f3 aatiafy: 

• Two of the three directiona fll f2' f3 are independent. 
• A drictly poaitive combination of the three directiona ia zero. 

The first (resp. second) condition corresponds to no homo
geneous (resp. particular) solutions to the system WT is ~ 
0, where twist t = (0, d.'l' d,) T is an infinitesimal translation 
of the object. For detailed proofs the reader is referred to 
(Nguyen 1985a, 1986). Theorem 1 can be captured in a more 
suggestive and compact way, Figure 4, as follows: 

Corollary 1 A act of wrenchea W can generate forcea in any ar
bitrary direction if and only if there exida a three-tuple of force
direction vectora (fll f2' (3) whoae end pointa draw a nonzero tri
angle that include, their common darting point. 

Figure 4: A geometrical view of force-direction closure. 

Torque closure can be achieved easily by creating enough friction 
on some axis of rotation of the object. The friction between the 
rotating object and its supporting axis will create a torque which 
resists any clockwise or counter-clockwise rotation of the object. 
Unfortunately, in most grasp configurations, we have only point 
contacts, and through a point contact, a finger can exert only a 
pure force on the object and not torque. The more interesting 
problem is to achieve torque closure with only pure forces. 



Theorem 2 A ~et of planar force~ W can generate clockwi8e and 
counter-clockwi~e torque~ if and only if there exid8 a four-tuple 
of force~ (WI, W2, W3, W4) ~uch that: 
• Three of the four force~ have line~ of action that do not inter8ect 
at a common point or at infinity. 
• Let fl , ... , f4 be the force directiona of WI, ... , W 4. Let Pl2 
(re~p. P34) be the point where the line~ of action of WI and W2 
(re~p. W3, and W 4) intenect. There exid a, P, "1, 6 all greater 
than zero, ~uch that: 

P34 - PI2 ± (afl + Pf2) 

T b f3 + 6f4) 

The first (resp. second) condition corresponds to no homogenous 
(resp. particular) solutions to system WT is ~ 0, where twist 
i = (6z , d;l, d,,) T is an infinitesimal rotation o~ the object. For 
detailed proofs the reader is referred to (Nguyen 1986). Theo
rem 2 can be formulated in more geometrical terms, Figure 5, as 
follows: 

Corollary 2 A ~et of planar Jorce~ W can generate clockwi~e 
and counter-clockwi~e torque~ if and only if there exi~t~ a four
tuple offorce~ (WI,W2,W3,W4) ~uch that the ~egment P I2 P34 , or 
P34 P12 , point~ out of and into the e cone~ c;:i, c~, formed by 
the two pair~ (Wb W2), and (W3, W 4). 

Figure 5: A geometrical view of torque closure. 

2.3 Finding All Force Closure Grasps 

The convex addition of the convex of all force directions 00 [f;l' f,,] 
and the convex of all torques 00 [mzl is the convex of all planar 
forces 00 [f;l, J", mz). So, the necessary and sufficient condition 
for force closure is contained in both Theorems 1 and 2. IT we 
assume that through any contact we can only exert force and 
not torque, then Theorem 2 subsumes Theorem 1. A translation 
can be viewed as a rotation with point of rotation at the infinity. 
So, if there is no free rotation for the grasped object constrained 
by a set of contact forces, then there exists also no free transla
tion. Thus Corollary 2 describes the geometrical necessary and 
sufficient condition for force closure with planar forces only. 

Corollary 3 Two point contact~ with friction at P and Q form 
a force clo~ure gra~p if and only if the 8egment PQ, or Q P, point~ 
drictly into and out of the two friction cone~ re~pectively at P 
and Q. 

132 

Proof: This is a well known fact of planar mechanics. Let's how
ever prove the above corollary using a reduction to Corollary 2. 
A friction cone at P (resp. Q) is equivalent to two forces WI, W2 
(resp. W3, W 4) along the edge of friction cone and going though 
P (resp. Q), Figure 6. We recognize that point P (resp. Q) is 
nothing more than the point P12 (resp. P34 ) •• 

Figure 6: Finding grasps with friction on two edges. 

Lemma 1 The ~et of all pouible grMp~ with friction on two 
edge~ el,e2, denoted 9(el,e2), i~ completely de~cribed by the two 
edge~ eb e2, and the counter-overlapping ~ector C = C1 n -C2 
of the two friction cone" re"p. from edge el and ez. 

We have seen that a soft finger contacting at a vertex can be ap
proximated as a point contact with a much wider friction cone. 
From Corollary 3, the larger the friction cones at the points of 
contacts, the greater is the likelihood that they counteroverlap, 
or that the grasp is force closure. So a soft finger gives us more 
flexibility than a point contact with friction. This partially ex
plains why people grasp objects at edges and comers, and also 
why the contacting surface of human fingers had better be soft 
tha.n hard like the finger nails. 

By definition, a force-closure grasp is a set of contacts which 
allows us to exert arbitrary force and moment on the object by 
pushing at the contacts. So, we can exert zero force and moment, 
i.e. have an equilibrium grasp .. In the other direction, it turns out 
that most equilibrium grasps with point contacts with friction are 
also force-closure grasps: 

Corollary " Let G be a grMp with at leMt two di3tinct point 
contact~ with friction. G i~ a force clo~ure gra~p if it i~ an equi
librium gra"p, and hM contact force" pointing ~trictly within their 
friction cone~. 

Proof: The two friction cones gives three lines of force which 
are not all parallel because the friction cones are not null. These 
three lines of forces do not all intersect at the same point because 
the two points of contact are distinct. So, we have three planar 
wrenches with independent spatial vectors. The set of contact 
wrenches is also force-closure, or vector-closure, if there exists a 
strictly positive combination of four contact wrenches that results 
in the zero wrench, or equilibrium. (The theorem for vector
closure has the same form as Theorem 1, except that we need at 
least n + 1 vectors for an n-dimensional space.) The coefficients 
of the contact wrenches must be strictly positive, i.e. the contact 
forces must point strictly inside their respective friction cones .• 



2.4 Finding Independent Regions of Contact 

In task planning, we are interested in finding grasps that require 
as little accuracy as possible. One aspect of that goal is to have 
grasps such that the fingers can be positioned independently from 
each other, not at discrete points, but within large regions of the 
edges. Corollary 3 allows us to cast the problem of finding the 
independent regions of contact on two edges into a problem of 
fitting a two-sided cone cutting these two edges into two segments 
of largest minimum length, Figure 7. 

Algorithm 1 The independent region8 of contact on two edge8 
el and ez can be condructed a8 follow8: 

1. Find the two-8ided cone eX (II, ±C) that CUt8 all of edge el 

and very little or none of edge e2. We get a triangle ~1 formed by 
edge el and vertex II' Thi8 triangle repre8ent8 the 8et of vertice8 
I, where the two-8ided cone e X (I, ±C) monotonically cut8 larger 
8egment ei and 8maller 8egment e~ a8 we move from edge el to 
e2. Similarly, we find the two-8ided cone C X (12, ±C) 8uch that 
thi8 later CUt8 exactly the edge e2 and very little or none of edge 
el. We get a triangle ~2 formed by edge e2 and vertex 12. 

2. Find the trade-off region for vertex I by inter8ecting the trian
gle ~1 with ~2' The trade-off region de8cribe8 the 10cU8 of vertex 
I, for which the two-8ided cone C X (I, ±C) CUt8 both edge8 el and 
e2 into 8egment8 ei and e~. The IWlith of the independent 8eg
ment8 ei and e~ i8 proportional to the di8tance from vertex I of 
the two-8ided cone to the re8pective edge8. 
9. We cut the trade-off region with the bi8ector of the two edge6 
el, and e2. The inter8ection i8 the locu8 of vertex I for which the 
two 8egment8 ei and e~ have the 8ame length. The optimal vertex 
1* i8 at one of the two endpoint6 of the inter8ecting 8egment, or 
anywhere on thi8 8egment, depending on the angle between the 
two edge8. If no inter8ecting 8egment ezid8, then the optimal 
vertex i8 the point of the trade-off region which i8 neared to the 
bi8ector. 
4. From the optimal vertex 1*, the independent region8 of contact 
81 and 82 are found by cutting the two-8ided cone eX (1*, ±C) 
with the gra8ping edge8 el and e2' 

The computation of the optimum independent regions of contact 
for two point contacts with friction on two edges takes about 0.05 
seconds. The code is written in Zeta Lisp, compiled and run on 
a Symbolics machine. 

Figure 7: Finding the independent regions of contact on two 
edges. 

133 

3 Constructing Stable Grasps 

3.1 Potential Function of the Grasp 

Figure 8 shows a finger F, contacting with friction at point Pi. 
The softness of the fingertip, the stiffness of the tendons attached 
to the finger, and/or the active control of the finger joints are 
all modeled by two virtual springs with linear stiffness Ie" Ie·. 
The linear spring lei has fixed line of action, with direction ki ~ 
(cos ai, sin ail T, and moment Pi = Pi X k" about the origin O. 
(The cross product of two 2-dimensional vector is a scalar which 
is the product of the two vector magnitudes and the sin' of the 
angle between the two vectors.) 

o 

Figure 8: A fingertip which sticks is modeled by two linear 
springs. 

We assume that there is no dissipation of potential energy in 
g~asp, so the fingertips do not slide on the object. As the object is 
dIsplaced by (x, y, 0), the point Pi is mapped into its new position 
Pi' given by: 

, [ CO -SO] [ x ] Pi = SO CO Pi + Y (2) 

The linear spring lei is compressed by an amount equal to the 
proJection of the displacement PiP.' onto the line of action of 
sprIng lei: 

(1.(X, y, 0) 
(3) 

The potential function of grasp G is equal to the sum of the 
potentials of all its springs (Hanafusa and Asada 1977): 

n 1 2 ( 
U(x,y,O) = E "2 1e,(1i x,y,O) 

i=1 
(4) 

3.2 Grasp Equilibrium 

Theorem 3 A gra8p G compo8ed of n virtual 8pring8 i8 in equi
librium if and only if: 

1 
8ul Ei=llei(1io cos ai 0 8z (0,0,0) 
8ul _ Ei=llei(1io sin ai 0 (5) 8" (0,0,0) -
8ul _ Ei=l lei(1,o Pi 0 89 (0,0,0) -



In the above columns, we recognize the spatial vectors ki 
(cos (ki, sin (ki, JLi) T, describing the lines of action 'of the linear 
springs ki, or as the unit wrenches describing the frictionless point 
contacts Pi. The above system of equations can be rewriten in a 
force-closure form: 

n 

E fioki = 0, (6) 
i=1 

where lio = kiUio' The force-closure condition is sufficient but 
not necessary for the existence of force equilibrium: 

Corollary 5 1/ gr~p G i8/orce-cl08ure, then we can alwaY8 find 
a 8et 0/ p08itive contact /orce8 at the point8 0/ contact, 8uch that 
G i8 in equilibrium. 

3.2.1 Grasp Stability 

The grasp G is stable if and only if the potential function 
U(x, V, 0) of G reaches a local minimum. The Taylor expan
sion of the potential function U(x, V, 0) about the equilibrium as 
follows: 

~1 2 Til T I U (x,y, 0) = ~ "2kiUio + X V U (0,0,0) +"2x H (0,0,0) x + .. , 
1=1 

(7) 

where x = (x, v, 0) T, and HI(o,o,o) is the Hessian matrix of the 
potential function at the equilibrium grasp configuration. A mul
tivariable function reaches a local minimum if 1) the first partial 
derivatives are all zero, and 2) the Hessian matrix of the second 
partial derivatives is positive definite. 

Theorem 4: A gra8p G comp08cd 0/ n virtual 8pring8 i8 in dable 
equilibrium i/ both 0/ the following hold: 

• The gradient V UI(o,o,o) i8 zero. 

• The He88ian matriz Hi(o,o,o) 0/ the potential/unction U(x, V, 0) 
i8 p08itive definite. 

( 
/)'Ju /)'Ju /)'Ju 

) 
7JZf" ozlJlI lJzlJ8 

Ho lJ'JU /)'Ju a'Ju at (x,t/,O) (0,0,0) lJlIlJz 7fi2 7filf9 
/)'Ju l)'Ju /)'Ju 
lJ8lfi li6lfi 7fj2 

( 
L kicos2 (ki E ki sin (ki cos (ki L kiJLi cos (ki 

L ki sin (ki cos (ki E ki sin2 (ki L kiJLi sin (ki 

L kiJLi cos (ki E ki JLi sin (ki L kiJLi - L fiodi 
(8) 

3.3 Stiffness Matrix of the Grasp 

The stiffness matrix K of the grasp is equal to the Hessian matrix 
Ho about the stable equilibrium of the grasped object. The 

stiffness matrix K can be written as a sum of two matrices: 

K Ks + Kp 

Ks S K ST 

134 

The first matrix Ks is a product of three matrices S K ST. S 
is an 3 x n rectangular matrix, whose columns are the spatial 
vectors of .the line~r springs: The m.atrix S ~s called the 8patial 
confipura~.on ma.t~.z of t.he hnear sprmgs. K. IS an n x n diagonal 
matrIx WIth posItIve stIffnesses of the sprmgs on its diagonal. 
The product S K S T is nothing more than the sum of the stiffness 
matrices of the individual springs expressed in the global frame 
of the hand. 

The second matrix Kp comes from the second order variation of 
the co~pressions as t~~ object rotates, ~2Ui/a02. A more general 
expressIOn of the pOSItIOn-dependent stIffness matrix Kp is: 

(10) 

The sign is + (resp. -) if the fingers slide (resp. stick) on the 
grasping edges. The reader is referred to (N gu~e:~1985b, 1986) 
for proofs. This sign makes outside-in grasps es stable than 
inside-out grasps when there is friction and the fingers stick. The 
reverse holds for frictionless point contacts. 

A force closure grasp implies that the set of contact wrenches 
spans the whole wrench space. IT each contact wrench is gener
ated by a linear spring, then the set of linear springs has spatial 
vectors that span the whole vector space. The spatial configura
tion matrix of the linear springs S has full row, and Ks = S K S T 
is positive definite. The compressions Uio can be chosen small 
compared to the size of the grasped object, and L kiUiodi is small 
compared to L kiJL~. The stiffness matrix K of the grasp is ap
proximatively"equal to K s , and is therefore positive definite. In 
other words, a force-closure grasp implies a stable grasp exists. 

Corollary 6 1/ gra8p G i8/orce cl08ure, then we can alwaY3 8yn
the8ize a 8et o/linear 8pring6 at the point8 0/ contact, 8uch that 
G i6 in dable equibrium . 

3.4 Compliance Center of the Grasp 

The center of compliance of a planar grasp is the point about 
which the stiffness matrix K is diagonalized into two blocks. The 
grasped object behaves as though there are two linear and one 
angular springs attached to it. Figure 9. 

Figure 9: Compliance of the grasped object about its stable equi
librium. 

The stiffness matrix K is diagonalizable with independent linear 
and angular springs if and oilly if: 

n n 

E JLiki ki E Illikil ("ign(JLi)ki) o (11) 
i=1 i=1 



Figure 10: Compliance polygon of a grasp. 

This condition is equivalent to the compliance center being inside 
a polygon delimited by the lines of action of the linear springs. 
Figure 10 shows the compliance polygon OG within which the 
compliance center of grasp G must be. 

We prove that if the grasp is force-closure then the compliance 
polygon always exists, and so equation (11) can be satisfied. Note 
that if grasp G is force-closure then the two cones generated by 
(-klJ -k2 ) and (-k3' -k4) counter-overlap in a non-zero convex 
polygon CG, Figure 10. H we pick the compliance center 0 inside 
this convex polygon, then the springs ki and k3, resp. k2 and k4, 
have negative, resp. positive, moments about o. One can check 
that there exists a positive linear combination of - kI' k2' - k3, k4 
such that one walks counter-clock-wise along the boundary of the 
convex polygon bounded by the lines of action of the springs. 

Corollary 7 If gra~p G i~ force-clo~ure then the compliance 
polygon of gra~p G, denoted OG, i~ non empty. The compliance 
polygon OG ha~ boundary ~upporb the line~ of action of the linear 
~pring~. 

3.5 Finding Virtual Springs at the Fingertips 

Figure 11 shows an interesting comparison between compliant 
fingertips that have passive and active stiffness. Examples of 
passive stiffness are real physical springs, like fingertips covered 
with rubber, or the Remote Center Compliance. With two fingers 
covered with rubber, the compliance center is not only fixed, 
but can only be inside a compliance rectangle with two diagonal 
corners at the two points of contact. The rectangle comes from 
the normal and tangential springs which model the rubber at the 
points of contact. The Remote Center of Compliance is a wrist 
built with fixed passive springs. The springs are designed such 
that the center of compliance is at the tip of the pin. 

Figure 11: Pin and hole insertion with passive and active stiff
ness. 

135 

Active stiffness comes from stiffness control at the fingertips or 
at the joints. H the fingers have active compliance, then we can 
place and orient the virtual springs at the fingertips such that 
the compliance polygon overlaps the desired compliance center. 
So, we can not only make a force closure grasp stable, but also 
synthesize a compliance center for the grasp. The four virtual 
springs of a 2D grasp are typically computed in about 0.2 seconds 
on a Symbolics machine. 

Algorithm 2 Let G be a force-clo~ure gra~p with a de~ired com
pliance center 0 in~ide the compliance polygon OG, defined by 
the line~ of action of the n virtual ~pring~. The n virtual ~pring~ 
at the point~ of contact can be ~ynthe~ized ~o that G i~ ~table ~ 
follow~: 

1. Find a ~et of contact force~ (flO, ... , Ino) ~uch that force equi
librium i~ achieved. Thi~ i~ equivalent to ~olving a ~y~tem of ~iz 
equation~ with n unknowru. 

E. From the de~ired compliance center 0, find a ~et of po~itive 
~pring condant~ (kI , ... , kn ) ~uch that: 

n 

L Ili ki ki = 0 
i=I 

where ki and Ili are re~pectively the direction and moment of the 
virtual ~pring ki about the compliance center O. Thi~ i~ ~olving 
a ~y~tem of two equatioru in n unknown~. 
9. Check that the angular diffne~~ k8 of gra~p G i~ ~trictly po~i
tive: 

n 

k8 = L ki (Ill - (Tiodi) 
i=I 

If not ~cale up the 6ft of ~pring con~tant~ (kI , ... , kn ) and reduce 
the 6ft of compre~~ion~ ((Tlo, ... , (Tno), keeping the ~et of contact 
force~ (flo, ... , Ino) unchanged, until k8 i~ greater than zero. 
4. Find the virtual compre~~ion~ at equilibrium: 

1 
(Tio = ~ lio 

5. Output the ~et of ~pring conuant8 (ki, ... , kn ), and the re
"pective ~et of compre~~ion~ (O'Io, ... , O'no) which model the ~et of 
virtual ~pring~ at the fingertip~. 

3.6 Controlling a Compliant Grasp 

Figure 12 shows the relationships between force and instanta
neous displacement at three different levels: 
1. At the grasped object, we want to choose a compliance center 
and a stiffness matrix for grasp G such that the grasped object 
is stable and have restoring wrenches as follows: 

T = KGdX 

2. From the desired compliance at the grasped object, we would 
like to deduce the corresponding set of spring constants and com
pressions at the fingertips: 

F = KFdz 

3. From the virtual springs at the fingertips, we then would like 
to derive the stiffness at all of its joints: 

T = KJ dO 

We can go further and derive the gains in the control loop of 
each joint, such that the above joint compliance is enforced. Or 
we can assume that each joint has a stiffness control loop with 
programmable stiffness. 

From the kinematics of the grasp, the external and intern1,\! forces 
applied at the grasped object relate with the fingertip forces by 
the grasp matrix G-T (Salisbury 1980, Salisbury and Craig 1981, 
Salisbury 1982). Similarly, from the kinematics of the linked fin-



CD 
KG 

QJ " grasped object 

G t ~ G' K, 

~ .. CD finger tips 

J 1 KJ ! JI 

CD " 0=1 finger joints 

-- -- joint controlloops 

Figure 12: Linked chains and their loop equations. 

gers, the force and velocity at each fingertip relate with its cor
responding joint. torques and velocities by the Jacobian matrices 
J-TandJ~ We get ,loops from which we can derive easily the 
stiffness:-matrix of one-level in terms of the stiffness matrix of 
another level. For example, given the desired compliance KG at 
the grasped object, we deduce: 

KF GT KGG 
(12) 

The grip matrix G-T is an n x n matrix which relates the n 
external and internal forces applied at the grasped object to the 
n fingertip forces. KG is ann x n' generalized stiffness matrix at 
the grasped object which has the 6 linear and angular stiffnesses 
plus n - 6 internal stiffnesses. KF is an n x n matrix which 

, describes the springs at the fingertips, expressed in frames local 
to the points of contact. From the conservation of equivalent 
work at the object and at the fingertips, .Salisbury and Craig 
deduced: 

KG = G-T KF G-1 (13) 

The grip matrix G-T has a 6 x n block which is nothing more 
than the configuration matrix S. Note that S relates only the 
6 external forces and moments at the grasped object to the n 

. fingertip forces at the n springs. G-T and S both capture the 
spatial configuration of the finger tip springs. The 6 x 6 stiffness 
matrix at the grasped object K, is a block of the generalized 
stiffnesss matrix KG . The stiffness matrix K describes only the 
6 linear and angular stiffnesses of the grasped object. We have 
shown that the stiffness matrix K of the grasped object is the 
sum of two matrices Ks and Kp: 

K 

Ks 
(14) 

J( = KF if the local frames at the points of contact are oriented 
with the linear springs at the fingertips. So the grip matrix G-T 

and the configuration matrix S both are only a first· order ap
proximation of the linkages between the grasped object and the 
fingertips. S is first order because its columns are spatial vectors 
ki which come from V U i. 
The second order approximation of the .Iinkages between the 
grasped object and fingertips shows up as a position-dependent 
stiffness matrix K p , which comes from the terms a2Ui/a02 • Our 
derivation of the stiffness matrix, Equations (9) and (10) is more 
accurate. The stiffnesses at the grasped object and at the fin
gertips are related not only by the conservation of total energy 
in the system, but also by the geometry about the grasp points. 
The geometry here is the point contacts which either stick or 
slide without friction on straight edges. 

136 

4 Grasping with Slip 

4.1 Where Will The Fingers Slip To? 

We need to find the direction towards which the fingers will slip, 
and calculate bounds on the places where the fingers will stick 
at, after slipping. A fingertip can be seen as being pulled by a 
virtual spring with the following stiffness behavior: 

f K(po - p) 

[ 1, ] ( kn 0 ) [Un] o k, Ut 

(15) 

Figure 13 shows the regions where the fingertip will slip, stick, 
or loose contact. The stick region is a cone with angle 2tPt-. It 
is defined as the region of the fingertip P where the contact force 
f, generated by the virtual spring, points into the friction cone 
at the point of contact. The finger will slip towards the stick 
cone, and is pulled towards its· bias position Po, which is fixed 
not relativeto the grasped object, but relative to the base of the 
hand. When the object is displaced in the hand, the finger will 
stick and move with the point of contact, until it reaches one of 
the edges of the stick cone, then it slips. 

The finger is guaranteed to sti-ck inside the edge of contact, if the 
stick cone cuts in the interior of the edge of contact. This condi
tion can be satisfied by a proper positioning of the bias position 
Po, and a proper ratio between the normal and tangential stiff
nesses. The finger will not loose contact with the object, if the 
normal compression Uno is always greater than the translational 
displacement of the object along this normal direction. 

Figure 13: Stick and slip regions for the fingertip. 

• 
.... .... 

• 

Figure 14: Places where the fingers will slip to. 

Figure 14 shows two point contacts on a pair of parallel edges. 
Each point contact is pulled by a virtual spring towards its own 
bias position. As long as the stick cones intersect in the interior 
of the edges of contact, the fingers are guaranteed to stick on 



the contact edges. Better yet, the virtual springs can be synthe
sized such that the fingertips will stick inside the independent 
regions of contact. The bias positions of the virtual springs are 
constrained by the the equilibrium grasp condition, and so the 
compressions can only be scaled~ 

4.2 Effect of Slip on Force-Closure and Stability 

We've seen that we can synthesize the virtual springs at the point 
contacts with friction, such that the fingers, if they slip, will 
always stick within the edges of contact. These fingers are pulled, 
independently from each other, towards their own bias positions. 
As the fingertip slips, the point of contact changes, and so either 
or both the spatial configurations of the normal and tangential 
springs change. We have shown ~hat an equilibrium grasp with 
at least two point contacts with friction is also a force-closure 
grasp, if the contact forces point strictly inside the friction cones. 
In other words, if the fingers stick and the equilibrium is not 
marginal, then the grasp with friction is a force-closure grasp. 

With stiffness at.the contacts, a force-closure grasp implies a 
stable grasp, Corollary 6; So, after the·fingers slip, the grasp 
at the points where the' fingers stick is both force-closure and 
stable. To guarantee stability for rotations, the compressions· 
at the linear springs must be small compared to the size of the 
object. 

As the object slips, friction dissipates potential energy in the 
form of heat, and the total potential energy of the object is less. 
The potential energy of the object is the sum of the potential 
energy of the grasp, which is stored in the springs, and the grav.ity 
potential from the height of the object in the gravity field. In 
Figure 14.a, suppose the weight is perpendicular to the contact 
plane, and the fingers slips on the object, due to some impulse 
force with negligible work. There is no external work added into 
the system, and friction dissipates potential energy, so the -two 
fingers will slide towards each other, and the grasp has a lower 
potential. So, as long as the contact edges are long enough, slip 
and disturbances make marginally stable grasp more stable. 

5 Conclusion 

We have presented a formal framework for analyzing and syn
thesizing grasps in 2D. Research is done in three areas: force
closure grasps, stable grasps, and grasps with possible slip at 
the contacts. The analysis and synthesis has been extended to 
grasps in 3D, and to curved objects. The reader is referred to 
(Nguyen 1986) for. more details. 

Acknowledgements 

I would like to thank Tomas Lozano-Perez, Kenneth Salisbury for 
many helpful discussions and for their constant encouragement. 
Part of the research on stable grasps has been done at the General 
Motors Research Laboratories during the summer of 1985. 

Bibliography 

Abel, J.M., Holzmann, W., McCarthy, J.M. "On Grasping Pla
nar Objects With Two Articulated Fingers" Proc. IEEE IntI. Confer
ence on Robotics and Automation, St. Louis, March 1985. 
Baker, B.S., FortuneF S.J., Grosse, E.H. "Stable Prehension with 
a Multi-Fingered Hand: Extended Abstract" Proc. IEEE Inti. Con
ference on Robotics and Automation, St. Louis; March 1985. 
Brady, M., Hollerbach, J.M, Johnson, T.L., LOJlano-P~reJl, T., 
Mason, .M. T~ (editors). "Robot Motion: Planning and Control" MIT 
Press, Cambridge, 1982. 
Brady, M., Paul, R. (editors) "Robotics Research" Vol. 1, MIT 
Press, Cambridge, 1984. 
Brost, R.C. "Automatic Grasp Planning in the Presence of Uncer
tainty" Proc. IEEE Inti. Conference on Robotics and Automation, 
San Francisco, April 1986. 

137 

Cutkor.ky, M.R. "Mechanical Properties for the Grasp of a Robotic 
Hand" eMU-RI-TR-84-24, Carnegie Mellon Robotics Institute, 1984. 
Erdmann, M.A. "On Motion. Planning with Uncertainty" S.M. The
sis, Dept. of Elec. Eng. and Compo Science, Massachusetts Institute 
of Technology, August 1984. Also as AI TR 810, MIT Arti6ciallntel
ligence Lab, 1984. 
Fearing, R.S. "Simpli6ed Grasping and Manipulation with Dextrous 
Robot hands" AI Memo 809, MIT Arti6cial Intelligence Lab, Nov. 
1984. 
F'eatheriitone, R. "Spatial Notation: A Tool For Robot Dynamics" 
D.A.I Research Paper 213, University of Edinburgh, 1984. 
Goldman, A.J., Tucker, A. W. "Polyhedral Convex Cones" in "Lin
ear Inequalities and Related Systems", Kuhn, H. W. and Tucker, A. W. 
editors, Princeton Univ. Press, Princeton, 1956. 
Hanafusa, H., Asada, H. "Stable Prehension By a Robot Hand With· 
Elastic Fingers" Proc. of 7th Intern. Symp. on Industrial Robots, 
Tokyo, Oct. 1977. Reprinted in "Robot Motion: Planning and Con-
trol", Brady et al. editors, 1982. . 
Hanafusa, H., Inoue, H. (editors) "Robotics Research" Vol. 2, MIT 
Press, Cambridge, 1985. 
Jacobsen, S.C., Wood, J.E., Knuttl, D.F., Biggers, K.B., 
Iyersen, E.K. "The Version I Utah/MIT Dextrous Hand" in 
"Robotics Research" Hanafusa, H.,lnoue, H. eds., 1985, pp. 301-308. 
Jameson, J. W. "Analytic Techniques for Automated Grasps" Ph.D. 
Thesis, Dept. of Mechanical Engineering,: Stanfcrd University, June 
1985. 
Kerr, J .R. "An Analysis of Multi-Fingered Hands" Ph.D. Thesis, 
Dept. of Mechanical Engineering, Stanford University, Jan. 1985. 
Lakshmlnarayana, K. "Mechanics of Form Closure" ASME Paper 
78-DET-32,1978. 
LOJlano-P~reJl, T. "Spatial Planning: A Con6guration Space Ap
proach" IEEE Transactions Computers, C-32, Feb. 1983. 
Lozano-P~rez, T., Mason, M.T., Taylor, &H. "Automatic Syn
thesis of Fine-Motion Strategies for Robots" Proc. IntI. Symposium of 
Robotics Research, Bretton Woods, NH. Aug. 1983. Also published in 
"Robotics Research", Vol. 1, Brady, M., Paul, R. editors, 1984. 
Mason, M. T. "Compliance and Force Control for Computer Con
trolled Manipulators" S.M. Thesis, Dept. of Elec. Eng. and Compo 
Science, Massachusetts Institute of Technology, May 1979. Also pub
lished as AI TR 515, ~nT Arti6cial Intelligence Laboratory, April 1979. 
Reprinted in "Robot Motion: Planning and Control" Brady, M. et al. 
editors, 1982. 
Mason, M. T. "Manipulater Grasping and Pushing Operations" Ph. 
D. Thesis, Dept. of Elec. Eng. and Compo Science, Massachusetts 
Institute of Technology, May 1982. Also published as AI TR 690, MIT 
Artificial Intelligence Laboratory, June 1982. 
Nguyen, V. "The Synthesis of Force-Closure Grasps in the Plane" AI 
Memo 861, ~nT Artificial Intelligence Lab, Sept 1985. A condensed 
version is published in Proc. IEEE IntI. Conference on Robotics and 
Automation, San Francisco, April 1986. 
Nguyen, V. "The Synthesis of Stable Grasps in the Plane" AI Memo 
862, MIT Arti6ciallntelligence Lab, Nov 1985. A condensed version is 
published in Proc. IEEE IntI. Conference on Robotics and Automa
tion, San Francisco, April 1986. 
Nguyen, V. "The Synthesis of Stable Force-Closure Grasps" S.M. 
Thesis, Dept. of Elec. Eng; and Compo Science, Massachusetts In
stitute of Technology, May 1986. Also published as AI TR 905, MIT 
Arti6cial Intelligence Laboratory, July -1986. 
Ohwovorlole, M.S~ "An Extension of Screw Theory and Its Applica
tion to the Automation of Industrial Assemblies" Ph.D. Thesis,. Dept. 
of Mechanical Engineering, Stanford University, April 1980. Also pub
lished as AI Memo 338, Stanford Arti6ciallntelligence Lab, 1980. 
Ohwovorlole, E.N. "On The Total Freedom of Planar Bodies With 
Direct Conta.ct" ASME Transactions, 1984. 
Reuleaux, F. "Kinematics of Machinery" Dover Press, New York, 
1875. 
Salisbury, J.K. "Active stiffness controlof a manipulator in Carte
sian. Coordinates" Proc. IEEE Conference on _ Decision and Control, 
Albuquerque, Dec. 1980. 
Salisbury, J .K. "I{inematic and Force Analysis of Articulated Hands" 
Ph.D. Thesis, Dept; of Mechanical Engineering, Stanford University, 
May 1982. 
Whitney, D.E. "Quasi-Static Assembly of Compliantly Supported 
Rigid Parts" Journal of Dynamics Systems, Measurement, and Control, 
March 1982 .. Reprinted in "Robot Motion: Planning and Control", 
Brady, M. et al. editors, 1984. 



OFF-LINE PLANNING FOR 
ON-LINE OBJECT LOCALIZATION 

Tomas Lozano-Perez 
W. Eric L. Grimson 

MIT Artificial Intelligence Laboratory 
Cambridge, MA 02139 

Abstract. Many robot applications require using sensors 
to locate objects whose initial pose is constrained but not 
exactly known. Most techniques for object localization as
sume that the object's pose is completely unknown. This 
paper describes a simple method for localizing known ob
jects in a scene. We describe how an off-line computation 
that exploits constraints on the object's expected pose can 
be used to reduce the expected time for the on-line compu
tation to localize the object. The objects treated here are 
modeled as polyhedra that, in principle, can have up to six 
degrees of positional freedom relative to the sensors. 

o. Introduction 

The problems of object recognition and localization have re
ceived a great deal of attention (see [Jain 86, Grimson and 
Lozano-Perez 84,85] for reviews of the literature). Most 
approaches to recognition assume that the object's. pose is 
entirely unconstrained. In most practical robotics applica
tions, however, the uncertainty in part location is bounded 
to relatively small ranges. These constraints may come 
from knowledge of the feeding mechanisms or the physics 
of part stability. In most recognition systems, it is difficult 
to incorporate these type of constraints on the initial object 
pose. There have been a few systems where such informa
tion is readily incorporated, but the methods themselves 
have tended to be fairly complex [Bolles 76, Brooks 81, 
Goad 83, Baird 85, Faugeras and Hebert 83]. Nevertheless, 
the approach described here was significantly influenced by 
these previous methods, especially Goad's excellent paper. 
The localization algorithm described here is quite simple 
as is the mechanism for incorporating any available con
straints on object pose. In the absence of any global con
straints, the algorithm will still work, albeit more slowly. 

The specific problem considered in this paper is how 
to locate a known object in a cluttered scene using sensors 
that provide dense position information. We assume that 
worst-case bounds on the pose of the object are available, 
as well as bounds on sensor measurement error. Our goal 
is to exploit the known bounds on object pose so as to re
duce the amount of on-line computation required to localize 

CH2345-7/86/0000/0138$01.00© 1986 IEEE 
138 

the object. An important subgoal is that both the on-line 
and off-line methods should be simple enough to be easily 
implemented. 

The method described here can be applied to both two
dimensional and three-dimensional sensing situations. In 
the two-dimensional case, objects have only three ,degrees 
of positional freedom relative to the sensor (two transla
tional and one rotational). In this case, the sensors (and 
their pre-processors) are assumed to compute edges, that is, 
line segments in the scene. In the three-dimensional case, 
objects have up to three translational and three rotational 
degrees of .freedom. In this case, the sensors (and their 
pre-processors) are assumed to compute planar patches in 
the scene. We do not deal with the general case in which 
only two-dimensional data is available but the object has 
more than three degrees of freedom. For the sake of brevity, 
we limit our discussion to the three-dimensional case; the 
specialization to two-dimensions is straIghtforward. 

We assume that the objects of interest can be modeled 
as sets of planar faces. Only the individual plane equations 
and dimensions of the model faces are needed. No face, 
edge, or vertex connectivity information is required; the 
model faces do not even have to be connected. Because 
of this, the method can be applied to curved objects that 
are readily approximated by planar patches. Of course, 
such planar approximations are not adequate for all cases, 
for example, objects of high curvature or multiply curved 
surfaces. 

We assume the availability of a sensor and pre-processor 
that can compute the planar patches present within some 
given rectangular sub-window of the scene. A great deal 
of work in computer vision has been dedicated' to solving 
this problem of obtaining depth from two-dimensional vi
sual data (see [Horn 86] for a representative sample). Other 
less computationally-intensive methods exist for obtaining 
the required patches, notably range sensing (see [Jarvis 83] 
for a review). We will not address this problem further. 

In section 1, we present the basic on-line localization 
method. In section 2, we describe the off-line computations 
required for the on-line method. In section 3, we discuss 
the method and point out areas for further work. 



1. A simple on-line localization algorithm 

The process of localization is carried out in three steps: 

• The first step is to identify possible assignments of 
sensed data to model faces consistent with a set of mea
surements derived from the model. This is the crucial 
step. 

• 

• 

The second step is to identify the pose of the object 
from each of these assignments. 

The third step is to pick the solution that best matches 
all the available data. 

At this level of description, the method is similar to the in

terpretation tree method described in [Grimson and Lozano
Perez 84, 85] and draws results from that earlier method. 
The method described in this paper differs in the first of 
these steps, while the earlier method does not do any hy
pothesis verification, the method described here goes very 
early into a hypothesize/verify cycle. 

The current method is geared to situations where the 
set of possible matches of data patches to model faces can 

be constrained a priori. The goal is to reduce the comb i
natorics of the matching process in the earlier methods by 
exploiting the global position and orientation constraints. 

1.1 Sensor Input 

The on-line algorithm uses as input a list of the planar 
patches present in each of a set of windows specified by 
the off-line planner (see section 1.2). The patch must be 
completely within the window to be elegible. Each patch 
obtained by the sensor is characterized by a list of points 
and a plane equation in the form n . x = c, where n is the 
unit normal to the plane. All the points are required to be 
inside the same face of the object. We represent patches by 
a set of points, instead of polygons, so as to simplify the 
processing and to accommodate a wide variety of sensors, 
including sparse sensors such as tactile sensors. 

It is possible to use information about any patch fea
ture, such as, size, color, reflectivity, and texture, to limit 
the possible model faces that a patch could match. The 
availability of these measurements can significantly reduce 
the combinatorics of the matching process. This is straight
forward extension and we do not discuss it further. 

1.2 Constraints from the off-line planner 

The information from the off-line planner is used to reduce 
the combinatorics of the matching process. There are three 
sorts of constraints that are useful for this purpose: (1) 
restrictions on the data patches that can be involved in 
match a given model face, (2) restrictions on the model 
faces that can be involved in a solution, and (3) a ranked 

139 

list of legal initial hypotheses. In particular, the off-line 
planner provides the following information for the on-line 
matching algorithm: 

• 

• 

• 

• 

• 

A list of windows - each data patch is assigned to one 
or more rectangular windows in the scene. 

A list of matching constraints for each model face -
each face requires that the patch that is matched to 
it be drawn from a specific window, furthermore there 
are constraints on the normal of the matching data 
patch. 

Ranges of possible measurements between pairs of model 
faces - these are used to check the consistency of as
signments of patches to model faces. 

A list of visible face lists - these lists are indexed by 
the face pairs in the initial hypotheses and describe the 
faces visible if a particular hypothesis is correct. 

An ordered list of face pairs - these pairs are used to 
form initial hypotheses as to the object pose; they are 
ordered by size of the faces. 

The windows could, in principle, be used to restrict the 
application of the sensor pre-processing to subsets of the 
scene. The windows, however, may overlap arbitrarily. In 
the general case, it is preferable to apply the sensor pre
processing to the whole scene and then assign the data 
patches to the corresponding windows. That is the strategy 
we have used. In simple situations where only a few win
dows are needed, it makes sense to limit the pre-processing 
to these windows. In any case, the main purpose of the 
windows is not to reduce the sensory pre-processing but to 
reduce the combinatorics of the matching process. 

The key information computed by the off-line planner 
are the constraints on face assignments. Each face is re
stricted to matching a patch from a specific window. In 
fact, the windows are actually computed as the loci of par
ticular model faces. The windows enforce the position con
straints on faces derived from the global pose constraints. 
Associated with each face are constraints on the data patch 
normal that can match that face. This constraint is ex
pressed as a list of cones, that is, center vectors and a min
imum value for the cosine of the angle between the patch 
vector and the specified vector (see section 2). Also associ
ated with each face is a window where the matching data 
patch must appear. 

The off-line planner identifies those pairs of model faces 
that can appear in some view of the object consistent with 
the pose constraints. Of these pairs, the ones with signifi
cantly different orientation can be used to obtain an initial 
solution for the object's orientation. It is these pairs that 
drive the initial phase of the matching algorithm described 
in section 1.3. 

The off-line planner also computes all the sets of model 



faces that can be simultaneously visible given the known 
pose constraints. These are used during the verification 
phase of the matching algorithm. 

The object model provided by the user is described by 
a set of planar faces. Each face is specified by a polygon, 
which may be non-convex, and a plane equation. This form 
of the model is notparticularly useful to the matcher. The 

off-line planner computes from this model three tabies de
scribed below. Let Pi, Pj and Di, Dj be respectively points 
on and normals to faces i and j. 

• Distance - For each pair of model faces, i and j, the 
upper and lower bounds on distances between all pos
sible pairs of points Pi and Pj. 

• Angle - For each pair of model surfaces, the angle 
between the face normals Di and Dj. 

• Distance vector - For each pair of model surfaces, the 
upper and lower bound on the values (Pi - Pi) . Di and 
(Pi - Pi) . nj, that is, the component along the face 
normals of vectors connecting the faces. 

In each case, the values in these tables take into account 
the error bounds on measuring both the patch normals the 
positions of points. Algorithms for computing these tables 
are found in [Crimson and Lozano-Perez 84]. The combina
tion of these three types of measurements has been shown 
to be quite powerful in discarding invalid matches even in 
the presence of significant measurement error [Crimson and 
Lozano-Perez 84, 85]. 

1.3 The matching algorithm 

The matching algorithm is very simple and is based on the 
assumption that the set of data patches that can match a 
given model face is relatively small (this is up to the off-line 
planner to guarantee). The method works by considering 
each of the possible model face pairs determined by the off
line planner as suitable for constructing an initial hypoth
esis. The first step is to find all the pairs of data patches 
that can be matched to the face pair under consideration. 
The data patch pair must satisfy the following conditions: 

• Each data patch must come from, the window specified 
by the off-line planner for the corresponding face. 

• The measured normals for the data patches must be 
within one of the cones associated with the correspond
ing face. 

• The three sets of measurements (distance, angle, and 
distance vector) for the data patch pair must be con
sistent with those of the model face pair. 

We could find such data pairs by looking at all combina
tions of patches, but that would be time consuming. It 
is straightforward to improve the expected performance by 
using hashing. Simply pre-process all pairwise combina
tions of data patches and place them into buckets based on 

140 

the angle between their normals. Then, given a candidate 
pair of model faces, one can in constant time limit the data 
patch combinations to those whose angle is within the mea
surement error of the angle between the model faces. Only 
these data pairs need to be subjected to further testing. 

Having obtained the feasible matches to a model face 
pair, the next stage is to use them to obtain supporting evi
dence for particular combinations of visible faces. Note that 
the match of two data patch normals (ni' ni) to two inde
pendent model face normals (mi,mi) determines uniquely 
(up to a sign) the rotation matrix R, where Rx + P is the 
transformation that maps points, x, in the model coordi
nate system to vectors in the sensor coordinate system. 

The rotation matrix R can be easily computed in the 
form Rot(r, 0), where r is the axis of rotation and 0 is the 
rotation angle. The axis of rotation is the unit vector in 
the direction 

(mi - nil x (mj - Dj) 

and the angle of rotation can be obtained from these two 
relationships 

O 
1 - (Di· mil 

cos = 1 - ----!.---=---..:...!..-
1 - (r . Di)(r . mil 

. 0 (r x Di) . mi 
SIn = 

1 - (r . ni)(r . mil 

For a detailed derivation see [Crimson and Lozano-Perez 
84]. 

Using R we can compute for each potentially visible 
face on the object, the nominal data patch normal that can 
match that face. We must take into account measurement 
errors when matching the predicted normal to actual mea
sured normals. 

The match also constrains the translation vector, p, to 
be on a line determined by the planes of the two measured 
patches. The range of values of P can be determined as 
follows: Let the equation of the patch planes be of the form 
ni . x = Ci and the equation of the model planes be of the 
form mi . x = di. Then we can write P as a one parameter 
family of vectors: 

P = ani + (3ni + ')'(Di X nil 

where,), is the free parameter and 

(Ci - di) - (ni . D)')(ej - d)') 
a= 

1 - (Di . Dj)2 

{3 = (Cj - dj) - (Di . Dj)(Ci - d i ) 

1 - (ni . Di)2 

The parameter ')' can be constrained by requiring that all 
the points in the data patch be mapped by the resulting 
transformation to be inside the model face. In our imple
mentation, we compute bounds on ')' by considering the set 
of translations that map the center of area of the patch onto 



each of the vertices of the face. 

Let each potentially visible face have plane equation 
mk . x = dk. Given the range of p we can compute not 
only the predicted normal, Rmk, for a matching data patch 
but also the range of values of the offset c in the plane 
equation of the data patch: c = dk + (Rmk) . p, where p is 
parameterized by 1. 

We also know, from the off-line computation, the win
dow in which the data patch must appear. Thus, the ini
tial verification process consists of checking the windows for 
patches satisfying the position and orientation constraints. 
Of course, once a third independent patch is found, the 
position and orientation can be determined uniquely up to 
the sensing error. 

Once a feasible pairing of model faces and data patches, 
together with the corresponding object pose(s), is found 
there still remains a detailed verification process. This pro
ceeds in two steps: (1) check that the patch points are all 
mapped to the inside of the face polygon by the computed 
transformation and (2) check that the patches measured 
in each of the windows are consistent with the computed 
model pose, that is, that no data patch has been measured 
to be below where the model predicts a surface to be. Note 
that if a data patch is above a predicted surface then this is 
neutral evidence, since this situation could arise from occlu
sion. Nevertheless, one wants to ensure that a hypothesis 
accounts for a sufficiently large percentage of the object's 
measured surface. 

The matching process described above should be car
ried out in "depth-first" fashion, verifying each hypothe
sis as it is generated, rather than in "breadth-first" fash
ion, finding all the hypotheses and then verifying each one. 
Doing the matching depth-first allows us to terminate the 
matching once an adequate match is found. Observe that 
if the object were completely visible, each and every initial 
hypothesis should lead to a complete and correct interpre
tation. This points out the redundancy of examining all 
the initial hypotheses. In practice, face occlusion requires 
that we be ready to examine all the possible pairings even 
though we seldom will. Note that in the depth-first mode 
the ordering of the hypotheses by likelihood of locating the 

faces can significantly reduce the expected time to verify 
the hypothesis. 

Let us quickly recap the flow of control in the on-line 
matcher. First, the sensing is done within a window guar
anteed to contain all the faces. All the data patches are 
found and allocated to any windows that completely con
tain the patch. The matcher then proceeds through its list 
of legal face pairs attempting to form initial hypotheses 
and then verify them. Once an acceptable hypothesis is 
found, the matching stops. For each face pair, the matcher 
looks for a patch pair that has the appropriate angle be
tween the normals. Each patch must be in the appropriate 

141 

window for the matching face and satisfy the orientation 
constraint. Also, the assignment of the two faces to the 
two patches must pass all the pairwise constraints derived 
from the model. Only after all these test are satisfied does 
the matcher have a valid initial hypothesis. The next step 
is to verify the hypothesis. First, a potentially visible face 
is chosen, its orientation and range of displacements pre
dicted and then its presence verified. If a matching patch 
is located, the pose of the object can be computed and all 
the other face predictions checked. A completeness score 
(based on correctly predicted area) is computed for the hy
pothesis. 

1.4 Complexity 

The matching method described above can be used with a 
single window and no off-line computation. In that case it 
has a worst-case complexity O(n3 m3 ) where n is the num
ber of faces in the model and m is the number of data 
patches in the scene. This naive bound is simple to de
rive: The outer loop considers all n 2 permutations (with 
repetition) of the n model faces, for each such pair it tests 
for consistency all m(m - 1)/2 pairwise patch combina
tions (without repetition). In the worst case, each pair of 
these O(n 2m 2 ) combinations needs to be examined further. 
The further computation requires checking for each of the 
n faces of the model, each of the m data patches. 

This bound for matcher performance is for the very 
worst case. The angle bucketing described above should 
improve the expected performance. In this version of the 
algorithm, one still has the O(n2 ) outer loop, but one ex
pects significantly fewer than m(m -1)/2 data patches will 
have to be considered. Having found a pair of model faces 
and data patches, they can be tested for consistency with 

the distance, angle, and distance vector constraints. This 
will further reduce the combinatorics of the method. Of 
course, the actual performance will depend on the object 
model and the measured data. The worst performance will 
be for a very symmetric object such as a cube. 

Thus far, we have not considered the effect of hav
ing a priori bounds on the object pose. In the absence of 
such bounds we are limited to using coordinate-frame inde
pendent constraints, such as angles between pairs of faces. 
Once we know bounds on the pose of the object, we can con
strain individual matches. For example, suppose we knew 
that the object was in some particular stable pose on a 
horizontal table, then the z component of each face normal 
is known within the measurement error. Given a candi
date model face, only data patches whose normals have z 
components in the appropriate range need be considered as 
matches. This reduces the effective number of data patches 
to be the expected number of data patches with the same 
z component. 



The matching algorithm described in section 1.3 is 
aimed at exploiting this type of constraint. The windows 
enforce global position constraints and the angle cones as
sociated with each model face enforce global orientation 
constraints. The purpose of these constraints is to mini
mize the number of data patches that can match a model 
face. In the ideal case, only a single patch can match each 
face and the whole algorithm boils down to finding three 
visible data patches. 

These constraints, therefore, affect only the inner loop 
ofthe matcher; there still remains a potentially O(n2 ) outer 
loop. The algorithm attempts to reduce the expected num
ber of initial hypotheses that need to be verified in two 
ways. The pre-processing of the pairs of model faces serves 
to capture other global constraints such as the fact that par
allel faces cannot be used for the initial hypothesis and that 
not all pairs of faces can be visible simultaneously. These 
constraint tend to reduce the number of initial pairs well 
below the n 2 value. The constraints derived from the model 
(distance, angle, etc.) are used to prune out those initial 
hypotheses that remain before any detailed prediction and 
verification is done. 

1.5 Example 

Here, we consider a simple example of the matching algo
rithm; figure 1 outlines the stages of processing. Figure 

1A shows three-dimensional depth data of a very cluttered 

u!9 
B 

• PI A .... 
11 F2 F] f. Fs 

P2 A .... 
/FI F2 F] '4 FS-'PI_F] 

PI-F] P2- rs 
P2-F1 X 

Inconsistent 

D 

E Figure 1. 

142 

scene obtained with a structured light range sensor, fig
ure IE shows the model of the target object given by the 
user, figure 1 C shows the result of pre-processing the depth 
values to obtain planar patches, figure ID schematically 
suggests the matching process of patches to faces, and fig
ure IE shows the resulting localized object superimposed 
on the original scene. 

Note that the matching algorithm can operate with no 
bounds on the pose of the input object. In that case, there is 
a single window within which all data patches can be found, 
also, there are no global constraints on the orientation of 
matching patches. The constraints that remain in effect are 
the pairwise matching constraints derived from the model, 
the pairwise visibility constraints, and the constraint that 
face pairs for the initial hypothesis have independent nor
mals. Under those circumstances, the algorithm finds 865 
legal initial hypotheses in the scene shown in figure 1. Re
call that an initial hypothesis is an assignment of a pair of 
model faces to data patches that satisfy all the constraints. 
Note that for this example n = 12 and m = 30, so the 
worst case is 62,640 potential hypotheses. This illustrates 
that even in the absence of global pose constraints, the 
coordinate-frame independent constraints are quite power
ful. 

Continuing the example, assume that the target ob
ject's pose is constrained so that all the patches are within 
a smaller window (say with m = 15). This constraint re
duces the number of potential initial hypotheses by roughly 
a factor of four (15,120). Furthermore, assume two specific 
faces can be constrained to smaller sub-windows (see figure 
2), each with at most five patches in it (m = 5). Then, 

"-lIN 

Figure 2. 

the upper bound on the legal number of initial hypotheses, 
even without considering the other geometric constraints 
is cut by approximately a third (10,540). We can also ex
ploit the fact that the two front faces and two back faces 
can never be simultaneously visible, similarly the two top 
faces and the bottom face. This eliminates an additional 



1260 possible hypotheses. All of these numbers address the 
worst case bound; as shown above the actual number of 
hypotheses is typically substantially less. In the example 
shown above, of the 865 legal pairwise interpretations, 642 
satisfy the window constraints described above. 

In addition to the window constraints, there are global 
face orientation constraints that reduce the expected num
ber of patches that can be assigned to the faces. These 

constraints will effectively reduce the value of m within the 
windows. As we saw above, reducing m produces large 
reductions in the possible number of hypotheses. For ex
ample, if the expected value of m can be uniformly reduced 
to 5, then the upper bound on the hypotheses (without 
the visibility constraint) is only 1040. The visibility con
straint prunes an additional 120 potential hypotheses. The 
actual implementation actually had to consider 266 initial 

hypotheses. 

2. The off-line planner 

The efficiency of the off-line planner is not as crucial as that 
of the matching algorithm. Accuracy is not essential either; 
the only requirement is that the bounds be conservative. 
Therefore, we have adopted essentially brute-force sampling 
techniques for all the computations of the off-line planner. 

2.1 Windows for the faces 

Windows can be computed as rectangular bounds on the 
loci of the face's vertices over the range of legal p'oses. That 
is, the legal orientations of the object are sampled and the 
position of each face's vertices are computed. An enclos
ing rectangle is computed for the vertices of each face and 
updated so as to include all the point positions. This rect
angle is then swept over the range of legal x, y translations 
of the object (also a rectangular range). 

This computation generates a rectangular window for 
each face. Windows that overlap by some large fraction 
of their area are merged to form a single window. This is 
done to reduce the amount of computation that the sen
sory pre-processor needs to do when it assigns patches to 
windows. A window that contains all the other windows is 
also computed; this window bounds the area where sensor 
processing needs to be done. 

2.2 Face orientation constraints 

The global orientation constraints on the faces are repre
sented as a set of cones for ease of testing. This can also 
be computed while sampling the range of object orienta
tions. We proceed by tesselating the Gaussian sphere into 
the faces of an icosahedron. This gives us twenty uniformly 

143 

distributed orientation buckets, represented as cones whose 
center vectors are- the normals of' the iscosahedron's faces. 
As we sample the orientations of the object, we keep track 
of which of these buckets the normal of each face falls in. 
This list of buckets is a conservative representation of the 
constraint on the orientation of the- data patch that can 
match a face. 

2.3 1Visible faces 

Potential visibility is determined by examining the sign of 
the component of the face normal along the sensing direc
tion. This is what is known in graphics as "back face" 
elimination, rather than a full visible surface computation. 
The combinations of visible faces are also computed as the 
orientations of the object are sampled. 

2.4 Face pairs 

The planner constructs the list of all pairs of simultaneously 
visible faces whose normals make an angle greater than a 
predefined threshold (7r /6 in our case). The list is ordered 
so that _pairs involving large faces are at the front of the 
list. These are the most likely faces to be visible in spite of 
occlusion. 

2.5 Pairwise geometric constraints 

See [Grimson and Lozano-Perez 84] for a description of how 
these constraints can be computed for polyhedral models. 

3. Discussion 

The algorithm presented in this paper is primarily based 
on a prediction/verification style: predicting the orienta
tion and positions of faces in the model and verifying the 
presence of consistent data patches. The hypotheses are 
driven off of pairwise matches of faces to patches and it is 
the number of possible matches at this level that determines 
the performance of the method. In the unconstrained case, 
the algorithm needs to examine a large number of initial 
hypotheses. By considering some simple constraints aris
ing from global constraints on the object pose, the num
ber of legal initial hypothesis is significantly reduced to a 
manageable number. Recall that the actual prediction and 
verification process is already reasonably efficient so that 

hundreds of hypotheses can be evaluated in a matter of 
seconds. 

Initial indications are that the method performs ex
tremely well when the pose of the object is tightly con
strained. As the range of possible poses grows, the per
formance reaches a plateau dictated by the performance of 



the algorithm.in the absence of constraints. Of course, this 
limiting performance is a non-linear function of the number 
of faces and number of data patches. Future work will at
tempt to derive better expected bounds on the performance 
of the algorithm. 

The main advantage of the method described here is 
its simplicity. The major limitation of the algorithm is its 
reliance on planar face approximations; extending the ap
proach to curved objects would not be straightforward. An
other disadvantage is the relatively weak coupling between 
the sensor processing stage and the matching. In principle, 
a tighter coupling could be implemented so that the amount 
of sensor processing could be reduced. On the other hand, 
the simplicity of the algorithm is due largely to the fact 
that the pre-processing is simple and uniform. 

The on-line matching algorithm described in section 
1 has been implemented on a Symbolics Lisp Machine; the 
off-line planner is currently being implemented. The testing 
of the on-line method has been done with simple window 
and orientation constraints specified by the u<;t~r. 

Acknow Iedgments 

We thank Philippe Brou for kindly providing the laser rang
ing system with which we obtained the data reported in fig
ure 1. This report describes research done at the Artificial 
Intelligence Laboratory of the Massachusetts Institute of 
Technology. Support for the Laboratory's Artificial Intelli
gence research is provided in part by a grant from the Sys
tem Development Foundation, and in part by the Advanced 
Research Projects Agency under Office of Naval Research 
contracts N00014-80-C-0505 and N00014-82-K-0334. 

Bibliography 

Baird, H. 1986. Model-based recognition. MIT Press, Cam
bridge, Ma. 

Bolles, R. C. 1976. Verification vision within a pro
grammable assembly system. Stanford Artificial Intelli
gence Laboratory Memo 29?~ 

Brooks, R. A. 1981. Symbolic reasoning among 3d 
models and 2d images. Artificial Intelligence. 17(1-3):285-
348, August. 

Faugeras, O. D. and Hebert, M. 1983. A 3D recogni
tion and positioning algorithm using geometrical matching 
between between primitive surfaces. Proc. Eigth Int. Joint 
Con/. on Artificial Intelligence, Karlsruhe, W. Germany, 
996-1002, August. 

Goad, C. 1983. Special purpose automatic program
ming for 3d model-based vision. in Proceedings of DARPA 
Image Understanding Workshop. 

Grimson, W. E. L., and Lozano-Perez, T. 1984. Model
based recognition and localization from sparse range or tac-

144 

tile data. Int. J. Robotics Res. 3(3):3-35. 

Grimson, W. E. L., and Lozano-Perez, T. 1985. Recog
nition and localization of overlapping parts from sparse 
data in two and three dimensions. Proc. IEEE ConI. on 
Robotics and Automation, St. Louis, Mo., 61-66, March. 

Horn, B. K. P. 1986. Machine Vision. MIT Press, 
Cambridge, Ma. 

Jarvis, R. A. 1983. A perspective on range finding 
techniques for computer vision. IEEE Trans. on Pattern 
Analysis and Machine Intelligence. 5(2):122-139, March. 

Jain, R. 1986, Three-dimensional object recognition. 
Computing Surveys. 



AML/X: A Programming Language for Design and Manufacturing 

Lee R. N ackman 
Mark A. Lavin 

Russell H. Taylor 
Walter C. Dietrich, Ir. 

David D. Grossman 

Manufacturing Research Department 
IBM Thomas I. Watson Research Center 

Yorktown Heights, New York, 10598 

Abstract 

AML/X is a modern general purpose high level program
ming language, aimed at applications in manufacturing and 
computer aided design. It includes features for both conven
tional and object-oriented programming. The AML/X inter
preter is implemented in C and has been ported to mM 370, 
Motorola 68000, and mM PC hardware, running under CMS, 
UNIX, XENIX, and DOS. This paper describes the. rationale 
for AML/X and gives an overview of the language itself. 

1.0 Introduction 

Architects of industrial automation systems make a trade-off 
between two goals: ease of use and flexibility. A decade ago, 
when computers were far more expensive, these goals were seen 
as competing alternatives. 

Historically, many industrial automation systems limited 
their flexibility to the minimum requirements of some (hope
fully) large class of users, but no more. Those users then speci
fied applications with a minimal language, which was simple and 
easy to learn. An example of this approach in robot program
ming was teaching by showing, in which' the user manually 
moves a robot through a sequence of motions, recording them 
for later replay[I]. The disadvantage is the lack of a growth 
path: once the user~s needs exceed the flexibility provided, the 
system becomes ineffective. 

Clearly, there is significant benefit in providing systems with 
much greater flexibility. Generally, this flexibility is .. achieved by 
deferring certain choices until as late as possible.; For example, 
a robot achieves more flexibility than fixed automation by de
ferring the choice of motions from the time the equipment is 
designed until it is actually used. 

Flexibility gained by deferring choices implies the need for 
a much richer language in which to specify the 'choices to be 
made. The challenge for the system architect is to layer this 
language so that ease of use is not sacrificed. As computers de
cline in cost, this approach of layering is becoming an increas
ingly practical means of combining flexibility with ease of use. 

One begins at the bottom layer with as much flexibility as 
one can afford (more on this later) and a language for specifying 
the remaining choices. The language must be expressive enough 
to allow the most sophisticated users to take advantage of the 
flexibility included. Perhaps less obvious, but equally important, 

CH2345-7j86jOOOOj0145$01.00© 1986 IEEE 
145 

the language must provide mechanisms for composing higher 
layers, each essentially a new language, with less flexibility and 
fewer remaining choices than the preceding layer. The highest 
layers, those with the least flexibility, provide ease of use for 
unsophisticated users along with potential growth to lower, more 
flexible layers. 

This is the context in which we have designed AML/X, a 
general purpose programming language tailored for use in man
ufacturing and computer aided design. Its roots are in AML[2], 
a programming language originally developed for use in a re
search robot system[3] and subsequently made available as the 
programming language of the mM 7565 Manufacturing System. 
AMLalso saw use as the base language for AML/V, an indus
trial machine vision programming system built as an extension 
to the research robot system[4]. AML/X is the result of a major 
redesign of AML and is part of the programming environment 
for our research activities in robotics[5], machine vision, and 
computer aided· design. As such, it is likely to continue to 
evolve. It is also the basis for AML/2, the programming lan
guagefor mM's new 7575 and 7576 Manufacturing Systems. 

This paper describes the rationale for the design and imple
mentation of AML/X, provides a brief overview of the lan
guage, and illustrates its use. For brevity and clarity this paper 
emphasizes the use of AML/X in robotics; however, AML/X 
is actively used in our research in machine vision, workcelllay
out, and computer aided design. The next section outlines our 
objectives and their influence on the design of AML/X. This 
is followed by an overview of the basic structure and facilities 
ofAML/X, just enough to provide the flavor of the language 
and to be able to follow subsequent examples. (A detailed de
scription of AML/X is available in [6].) 

2.0 Design Rationale 

2.1 Guiding Principles 

Designing a programming language requires balancing the 
many conflicting requirements of the anticipated user commu
nity. To help achieve this balance we have tried to follow a few 
broad, general principles, against which specific design decisions 
could be evaluated. 

First among these is Hoare's dictum[7] that the language 
designer's task is one of "consolidation, not innovation." In 
keeping with that principle, we have not introduced any radically 
new constructs in AML/X. Instead, we have chosen from 



among constructs and ideas that have been tested in other lan
guages and have tried to integrate them into a consistent, co
herent whole. LISP, APL, and SMALLTALK have had an 
especially strong influence. 

The second guiding principle is to prefer general purpose 
constructs to those meeting specific, limited, application needs. 
A corollary is that it must then be easy to provide layers that 
adapt general purpose features to meet the specific needs. For 
example, AML/X's interactive debugging tools are a small ex
tension of a very general exception handling mechanism. These 
principles keep the language a coherent whole, rather than an 
accumulation of features. In practice, this has been very diffi
cult. When an important user requests a specific new feature, 
it is hard to say no. 

The third principle is orthogonality, which demands that 
separate features be separate, that is, that the legality and 
meaning of the use of a construct should be independent of its 
use in combination with some other construct. Orthogonality 
aids in achieving generality, but also makes it easier to write 
obscure programs. It can also be difficult to achieve in a prac
tical implementation. For these reasons, we have occasionally 
violated orthogonality, but not without careful thought. 

These three principles are helpful, but they do not substitute 
for an understanding of the anticipated applications of the lan
guage. 

2.2 Language Design Criteria 

We have designed AML/X keeping in mind three major 
areas of use: robot programming, machine vision programming, 
and computer-aided design (primarily of mechanical objects and 
assemblies, see e.g. [8]). An analysis of the requirements of ro
bot programming and a survey of existing robot programming 
systems appears in [9]. Requirements for machine vision pro
gramming and an abstract language for vision programming 
(which could be embodied in many ways) are described in [10]. 
Some issues in programming languages for CAD systems and a 
particular language design are discussed in [11]. 

In all three areas, flexibility has historically been sacrificed, 
primarily to achieve ease of use. As a consequence, existing 
systems rarely exploit the intrinsic similarities between these 
domains. For example, all three domains deal with mechanical 
objects, assemblies, geometric aigorithms, and transformations
in 2 and 3 dimensions. 

In the future, applications will expand in all three domains, 
and there will be increased need in industry to integrate them. 
It is therefore desirable to have a single language that can ef
fectively deal with robotics, vision, and CAD. 

In the following subsections we discuss the implications of 
the intended uses of AML/X. 

Classes of Users: Roughly speaking, we anticipate three classes 
of users. End users, such as manufacturing engineers or me
chanical designers, are the people who specify the operations to 
be carried out by the automation or CAD system. They typically 
have little programming skill, but need to be able to "chain to
gether" sequences of pre-existing, relatively high-level com-

146 

mands, possibly including some simple control flow. Application 
developers write application packages, programs that provide fa
cilities for use by a small class of end users. In a sense, an ap
plication package decreases generality while increasing ease of 
use for a particular class of users. Application developers typi
cally have some programming skill and a deep knowledge of the 
application area. Often they produce new application packages 
by building a layer on top of an existing, more 'general program. 
Application development environment developers write the (typi
cally) large systems application developers use. Robot pro
gramming and CAD systems are examples. They need both very 
high programming skill and a reasonably deep knowledge of the 
application area. This mix of users and the way they work has 
had an important influence on the language design. 

Most significantly, the language must be a modern, general 
purpose language well-suited to developing large, layered sys
tems. It must support the definition and use of abstract data 
types and have facilities for manipulating strings, complex data 
structures, and symbolic information. A general exception 
handling mechanism is essential so that an application can 
"catch" exceptions from lower layers, thus avoiding the incom
prehensible error messages to end users that would otherwise 
result. 

At the same time, the language must be simple, or at least 
have simple subsets, so that it is accessible.to end users.· How
ever, as Hoare has observed[7], subsetting is simpler said than 
done, because an errant program can invoke some language 
feature outside of the subset. It is therefore important to be able 
to selectively disable or hide portions of the language. More
over, the use of subsets increases the need for consistency and 
lack of special cases to provide an easy growth path for users 
who become more sophisticated over time. 

Robot Programming: Our experience with several generations 
of robot system[3, 12, 13] has confirmed that specification of 
manipulator motion represents only a small, though very impor
tant, proportion of the total code required for a working robot 
application. Other components include I/O for auxiliary devices 
and communications, operator interfaces, calibration and setup 
routines, bookkeeping, access to manufacturing data bases, etc. 
The failure of special-purpose manipulation languages such as 
AL [14] to provide adequate support for these other compo
nents has led to renewed interest [e.g., 15] in the use of standard 
general-purpose languages for robot programming. The ap
proach in AML, carried over to AML/X, was to design a new 
general-purpose language whose design trade-offs make it con
venient for automation programming. 

Robotic applications do have many special characteristics. 
Manipulator motion specifications and calibration packages rely 
heavily on geometric calculations, and means must be provided 
for expressing these conveniently. Most applications· require 
some level of concurrency. Application programs are usually 
debugged (and often written) "on-line" and are hard to restart, 
thus making support for interactive programming especially im
portant. 

The structure of programs is often rather different from that 
found in other, more "algorithmic" domains. Generally, the 

. main line of an application program is quite straightforward, and 



consists of little more than a sequence of commands, with most 
of the useful work being done as a "side effect". Unfortunately, 
the vagaries of the physical world [16] cannot be ignored. Our 
experience has been that robust programs can easily have three 
to five times as much error testing and recovery as main line 
code. Often, the error recovery actions are both context de
pendent and safety related. For example, it may be appropriate 
to freeze manipulator motion if a gripper feedback sensor fails 
unless the hand happens to be in a furnace at the time. These 
considerations have led us to place special emphasis on powerful 
exception handling mechanisms. 

Machine Vision: Many of the considerations for robot pro
gramming also apply to machine vision [4, 10]. Indeed, one of 
our objectives was to promote better integration of robot and 
vision programs. The large amount of data that must be handled 
in many vision programs means that it is especially important to 
provide data representations and execution primitives with effi
cient low-level implementations while still providing great ex
pressive power at higher levels. Beyond this, the language 
should permit suitable interfaces to special-purpose computa
tional hardware. 

Computer-aided Design: The requirements for computer-aided 
design overlap those for robotics and vision. We require good 
support for layering, support for interaction at high levels, effi
cient low-level code execution, and extensibility. Requirements 
that are especially acute in CAD applications include support for 
self-describing objects, efficient and accurate numerical com
putation, and the ability to build up extremely complex data 
structures. 

Other criteria: Since we were generally pleased with our expe
rience with ~ AML, we decided early in our design effort to 
maintain its general flavor, but not to require strict upward 
compatibility. The result is that most nontrivial AML programs 
will not run unaltered on AML/X. One reason for this decision 
was to enable us to make several changes for future 
compilabilty. 

Although we wanted to take advantage of object-oriented 
language constructs to provide language extensibility, 
"layering", and support for modular programming, we also 
wanted to preserve the procedural style that many of our users 
were accustomed to. We also felt that it was essential to provide 
good interfaces to other languages to provide "maturity" (e.g., 
mathematical subroutine packages), to allow for efficient low
level execution (our first implementation is an interpreter), and 
to allow us to integrate large and diverse subsystems. 

3.0 Language Description 

This section describes the basic entities and operations 
available to the AML/X programmer. We begin with some de
finitions: 

objects 

values 

types 

These are the entities that can be directly manipulated 
by AML/X. 
The value of an object is the interpretation of its 
contents; it is meaningful to distinguish between an 
object and its value, since the value of an object can 
be changed. 
Each AML/X object has a type, which defines the set 
of values that that object can have. AML/X includes 

147 

several numeric types (I NT, REAL, etc.), types for 
character- and bit- strings, and more complicated 
types. 

variables These are symbolic names (e.g., Foo, VAR NAME, 
x) by which a programmer can refer to objects in 
AML/X; the object to which a variable refers is 
called its binding. We also speak of the "type" and 
"value" of a variable, by which we mean the type and 
value of its binding. . 

As in most other programming languages, variables are a key 
feature of AML/X. They can be manipulated in several ways: 

evaluation Retrieving the binding of a variable, that is, the 
object to which it refers symbolically. 

assignment Changing the value of the object bound to a vari
able. Since the type of an object is fixed, assign
ment cannot change the type of a variable. 

binding Changing the binding of a variable, that is, causing 
it to be bound to a new object. Unlike assignment, 
there is no restriction about the type of the new 
object to which the variable is bound. 

Expressions are combinations of variables, constants, and 
operators that are evaluated to produce new objects and, in the 
case of assignment, to change the values of existing objects. 
AML/X is a so-called expression-oriented language, in that all 
program execution can be described as expression evaluation. 

3.1 Data Objects and Operators 

AML/X has the usual complement of basic data objects and 
operators necessary for "language-hood". These, and a few 
other objects and operators are described cursorily in this sec
tion. All AML/X code is written in TH I S TYPE FONT so that 
it stands out from the rest of the text without resorting to the 
use of various awkward quote marks. In code examples, we have 
used upper case for usage that is required (e.g., reserved words) 
and lower case elsewhere (e.g., identifier names). 

Numeric Objects and Operators: AML/X has four kinds of nu
meric objects: I NT and LONG I NT, which correspond to 16-
and 32-bit integers, and REAL-and LONG_REAL, which corre
spond to single- and double-precision floating point numbers 
respectively. The usual binary arithmetic operations addition 
(+), subtraction (-), multiplication (*), division (D I V), and 
exponentiation (**) are provided. 

String Objects and Operators: AML/X provides both BIT and 
CHAR strings, consisting of zero or more bits or bytes, which can 
be manipulated collectively or individually. The usual oper
ations for manipulating both CHAR and BIT strings, including 
current and maximum length, lexicographic comparison, con
catenation, and selection, are provided. The standard bitwise 
logical operations AND, OR, XOR, logical and arithmetic shifts, 
rotate, and (unary) NOT are provided for BIT strings. 

Boolean Objects and Operators: BOOLEAN objects can have two 
values, which are denoted by the reserved words TRUE and 
FALSE. The standard Boolean operations AND, OR, XOR, and 
(unary) NOT are available in AML/X. There are also two 
"short-circuit" Boolean operators, CAND and COR, which do not 
evaluate their right operands unless it is necessary. Thus, if x is 



# 
OF 

Concatenate two aggregates to form a new aggregate 
Replicate an aggregate a specified number of times 
Make an aggregate containing a sequence of integers 
Is an object an aggregate? 
Number of elements in an aggregate? 
Distribute an operator or subroutine over arguments 

IOTA 
ISAGG 
AGGSIZE 
MAP 
REDUCE 
SCAN 

"Place" an operator between successive elements of an aggregate and evaluate 
Like REDUCE but return an aggregate of partial results 

ANY Are any elements of an aggregate TRUE? 
Are all elements of an aggregate TRUE? 
Are the arguments equal in both structure and value? 

ALL 
EQUAL 
COMPRESS 
AGGLOC 

Select elements of an aggregate using an aggregate of BOOLEANs as a mask 
Locate a target aggregate within another aggregate 

Figure 1. Aggregate built-in operators and subroutines. 

zero, x NE 0 CAND Y / x GT 10 evaluates to FALSE and 
does not divide by zero. 

Symbol Objects: SYMBOL objects are variables that are not 
evaluated (like quoted atoms in LISP) and can therefore be used 
as names. The notation $name defines a SYMBOL object. 

Reference Objects: An object of type REF "points at" an 
AML/X object, which is called the referand of the REF. REF 
objects can be created by either using the & operator or by call
ing REF. The referand of a REF object is obtained by using the 
dereferencing operator (!). 

DEFAUL T: The AML/X object DEFAULT is used in situations 
where an object is needed but no particular one is required. For 
example, the return value of a function called only for its side 
effects is DEF AUL T. 

Type Objects and Operators: All AML/X objects have a type, 
which can be determined using the typeof operator (1). For 
example, the result of the expression ? 3 is the type I NT. 

3.2 Aggregate Data Objects 

Aggregates are one of the most important features of 
AML/X since they are its most basic data grouping mechanism. 
An aggregate is exactly what its name implies: a collection of 
objects that can be treated as one. An AML/X object that is 
not an aggregate, such as an I NT or CHAR, is called a scalar ob
ject. 

Creating Aggregates: Aggregates are created using the aggre
gation operator pair, < >, to form a single AML/X object from 
an explicit list of other AML/X objects. The general form 

< e 1, ... , ek, ... , en > 

creates an n-element aggregate containing the elements ek. The 
important points to note are that: (1) any AML/X object can 
be an aggregate element; (2) elements of an aggregate need not 
all be the same type; and (3) each element is the object that is 
the result of evaluating an (arbitrary) expression that specifies 
the element. Once an aggregate is created, its size cannot be 
changed. Figure 1 lists some of the operators and built-in sub
routines for working with aggregates. 

Aggregate Subscripts: Individual aggregate elements can be re
ferred to by numeric indices or subscripts. If a is an aggregate, 
the expression a ( s) is a subscripted aggregate reference; we also 

148 

say that a is being applied to s. Elements of multi-dimensional 
aggregates (where some elements are themselves aggregates) 
can be referenced by multiple subscripts. For example, 
a ( 3 ) ( 2) refers to the second element of the third element of 
a. Since this syntax is awkward, multiple subscripts can be 
elided, so that a (3 ) ( 2) can be written as a (3, 2 ) . 

The most general case of subscripting occurs with multi
dimensional aggregates subscripted by arbitrary combinations 
of scalar and aggregate subscripts. The rules are simple. Sup
pose 

a is an arbitrary aggregate 
i is a positive integer 
s is an aggregate of positive integers or aggregates 
.• res t .• denotes the "rest" of a list of subscripts (possibly 

empty). 

Then, the meaning of any subscript can be determined by ap
plying the following rules recursively until all subscripts are re
duced to scalar values: 

Expression 
a(i, .. rest..) 
a ( s , .. res t. . ) 
a(DEFAULT, .. rest .. ) 

Equivalent 
(a(j» (..rest..) 
< ... ,a(s (k), .. rest .. ) , ... > 
< ... ,a(k, .. rest..) , ... > 

A few examples will help to give an intuitive understanding 
of what these rules mean. We'll start with the 3x,i"matrix m 
defined by 

m: NEW < < 1, 2, 3, 4 >, 
< 5, 6, 7, 8 >, 
< 9, 10, 11, 12 > >; 

The NEW keyword indicates that this is a variable declaration. 

It is simple to use aggregate subscripts to refer to rows and 
columns of m. If i is a scalar, then m( i ) refers to the i -th row 
of m and m( DEFAUL T, i) refers to the i -th column of m. The 
latter can be written more succinctly as m (, i). In general, any 
"missing" subscript is treated as if DE F AU L T had been specified. 
The "missing" subscript notation is convenient for denoting 
entire rows or columns. Selected rows or columns can be re
ferred to by using aggregate subscripts, as illustrated below: 

m«l, 3» ## 1st and third rows 
m(, IOTA(2,4» ## 2nd through 4th cols 
m(, <4, 1» ## 4th and 1st columns 
m«1,2>, <1,2» ## Upper left 2x2 



• IF cond THEN e 1 [ELSE e2l 
evaluates e 1 if cond is TRUE and to e2 otherwise; if e2 is ommitted, DEFAULT is used 

• WHILE cond DO expr 
continues to evaluate expr while cond is TRUE; the result is the result of the last evaluation of expr, or DEFAUL T if none 

• WHILE cond DO COLLECT expr 
continues to evaluate expr while cond is TRUE; the result is an aggregate of the successive results of evaluating expr, or 
the empty aggregate if none 

• REPEAT expr UNTIL cont 
continues to evaluate expr until cond becomes TRUE; the result is the result of the last evaluation of expr, or DEFAUL T if 
none 

• REPEAT COLLECT expr UNTIL cont 
continues to evaluate expr until cond becomes TRUE; the result is an aggregate of the successive results of evaluating 
exp r , or the empty aggregate if none 

• BEGIN el; ... ek; END 
the expressions e i are successively evaluated; the result is the result of evaluating ek. 

• SELECT expr CASE c 1 THEN e 1 ... CASE ck THEN ek [OTHERW I SE oexpr] END 
The result of evaluating exp r is compared against successive e i ; if there is a match, the result is c i ; if no match the result 
is oexpr if present, and DEFAULT otherwise 

Figure 2. Control Operators 

Operator Mapping: Operators extend to aggregate operands 
through a set of mapping rules (adopted with slight alteration 
from AML[2]) which are an abstract form of the distributive law 
of arithmetic. Suppose 

s 
<ul, ... ,un> 
<vl, ... ,vn> 
op 

is any scalar object 
is an n-element aggregate 
is an n-element aggregate 
is an AML/X operator 

Then, the operator mapping rules are: 

Expression Equivalent 
op <ul, ... ,un> <op ul, ... ,op un> 
s op <vl, ... ,vn> <5 op vl, ... ,5 op vn> 
<ul, ... ,un> op s <ul op 5, ... ,un op 5> 
<ul , ... ,un> op <vl , ... ,vn> <ul op vl , ... ,un op vn> 

These mapping rules apply recursively to multi-dimensional ag
gregates. 

A key point about the mapping rules is that they work in a 
uniform way for most AML/X operators. In particular, "par
allel assignment" can be written in the form <v 1 , ... , vk> = 
express ion. 

3.3 Control Operators 

AML/X supports control flow constructs typical of a struc
tured programming language. These are summarized in 
Figure 2. Since AML/X is an expression-oriented language, 
all control flow constructs are operators that yield a result like 
any other operator, as illustrated by the expression 

move(WHILE ask('More?') DO COLLECT teach()) 

which creates an aggregate of (presumably) points returned by 
successive calls to teach and passes it to the subroutine move. 

3.4 Expression Evaluation 

AML/X is an expression-oriented language, which means that 
every AML/X program construct is an expression. Thus, ex-

)49 

pression evaluation is the fundamental computational process in 
AML/X. 

Before an expression is evaluated, it is parsed into a tree of 
subexpressions based on the usual sort of precedence rules 
found in most languages. Then it is evaluated by applying op
erators to objects according to two evaluation rules, one for or
dinary operators and one for special form operators. To evaluate 
an expression, 

1. If the operator is not a special form, first evaluate the op
erator's subexpressions (left-to-right), then apply the op
erator to the resulting objects; 

2. If the operator is a special form, the operator is applied 
without prior evaluation of its subexpressions; the operator 
may cause any or all of its subexpressions to be evaluated. 

The rules are applied recursively and must be augmented by two 
additional rules which are the basis of the recursion: 

1. A constant (e.g., 1, 2. 3D5, I FOO I) evaluates to itself. 
2. A simple variable (e.g., a, arm, cur rent speed) eval

uates to its binding (not a copy). 

The details of the evaluation rule are only relevant when 
evaluation of a subexpression causes a side effect, i.e., when the 
value of some variable is changed during the course of evaluating 
the subexpression. We will consider several examples. 

Example: <a, b> = < 1, 2> 
This expression assigns 1 to a and 2 to b. The left-hand-side 
evaluates to an aggregate of the bindings of a and b (not copies 
of the bindings); the right-hand-side evaluates to the aggregate 
< 1 ,2>. The usual mapping rules then cause the assignment 
operator to be "distributed" over the corresponding aggregate 
elements. 

There are some circumstances where such behavior is not 
desired. For those cases, AML/X has a copy operator, denoted 
by %. An expression of the form %expr evaluates to a copy of 



diagonal: SUBR ( m ); 
## Returns the diagonal 
n: NEW AGGSIZE ( m ); 
i: NEW 0; 

elements of the n x n matrix m 
## Number of rows (cols) in m 
## Index over rows/cols 

RETURN ( WHILE ++i LE 
END; 

n DO COLLECT m( i, i) ); 

id: NEW 3 OF 3 OF 0.; 
diagonal(id) = 1.; 

## Make a 3 by 3 matrix of zeros 
## Set diagonal elements to 1 

Figure 3. The subroutine d i agona 1 returns the diagonal elements of a square matrix represented as a nested aggregate. Its 
use is illustrated by constructing the 3 by 3 identity matrix i d. 

the result of evaluating expr. Its use is illustrated in the fol
lowing example. 

Example: <a, b> = <b, a> 
This expression might be written (incorrectly) to swap two var
iable values. Each side of the assignment evaluates to an ag
gregate of the bindings of a and b, but in different order. 
Applying the mapping rule, the expression is equivalent to 
<a = b, b = a>. Since these are evaluated left-to-right, the 
value of a will be "lost". The copy operator, used in the ex
pression < a, b> = % < b, a>, causes a copy of the original 
values to be made before any of the assignments are done, thus 
achieving the desired effect. 

Example: d i agona 1 (m) = 
The subroutine shown in Figure 3 uses 
WH I LE •• DO •• COLLECT to construct an aggregate of the 
bindings of the diagonal elements of the matrix m. Since 
d i agona 1 (a) evaluates to an aggregate of the bindings of the 
diagonal elements, d i agona 1 (a) = 1 has the effect of set
ting all diagonal elements of a to 1. Again, the key point is that 
variables in AML/X evaluate to their bindings, not copies of 
those bindings, and the WH I LE •• DO •• COLLECT operator ag
gregates but does not copy the successive values of the loop ex
pression. 

3.5 Subroutines 

This section describes AML/X subroutines and variable 
declarations. A subroutine is defined by a statement of the form 

subrname: SUBR( ... forma 1 arguments ... ) 
declarations -

statements 
END; 

This statement really consists of two parts, the subroutine ex
pression itself (SUBR ... END) and the variable name 
subrname. The statement defines a subroutine and makes it 
the binding of the variable subrname. There may be any 
number of formal arguments, including zero. The body of the 
subroutine consists of any number (including zero) of local var
iable declarations followed by any number (including zero) 
AML/X statements. 

A subroutine is called when a subroutine object is applied to 
an argument list, as follows: 

subrexpr (actua 1_ ar9_1 , ... ,actua 1_ arg_ n) 

150 

The subroutine to which the expression subrexpr evaluates is 
called with the specified actual arguments. 

Local Variables and Declarations: Local variables are variables 
whose names are known only within the extent of a particular 
subroutine. A local variable is defined by being declared at the 
beginning of a subroutine. Variable declarations (except labels 
and internal subroutines) are of the form 

varname: declarator init_expr; 

where varname is the name of the variable being declared, 
dec 1 a r a to r specifies various properties of the local variable, 
and i nit _ exp r is an arbitrary AML/X expression that defines 
the variable's type and initial value. The effect of a variable 
declaration is to associate a variable name with the storage that 
holds its binding, as defined by four attributes: 

Memory space: Determines which memory space the bind
ing is stored in. If the binding is in the stack, it will be dis
carded when the subroutine terminates. 
Constant: Determines whether or not the value of the 
binding can be altered once it is initialized. 
Copy: Determines whether the result or a copy of the result 
of evaluating the initialization expression becomes the 
binding. 
Persistent: The binding is created when the subroutine is 
loaded and is reestablished each time the subroutine is in
voked. 

Possible declarators and their attributes are shown in F.1Ufe 4. 

A subroutine definition contained in another subroutine is 
an internal subroutine and can only be called from within the 
containing subroutine. Free variables in internal subroutines are 
bound lexically. Labels are declared by prefixing any statement 
by a name, as in 

labname: stmt; 

Internal subroutines and labels are two exceptions of the rule 
that declarations appear at the beginning of a subroutine. In this 
case, ease-of -use seemed to outweigh consistency. 

Arguments: A simple formal argument is a variable name, im
plicitly declared as a BIN D declaration, and bound to the corre
sponding actual argument when the subroutine is called. In 
effect, arguments are passed by reference. The caller can spec
ify that an argument be passed by value by preceding the actual 
argument with the copy operator (%). The formal argument can 
also be preceded by the copy operator, in which case the argu
ment is passed by value regardless of how the actual argument 
is passed. This is illustrated in the following example: 



Declarator Memory Space Constant Copy Persistent 

NEW Stack No Yes No 

NEW CONSTANT Stack Yes Yes No 

CONSTANT Stack Yes Yes No 

STATIC Heap No Yes Yes 

STATIC CONSTANT Heap Yes Yes Yes 

BIND - - No No 

STATIC BIND - - No Yes 

Figure 4. Variable declarators 

fact: SUBR(%i) 
## Returns i factorial (i GE 1) 
f: NEW i; 
WHILE --i GT 1 DO f ~ i; 
RETURN(f); 

END; 

AML/X provides a way to specify values for missing argu
ments. If the formal argument has the form 

formal_arg DEFAULT expr 

and the corresponding actual argument is supplied, then 
for rna 1_ a r g is processed as described above. However, if the 
corresponding actual argument is missing, or if its value is 
DE I:AU L T, then exp r is evaluated and its result becomes the 
binding of forma 1_ argo Thus in the code 

5: SUBR(p, tol DEFAULT 1.0e-6) 

END· 
5(3) ; 
5 (3, 1. Oe-8); 

to 1 is bound to 1. 0 e - 6 the first time 5 is called and to 
1 . Oe-8 the second time. 

Subroutines can also access excess actual arguments using 
the predefined variable ACTUAL _ ARGS, which is bound to an 
aggregate of the actual arguments. 

It is easy to write generic subroutines in AML/X because it 
is not necessary to declare the type of formal arguments. This 
is often convenient, especially for small programs, but can lead 
to programming errors and make it very difficult to compile ef
ficient code for the subroutine. In keeping with our philosophy 
of letting the user make the trade-off between flexibility and 
efficiency, AML/X allows optional type declarations for formal 
arguments. A formal argument (possibly including a DEFAUL T 
clause) can be followed by a type specification of the form 

MUSTBE type_spec 

where type_spec is an aggregate of types. If the correspond
ing actual argument is not one of the specified types, an excep
tion is raised. 

Exiting from Subroutines: Any AML/X object can be returned 
as the result of a subroutine call by passing the object to the 
RETURN built-in subroutine. The object returned is not copied 
unless it would be destroyed by termination of the subroutine 

151 

(e.g., a NEW variable). Therefore a variable binding can be re
turned and a subroutine call can be used on the left-hand side 
of an assignment, as illustrated in Figure 3. 

The built-in subroutine CLEANUP can be called while exe
cuting a subroutine to request an action when the subroutine 
terminates. For example, suppose a subroutine which opens a 
file should always close it, even if the subroutine terminates be
cause of some error condition. This can be done by the code 
shown in Figure 5. 

3.6 Exception Handling 

When an error is detected during program execution an ex
ception is raised. The action taken by a program when an ex
ception is raised is determined by the exception handler defined 
for that particular exception. The design of AML/X's exception 
handling is described in [18]. 

Each possible exception has a name, which is represented by 
a SYMBOL. When an exception is raised, either by the system 
or by the user through the RA I SE EXCEPT I ON built-in sub
routine, AML/X finds the most recent activation of a block 
containing a variable of that name which was declared as a 
HANDLER. If none is found and a variable of the appropriate 
name exists at top-level, it is used. The binding of that variable 
is the exception handler used. 

The type of the binding determines what kind of action is 
taken, as follows: 

EXPR: The EXPR is evaluated and the result becomes the 
result of the exception handler. 
SUBROUT I NE: The SUBROUT I NE is called. The argu
ments passed provide the SUBROUT I NE with detailed in
formation about the exception that occurred. The result of 
the subroutine call becomes the result of the exception 
handler. 
LABEL: The LABEL is branched to. The exception handler 
has no result. 
BOOLEAN: The BOOLEAN object is set to TRUE and the 
result of the exception handler is TRUE. 
SYMBOL: The value of the SYMBOL is used as the name of 
another exception to raise. This allows exceptions to be 
grouped hierarchically into exception groups, each consist
ing of several exceptions all handled by the same exception 
handler. 



file update: SUBR() 
cT NEW ·OPEN('file.name ' ,IW

I
); ## Open file 

CLEANUP( $(CLOSE(c» ); ## ·Request cleanup action 
## Processing code 

END; 

Figure 5. An example ola subroutine cleanup action: The expression $ (CLOSE (c) ) passedto CLEANUP is an (unevaluated) 
expression object which will be evaluated when f i 1 e -,update terminates. 

A program can use the EXCP _B I ND I NG.built-in subroutine 
to determine the current exception handler for a specified ex
ception. In this way, a subroutine can decide to let an exception 
be handled by its caller if its caller has an appropriate handler, 
or can handle the exception itself if the caller doesn't provide a 
handler. For example, -in the code in Figure 6, the subroutine 
defau 1 t hand 1 e set is used in foo to bind 
EXCP ZEROD I V to-the caller's handler if it exists, or to a 
boolean flag if it doesn't exist. 

Most system-defined. exceptions are continuable, meaning 
that execution continues from· where the exception was raised 
and the result of the exception handler becomes the result of the 
operator that caused the exception. The operation is not "re
tried", although the exception handler is free to retry the oper
ation or.provide a reasonable result, as in 

EXCP ZERODIV: HANDLER SUBR() 
##-Return largest possible number 
RETURN(MAXVAL(LONG REAL»; 

END; -

User exceptions can be either continuable or non-continuable. 

3.7 . Object-oriented Programming 

The use of, abstraction is a very powerful tool for building 
large programs. Powerful or complicated abstractions can be 
implemented by using simpler ones so that each implementation 
is small and (presumably) easy to understand. AML!X sup-

. ports.abstractionby providing classes, a mechanism for defining 
new objects and operations on them. A class defines a new type 
in the language; a class instance is a particular object derived 
from a class. This is analogous to built-in types and instances 
of the built-in types: for example the number 2 is an instance 
of the type I NT. Thus, if one writes a class definition for com-

. plex numbers, each instance of that class would correspond to a 
particular complex number. The data for each instance is held 
in its instance variables, which are accessible only from within the 
class unless access elsewhere is granted explicitly. 

Class Definitions: A class definition is defined by a statement 
of the form 

c 1 ass name: .CLASS ( ... forma 1_ arguments .. .) 
IVARS 

instance variable declarations 
END; 
declarations 
initialization statements 
methods 

END; 

This statement defines a TY P E and makes it the binding of 
c 1 assname. Each declaration in the I VARS section defines an 
instance variable. All of the non-STAT I C declarators shown in 
Figure 4 can be used. Figure 7 ·shows part of a simple class 
definition for vectors. 

152 

Class Instantiation: A class instance is created (the "class is 
instantiated") by calling the class definition as one would a 
subroutine, the only difference being that a class returns an in
stance containing the current bindings of the class' instance 
variables. Thus, vector (1 ,2,3) would return an instance of 
vector with instance variables 1 EO, 2EO, and 3EO. 

Methods and Operator Overloading: Classes are only useful if 
there is a way to do something to class instances. A method is a 
special kind of internal subroutine that (1) is contained in a class 
definition but can be called from outside of the class definition, 
and (2) has access to the instance variables of an instance of the 
class. A· method is invoked by executing an expression of the 

. form 

obL_exp. method_name( .. , forma l....:argumens ... ) 

where ob j exp is an expression that evaluates to a class in
stance and- method name is the name of a method. The 
method executes exactly like an ordinary subroutine except that 
the instance variables are· bound to the values ·of the instance 
variables contained in· the instance instead of to the result of 
evaluating their initialization expressions. Also, the predefined 
variable S ELF is bound to the class instance itself. 

AML/X operators can be extended to class instances, or 
overloaded, on a class-by-class basis by associating a method 
with the operator. This is done simply by having in the class a 
method whose "name" is a literal form of the operator to be 
·overloaded. If the left operand of an operator is a class instance, 
the corresponding operator method in the appropriate class de
finition is invoked with the right operand as actual argument; if 
the left operand is an instance of a built-in type but the right 
operand is a,class instance,. the corresponding modifier method 
is invoked passing the left operand as actual argument. This al
lows non-commutative operators to be overloaded . 

Exposed Instance Variables: Ordinarily, instance variables are 
not accessible except within the. class definition or through 
. method calls. Direct access to instance variables can be explic-
itly granted by declaring them to be.EXPOSED as in 

IVARS 
x: EXPOSED NEW REAL(); 

END; 

An exposed instance variable is referenced by an expression of 
the form: 

instance.inst var name 

Note that a .class definition containing only exposed instance 
variables is equivalent to C's structures and PASCAL's records. 

Exposed instance variables were added to the language in 
response to user's complaints that they often had to write a 
method just to access a single instance variable. However, be
cause they expose the data representation used by a class, they 



default handle set: SUBR(ex name, new handler) 
## If-the caller of the ciller of tfi~s routine does not 
## have an exception' handler for the exception named 
## ex name, return the specified new handler; otherwise, 
## return the existing ,handler. 

existing_handler: BIND EXCP_BINDING(ex_name, CALLER(CALLER())); 

RETURN( IF existing handler NE UNBOUND THEN existing handler 
- ELSE new handler ); 

END; 

foo: SUBR() 
## Set up handler for EXCP ZERODIV 
EXCP ZERODtV: HANDLER BIND

difauJt_handle_set($EXCP_ZERODIV, FALSE); 

END; 

Figure 6. Providing a default exception handler: The subroutine foo binds the result of calling def au lthand 1 e set to 
EXCP ZEROD I V, thus making it the exception handler for dividing by zero. -The subroutine 
defaul t handl e set first determines the exception handler binding in its caller's caller (i.e., foo's caller). If 
there is one, it is returned for use; otherwise the new hand 1 er is returned for use as the exception handler. 

violate the abstraction that classes were intended to provide. 
PR I VATE EXPOSED instance variables, which only allow direct 
access to instance variables from within the class definition, 
were introduced so that data representation could be exposed' 
inside the class definition butremain hidden from outside view; 

4.0 Examples 

4.1 Cartesian Data Types 

Data types for vectors, rotations, and coordinate transf,. 
ormations are often ·provided in special-purpose' languages for 
robotics and CAD [e.g., 14, 15, 19, 20]. The conciseness and 
consistency checking provided by' such types, compared to the 
subroutine libraries providing comparable functions for general 
purpose languages, significantly improves. programmer produc.., 
tivity and program readability. Unfortunately, users of special
purpose languages are often stuck with whatever internal 
representation. and function set the system implementers. have 
chosen to provide. 

This section illustrates the use of AML/X classes and oper
ator overloading' to implement these data types in a way that 
provides both expressive power and easy customizing. 

Vectors: Vectors are represented by three real numbers. stored 
in EXPOSED instance variables'x, y, z. Methods overload
ing the normal arithmetic operators can be provided for vector 
addition, subtraction, and scaling. "Multiplication" of two vec
tors is used for vector inner product and "exponentiation" is 
used for cross product. A method for assignment can also be
provided. A sketch of such a class definition is'given and several 
standard constant vectors are declared in Figure 7. 

Rotations: Rotations are commonly represented as 3 x 3 
orthogonal matrices. This representation is easily understood 
and is computationally efficient if many vectors are to be ro
tated. On the other hand, it is. wasteful of storage, subject to 
numerical inconsistencies, and computationally expensive for 

153 

many operations, including composition and specification from 
angles. 

As an alternative, we have sketched in Figure 8 a class de
finition for rotations that uses quaternions[21, 22] as the 
underlying representation. In this case, EXPOSED PRIVATE 
instance variables are used in order to hide implementation de
tails while permitting efficient execution within methods. Two 
"class" methods, 

r = rotation.polar(axis vector~ angle); 
r = rotation.euler(abt_z_l,abt_y,abt_z_2); 

permit rotations to. be. specified either as a right-handed twist 
about a specified axis or as a sequence of rotations about cardi
nal axes. Multiplication is overloaded to provide forcomposi
tion . of two rotations and rotation. of a vector and division is 
overloaded to provide for formation of an inverse rotation and 
for multiplication by the inverse. 

Two methods, 

<axis vector,angle> = r.polar parms(); 
<abt_z_l,abt_y,abt_z_2> = r.euler_parms(); 

invert the po 1 ar and eU'l er methods, respectively. One po
tential problem with the latter method arises when the second 
angle; corresponding to rotation about the "y" axis, is zero. In 
this case, only the sum of the first and third angles is determined. 
By default, the third value will be set to zero and an exception, 
EXCP degen rot, is raised. However, the. exception handler 
can o;erride the default; For example, the simplified. kinematic 
solution procedure shown in Figure 9 uses an exception handler 
to divide the angle sum evenly between the first and third wrist 
joints. 

Transformations: Arbitrary coordinate transformations, con
sisting of rotation followed by translation, are straightforwardly 
implemented using the class definitions for vectors and ro
tations. Ina typical class definition (not shown), multiplication 
would be overloaded to provide transformation of vectors and 
composition, and' division would be overloaded to ,-provide in
verses and composition with inverses. A class method for co-



vector: CLASS(xx DEFAULT 0.0, yy default 0.0, zz DEFAULT 0.0) 

IVARS 
x: EXPOSED NEW REAL(xx); 
y: EXPOSED NEW REAL(yy); 
z: EXPOSED NEW REAL(zz); 

END; 

$*: METHOD(v) II Inner product and scaling 
SELECT (?v) ~ ~ ~ 

CASE vector THEN RETURN(xftv.x+lftv.y+zftv. z ) 
OTHERWISE RETURN(vector(x*v, yft v , z*v» 

END; 
E~D; ~ 
$ft: MOD_METH(s) RETURN(vector(sftx , s*y, s*z»; END; 

$**: METHOD(v MUSTBE <vector» ## Cross product 
RETURN(vector(y*v.z-z*v.y, z*v.x-x*v.z, x*v.y-y*v.x»; 

END; 

$=: METHOD(v) 
<x, y, z> = SELECT (?v) 

CASE vector THEN <v.x, v.y, v.z> 
OTHERWISE v 

RETURN(SELF); 
END; 

END; 

uvect: METHOD() RETURN(SELF/sqrt(self*self»; END; 
END; 

null vector: STATIC CONSTANT vector(O, 0, 0); 
x axis: STATIC CONSTANT vector(l, 0, 0); 
y_axis: STATIC CONSTANT vector(O, 1, 0); 
z axis: STATIC CONSTANT vector(O, 0, 1); 

Figure 7. Class definition for vectors: Methods that overload the addition, subtraction, and division operators have been 
omitted for brevity. 

ercing vectors and rotations to transformations would also be 
useful. 

4.2 Coordinate Frames and Mf"lXIDent 

Coordinate transformations arise naturally from part
subpart relationships in both robot and CAD programming. If 
the location (i.e., position and orientation) of Part A relative to 
the workstation is given by a transformation, frame a, and 
t ran s a b gives the location of a Subpart B relative to-A, then 
the location of B relative to the workstation is given by 
frame a*trans abo Similarly, if the location of C relative 
to B is given by trans bc, then the location of C relative to 
the workstation - is given by 
frame a*trans ab*trans bc. In practice, these ex
pressioil"s become very cumbersome and tend to interfere with 
the readability of programs. To get around this, AL [14] intro
duced the concept of a//ixment, in which part-subpart relation
ships and similar dependencies were declared explicitly, as in 

AFFIX part_b TO part_a AT trans_ab; 
Programs then simply referred to part b to get the current lo
cation of Part B. If Part A was moved or if a new value for its 
location was determined by sensing, then the location value for 
Part B was updated automatically. 

154 

One of the interesting aspects of the AL implementation of 
affixment [23] was that recomputation of coordinate frame val
ues was deferred until they were needed, but the values were 
saved to eliminate needless recomputation. This saving can be 
quite important in robotic applications where parts are being 
moved about the workstation and where the expressions in
volved in recomputation may involve a long chain of affixments. 
An AML/X implementation of much the same idea is shown in 
Figure 10. Once again, classes and operator overloading are 
used to provide a new data type, frame, whose value corre
sponds to a coordinate system. 

Figure 11 illustrates the use of this data type in a simple as
semblyapplication. Figure 11(a) shows a box and cover plate 
being delivered to an assembly station on a small tray. The co
ordinates of the box and cover are initially known relative to the 
tray. Furthermore, grasping points relative to the box and cover 
have been defined. The problem is to use vision to locate the 
tray, then use a vision routine to locate the box and, cover more 
precisely, based on the tray location. Finally, place the cover 
on the box and pick up the box. A program to accomplish this 
is sketched in Figure 11 (b). 



rotation: CLASS(ss DEFAULT 0.0, vv DEFAULT null vector MUSTBE <vector» 

IVARS 
5: PRIVATE EXPOSED NEW REAL(ss); 
v: PRIVATE EXPOSED NEW vv; 

END; 

$=: METHOD(r) <s,v> = <r.s, r.v>; END; 

polar: CLASS METH(axis MUSTBE <vector>, angle) 
RETURN(rotation(cos(angle/2), sin(angle/2)*axis.uvect(»); 

END; 

euler: CLASS METH(a, b, c) ~ 
RETURN(rotation.polar(z axis,a) * rotation.polar(y_axis,b) rotation.polar(z_axis,c»; 

END; -

$*: ~ETHOD(p MUSTBE <rotation,vector» 
SELECT (?p) 

CASE rotation THEN RETURN(rotation(s*p.s-v*p.v, p.s*v+s*p.v+v**p.v» 
CASE vector THEN RETURN((SELF*rotation(O,p)/SELFJ.v) 

END; . 
END; 

$/: METHOD(p MUSTBE <rotation» 
RETURN(rotation(s*p.s+v*p.v, p.s*v-s*p.v-v**p.v» 

END; 

$/: MOD METH(p) 
IF p NE 1 THEN RAISE EXCP($EXCP invalid inv,,<p,SELF>,TRUE); 
RETURN(rotation(s,-vT); -

END; 

euler parms: METHOD() 
ad:- BIND 5**2 + v.z**2· 
bc: BIND ~~2 ~L2 
beta: BIND ~~~~{(a~-~~);{a~+bc»; 
gpa: BIND atan2(v.z, 5); 
gma: BIND IF beta NE 0 THEN atan2(v.x, v.y) 

ELSE BEGIN rslt: BIND RAISE EXCP($EXCP degen rot" gpa, 
IF is 3 reals(rslt) THEN RETURNTrslt)-ELSE 0.0; 

END; #1 See also Figure 9 
RETURN«gpa-gma, beta, gpa+gma»; 

END; 

polar parms: METHOD() 
5 sqd: BIND v**2; 
RETURN(IF 5 sqd EQ 0.0 THEN <z axis, 0.0> 

- ELSE <v7sqrt(s_sqd), acos(s**2-s_sqd»); 
END; 

is 3 reals: SUBR(val) 

TRUE); 

RETURN( ISAGG(val) CAND AGGSIZE(VAL) EQ 3 CAND ALL(?VAL EQ REAL) ); 
END; 

END; 

EXCP degen rot: BIND HANDLER FALSE; ## Default: ignore exception 
null-rot: STATIC CONSTANT rotation.polar(z_axis, OJ; 

Figure 8. Class definition for rotations 

The declarations create an "affixment tree" of frames. The 
instance variables associated with each frame specify the parent 
frame, the offset of the frame relative to its parent, the present 
value of the frame-Le., its transformation relative to the 
workstation-a "mark" counter used to determine whether the 

155 

value is valid, and a flag specifying whether the affixment is 
"rigid". The mark counter is incremented every time a new 
value is saved, and a frame's value is valid if and only if its mark 
counter is greater than its parent's. "Rigid" affixments are those 



hand_vector: STATIC CONSTANT vector(0,0,9); 

solve arm: SUBR( f MUSTBE <frame> ) 
t: BIND f.xf(); ## Frame transformation 
cj: BIND t.v - t.r * hand vector; 
RETURN( <cj.x, cj.y, cj.z> # (t.r).euler_parms() ); 

EXCP degen rot: HANDLER SUBR(a, b, ang sum); 
KETURNT<ang_sum, 0., ang_sum>/2); -

END; 
END; 

Figure 9. Simplified kinematic solution procedure for a cartesian robot such as the mM 7535: This subroutine returns an 
aggregate of six real numbers giving joint values corresponding to specified hand frame. Note the use of an exception 
HANDLER subroutine to override the default handling of degenerate wrist rotations. 

in which updates to the frame value are to cause the parent's 
value to be updated as well. 

The initial assignment statement causes the value of t ray 
to be updated, and its mark to be incremented. The second 
statement first causes the value of cove r to be computed as 
part of the call to locate object. Since tray has been up
dated, its mark counter is-higher than that of cover, so the 
value is obtained by obtaining a valid value for tray and then 
composing the result with the offset stored for cove r. The as
signment then updates the value stored in cover a second time. 
The third statement repeats the process for box. 

Subsequent statements call subroutines to pick up the cover, 
place it on the box, etc. The fragments from 9 r asp _ ob j ec t 
and move ob j ec t illustrate the use of affixment to simplify 
programmi""itg. 9 r asp ob j ec t moves the robot to the specified 
grasping point, closes the gripper, and then affixes the object (by 
assumption, the most remote rigidly affixed ancestor) to the ro
bot. Subsequent motions of the robot will cause all location at
tributes of the object to be updated. move ob j ec t verifies 
that mot ion frame is affixed to the robot and then moves the 
robot so thatthe value of mot ion_frame is equal to des t i
nat ion. 

5.0 Implementation 

AML/X is implemented by a portable interpreter written in 
C. It runs on the IBM 370 family of machines under VM/CMS, 
on the IBM PC under DOS and XENIX, on the mM RT/PC 
under AIX, and on several other machines. Facilities exist on 
all machines for writing C subroutines callable from AML/X; 
on the VM/ CMS implementation, there are also interfaces to 
Fortran and PL/t. 

6.0 Experience and Conclusions 

AML/X has now been in use for about a year in our research 
in robotics, computer-aided design, and machine vision. Exe
cution speed of the interpreter has proved adequate for robotics 
applications. As anticipated, however, the interpreter is too 
slow for production use in the lowest layers of more complex 
systems, especially in CAD applications. We have begun work 
on a prototype compiler that should resolve this issue. Mean
while, several of our researchers find AML/X sufficiently ex
pressive that they prototype low level geometric data structures 

156 

and algorithms in AML/X and recode in C where necessary for 
efficiency. Classes, including operator overloading, are often 
used in this work, and the resulting programs are both readable 
and modifiable. 

AML/X has also been used as a programming "front-end" 
to a powerful geometric modelling system [17]. In this case, 
class definitions for geometric objects have been written in 
AML/X but the actual data representation is created and ma
nipulated by the modelling system. Each class instance essen
tially contains a "handle" on the data maintained by the 
modelling system. Methods implement geometric operations by 
passing these "handles" to the modelling system, which then 
does the necessary computation. Our initial (limited) experience 
with this use of AML/X in the higher layers of a system is that 
it provides a very powerful programming environment with very 
reasonable performance. The drawing in Figure 11 was 
produced by an AML/X program running on this system. 

The need for concurrency can to some extent be met by 
simple interfaces to operating system services. However, in re
sponse to the requirements of automation programming, we 
have begun to consider providing concurrency directly in the 
language. 

Providing interfaces to other languages has allowed us quick 
access to a variety of existing code, ranging from mathematical 
subroutines, to graphics routines, to a large modelling system. 
We expect that AML/X will continue to be used at the highest 
layers of large systems built from existing components and that 
using it in this way will help us to integrate various automation 
technologies. 

Acknowledgments 

AML/X is a descendant of AML (A Manufacturing Lan
guage) and owes much to its developers. As early users of 
AML/X, Georg Maier and Vijay Srinivasan at IBM Yorktown 
provided especially valuable suggestions on ways to improve the 
language. Dave Klein of the Manufacturing Systems Program 
(MSP) at IBM Boca Raton designed and implemented the gar
bage collector. Ken Morgan, also of MSP, implemented most 
of the debugging facilities. Many others in the Automation Re
search group at mM Yorktown and the Manufacturing Systems 
Program at IBM Boca Raton have also made useful comments 
and suggestions. 



frame: CLASS(afx DEFAULT NULL MUSTBE <REF,frame>, 
ofst DEFAULT trans(), 
rigidly DEFAULT FALSE MUSTBE <BOOLEAN> KEY) 

frame_counter: STATIC LONG_INT(O); 

IVARS 
parent: PRIVATE EXPOSED NEW IF ?afx EQ REF THEN afx ELSE &afx; 
offset: PRIVATE EXPOSED NEW trans.coerce(ofst); 
value: PRIVATE EXPOSED NEW IF parent EQ NULL THEN 

trans() ELSE (!parent).xf()*offset; 
mark: PRIVATE EXPOSED NEW frame counter++· 
rigid: PRIVATE EXPOSED NEW BOOLE~N(rigidly~; 

END; 

$=: METHOD(f) 
value = trans.coerce(f); 
IF parent NE NULL THEN 

IF rigid THEN (!parent) = value/offset 
ELSE offset = (l/(!parent).xf(»*value; 

mark = frame counter++; 
RETURN (%va 1 ue) ; 

END; 

$*: METHOD(b) RETURN(SELF.xf() ~ b); END; 

$/: METHOD(b) RETURN(SELF.xf() / b); END; 

xf: METHOD() SELF.validate(); RETURN(%value); END; 

unfix: METHOD() parent = NULL; rigid = FALSE; END; 

affix to: METHOD(afx MUSTBE <REF,frame>, ofst, 
- rigidly DEFAULT FALSE MUSTBE <BOOLEAN> KEY) 

IF ?ofst EQ DEFAULT THEN SELF.validate(); 
SELF. unf i x(); 
rigid = rigidly; 
parent = IF ?afx EQ frame THEN &afx ELSE afx; 
IF ?ofst EQ DEFAULT THEN 

offset = (l/«!parent).xf(»)*value 
ELSE 

BEGIN mark = 0; offset = trans.coerce(ofst); END; 
END; 

validate: PRIVATE METHOD() 
if parent EQ NULL then RETURN(); 
(!parent).validate(); 
IF mark LE (!parent).mark THEN 

BEGIN value ~ (!parent).value*offset; mark 
END; 

frame_counter++; END; 

rigid ancestor: METHOD() 
RETITRN(IF rigid CAND parent NE NULL THEN (!parent).rigid_ancestor() ELSE SELF); 

END; 

has ancestor: METHOD(f) 
- RETURN ( I F SELF EQ f THEN TRUE 

END; 

ELSE IF parent EQ NULL THEN FALSE 
ELSE (!parent).has_ancestor(f»; 

END; 

Figure 10. Class definition for Cartesian frames and affixments 

157 



(a) 

(b) 
NEW frame(); tray: 

cover: NEW frame(tray, 
NEW frame(cover, 
NEW frame(tray, 
NEW frame(box, 
NEW frame(box, 

trans(. .. »; 
cov grasp: 
box: 

trans(. .. ), rigidly=TRUE); 
trans(. .. » ; 

box top: 
box=grasp: 

trans(. .. »; 
trans(. .. ), rigidly=TRUE); 

tray = locate object{DEFAULT, .. J; ## no a priori info 
cover = locate - ob ject{ cover, .. J; ## locate cover better 
box = locate=object{box, ... ); ## locate box better 

grasp object{ cover grasp, .. J; 
move object{ cover ,-box top, ... ); 
release object( ... ); -
grasp object ( box grasp, ... ); 
move_object{ ... );-

## grasp the cover 
## move it 
## let go 

grasp_object: SUBR(grasp_frame, ... ); 

move robot{ grasp frame, .. J; 
close gripped .. "l; 
(grasp_frame.rigid_ancestor(».affix_to(robot); 

END; 

move_object: SUBR(motion_frame, destination, .. J; 

IF NOT motion frame.has ancestor(robot) THEN 
RA I SEE X cpT ... ); -

move_robot(destination/motion frame*robot, ); 

END; 

Figure 11. Simple robotic assembly task: (a) Initial situation and (b) Sketch of program. The models in (a) were implemented 
using an AML/X front-end to the IBM Geometric Design Program [17]. 

158 



References 

[1] D.D. Grossman, "Programming a computer controlled 
manipulator by guiding through the motions," mM Re
search Report RC6393, mM Thomas J. Watson Re
search Center, Yorktown Heights, NY, 1977. 

[2] RH. Taylor, P.D. Summers, and J.M. Meyer, "AML: A 
Manufacturing Language," Inti. J. Robotics Research, 
vol. 1, no. 3, pp. 19-41, Fall 1982. 

[3] R H. Taylor and D. D. Grossman, "An Integrated Robot 
System Architecture", IEEE Proceedings, vol. 71, pp. 
842-855, July 1983. 

[4] M.A. Lavin and L.I. Lieberman, "AML/V: An Industrial 
Machine Vision Programming System," Inti. J. Robotics 
Research, vol. 1, no. 3, pp. 42-56, Fall 1982. 

[5] J. Korein, G. Maier, R Taylor and L. Durfee, "A 
Configurable System for Automation Programming and 
Control," Proc. 1986 IEEE Con! on Robotics and Auto
mation, San Francisco, pp. 1871-1877, Apri11986. 

[6] L.R Nackman, M.A. Lavin, RH. Taylor, and W.C. 
Dietrich, Jr., "AML/X User's Manual," mM Research 
Report RA 175, mM Thomas J. Watson Research Cen
ter, Yorktown Heights, NY, (1986). 

[7] C.A.R Hoare, "Hints on Programming Language De
sign," Keynote address given at the ACM 
SIGACT /SIGPLAN Conf. on Prinicples of Program
ming Languages, Boston, (1973) as quoted on pp. 255 
and 257 of C. Ghezzi and M. Jazayeri, Programming 
Language Concepts, New York: John Wiley, 1982. 

[8] M.A. Wesley, "Construction and Use of Geometric 
Models," in Computer Aided Design, J. Encarnacao, ed., 
Lecture Notes in Computer Science 89, Springer Verlag, 
1980. 

[9] T. Lozano-Perez, "Robot Programming," Proc. of the 
IEEE, vol. 71, no. 7, pp. 821-841, July 1983. 

[10] M.A. Lavin and L.I. Lieberman, "A VLO -- A Vision 
Language," IBM Research Report 8390, mM Thomas 
J. Watson Research Center, Yorktown Heights, NY, 
(1980). 

[11] C. Eastman and M. Henrion, "Glide: A Language for 
Design Information Systems," Proc. ACM 
SIGGRAPH'77, Computer Graphics, vol. 11, no. 2, pp. 
24-33, Summer 1977. 

159 

[12] P. Will and D. Grossman, "An experimental system for 
computer controlled mechanical assembly", IEEE Trans. 
Comput., vol. C-24, p. 879., 1975. 

[13] R Evans, et. aI., "Software system -fora computer con
troller manipulator", IBM Res., Yorktown Heights, NY, 
Rep. RC-6210, 1977. 

[14] R Finkel, R. Taylor, R Bolles, R Paul and J. Feldman, 
"AL, A Programming Language for Automation," 
Stanford Artificial Intelligence Laboratory Memo 
AIM-243, Stanford University, 1974. 

[15] V. Hayward and R Paul, "Robot Manipulator Control 
under UNIX," from TR-EE 84-10, Purdue University 
School of Electrical Engineering, pp. 22-34, Jan. 1984. 

[16] A. Bloch, Murphy's Law and other reasons why things go 
gnorw. Los Angeles: Price/Stern/Sloan, 1977. 

[17] M.A. Wesley, T. Lozano-Perez, L.I. Lieberman, M.A. 
Lavin, and D.O. Grossman, "A Geometric Modeling 
System for Automated Mechanical Assembly," IBM J. 
Res. Dev., vol. 24, pp. 64-74, Jan. 1980. 

[18] L.R Nackman and RH. Taylor, "A Hierarchical Excep
tion Handler Binding Mechanism," Software--Practice 
and Experience, vol. 14, no. 10, pp. 999-1003, Oct. 1984. 

[19] B. Shimano, "VAL: An industrial robot programming 
and control system", Proc IRIA Sem. of Languages and 
Methods of Programming, Rocquencourt, France, pp. 
47-59, June 1979. 

[20] C.M. Brown, "PADL-2: A Technical Summary," IEEE 
Compo Graphics & Applications, vol. 2, no. 2, pp. 69-84, 
Mar. 1982. 

[21] W. R Hamilton, Elements of Quaternions, Third Edition, 
New York: Chelsea Pub. Co., 1969. 

[22] R H. Taylor, "Planning and execution of straight line 
manipulator trajectories", IBM J. of R. & D.,vol. 23, 
no. 4, pp. 424-436, July 1979. 

[23] R H. Taylor, A Synthesis of Manipulator Control Pro
grams from Task-Level Specifications., PhD Dissertation, 
Memo AIM-282, Artificial Intelligence Laboratory, 
Stanford Univ., Stanford, CA, 1976. 



Satyr and the Nympht 
Software Archetype for Real Time Robotics 

J. Bradley Chen, Brian S. R. Armstrong, Ronald S. Fearing and Joel W. Burdick 
Stanford Artificial Intelligence Laboratory 

Department of Computer Science 
Stanford University 

Nymph is a multiprocessor system created at Stanford 
University for the implementation of real time control sys
tems. After a brief description of the nature of Nymph, 
the design and implementation of the system software is 
discussed. Software in Nymph emphasizes the benefits of 
abstraction in the user interface, with an awareness of lim
itations abstraction creates when used in excess. The dis
tinction between .latency and throughput, and its importance 
in the design of real time multiprocessor software is dis
cussed, motivating use of synchronized parallel processes. 
Discussions of implementations of the Cosmos force control 
system and a control system Jor the Stanford/ JPL' hand re
flect further experiences with Nymph. A general discussion 
of debugging a tightly coupled multiprocessor follows; what 
makes it unusually difficult, techniques that have been use
ful with Nymph, and possible' hardware/software strategies, 
for creating debugging environments in future systems. 

Introduction' 
The architecture' of multiprocessor systems for high 

performance real time control applications creates unusual 
problems for the programmer. The added complexity of 
parallel software design, and the fact that the programmer 
is working on an unusual and often unique machine archi
tecture demand creative solutions to old problems such as 
communication and synchronization. In addition to diffi
culties inherent in the design of parallel software systems, 
implementation of this software is made difficult by the lack 
of development tools, such as debuggers, for a tightly cou
pled . real time system. 

The difficulties created, by the multiprocessor architec
ture are enhanced by the demands and requirements of the 
software to .be implemented. The programmers of real time 
control systems are aware of the performance of which the 
multiprocessor is capable, and they insist upon having all, 
of the computing power available to them. Because of this, 
common issues of system design such as security and quality 
of user interface subordinate to the singular goal of com
putational efficiency. The challenge for the system soft
ware designer is to implement a programming environment 
conducive to software development without compromising 
performance. 

Software for the Nymph system has been designed, to 
achieve a good user interface within the requirement of min
imal system overhead. The general philosophy in design is 
that people need the abstraction and refined ,user interface 
provided by a sophisticated operating system, but robots 
don't. 

t Not Your average MultiProcessor Hack 

CH2345-7/86/0000/0160$01.00© 1986 IEEE; 

Additionally, for optimal utilization of hardware re
sources in a real time multiprocessor environment, the pro
grammer must have a clear understanding of how paral .. 
leI processes interact. Conventional knowledge of serial 
processing is not sufficient. Experience with and aware
ness of the peculiarities of parallel computing have helped 
us create software which allows top performance from the 
Nymph hardware. One significant· example in which in
tuition will misguide the programmer without experience 
in parallel environments is the choice between synchronous 
and asynchronous processes. This issue is discussed in the 
Synchronization section of this paper; 

The multiprocessor environment creates new problems 
in debugging. Beyond. the new kinds of errors which oc
cur in parallel software' design, the debugging tools and 
techniques available in a tightly coupled environment are 
limited. In the Debugging section of this paper debugging 
problems specific to multiprocessors, and some techniques 
for coping with these problems are discussed. 

Hand 
and 

Arm 
Controller 

SUN 

undcr 

V Kernel 

10MB 
Ethernct 

M 
u 
I 
t 
i 
b 

VAX 111780 File Server 

Figure 1. The Nymph System. 



Related Projects 

The diminishing size and. cost of high speed micropro
cessors have made multiprocessor systems a popularsolu
tion to the problem of computational architectures for real 
time robotic control. A general overview of the Nymph 
system can be found in [Chen et. al. 1986]. 

Researchers at the MIT AI Labs are working with a 
multiprocessor which uses MC68000 series computers on a 
common bus, linked to a VAX computer via a DMA link. 
This system is designed for the implementation of a control 
system for the Utah/MIT dexterous hand. The system uti
lizes a mail-box communications model and scheduling of 
asynchronous processes by means of a servo-loop-scheduler 
routine. [Siegel et. a1. 1986] 

Another interesting system is being worked on by the 
National Bureau of Standards. Theirs is a loosely coupled 
multiprocessor system, with a fine grained modular struc
ture for a programming model, encouraging generic mod
ules. [Haynes and Wavering 1986] 

Members of the Manufacturing Research Department 
of the IBM T.J. Watson Research Center have developed 
a multiprocessor control system to support research in au
tomation programming and motion control. Their system 
consists of a Programming System for program develop
ment and user interaction, linked' by, a ,shared memory 

, bridge to a Real Time System, which is a tightly coupled 
multiprocessor. The sy-stem also utilizes a Verb structure 
for command syntax. lKorein et. al.1986] 

Gaglianello and Katseff of AT&T Bell Labs have done 
work on a distributed system for control applications called 
Meglos. The system is based on multiprocessor clusters 
linked by a high speed network, with user interaction and 
programming environment based on the Unix operating 
system. [Gaglianello and Katseff 1986] 

The Nymph System 

'In the Nymph system (in its current configuration) 
eight NSC 32016 single board computers (hereafter denoted 
as 32k computers) provide the computing power. EaCh 
board carries 512k bytes of dual-ported RAM, a parallel 
port, two serial ports, and a floating point co-processor, 
which enables a 32k to do a floating point multiply in six 
microseconds. 

In addition to the 32k· computers, Nymph includes a 
MC68010 based Sun Workstation which provides the in
terface between Nymph and the rest of the world. The 
Sun communicates with server machines on a 10MB/second 
Ethernet to provide facilities such as file I/O and down
loading of programs. Since the Sun and the 32ks reside on 
the same Multibus, communication between the machines 
is very fast. The Sunruns-ihe V-System distributed op
erating system [Cheriton 1984] with the VGTS windowing 
system rLantz 1984]. Using the graphics and I/O routines 
provided by the VGTS, interaction windows are created for 
-each 32k processor. 

Nymph also has 2.5M bytes of EDC RAM, parallel I/O 
boards to communicate with robot hardware, A-D convert
ers to process force and tactile sensor data, and D-A con
verters to drive motors. A schematic of the Nymph system 
appears in Figure 1. 

161 

Software Overview 
Abstraction can be defined as the removal of hardware 

specific detail in a communication. Clearly abstraction is 
useful in communications between computers and people, 
examples being ascii character encoding and high level lan
guages (versus high and low voltage levels). However, in 
communications between machines and computers, the ab
straction is only useful in as much as it makes it easier for 
people to control the machines' communication. It does 
nothing to improve the quality of interaction between ma
chines. Additionally, abstraction tends to produce several 
determental side affects: 

1. -Inefficiency. This problem is analogous to adding bu
reaucracy to government. Abstraction in communica
tions generally results in making the communication 
path more complicated, and therefore slower. 

2. Loss of Robustness. As paths of communications be
come more complex, the number of ,possible states in 
the computation increases, making it less and less likely 
that the programmer will (or will be able to) test all the 
possible failure modes of the software. 

3. Loss of access to the machine. In removing detail from 
a communications path, that detail often becomes inac
cessible, along with some of the functionality/flexibility 
it provides. 

In such a machine oriented environment as a robotics 
control system, these problems are precisely those which we 
seek to avoid. Thus, there are many cases where abstraction 
would be -appropriate in typical computer systems, but be
comes an unpleasant burden in a control system. Software 
for the Nymph system has been created with the problems 
of abstraction in mind, with a goal being to create a system 
that uses abstractions when clearly worthwhile, and avoid
ing abstraction when it seems reasonable to do without it. 

In the Nymph system, these concepts about abstrac
tion have been applied to the implementation of the Nymph 
run-time environment. Nymph was designed with the Sun 

-Workstation-dedicated to user interaction, and the 32k pro
cessors strictly dedicated to the' real time system. Thus, 
abstraction abounds on the Sun, where it is useful in cre
ating a refined user interface, but is confined to the Sun, 
and avoided in the 32k. On the 32ks, the real time control 
system gets 'the whole machine,' simplifying the implemen
tation of time critical control. \Vhen a 32k 'requires some 
sort of operating system service, such as file I/O, it uses fa
cilities provided by the Sun in a client-server relationship. 
Thus, the 32k computers can exert an interrupt on the Sun 
to have there system requests serviced, but the Sun can't 
'interrupt the 32k, keeping its environment clear of unpre-' 
dictable interrupts and consistently available for real time 
computations. 

There is not a complete "operating system" which runs 
on the 32k processors of Nymph, but rather a collection 
of run-time libraries which interface the 32k processors to 
the Sun and V-system. This creates a convenient interac
tion environment for the programmer, providing a familiar 
procedure call interface to system facilities provided by the 
Sun. Also the runtime library implementation insures that 
the resources consumed by system overhead is limited to 
that which the application requires. 



Nymph Windows 
Due to re~trictions in design and a primary concern for 

efficient use of hardware resources, many real time systems 
have a very primitive user interface. This is unfortunate, 
because when hardware systems are inconvenient to use, 
either the user's time is wasted or the system is not used 
at all. 

The Sun Workstation of the Nymph system was selected 
because of the excellent user interface and abundance of 
software which was locally available for it. In letting oper
ating system people develop the operating system, we have 
been able to concentrate our efforts on the problems rele
vant to real time systems. 

User interaction between the programmer and the 32k 
processors on the Nymph system occurs on the worksta
tion console. Through the VGTS system, I/O windows are 
created for each 32k processor. For each window there is 
an I/O handler process running on the Sun. The 32k com
puters communicate with the handler processes using the 
message passing system described in [Chen et. a1. 1986]. 
The interaction windows are initialized by a simple proce
dure call from a C program, which defines stdin, stdout, 
and stderr in terms of the interaction window, as well as 
initializing facilities for file I/O. Figure 2 illustrates some 
of the mechanisms of the Nymph I/O system. In this case, 
abstraction has been used to the fullest extent: each 32k 
processor has its own output device, but the details of the 
communication between the 32k processor and the inter
action windows are hidden to the program. However, the 
computational burden of the abstraction is confined to the 
Sun, preserving the real time environment of the 32k pro
cessors. 

32K 32K 32K 321< 

321< 32.1< 321< 

Figure 2. Mechanisms of Nymph I/O. 

162 

.,.._-. ., . ... .... ... , 
rm .,..-
t •• n 
un 
r,t:'J, 

. -...... 
::::.~";.:.'" 
I AM .t OiI,_ all '''J_ ".1'.' ........ '.' ...... 1. .... "'1 ... 
• hid ...... ............... ..... . , ....... -

',t-tet"I •• _ 

Figure 3. Nymph Windows. 

The windowing capability of the Nymph system has 
proven to be a great convenience in the use of the system. 
It allows the user to interact quickly and efficiently with all 
the processors, with all facilities available from the mouse 
and keyboard. It also allows (conceptually) simultaneous 
output from all processors, a feature useful in debugging. 
Figure 3 shows the user's view of Nymph. 

It should be noted that this refined user interface would 
have been difficult to achieve if we had had to create the 
Sun operating system and windowing system ourselves. We 
choose to adopt an existing system, rather than reimple
ment it ourselves. This greatly simplified the implementa
tion of the user interface. 

Synchronization 

The Motivation 

In studying the performance of real time control sys
tems implemented on multiprocessors, one must draw a 
distinction between system throughput and computation 
latency. In a uniprocessor throughput and latency are re
ciprocals; a calculation that has a latency of 10 milliseconds 
between input and output will run at 100 samples per sec
ond. In a multiprocessor, throughput will in general be 
greater than the reciprocal of the latency. High through
put is the motivation behind a number of pipeline architec
tures, and for most computation is a reasonable design goal. 
But for real time systems latency is critical. Increasing the 
throughput without decreasing the latency simply acceler
ates the generation of old data. We will show that syn
chronization decreases latency, though throughput is also 
decreased. 

Execution or Slower Proces..'5 ~ Jit ~ S1d pc:;j Q Boundaries or Faster Pro«ss (i V ~ 
(tick #) 0 I 'f 5 7 a 9 

Latency rrom Reading Data to Writing Result: 2 J 't 'f 2 
Average Latency: 3 

Figure 4. Asynchronous Process Communications and Latency. 



In Figure 4 an example of the possible timing between 
two interacting processes is shown. The faster process is 
assumed to produce the input and consume the output of 
the slower process at the beginning of each faster process 
cycle (tick mark in the figurej we shall refer to the fast 
process intervals as ticks). This example might arise in a 
system with a high speed I/O process synchronized with 
external devices. The top portion of Figure 4 shows the 
alignment of the slower process with the faster one. We 
have made the favorable assumption that the process speeds 
are in an integer ratio, 5:9, and that the slower process lines 
up exactly with the faster one every nine ticks. Along the 
bottom of the figure are numbers to indicate how many 
ticks have elapsed since the reading of the data used by 
the slower process to compute the result used by the faster 
process at the tick shown. The mean of the numbers in this 
row is the mean latency. 

Looking at the second execution of the slower process 
in Figure 4, one sees that it begins at t = 1.8, and produces 
its result at t = 3.6. When the process began, the freshest 
input data came from t = 1, and thus was 0.8 ticks old. 
The result of the second execution of the slower process is 
applied at t = 4 and t = 5, the result of the third execution 
of the slower process then becomes available at t = 5.4 
and is applied at t = 6. At t = 5, the system applies a 
result based on the data measured at t = 1. The data 
It..nd t4~result are 4 ticks old! .even though the slow process 
requires only 1.8 ticks to execute. The mean latency for the 
asynchronous case is 3 ticks. 

Execution or Slow" Process ;~~~ ~~ 
Boundaries or Faster Process 'i I ;,~ ~ 1 ~ J 

(tick #) 0 :< 3 if 5 (; 7 8 
Latency rrom Reading Data to Writing Result: 2 2 3 2 2 3 

Figure 5. Synchronous Process Communications and Latency. 

In Figure 5, the same process interactions are shown for 
the synchronized case. Here the slower process blocks until 
fresh data is availablej it is synchronized with the faster 
process. Notice that 10% of the computing power of the 
slower processor is sacrificed while the process blocks for 
synchronization. As in Figure 4, the latencies are shown. 
The mean latency for the synchronized case is 2.5 ticks, 
a 16% reduction from the asynchronous case, even though 
the process ran five times in the asynchronous case and in 
the synchronous case only four. The asynchronous case also 
shows a broader range of latency than does the synchronous 
case. 

A general analysis of asynchronous process latency can 
be had by assuming the phase relation between the faster 
and slower processes is a random variable with uniform dis
tribution. The expected value of latency resulting from 
asynchronous process interactions is given by Equation 1. 
In the following, phase is measured in units of the ticks 
and ranges from 0 to 1. Equation 1 is derived from the 
interaction model of Figures 4 and 5 by summing the la
tency contribution over all possible event orders. Figure 6 
shows the possible event orders for the case where u = 1.8 
( (u - luJ) > 1/2 ). When the phase is between 0 and tPi, 

163 

the mean latency is E{q}, which is 2.5. When the phase is 
between tPi and tPj the latency is E{ Ii} = 3. The final pos
sibility is that the phase is greater than tPj, which produces 
a mean latency given by E{ I:} = 3.5. 

u = 1.8 i = 2 j = 4 4>i = 0:2 4>j = 0.4 L u J = 1 

If--H ~.-t--i 
Execution ot 

\~ ~ ~ 
Slower Process 

Boundaries ot 

I Faster Process 

Z 3 

I-+~. 
Execution ot 

~I 
h t Slower Process 

Boundaries ot 

I ~ Faster Process 

3 

I--I-~J 
Execution ot 
Slower Process 

~ 
~ ~ 
~ Boundaries ot 

Faster Process 

3 

Figure 6. Possible Permutations of Event Or
der for two Processes of rate ratio 1.8:1, Asyn
chronously Interacting. 

I 
1 

The three event orders correspond to the three prod
uct terms of the expected latency. A separate equation 
is needed for the case where (u - l u J) < 1/2 because a 
new permutation of events is possible and one permutation 
shown in Figure 6 is not possible. The two equations give 
identical result when (u - luJ) = 1/2. 

If (u -luJ) ~ 1/2, 

E{L} = p(4)j-O) * E{/;+LuJ-l} 

+ P(4)i-4>j) * E{ 1;+LuJ} + P(I-4>i) * E{ 1;;ILuJ } 

if (u -luJ) > 1/2, (1) 

E{ L} = P(4)i-O) * E{ 1;+LuJ} 

. E{/i+LuJ} n E{/HluJ+1} + p(4)j-4>;) * HI + r(I-4>j) * HI 

where P(a-fJ) is the probability that the phase relation be
tween the slow and fast processes lies in the region between 
a and pj and E{I~} is the expected latency when a result 
of the slow process is applied from ticks m to n, where m 
and n are measured with respect to the tick at which the 
raw data of the slow calculation are taken. 



E{ ~} = ~~=m k = n(n + 1) - m(m - 1) 
m n - m + 1 2 * (n - m + 1) 

When the phase relation between the slower and faster pro
cesses is uniformly distributed, 

p(a-p) = a - f3 
Note that the phase relation ranges from ° to 1, not from ° to 27r. The remaining terms in Equation 1 are defined to 
be: 

u is the rate ratio of the two processes; 
is the least integer greater than u ; 

j is the least integer greater than 2u ; 
cPi is (i - u) ; 
cPj is (j - 2u) ; 
L u J is the greatest integer less than u. 

The expected latency for the asynchronous and syn
chronous calculations, as a function of the process rate ra
tio, is shown in Figure 7. The stair step shape describes 
the synchronous case, where latency is fixed for increasing 
u until a boundary is reached and one more tick is required 
to complete the slower calculation. Figure 7 shows that for 
rate ratios above 1.3:1 the synchronous case always gives 
less expected latency. For ratios just greater than an in
teger, the reduction in latency by synchronization is a few 
percent; for ratios just less than an integer, the reduction 
in latency by synchronization is more than a full tick. The 
expected latency for a rate ratio of 1.8:1 is 3.2 ticks. In 
the example of Figure 4 we assume that the asynchronous 
processes "line up" every nine ticks, with a lower expected 
latency of three ticks. The· integer ratio "lining up" as
sumption was made to show the asynchronous construction 
in optimal conditions. 

Latency is pure delay: the anathema of feedback con
trol. In this final thrust to convince the unbelieving that 
you can throwaway computer power and still improve con
trol, we will compare the tracking of a linear first order filter 
by its equivalent discrete filter under four assumptions: (1) 
uniprocessor, (2) two asynchronous processors, (3) two syn
chronized processors, (4) a uniprocessor of twice the power. 
For this numerical exercise we will take our input signal to 
be 10 hertz, our desired linear filter to have a pole at 10 
hertz, our uniprocessor (example 1) to have computation 
power sufficient to sample at 80 hertz, and our problem to 
be amenable to parsing in chunks ,with a ratio of 1.8:1. The 
results are shown in Table 1. The error measured is the 
difference between the linear filter and the digital equiva
lent. The digital filter has been designed with the forward 
integration approximation. The excess lag (excess over the 
linear filter lag of 45°) was measured by finding the advance 
that should be supplied to the digital filter to minimize 
the squared error. The results show that by going to two 
processors a substantial improvement is achieved, and that 
by synchronizing a further improvement is achieved. The 
fourth configuration, a uniprocessor of twice the power, is 
included to show that two processors are not twice as pow
erful as one. 

164 

16 

10 11 

RATE RATIO (ticks) 

Figure 7. Expected Latency in Synchronous 
and Asynchronous Process Coordination. 

Table 1 •. A Comparison of Synchronized 
and U nsynchronized Digital filters. The er
ror measures are relative to a single pole 
linear filter with an input signal of 10 hertz. 

Filter Configuration Mean Squared Excess Delay 
Error (unit inputXmilliseconds) 

A uniprocessor at 80 hertz 0.558 

Two processors, problem split 
1.8:1, fast rate: 224 hertz, 0.280 
slow rate: 124.4 hertz, 
slow process unsynchronized. 

Two processors, as above, 
fast rate: 224, slow rate: 112,0.235 
slow process synchronized. 
(see Figures 4 and 5) 

A uniprocessor at 160 hertz. 0.156 

The Implementation 

25.7 

16.9 

14.3 

12.6 

The basic design of the Nymph synchronization prim
itives is presented in [Chen et.al 86]. Since the writing of 
that paper, in implementing several control systems, one 
lesson on is clear: Asymmetric synchronization primitives 
are often needed, as opposed to the symmetric synchroniza
tion primitives of the original implementation. By symmet
ric we mean that the behavior of the synchronization primi
tives, Synch..signalO and Synch_Vai to, depends only on 
the order of occurrence, not on the processor upon which 
the commands occur. Thus if processors A and B are syn
chronized, B will block if it arrives at its SynchJlai to 
first, to be awakened by A; or A will block if it arrives at 
its SynchJlai to first, to be awakened by B. 

There are cases in which one wants B to block for 
A, but not vice versa, or for B to block only if A is on 
some critical segment. In both of these scenarios A never 
blocks for B, and B never does any awakening. The prim-



itives Synch..Block(n, patience) and Synch_Check(n, 
patience) were written for these cases. As in [Chen 86], n 
is an index ·indicating the synchronization event, and pa
tience is a parameter indicating how long the processor is 
willing to sleep. 

Synch..BlockO is used when one or more processors 
must block until one processor reaches some event. It is 
useful for MASTER-SLAVE interactions and for synchro
nizing several processors to a single time base. 

Synch_CheckO is used for mutual exclusion of a crit
ical section. A typical example is in I/0 channels that 
have internal state and thus may not be used by multi
ple processors concurrently. The priority processor, or the 
one expected to be first, will execute Synch...signalO be
fore entering the critical section (possibly long before) and 
Synch_Vai to upon leaving the section. The next proces
sor will execute Synch_CheckO before entering its critical 
section; if the primary has completed its action, the sec
ondary will continue; if the primary has not completed its 
action, the secondary processor will block. The advantage 
of this special construction is that Synch_Check 0 appears 
as a single if statement when the program does not block, 
and runs in 8 microseconds. Thus, Synch_CheckO can be 
used liberally to-ensure event order without sacrificing per
formance 

The example shown in Figure 9 illustrates the use of 
Synch..BlockO and Synch_CheckO. Awakenings are indi
cated by arrows. A Synch..Block 0 or a Synch_Check 0 
can only be awakened by a Synch..1lai to. 

-Nymph for Hand Control 
The Stanford/JPL hand has three fingers with three 

degrees of freedom each, actuated by a coupled pulley sys
tem with 4 tendons and motors for each finger, for a total of 
twelve motors. Each tendon has a tension sensor mounted 
near the finger to allow control of joint torque, and motor 
shaft encoders to determine motor position. This hand has 
some dexterity for fine motion and force control of grasped 
objects, and for regrasping operations where objects are 
reoriented within the hand [Fearing, 1986]. 

The previously proposed hand control structure [Chen 
et al 1986] has been revised to provide a high bandwidth 
tendon controller (see Figure 8). The system is currently 
running with seven processors, with a force and tendon pro
cessor for each finger. The low level tendon processor runs 
at 480 Hz, and the force servo on a separate processor runs 
at 120 Hz, and the two are tightly coupled by synchro
nization. The seventh processor coordinates finger actions. 
Three more processors wil be added for the processing of 
tactile data. 

The three low level processors share a 12 channel motor 
interface, and synchronization is used to prevent collisions 
when B:ccessing this device. This also reduces potential de
lays due to all three processors contending for the bus si
multaneously if they were locked in step. The second use 
of synchronization is the transfer of data between the high 
and low servo levels. This ensures minimal latency and pre
vents the use of partially updated information by the two 
levels. 

165 

Planning 

Coordinalion 
A 

I----L----, 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

_-1_ L, 

I I 
I I 
I I 
I I 
I I 

I 

Motor Torques A 

Motor Positions ~ 

e Tendon Tensions 

Figure 8. Multiprocessor System for the Stan
ford/ JPL Hand. 

~W(lfcr.f()rever) ••• ~ 

~ ______________ ~ __________ .:: ___ ~>l_I_fcr---.JL-..-____ "'" high 

low2 

lI(lfcr) 
s(lfcr) : 

c(w2) : 

L...J.._L-_...I...-_-1-_L--L-__ ...I...-_-'-_+J. _____ IDIOWI 
sO = signal 

w() = wait 

b() = bkx:k 

cO = check 

_____________ > sleep 

____ ...... run 

.... _ ... _ ... > wake up 

rl, r2: read motor controller 

wi, w2: write motor ron troller 

Figure 9. Synchronization of low and high level 
control. 



Figure 9 shows a portion of the synchronization scheme. 
Processor "lowl" is the master processor and sets the 
timing for the other processors. There are five sepa
rate synchronization events: two reads and two writes of 
the motor controller, and filling the transfer buffer be
tween the high and low levels.· The high level writes de
sired tendon tensions into the transfer buffer and waits 
Synch_llait (transfer , for_ever)) until all low level 
processors have written measured motor positions into the 
buffer. The high level can now proceed with correct data, 
and the proper servo rate. 

Signals are used to protect the motor controller from 
accesses by other processors by forcing the other processors 
to "Synch_CheckO" and thus wait until the signal is cleared 
by Synch_llaitO on the signal issuing processor. 

Cosmos 
COSMOS is an experimental programming system de

signed to facilitate experiments in manipulator position and 
force control. The control algorithm used in COSMOS 
is based on the operational space method, described in 
[Khatib and Burdick 1986]. Parallelism can be extracted 
from this algorithm by conceptually dividing the computa
tions into two levels: 

1. A "high level" system which computes the configura
tion dependent dynamic models at a relatively lower 
rate. 

2. A "low level" servo system which computes the for
ward kinematics and servo equations at· a faster rate 
using sensor data and the dynamic data from the "high 
level." 
The low level system measures the manipulator position 

and end-effector forces, and then computes joint torques 
using' a series of vector and matrix operations. The vector 
and matrix elements used in these computations are de
pendent on the configuration of the manipulator, and are 
updated by the high level. The high level requires pro
cessed sensor data from the low level in order to perform 
its computations. Thus, time dependent data passes in 
both directions between the high and low level. A third 
level, the "programming level" interacts with the manipu
lator programmer, performing run time program execution, 
path planning, and error checking. The computations of 
each of these levels can be further divided among different 
processors to extract more parallelism, reducing latency in 
the overall computation. 

Because of the decomposition of the algorithm into two 
major levels, and the decomposition of each of these level 
into separate computational tasks (which are implemented 
on different processors) various levels of synchronization 
and data transfer occur in the COSMOS system. Within 
each level, very high speed symmetrical synchronization (on 
the order of a few microseconds) occurs between processors. 
The high level computations are asymmetrically synchro
nized with the low level in order to minimize the latency in 
the low level computations, which is the crucial latency for 
stability of the control algorithm. In the current COSMOS 
implementation on the NYMPH system, ~ low level kine-

166 

matics and servo rate of 200 Hz and a high level dynamics 
computation rate of 100 Hz has been achieved. 

While COSMOS uses one particular control algorithm, 
most advanced manipulator feedback control algorithms 
can be decomposed into fast and slow loops, with the min
imization of the latency in the fastest loop being critical 
to the success of the implementation. Thus, for optimal 
implementation of a manipulator control algorithm on a 
multiprocessor, tight coupling of the processors of the fast 
loop, and asymmetrical coupling of the fast loop with the 
slower loops is necessary to minimize latency. 

Debugging in a multiprocessor 
environment 

Software development can be divided broadly into two 
activities, design and debugging. These activities are re
lated in that greater complexity in design leads to more 
difficult debugging problems. The design of multiproces
sor software is made more complex by the need to take 
advantage of parallelism in the computation. Genuine con
currency and inability to guarantee the order of events can 
lead to errors from programmers who are used to working 
in a serial environment. Another source of bugs is that 
processors share memory, and so they are able to corrupt 
eachothers' memory. This creates situations in which the 
bug in the system is not necessarily in the software which 
fails, but rather in another piece of software which is irre
sponsible in its memory activities. The result is that new 
sources of program bugs exist in the multiprocessor soft
ware, in addition to the errors common in serial software. 

Debugging for real time robotic control applications is 
additionally complicated for two reasons. First, synchro
nization and timing within the system is critical down to 
the level of a few microseconds, and so debugging systems 
that use the single step method are useless, since the critical 
timing information is lost. Second, since the multiproces
sor is connected to robotic hardware, much of the input to 
the software algorithms is sensor data, which is difficult to 
predict or model in a software simulator. 

In the planning stages of this project it was recognized 
that there should be a convenient and fast (low overhead) 
monitoring system for keeping track of many processors si
multaneously. At the speeds involved in real time control, 
monitoring can only be done by hardware. The hardware 
solution is a meter, an LED, and an input switch perma
nently connected to each processor for diagnostic purposes. 

The meter has three primary and switchable functions: 
measuring bus utilization, showing the time spent waiting 
in synchronization, and showing the execution time for var
ious sections of the servo loops. The meters immediately 
show the case where processors lose synchronization, be
cause there will be significantly different waiting times if 
one processor misses a synchronization event. The meters 
are also useful for determining which processor amongst 
the various processors is responsible for "wedge" conditions. 
Because the meters indicate how much time each processor 
is idling, the applications programmer can use the meters 



in the early stages of software design to rebalance the com
putationalload among processors to minimize latency. An 
additional meter monitors activity on the global Multibus. 

The LED can be turned on and off under software con
trol in critical sections of code, and is useful for determining 
the exact sequencing of events. The software readable in
put switch is primarily useful not so much for debugging, 
but as an input for application programs in·which the pro
grammer is interested in switching between different servo 
algorithms in real time for comparison purposes. Individ
ual non-maskable interrupt switches are also provided for 
each processor. Figure 10 is a picture of the Nymph front 
panel. 

t , , , , 'f f" 

;l~ 
~4;1A,:::"WA~~ 

.0), 
'1IiIIII t;W;;,~iif{*,~1:*: 

, ij%U\ ,5+ I! 

Figure 10. The Nymph Front PaneL 

Another important debugging tool for the Nymph sys
tem has been the ability to make long traces of control 
system states without modifying servo code or introducing 
extra servo delay. This is made possible by having shared 
variables in globally accessible memory, and having extra 
processors available that can be dedicated to the trace task. 
To trace passed variables, for example the data passed from 
high to low level in the three finger hand control example, 
all that is needed is to do Synch.Jlai t (%fer) on the trace 
processor. This ensures that all data is captured and at the 
same time. 

A major source of difficulty in debugging in a real time 
tightly coupled multiprocessor environment is that there is 
no central control. There is no intelligent entity on the bus 
which, in an error situation, is capable of preventing other 
devices on the bus from corrupting available state infor
mation. This makes the development of a runtime system 
debugger in a multiprocessor extremely difficult. 

The central control which does exist is the bus, but this 
device is generally a slave to the processors in the system 
which it connects. It is not surprising that many of the more 
difficult debugging situations are characterized by a bus 
lock situation, in which some irate processor or processors 
monopolize the bus, making it impossible to examine state 
information in the memory of devices on the bus. 

167 

One plausible solution to the problem of central control 
would be to assign a single processor to debugging tasks, 
give it priority to control the bus, and somehow wake it up 
whenever an error situation occured. Because of the asym
metry involved, the processor would have to be dedicated 
to debugging and not a part of the control system, for the 
debugging system would be useless to debug code running 
on the debugging processor. The cost of a dedicated pro-' 
cessor would be small if it was an effective debugging tool, 
but its effectiveness would be limited by its ability to cap
ture and analyze the system state at the time the error was 
detected. 

Conclusions 
The Nymph system has proven to be a versatile and 

effective system for the implementation of real time control 
systems. Much of the success of Nymph can be attributed 
to the use of the 68k based Sun Workstation with exist
ing software, with which the implementation of the user 
interface was greatly simplified. 

The workstation provides a logical boundary for 
Nymph software. The 32k processors are dedicated to real 
time computations, and the Sun is dedicated to system 
functions. By isolating the system software on the worksta
tion, we have been able to avoid the complications imposed 
by system software in the real time system, allowing simple 
and efficient implementations. 

In a real time environment, throughput subordinates to 
latency as the key issue in optimal performance. The use of 
synchronized processes is a useful technique for minimizing 
latency in parallel computations. 

Debugging in a multiprocessor environment is a dif
ficult problem in which many opportunities for improve
ment exist. In Nymph we have attempted to provide max
imum availability of system resources through user inter
action windows, greatly improving the debugging environ
ment. Real time debugging information provided by the 
front panel and trace processors has also proven to be a 
useful tool. The main limitation in improving the debug
ging environment is that real time debugging capabilities 
require hardware support. 

Acknowledgements 
The authors wish to gratefully acknowledge Professor 

Thomas O. Binford for his guidance and support. We 
would also like to thank Oussama Khatib for his many 
contributions throughout the project. Special thanks to 
Lance Berc and Professor Keith Lantz for making avail
able their expertise on the V-System, and all of Stanford's 
Distributed Systems Group for making the V-System and 
VGTS available to us. This work was funded by DARPA 
Contract MDA903-86-K-0002, and by industrial sponsors 
under the Stanford Institute for Manufacturing and Au
tomation. BSA appears courtesy of the Hewlett Packard 
Faculty Development Program. 



· References 

J.Bradley Chen, Ronald S.Fearing, Brian S.R. Armstrong, 
and Joel W. Burdick, "NYMPH: A Multiprocessor for Ma
nipulation Applications," IEEE Conference on Robotic, 
and Automation, Apri11986, pp. 1731-1736. 

David R. Cheriton, "The V Kernel: A software base for 
distributed systems," IEEE Software, April 1984, pp. 19-
42. 

Ronald S. Fearing "Implementing a Force Strategy for Ob
ject Reorientation," IEEE Conference on Robotic, and Au
tomation, April 1986, pp. 96-102. 

Robert D. Gaglianello and Howard P. Katsefi', "A Dis
tributed Computing Environment for Robots," IEEE Con
ference on Robotic, and Automation, April 1986, pp. 1890-
1896. 

L.S. Haynes· and A.J. Wavering, "Real-Time ControlSys
tern Software: Some Problems and an Approach," IEEE 
Conference on Robotic~ and Automation, April 1986, pp. 
1705-1712. 

Oussama Khatib and Joel·W. Burdick, "Motion and Force 
Control of Robot Manipulators," IEEE. Conference on 
Robotic, and Automation, April 1986, pp. 1381-1386. 

James U. Korein, GeorgE.· Maier, Russell H. Taylor, 
and Lawrence F .. Durfee, "A Configurable System for Au
tomationProgramming and Control,". IEEE Conference on 
Robotic~ and Automation, April 1986, pp. 1871-1877. 

Keith A.Lantz and William Nowicki, "Structured Graphics 
for Distributed Systems," ACM Tran~actions of Graphics, 
3(1):23-51, Jan. 1984. 

David M. Siegel, Sundar Narasimhan, John M. Hollerbach, 
David J. Kriegman and George E. Gerpheide, ·"Computa
tional Architecture for the Utah/MIT Hand," IEEE Con
ference on Robotic, and Automation, March 1985, pp. 918-
924. 

168 



The. Meglos User Interface 

Robert D. Gaglianello 
Howard P. Katseff 

AT&T Bell Laboratories 
Holmdel, NJ 07733 

Abstract: Meglos provides a user-level programming 
environment for a system of interconnected processors 
and provides a convenient testbed for developing, test
ing, and running large-scale robotics applications. 
Meglos extends the program development and 'execution 
environment of the UNIX~ Operating System with sim
ple, powerful and efficient communications and syn
chronizationprimitives. Each processor has a priority
based preemptive scheduler, simplifying the program
ming of real-time appijcations. Meglos provides' a con
venient environment for writing and debugging applica
tions. that require multiple processors for their execution 
and allows several programmers to simultaneously run 
and debug their applications. 

I. Introduction 

As robotics applications exceed the capabilities of com
puters traditionally used in robotics, it becomes neces
sary to investigate alternative types of computing sys
tems. An attractive candidate for such a system is one 
consisting of many' interconnected microprocessor-based 
computers [1]. In addition to providing additional com
putational power through parallelism, a multiprocessor 
system exhibits many useful characteristics such as low 
cost, modular growth, and increased reliability through 
replication. To achieve these benefits, the cost of com
munications must be low; small enough so that the cOm
munications cost does not exceed the time savings 
obtained by parallel execution on the different proces
sors. Furthermore, if time-dependent operations are to 
depend on communications between processors, then 
there must be. a guaranteed maximum latency for inter
processor communications. 

This paper describes the programming environment pro
vided by Meglos [2] [3], a multiprocessor system that is 
well suited to robotics applications. The system consists 
of up to twelve processors using Motorola 68000 based 
Multibus computer systems. Each processor is connected 
to the SlNET[4] [5], a high throughput (80 Mbitlsec), low 
latency, message-oriented interconnect. The processors 
communicate by sending messages-no shared memory 
or other means of communications is provided. A DEC 
VAX computer running the UNIX operating system 
serves as a host processor for the system. Programsrun
ning on Meglos are controlled from the UNIX System, 
which provides terminal and file system access for these 
programs. 

CH2345-7/86/0000/0169$01.00 © 1986 IEEE 
169 

The satellite processors are built around the Pacific
Microsystems PM-68K single-board computer [6]. This 
board contains. a Motorola 68000 processor clocked at 10 
:MHz along. with 256 kbytes of memory that is accessed 
with no processor wait-states. Each PM-68K is con
nected to a separate Multibus backplane. In addition to 
the single board computer, each backplane contains one 
or' two additional boards with 512 kbytes of memory, a 
Sky Fast Floating Point Processor board [7], and an inter
face board that connects the processor to the SlNET 
interconnect. The· Multibus may also contain other 
boards that interface to devices such as robot arm con
trollers, sensor interfaces, or frame~grabbers. 

The addition of the Sky floating point boards to each 
processor is a requirement for robotics applications .. 
Without it, all floating point calculations must be done 
in software. The speed of. performing floating point cal
culations in software is. so slow as to be almost useless 
for time critical computations such as robot arm 
kinematic solutions. With a Sky board, the floating 
point performance of a Motorola 68000 is 20 . times 
better than with software floating. point and for many 
applications, is 50% that of a VAX 111780 with a float
ing point accelerator [8]. 

The initial design and implementation of Meglos was 
influenced by our sister Robotics Research Department. 
They were interested in several projects that were 
beyond the capabilities of a single 68000-based computer 
system and realized that a multiprocessor system based 
on the S/NET interconnect would be well suited to robot
ics applications with real-time requirements because the 
SlNET hardware guarantees that data is always transmit
ted within a specified time interval. 

Because of their interest, many of the features of Meglos 
are designed to simplify the programming of robotics 
applications. Its interprocess 'communications mechan
ism' is well suited for use in real-time applications 
beCause it has predictable and small latencies. . This 
mechanism is based on communications paths called 
channels that permit two programs to communicate' via 
message passing. Each channel is independently flow
controlled, so that a program may set up multiple chan~ 
nels to communicate simultaneously with many other 
programs~ Channels may be set up between two pro
grams running on the single-board computers, or 
between a program on an attached processor and a pro-



gram running on the UNIX System. 

Each of the attached processors runs the Meglos kernel, 
a real-time multitasking executive that oversees each 
processor's local resources. The kernel manages the 
allocation of processing cycles and communications 
bandwidth for programs running on the processor. For 
real-time response, there is a priority-based preemptive 
scheduler and an efficient mechanism for switching 
between processes. User programs may specify interrupt 
service routines, change the processor interrupt priority 
level, and directly access processor I/O space. Meglos 
provides a mechanism that integrates the scheduler with 
device interrupts and user-written device handlers. This 
allows users to customize the attached processors to con
trol a variety of devices such as robot arms and video 
image processors. 

The Meglos operating system allows several independent 
applications to run at the. same time. One of our testbed 
systems has several processors connected to robot arms 
and other processors attached to cameras and image pro
cessors. Since Meglos makes. it easy to write programs 
without embedded physical processor numbers, the 
testbed system may be shared by several researchers, 
each using some of the robotics equipment, without hav
ing to reserve the use of specific processors. 

Since most . of our users are already familiar with the 
UNIX system, we chose to design the Meglos program
ming environment as an extension of the UNIX environ
ment. Since the single-board computers do not have 
disks, terminals or other standard peripherals, a satellite 
processing scheme is used: each time a program issues a 
UNIX system· call, the call is passed to the UNIX System 
for ex~tion. On completion of the system call,. the 
results are sent back to the requesting program. This 
allows Meglos programs to access all files and other 
facilities on the host UNIX system in the same way as 
programs running on UNIX do. 

D. An interesting application 

An interesting robotics application that has been imple
mented on Meglos is a robot teaching system, MIMIC, 
in which a robot arm follows and mimics an operator's 
hand movements in real-time[91. We refer to this appli
cation throughout the paper to illustrate how an applica
tion uses· various facilities proVided by Meglos. The 
application was motivated by the desire to overcome 
some of the limitations of teach boxes currently available 
for teaching robots a desired task. Conventional teach 
boxes can only teach points along a desired path. This 
can be difficult to convert into a trajectory. Another 
limitation is their inability to allow control of all joints 
simultaneously. 

The operator moves a flat circuit board on which are 
mounted five LEOs in front of a camera. The three
dimensional position and orientation of the board are 
determined from the camera images and the actual 
motion is computed. The board's motion is converted 

170 

into robot motion, by assuming a similar board is 
attached to the robot's gripper, as shown in Figure 1. 
The robot arm and gripper then reproduce or mimic this 
motion. All the calculations take place in real-time, i.e., 
as the operator moves the board around, the robot arm 
across the room performs the same movement with no 
noticeable delay. 

Figure 1. Robot holding board. 

The application is broken into three modules, each of 
which runs on a separate processor. See Figure 2. The 
first module is a data. acquisition system that processes 
data from a solid state camera that captures a frame 
each 17 msec. The module determines the image coordi
nates of each LED and sends them across a channel to 
the next module. Module two determines the position of 
the board in three space, calculates the board's motion, 
computes the angles through which the arm and gripper 
should move, and sends them to module three. This cal
culation requires 15 msecs. The third module, the robot 
controller, moves the arm and gripper in the requested 
fashion. 

This application naturally breaks up into several modules 
executing on separate processors: two device handling 
modules and a central module that communicates with 
the others to coordinate their work. An advantage of 
partitioning the problem in this manner is that general 
purpose device handling routines can be designed for 
reuse by many applications. New applications that wish 
to track LEOs or control the robot need only understand 
the format for data sent to and from the device routines 
and need not concern themselves with the detail of han
dling the devices. 

Like other robotics applications, MIMIC requires the use 
of customized hardware for its implementation. The 
data· acquisition processor uses a commercially available 



video 
input 

process 

robot 
control 
process 

Figure 2. Block diagram of teaching system. 

frame grabber and image processing system. The robot 
controller processor uses an in-house interface. Both 
connect directly to the Multibus. Building Meglos 
around an industry standard bus and allowing user
written interrupt service routines allows users the flexi
bility of customized processors. When a new device is to 
be attached, the kernel does not require being recom
piled with a driver for the new device. This is another 
feature of Meglos that makes it useful for robotics appli
cations. 

m. Programmer interface 

Like other message-based multiprocessor systems (101, 

applications are coded in a sequential programming 
language extended by primitives that provide communi
cations and synchronization. An application typically 
consists of programs running on many processors that 
communicate amongst themselves to cooperatively per
form the application. Users run and debug programs on 
the attached processors from terminals connected to the 
UNIX host. Programming is simplified because the 
entire "edit-compile-run" debugging cycle can be per-
formed from -a single terminal. -

For example, to run a program that has previously been 
compiled into a file named mimic, the command: 

tx mimic 1020 
is issued from the host UNIX system. It causes the file 
mimic to be downloaded to one of the processors, the 
arguments 10 20 to be passed to the program, and starts 
the program running on the single-board computer. If 
the running program executes a UNIX system call, the 
kernel on its processor passes the call to thetx program 
and tx actually executes the call. For instance, if the 
program issues a write to its standard output, the tx 
program responds by writing the data to its standard 

171 

output. This exact emulation of the UNIX environment 
allows programs running under Meglos to make use of 
input and output redirection, pipes, and the other 
features of the UNIX System that contribute to its effec
tiveness as a p~~~am development enVironment [111 •. 

For applications that make use of custom hardware such 
as robot arms, it is necessary that the program runs on a 
processor with the proper hardware. For example, the 
command: 

tx3 mimic 10 20 
causes the program to be run on processor number 3. A 
way to invoke an application that consists of many pro- . 
grams is to create a UNIX shell script[lll that starts each 
of the programs in the background with a separate tx 
command. 

As an example of how these primitives are used, we 
show how MIMIC is run on one of our testbed Meglos 
systems. The data acquisition portion of MIMIC is com
piled into the file trakleds and runs on processor 2, the 
processor with a camera, frame buffer and image proces
sor. The robot controller, mimlcarm runs on processor 5, 
the processor with the robot interface, and mimic, the 
program that does the calculations can run on any pro
cessor. 

Processors are made available for use by Meglos pro
grams with the txadd command and removed with 
txdrop. One typically drops a processor before powering 
it off, say to change a board in its Multibus. Before 
running MIMIC, the command 

txadd -e2 S 
could be given. This causes processors 2 and 5 to be 
made available in the exclusive mode, indicating that no 
other users may run programs on the processors. 

After the processors have been added, MIMIC may be 
started. A shell script that could be written to run 
MIMIC is as follows: 

tx2 trakleds vision & 
tx5 mlmlcarm 10.3 & 
tx mimic vision & 

This causes the trakleds and mlmlcarm programs to be 
started on the appropriate processors and mimic to be run 
on any processor. The mlmicarm program requires two 
input parameters for setting internal constants within the 
robot controller. They are passed on the command line 
invokitig the program. The "&" is part of the shell syn
tax that says to run the program in the background, con
currently with the other programs in the script. 

The txstat command is used to display a list of available 
processors and what is running on each processor. Fig
ure 3 shows the output of a txstat command obtained 
while MIMIC is running. 

It indicates that user rdg is running the three programs 
comprising MIMIC on processors 1, 2, and 5 and that 
processors 3 and 4 are available for use. Other items 
displayed are the total memory on the processor; the 
memory currently available and the UNIX process id, 



MACHINE MEMSIZE MEMFREE USER PIO MEMSIZE PRIORITY PROGRAM 
1 1152K 1056K 

rdg 3733 96K 128 mimic 
2 1152K 1056K (exclusive use: rdg) 

rdg 3731 96K 128 trakleds 
3 1152K 1152K 
4 1152K 1152K 
5 1152K 1056K (exclusive use: rdg) 

rdg 3732 96K 128 mimlcarm 

Figure 3. txstat output while MIMIC is running. 

memory usage and Meglos execution priority of each 
program. 

IV. Channels 

The communications requirements for multiprocessor 
robotics applications differ from other types of distri
buted ~s!ems, . such as networks. of workstations, in 
several fundamental ways, including requirements for 
communications performance, naming mechanisms, 
access control, and fault recovery. 

Workstations typically use a client-server model of com
putation in which a processor (or groups of processors) 
offer some service, such as file system access, to the 
other workstations in a system. In contrast, the pro
grams of a robotics application are typically peers and 
the relationship of client/server or master/slave cannot 
conveniently be assigned to the programs. This suggests 
that the Meglos communications mechanisms should be 
symmetric both in methods for establishing communica
tions and for sending messages between processors. 

In Meglos, programs establish communications channels 
between each other before they communicate and each 
channel connects only two programs. Channels provide 
for the transmission of data messages from the address 
space of one program to the address space of another 
and provide synchronization between readers and writ
ers. 

Communications via channels is independent of where 
the two programs are executing. They may be on the 
same . or on different single-board computers or on the 
host UNIX System. It is this feature of channels that 
allows several independent applications to run on Meglos 
at the same time. To establish a channel between two 
programs, both must first agree on a name for the chan
nel. The two programs then issue a copen system call. 
The channel name is passed to copen and it returns a 
channel descriptor for that channel. If a program 
attempts to read or write a channel before a second pro
gram does a copen for the channel, the read or write 
blocks until the other program does its copen and the 
channel is set up. The first read or write call may also 
return an error if a problem occurs while opening the 
channel. Note that no indication of channel direction is 
passed to copen. This is because channels are bidirec
tional and thus can always be either read or written by 
the program. 

172 

The performance of channels is sufficient to meet the 
demanding real-time performance requirements of robot
ics applications, yet they still provide transparent and 
automatic recovery from faults that are likely to occur 
while a program is running such as receiver buffer over
flow or- transient cominunications errors. Channels pro
vide a good match with the communications patterns of 
robotics applications because such applications can often 
be structured as a set of programs whose communica
tions· topology is either fixed or changes slowly over 
time. 

With channels, the operating system provides flow con
trol that allows a program that is accepting input from 
more than one channel to read input from the channels 
in whatever order is most convenient for the program. 
Communications mechanisms without independent flow 
control do not allow a program to chose which channel 
data is to be received from. Instead, each time a pro
gram reads data, it gets whatever message has next 
arrived on any of its channels, so that a program may be 
flooded with messages that it is not ready to deal with. 
We did not use a more general scheme, such as ports 
that allow multiple readers and writers, because~he 
protocols for flow-control and for the detection and 
recovery from transient communications failures can be 
implemented more efficiently when the reader and writ
ers of messages are known in advance[12]. 

Programs send messages on a channel by issuing a 
wri te call. write requires three arguments: a channel 
descriptor (obtained from a copen call), a pointer to the 
message to be sent, and the length of the message, in 
bytes. When the write returns, the sending program is 
assured that the reader has received the message with no 
errors. 

To accept data from a channel, a program issues a read 
call. Read requires three arguments: the channel 
descriptor, a pointer to a local buffer, and the size of the 
buffer, in bytes. If a write has already been issued by 
the program at the other end of the channel, then the 
message sent on the channel is placed into the local 
buffer and the read call returns. If a write has not 
been issued, then the read blocks· waiting for one. 
When the read call completes, it returns the length of 
the message that was placed in the buffer. 

Programs sometimes need to coordinate data originating 



from several channels. A mechanism provided for such 
programs is a multiplexed input primitive. readn, to 
wlifch an array oTCliannJOesCiiptorSls passea. Wlien a 
message arrives on anyone of these channels, it is 
placed into the buffer specified in the readn call and 
the channel descriptor for that channel is returned to the 
calling program. If input is simultaneously available on 
more that one channel then the channel number that 
occurs first in the array of descriptors is returned. By 
using this mechanism, a program can implement either 
prioritized or round-robin service for input channels. 
Readn provides multiplexing ca~bilities that are similar 
to those of the 4.2BSD select call[13]. 

To close a channel, a program issues a close call. 
After a program closes its end of a channel, any 
attempts to read or write on that channel return an 
error. After reading the last data sent before the close, 
reads by the program at the other end of the channel 
return an end-of-file indication. Similarly, writes to a 
channel that is closed indicate end-of-file. 

In a message-based system, two measures of communica
. tions performance" latency and throughput, provide 
programmers some idea of how their application would 
perform, and for robotics applications with real-time 
requirements, indicate whether they can be implemented 
at all. Latency is defined as the elapsed time between 
when a message is sent and when the sending processor 
is notified that the message is received by the destination 
processor. Throughput is defined as the number of bytes 
one prE-.81'am can send to another. in one second. 
Guaranteed low latencies for communications between 
user programs are required to satisfy the real-time 
requirements of robotics applications and knowing the 
throughput of a system is useful to determine perfor
mance when sending large amounts of data between pro
gram. 

We measured the performance of the system with no 
other activity on the interconnect. It takes only 750 
JLsec to send a 2 byte message and for a 1000 byte mes
sage the latency is only 3.3 msec. In the two byte case, 
the actual time the message spent going across the bus is 
only 2 JLsec. For a 1024 byte message, the time spent 
on the bus is only 100JLsec out of the total time of 3.3 
msec. This data shows that over 95% of the cost of 
communications can be attributed to the Meglos software 
and less than 5% to th~ hardware. This demonstrates 
why it is' necessary to evaluate Performance at the user 
level to obtain meaningful results. 

Because writes do not return until an acknowledge
ment is received from the remote end, their times 
include all overhead for communication protocols and 
context switching. The latency for access to the SINET 
depends on the number of other processors already wait
ing to send a message and the length of the messages 
that they send. Because the SINET interconnect provides 
first-come first-served access to its bus, it provides a 
guaranteed maximum response time. In the extreme 

173 

worst case, when each other processOr is sending a long 
(1000 byte) message, the maximum hardware latency is 
4.4 msec. So,. the worst case transmission time for a 
short message is 5.2 msec and a for a long message is 
7.7 msec. 

The second measure, throughput, is obtained by dividing 
the number of bytes in a message by the latency for that 
size message. For messages longer than 1000 bytes, the 
throughput exceeds 300 kbyteslsec. Even at such high 
rates, only 3% of the SINET's availahlp. h~nc1w1A"1.. ~~ 

used. Thus, the siNET is capable of supporting lip to 
thirty pairs of processors, communicating at their max
imum rates, before the SlNET's bandwidth is used up. 

When comparing the measurements reported here with 
the performance of other systems, one should be aware 
that some system designers only provide speed measure
ments of the hardware interconnect or measurements 
made at the kernel level. Such measurements usually 
indicate significantly better performance than can actu
ally be obtained by user programs and are not useful for 
determining how well an application would run on the 
system. All our measurements were made between user 
programs and were done with a high-precision timer 
located on the individual processor boards. 

The txstat command has an option for displaying the 
status of all the channels currently in use. For the 
example, the output from txstat with the channel infor
mation displayed is shown in Figure 4. 

The figure shows the five channels used by MIMIC. A 
channel can be in anyone of three states OPENING, 
OPEN, and CLOSING. The first line indicates that the 
channel vision is OPEN and connects trakleds executing 
on machine 2 to mimic executing on machine 1. This 
channel is used to transmit the LED image coordinates 
to mimic so it can determine the motion of the circuit 
board. The channel mlmic_update_message is OPEN and 
connects mimic to mlmicarm. This channel is used 
bidirectionally, to send joint rotations to mlmlcarm and 
to send the current robot position back to mimic. The 
channel mimic_clock_message is interesting in that it con
nects the mimicarm executing on machine 5 to itself. 
The use of this channel will be discussed in the forth
coming section on subprocesses. The last channel is 
OPENING because only one program has issued a copen 
for the channel. These channels are used to change 
internal parameters of the robot controller from a termi
nal. 

V. Devices 

Since each of the single board computer systems has its 
own Multibus cage, specialized devices such as robot 
arms and sensors may be connected to the Multibus and 
be used by the processor. Meglos allows programs 

running on a processor to use these devices and respond 
to their interrupts. All Meglos programs run with the 
processor in user mode. Most other operating systems 
require that programs that control devices to run in 



MACHINE MEMSIZE MEMFREE USER PIO MEMSIZE PRIORITY PROGRAM 
1 1152K 1056K 

2 1152K 1056K 
rdg 3733 

(exclusive use: rdg) 
rdg 3731 

96K 128 mimic 

96K 128 trakleds 
3 1152K 1152K 
4 1152K 1152K 
5 1152K . 1056K (exclusive use: rdg) 

rdg 3732 96K 128 mimicarm 

MACHNO PIO LCHNO STATE MACHNO PIO LCHNO CHANNEL-NAME 
1 3733 2 OPEN 2 3731 2 vision 
5 3732 2 OPEN 1 3731 2 mimic_update_message 
5 3732 4 OPEN 5 3732 5 mimic_clock_message 
5 3732 7 OPENING mlmicarmJnfo_external 

Figure 4. txstat output indicating channel usage. 

supervisor mode. This is potenthllly dangerous because 
a program in supervisor mode can overwrite the kernel 
or other programs running on a processor. 

Every program running on Meglos may access Multibus 
I/O space. Programs access I/O registers of devices on 
the Multibus by reading or writing the address that 
corresponds to the register. Meglos allows programs to 
respond to device interrupts by calling a C language sub
routine in the user's address space when an interrupt 
occurs. The name of the subroutine to call and the 
interrupt number are specified in the onintrpt call. 
Onintrpt also requires a user-written subroutine that 
contains code to' disable the device. Meglos calls this 
subroutine when the program terminates either normally, 
or due to an exception such as a bus error. For applica
tions using devices such as robot arms that can cause 
physical damage without proper program control,such a 
routine is required to stop the device when the program 
terminates abnormally because of a programming error. 

There are certain limitations placed on interrupt service 
routines because they are not schedulable like sub
processes. This makes it impossible for an interrupt ser
vice routine to read or write on a channel or perform 
any UNIX system calls. A typical interrupt service rou
tine performs the function needed by the interrupting 
device and then starts up a subprocess to handle any 
communications that may be required. 

Programs that access hardware devices sometimes need a 
mechanism to prevent the interrupt service routine 
(specified in onintrpt) from executing during some 
sections of code. A program may delay the servicing of 
a hardware. interrupt by raising the processor interrupt 
priority with one of the spI calls. The call spIn sets 
the interrupt priority level to n. It is the programmer's 
responsibility to return to priority level 0 with the spIO 
call at the end of the critical section of code. By 
default, interrupt service routines run at the hardware 
priority level of the interrupting device. 

Mimlcarm, the robot controller used by MIMIC, requires 

174 

that joint .an~le updates oc.cur at fixed .. intervals of -28 
Insecs. The mterface board generates interrupts at this 
rate from the robot controller's internal 28 msec clock. 
This interrupt is tied to one of the Multibus's eight inter
rupt lines and the onintrpt call binds mlmlcarm's ser
vice routine to this interrupt. This routine need only 
reset the interrupt and resume the mimlcarm update sub
process. This will be discussed in more detail in the 
next section. 

Like any other device, Meglos allows programs to 
directly access the device registers for the SlNET inter
connect. This allows programmers and language 
designers to experiment with communications primitives 
other than those provided directly by Meglos. For 
instance, the communications operations of the Linda 
language[14] and a queue-based communications scheme 
for the CEMU circuit simulator [15] are implemented in 
this fashion. Programs performing their own communi
cations are required to send messages with a header that 
allows the kernel to distinguish these messages from 
those sent on channels. A variant of the onintrpt call 
is used to specify a handler to be called when these mes
sages arrive at a processor. Though this general com-

. munications facility is available, all robotics applications 
implemented to date have found the channel mechanism 
to be sufficient for their needs. 

The single board computers include a timer that can be 
set to interrupt at fixed intervals. The maketimer call 
makes use of this timer to call a C routine at a specified 
time interval. The timer interrupts at interrupt priority 
level 6 and the specified C routine runs at this priority 
level. 

VI. Subprocesses 

The portions of robotics applications that control devices 
often have strict real-time requirements. To simplify the 
design of such programs, Meglos allows a program to be 
subdivided into subprocesses with user-specified execu
tion priorities. Subprocesses are a part of a user's pro
cess that may execute asynchronously with the rest of 



that process. Each subprocess is independently schedul
able; the Meglos scheduler knows and understands th~t a 
process can contain more than one thread of execution. 
This can be viewed as a form of multitasking within a 
process. All subprocesses within a given process share 
the same address space and each. subprocess has its own 

stack for storing the machine state· information and its 
local variables. 

Meglos includes a preemptive scheduler that allows exe
cution priorities to be specified for each subprocess of a 
process. Since high priority subprocesses are always run 
in preference to those with lower priorities, strict real
time response may be assured by coding the portion of 
an application with real-time requirements as a high 
priority subprocess. The scheduler is referred to as 
preemptive because when a higher priority process 
becomes runnable (say, as a result of its input or output 
completing) while a lower priority process is running, 
the higher priority process preempts the execution of the 
lower priority process. . The lower priority process will 
be restarted when the higher priority one terminates, 
blocks waiting for input or output to complete, or by 
issuing a suspend call or a P operation on a sema
phore, Meglos does not provide time slicing between 
processes of the same priority, so that a subprocess that 
computes forever would prevent other subprocesses from 
executing. 

Each process in Meglos consists of one or more sub~ 
processes. All subprocesses of a process execute in the 
same address space, so that global variables are shared 
between subprocesses, Each subprocess has its own local 
variable stack. A process initially consists of a single 
subprocess and additional subprocesses may be created 
with the creat_sbp call. The name of a C subroutine 
that contains the code for this subprocess as well as the 
arguments describing the environment for the subprocess 
are specified in this call. Crea t_ sbp returns a subpro
cess number that is used to refer to the subprocess that 
was created. A process can temporarily stop its own 
execution by calling suspend and can restart another 
suspended subprocess by calling resume with the 
number of the subprocess that is to be resumed. 

A subprocess is terminated when its procedure returns or 
can be terminated by another subprocess with 
kill_sbp. The main subprocess (Le., the first sub
process of a process with the procedure name of main) 
should not return and no subprocess should call exit 
while other subprocesses are running. If they do, all 
subprocesses of the process are immediately terminated. 
A subprocess that modifies a data structure shared 
among many subprocesses may have to prevent the other 
subprocesses from accessing that data structure while it 
is being modified. Like many other systems, Meglos 
provides semaphores [16] to allow programs to implement 
such controlled access. 

For applications that consist of many subprocesses or 
processes on the same processor, it is important that the 

175 

overhead incurred by Meglos for switching between tasks 
is small. The time for switching between two sub
processes within the same process is 200 JLsec and the 
time for switching between two different processes is 250 
JLsec.The interrupt response time, the time that elapses 
between when an interrupt occurs and the user routine 
that services that interrupt starts to run, was measured at 
50 JLsec. 

Two of the programs that are part of MIMIC, trakleds 
and mimic each consist of a single subprocess. The robot 
controller program, mlmlcarm, consists of three sub-· 
processes and an interrupt service routine. One subpro
cess is used to provide synchronization and the second 
actually controls the robot arm. The third subprocess 
uses the mlmlcarmJnfo_external channel to connects to a 
program that reads from. the user's terminal to allow 
changes to the internal controller parameters while the 
application is running. See Figure 5. 

Every 28 msecs, the synchronization subprocess is 
resumed by the interrupt service routine and it sends a 
message across the mimic_clock_message channel and 
suspends itself awaiting another interrupt. The other 
subprocess is connected to both the mimic_clock_message 
channel and the mlmlc_update_message channel., Since 
messages arrive asynchronously on both channels, it uses 
readn to accept data from either channel. 

A typical sequence of events is as follows: A joint angle 
update message arrives from mimic on the 
mlmic_update_message channel. The subprocess stores 
the new joint angle rotation values, reads the current, 
positions of each joint from the robot controller and 
sends these values back to mimic across 
mlmic_update_message. It then blocks on the readn 
awaiting either another update message or a synchroniz
ing message. When a synchronizing message arri~e~ the 
subprocess passes the joint angle rotation values it saved 
previously to the robot controller and again executes the 
readn. The system continues to function this way until 
the application is terminated by the operator. 

VU. Debugging 

The message-passing style of communications used in 
Meglos encourages programmers to break up their appli
cations into functionally distinct modules with well 
defined communications interfaces. This often allows 
each program of a robotics application, like the trakleds, 
mimic, and mlmlcarm programs, to be written and 
debugged as separate modules in isolation from each 
other. 

To help debug such programs, Meglos includes a sym
bolic debugger for C programs that allows programs to 
be run in an environment that can be monitored and 
controlled. Breakpoints can be set, either at a specified 
C statement, or at a machine instruction. Both C 
language variables and arbitrary memory locations may 
be displayed and modified. The debugger allows the 
programmer to access the program at both the C and 



(from mimic) 

. mimic_update_message 

interrupt service routine 
I 

I 

I 
I 

I 

I 
I 

/ ( semaphore) 

mimic_clock_message 

..... (device registers) 

~ 
robot arm 

Figure 5. Subprocesses of mimicarm. 

machine language levels and provides for easy transla
tion between the two. The debugger's user interface is 
identical to that of the sdb debugger[17] which is part of 
the UNIX System. 

If a program incurs an exception such as· a bus· error, 
Meglos aborts the program and produces a file on the 
host system with the contents of the program's memory 
and registers. The debugger is used to examine these 
images of aborted programs. It is also possible to abort 
a program at any time from the UNIX system, disable 
devices connected to that processor, and obtain a 
memory image by hitting' a key on the keyboard. This is 
crucial when debugging robotics applications because it 
allows the operator to stop a robot before it crashes, 
through a wall. 

When it is necessary to simultaneously debug programs 
running on many processors at the same time, the win
dowing . capabilities of a workstation' or a terminal like 
the Teletype 5620[18] may be used. Each program of the 
application can be run with the debugger in a separate 
window, so that interactions between programs may be 
viewed~ 

The convenience of having full access to the UNIX sys
tem. and good debugging facilities can be used by pro
grams that have real-time requirements. Programs incur 
no extra overhead for' accessing the host UNIX system 
except for the duration of. the system call. While debug
ging, programs run at their normal speed until they are 
stopped at a breakpoint. ~us, the interactive debugger 
can be used to test niost portions of real-time programs. 
For debugging time-critical sections of' code, one can 
send debugging output to a file. If that is still too slow, 

176 

debugging output can be written into memory and exam
ined at a later time. 

Far more sophisticated debugging tools that we provide 
would be useful in many situations. For example~ a 
common symptom of a program bug is for an application 
to deadlock with all of. the program of an application 
waiting for channel input. Examining. core dumps of the 
programs provides little help, because they do not. show 
how the processes got into the deadlocked state. A tool 
that should. help in such situations is one 'which monitors 
communications and retains the last several messages 
sent on each channel, allowing them to be viewed by the 
programmer. 

VITI. Conclusions 

We have illustrated the user interface provided by the., 
Meglos operating system. A real-time robot control 
application example was used to show some of the primi
tives and run-time information commands available to a 
user of the system. 

Several prototype Meglos systems have been built and 
some are used to support multiprocessor robotics applica.':
tions in our Robotics Research Department. The users' 
experiences demonstrate that Meglos is a good environ
ment for developing and running robotics applications. 
The close coupling of the host UNIX System with the 
single-board computers allows real-time programs to 
access all. the facilities provided by the UNIX System. 
The job of programming and testing an application is 
simplified by the availability of a source language .. 
debugger and by' convenient. access to the UNIX system. 
The .primitives provided by Meglos for communications 



.' between programs, and for multitasking within a proces
sor have-proven to be easy to use and to perform ade
quately for robotics applications. 

In the past, developers of robotics applications that 
require multiple processors have found it necessary to 
build specialized hardware and operating system 

software for each of their applications. We have shown 
that a single hardware and software system can be built 
to accommodate a wide range of applications, allowing 
robotics applications developers to concentrate their 
efforts on hardware and ,software designs specific to their 
applications. 

REFERENCES 

1. Klein, C. A., and Wahawisan, W., "Use of.a Mul
tiprocessorfor Control of a Robotics System," Int. J. 
Robotics Res. 1, 2, 1982, 45-59. 

2. Gaglianello, R. D. and Katseff,H. P., "Meglos: An 
Operating System for a Multiprocessor Environ
ment," Proceedings of the Fifth International Confer
ence on Distributed Computing Systems, Denver, May, 
1985, 35-42. 

3. Gaglianello, R. D. and Katseff, H. P., "A Distri
buted Computing Environment for Robotics,", 
Proceedings of the 1986 International Conference on 
Robotics and Automation, San Francisco, April, 1986, 
1890-1896. 

4. Ahuja, S. R., "SINET: A High Speed Interconnect 
for Multiple Computers," IEEE J on Selected Areas in 
Communications, SAC-I, 5, November, 1983. 

5. London, T. B., Ahuja, S. R., and Katseff, H. P., 
"Performance of an Interconnected Microprocessor 
System Designed for Fast User-level Communica
tions," IFIP WG 10.3 'Workshop on Hardware Sup
ported Implementation of Concurrent Languages in 
Distributed Systems, University of Bristol, U. K., 
March, 1984, 125-134. 

6. Pacific Microcomputers Inc., PM68K User's Manual, 
San Diego, California, 1982. 

7. SKY Computers Inc., Fast Floating Point Processor 
Integration Manual, DOC #SE-IM-84-02.0, Lowell, 
Massachusetts, 1984. 

8. Jarvis, J. F., Private communication. 

]77 

9. Ganapathy, S., "Teaching Robots by .Hand Move
ments," in preparation. 

10. Seitz, C. L., "The Cosmic Cube," Comni. ACM 28, 
1, January, 1985,22-33. 

11. Ritchie, D. M., and Thompson, K., "The UNIX 
Time-Sharing System," Bell Syst Tech J 57, 6, 2, 
July, 1978. 

12. Gaglianello, R. D. and Katseff, H. P., "Communica
tions in Meglos," Software Practice and Experience, 
to appear. 

13. Leffler, S. J., et.aI., "A 4.2BSD Interprocess Com
munication Primer," Unpublished Draft, University 
of California,Berkeley, California, 1983. 

14. Carriero, N., and Gerlernter, D., "The SlNet's Linda 
Kernel," Proceedings of the Tenth ACM Symposium on 
Operating Systems Principles, Orcas Island, Washing
ton, U.S.A., December, 1985, 54-85. 

15. Ackland, B. D., et. aI., "MOS Timing Simulation on 
a Message Based Multiprocessor," 1986 IEEE Inter
national Conference on Computer Design: VLSI in 
Computers and Processors, Port Chester, New York, 
October, 1986, to appear. 

16. Shaw, Alan C., The Logical Design of Operating Sys
tems, Prentice-Hall, Englewood Cliffs, NJ, 1974. 

17. Katseff, H. P., "Sdb: A Symbolic Debugger-Vers~ 
3.0," part of documentation for the UNIX 
Operating System. 

18. Pike, .R., "The Blit: A Multiplexed Graphics Termi
nal," .AT&T Bell" Laboratories Tech J 63, 8, 2, July, 
1984, 1607-1632. 



A Robot Force.and Motion Server 

Hong Zhang and Richard P. Paul 

Department of Computer and Information Science 
University of Pennsylvania 

Philadelphia, PA 19104 

ABSTRACT 

The design and implementation of a distributed robot 
manipulator controller based on a concurrent architecture is 
introduced in this paper. We consider the manipulator as a 
force and motion server (RFMS) to a robot system executing 
force and motion commands issued by the robot system coordi
nator. In the server, computations are distributed to a number 
of processors in order to minimize the time delay in responding 
to input requests. The "C" programming language is used for 
both system programming and the user interface. 

1. Introduction 

A robot manipulator might be considered to act as a force 
and motion server for a robot [1]. The robot, interpreting sen
sor information in terms of a task model and a task plan, issues 
requests· to the manipulator to exert forces or move objects. 
The motion of the manipulator is modified by sensor feedback. 

Sensors determine the state of a manipulation task in 
terms of their own coordinate frames. If this information is to 
be used to control the manipulator, it must be transformed into 
a common coordinate task frame where given constraints may 
be applied and information from various sensors integrated to 
form a best estimate of the task state. This information must in 
turn be transformed into the manipulator joint coordinates 
where control of the manipulator is exercised. The time delays 
involved in these transformations, the time from when a sensor 
observation is made until the time when the signal to the mani
pulator actuators is changed in response to the sensor 
observation, must not be of the same order of magnitude as the 
natural response time of the manipulator itself; otherwise, sys
tem instability will result It must be either much slower, such 
as in welding sensor feedback, or much faster, such as in force 
or contact feedback. We are interested in working in the latter 
domain to provide a manipulator controller in which the 

This work is partially supported. by National Science Foundation under 
Grand No. ECS-8411879 and by Intel Corporation. Any opinions. findings. 
conclusions or recommendations expressed in this publication are those of 
the authors and do not necessarily reflect the views of supporters. 

CH2345-7j86jOOOOj0178$01.00© 1986 IEEE 
]78 

response of the system is limited only by the manipulator itself 
and not by the control computer. 

In order to minimize the time delay between a change in 
some Cartesian coordinate frame and a response at the actuator 
level, we perform as many calculations concurrently as possi
ble. We do this by separating the kinematic and dynamic 
aspects of the computation. There is little point in utilizing a 
processor to perform manipulator joint control, another to per
form input/output, another to perform kinematic transforma
tions, and another to convert from accelerations to joint 
torques, as these processes must then be performed one after 
the other. This increases the rate at which the calculations may 
be performed but does nothing to minimize the processing time 
delay. In our design, we use one processor for each joint of the 
manipulator and perform as many operations concurrently as 
possible to reduce the computation time delay. In order to 
separate the kinematic and dynamic aspects of the task, we 
compute manipulator configuration dependent parameters at a 
rate related to change in manipulator configuration and then 
make use of these parameters in the control of the manipulator 
at the much higher control sample rate. For example, we com
pute the joint inertias as a kinematic process in background to 
simplify the conversion of joint accelerations to joint torques 
which must be performed at the control sample rate. This is to 
be contrasted to the Newton-Euler approach in which link 
accelerations are first computed recursively from the base out 
to the end effector and then torques are computed, once again 
recursively from the end effector back to the base, resulting in 
a pipelined process in which the rate of calculation may be 
increased but the time delay in performing the calculation is 
not reduced. Numerically, the worst case delay in the 
Newton-Euler approach corresponds to some 2000 arithmetic 
operations. 

We are also judicious in determining those calculations 
that we will perform exactly, those we will approximate, and 
those we will ignore. We do not calculate, or take into 
account, centripetal acceleration or Coriolis forces as these 
occur only at high speed, since we are primarily interested in 



the performance of the manipulator at the end of motions when 
the speed is low. In most cases where accurate path following 
at high speed is important these forces may be pre-calculated 
or simply learned. We make use of as much knowledge as 
possible; we do not try to learn the dynamics of the manipula
tor, as we have symbolic equations, but we do learn the mass 
of an object being carried. Finally we are interested in perfor
mance and not just in control formalism elegance. 

We have tried to use commercially available components 
as much as possible in our design. Intel 86/30 single board 

. computers are used to perform the bulk of the processing. 
Each 86/30 is provided with its own inpuUoutput interface to 
the joint in order to minimize time delays. Calculations are 
performed in floating point, since 16 bit integer does not have 

. sufficient precision for manipulator control and the resulting 
programs are virtually unreadable. We program in "C" to 
facilitate program understanding and modification. While we 
are interested in performance, we are also interested in cost and 
believe that the system we are developing is economically 
viable for industrial robot control. 

2. Background 

The control of a robot manipulator deals with the relation
ships among objects and between the manipulator and the 
objects. A robot manipulator task can be defined in terms of 
relationships in positions and orientations from one coordinator 
frame to the next These relationships may in tum be 
described with homogeneous transformations [4] where the 
operation of matrix multiplication corresponds to the composi
tion of coordinate frames. 

The robot manipulator must be able to position its end 
effector arbitrarily in its work space. The Cartesian position 
and orientation of the manipulator, commonly referred to as 

-T6, is obtained as the composition of transformations describ
ing each position in a task. Given a manipulator task as suc
cessive Cartesian positions, the control system of the robot 
manipulator must convert them to joint coordinates where a 
robot manipulator is actuated. The desired joint positions can 
then be used to determine joint errors to produce joint correc
tion torques. 

If force control is required, the joint torques or forces 
must be computed by a different method. This in general 
requires the computation of the Jacobian matrix and inverse 
Jacobian matrix corresponding to the current manipulator posi
tion. In control of a manipulator the dynamics of each joint are 
taken into account by computing the link gravity loading and 
the effective and coupling joint inertias. 

Feedback from sensors is achieved by modifying an 
appropriate coordinate frame in the composition of transforma
tions specifying T 6. The sensors run concurrently with the 

179 

manipulator on their own processors. The information com
municated is purely geometric. 

3. Classes of Processes 

The computations performed by the RFMS can be classi
fied into dynamic processes, kinematic processes, and static 
processes, based on their real time constraints. Dynamic 
processes must be performed at a rate considerably higher than 
the natural frequency response of the manipulator. A 
kinematic process is a function of the position of a manipula
tor; its rate of computation is dependent on the change of con
figuration. The execution of the kinematic process affects the 
control accuracy but not the stabilitY. A static process is time 
independent; failure to execute a static task delays the execu
tion of the task, as the manipulator will come to rest and wait 
for its completion. 

In control system of a robot manipulator, the dynamic 
processes control the joints. These processes are performed at 
a sufficiently high rate to provide for stable, noise-free control 
of the manipulator. This rate is of the order of 250 hertz for a 
manipulator of approximately one meter reach. As the control 
rate is reduced, the sophistication of the· control algorithm must 
be increased. 

The kinematic processes in a RFMS correspond to such 
tasks as computing the Jacobian matrices and link inertias. 
When the manipulator is at rest, or when performing fme 
motions these processes do not need to be computed at all. 
The static processes, very much like the ones in a time-sharing 
multi-user computer system, are related to house-keeping tasks 
such as user interface or file creation where there is virtually 
no time constraint. In a control system, various processes co
exist and priority of service is given in the order of dynamic, 
kinematic and static processes. 

4. Process Definition 

In general, the following processes must exist in a mani
ptilator control system: a set-point process for position control, 
a force control process for joint torque generation, and a super
visor process for system coordination, although implementa
tion details may vary from system to system and additional 
processes may be required. In our particular case, a communi-. 
cation process is also needed to communication to the robot 
coordinator. The tasks all these processes perform are speci
fied in the following sections. 

4.1. Set-point Process 

This process generates a set of desired joint positions or 
set-points every servo period. Neighboring set-points are thus 
separated in time by one sample period, At. A sequence of 
set-points make up a position trajectory. This trajectory must 



meet certain continuity conditions to assure the stability of the 
system. Different methods exist for such a process, but we use 
the algorithm for trajectory generation described in [2]. This 
method is based on the homogeneous transformation represen
tation of the relationships between coordinator frames and 
allows two fundamental modes of motion, Cartesian andjoint. 
The amount of computation in each sample period depends on 
the location of the trajectory and the mode of motion. The 

.'V~!st case occurs when. the traj~ctory is specified in Cartesian 
mode and a transition to another Cartesian motion segment 
needs to be computed. 

A position in the robot work space is defined by a posi
tion equation that, in its simplest form, equates the T 6 to 
another position as: 

T6 =P (1) 

In general more structure is needed, for example: 

ZT6 TooI=C PG (2) 

which means a tool is attached to the end of last link, the base 
of the manipulator is Z from the world coordinator frame, the 
grasp position G is defined with respect to a position P, which 
is again defined relative to a reference coordinate frame C. In 
general any of these transforms can be functions of time. 

Motion is defined not only by the end points but also by 
the manner in which it is achieved. One can specify such 
motion parameters as the segment time, velocity, mode of 
motion, etc. A mode structure, M, describes these parameters 
in detail. 

The set-point process computes the set-point in two 
stages. First it solves for T 6 from the current position equation 
Pi and possibly the next position equation Pi+l if transition is 
necessary. This requires matrix operations such as matrix 
inversion and multiplication. Obviously, the more complex the 
position equation, the more expensive this process is computa
tionally. Eq(3) functionally defmes this frrst stage: 

(3) 

The second stage of the set-point process is the inverse 
kinematics that solve for the joint positions from the T 6. 

When the manipulator is simple, this can be performed sym
bolically, i.e., closed-form solutions exist to express the joint 
positions as a function of the T6 • 

(4) 

Typically an iteration of this process requires between five to 
ten milliseconds on a VAX 111780 minicomputer. 

4.2. Force Control Process 

This is a dynamic process responsible for computing joint 
torques and then driving the joints. Given the desired joiI~t 
positions, ad, there are a number of methods of generating' 

180 

joint torques. A general form for torque at the ith joint is: 

'ti = D(a, a, a, Db Dij, Dijk) + F(fc, J) + R(ad, S, J) (5) 

where 

D dynamics compensation due to the gravity loading Db 
inertial acceleration Dij , and Coriolis and centripetal 
forces Dijk , 

F joint bias force due to the Cartesian bias force fe, and 

R the reaction torque due to joint errors da with the Carte
sian compliance specification S taken into consideration, 
where S is a 6x6 diagonal selection matrix with 1 's for 
constrained directions and 0' s for unconstrainted direc
tions. 

Eq (5) is based on [3] and reflects the general approach of 
all joint based force control methods such as the stiffness 
method and hybrid method. Note here that all the inp~t param
eters to Eq(5) are assumed to be available from the kinematic 
processes. This process generates joint torques in response to 
the joint position errors, to the compliance specification of the 
manipulator task, and to the requirement of dynamics compen
sation. In the case when there is no contact between the mani
pulator and the environment, the torques are simply generated 
from the joint position errors and dynamics compensation. 

4.3. Background Process 

Parameters such as the Jacobian matrix and its inverse 
and the dynamic constants in the dynamic equations are func
tions of the manipulator kinematics and are computed in a 
kinematic process in the background. 

4.4. Communication Process 

A process is provided to communicate between the force 
and motion server nd the robot coordinator. The robot coordi
nator is~ues messages to the RFMS and may request 

information such as current T 6. The messages sent by the 
coordinator describe the task model and defines the task plan 
in terms of the following data structures: transform definitions, 
position definitions, mode definitions, and action request. In 
addition, special messages also are defined to deal with situa
tions such as initialization and emergency. All the messages 
are handled by the communication process. 

In transform definition, one can define a constant 
transform or a variable transform that is dependent on external 
signals such as sensors. If the transform is variable, a redefini
tion by the coordinator would result in a corresponding rede
finition of its counterpart in the server. This mechanism 
enables a user to modify manipulator motions. A transform 
symbol table exists on the server and this communication pro
cess stores the transforms in this symbol table. 



In a message for a posltlon equation, there are two 
ordered lists of transforms corresponding to the le'ft and right 
hand sides defining a position in the robot work space. The 
transforms used must have been defined prior to the position 
definition and, therefore, they must exist already in the 
transform table of the server. Using the transform symbol 
table, we link the transform equation on the server into a ring 
structure for easy operation [ 4] and then enter it into the posi
tion symbol table. 

A mode structure specifies how each motion is to be 
made, with parameters such as segment time, acceleration 
time, velocity, compliance specifications, etc. One may define 
a number of modes in a program and associate motion seg
ments with modes. It may sometimes be desirable to execute a 
motion one way in the beginning of a task and then execute the 
same motion later in the task with another mode specification. 
The definition of mode.structures and their association with a 
motion make the programming of tasks simple and clear. 
When a mode message is received, the communication process 
stores it in a mode symbol table for later reference. 

Another type of messages, action requests, relies on the 
defined data structures in the first three categories to initiate 
actions for the manipulator. An action request contains two 
pointers: one to a destination position with the current position 
being the default initial position, and the second pointer to a 
mode structure specifying how the motion is to be made. Upon 
receipt of an action request, the communication process stores 
the request in an action queue. The two pointers in an action 
request are identifiers to the position table and mode table. 
The use of action queue guarantees program synchronization. 

s. Implementation 

The RFMS has been constructed using Intel single board 
computers (SBC) to control a Unimation PUMA 260 robot 
manipulator. The system is illustrated in Figure 1. It contains 
a number of processors including one for each joint, one for the 
gripper, one as the supervisor, one communicating with the 
robot coordinator, one as the math processor, and one data 
channel processor. In addition, special hardware has been 
designed for the low level joint interface. 

The system is tightly coupled by the Multibus system bus. 
The Multibus interface is a general purpose system bus struc
ture providing for communication between system com
ponents. Memory on one board can be accessed by another 
through the Multibus; eight interrupt signals can be used to 

direct actions. To minimize the bus contention, Multibus 
usage by boards other than the supervisor is kept at the 
minimum in the system. The RFMS does not use an operating 
system but is driven by interrupts and handshaking operations. 

181 

Figure 1. System Organization 

5.1. Ethernet Communication 

In this implementation the robot coordinator runs on a. 
VAX 111785 under Unix in a time-sharing environment. An 
Intel iSBC 186151 communication controller in the RFMS 
facilitates the communication between the robot coordinator 
and the RFMS through the Ethernet local network. It is 
through this means that different agents such as sensors and 
RFMS in the robot system exchange information to update the 
world model. The speed of this communication is at the mil
lisecond level, thus allowing the closing of a feedback loop. 
through the Ethernet. 

The communication between the coordinator and the 
RFMS takes place in the form of messages. The messages sent 
from the coordinator are first received by the communication 
controller, which stores the messages sequentially in a message 
list. Each entry of the message list contains a message identif
ier or index, a message type as described in Section 4.4, a flag 
for handshaking with the process reading the messages, and the 
content of the message. The communication controller 
appends the messages to the list to be processed by the supervi
sor. Depending upon the types of messages, this process can 
be either kinematic when handling sensor modifications or 
static when defining a task. 

5.2. Supervisor 

The supervisor runs on an Intel iSBC 86/30 with an 8087 
floating point co-processor. The iSBC 86/30 contains 128K of 
dual-port memory accessible to both the local CPU and any 
other SBC on the Multibus, nine levels of interrupt control, two 
programmable timers, and serial and parallel I/O interfaces. 
The 8087 numeric co-processor executes floating point instruc
tions at eight MHz and its instruction set provides for both 
arithmetic and trigonometric functions. The task of the 
supervisor is to maintain the global variables and· control the 
system timing. Two separate processes run in the supervisor, 



one that reads the messages from the communication controller 
in background and one that coordinates the set-point genera
tion in real time. 

The background process reads the messages stored in the 
iSBC 186151 and creates the internal data structures in terms of 
symbol tables and a motion queue as described in Section 4.4. 
The numeric values of the transformations elements are stored 
in the math processor memory where the matrix operations are 
performed. 

When a position equation is processed, the two transfor
mation lists representing the two sides of a position equation 
are used to create the ring structure, and a pointer to the struc
ture is stored in a position symbol table. A mode record is 
treated similarly in a mode symbol table. Finally, an action 
request is queued in the action queue after its two pointers to a 
position equation and to a mode record are located in the 
respective symbol tables. The memory organization is sum
merized in Figure 2. 

The real-time process on the supervisor initiates the com
putation of the next set-point upon a real-time clock interrupt 
from the programmed timer every sample period. The supervi
sor requests the math processor to compute the Cartesian set
point, i.e., the desired T 6, and then requests the data channel 
processor to communicate T 6 to the joint processors to com
pute the joint coordinates. The specific computation per
formed during each period depends upon the state of the mani
pulator or its trajectory. This process must finish before the 
next interrupt comes when another set-point must to be gen
erated. 

The most time-consuming computation in generating 
Cartesian set-point is the matrix multiplication required to 
compute T 6. The math processor performs this operation. The 
math· processor will eventually be replaced by a matrix multi
plier device [5]. In each sample period when the matrix multi
plications are needed, the supervisor simply generates a pointer 
list to those matrices to be multiplied, interrupts the math 

processor, and then continues with other operations. Upon 
completion of matrix multiplications, .the math process inter
rupts the supervisor. 

5.3. Joint Processors 

Each joint is equipped with an iSBC 86/30 and an 8087 
numeric processor. 64 kilobytes of its memory is configured 
global for interprocess communication. Joint processes run in 
parallel to control individual joints as described by Eq(4) and 
Eq(5). Working as slave processors to the supervisor, each of 
the joint processors computes its joint trajectory. The only pro
cess on a joint processor is real-time and interrupt driven. At 
the beginning of a sample period, it reads the current desired 
Cartesian position computed by the supervisor and solves for 
the joint position. Since the ith joint solution requires sines and 

182 

&sg1ImS9@mS9~ . 

Ethernet Controller 

Math Processor 

Figure 2. Memory Organization 

sosines of the prior i-I joints in general and this would cause 
considerable time delay if joints wait for solutions, we make 
use of the sines and cosines of joint variables computed in the 
last sample period so that all joints start computing simultane
ously. During a transition, however, a joint process computes 
the coefficients of the transition polynomial and obtains solu
tion by evaluating the polynomial. The state variable of the 
supervisor dictates the action of the joint processes. 

The force control process is executed next to compute 
joint torque as in Eq(5). Information such as the Jacobian 
matrix and dynamics equation coefficients are broadcast to the 
joints when they are updated by the kinematic processes while 
the information such as errors and accelerations of other joints 
is collected from and distributed back to the joints as required 
in every sample period, all by the supervisor. 

The low level interface to the joint is achieved through a 
specially designed hardware, iSBX multimodule board, 
attached to the standard SBX connector on each host 86/30. It 
provides the joint encoder interface and conversions between 
analog and digital signals. The board employs two digital to 
analog converters, two analog to digital converters, and an 
incremental encoder circuit. The fITSt DAC outputs motor 
current, while the second allows us to specify a force set point 
to the joint. The ADCs read back the joint motor current and 
joint velocity, respectively. The incremental encoder tracks the 
position of the joint by observing the waveforms generated by 
the joint encoder. At the end of each sample period, the com
puted torque is converted to an equivalent joint current value 
before it is sent to the amplifier circuits to drive the joint 
motors. 



5.4. Math Process 

The math process is based on a iSBC 286/12 with an 
80287 floating point co-processor. The iSBC 286/12 has 128k 
on board dual-port memory, a programmable interrupt con
troller, programmable timers, Multibus interface, and parallel 
and serial I/O interface, and the numeric co-processor 80287 
similar to 8087 in its function. The process performs dynamics 
and Jacobian updates in background and, when needed, is 
interrupted to perform matrix operations for the set-point 

process. 

5.5. Data Channel Processor 

A DMA board iSBC 589 is added to the system to speed 
up the data transfer operations. Because the supervisor and the 
joint processors exchange information frequently in their real
time processes, this device considerably reduces the time for 
global memory read/write. At the time of initialization, desti
nation and source addresses for different data transfers are 
stored in the parameter blocks of the DMA board. For each 
operation, the DMA simply needs to be written a wake-up byte 
and given the address of one of the parameter blocks. 

5.6. Packaging 

The system is housed in two connected iSBC 608 and 
iSBC 618 Cardcages with two iSBC 640 power supplies to 
provide a total of four double width and twelve single width 
SBC slots on the same Multibus for the system. 

5.7. Performance Evaluation 

The RFMS as described above has been evaluated for its 
real-time performance. Experiments have shown that the 
RFMS achieves a sufficiently high rate to update the Cartesian 
set-points while employing sophisticated control strategies for 
such applications as sensor-driven motions and force control. 
In order for the joint processes to evaluate joint set-points 
without waiting for the supervisor to fmish computing T6, th 
supervisor process pipelines its results to the joint processes, as 
is illustrated in Figure 3, where t represents the sampling 
period, joints represents one of joint processes, and kinematic 
represents the background process computed on the math pro
cessor. By overlapping the supervisor and joint processes, we 
can shorten the minimum sampling period to obtain a servo 
rate over 250 Hz without performing any joint set-point inter
polations. This servo rate is almost an order of magnitude 
improvement over the manipulator controllers that are being 
used today to control six degree of freedom manipulators. 

We have achieved a throughput of 4 Kbytes per second 
data transmission rate through the Ethernet between the coordi
nator on a VAX 111785 under normal working conditions and 
the RFMS. At this speed, we are able to send more than 100 
transformations per second from the coordinator to the RFMS, 

183 

as new observations are acquired by sensors, thus achieving 
real-time sensor feedback closed around the network. 

Supervisor 1----

Joints 

Kinematic 

t 3t 4t 5t 

Figure 3. Process Scheduling 

When homogeneous transformations are used to describe 
positions, the servo rate is limited by the complexity of the 
position equation associated with the current motion, since the 
more complex the position equation, the more matrix opera
tions are required, and the longer sampling period would result. 
To eliminate the dependency of the sampling period on the 
complexity of the position equation, we are exploring solutions 
such as using the matrix multiplier [5] or high speed floating 
point processor to perform the matrix operations. 

6. Discussion and Summary 

We have endeavored to design a robot manipulator con- . 
troller with sufficient computational bandwidth and precision 
so that the manipulator performance rather than the controller 
limits the perfonnance of the system. We have done this in an 
economical manner using off-the-shelf components as much as 
possible. All coding is in the "c" language to facilitate 

understanding and future modification of the system. 

The system provides for both position and force control 
implementing the hybrid force control system proposed by 
Craig and Raibert. The system is not based on a programming 
language but is specified in terms of network message formats. 
An Ethernet interface is provided so that the system may be 
directly interfaced with many other sensors and robot coordi
nator in a very simple manner, and that the motion can be con
trolled by sensors in real time. 

References 

[1] Paul, R.P., et, ai, "A Robust, Distributed Sensor and Ac
tuation Robot Control System", ISRR, France, October, 
1985 

[2] Paul, R.P., et, al "Robot Motion Trajectory Specification 
and Generation", ISRR Proceedings, Japan 1984 



[3] Zhang, H., et, ai, "Hybrid Control of a Robot Manipula
tor", IEEE Conference on Robotics and Automation, St. 
Louis, MO 1985 

[4] Paul, R.P., "Robot Manipulators: Mathematics, Program
ming; and Control", MIT Press 1981. 

[5] Nash, J.G., "A Systolic/Cellular Computer Architecture 
For Linear Algebraic Operations", IEEE International 
Conference on Robotics and Automation, St Louis, MO, 
March,1985 

184 



Software Engineering for Rule-based 

Systems 

Robert J.K. Jacob 
Judith N. Froscher 

Naval Research Laboratory 
Washington, D.C. 20375 

Abstract. Current- expert systems are typically difficult 
to change once they are built. The objective of the 
present study is to develop a design methodology, which 
will make a knowledge-based system easier to change, 
particularly by people other than its original developer. 
The basic approach for solving this problem is to divide 
the information in a knowledge base and attempt to 
reduce the amount of information' that each. single 
knowledge engineer must understand before he can 
make a change to the knowledge base. We thus divide 
the domain knowledge in an expert system into groups 
and then attempt to limit carefully and specify formally 
the flow of information between these groups, in order 
to localize the effects of typical changes within the 
groups. 

As the commercial promise for expert system tech
nology grows, the problem of ongoing maintenance and 
modification of knowledge . bases is becoming a 
significant concern. The designs of typical current 
knowledge-based systems are ad hoc, one of a kind, and 
difficult to maintain. The information in the knowledge 
base is interconnected in such a way that changing one 
part of the knowledge base may have unpredictable 
effects on other parts. 

This research attempts to develop a design metho
dology similar to those used in software engineering,l,2 
which will make a knowledge-based production system 
easier to change, particularly by people other than its 
original developer. We have chosen to concentrate on 
production systems because they are the most widely
used type of knowledge representation in expert sys
tems, particularly among those existing systems large 
enough and mature enough to have experienced the 
types of maintenance problems we hope to alleviate. In 
the future, we will attempt to extend the approach to 
suit other, newer knowledge representations, such as 
frames and semantic. nets, as large systems begin to be 
written using them. 

This paper describes the approach we are taking to 
build maintainability into production systems. It intro
duces a programming methodology for developing pro
duction systems. It discusses our study of structure and 
connectivity in already existing knowledge bases. It 
then presents algorithms we have devised for separating 

U.S. Government WorL Not protected by 
U.S. copyright. 

185 

the information in a knowledge base and results 
obtained with them. Finally, it discusses tools for sup
porting the methodology. 

Methodology 
The basic approach we have taken for building 

maintainability into an expert system is to divide the 
information in the knowledge base and attempt to 
reduce the amount of information that each single 
knowledge engineer must understand before he can 
make a change to the knowledge base. We thus divide 
the domain knowledge in an expert system into groups 
and then attempt to limit carefully and specify formally 
the flow of information between these groups, in order 
to localize the effects of typical changes within the 
groups. 

Production systems comprise extensive domain 
knowledge, expressed as if-then rules, and a relatively 
simple inference mechanism or rule interpreter. The 
interpreter tests the values of the. facts on the left-hand 

. side of a rule; if the test succeeds, new values for facts 
are set according to the right-hand side of the rule. In 
the present. approach, we divide these rules into 
separate groups. The guiding principle for grouping
two rules together is: If a change were. made to one rule, 
to what extent would- the other rule be affected'? In this 
study, a fact refers to that part of the data representa
tion that, if changed by one-rule, would affect another 
rule in some way; in a simple production system where 
the data are represented as sequences of attribute-value 
pairs, a fact corresponds to an attribute. The 
knowledge engineer building the system would group 
together rules that use or produce values for the same 
sets of facts. With this arrangement,' a fact in the 
knowledge base can be characterized either as being 
generated and used by rules entirely within a single rule 
group or else as spanning two or more· groups. The 
latter will prove critical to future changes to the 
knowledge base, since they are the "glue" that holds .the 
groups together. 

Whenever rules in one group use facts generated by 
rules in other groups, such facts will be specially 
flagged, so that the knowledge engineer will know that 
their: values may have been set outside this group. 
More importantly, those facts produced by one group 
and used by rules in other. groups must be flagged too. 



For each such fact, the programmer of the group that 
produces the fact makes an assertion, comprising a 
brief summary of the information represented by that 
fact. This assertion is the only information about that 
fact that should be relied upon by the programmers of 
other groups that use the fact. It is not a formal 
specification of the information represented by the fact, 
but rather an informal summary of what the fact 
should "mean" to outside users. 

Given this structure, a programmer who wants to 
make changes to the system would assume the responsi
bility of understanding thoroughly and preserving the 
correct workings of a single group of rules (but not the 
entire body of rules, as with conventional systems). He 
or she would be free to make changes to the rules in the 
group provided only that he preserves the validity ,of 
the assertions associated with any facts that are pro
duced by his group and used by other groups. Simi
larly, whenever he used a fact that was produced by 
another group, he would rely only on the assertion pro
vided for it by the programmer of the other group and 
not on any specific information about the fact that 
might be obtainable from examining the inner workings 
of the other group. 

Following our methodology, the developer would 
first divide the rules into groups. This can be done 
manually or automatically, as described below. One 
approach is to apply one of the automatic grouping 
algorithms to the initial prototype expert system and 
use the resulting grouping to guide the organization and 
development of the final production version. Then, a 
software tool will characterize each fact as inter-group 
or intra-group, and flag the ·former. The developer of a 
rule group that produces inter-group facts then provides 
an assertion describing each such fact. That descrip
tion is the only information about the fact that should 
be used in the development of any other groups con
taining rules that use the value of the fact. 

Thus, the set of rules will be divided into groups, 
the inter-group facts used and. produced by .each group 
will be identified, and descriptions will be entered for 
those produced by each group. Figure 1 shows the 
language used to provide this information, using an 
excerpt from a simple example knowledge base.5 The 
figure illustrates the syntax for describing rule groups; a 
larger system would look exactly the same, except that 
it would list more r,ules, facts, and groups. 

To modify a group, the maintenance programmer 
must understand the internal operations of that group, 
but not of the rest of the knowledge base. If he 
preserves the correct functioning of the rules within the 
group and does not change the validity of the assertions 
about its inter-group facts, the maintenance program
mer can be confident that the change that has been 
made will not adversely affect the rest of the system. 
Conversely, if he wants to use additional inter-group 
facts from other groups, he should rely only on the 
assertions provided for them, not on the internal work
ings of the rules in the other group. (Of course, 

186 

(GROUP isamammal 

(PRODUCE~ 

(mammal II is ita mammal, 

by conventional English usage"» 
(RULES 

(rl (IF hair) (THEN mammal» 

(r2 (IF milk) (THEN mammal»» 

(GROUP isabird 

(PRODUCES 

(bird "is it a bird, by English usage"» 
(RULES 

(r3 (IF feather) (THEN bird» 

(r4 (IF flies ovip) (THEN bird» 

(GROUP isacarn 

(PRODUCES 

(earn "is it a carnivorous creature"» 
(RULES 

(rS (IF meat) (THEN earn» 
(r6 (IF pointed claws fwdeyes) 

(THEN earn»» 

(GROUP isungulate 

(PRODUCES 

(ungulate "is it an ungulate"» 
(USES 

(mammal) ) 
(RULES 

(r7 (IF mammal hoofs) (THEN ungulate»» 

(GROUP giraffe 

(USES (ungulate» 

(RULES 

etc .••• 

(rlO (IF ungulate longn longl darksp) 

(THEN giraffe»» 

Figure 1. Example of a grouped set of rules. 

changes that pervade several groups would still have to 
be handled as they always have been, but the grouping 
is intended to minimize these.) 

Partitioning the Knowledge Base 
To decide whether partitioning a knowledge base is 

a feasible approach, we are analyzing. existing produc
tion systems to determine how the rules in the system 
are related to each other. We have developed a 
software tool that analyzes the connections between the 
rules of a production system. The input to the tool is a 
set of rules expressed in an abstract form. 

We are using the tool to determine whether the 
rules are indeed thoroughly intertwined or sufficiently 
separated that they could be divided into groups. To 
date, we have analyzed several knowledge bases and 
found that there is considerable separability and latent 
structure to the relationships between the rules in these 



systems, which could be exploited to improve maintai
nability. 

Next, we are attempting to divide. the rules of 
existing systems into appropriate groups automatically, 
using several new approaches. By grouping the rules of 
existing production systems, we hope to determine 
whether such systems could have been cast in the mold 
required by the new method or whether it would have 
imposed excessive restrictions and unnatural structure 
on the developer. Based on the latent structure in rules 
found thus far, initial results suggest that the present 
approach can be imposed on many rule-based systems. 
They also suggest that an ideal, but not always attain
able, grouping of rules is one in which each group of 
rules sets the value of only one fact that is used by 
rules outside this group. 

Rules are related to each other through the facts 
whose values they use or modify. First, we depicted 
these relationships in a graph, showing the inference 
hierarchy for the system. Figure 2 shows such a graph 
for an expert system developed by Reggia at the 
University of Maryland, using the KES language;3 it is 
used to diagnose stroke and related diseases. In Figure 
2, each node, or point, represents a rule and each link, 
or line, between two rules represents a fact whose value 
is set by one rule and used by the other. 

Figure 2. Plot of individual rules of an expert sys
tem. 

The first algorithm considered attempts to parti
tion this graph into a collection of rooted trees of rules, 
where the "root" of each such tree is a fact. That is, 
divide the rules into groups such that each group of 
rules produces only one fact that is used by other 
groups. This provides the desideratum mentioned 
above, since each rule group sets the value of only one 
external fact. Figure 3 shows the same system as Fig
ure 2, after such an algorithm was applied. Each node 
now represents a group of rules, and each link 
represents a fact that is produced by rules in one group 

187 

and used by those in another group. Facts that are 
produced and used entirely within a single group do not 
appear in the graph. 

Figure 3. Rules of expert system, grouped into 
trees. 

This algorithm tends to divide the knowledge base 
into many small groups. Each such group contains a 
collection of rules whose effect on other groups is 
entirely summarized by the fact at the root of the tree. 
Hence rules in these groups intuitively belong together 
under any grouping scheme. The problem is that the 
many small groups now must be combined into larger 
agglomerations. One alternative tested was to weaken 
the criterion for being a "rooted tree." That is, divide 
the rules into groups such that each group produces no 
more than n external facts, where n is now greater 
than 1. However, as n was increased, this approach did 
not appear to expose any natural structure in the 
knowledge bases. 

Next, an approach based on cluster analysis was 
developed. Given a collection of objects, a clustering 
algorithm partitions them into groups of like objects. 
To use such an algorithm, though, a measure of dis
tance or "relatedness" between rules must be defined. 
Since our ultimate concern is for a programmer making 
changes to the knowledge base, the similarity between 
two rules should measure: 1/ one rule were changed, how 
likely is the other rule to have to be changed also. Rules 
affect each other through the facts they have in com
mon. Thus a simple measure of the "relatedness" of 
two rules is the number of facts that are mentioned in 
the left or right hand sides of both rules. Since there 
are several ways in which two rules could refer to the 
same fact, we decided to weight this count. The two 
rules if A then B and if B then C share fact B 
in common; so do the two rules if A then B and if 
C then B. The rules of the former pair seem to have 
a greater programming effect on each other than the 
latter pair, and hence should be more "related." Figure 
4 summarizes the three ways in which two rules can 



share a fact, and the weights given to each. The total 
"relatedness" measure between two rules is, then, a 
weighted count of the facts shared by both rules, where 
each fact is weighted by the score that indicates in 
which of the three possible ways the two rules use the 
fact. 

Score(rl,r2) = 1.0 

Score(rl,r2) = 0.5 

Score(rl,r2) = 0.33 

v 
Figure 4. Components of "relatedness" measure 
between two rules. 

Given such a measure, we can proceed with a 
straightforward clustering algorithm. First, measure 
the similarities between all pairs of rules, select the 
closest pair, and put those two rules together into one 
cluster. Then, repeat the procedure, grouping rules 
with each other or possibly with already-formed clus
ters. In the latter case, we must measure the "related
ness" between a rule and a cluster of rules. This is sim
ply defined as the mean of the similarities between the 
individual rule and each of the rules in the cluster, 
corresponding to an average-linkage clustering pro
cedure. The algorithm proceeds iteratively. 

The clustering algorithm can also be started with 
the small groups found by the rooted-tree algorithm 
above, instead of starting with individual rules. Since 
the tree groups appeared promising, but just too 
numerous, this is a reasonable alternative, and it 
appears to produce slightly better results. Figure 5 
shows the rule groups of the system of Figures 2 and 3 
after clustering in this fashion. 

Thus far, this method appears to do the best job of 
partitioning a set of rules in an intuitively reasonable 
way. One drawback to the algorithm is that on each 

188 

Figure 5. Rules, grouped into trees then clustered. 

iteration it makes the best possible agglomeration of 
two groups, but it never backtracks, in case there might 
be a better grouping for the system considered as a 
whole. Also, like most clustering algorithms, if it runs 
for enough iterations it will eventually group all the 
rules into one large group; a stopping rule is thus 
needed. 

Software Tools and Measurements 

We have developed software tools to support this 
programming methodology. The developer can define 
the grouping of rules and input the knowledge base in 
the form shown in Figure 1, or he can run one of the 
grouping algorithms discussed to produce the grouping. 
These groupings have no impact on system performance 
since they are invisible to the rule interpreter~ Given 
such a grouping, the software then automatically 
identifies the intra-group and inter-group facts. It flags 
all inter-group facts produced by a group, so the pro
grammer can provide assertions for them; it flags all 
inter-group facts used by a group and retrieves their 
descriptions, so the programmer can rely on them when 
using such facts. Other software tools can trace all 
effects of changing a given rule and can find any unused 
rules or groups. 

The division of a set of rules into groups should 
attempt to minimize the amount of coupling between 
the groups and maximize the amount of cohesiveness 
within each group.4 Defining measures for these notions 
will provide data to help compare alternative groupings 
of a given set of rules. Once a set of rules is divided 
into groups, each fact in the system can be character
ized as being used and produced by rules entirely within 
a single group or else as being used or produced by rules 
in more than one group. One simple measure of cou
pling is the proportion of facts in the second category, 
while cohesion is represented by the proportion of facts 
in the first. 



Another approach to these measures is also being 
investigated. For coupling, it uses the average "related
ness" between all pairs of rules, where members of the 
pairs lie in different groups. For overall cohesion, it 
uses the average relatedness of every pair of rules that 
lie in the same group. For the example shown above, 
these quantities are 0.0798 average coupling and 0.9238 
average cohesion, suggesting a far better than random 
organization. 

Conclusions 

By studying the connectivity of rules and facts in 
several typical rule-based expert systems, we found that 
they indeed have a latent structure, which can be ,used 
to support a new programming methodology. We have 
developed a methodology based on dividing the rules 
into groups and concentrating on those facts that carry 
information between rules in different groups. We have 
also studied several algorithms for grouping the rules 
automatically. Finally, we have developed a simple 
language and some software tools and measures to sup
port the new method. 

The resulting programming methodology requires 
the knowledge engineer who develops a rule-based sys
tem to declare groups of rules, flag all between-group 
facts, and provide descriptions of those facts to any rule 
groups that use such facts. The knowledge engineer 
who wants to modify such a system then gives special 
attention to the between-group facts and preserves or 
relies on their descriptions when making changes. 

An interesting aspect of this approach is that it 
draws distinctions between the facts contained in work
ing memory of a production system. Certain facts are 
flagged as being important to the overall software 
structure of the system, while others are "internal" to 
particular modules and thus less important. Program
mers can be advised to 'pay special attention to rules 
that involve the "important" facts. This is in contrast 
to the homogeneous way in which the facts of a rule
based system are usually viewed, where they must all 
command equal attention or inattention from the pro
grammer. 

To determine how well this programming metho
dology will work, we are attempting to retro-fit several 
existing knowledge bases with t,his approach. This will 
help determine how well the structure implied by the 
new programming methodology can fit the structures 
observed in actual rule bases. We will use the grouping 
algorithms to divide the rules and then use measures of 
coupling and cohesion to compare alternative groupings. 
Next we will attempt to measure the extent to which 
the new method helps or hinders maintenance of an 
expert system. We will attempt to make changes both 
to a conventional expert system and to one divided into 
groups following the proposed method and compare the 
results. Based on our preliminary results, the method 
does not impose unreasonable restrictions on the 
developer nor does it lead to unnatural structures. 

189 

References 

1. D.L. Parnas, "On the Criteria to be Used in 
Decomposing Systems into Modules," Communica
tions of the ACM 15 pp. 1053-1058 (1972). 

2. D. L. Parnas, "Software Engineering Principles," 
INFOR Canadian Journal of Operations Research 
and Information Processing (November, 1984). 

3. J. Reggia, "Knowledge-based Decision Support Sys
tems: Development through KMS," Department of 
Computer Science, University of Maryland (1981). 

4. W.P. Stevens, G.J. Meyers, and L.L. Constantine, 
"Structured Design," IBM Systems Journal 13 pp. 
115-139 (1974). 

5. P .H. Winston and B.K.P. Horn, LISP, Addison
Wesley, Reading, Mass. (1980). 



AN ORGANIZATIONAL FRAMEWORK FOR COMPARING ADAPTIVE ARTIFICIAL INTELLIGENCE SYSTEMS 

Teresa A. Blaxton and Brian G. Kushner 

The BDM Corporation 
7915 Jones Branch Drive 
McLean, Virginia 22102 

One of the most interesting topics of organizational structure will be suggested for 
investigation in the field of AI is machine this body of research, hopefully lending some 
learning where systems are being made to insights into directions for future development. 
automatically "adapt" or learn over time. The 
following paper presents a COmmon framework for 
organizing several diverse adaptive AI systems. 
Nine systems are discussed with regard to: (a) 
the types of knowledge representations they employ; 
(b) storage; (c) retrieval mechanisms; (d) conflict 
resolution principles; and (e) means of adapting 
knowledge and control structures as a function 
of changing experience. 

There is a new trend evolving in artificial 
intelligence which directly impacts the work 
being done on expert systems. More and more, 
people are becoming unsatisfied with constructing 
static knowledge bases which are obsolete almost 
as soon as they are completed and must be updated 
on a continual basis. The alternative being 
explored is that of creating systems which adapt 
with the addition of new knowledge, not only 
learning new facts but actually changing their 
own memory organizations and .control structures 
to accommodate the new data more efficiently.l,2,3 
Such systems are potentially more user oriented, 
more flexible to operate, and are less costly 
from a software/life-cycle support viewpoint. 

Although several researchers have attempted 
to build adaptive systems (ASs), they have 
unfortunately done so without the benefit of 
any guiding theory. Those frameworks that have 
been offered have not been sufficiently general 
to encompass the wide variety of systems that 
have been developed. 4 ,5,6 Consequently, the 
literature addresses ASs from multiple perspectives 
and with inconsistent terminology, making it 
difficult to compare the accomplishments of these 
systems with one another. In this article, an 

CH2345-7/86/0000/0190$01.00 © 1986 IEEE 
190 

This organizational framework has several 
parts, all focusing on issues relating to the 
incorporation and utilization of knowledge in 
ASs. In terms of distinctions between various 
ASs, the type of knowledge acquired by these 
systems, as well as how this knowledge is 
represented, are the aspects most similar to 
those of traditional expert systems. Other 
familiar elements of this framework include the 
retrieval operations used by the AS to access 
previously stored information, and the mechanisms 
used to control the processing in the system. 
But that is where the similarity ends, since 
both the mechanisms by which incoming knowledge 
is automatically stored in the system, and the 
strategies for modifying or adapting the knowledge 
base and control structure, are by necessity 
unique features of these adaptive systems. These 
criteria will be discussed in greater detail 
in subsequent sections of this paper, where we 
will in turn (a) establish the need for building 
ASs; (b) outline a framework of the concerns 
one might face when trying to build an AS; (c) 
compare and contrast' several already existing 
ASs; and (d) layout some guiding prinCiples 
for building an "ideal" AS. 

Problems With Traditional Expert Systems 

Many have argued that expert systems are 
the one area in which the AI enterprise has been 
truly successful. 8,9 These claims are based upon 
the proven utility of some computerized expert 
systems that are used to aid human experts in 
solving problems within limited application 
domains .10,11 Despite these successes, there 
are still many nontrivial problems associated 
with building and maintaining expert systems, 
a few of which will now be enumerated. 

To begin, the process of knowledge 
engineering, whereby the knowledge base of an 
expert system is acquired, is fraught with 
difficulties. 12 At worst, the availability of 
the main expert or experts may be limited or 
inadequate during the knowledge base construction 
period. Barring this eventuality, the experts 
that are available may disagree as to what 
knowledge to include, leaving the knowledge 



engineer at a loss as to how to resolve the 
dilemma. Perhaps more seriously, the knowledge 
engineer is faced with the task of obtaining 
procedural knowledge from the expert who can 
report only declarative knowledge. That is, 
the expert can declare that something is true, 
but cannot accurately describe how to do it. 

Aside from problems encountered in the 
construction of traditional expert systems, a 
host of difficulties arise once the system is 
completed. Foremost among these is the challenge 
of updating the knowledge base to keep it current 
while maintaining truth value in the system. 
This becomes particularly acute as the size of 
the knowledge base increases. The practice of 
modularizing the knowledge base into separate 
sections and assigning each to a different 
knowledge engineer has eased this situation 
somewhat. 13 However, most would agree that there 
is still room for improvement, since there are 
still problems associated with maintaining 
knowledge consistency and coordination across 
these modules. Perhaps even a larger concern 
is that most expert system formulations offer 
no provision for automatically augmenting the 
knowledge base and control structure as the need 
arises. These difficulties, coupled with the 
often limited domain of applicability of most 
systems, suggest that investigation of an 
alternative approach is warranted. 

Recent Advances: Adaptive Systems 

As was already mentioned, recent work in 
the area of adaptive systems has led to theoretical 
advances over traditional expert system 
formulations. 14 If realized on a large scale, 
AS would be preferred to expert systems for several 
reasons. First ASs may be implemented without 
access to an "expert" per se. That is, the system 
may start out at a novice knowledge level, and 
gradually build up to a higher level of expertise 
through experience and through interaction with 
some external "knowledge sources." Such a system 
would be useful in so-called "cutting edge 
technology" domains where the current knowledge 
base is small, but expected to grow. 

In terms of the user/system interface, ASs 
may be particularly beneficial in the development 
of individualized systems where commands accepted 
by the system are customized for a small set 
of users. In addition, one might imagine that 
an AS that has itself progressed from the novice 
to expert sta2es would provide more understandable 
responses to queries made by a novice user than 
would a traditional expert system. 14 

In a more global sense, ASs are preferable 
to traditional expert systems for the simple 
reason that intelligence is dynamic, and in any 
domain of interest the knowledge and heuristics 
utilized are bound to change with time. A major 
amount of effort has been expended in the past 
to find domains which are suitably narrow and 
static for building expert systems. In spite 
of this, the systems that have been developed 
must still be updated and augmented fairly 

191 

frequently, and hence require costly, manpower 
intensive, support tails. One way to avoid this 
pitfall is to build systems that adapt. Therefore, 
it is our belief that the performance of the 
system will be improved to the degree that the 
system and its knowledge base adapt to the gradual 
evolution of the domain itself. ~ 

Much of the pioneering work on ASs has been 
conducted by cognitive psychologists interested 
in modeling different aspects of human cognition. 
These researchers have experimented with the 
application of learning principles to AI systems 
in domains as diverse as number categorization, 
puzzle solving, language acquisition, and 
manipulation of geometric figures. Due to the 
disparity of these topics, readers of this 
literature may sometimes find it difficult to 
apprehend relevant similarities and differences 
among these systems. The organizational framework 
presented here is intended to bring a certain 
order to this chaos by providing points of 
comparison common to all of these systems, varied 
though they may be. For purposes of the present 
paper, the framework will be discussed in regard 
to only a subset of ASs. ** Before presenting 
the framework, each of ASs to be discussed will 
first be briefly described. 

Representative Crossection of Adaptive Systems 

The first AS to be described is called ACT* 
and was published by John Anderson. l Intended 
as a comprehensive theory of human cognition, 
ACT* models such complex activities as rotating 
mental images, solving geometry proofs, retrieval 
processes involved in reading, and language 
acquisition. It is by far the most fully developed 
syetem to b~_d~scribed _in this article. Since 
ACT* was designed to model human cognition, it 
may embody some constraints that are unattractive 
in the realm of AI applications. Nevertheless 
it is argued that there is much to learn about 
building ASs from the study of such a system. 

* It has been argued elsewhere that building 
ASs is not necessarily a worthwhile enterprise 
in that learning can be a long and iterative 
process, perhaps requiring more effort than is 
merited. 33 it is our position, however, that 
the long term benefits realized from the 
construction of ASs in dynamic domains will far 
outweigh any initial startup costs. 

** As the reader may notice, the nine systems 
described in this article constitute only a small 
number of those programs presented elsewhere 
as ASs. Some of those other systems have been 
eliminated from our present discussion because 
they are better labeled as frameworks for knowledge 
representation rather than as full blown systems 
Still others were omitted because they are not 
truly adaptive in the sense of having mechanisms 
responsible for reorganizing memory and control 
structures. Finally, those deemed too narrow 
in scope to be of general interest were not 
included for discussion. 37 



The BACON. 5 pro~ram written by Langley, 
Bradshaw, and Simon 1 was intended for a very 
different purpose. Given numeric data and variable 
specifications it notices patterns, abstracting 
out regularities among combinations of variables 
as "concepts". BACON. 5 has discovered the Ideal 
Gas Law, Ohm's Law, and the law of gravitation, 
among others. A ~rogram somewhat similar to 
BACON~5 is UNIMEM.16 It categorizes and makes 
generalizations from numeric data without using' 
any statistical heuristics such as those employed 
in the BACON.5 system. For "example, given data 
on areas and populations of states, it categories 
them into "large" and "small" classes and forms 
appropriate generalizations about those classes. 
For instance, it generalizes that small states 
have small populations without incorrectly 
inferring that large states necessarily have 
large populations (e.g., Alaska). 

The next three systems are similar to one 
another in that they all start out with little. 
or no knowledge about a given topic and progress 
up to an expert level. Kolodner' s 17,2',18 
Computerized Yale Retrieval and Updating System 
(CYRUS) learns facts about Cyrus Vance and Edmund 
Muskie's terms as Secretary of State. The 
Integrated Partial Parser, IPP, learns about 
international terrorism from newspaper articles. 
Finally, a follow-up to IPP called RESEARCHER 19 
learns and answers questions about patent 
abstracts. 

For purposes of the present paper, the most 
notable' aspects o~ all of these systems are that 
they have mechanisms for organizing and updating 
their knowledge bases such that in'teresting' 
generalizations and discriminations result. 
For example, after learning about a number' of 
instances in which kidnap victims in Italy happened 
to be businessman, IPP is able to generalize 
that a new (unidentified) Italian who is kidnapped 
is likely to be a businessman. IPP does not
make the error of the converse, however, which 
would be to infer that a given kidnapping took 
place in Italy simply because the victim is a 
businessman. 

An example of an AS in a very different 
domain is the Blocks World program, first 
introduced by Winograd 20 and then updated by 
Winston. 2l This system learns about various 
possible configurations of a set of geometric 
figures. For example, Winograd,' s 20 system can 
remember sequences of moves for any given object 
in the blocks world and infer procedures necessary 
for those sequences t,o have been performed, even 
though that information was not explicitly stored. 

The last two ASs learn rules about how to 
solve some' ,problem. The highly acclaimed 
Meta-DENDRAL 22 is a program which sits over 
the expert system DENDRAL and learns cleavage 
rules used by mass spectrometers. The second 
version of the Strategic Acquisition Governed 
by Experimentation system, SAGE.2 3 learns rules 
for solving the Tower of Hanoi puzzle task. 
Starting out with a small number of heuristics 
this program quickly acquires the knowledge 

192 

necessary to solve the puzzle in the minimum 
number of moves. 

Having read these descriptions the reader 
should now have an appreciation for how diverse 
these ASs really are. Nevertheless, it is argued 
that an organizational framework may be used 
to view these systems, which will allow their 
simultaneous comparison on a number of dimensions. 
That framework will now be presented. 

Framework for Comparing Adaptive Systems 

The ASs listed just described may be compared 
with regard to' the following features: (a) the 
types of representation schemes employed; (b) 
the mechanisms by which incoming knowledge is 
stored in the system; (c) retrieval operations', 
used to access previously stored "',information ; 
(d) mechanisms used to control information 
processing in the system; and (e) strategies 
for adapting the knowledge base and control 
structure to accommodate the changing environment. 
In this section,-- our set of ASs will be discussed 
with regard to each of these features. Following 
this, an evaluation of the different designs 
employed in building these ASs will be presented. 

A. Type of Knowledge Representations Used 

1. Production Rules 

The first type of representation listed 
in Table 1 is the production rule. Production 
rules are if-then or condition-action pairs which 
invoke a particular action to be carried out 
when the contents of working memory match a 
specified condition. By this description it 
is clear that production rules embody procedural 
knowledge, but they are closely tied to declarative 
knowledge as well. Consider the following example 
of a production rule ,in" the' BACON system: 23 

If you see a number of descriptions at Level 
L in which the dependent variable (D) 
has the same number value (V), 

Then create a new description at level L+l 
in which the value of D is also V and 
which has all conditions common to 
the observed descriptions. 

results in the creation of another 
production, which "will, in some sense, represent 
declarative knowledge within its own conditions. 
When these new conditions are matched by the 
contents of working memory, the new rule will 
be eligible for implementation. Production rules 
are used in ACT*, BACON. 5 , Meta-DENDRAL, and 
SAGE.2. 

This rule 

2. Memory Organization Packets (MOPs) 

Following in a tradition somewhat similar 
to that of Minsky's frames, 24'Schank and Abelson's 
scripts, 25 and Schank's dynamic memory, 26 UNIMEM, 
CYRUS, IPP, and RESEARCHER all use memory 
organization packets, or MOPs., MOPs are a type 
of semantic network within which knowledge is 



arranged hierarchically by topic. 27 Information 
that constitutes a specific exception to the 
theme of the MOP is given a separate index, or 
label, which may be used to locate it more quickly 
during the retrieval process. When two or more 
elements are organized under one index, a new 
sub-MOP is formed, thus preserving the modularity 
of the memory network. 

3. Propositions 

Propositions have become a fairly common 
means of abstract knowledge 'representation in 
AI systems. They preserve semantic relationships 
between arguments or objects. For instance, 
the proposition "(kiss Sue Bill)" preserves the 
relation "kiss" between the arguments "Sue" and 
"Bill". Notice that the proposition I s structure 
is independent of information order. l That is, 
"(kiss Sue Bil!)" does not encode the difference 
between "Sue kissed Bill" and "Bill was kissed 
by Sue". Only the semantic relation is 
represented. Propositional representations are 
used both in ACT* and the .. Blocks World system. 

4. Temporal Strings 

Temporal strings area type of representation 
used in the ACT* system to maintain order 
information. Knowledge about order is important 
to many tasks, one of which is the analysis of 
linguistic information. Temporal strings provide 
a more efficient means of storing order than 
do propositions, but cannot be used in the place 
of provositions since they do not incorporate 
information about meaning as effectively. 

5. Spatial Images 

This final type of representation preserves 
the configuration of ~lements in a spatial array. 
This construct is used in the ACT* system to 
model pattern recogni~ion behavior in humans. 
The important point to note here about spatial 
images is that they preserve only information 
about the relative physical positions of objects 
in an array, and not necessarily information 
about what these objects actually look like. 

B. Information Storage Strategies 

Having established the tools for representing 
knowledge in our set of ASs, it is now of interest 
to explore the strategies 'used to store new 
information in these systems. 

As shown in Table 2, one strategy for adding 
new information to the system is to learn every 
new stimulus as it is presented. This simple 
approach is used in the UNIMEM, CYRUS, Blocks 
World, and Meta-DENDRAL systems. Another 
alternative is to be more discriminating and 
store new information in the network only after 
it has been shown to have some importance, for 
instance after it has occurred several times. 
The ACT*, BACON.5, IPP, RESEARCHER, AND SAGE. 2 
systems all employ this type of approach. 

193 

Once the decision has been made to add new 
'information to the system, the question arises 
as to how it will be stored in relation to already 
existing' memory elements. . Of course the new 
data could simply be added randomly. However, 
a more strategic approach is to store related 
items "near" one another in ·the network. The 
ACT*, UNIMEM, CYRUS, IPP, and RESEARCHER systems 
all employ this design, linking together items 
which are semantically or contextually related. 

This 'method of storage serves two useful 
purposes. First, provided one uses the right 
type of knowledge representation, it will not 
be necessary to explicitly store all semantic 
features associated with every new element since 
some of those may already be represented in nearby 
(subsuming) structures. Second, retrieval of 
information is facilitated when memory is organized 
thematically. that is, one need only get to 
the right area in memory and look there rather 
than exhaustively searching the entire network. 

-Another useful tact.ic, implemented in UNIMEM, 
CYRUS, IPPand RESEARCHER, is to mark new·elements 
with special indices which denote the way in 
which their themes . differ from those of their 
"parent" nodes in the network. This approach 
has the same advantages as storing related items 
near one another 'in memory. It is particularly 
useful in retrreval as will be illustrated in 
the next section. 

C. Retrieval Mechanisms 

The three types of retrieval mechanisms 
employed by our set of ASs are li'sted in Table 
3. The first of these, pattern matching, is 
a method whereby an item is retrieved from memory 
if the physical features of its representation 
match those of some retrieval cue. Pattern 
matching is commonly used in production systems 
where rules are selected - for use based on the 
match between their conditions and the elements 
in working memory. The implementation' of this 
mechanism usually involves exhaustive memory 
search. The ACT*, BACON. 5 , Blocks World, 
Meta-DENDRAL, and SAGE. 2 systems all employ pattern 
matching. 

Avery different approach to retrieval is 
to search the network by traversing indices 
associated with individual categorical memory 
structures. ~ecall that the MOPs used to represent 
knowledge in the UNIMEM, CYRUS, IPP, and RESEARCHER 
systems .have indices, or labels, associated with 
the. There are indices which denotes the thematic 
content of an MOP and other indices which tag 
elements involving exceptions to these themes. 
Retrieval begins with an index which is compared 
to other indices in the network. When a match 
is found, the memory elements subsumed underneath 
that index are searched. The result is that 
the scope of the 'retrieval process is limited 
to only those areas of memory which are the most 
relevant, a more efficient strategy than exhaustive 
search. 



Another way of facilitating economic search 
is through spreading activation, as implemented 
in ACT*. At any given time, the memory elements 
that match the contents of working memory are 
temporarily activated, and this activation spreads 
to "nearby" connected elements in the network. 
Since the storage strategy in ACT* is to form 
connections among related items as they are 
learned, the nearby items that get activated 
will also be related to the contents of working 
memory. That is, all activated elements will 
be potentially relevant to the current context. 
Search is quite efficient since the retrieval 
process is directed only to the areas of the 
network that are activated, rather than to the 
network as a whole. 

D. Principles of Control and Conflict Resolution 

As might be expected, the search mechanisms 
just described often result in the retrieval 
of more than one acceptable memory element. 
The problem then arises as to how to choose among 
the potential candidates, selecting the most 
appropriate one for instantiation. A set of 
principles used to resolve these conflicts is 
presented in Table 4. 

The most obvious means of deciding among 
potential elements is to choose the one which 
most closely matches the retrieval cue (or contents 
of working memory). this strategy is adopted 
in all of the ASs we are considering. In practice, 
however, one might find that as systems get more 
and more complex, this simple tactic will not 
always work well. That is, there may be several 
elements which match to the same degree, in which 
case further means for· choosing among elements 
must be provided. 

The ACT* and SAGE.2 systems employ several 
strategies for resolving these conflicts which 
rely on analysis of features of the operators 
themselves. For instance, each operator in these 
ASs has some strength associated with it which 
is either increased or decreased after each 
instantiation, depending on the outcome. Competing 
operators are then selected depending upon their 
relative strengths or histories of being useful. 
The field of potential candidates can be narrowed 
further using a principle called data 
refractoriness whereby no one .operator can serve 
in two patterns simultaneously. Finally, the 
ACT* program relies on a principle of specificity 
whereby the most. specific of two operators which 
match equally well will be chosen. For instance, 
if the pattern "barn" were being matched and 
the two elements "ba" and "bar" were competing, 
"bar" would be chosen since it is the most 
specific. 

In addition to relying on traits of the 
individual operators to resolve conflicts, system 
behavior may be controlled in both ACT* and SAGE.2 
by contextual constraints. Context is used to 
govern choice of operators in SAGE. 2 through 
the "recency of use" rule. That is, the most 
recently used operator is chosen over others 

194 

on the assumption that it must be the most relevant 
to the problem at hand. This choice will have 
nothing to do directly with the strength of the 
operator or whether the pattern is already 
represented elsewhere. 

Perhaps a more interesting mechanism is 
used in the ACT* program. Problem solving in 
ACT* is goal-driven. That is, a large task having 
one ultimate goal can be broken. down into several 
subtasks, each having a goal of its own. The 
current goal of interest is represented in working 
memory and, as such, disallows the instantiation 
of any operators not directly related to its 
completion. This mechanism greatly reduces the 
field of potential candidates from the start, 
thus eliminating many conflicts that might 
otherwise arise. 

E. Mechanisms for Adaptation 

Thus far the types of mechanisms described 
are not in any way peculiar to systems under 
consideration here. For instance, any traditional 
production system has to have some means of 
retrieving information from memory (usually pattern 
matching), and some way to resolve conflicts 
among competing memory elements (usually degree 
of match and specificity). The trouble with 
these typical expert systems, however, is that 
when they "learn" they do so simply by adding 
new facts or rules. These additions are, for 
the most part, made without regard to the 
integration and reorganization of this new 
information with existing knowledge. 28. What 
sets adaptive systems apart from traditional 
expert systems is their ability to modify their 
own knowledge an control structures with experience 
in some meaningful manner. The ways in which 
adaptation occurs are listed in Table 5. 

The most common way of incorporating 
experience into the system is to strengthen 
operators that have either been presented a number 
of times or have somehow proven useful in the 
past. In fact, every AS in our set of nine except 
Blocks World employs this method. However, the 
converse of this strategy, which is to weaken 
an operator whose instantiation has produced 
undesirable results, is not as popular. Only 
the ACT* and SAGE. 2 systems employ this tactic. 
A method more drastic than weakening the strength 
of an operator is to remove it from the network 
altogether when if ceases to be appropriate for 
current applications. This is sometimes done 
with production rules in ACT*, but only very 
conservatively. 

In addition to changing the relative strengths 
and weaknesses of operators in the system, it 
is possible to actually create new ones using 
knowledge embedded in previous ly exis t ing 
representations. In particular, generalization 
involves the formation of new elements which 
embody common features of several representations 
already in the network. The new operator applies 
in more cases since it is less specific than 
its predecessors. This mechanism is implemented 
in every AS except Meta-DENDRAL and SAGE.2. 



In contrast to generalization, new 
representations may be created through the process 
of discrimination. Discrimination occurs when 
extra delimiting features are added to an operator 
which restrict the contexts in which it can apply. 
In other words, discrimination creates constructs 
that are special cases of already existing ones. 
This is the type of process that occurs in CYRUS, 
for instance, when an index is added beneath 
the top level of an MOP to signify that an element 
contains information in exception to the theme 
of the parent MOP. Although potentially quite 
powerful, this strategy is employed only in the 
ACT* and CYRUS systems. 

The discussion up to this point has focussed 
on the comparison of our nine ASs with regard 
to the types of knowledge they acquire, along 
with the types of representations, storage 
mechanisms, retrieval strategies, control 
principles, and means of adaptation used by each. 
Now that the ASs have been couched in terms of 
this organizational framework, it is of interest 
to determine whether any guiding principles may 
be used in conjunction with this framework to 
help researchers both (a) build better ASs and 
(b) evaluate our nine Ass in relation to one 
another. 

Building the "Ideal" Adaptive System 

The remainder of this paper will outline 
some general guidelines for building what we 
call the "ideal" AS. These guidelines will be 
cast in terms of the organizational framework 
already presented. It is' hoped that these 
principles will not only aid in the design of 
future ASs, but might serve as a set of metrics 
by which to evaluate already existing systems. 

First it is our feeling that there is no 
way to select the "best" representation a priori. 
In fact some might argue that, as far as the 
outward behavior of the system is concerned, 
any deficiencies associated with the choice of 
representation structure may be compensated for 
in terms of the procedures implemented to operate 
on those structures. 29 We will concede that 
some representations may lend themselves to certain 
types of problems more easily than others, although 
this will be a matter of convenience. 

Having dispensed with the question of 
representation, we will now proceed with 
recommendations concerning the other issues of 
storage, retrieval, control, and adaptation. 
After reading through the earlier comparisons 
of the ASs on each of the dimensions just listed, 
the reader may feel that a "more is better" rule 
is applicable. That is, it might appear that 
variety is the key, with the better systems being 
those which incorporate several different types 
of capabilities in each of these areas. Although 
this is true to a certain extent, it is not 
necessarily the best prescription for success. 

Rather than a "more is better" methodology, 
we advocate that researchers adopt an approach 

195 

whereby a combination of both top-down and bottom
up strategies are implemented in the system design. 
Bottom-up strategies are those for which properties 
of individual operators are important, whereas 
top-down strategies involve overall system 
behavior. Perhaps this concept is best illustrated 
with an example. 

In terms of storage mechanisms, a top-down 
strategy is to store related items near one another 
in the network. This type of strategy impacts 
directly on the global organization and performance 
of the system. Similarly, the approach of storing 
items in a hierarchial organization such that 
concepts at a given level subsume those below 
and are subsumed by those above will later affect 
global retrieval operations. 

In contrast, a bottom-up storage strategy 
is to learn every new stimulus as it is presented, 
regardless of its semantic content--that is, 
regardless of its eventual position in the overall 
memory network. This strategy has not been 
employed as much as it could have been, probably 
due to the semantic primacy bias in the human 
memory literature. 30 The traditional wisdom 
has been that people primarily remember semantic 
content in lieu of lower level information 
involving physical features of stimuli. Recent 
experiments on human memory have shown, however, 
that we do indeed remember this low level 
information, often better than the semantic 
content. 3l To the degree that the human is accepted 
as a useful model for designing intelligent 
systems, the importance of bottom-up storage 
strategies should not be ignored when building 
ASs. 

Assessing the relative merit of combinations 
of storage mechanisms of the ASs from Table 3 
it may be seen that only the UNIMEM and CYRUS 
systems employ both top-down and bottom-up 
strategies. Specifically, both are designed 
to learn every new stimulus as it is presented 
and to store related items near one another in 
memory. In addition, both of these systems use 
the MOP representation from which a hierarchical 
organization is created. 

Applying the top-down/bot tom-up distinction 
to retrieval mechanisms, it may be argued that 
memory search aided by either index traversal 
or spreading activation is top down since these 
mechanisms are implemented with regard to the 
memory network as a whole. On the other hand, 
pattern matching is a bottom-up retrieval tactic 
since it depends only on characteristics of 
individual operators. Again, research on human 
memory has shown that both bottom-up and top-down 
processes play important roles in the determination 
of retrieval performance 32 lending credence 
to the assertion that this combination might 
be useful in the design of ASs. In Table 4 we 
see that the only system employing both top-down 
and bottom-up retrieval strategies is ACT*. 
Elements may be retrieved from memory in ACT* 
using either spreading activation or pattern 
matching. 



As with storage and retrieval, there are 
principles of conflict resolution which embody 
both top-down and bottom-up features. For example, 
a top-down strategy for delimiting the field 
of competing operators is to impose a goal 
hierarchy on the system. The choice of priorities 
rather than the traits of any individual operators. 
A similar argument may be made for the strategy 
of choosing the most recently used operators 
over others that match as closely. 

All other conflict resolution principles 
discussed earlier involve bottom-up analysis. 
These include degree of match, specificity, data 
refractoriness, and operator strength. Notice 
that all of these require that features of 
individual operators dictate which will be selected 
for implementation as opposed to overall contextual 
constraints. 

Looking to Table 5 again, it may be seen 
that the only two systems which employ top-down 
and bottom-up strategies for controlling choice 
of operators are ACT* and SAGE.2. Both use several 
bottom-up strategies. Of greater interest is 
that the top-down approach to control in ACT* 
is implemented in a goal hierarchy, whereas a 
recency criterion serves as a context mechanism 
in SAGE.2. 

The final dimension to be considered from 
the organizational framework is the manner in 
which systems are allowed to adapt. Of the 
mechanisms presented earlier, adaptation through 
generalization and discrimination are top-down 
in nature because they occur only when similarities 
or differences among several structures are noticed 
simultaneously in one context. On the· other 
hand, the strengthening, weakening, and unlearning 
of individual elements all affect only one 
structure at a time. Since they do not directly 
impact on the status of other contextually-related 
elements, these strategies are classified as 
being bottom-up. All of the ASs invoke both 
top-down and bottom-up adaptation strategies 
except Meta-DENDRAL and SAGE. 2 which employ only 
bottom-up procedures. 

Conclusions 

The above discussion focused on developing 
an organizational framework for comparing adaptive 
systems. These systems are of interest relative 
to traditional expert systems in that they (a) 
do not have to be updated by hand as knowledge 
in the domain of interest changes; (b) can start 
out at the novice level without explicit access 
to a human expert; (c) are useful in "cutting 
edge" domains in which few, if any, experts exist; 
and (d) might provide better interfaces for novice 
users since their own memory structures have 
evolved from the novice level. Nine systems 
were discussed with regard to an organizational 
framework for comparing ASs. This framework 
was used to compare the systems on such dimensions 
as the type of knowledge acquired by each and 
representations used; storage and retrieval 
strategies, control mechanisms, and methods used 
for adaptation. As we would expect, based on 

196 

our experience with the latest generation of 
expert systems, we have recommended that ASs 
be designed using a combination of top-down and 
bottom-up mechanisms in each of these areas. 

The development of this framework for ASs 
systems may also have several additional benefits. 
As the most near term example, this framework 
can aid in our understanding of AI system 
performance. This may allow researchers to address 
some of the perennial AI questions, such as how 
one measures the robustness of a given AI system, 
what are valid benchmarks for AI systems, and 
how an AI system can be designed for ease of 
testing. On this latter point, research in AS 
methodologies could expedite the rapid prototyping 
of AI systems, in a manner analogous to the 
techniques used in the electronics industry. 
Finally, continued development of ASs, particularly 
through rapid prototyping, can lead to a fas ter 
incorporation of AI systems into the marketplace. 

Acknowledgments 

The authors would like to thank Drs. L. 
H. Reeker, R. A. Geesey, C. B. Friedlander and 
C. T. Butler for their timely insights and 
constructive criticism throughout the development 
of this effort. This work was supported in part 
by DARPA under contract number MDA903-85-C-0056 
and by DARPA/AFOSR under contract number 
F49620-86-C-0036. 

(1) Anderson, J. 
of cognition, 
London. 

REFERENCES 

R. (1983) The architecture 
Harvard University Press: 

(2) Ko10dner, J. A. (1983a) Maintaining 

(3) 

organization in a dynamic long term memory. 
Cognitive Science, 7, 243-280. 

Langley, P. 
From weak 
heuristics. 

(1985) Learning to search: 
methods to domain-specific 

Cognitive Science, 9, 217-260. 

(4) Bundy, A., Silver, B., & Plummer, D. (1985) 
An analytical comparison of some rule learning 
programs. Artificial Intelligence, 27, 
137-181. 

(5) Carbonell, J. G. (1983) Learning by analogy: 
Formulating and generalizing plans from 
past experience. In Carbonell, J. G., 
Michalski, R. S., & Mitchell, T. M. (Eds.) 
Machine learning: An artificial intelligence 
approach. Tioga Publishing Co., Palo Alto, 
CA. 

(6) Michalski, R. S. (1983) A theory and 
methodology of inductive learning. In 
Carbonell, J. G., Michalski, R. S., & 
Mitchell, T. M. (Eds.), Machine learning: 
An artificial intelligence approach. Tioga 
Publishing Co., Palo Alto, CA. 



(7) Rychener, M. D. (1983) The instructible 

production system: A retrospective analysis. 

In Carbonell, J. G. , Michalski, R. S. , & 

Mitchell, T. M. (Eds.), Machine learning: 

An artificial in te 11 igence aEEroach. Tioga 

Publishing Co., Palo Alto, CA. 

(8) Bobrow, D. G., & Hayes, P. J. (1985) 
Artificial intelligence--Where are we? 
Artificial Intelligence, 25, 375-415. 

(9) Hayes - Roth, F. (1985) Engineering sys terns 
of knowledge: The great adventure ahead. 
In (K. N. Karna, Ed.) proceedings of the 
EXEert Systems in Government Symposium, 
pp. 678-692. 

(10) Pople, H. (1982) Heuristic methods for 
imposing structure on ill-structured problems: 
The structure of medical diagnostics. In 
P. Szolovits (Ed.) Artificial intelligence 
in medicine. Westview Press Co. 

(11) Shortliffe, E. 
consultations: 

(1976) ComEuter-based medical 
MYCIN. American Elsevier, 

New York. 

(12) Hayes-Roth, F. 
expert system: 
pp. 11-28. 

(1984) The knowledge-based 
A tutorial. IEEE, September, 

(13) Frosher, J. N., & Jacob, R. J. K. (1985) 
Designing expert systems for ease of change. 
In Proceedings of the IEEE Computer Society 
EXEert Systems in Government SymEosium, 
K. N. Karna (Ed.), Computer Society Press. 

(14) Riesbeck, C. K. (1984) Knowledge 

(15) 

reorganization and reasoning style. In 
M. J. Coombs (Ed.) Developments in eXEert 
systems, Academic Press: London. 

Langley, P. , Bradshaw, G. L. , & Simon, H. 
A. (1981) BACON.5: The discovery of 
conservation laws. In proceedings of the 
7th International Joint Conference on 
Artificial Intelligence, 121-126. 

(16) Lebowitz, M. (1985) Categorizing numeric 
information for generalization, Cognitive 
Science, 9, 285-3Q8. 

(17) Kolodner, J. A. (1983a) Maintaining 
term memory. organization in a dynamic long 

Cognitive Science, 7, 243-280. 

(18) Kolodner, J. A. ( 1983c) 
organizational strategies 
memory: ~ computer model. 
Associates, Hillsadale, N.J. 

Retrieval and 
in concept~ 

Lawrence Erlbaum 

(19) Lebowitz, M. (1986) An experiment in 
intelligent information systems: RESEARCHER. 
UnpUblished manuscript. 

197 

(20) Winograd, T. (1972) Understanding natural 
language. New York: Academic Press. 

(21) Winston, P. (1975) Learning structural 
descriptions from examples. In P. H. Winston 
(Ed.), The Esychology of comEuter vision, 
New York~McGraw-Hill. 

(22) Buchanan, B. G., Smith, D. H., White, W. 
C., Gritter, R. J., Feigenbaum, E. A., 
Lederberg, J., & Djerassi, C. (1976) 
Applications of artificial intelligence 
for chemical inference XXII: Automatic 
rule formation in mass spectormetry by means 
of the META-DENDRAL program. Journal of 
the American Chemical Society, 98, 6168-6178:-

(23) Langley, P., Bradshaw, G. L., & Simon, H. 
A. (1983) Rediscovering chemistry with 
the BACON system. In Carbonell J. G., 
Michalski, R. S., & Mitchell, T. ~. (Eds.), 
Machine learning: An artificial intelligence 
aEEroach. Tioga Publishing Co., Palo Alto 
CA. ' 

(24) Minsky, M. (1975) A framework 
In P. Winston 

for 
(Ed.) representing knowledge. 

The Esychology of 
McGr aw-Hill. 

comEuter vision. 

(25) Schank, R. C., & Abelson, R. (1977) ScriEts, 
Elans, goals, and understanding. Hillsdale, 
NJ: Erlbaum. 

(26) Schank, R. C. (1982) Dynamic memory: ~ 
theory of reminding and learning in comEuters 
and~. Cambridge University Press: 
London. 

(27) Chandrasekeran, B., & Mittal, S. (1984 Deep 
versus compiled knowledge approaches to 
diagnostics problem solving. In M. J. 

(28) 

Coombs (Ed.) DeveloEments in eXEert systems, 
Academic Press: London. 

Ko lodner, J. A. (1984) Towards and 
understanding of the role of experience 
in the evolution from novice to expert. 
In M. J. Coombs (Ed.) Developments in expert 
systems, Academic Press: London. 

(29) Anderson, J. R. (1978) Arguments 
representations for mental 
Psychological Review, 85, 249-277. 

concerning 
imagery. 

(30) Sachs, J. S. 
syntactic and 
discourse. 
2, 437-442. 

(1967) Recognition memory for 
semantic aspects of connected 

Perception and Psychophysics, 

(31) Kolers, P. A. (1976) Reading a year later. 
Journal of EXEerimental Psychology: Human 
Learning and Memory, 2, 554-565. 



(32) Roediger, H. L., & Blaxton, T. A. (in press) 
Retrieval modes produce dissociations in 
memory for surface information. In D. S. 
Gorfein and R. R. Hoggman (Eds.) Memory 
and cognitive processes: The Ebbinghause 
Centennial Conference. Hi11sada1e, N.J. 

(33) Buchanan, B. G., Barstow, D., Bechta1, R., 
Bennett, J., Clancey, W., Kulikowski, C., 
Mitchell, T., & Waterman, D. A. (1983) 
Constructing an expert system. In F. 

Hayes-Roth, D. A. Waterman, & D. B. Lenat 
(Eds.) Building expert systems. London: 
Addison-Wesley. 

(34) Brachman, R. J., & Schmolze, J. G. (1985) 
An overview of KL-ONE knowledge representation 
system. Cognitive Science, 9, 171-216. 

(35) Feigenbaum, E. A., & Simon, H. A. (1984) 
EPAM-1ike models for recognition and learning. 
Cogntive Sciences, 8, 305-336. 

(36) Lenat, D. B. (1983) The role of heuristics 
in learning by discovery: Three case studies. 
In Carbonell, J. G., Michalski, R. S., & 
Mitchell, T. M. (Eds.), Machine learning: 
An artificial intelligence approach. Tioga 
Publishing Co., Palo Alto, CA. 

(37) Quinlan, J. R. (1983) Learning efficient 
classification procedures and their 
application to chess and games. In Carbonell, 
J. G., Michalski, R. S., & Mitchell, T. 
M. (Eds.), Machine learning: An artificial 
intelligence approach. Tioga- Publishing 
Co., Palo Alto, CA. 

TABLE 1 

CONSTRuCTS tJSED FOR 1Of000EDGE REPRESENTATION 

________ _ __ }_____ ________ _ __ J __ _ 

~:~______ _ ___ t____ -------- --------- ---------

198 

Table 2 

STRATEGIES FOR STORING INFORMATION 

~ ill 
~~ b":f .. " 

z..~ ..... ~ :. ... "'", ~ 
t-"';:;~ ;;\; "'-;;: 0<::: .... ~ ,p 

"'~.. ~O/~; j"~ 
q;> l ;. ..... ~ .s>,~ ~~ 

--~-------- --~~:----- -~-:------- --~ 
~________ ___________ _ __ JL_____ _ ___ ~______ _ _______ _ 

BACON~~_____ ___________ _ __ ~_____ ___________ _ _____ __ 
~~______ _ ____ ~____ __________ _ ___ 1-_____ _ ____ JL ____ _ 
c~_______ _ _____ :____ __________ _ ___ 1______ _ _____ t ____ _ 

I~__________ ___________ _ ___ t_____ _ ___ ~______ _ _____ t __ 
~~__ ___________ _ __ JL_____ _ ___ 1______ _ _____ t __ _ 

BLDCKS NORLD 

--------- -----~---- ---------- ----------- ----------
----------- ------~---- ---------- ----------- -----------
~~:~______ ___________ _ ___ t_____ ___________ _ _________ _ 

Table 3 

MECHANISMS USED FOR INFORMATION RETRIEVAL 

Pattern Index Spreadfng 
___________ !!.::~~nll _______ 1!!~:~~_______ Activatfon 

________ _ ______ !_______ -_______________ _ __ --1 ___ _ 

___________ _______________ _ _______ t ______ _ 

---------- --------------- -------~--------
----------- --------------- -------~--------
---------- -------!------- ----------------

11ET~~~ _______ L _____________________ _ 

~:~------ -------!------- ----------------

Table 4 

PRINCIPLES OF CONTROL 

----------- ----~--- ------ ----- -------- -------+---1 
X -------- ------ ----- -------- -------- -----
x -------- ------ ----- -------- -------- ----

RESEARCHER X 
----------- -------- ------ ----- -------- -------- -----

BLOCKS NORLD X 
----------- -------- ------ ----- -------- -------- ----

I1ETA-DENDRAL X 
----------- -------- ------ ----- -------- -------- ------
~:~------ -------- ------ --!-- -------- -------



Table 5 

MECHANISMS FOR AIlAPTATIUf 

____ 1____ _ __ 1___ __-1. _____ x --.-4--!:----j 

_. ____ -4 __ ~X. ___ _+--____ ~ 

------ --~---+-----I 

---------- ----~---- ------- ----~--~---.;:---I 

---------- ----~---- -------- ---~---- --------
-------- ----~---- ------ --!--- ----

X --- -------.~-----I 

------ -------- -----
~:~ __________ :!__ X _______ 1... ______ ~ __ _ 

199 



.AN OB~ECT/TASK MODELING ,APPROACH 

BASED ON DOMAIN KNOWLEDGE AND CONTROL KNOWLEDGE REPRESENTATION 

Giming Chen 

National Land Information System 
Research Institute of Surveying and Mapping. BeiJing. China 

ABSTRACT 

The need for developing knowledge-based 
information systems has given rise to 
studie~ on integrating AI systems and DB 
systems. An obJect/task modeling approach 
based on knowledge representation is 
proposed which is characterized by 
specifying obJect behaviors and domain 
rules in terms of obJect-oriented logic 
programming. and specifying tasks and 
meta-rules in terms of network-oriented 
formalism. ·This approach 'may .be viewed as 
a step to the integration of 
obJect-oriented programming, logic 
programming. semantic modeling and event 
modeling. and to the combination ~f forward 
chaining and backward chaining techniques. 
It can enhance the flexibility and 
extendability of knowledge based systems to 
accommodate applications in multiple 
domains. 

INTRODUCT.ION 

The need for developing the next generation 
information systems has given rise to 
studies on integrating database systems and 
Artificial Intelligence (AI) systems 
[Ullman 85]. The fact that both Logic 
Programming (LP) and Relational Database 
eRDB) are ~ubsets of first order predicate 
calculus suggests a resemblence between 
them. On one hand. LP provides powerful 
formalism for representing database rules 
and deductive retrievals, on the other 
hand, RDB provide adequate means of storing 

,and managing knowledge [Gall 84] [Parker 
84] [Fuchi 85] [Zani 84] [Chen 86a]. 

,However, most of the knowledge based 
systems and decision support systems 
currently in operation, support only a 
single model or a class of models. They 
are special application oriented and 
~elf-contained, their configurations are 
both static and intolerant from a model 
perspective. In other words, such systems 
lack the flexibility of being adaptable to 
the possible alterations in the problems 

C H2345-7 /86/0000/0200$01.00 © 1986 IE E E 
200 

they were originally designed to deal with. 
and cannot be utilized in multiple problem 
domains, even if those domains .are closely 
related. 

This situation is caused. to a cel'tain 
extent, by lacking the formalism for 
modeling obJects and representing control 
knowledge within a system framework. 

In fact, to manage a knowledge base for 
supporting tasks, we must take into account 
the follows : 

(1) Domain knowledge representation and 
control knowledge representation. 

(2) The sharing of obJects and their 
properties by multiple tasks. 

Thus the ObJect/Task modeling contains 
.three levels the obJect level, the 
association level, and the task level. 

The proposed approach is characterized by 

~1), A rule-based obJect modeling mechanism 
based on the integration of obJect
oriented pro9ramming paradigm and logic 
programming. 

(2) Modeling the control structure of a 
problem-solving or decision-making task 
as a net, and then exploring a rule
based. linguistic and precise net 
specification formalism and a multiple 
level, task-oriented constraints 
handling mechanism. 

(3) Treating task as ~ystem obJects through 
which a'task liberary may be constructed. 

Under this obJect/task modeling approach, 
database applications are specified as 
localized domain knowledge representation 
and explicit control knowledge 
representation. Differnt roles ~n o~J~ct 
plays in different tasks can be ldentlfled 
distinctly. 

This approach is being designed and 
partially implemented on top of System Q, 
an extended experimental RDB system [Melk 
83ab] [Chen B5b] on a VAX computer. 



THREE LEVEL OB~ECT/TASK MODELING 

To illustrate the proposed concepts we 
first introduce a decision-making example 
concerning a simplified manufacturing order 
processing system for an instrument 
assembling company. The information needed 
is stored in certain relations 
(predicates), includes "order" (states 
orders), "asmb-des" (lists the parts needed 
for each model of machines, as well as the 
assembly time)J "parts-inv" and 
"products-iny" (describe the inventories of 
parts and ready-made machines), and "parts" 
and "machines ll (descride models and costs), 
whose instances are viewed a& facts of the 
fo llowi.ng form : 

order (order_id, model, q,ty .. , finish_Clty). 
parts (c od e, cost >. 
mac hines (model, cost >. 
parts_inv (code, name, amt). 
products_inv (model, name, amt). 
asmb_des (model, asmb_hrs, 

config(senser, cpu, monitor, frame)>' 

Level 1 Object Mode-ling 

The rul~-based obJect/task modeling 
approach described in this paper is 
characterized by the integration of obJect
oriented programming, LP and RDB. 

(1) i-method (the individual-oriented 
method). which is defined on a single 
obJect instance (universally Cluantified), 
as 

i-method : obJect (argt. arg2 •... ) 

(2) c-method (the class-oriented method), 
which is defined on a class of obJect 
instances (the simplest example is 
a relation with multiple tuples>. Its 
application is represented as 

c-method : obJect () 

(3) mc-methods (the multi-class-oriented 
methods >. 

An obJect type is the structural 
specification of a class of obJects, which 
describes its name, structure, methods and 
constraints. where the structure defines 
the attributes and constituents possessed 
by that object. methods consist of the 
rules applicable to the obJects in term of 
Horn clausesi integrity constraints are 
assertions that instances of obJects are 
compelled to abey, which can be classified 
according to various criteria~ such as type. 
constraints, dependency constTaints and so 
on. In our approach a constraint is 
specified similar to' the body. of a Horn 
clause. 

Thus for example the obJect type lIorder" is 
specified as : 

In the obJect-oriented semantic modeling 
paradigm, reality is represented in terms 
of obJects as well as their relationships 
[Cox 84~ Each object has an a~sociated 
set of procedures called methods denoting 
its dynamic behaviors. The manipulation of 
obJects is mad& by applying the ~ethods on 
them, referred to as "sending the obJects a 
message". 

obJect_type order (ORDER_ID. MODEL. GTY. FINISH_GTV) 
{ 

Integrating obJect-oriented programming 
paradigm and logic programming, generally 
we identify an obJect structurally as 

(1) a primitive one represented by an LP 
predicate without an~ nested predicate 
as its argument. 

(2) a compound one composed in a nested or 
recursive fashion from two o~ more 
obJects, represented by an LP predicate 
with a~ least one predicate as its 
argument,. 

Then each method is stated as an LP clause. ) 
Passing a'message is specified by using the 
infix operator II:", (the number of 
arguments may be zero>. We classify tblO 
kinds of methods: 

structure { ORDER_ID c4. 

} 

MODEL : ca, 
GTY : i4, 
FINISH_GTV : i4. 
leey : ORDER_ID 

constraints {MODEL [ "hc20, hc40. hc60.". 

i-methods 

c-methods 

} 

GTV > 0, GTV < 10000, 
GTV > FINISH_GTV; 

{ what_Ie ind_order ([i nstrument.t1ODELJ ):
order (_, HODEL, _, _L 

unfinish_Clty (X) :-

} 

order (_, _, GTV, FINlSH_QTY), 
X is GTV - FINISH_GTY. 

{ diff (IDa, IDb, X) :-

} 

order (IDa, _, GTVa, _), 
order CIDb, ,GTVb, _), 
X is GTVa - OTYb'. 

201 



An instance of an object is a predicate 
with all the arguments been instantiated 
with specific values. Thus the goal 

?- unfinish_qtv (X) : 
order (0056, hc40, 30, 10). 

succeeds with X = 20. 

The interpretation of a message consists in 
the unification of the obJects, the 
unification of the method and the proof of 
the method. If an obJect is declared by 
"isa" as an sub-obJect of others and 
therefore inheriting their behavioral 
properties, then the unification of the 
method with the methods associated with the 
ancestors of the obJect in the "isa" 
network, is necessary. When an obJect has 
more then one ancestors, we first determine 
the order of the ancestors, then use a so 
called "upward-first" search strategv, 
starting from checking the first available 
ancestor, observe to see whether it is a 
root (no further ancestor remained), if 
not, move upward until either the 
unification succeeds or back to trv the 
next possible ancestor at the highest 
possible ancestry level. 

Passing message implies that certain action 
may be taken ruled by the specified method 
clause. then the resulting predicate (on 
the left side of the clause) can be 
reasonably viewed as a virtual obJect (VO). 
The instance of a VO is derived from the 
instances of other(source) objects, and 
instantiated by passing message thus 
represents the results of the message 
passing. Thus VO's may be viewed as a link 
between data access and data processing. 

The declaration of a VO contains structure 
(which can be the same as for the usual 
actual ob Ject), source ob Jects, mapp ing 
rules and so on. The source obJects can be 
actual or VO or a mixture of both, thus a 
VO may be defined hierarchically. We list 
below a VO specification "partsreq", in the 
order processing example, where one of its 
source obJect "orderproc" itself is aVO. 

ViTtu.l_obJect_t~pe 
paTts_Teq (ORDER_ID. req(CODE. OTY» 
{ 

structuTe { ORDER ID : c4. 
req (CODE. OTY) 

{ CODE: c4. 

} 

OTY : i4. 
ke~ : CODE 

{ 85mb_des. oTder-proc 
} 

aapping rules 
{ parts_req (ORDER_ID. Teq(CODE. OTV» :

orderJroc (ORDER_ID. _' _' _' O. _). !. 

} 

} 

f'ai 1. 

Unification is the way to make VO's 
physically accessible. In the case that a 
VO has virtual source obJects, the latter 
must be instantiated in advance according 
to their own definitions. and such a 
process may spread upward in the virtual 
object network until all the actual and 
VO's involved are fully instantiated. 
Syntactically, the instantiation of aVO, 
such as "partsreq", is represented by the 
clause 

mapping (parts_req). 

The instance of a VD has a life time which 
extends over a single task. Duplicate 
unification for VD's in a task can be 
reduced unless its source obJects are 
altered. 

Although a VO mapping is Just one or a 
cluster of rules. a VO is a more feasible 
entity than a rule. a VO has a structure 
definition, can be directly queried at a 
high level, with a printing format; It 
can, flexibly, either be used as a source 
obJect for other VO's, or be involved in 
tasks. 

level 2 Heuristic Association 

Although in general everything could be 
viewed as an obJect ·[Wilson 83], It is best 
to consider only the semantically 
meaniningful objects. In fact. the need to 
represent associative behaviors of a group 
of different type obJects, without creating 
any "fuzzy" obJect, does arise in many 
situations. For this purpose we introduce 
a concept called "association". which 
describes the non-hierarchical, heuristic 
relationships amon~ classes. typically 
represented by mc-methods. 

In fact, an association neither introduces 
any new obJect. nor reffers to any storage 
structure. it only mentions the dynamic 
behaviors caused by a group of different 
types obJects. and is more suitable to be 
interpreted as a schema. which provides a 
link from the problem space to the solution 
space. 

202 



Level 3 Task Modeling 

The task modeling concerns not only the 
domain knowledge (about obJects), but also 
the control structure <about scheme) whose 
description may be viewed as certain 
meta-rules, determining the usage of domain 
knowledge and the linkage of actions which 
make up an operational scheme with desired 
run-time control [Mel 83aJ. 

Since the task scheme is basically a 
forward chaining network with a number of 
paths, our proposed task specification 
approach is founded on a rule-based 
linguistic net description formalism which 
was presented in author's another paper 
[Chen 85b], involving three basic kinds of 
components: action, linker and net. 

In the obJect-oriented paradigm, actions 
are denoted by the messages (methods on 
obJects) to be passed. An action 
specification gives the correspondence 
between the statically described message 
and the action as its execution. A message 
passing at different stage of a task must 
be identified separately, except in the 
case of a loop. There is a one-to-many 
mapping from the space of methods to the 
space of actions. 

Linkers describe the conditions for each 
possible path in the net denoting the task 
scheme, that is, the connection rules. 
Each linker has four arguments 
(attributes), as linker (LINKERNAME, 
LINKMODE, TERM I NATEMODE, CONDITION). The 
LINKMODE may be 'r' (regular) or 'c' 
(conditional branch>. The TERM I NATEMODE 
includes 'h' (hard termination with system 
state recovery, if errors are detected), 
and's' (soft termination without state 
recovery) . 

A net definition specifies the internal 
linkage among the actions and the control 
flow (not data flow, as a rule, all 
inter-action communication must be carried 
out by accessing data/knowledge base, which 
may be viewed as "mailboxes"). 

The maJor feature of the proposed net 
specification approach consists in lifting 
net specification fron the structure level 
to the function level. This is 
characterized by introducing the concepts 
of net-structures and net forming 
operations called path forms for 
constructing new nets from existing ones, 
which map net-structures to net-structures 
in general. 

A path form is an expression denoting a 
combination of net-structures which depend 
on the actions, I inkers and sub-nets that 
form the parameters of the expression. 

203 

Examples of parth forms are 

A > B <Composition), 

A > (P)B <conditional composition through 
a linker P), 

[Ai BJ (serialization), 

(P){Ai Bi C} (conditional branch), 

A » {Bi Ci D} (compose-to-all, means 
[A>B; A>C; A>D]). 

These path forms can be utilized 
hierarchically or recursively for 
representing a complex net as the 
combination of certain simpler (or lower 
level) nets. And in fact more additional 
path forms may be defined and implemented. 

Loops are handled by a naming mechanism, 
the first-meet rule, describing how to 
handle a symbol for an action, a linker or 
a sub-net, which appears more than once in 
a net-expression, by going back to the 
leftmost position in the expression where 
the symbol appears. 

To illustrate the proposed approach, we 
will give a complete rule-based task 
specification for the order processing 
example mentioned before, as following. 

Figure 1. 

proc j 

__ J 



task order-processing 
{ 

} 

obJect_specification 
{actual_obJects {order,products_inv,parts_inv,asmb_des,parts,machines 

} 

virtual_obJects { order-proc, parts_re~, wk_ticket 
} 

mc-methods {update_inv (MESSAGE) :-

} 

order-proc (ORDER_ID, MODEL, PICK_GTY, ASMB_GTY, 
WAIT_GTY, SALES_VALUE», 

asmb_des (MODEL, _, config(CODE_S,CODE_C,CODE_M,CODE_F», 
retract (products_inv (MODEL, NAME, AMT», 
NEW_AMT is AMT - PICK_GTY, 
assert (products_inv (MODEL, NAME, NEW_AMT), 
retract (parts_inv (CODE_S, NAME_S, AMT_S», 
retract (parts_inv (CODE_C, NAME_C, AMT_C», 
retract (parts_inv (CODE_M, NAME_M, AMT_M», 
retract (parts_inv (CODEJF, NAMEJF, AMT_F», 
NEW_AMT _S is AMT _S ASMB_GTY, 
NEW_AMT _C is AMT _C ASMB_GTY, 
NEW_AMT_M is AMT_M - ASMB_GTY, 
NEW_AMT_F is AMT_F - ASMB_GTY, 
assert (parts_inv (CODE_S. NAME_S, NEW_AMT_S», 
assert (parts_inv (CODE_C, NAME_C, NEW_AMT_C», 
assert (parts.:...inv (CODE_M •. NAME_M, NEW_AMT_M», 
assert (parts_inv (CODE_F, NAMEJF. NEW_AMT_F», 
MESSAGE = invetories_updated. 

update_order (MESSAGE) 
order-proc (ORDER_ID, MODEL, PICK_GTY, ASMB_GTY, 

WAIT_GTV, SALES_VALUE». 
retract (order (ORDER_ID, MODEL. GTV, FINISH_GTY», 
NEW_FINISH_GTY is FINISH_GTV + PICK_GTV + ASMB_GTV, 
assert (order (ORDER_ID, MODEL. GTV, NEW_FINISH_GTY», 
MESSAGE = order_updated. 

constraints { order with_cons {MODEL [ "hc40, hc60"} 

} 

products_inv with_cons {products_inv (MODEL, NAME, AMT). 
machines (MODEL. COST), 
COST * AMT < 500,OOO} 

scheme_specification 
{action (o is mapping (order-proc). 

a is mapping (wk_ticket). 
b is mapping (parts_re~). 

net 

linker 

} 

} 

u is update_inv (MESSAGE) : parts_inv(), products_invC), 
asmb_des (), order.J)roc (>. 

c is listing (parts_inv). 
d is listing (products_inv). 
v is update_order (MESSAGE) : order (), order-proc (). 

{ order-processing 
proc 

is (pO) @proc > @update 
is 0 > (pl)[ai bJ 

update 
} 

-( pO is 
p1 is 

} 

is u > [Ci dJ > v 

(r, h, (order with_cons (GTV > 10}» . 
(r, h, (order-pl'oc with_cons {ASMB_GTV :> a}, 

parts_inv with_cons {GTV > a}»~ . 

204 



We assume that all the anticipating obJects 
are previously declared. Within this task, 
the virtual obJects only need to be 
instantiated once (by "mapping"). In Tact, 
the three virtual obJects, holding the 
resulting data oT the order processing 
task, can also be simply Q,ueried outside 
this task, Just Tor estimation, without 
updating the system. This is an evidence 
showing the Tlexibility oTfered by our 
multiple level obJect/task modeling 
approach. 

The net representation Tor the task is 
illustrated in Figure 1. Its performance 
can be described as follows: Action 0, a, 
and b carry out the order processing in 
terms of computing virtual obJects 
"orderproc", "workticket" and "partsreq,", 
and convey the resulting data to users; 
actions u and v update the inventories and 
the order; action c, d display the new 
state of inventories after processing the 
current order. Certain control rules are 
specifie~ at linkers pO and pl. 

TASKS AS SYSTEM OBJECTS 

Tasks can be viewed as system obJects as 
well, the meaning for this is two folds 

(1) In this approach, the "task" is treated 
as a special type of system obJects with 
a set of operations defined on it, such 
as q,uery, update, execute, ... etc. Thus 
a knowledge based "Task Libraries" could 
possibly be built easily. 

(2) A task may correspond to a cluster of 
special VO's which hold the resulting 
data of the task running. 

The concept oT Generalized Virtual ObJect 
(GVO) is developed for integrating action 
capabilities and operational dynamics, 
conveying therefore the execution results 
of complex decision/action schemes to 
end-users in terms of high-level data 
accessing. 

DiTTerent from the approach for handling 
VO's, the GVO computing is characterized by 
active (vs passive) and dynamic (vs static) 
which may invoke any transactions, bring 
broad state changes and, on the other hand, 
be contributed by the feed-back effects of 
above state alterations. A process 
handling approach is also developed which 
can directly translate a net-oriented 
decision/action scheme making up a GVO 
mapping into an implementation. 

205 

CONCLUSIONS 

Logic Programming and Functional 
Programming have set a bridge between AI 
and other fields [Chen 85al. For 
developing more intelligent information 
systems, in this work we have combined 
obJect-oriented paradigm, logic 
programming, semantic modeling and event 
modeling, providing therefore complementary 
benifits in inference, deductive q,uery 
support, integrity control, and explicit 
control knowledge representation, towards a 
generalized management of data, action and 
operational schemes. 

REFERENCES 

[Chen 86al G.Chen, "A Rule-based ObJectl 
Task Modeling Approach", Proc. of ACM
SIGMOD 86 International Conference, 
Washington D.C. 1986, USA. 

[Chen 86bl G. Chen, liThe management of 
Dynamically Distributed Data Base Windows", 
Proc. of International Conference on 
Very Large Data Bases (VLDB'86), 1986, 
Kyoto, Japan. 

[Chen 85al G. Chen, "Extending the 
Implementation Scheme of Functional 
Programming System FP for Supporting the 
Formal Software Development Methodology", 
Proc. 8th International Conference on 
Software Engineering, London, 1985. 

[Chen 85b] G.Chen, "Toward A Generalized 
Data/Action Management : An Approach for 
Specifying and Implementing Operational 
Schemes n , Proc. 1st Pan Pacific Computer 
Conference, Melbourne, Australia, 
Sep. 10-13, 1985. 

[Cox 84] B.J.Cox, "Message/ObJect, An 
Evolutionary Change", IEEE Trans. On SE, 
pp.50-61, Jan. 1984. 



[QaI184] H.Qallaire. ~.Minker and 
~.Nicolas. "Logic and Databases: A 
Deductive Approach". Computing Survevs. 
Vol. 16. No.2. 1984. 

[Melk 83a] M.Melkanoff and O.Chen. "An 
Experimental Database Which Combines 
Static and Dvnamic Capabilities". Proc.of 
Engineering Design Applications. 
ACM-SIGHOD'83/Database Week. 1983. 

[Melk 83b] M.Melkanoff and O.Chen. 
"Integrating Action Capabilities into 
Information Databases", Proc. 2nd Interna
tional Conference on Databases (ICOD-2), 
Cambridge. UK, 1983. 

[Parker 84J D.Parker et al., "Logic 
Programming and Databases", Proc. 
Int. Workshop on Expert Database Svstems, 
1984. 

[Ullman 85] ~.Ullman, "Implementation of 
Logical Ouerv Language for Databases". 
Proc. of ACM-SIGMOD 85. 1985. 

[Zani 84] C. Zaniolo, "ObJect-Oriented 
Programming in Prolog", Proc. Int. Logic 
Programming Svmposium. IEEE 1984. 

206 



A PLANT INTELLIGENT SUPERVISORY CONTROL EXPERT SYSTEM 

Moonis Ali and Eddie S. Washington 
Knowledge Engineering Laboratory 

The University of Tennessee Space Institute 
Tullahoma, Tennessee 

ABSTRACT 
A Plant Intelligent Supervisory Control 

Expert System (PISCES) is be i n g 
developed in the Knowledge Engineering 
Laboratory at the University of 
Tennessee Space. Institute (UTSI). PISCES 
is a knowledge-based system who s e 
control strategy can be applied to most 
types of process control plants. PISCES 
will be employed at the power plant 
research facility located at UTSI. PISCES 
uses a modified form of backward 
chaining which allows the system to 
dynamically generate new top level 
hypotheses. PISCES control strategy also 
performs multiple lines of reasoning 
during hypothesis verification. Since 
PISCES must operate in a real time 
environment, knowledge base indexing 
utilizing discrimination nets have been 
implemented to increase s y s t e m 
efficiency. PISCES also contains an 
explanation facility and rule editor that 
increases confidence in the s y s t e m 
diagnostics and facilitates knowledge 
acquistion. 

INTRODUCTION 

At UTSI we are developing an expert 
system called PISCES. PISCES is designed 
to provide an on-line aid in monitoring 
plant performance and in diagnosing 
plant system malfunctions in the United 
States Department of Energy's (DOE) Coal 
Fired Flow Facility ( C F F F ) 
magnetohydrodynamics (MHD) test 
facility located at UTSI. The Low Mass 

Flow (LMF) Test Train, located in the CFFF 
at UTSI, is an experimental 
magnetohydrodynamics (MHD) flow train 
designed for a thermal input of 28 MW. 
Fig. 1 is a schematic showing the current 

CH2345-7/86/0000/0207$01.00© 1986 IEEE 
207 

configuration of the flow train. Futher 
description of the facility is given in 
reference 3. 

PISCES is a modified form of EX£1-2J. 
EX and PISCES are both rule bas e d 
systems that use a modified form of 
backward chaining which allows the 
system to generate new top I eve I 
hypotheses. EX was developed to perform 
fault diagnostics for setting oxidant flows 
during the vitiation heater ignition. The 
knowledge base of EX contained 
approximately 100 rules about the 
oxygen and nitrogen system fl 0 w s , 
pressure, temperature and the oxidants 
delivery system control valves. PISCES 
will perform fault diagnostics and facility 
parameter monitoring not only d u ri n g 
vitiation heater ignition, but also during 
ignition of the primary and secondary 
combustors. Once steady state operations 
is achieved, PISCES will monitor facility 
performance. Since PISCES will operate 
online, it is . necessary that it provide real 
time response. To reduce system reponse 
time, the sequential data structure was 
replaced with an indexed structure which 
employs a discrimination net to 
implement the indexing. An additional 
improvement in response was 
accomplished by eliminating the need for 
a search in PISCES explanation facility. 
PISCES also provides a rule editor that 
allows knowledge acquistion while the 
system is operating. 

PROBLEM DOMAIN 
The architecture of PISCES incl udes 

plant monitoring and fault diagnostics in 
the domain of facility operation from 
checkout to secondary combustor ignition. 
The successful ignition of the CFFF 



LMF4 FLOW" TRAIN 

secondary combustor requires that the 
correct sequence of procedures and 
events be followed .. Before operation, of 
the facility can begin, certain p"r e
operational and operational procedures 
must be performed on the facility and 
test train components. After these h a v e:. 
been accomplished, the vitiation heater 
(oxidant pre-heater) must ,be ignited. This 
is followed by the ignition of the primary· 
combustor on fu,el oil and then coal. 
During each .. step in the sequence certain 
conditions and selected parameter values 
must be satisfied before the next 
sequence in the chain of events can begin. 

Operation of the facility begins with 
the heating of the radiant furnace to 
operating temperature using industrial 
gas burners. This preven ts thermal 
shocking of the furnace refractory. Once 
the furnace is sufficiently heated, ignition 
of the vitiation heater is accomplished by 
first setting nitrogen flow followed b,y 
oxygen flow. When the oxidants flows 
have been established the fuel oil flow to 
the vitiation heater burner plate is 
initiated. Ignition is accomplished using a 
spark igniter. After successful ignition· of 

fIG. 1 

208 

the vitiation heater, fuel oil is introduced 
to the primary combustor. This oil ignites 
in the presence of the 1500 of oxidants. 
Next, coal flow to the primary combustor 
is started. The ignition of the secondary 
combus tor requires the proper test 
conditions to be set which results in a 
stoichiometric value of 0.85 . It is in this 
domain in which PISCES will be us e d. 
During each phase of facility operation, if 
PISCES determines that a parameter" is 
outside of its normal operating range or 
an event does not occur in the pro per 
sequence, PISCES will display a message 
and attempt to determine the cause and 
possible solution to the problem. PISCES 
also allows the plant operators to request 
assistance in solving problems. 

KNOWLEDGE BASE 
A PISCES knowledge base has bee n 

developed on the basis of the. knowledge 
acquired from three MHD engineers. One 
of the experts was the project leader for 
the design and fabrication of the CFFF. 
The other two experts are in charge of 
test operation fox: the CFFF. Written 
procedures and component operation' 



manuals have also been used as a source 
of knowledge about the domain of PISCES. 
There are currently 200 rules in the 
knowledge base. They con t a i n 
information about the proper sequence of 
events, operational procedures, the 
nominal ranges of parameter values and 
the characteristic behavior of the test 

. train components up to and including the 
radiant furnace. A typical rule in the 
knowledge base contains IF and THEN 
clauses. An optional ELSE clause can also 
be contained in a rule. The IF clause 
contains the antecedents of the rule. The 
THEN clause contains the consequents of 
the rule. The ELSE clause contains the 
alternates to the THEN clause. If the 
antecedents are true, the THEN 
consequents are asserted to be true. 
However, if the antecedents fail, the ELSE 
clause triggers a multiples lines of 
reasoning to be pursued. Examples of 
rules with and without the optional ELSE 
clause are shown in Figures 2 and 3. Each 
of the clauses may contain one of the 
following: 

1. A pseudo English representation of 
some known condition. 

2. An assertion that needs to be 
verified before a conclusion can be 
drawn. 

3. A LISP function to be evaluated. 

With each THEN or ELSE clause a 
certainty factor is associated. The 
certainty factor represents the expert 
degree of confidence in the conclusion 
drawn if antecedents are known with 
absolute certainty (certainty factor equals 
1.0). Positive numbers indicate belief and 
negative numbers indicate disbelief. 
When the antecedents themselves are not 
known with absolute certainty, a new 
value of certainty factor is computed by 
employing an approach similar to 
MYCIN[41. The examples presented in Fig. 
4 and 5 from a typical session compares 
PISCES finding when antecedents are 
known with certainty and when they are 
not. 

209 

(rule 1 
(if (USP prog () 
(cond (N2-sensors-polled (return t)) ) 
(setq N2-sensors-polled t) 

(write T 'lOp en N2 isolation valvel) 
(write T 'ISet N2 control valve!) 
(write T ,!Polling sensors!) 
(return t)) 
(N2flow setting succeeds) 
(USP prog () 
(cond (02-sensors-polled (return t)) ) 
(setq 02-sensors-polled t) 
(write T 'lOp en 02 isolation valve!) 
(write T 'ISet 02 control valve!) 
(write T 'IPolling sensors!) 
(return t)) 
(02 flow setting succeeds)) 
(then (1.0 ignition succeeds)) 
) 

Fig. 2 Typical Rule without Optional ELSE 

(rule 4 
(if 

Clause 

(LISP and « N2Jlow 1.61) 
(> N2Jlow 1.31) 

(not- '(ignition succeeds)))) 
(then (0.9 N2 flow is normal)) 
(else (-1.0 N2 flow is normal) 
(LISP check 
(N2 flow is not normal) 
(N2 isolation valve is closed) 
(N2 differential pressure normal) 
(N2 temperature is normal) 
(N2 pressure is normal) 
(N2 control valve is not working right) 
(N2 flow controller is not working 

right) 
(N2 flow calculation not correct) 

(MACSYM N2 flow calibration curve is 
bad))) 

) 

Fig. 3 Typical Rule with Optional ELSE 
Clause 



enter hypotheses 
? (02 differential pressure sensor 
was recalibrated) 
Is this true: 
02 differential pressure sensor 
was changed recently? y 
Rule r00092 deduces 
[4] ·02 differential pressure 
sensor was recalibrated with 
certainty of 0.96 

enter hypotheses 

Fig. 4 antecedents known with 
absolute certainty 

? (02 differential pressure sensor 
was recalibrated) 
Is this true: 
02 differential pressure sensor 
was changed recently? 0.8 
Rule r00092 deduces 
[2] 02 differential pressure 
sensor was recalibrated with 
certainty of 0.768 

Fig. 5 antecedents known with 
certainty of 80% 

During backward chaining, EX [1-2] 

performed sequential searching which 
resulted in slow system response. In 
order to minimize search time, PIS C E S 
replaced the sequential k now led g e 
structure with an indexed knowledge 
structure. The rules are currently indexed 
on the syntatic structure of the individual 

members of the THEN clause. PISCES uses 
a discrimination net to attach properties 
to arbitary expressions. Encoding th e 
information represented in the THE N 
clause using this scheme allows us to 
attach to each unique member of any 
THEN clause the list of rule numbers in 
which it is contained. Each element in the 
THEN clause is used as a link in the 
discrimination tree. When searching for a 
rule that contains the hypothesis fI( 0 2 
pressure sensor failed)" in its THEN 
clause, each link is followed until we 
either reach a terminal node that contains 
a list of all the rules with this hypothesis 
in its THEN part, or we discover that 
there is no node with a transition on the 
current element. These two possibilities 
are illustrated in Fig. 6. The advantage of 
this method over the sequential search is 
that the search time is significantly 

210 

reduced. In a sequential structure the 
entire knowledge base must be searched 
to retrieve the rules that relate to an 
hypothesis. However, in PISCES 
knowledge structure a traversal of the 
discrimination net will retrieve all the 
rules that apply to the hypothesis. If no 
path through the net can be found the 
algorithm will terminate a g a i n 
eliminating the time wasted in 
unsuccessful searches in sequential 
structures. The knowledge acquistion 
algorithm works the same way, except 
that instead of returning failure, a path is 
created to a new terminal node for this 
rule. The algorithm also checks for rule 
duplication when new rules are added. If 
the rule is a duplicate it is not added to 
the knowledge base. The rule itself is 
stored on the property list of its rule 
number. 

lop 

02 

If unlor 

IBII~ 
If If flullbraled 

Ii (r96, rl47, rl561 I 

"97, rl401 

'I uelue 

'I nol 

'I workIng 

'I 
(r64, r661 

Fig. 6 Simple Discrimination Net 

CONTROL STRATEGY 
PISCES has a top level loop t hat 

manages the systems resources. This top 
level loop provides the lower level 
functions of synchronization and 
communication. The low level functions 
provide parameter checking, handling of 
keyboard interrupts, goal verification and 
knowledge base maintenance. If the 
monitor function detects an abnormal 
condition, the top level calls the correct 
function that generates a goal to 
determine the cause of the fault. A user 
request for a goal verification can also be 
entered from the keyboard. 

PISCES uses modified backward 
chaining that allows multiple lines of 



reasoning to verify an hypothesis. In 
traditional backward chaining a list of 
one or more hypotheses is verified by 
using the following strategy: 

1. See if the current hypothesis is 
already a known fact. 

2. If it is known, it is verified. 
Therefore return SUCCESS. 

3. Otherwise, find rules in your 
knowledge base that contain the 
hypothesis in their consequent 
clause. 

4. Then use the antecedent clause of 
these rules to generate a new list of 
hypotheses. 

5. If no rule can be found, ask user. 
6. Now repeat the above steps starting 

at one. 

7. If all rules have been exhausted 
and the current hypothesis has not 
been verified, return FAILURE. 

PISCES differs from the traditional 
backward chaining, in that if it fails to 
verify an hypothesis, it can, at the 
request of the current rule, attempt to 
determine the reason for the failure 0 f 
the hypothesis. This is accomplished by 
adding the following steps: 

8. Upon failure to verify the 
hypothesis, if an ELSE clause is part 
of the rule, use it to generate an 
alternate list of hypotheses 

9. If all the rules have been exhausted 
and the alternate list of hypotheses 
have not been verified, return 
FAILURE. 

Shown in Fig. 7 is the flow of control in 
a traditional backward chaining system. 
As can be seen from the diagram shown 
in Fig. 7, a system using traditional 
backward chaining can report success 
only on successful verification of the 
original hypothesis. For example, the 
hypothesis requiring verification is 
contained in the consequent clause of rule 
R90. The antecedent clause of rule R90 
contains a sub-hypothesis that can be 
verified by rule Rll. As illustrated in Fig. 
7, rules R3, R 70, R55 and finally rule Rn 
must be successfully executed before the 
original hypothesis is verified. If at any 
sub-level in the verification process a 
sub-hypothesis fails, the single line of 

211 

reasoning approach must report failure 
and give up. However the diagram shown 
in Fig. 8 illustrates the ability of PISCES to 
dynamically generate new top level 
hypotheses. If rule Rl fails to verify, 
PISCES will use the knowledge contained 
in the rule R2's else clause to generate 
new top level hypotheses (multiple lines 
of reasoning) to determine the cause 0 f 
the failure of the original hypothesis. Also 
shown in Fig. 8 is PISCES' ability to 
determine the refationship between a 
fault and it's effects from any of the 
following cases: 

Single Fault -> Single Effect 
Single Fault -> Multiple Effects 
Multiple Faults -> Single Effect 

Multiple Faults -> Multiple Effects 

In PISCES multiple lines of reasoning 
are usually pursued due to a n 
unsuccessful verification of an hypothesis 
involving . the normal operating condition 
of a component or the normal operating 
range of a parameter value. The rule 
shown in Fig. 9 wo.uld be used to 
ascertain whether the nitrogen fl 0 w 
differential pressure value was in the 
correct range. Rule 9 contains 0 n e 
conditional clause that requests a LISP 
expression to be evaluated. T his 
expression checks the range of the 
nitrogen differential pressure. If the 
expression evaluates to true, the fact "N2 
differential pressures is normal" would 
be asserted. But, if the expression 
evaluates to false, then the fact "N2 
differential pressures is not normal" 
would be asserted. This is indicated by 
the negative 1.0 certainty factor of the 
first clause in the ELSE part. 



rl0 

~
IC 135 ~11; 125 ~11; F'7S ~AC F2 ~11; FlO ~11; 

RR 1t5S 1t70 R3 1111 R90 

11: 11; It; 11; It; 11; 

F38 F4 F4 n 

no 

F30 
F30 

mPOTHESIS : IGNITlaf SEQUENCE SUCCEEDS SUCCESSFULLY 

F1 JlEPR!SEN'lS EI'l'HEll A FN:T IN l(NaILEOGE BASE OR SENSCR vu.cE 

R1 UPRESENTS THE 1-th RULE 

Fig. 7 Control Strategy with Single-line of Reuoniq 

DEDUCES 

.IKILII 

ftnll'U 

,.ILlS 

.UICII 

~IIZ!O ZII ~ZIO 

u ..... zzo 

FO "X IIC 'lIT IlL 

1Ir.~ Ie IIC 
'ULIUS .. ~ • 
1110 

IIULl IPLE 

FI l 

HoveES 

• 'KGLEI 

IIULI "LE 

'lULlS 

III 110 

/~ 
'"DlCIIlES IIllOltRIIL COlD" I 0" 

It 102 

+--- ItIU 

III" 

FI,. • Cant~ol St~atlgv Ulth nult!,11 LIn,. of Rlo.onlng 

212 

1 

~YPOlHESIS 

+ 



(rule 9 (if 
(LISP and « N2_differentialyressure 

30) 
(plusp N2_differentialyressure))) 
(then (0.95 N2 differential pressure 

is normal)) 
(else (-1.0 N2 differential pressure is 

normal) 
(USP check 
(N2 differential pressure is not 

normal) 
(N2 isolation valve is closed) 
(N2 tank is empty) 
(N2 differential pressure sensor failed) 
(N2 pipe is leaking))) 
) 

Fig. 9 Example of Multiple Lines 
of Reasoning 

The terminal session presented in Fig. 10 
illustrates the process PISCES uses to 
determine the root cause of the 
abnormal nitrogen differential pressure. 
When PISCES is requested to verify that 
nitrogen differential pressure is normal, 
it finds that the parameter value is out of 
range. It then asserts that the parameter 
value is not normal. Then the ELSE clause 
is executed and the LISP function 
activates multiple lines of reasoning to 
determine the cause of the fault. 

enter hypotheses 
? (N2 differential pressure is 
normal) 
Rule r00009 deduces 
[1] n2 differential pressure is 
normal with certainty of -1.0 

Fig. lOa: 
Here, the operator query PISCES as 
to whether nitrogen differential 
pressure is normal. PISCES using 
rule 9 determines that· the 
nitrogen differential pressure is 
not normal. 

213 

Is this true: 
n2 tank pressure gauge indicates very 
low pressure? n 
Rule r00013 deduces 
[3] n2 tank is not empty 
wi th certainty of 1.0 

Is this true: 
n2 differential pressure sensor 
output is greater than 5 volt? n 
Is this true: 
n2 differential pressure sensor 
output is 0 volt? y 
Rule r00020 deduces 
[5] n2 differential pressure sensor 
failed with certainty of 0.85 

n2 differential pressure is not 
normal because n2 differential 
pressure sensor failed 

Fig. lOb: 
The failure to verify the normal 
operating condition causes PISCES to 
follow the alternate line of reason
ing contained in rule 9 ELSE clause. 
In the above dialog PISCES questions 
the operator about information it 
needs to aid in determining the 
root cause of the fault. Once PISCES 
determines the cause· of the fault, it 
reports to the operator its findings. 

EXPLANATION FACILITY 
During the course of a session it is not 

uncommon for the operator to inquire as 
to the rationale behind the current line of 
questioning or to ask why a particular 
conclusion was reached. To provide the 
capability for dialog between the 
operator and PISCES, the explanation 
facility of EX£1-2] was incorporated. into 
PISCES and was essentially unchanged 
with one exception. EX attaches each 
assertion it makes to a unique number. 
Later if the operator req ues ts an 
explanation or justification of a particular 
assertion by entering a s tat e men t 
number, EX must search the knowledge 
base to find the rule containing the 
statement. PISCES avoids this search by 
not only attaching the assertion to the 
statement number, but the number of the 
rule used to justify it. In the example of 
the terminal (shown in Fig. 10) PISCES 
asks the operator whether the N2 tank 
pressure gauge indicated a very low 
pressure. At this point in the dialog the 
operator could ask PISCES why it needs to 



know this information. This exchange is 
shown in Fig. 11. For a more detailed 
description of the explanation facility see 
reference [1-2]. 

enter hypotheses 

? (N2 differential pressure is 
normal) 
[1] n2 differential pressure is 
normal with certainty of -1.0 

Is this true: 
n2 tank pressure gauge indicates very 
low pressure? why 

Because knowing whether n2 tank 
pressure gauge indicates very low 
pressure will help determine whether 
n2 tank is empty 

Fig. 11a: 
Here the operator wants to know the 
relationship between the nitrogen 
tank gauge reading. and the assertion 
that nitrogen differential pressure 
is not normal. 

Rule r00013 deduces 
[3] n2 tank is not empty 
with certainty of 1.0 

Is this true: 
n2 differential pressure sensor 
output is greater than 5 volt? 

how 3 

[i.e.,· how do I know that 1.0 n2 tank 
is not empty?] 

It is known that ••• 
lisp not- '(n2 tank is empty) 

and rule r00013 says that 
if 
lisp not- '(n2 tank is empty) 
then 
1.0 n2 tank is not empty 

therefore ••• 
1.0 n2 tank is not empty 

Fig. lIb: 
At this point PISCES has deduced that 
the nitrogen tank is not empty and is 
persuing the line of reasoning that 
the sensor may be faulty. However, 
the operator would like to know the 
rationale for the assertion that the 
tank is not empty. PISCES responds 
that knowledge base rule 13 says that 
if it . cannot be proven that the 

214 

nitrogen tank is empty then it not 
empty. 

RULE EDITOR 
A simple rule editor is provided 

with PISCES. It provides a parentheses 
free interface for adding rules to the 
knowledge base. The editor also performs 
syntax checking during rule input. The 
keywords IF, THEN, ELSE and END are 
used to direct the action of the editor. A 
sample session is presented in Fig. 12. 

enter rule in the form of 
if 

<if clauses> 
then 

<then clauses> •••• 
else 
•••• <else clauses> •••• 
end 

Fig. 12a Structure of PISCES rule 

if 
vh temp profile normal 
flame detector normal 
combustor pressure normal 
then 
combust·or performing well 
else 
combustor not performing well 
end 

do you wish to input another rule 
(yin) 

? n 

Fig 12b: 
To input a rule the operator first 
enters the keyword "if' followed by 
the rule antecedents. Next enter the 
keyword "then" which is followed by 
the consequents. The "else" and the 
else clause are optional. Upon 
completion of the rule the operator 
must enter end. 

CONCLUSION 
In this paper we have presented a 

description of PISCES. PISCES is a rule
ba~ed system that uses an English-like 
syntax to converse with the operator and 
represents knowledge about the domain 
of its application. PISCES has the ability to 
explain its action or to request m 0 r e 



information in attempting to reach a 
solution. PISCES has been implemented in 
a computer simulation environment to 
prevent interruption of the MHD plant 
testing schedule. Prior to installing PISCES 
on the MHD plant computer the current 
syntatical indexing scheme will be 
replaced with a semantic indexing 
scheme. Currently, the syntactic indexing 
requires the operators to s p e c i fy 
hypotheses exactly as they are stored in 
the Knowledge base, in order to request 
assistance from the system. In the next 
version of PISCES we will implement a 
natural language interface t hat 
transforms user queries into the internal 
representation used by the s y s t em. 

REFERENCES 
1. Ali, M., and Scharnhorst D. A., "An 

Expert System for Power Plant 
Monitoring and Diagnostics," The 1985 
ASME International Computers in 
Engineering Conference. Aug. 1985. 

2. Moonis Ali, and Dean Scharnhorst and 
Shan Chi, "EX: An Expert System for 
Power Plant Management," 
Proceedings of the Conference on 
Applied AI and Knowledge-Based 
Expert Systems, Nov. 1984. 

3. Moonis Ali, and Eddie S. Washington, 
"PISCES: An Intelligent Computer Aid 
to Power Plant Operators," Wattec 86: 
13th Annual Energy Conference, Feb. 
11-14, 1986, Knoxville, Tennessee. 

4. Shortliffe, E. H., Computer-based 
Medical Consultation: MYCIN. New 
York: American Elsevier, 1976. 

5. Charniak, E., Riesbeck, C. K., and 
McDermott, D. V., Artificial 
Intelligence Programming. New 
Jersey: Lawrence Erlbaum Assoicates, 
1980. 

215 



Knowledge-Based Layout Design System for Industrial Plants 

Kenichi Yoshida * , Yasuhiro Kobayashi * , Yoshikatsu Ueda ** , 
Hideo Tanaka ***, Shouichi Muto *** and Junichi Yoshizawa *** 

* Energy Research Laboratory, Hitachi Ltd. 
1168 Moriyamacho, Hitachi, Ibaraki 316, Japan 

** Systems Engineering Division, Hitachi Ltd. 
~,Kanda-Surugadai 4 chome, Chiyoda-ku,Tokyo 101, Japan 

*** Engineering Research Center, The Tokyo Electric Power Co. ,Inc. 
2-4-1 Nishi-Tsutsujigaoka Chofu-city,Tokyo 182, .Japan 

ABSTRACT 
A knowledge-based method is proposed 

for the layout design ·of industrial 
plants and applied as a layout design 
system for an electric power substation. 
In this method, dependency directed back
tracking is adopted as the means to real
ize.efficient modifications of intermedi
ate layout plans.while maintaining con
sistency among the data of the modified 
plan. The layout design system 
developed for the substation automati
cally generates layout plans which 
satisfy constraints and evaluates them as 
to construction cost, noise level, and 
other performance factors. 

1. INTRODUCTION 
A knowledge-based method is proposed 

'for the l'ayout design of industrial 
plants and applied as a layout design 
system for an ,electric power substation. 
The substation is an industrial plant 
which converts high voltage electric 
power to low voltage power. In designing 
a substation, one of the key phases is 
the layout 'of those components at the 
pl'ant si te. :A substation is composed of 
hundreds of electrical, ,mechanical -and 
architectural components. Layout 
designers are faced with the problems of 
treating the various attributes of these 
components, the spatial relation between 
them, and the spatial relation between 
them and the plant site when determining 
a layout plan. This complicated design 
process has been partially computerized 
to assist designers in this area. 

Conventional computer-aided design 
(CAD) systems ·for the layout of a substa
tion ,support the drawing of a layout plan 
on graphic terminals and/or numerical 
calculations to evaluate the construction 
cost, noise level from transformers, etc. 
[1] Few ~fforts, however, have been car
ried out to support the generation of 
layout plans which is essential to layout 
design. Ideally this facet of design 
should also be supported by a CAD system 
to enhance productivity in the layout 
design for industrial plants. It is, 
however, necessary for a CAD system to 
use designers'expertise directly in 

CH2345-7/86/0000/0216$OLOO © 1986 IEEE 
216 

order to support the layout plan genera
tion. 

Knowledge-based design systems have 
been proposed 'in the field of engineering 
design to realize the direct utilization 
of experts' knowledge. [2]-[4] Emphases 
are placed on the use of heuristic 
knowledge in declarative form and the 
simple inference engine in those applica
tion .systems, though a numerical'pro
cedure separate from rthe inference 
mechanism is also employed in the works 
of Refs. [3] and [4]. 

Expert designers, for example, use 
their heuristic procedures to solve the 
layout problem efficiently in a conven
tional design method for a substation. 
It is important fora layout design sys
tem to have intelligent functions which 
simulate designers' procedures to realize 
efficient problem-solving process. 
Hardly any research efforts, however, 
have been directed to their embodiment. 

The objec.tives of this study are to 
develop a knowledge-based method to real
ize the most efficient design process ,by 
the use of designers' procedures and 
apply it to a layout design system for a 
substation. 

2. METHOD OF INDUSTRIAL PLANT LAYOUT 
2.1 Experts' .Knowledge 

for Industrial Plant Layout Design 
In the industrial plant 'layout 

design, designers determine the layout of 
the various components at the plant .site. 
The layout design of a substation is 
chosen as an example to examine the 
characteristics of knowledge and its 
utilization in the design process. 

Arialysis of the .layout process of 
expert designers gives the following 
characteristics. 

(1) The use of declarative and pro
cedural knowledge 

Three typical examples of 
knowledge which are used in the 
design process are illustrated in 
Fig.l. Fig.l(a) sh'ows knowledge 
about the sequence of two steps to 
realize an efficient layout pro
cess. This is an example of pro
cedural knowledge. Fig.l(b) shows 



(a) First cancel the interference between components, 
then route the cable connecting them. 

(b) If the voltage of Gas Insulated switchgear (GIS) is 500 kV, 
then the apparatus width is 14.0 m and its height is 5.0 m. 

14.0 

.T A component 
5·°1 '--__ O_!_G_I_S---J 

(c) The capacitor is preferably located close to the transformer. 

Transformer ~lcapacito3 

Figure 1. Examples of Domain Specific Knowledge 

declarative knowledge about the 
size of GIS (Gas Insulated 
Switchgear). Fig.l(c) shows 
declarative knowledge about the 
relation between the location of a 
transformer and that of a capaci
tor. 

(2) The efficient modification of an 
intermediate plan 

In the qesign process, deci
sions made at an early' phase are 
not necessarily correct later. It 
is necessary, then, to modify the 
previous decisions while maintain
ing the consistency among the data 
of the- modified layout. It is, for 
example, difficult to predict if a 
component being placed now will 
interfere with the components 
placed in the futura. Designers 
are able to modify the location of
components and correct the layout 
plan. efficiently. 

(3) The preparation of design alterna
tives 

Design criteria of various 
types are available for the layout. 
design of a substation. Differ
ences in the initial conditions 
result in different plans, as do 
different criteria. Designers 
often prepare severa'l layout p~ans 
based on different sets of design 
criteria and compare them. to select 
the optimal plan for overall per
formance. 

217 

These characteristic functions are 
related to designers' expertise by. which 
expert designers can solve the layout 
problem efficiently. It is, therefore, 
necessary to embody these functions in 
the layout design system in order to 
improve productivity of the layout design 
of industrial plants. The individual 
methods to realize these functions in the 
knowledge-based layout design system are 
outlined in the subsequent sections. 

2.2 Knowledge Representation 
2.2.1 Procedural knowledge 

Procedural knowledge is represented 
by a functional module, which is a set of 
rules together with the control informa-
tion to use them. Figure;:. 2 shows· 
example representati.ons of' procedural 
knowledge. The functional module shown 
in Fig.2 is the representation of the 
knowledge shown in Fig.1(a), and is a 
procedure for routing the cable between 
components. The control information 
attached to this procedure is "(and 
rules)". T~is means "Rules in this 
module will be evaluated sequentially". 
When this module is invoked, first the 
procedure to' adjust the interference 
between components is used, then that to 
plan the cable routes is used. The 
statements "(infer 'adjust-interference)" 
and "(infer 'make-cable-main)" causes 
activation of these functional modules. 

The general design process is also 
controlled by the functional modules. 
The inference engine first invokes the 
modules which make an outline of the lay
out plan, and then invokes those which 
provide the details. 

; Following statements define the procedure 
; for routing the. cable. 
(module make-cable 

; Rules in this functional module 
; will be used sequentially. 
(and rules) 

; if the interference. between components 
; are not canceled yet, 
; then cancel it. 
(if (not (eq 'adjusted layout.interference}) 

(infer 'adjust-interfere» 

; if the interference between components are canceled 
; and the cables are not routed yet, ' 
; then route cable. 
(if (and (eq 'adjusted layout. interference) 

(not (eq 'made layout.cable») 
(infer 'make-cable-main» 

Figure 2. Example of Functional Module 

2.2.2 Declarative knowledge 
The declarative·knowledge is used to 

determine the layout of components at a 
speci£ic layout step. This kind of 
knowledge is represented by two types of 
methods; functional modules and demons. 
Demons are procedures that execute·when
ever a particular condition about the 
data' in the working area becomes satis
fied. 



The functional module represents a 
procedure to be executed in a specific 
situation of the layout process. For 
example, the knowledge shown in Fig.l(c) 
is not usable until locations of the main 
components, such as transformers and GIS 
are defined. 

The demon is used to represent 
knowledge which is invariable in the 
design process, such as values of common 
specifications of components. A typical 
example is the dimensions of the 
transformer. The knowledge shown in 
Fig.1(b) is represented by a demon as 
shown in Fig.3. The inference engine 
always watches when the demon in the 
knowledge base is activated. If the 
activation condition of the demon is 
satisfied, the demon is invoked and a 
change is made in the data of the layout 
plan. For example, if a designer speci
fies the voltage of a GIS as 500 kV, the 
activation condition of the demon shown 
in Fig.3 is satisfied, and the width of 
the GIS is set as 14.0 m. 

: Following statements define attribute of 
a component of gas insulated switchgear (GIS) 

(class GIS 

(demon 

: if voltage of S ( one of GIS ) is 500 k Volt, 
: then width of it is 14.0 m 

and height of it is 5.0 m. 
(if (eq 500K S.volt) 

(and (:- S.width 14.0) 
(:- S.height 5.0») 

Figure 3. Example of a Demon 

2.3 Modification of Layout 
In the layout design process, it is 

necessary to modify a previous decision 
and maintain the consistency among the 
data in the modified layout plan. It is 
often difficult to predict the impact of 
a lo'cal modification on another part of 
the layout plan, for which a secondary 
modification is required to maintain con
sistency for the primary· modification. 
Some efficient mechanism to backtrack and 
regenerate the layout plan should be 
added to an inference engine to realize 
efficient modification of an intermediate 
layout plan, while maintaining con
sistency among the data of the modified 
plan. 

The dependency directed backtracking 
can be a mechanism to modify the layout 
plan and to adjust side effects of the 
modification. Few attempts have been 
done to use it as a means to keep data in 
an intermediate plan consistent when the 
layout plan is modified, though the tech
nique of dependency directed backtracking 
has been experimentally studied for other 
purposes. [5]-[8] The modification 
mechanism which requires minimum data 
deletion is developed on the basis of the 
dependency between data to describe a 
layout plan. 

Figure 4 shows a simplified example 
which illustrates the efficient modifica
tion function. In Fig.4(a), transmission 
towers are placed on the upper and lower 
sides of the center line of the 
transformer facility on the basis of 
knowledge on the spatial relation between 
transmission towers and the facility. 
Their locations depend directly on the 
location of the transformer facility. 
After the transformer facility is placed, 
a noise evaluation program written in 
Fortran is invoked and the result reveals 
that the noise level at a residential 
area exceeds the limitation. In this 
situation, the inference engine invokes a 
functional module which finds an alterna
tive facility location to satisfy the 
constraint on the noise level. This pro
cedure is stored in the knowledge base, 
and identified as procedural knowledge to 
adjust the spatial relation between the 
location of the residential area and that 
of the transformer facility. Fig.4(b) 
describes the situation after the facil
ity location is modified. Now, the 
transmission tower locations are incon
sistent, no longer being on the center 
line. This is the side effect caused by 
the primary modification of the layout 
plan. 

(a) The potential problem of 
noise has been identified. C Tower The locations of towers 

depend on the location of 
the transformer facility. 

(b) The modification 
of the facility location 
causes an inconsistency 

The functional module finds 
the new location of 

the transformer facility. 

C Tower 

in design data. ,"--;==:::::::::::::=::;--

--Residential Area~ 
W0'~f~~ 

(c) The inconsistency of 
design data is deleted. . .. 
Residential Area ~ 
~~~ 

(d) The revised plan is·obtained.

The dependency directed
backtracking deletes

the locations of towers.

Demons determine
the new locations of towers.

C Tower

Figure 4. Example of Layout Modification

218

The secondary modification is done
by the dependency directed backtracker
and demons to adjust the undesirable side
effect and to make data of the layout
plan consistent. The backtracker deletes
the locations of transmission towers that
depend on the invalid location of the
transformer facility from the working
area, on the basis of the information
about the dependency between the loca
tions of components. Fig.4(c) shows this
situation.

Finally, the demon is invoked to
determine the locations of transmission
towers. Their modified locations are
shown in Fig.4(d).

The characteristics of this method
to modify the layout plan are listed
below.

(1) The procedure to find an alterna
tive location of the transformer
facility requires a limited search
space, because it efficiently uses
information about what the problem
is and knowledge about how to solve
it.

(2) In the working area, values of data
are stored with information about
the dependency between data. Fig
ure 5 shows the dependency informa
tion of a transformer facility and
its transmission towers. After the
procedure modifies the layout plan,
the dependency directed backtracker
makes the data in the working area
consistent.

Location of Transllission Tovers

Value : ••• calculated using
Location of Co.ponent

Depend on :

Figure 5. Dependency Information

(3) If the dependency directed back
tracker deletes invalid data from
the working area, demons are used
to reproduce the data making them
compatible with the new modified
data.

This mechanism, embedded into the infer
ence engine, constitutes a functional
module to find alternative locations of
the transformer facility simply, because
the functional module to modify the lay
out plan does not need to be concerned
with both the existence and consistency
of the data in the working area.

219

2.4 Alternatives to Layout Plan
It is often essential to obtain

design alternatives of a layout plan in
the course of design optimization. The
data for different layout plans should be
handled to obtain systematically several
design alternatives.

Figure 6 shows the structure of a
knowledge base and working area to sup
port this function. The knowledge base
includes two kinds of knowledge, and the
working area includes two kinds of tem
porary data. The knowledge base stores
knowledge to control the search process
of the alternatives, and to generate lay
out plans from different initial condi
tions. The knowledge for layout plans is
utilized to complete the individual lay
out plan, and the knowledge for control
is utilized to select the next alterna
tive layout plan to be processed.

To maintain several layout plans
simultaneously, the data for layout plans
are structured in the working area. The
working area stores both the data to
represent the layout plans 'and the data
to describe their content. In Fig.6,
three different layout plans are con
nected to different configurations of the
main components.

r············· .. ······················;;;;;;;;·;;;;;··········· !

~::::::::::::::::::::v:::::::::::~~;=~::i:::::::::::::0:::::::::::::::::::::::

11·f=tt~~ -I
~ 1 L, Modified Layout 2 ~ OS l

i ~~~~~=~:=:::~:==:::::~::~~ ~::=::::~:.-::==~= j
Figure 6. Alternative Layout Plans

3. SUBSTATION LAYOUT SYSTEM : XL-S
3.1 Configuration of XL-S

The demonstration system XL-S
(eXpert system for Layout design for
Substation) for layout design of a subs
tation is based on the knowledge-based
method described 'in the previous chapter.

The XL-S configuration is depicted
in Fig.7. The system is composed of four
elements; knowledge base, working area,
inference engine and graphic interface.
The knowledge base stores declarative and
procedural knowledge in the form of func
tional modules and demons. The working
area temporarily stores intermediate
or/and final results of several layout

XL-S

Figure 7. Configuration of Layout Design System XL-S

plans and control data. The inference
engine drives the design process by for
ward chaining, generates hypothetical
layout plans, and modifies intermediate
layout plans •. Through graphic interface,
the substation layout is displayed on the
graphic terminal and designer's instruc
tions are sent to the inference engine.

The general flow of the layout pro
cess with XL-S is depicted in Fig.B. In
the first step, the designer inputs the
substation specifications such as the
input voltage and capacity. In the
second step, the system proposes an
incremental change in the layout plan.
Typical examples of these changes are the
addition of a component to the layout
space and the evaluation of a design
parameter. The system assembles com
ponent areas and determines their place
ment using a standard layout process.
The designer can intercept and modify the
layout plan which is being incrementally
made by XL-S at any layout step. If the
proposed change in the layout plan satis
fies the predefined constraints and is
judged to be acceptable, the system con
tinues to propose additional changes in
the layout plan through the confirmation
loop.

XL-S memorizes the default component
size and the default relation between
components in the knowledge base to
minimize the amount of input data from
the user. The designer thus handles
fewer input data in this system than in a
conventional graphic CAD system used for
drafting. The system detects violations
of constraints and initiates functional
modules to remedy them. The designer can
also directly specify modifications of

Capacitor

Office

~

t~~~!~~~~~1~~~~~~~~~~~~~I!1~!~~~~1
Yes

XL-S lIake next step of standard layout process,

and evaluate the layout.

OK

Confiraation Loop

Not OK I
~ ___________________ t ____________________ .
! Designer lIodifies layout : ---------------------J--------------------'

Dependency directed backtracker and de.ons
work if needed.

Modification Loop

D Syste. C~~] Designer

·Figure 8. Layout Process with XL-S

the layout plan. Any modification
invokes the dependency directed back
tracker and demons to assure consistency
among the data in the modified layout
plan. With this automated function, the
designer is relieved of the burdens of
maintaining a consistent layout plan in
the working area, and reproducing neces
sary data.

3.2 Results
The layout design system XL-S was

applied to the layout design of a typical
substation. The input and output vol
tages of the substation are 1000 kV and
500 kV respectively, and i t·s total capa
city is BOOO MVA. The main components
are gantries, reactors, GIS's, transform
ers, capacitors, transmission towers, and
an office building. A typical result
from this system is shown in Fig.9(a).

(a) Results of a Layout Plan (b) Results of a Modification Specified by a Designer

Figure 9. Examples of Layout Plans

220

XL-S generated this layout plan mainly on
the basis of knowledge on the spatial
relation between components. The system
also evaluated the layout plan as to the
construction cost, noise level and other
performance factors.

Fig.9(b) shows a modified layout
plan based on that shown in Fig.9(a). In
this case, the location of the four com
ponent areas which include a capacitor
are modified directly by the designer.
The total number of data that are modi
fied is 12. This primary modification
requires a secondary modification of
related components. Modification of even
limited data can cause a large-scale
change in the layout plan. It is often
inappropriate to recover consistency
among data through manual operation and a
simple backtracking method. With the
dependency directed backtracker and
demons, XL-S modifies over 200 data in
this example. Figure 10 shows the main
dependency in the working area of XL-S
that is conc~rned with the modification.

, _ ... _._. __ ._ _ -_ _-_ ,
! "!II-.IID" lleans "lIIdepends onlID"! ! __ _________ _____ .. __ . ___ __ _ __ .. _..J

Figure 10. Dependency in Layout Plan

The layout design system XL-S is now
undergoing functional tests conducted by
expert designers. The preliminary
results suggest that XL-S can reduce the
period which is required to complete lay
out design of a substation. The reasons
are listed below:
(1) The user does not need to handle the

large amount of input data owing to
default data and predefined
procedures stored in the knowledge
base.

(2) The user does not need to be con
cerned with both the existence and
consistency of the data in the work
ing area owing to dependency directed
backtracking and demons.

221

4. CONCLUSION
A knowledge-based method has been

developed for the layout design of indus
trial plants and applied to the layout
design system for a substation. The pro
posed method is characterized not only by
the direct utilization- of designers'
expertise, but also by intelligent func
tions embedded into the inference mechan
ism. These characteristics are summar
ized as follows:

(1) Designers' knowledge is utilized to
generate layout plans that satisfy
constraints and to evaluate the
construction cost, noise level and
other performance factors.

(2) The modification procedure is
adopted to modify the data of an
intermediate layout plan. The
dependency directed backtracker
deletes invalid data to make the
data consistent in the layout plan,
and demons reproduce new data for
the modified layout plan.

(3) The knowledge base stores knowledge
to control the search process for
alternative plans, and to generate
layout plans from different initial
conditions. This allows it to sup
port several alternative layout
plans simultaneously.

The layout design system XL-S is now
undergoing functional tests conducted by
expert designers. The preliminary
results suggest that XL-S can reduce the
period which is required to complete lay
out design of a substation.

ACKNOWLEDGEMENTS
It is a pleasure for the authors to

acknowledge the persons who have guided
and encouraged them. In particular, they
are grateful to Mr. R. Kadoi of the Tokyo
Electric Power Co.,Inc. and Drs. S.
Yamada, A. Doi, K. Inoue, H. Motoda, Mr.
H. Sakai and Ms. R. Hara of Hitachi,Ltd.

REFERENCES
[1] K.G.Trickett et al., PDMS:Plant Lay

out and Piping Design, Computer-Aided
Process Plant Design, edited by
M.E.Leesley, 1123-1182, Gulf Publish
ing Co., Houston(1982)

[2] J.McDermott, R1:A Rule-Based Confi
gurer of Computer Systems, Artificial
Intelligence,Vol.19,No.9,39-88(1982)

[3] T.Watanabe et al., An Expert System
for Computer Room Facility Layout,
Proc. of 5th International Workshop,
Expert Systems & Their Applications,
Agence de l'Informatique,
France(1985)

[4] Y.Wada et aI, A Knowledge Based
Approach to Automated Pipe-route
Planning in Three-Dimensional Plant
Layout Design, Proceedings of COMPINT
85,96-102(1985)

[5] G.J.Stallman and J.Sussman, Problem
Solving About Electrical Circuits:
Artificial Intelligence, An MIT Per
spective, Vol.1,33-91(1979}

[6] J.Doyle, A Truth Maintenance System,
Artificial Intelligence,
VOl.12,No.3,231-272(1979}

[7] J.de Kleer, Choices Without Back
tracking, Proceedings 'of AAAI84, 79-
85(1984)

[8] V.Dhar, An Approach to Dependency
Directed Backtracking using Domain
Specific Knowledge,Proc. of IJCAI 85,
188-190(1985)

222

A LOGIC PROGRAMMING APPROACH TO FRAME-BASED LANGUAGE DESIGN

Hsin-Hsi Chen*, I-Peng Lin

Department of Computer Science and
Information Engineering

National Taiwan University
Taipei, Taiwan, R.O.C.

Abstract

In this paper, we will propose a logic programming
approach to design a frame-based language. The
rela.tionshi~ am.ong frame, logic and Prolog is our
basIc design Issue. Frame is considered as a
collection of slot-relations, and frame
referencelinference procedure can be specified in
logic form. Prolog is used to represent all of these
concepts. Frame is encoded with Prolog facts and
rules. This type of frame representation has the
advantages of multiple access methods, ease of
frame modification, slot inference rule creation and
f~st.er . recognition. A frame recognition algorithm,
similarity reference, is given as an example using our
frame notation. With this approach, on the one hand,
the semantics of logic makes it quite clear what frame
and its deduction mean, and on the other hand the
simply extended Prolog will be more adequate' and
efficacious to represent knowledge.

1. Introduction

A good knowledge representation tool is not only
adequate to the expression, but also efficacious to
the reasoning [161. Frames, which have good
expressive power, were first proposed in [101. Since
then, several frame-based languages such as FRL
[6131 [, . ,KL-ONE 11, etc.l15l, have been developed and
used to implement systems in a variety of domains.
How frames are involved in knowledge system's
reasoning process was discussed in [51. In most
applicati.ons, e.g. natural language processing [11,
diagnostic problems [121, and so on, frame recognition
is one of major steps in the frame reference/inference
process. How to select a frame to "best" match the
observations, which are some attributes of an object,
from large frame database, becomes an important
problem. Thus, notation efficacy of frame
representation affects the recognition step deeply. In

* The author is also a graduate student in the Institute
of Electrical Engineering, National Taiwan University.

CH2345-7/86/0000/0223$01.00© 1986 IEEE
223

Chien-Ping Wu

Department of Electrical Engineering
National Taiwan University

Taipei, Taiwan, R.O.C.

this paper, we will propose a mechanism to encode
frame notation with Prolog rules and facts, and make
deduction from frame database with logic
programming techniques.

Because "predicate logic as a programming
language" is the basic idea behind Prolog [81, Prolog
inherits many interesting features from logic [141. We
will emphasize the relationship between logic and
frame [71, and take it into consideration of our logic
programmi.ng approach. Section 2 will discuss briefly
the . relatlon~hlp among frame, logic and Prolog.
Section 3 Will propose a frame representation with
Prolog clauses, and its referencelinference
mechanisms with logic form. A frame recognition
algorithm will be given as an example using our
frame notation. This experimental language, called
LOGFOL (Proi.Q.g.-based Erame-~riented Language)
in [31, is implemented in CProlog [111, and operates on
a DEC VAX-11/7S0 VMS system.

2. Frame, logic and Prolog

. A. frame is a data structure to represent stereotyped
situations [101. What constitutes a fram e is
implementation dependent, but it must be able to
represent the properties of an object and the
specifications of each property. For example, a
classroom which is a complex object may be
described by board, chalk, brush, and
desk-and-chair. We can define a classroom with
these properties as a lambda expression:

AX (board(x'Y1) 1\ chalk(x'Y2) /\ brush(x'Y3) 1\

desk-and-chair(x,y 4))
where x is some specific classroom;

Y1' Y2' Y3 and Y4 are its contents.
Properties board, chalk, brush and desk-and-chair
are called slots of a classroom. Terms Y1' Y2' Y3 and
y 4 are called fillers of some classroom. Relationship
denoted by slot exists between a frame and its filler.
Thus, on the one hand, given a frame that represents
a concept, we can generate an instance of the
concept by filling its slots to make these relations true.
A logic formula expresses this concept as:

't/x (frame(x) ~ 3 Y1' Y2' ... , Yn (slot1(x, Y1) A

SI0~(x'Y2) A ••• A SIOlo(x, Yn)))
On the other hand, if we can find fillers for all the slots
of a frame, then an appropriate instance of the
concept exists. This concept can als'o be formalized
as:

't/x (3 Y1' Y2' ... , Yn (slot1(x, Y1) A slo~(x, Y2) A ••• A

slo~(x, Yn)) ~ frame(x))
Therefore, we can express the frame concept as logic
formulae, ,and consider a frame as a collection of
slot-relations.

Prolog is a powerful language which is used to
so~ve problems that can be expressed in the form of
objects and their relationship. It has some interesting
features [9,14 J helpful to design a frame-based
language:

(1) Algorithm = Logic + Control [9]
The idea of Prolog is to specify the logic part
only, not to care for the control part. If we
regard a frame concept as a bundle of
slot-relations and design it with logic
progr.amming t~chni.ques, then metaphysical
and Implementation Interpr,etation of frames [7]
are the same. So, frame referencelinference'
can be thought intuitively.

(2) multiple-purpose procedures
Not necessary to distinguish the roles of
arguments in advance, some frame
manipulation predicates may have more than
one function. Especially, a predicate might be
thought as a generator which generates
result(s), or as a verifier which, given all
arguments as inputs, checks whether a
slot-relation is valid.

(3) high level form of iteration
Procedures may generate, through
backtracking, a sequence of alternative
results. Frame-based system is organized as
a hierarchical network. The solution(s) in a,
frame referencelinference process depend on
the completeness of the given information.
Some search operations involved in frame
reference/inference are tentative. It is, likely to
make trials until a solution is found.
Backtracking mechanism embedded in, Prolog
takes care of the trial and error process very
well.

(4) general record structure
Term structure makes frame representation
more flexible. We· can represent knowledge
in a, most appropriate way.

3. Language,Structure'

The programming structure of our extended Prolog
system is shown in Fig. 1.

224

Figure 1 The programming structure of our extended Prolog system

This language includes three layers. The bottom
layer is the frame definition, including two forms: the
external one, with which users may, represent
knowledge of given problem domains intuitively, and
the internal one, on which basic built-in predicates
operate., The next-to-bottom layer consists of a
collection of Prolog predicates used to manipulate
the frame database. Frame referencelinference
mechanisms constitute the top layer. All the frame
manipulations are done under the current
environments (system configuration, name group,
focus and slot inference rule). We will discuss these
issues in Section 3.1 and 3.2.

3.1 Frame Representation

From macroscopic viewpoint, a frame database is a
collection of frames linked together. From
microscopic viewpoint, a frame is like a tree (see Fig.
2 in FRL terms [6,13]).

frame

slot1 sloti slotm

~~
faceti1 facetij facetin

~~~ 
data data data 

ij1 ijk ijo 

~ ~ r-:-::--. 
annotation 

ijkl 

Figure 2 Frame In external ,form Is like a tree. 

Frame forms the semantics of a concept.. Slot defines 
a property of a frame. Slot may be either 
system-defined or user-defined. There are 
system-defined slots specified in the system frame 



such as classification (genericlindividual), ako and 
instances{for 'network construction) and match (for 
frame recognition). User-defined slot describes a 
specific feature for 'some concept. Facet specifi.es 
value,default, restrictions or interpretative hooks [I] in 
the corresponding slot. Useful built-in facets are: 
value, which specifies the slot's value; default, which 
denotes the default value; require, which defines the 
restrictions that filler must meet; itneeded, which 
provides a deduction rule (a sequence of goals) for 
the filler; and iCadded and itremoved, which are 
used for network maintenance. Data may be either 
values or a goal statement depending on its 'facet's 
usage. Annotation·' specifies the source (perspective, 
... ) from which the information is 'collected. Such a 
definition constitutes a complete frame. A frame 
example (a generic classroom) which has been taken 
its syntactic sugar out is shown as follows: 

classroom ako __ value -- room 

instances - value .--- c101 
L-c102 

board -- require -- color(:value.black); 
color(:value,green) 

chalk-- if_needed ,takenfrom(Case) 

L takenfrom(office) 

brush -- if_needed-takenfrom(office) 

desk-and-

I 
if_added-- checkcapacny(max, 60, TotaQ, 

chair enroll(Total) 
if removed - .checkcapacny(min, 30. Total), 
- enroll(Total) 

match --value -- [board,chalk,brush, 
desk_and_chairj 

Before the external frame is put into frame 
database, ·it must be preprocessed to a number of 
frame fragments, called, internal frame. A frame 
fragment is retrieved along the path . frame - slot -
facet -data - annotation from the tree in Fig. 2 (see 
dark line). It is represented as a Prolog fact or rule, 
depending on its facet: 

(1) value facet 
slotname(framename, datum :annotation). 

or 
slotname(framename, datum). 

r no comment */ 
This fact can be read as: 

From annotation, the filler in ~he slot of a 
frame is datum (the relatio'nship between 
frame and datum is slot). 

(2) default facet 
slotname(framename, default, 

datum:annotation), 
or 

slotname(framename, default, datum). 
r no comment */ 

This fact can be read as: 
From annotation, the default value in the 

225 

slot of a frame .is datum. 
(3) other facets 

.slotname{framename, facetname, annotation) 
:- attached goals. 

or 
slotname(framename, facetname, 

no_comment) :- attached goals. 
This rule can be read as: 

From annotation, the filler' meets the facet's 
specification in the slot of a frame if attached 
goals succeed. 

This viewpoint may be compared with Chang [2] who 
·uses n-ary predicate to represent frame. Deliyanni 
and Kowalski [4] have discussed the advantages and 
disadvantages between binary representation and 
n-ary 'representation of logic form in the 
knowledge~ba:sed. system. 

An example (a generic classroom frame) is given 
below to illustrate this two-place or three-place 
slot-relation: 

frame(classroom, [ako, instances, board, chalk, 
brush, desk_and_chair, match]). 

ako(classroom, room). 
instances(classroom, c1 01). 
instances(ctassroom, c102). 
board{classroom, require, no_comment) 

curr_envLframe, _slot, jacet, _value), 
r current focus environment */ 

(colorLvalue, black); colorLvalue, green)). 
chalk(classroom, itneeded, no_comment) 

takenfrom (case); takenfrom (office). 
brush(classroom, itneeded, no_comment) 

takenfr.om(office). 
desk....;and_chair( classroom ,iCadded, 

no_comment) :
checkcapacity(max, 60, Total), 
enroll(Total). 

desk_and_chair(classroom, iCremoved, 
no_comment) :

checkcapacity(min, 3D, Total), 
enroll(Total). 

match(classroom, [board,chalk,brush, 
desk_and_chair]). 

Predicate frame denotes 'a generic classroom frame 
that has seven slots - ako, instances, board, chalk, 
brush, desk_and_chair and match. 

This type of frame representation in Prolog fact or 
. rule has the advantages of 

(1) multiple access methods: 
We may use "?- frame(framename, SlotUst)." 
to find all the slots with a given frame name, 

or use "?- slot(framename, Datum)." to find 

all the values with a given slot name of some 
frame, 

or use "?-slot(Framename, datum}." to 
find all the frames with a given slot and its 
value. 
In this retrieval pr.ocess, no special hash 
mechanisms are required, because they are 



embedded in the Prolog system. This is in 
concordance with the idea of logic 
programming [9]. 

(2) ease of frame modification: 
A good representation scheme must have 
capability of managing incomplete 
~nowledge. In our paradigm, a newly 
Invented property can merge _ into an existing 
frame easily; and on the other hand an 
unsuitable property can also be retr~cted 
easily. These advantages are offered over 
the n-ary representation by the binary 
representation [4]. 

(3) slot inference rule creation: 
Representing a slot as a relation enables 
slot-to-slot transference to be clear. For 
example, 

"Y is a key of X if X has Y and Y isa key" 
can be represented as: 

keyof(X,y) :- having(X,y), iskey(Y}. 
Slot "~eyof" is mapped into slot "having" by 
slot Inference rule. Seeing-as relation 
proposed in [7] can also be specified by this 
type of inference rule. 

(4) faster recognition: 
During frame recognition, we will select a 
"best" frame which matches the observed 
features. In our paradigm, features of a frame 
are put in the form of slot-relations whose 
orders are not important. We can start out 
recognition with some evident features. 

3.2 Environments 

For each frame, there might be several names one 
primary name and some secondary names, that' can 
be used to identify it. Thus, each frame must have an 
associated list of allowable names which directly 
access it. We call each name a member of the name 
group of a frame. The name group is a set 
representing a collection of allowable names used to 
access some frame structure. To group two frame 
name X and Y together, we can use fgroup(X,Y}, 
where X specifies an existing frame and Y is a frame 
name not bound to any existing frame yet. All the 
fra~e manipulations are through name group 
environment. 

When one looks something in the world, he always 
concentrates on some part of it. However, he can 
retrieve aU the relevant knowledge from this 
starting-point. There may be similar in the frame 
manipulation. During the frame manipulation, we 
focus only on some property (slot) of a specific frame. 
How to access other frame fragments within the same 
or different frame is an important issue. Because a 
frame is represented as a set of Prolog facts and 
rules, frame fragments are connected by the same 
!rame name, and different frames are connected by 
Instances, ako, or other relations. Focus transference 

226 

is specified by environment change. Fact 
curr_env(frame, slot, facet, data} defines current focus 
environment. Structure :frame, :slot, :facet and :value 
in the clause refer to the current focus (see the 
generic classroom in the last section and its internal 
fram e transformation). When a built-in predicate 
changes environment, the focusing frame fragment 
also changes at the same time. 

The system configuration is defined by 'system' 
frame. A system frame is given as an example in the 
following: 

sys_slots(system, classification}. 
sys_slots(system, ako}. 
sys_slots(system, instances}. 
sys_slots(system, match}. 
classification(system, default, generic}. 
primary(system, ako}. 
primary(system, instances}. 

Slot 'sys_slots' specifies system-defined slots. The 
default value of classification slot is generic. The 
value in the ako and instances slot must be a primary 
frame name. With system frame, we can maintain an 
appropriate system configuration for our own 
applications. 

3.3 Example: similarity reference 

The general process to manipulate a frame 
database of an application involves two steps: 

(1) selecting a specific frame, and then 
(2) applying operations on this frame. 

We call step (1) frame reference. We may simply 
refer to a concept explicitly by its name. However, we 
may not know the name of the referred frame. 
Moreover, we cannot assure whether the frame 
already exists in the database. What we have known 
about an object is some. of its features gathered from 
external world. So, frame reference becomes a 
recognition process. This type of reference, called 
similarity reference, is guided by the features of an 
object in question. We express the object's features 
as a collection of slot-relations, which constitute a 
temporary frame. If this frame does not exist in the 
database, an instantiation of some generic frame may 
be needed. 

A set of requirements needs to be satisfied to 
ensure that a temporary frame X and a candidate 
frame Yare similar. In frame recognition, we express 
this concept in logic form as follows: 

"i/X "i/Y (relation1(Y,f1(X)) " relation2(Y,f2(X)) " ... 

" relationm(Y,fm(X)) ~ simiiarity(X,Y)) 

In the above sentence, those conditions for X are 
specified by the frame Y. Relation j may be 
interpreted as a relationship between frame Y and 
the corresponding slot's value of temporary frame X. 
Function fj tries to deduce the value from current 
knowledge base. Thus, when we specify fj for each 
slot, we can define criteria to identify the frame. This 



sentence may be translated into Prolog-like clauses: 
(c1) similarity(X,V):- relation1 (V,X), relation2(V,X), 

... , relationm(V,X). 
(c2) relationj(V,X):- slotj(X,Z), slotj(V,Z). 
(c3) relationj(V,X):- slotj(X,Z), 

meecrequirement_of(Z, V, slo~). 
We use (c2) and (c3) to simulate a deduction function 
fj. The pragmatic requirement to consider two slots to 
be matched is either they have the same value (c2), 
or with the value conflict, but the pragmatic feature of 
the temporary frame meets the requirements of the 
corresponding slot of a candiCfate frame V (c3). 

The system built-in slot 'match' of a frame defines a 
frame recognition procedure. Given a temporary 
frame X, to identify a candidate frame V as its 
referent, we trigger the recognition procedure of V. 
Whether the identification succeeds depends on the 
satisfaction of this procedure call. 

Match slot has two modes available: system mode 
and user mode. In system mode, interpreter takes the 
value of match slot, which is a list of slot names of a 
candidate frame, as input to a system-defined 
procedure (see next paragraph). The default for 
match slot is a list of all the slot name of the frame, 
except system built-in slots defined in the system 
frame. If the value of match slot is not a list of slot 
names, interpreter regards the value as an 
user-defined recognition procedure, and calls it 
directly. The latter usage is in user mode, which a 
user has all his own right to control the recognition 
process. The presentation of this mode increases 
the flexibility in the recognition process. 

The system-defined procedure in system mode is 
clause (c1 )-(c3). The i-th relation corresponds to the 
pragmatic requirement to match slotj • The data in 
'require' facet is any Prolog predicates, which 
constrain the allowable values of the slot, and control 
the slot matching. The 'require' facet specifies the 
requirement used by meet_requirement_of(Z, V, sloti) 
in the clause (c3). 

A sample predicate 
funify(TemporaryFrame"CandidateFrame, 

UnmatchedSlotNameList) 
which takes care of the recognition process 
mentioned above is shown below: 

funify(FN1, FN2, UMSL) :
nonvarl([FN1, FN2)), 
geUn(FN1, F1), 
geUn(FN2, F2), 
((fgeti(F2, match, value, P), 
not Iist(P), 
call(P), 
UMSL=[]); 

rFN1 and FN2 are instantiated *' 
r get primary frame name from *' 
/* name group *' 
/* user-defined recognition *' 
r procedure *' 

(not fgeti(F2, match, value, J, /*default for match slot: the *' 
fslots(F2, SNL). /* list of all the slot names of *' fget(system, sys_slots, value, L), /* frame F2 minus *' 

227 

diff(SNL. L, SL), /* system built-in slots *' 
funifyx(F1, SL, F2, UMSL)); 

(fgeti(F2, match, value, L), /* user-provided slot name list *' 
list(L), 
funifyx(F1, L, F2, UMSL)) 

), !. 

funifyx(F1, [SNIL], F2, UMSL) :- r (c2) SN(F1, D), SN(F2, D) *' 
fgeti(F1, SN. value, D), 
fgeti(F2, SN, value, D), !, 
funifyx(F1, L, F2, UMSL). 

funifyx(F1, [SNIL], F2, UMSL) :- r (c3) SN(F1, D), *' 
fheritage(F2, SN, [require), PS),/* meeUequiremenCof *' 
fgeti(F1, SN, value, D), r (0, F2, SN) *' 
(push_env(F1.SN,require,D); I*focus environment control *' 
pop_env, fail), r focus environment control *' 
demons(PS), 
pop_env, !, r focus environment control *' 
funifyx(F1, L, F2, UMSL). 

funifyx(F1, [SNIL], F2, [SNIUMSL]):- r SN is a potentially *' 
not fgeti(F1, SN. value, J, !, r matched slot *' 
funifyx(F1, L, F2, UMSL). 

funifyxL, n, _, []). 
nonvarl([HIT]) :- nonvar(H), nonvarl(T). 
nonvarl([]). 

geUn(F1, F2) :-
(frame(F1, @F2). !; 
frame(F1, J, 
F2=F1 

). 

diff(L 1, [HIL2], L3) :
delete(H, L1, L4), 
diff(L4, L2, L3). 

diff(L, n, L). 

demons([PIL]) :- call(P), demons(L). 
demons([]). 

push_env(FN, SN, FCT, D) :
asserta((curr_env(FN, SN, FCT, D) :- I)). 

pop_env :-
retract((curr_envL -' -' J :- !)), !. 

Some of the built-in predicates used in the above 
example are summarized as follows. We use a 
notation to specify the role of an argument: 

<i> input argument, 
<0> output argument, 
<*> input/output argument. 

fget(FrameName<j> SlotName<j>. 
Facet-Datum-Annotation<i> Item Lis1<*> ) 

The predicate fget gets a list of items along the 
path specified by FrameName, SlotName and 
Facet-Datum-Annotation, if ltemList is 
uninstantiated. 

fgeti (Fram eNam e<i> ,SlotNam ed>. 
Facet-Datum-Annotation<i>. Item<*» 

The predicate fgeti is similar to fget; except that 
fgeti returns one item at a time. When 
backtracking, it will return another item, if exists. 



fheritage(FrameName<i> SlotName<i> Facet<i> 
Item List<*» 

The predicate fheritage gets a list of data 
indicated by FrameName, SlotName and Facet, 
and data inherited along the slot ako, if Item List is 
uninstantiated. 

fslots(FrameName<i> SlotNameList<*» 
SlotNameList<o>: The predicate returns a list of 
slotnames that belong to the frame specified by 
FrameName. 
SlotNameList<i>: The predicate verifies the 
frame-slots relationship. 

4. Conclusion 

In this paper, we have described the design issues 
of our frame-based language, which represents and 
manipulates frames with logic programming 
techniques. On the one hand, we consider a frame to 
be a bundle of slot-relations, with which one may 
directly access a slot and its value. This design 
speeds up frame access operations and it has a merit 
of putting frames and matching assumptions into 
logic forms. The semantics of logic makes it quite 
clear what a frame structure means. On the other 
hand, we encode a frame mechanism in Prolog such 
that the simply extended Prolog will be more 
adequate and efficacious to represent knowledge. 

References 

[ 1 ] A.J. Brachman and J.G. Schmolze, "An Overview 
of the Kl-ONE Knowledge Representation 
System," Cognitive Science, 9, 1985, 
pp.171-216. 

[ 2] C.L. Chang, Introduction to Artificial Intelligence 
Techniques, Taipei, Sung Kang Computer 
Book Co., July 1985, pp. 91-97. 

[ 3] H.H. Chen and J.Y. Fuh, "A. Prolog-based 
Frame-oriented language," Proceedings of 
National Computer Symposium, 1985, Republic 
of China, pp. 128-135. 

[ 4] A. Deliyanni and R. Kowalski, "logic and 
Semantic Networks," Communications of the 
A CM, Vol. 22, No.3, March 1979, pp. 184-192. 

[ 5] R. Fikes and J. Kehler, "The Role of 
Frame-based Representation in Reasoning," 
Communications of the ACM, Vol. 28, No.9, 
Sept. 1985, pp. 904-920. 

[ 6] J.P. Goldstein and A.B. Roberts, "Using Frames in 
Scheduling," in Artificial Intelligence: An MIT 
Perspective, Vol. 1, P.H. Winston and A. Brown, 
eds., MIT press, 1979, pp. 253-284. 

[ 7] P. Hayes, "The logic of Frames," in Readings in 
Artificial Intelligence, B.l. Webber and N.J. 
Nilson, eds., 1981, pp. 451-458. 

228 

[ 8] R. Kowalski, "Predicate logic as a Programming 
Language," Proc. IFIP 74, Amsterdam, 
North-Holland Publishing Co., pp. 569-574. 

[ 9] R. Kowalski, "Algorithm = Logic + Control," 
Communications of the ACM, Vol. 22, No.7, July 
1979, pp. 424-435. 

[10] M. Minsky, "A Framework for Representing 
Knowledge," in The Psychology of Computer 
Vision, P.H. Winston, ed., New York, 
McGraw-Hili, 1975, pp. 211-277. 

[11] F. Pereira, D.H.D. Warren, L. Byrd, and L.M. 
Pereira, CProlog User's Manual, SRI 
International, Melo Patk; California, 1983. 

[12] J.A. Reggia, D.S. Nau, and P.Y. Wang, "A New 
Inference Method for Frame-based Expert 
System," Proceedings of the National 
Conference on Artificial Intelligence, Aug. 1983, 
pp. 333-337. 

[13] S. Rosenberg and B. Roberts, "Coreference in a 
Frame Database," Proceedings of the Sixth 
International Joint Conference on Artificial 
Intelligence, Tokyo, Vol. 2, Aug. 1979, pp. 
729-734. 

[14] D.H.D. Warren, Applied Logic - Its Use and 
Implementation as a Programming Tool, SRI 
Technical Note 290, June 1983. 

[15] D.A. Waterman, A Guide to Expert System, 
Addison-Wesley, 1985, pp. 346-350. 

[16] W.A. Woods, "What's I mportant About 
Knowledge Representation?" IEEE Computer, 
Oct. 1983, pp. 22-27. 



INTERFACING PROLOG TO PASCAL 

KENNETH MAGEL 

NORTH DAKOTA STATE UNIVERSITY 

ABSTRACT 

This paper presents the implementation of a 
mechanism for linking an existing Prolog inter
preter with Pascal programs so that each may call 
the other and so that each may share data with the 
other. Various approaches for linking the two 
languages are considered and compared. Some 
performance results for mixed applications are 
described. 

INTRODUCTION 

Prolog presents a convenient paradigm for imple
menting applications in areas which involve a set 
of facts and ask for inferences from those facts 
and rules relating facts. Prolog includes a naive 
automatic backtracking mechanism as well as a pat
tern matching-triggered application of rules. Even 
in these areas, however, Prolog does not provide 
all of the features which would make implementa
tion as convenient as possible. In some si tua
tions where the Prolog implementation is easily 
constructed, the implementation will be ineffi
cient. For example, sorting may be written rather 
easily in Prolog as the generation of successive 
permutations of a list" and the testing of each to 
determine which is sorted. Unfortunately, such an 
approach is much less efficient than a more proce
dural one such as might be written in Pascal. 

Many already written and debugged routines 
exist in widely used languages such as Pascal. 
Being able to use these routines from a Prolog 
program would be extremely valuable for many ap
plications. A major advantage of newer procedural 
languages such as ADA·and Modula-2 is their exten
sive support for the construction and use of 
libraries of routines (called packages or mod
ules) . 

When Prolog is implemented on conventional 
vonNeumann computers, the implementation is usu
ally inefficient and requires rather complex data 
structures to handle the fluid data typing, sup
port for manipulation of not yet defined quanti
ties, backtracking, and tentative assignments [1J. 
Some applications and parts of applications which 
could conveniently be done in Prolog can be done 

CH2345-7j86jOOOOj0229$01.00© 1986 IEEE 
229 

more efficiently in other languages because of 
these implementation considerations. 

For these reasons, we set out to link an exist
ing Prolog implementation [2J with programs writ
ten in a procedural language. We wanted the 
interference to be as open and flexible as possi
ble. In particular, we wanted routines in each 
language to be able to invoke routines in the 
other language. Routines in each language should 
be able to manipulate global data and structured 
parameters and to return any value which a routine 
in the native language could return. We choose an 
extended Pascal which supported separate compila
tion for two reasons: (1) we had sUbstantial code 
and expertise in Pascal; and (2) the Prolog imple
mentation is written in a common subset of Pascal. 
The approach should be applicable to linking 
Prolog with other languages as well. We presently 
are starting a project to link another version of 
Prolog implementation in C with Pascal and Fortran 
programs. The Fortran-Prolog system will be 
particularly useful to some engineers on our 
campus who are developing expert systems to sup
port engineering applications. 

RELATED WORK 

Three approaches have been tried to mIxIng lan
guages in a single appli cation: (1) extending an 
existing or proposed language to incorporate fea
tures from other languages and paradigms [3J; (2) 
using an intermediate file or files to communicate 
information between programs in each language; and 
(3) some sort of escape mechanism which a program 
in one language may employ to call upon routines 
in other languages. The following paragraphs 
discuss each of these approaches. 

Incorporating multiple paradigms into one lan
guage has several advantages. The problem of 
passing information from one paradigm to another 
is handled entirely by the one language implemen
tation. Paradigms may be mixed freely, even for 
rather small units of shifting paradigms. The 
major disadvantage from our perspective is the 
difficulty in using existing programs in a proce
dural language. Further, our experience indicates 
that programmers may have difficulty in under
standing and using effectively a variety of para
digms which are presented in the same setting. In 
addition to the work described in [3J, C. Mellish 
et al describes a POPLOG implementation which 



provides an integrated environment for writing 
POP-11 and Prolog programs which communicate [4J. 
The compilers generate a common intermediate lan
guage. 

The intermediate file approach gets around the 
problem of communicating structured data since 
each language has an output facility and an input 
facility. As long as one language provides the 
capabili ty of outputing data in a form which the 
other language can input, this approach works. The 
major problem with the intermediate file is its 
inefficiency. Input and output usually are the 
slowest operations in any language because the 
underlying hardware is relatively slow. When 
intermediate files are used, the application units 
implemented in each language must be qui te large 
to make up for the time overhead of the file 
communication. A mechani sm such as the pipes of 
UNIX can reduce this overhead significantly. 
Nevertheless, the need to translate the data from 
its internal form for one language to an eternal 
form and then to the internal form of the other 
language still imposes substantial overhead. 

The escape mechani sm approach can be imple
mented efficiently. Unfortunately, it is a 
one-way approach in the sense that communi cat ion 
via the escape mechanism goes from one language to 
the other, but not in the other direction. A 
further problem is the complexity of the data 
structure for a term in our version of Prolog. 
Figure 1 shows the data structure for a term in 
our version of Prolog. Arrows indicate references 
by pointers to subsidiary structures. Double 
vertical lines are used to indicate the additional 
fields which are present when the upper field has 
the indicated value. The· routines in the other 
language must be wr it ten to be careful not to 
affect the - integr i ty of the Prolog data struc
tures. A final problem involves how to handle 
backtracking when the language escaped to does not 
include such a concept. There have been some pre
vious efforts to utilize the escape mechanism 
approach. These efforts have been limited in 
either of two ways: (1) they were set up to handle 
specific applications with specific communications 

. needs; or (2) they support calling programs in the 
other language, but only limited data transfer 
back and forth. Perhaps the earl iest such effort 
was by Santane-Toth and associates in Hungary [5J. 
They set up a system to invoke Fortran subroutines 
from Prolog, but only simple non-structured data 
could be passed across the interface. The goal 
was a system which would support numer ical proc
essing in Fortran with all other aspects of the 
application done in Prolog. Nilsson descr ibed a 
small structure-sharing Prolog interpreter imple
mented in LISP which supported an escape to LISP 
evaluable predicate [6J. Several authors have 
considered the integration of Prolog with func
tional programming [7,8J. 

OUR IMPLEMENTATION 

We choose to use the escape mechanism approach, 
but extended it to support two way communication. 
We handled backtracking by deciding that all ac-

230 

tions done by Pascal programs on Pascal data would 
not be undoable. All changes made by the Pascal 
programs to Prolog data would follow the same 
rules as if those changes had been made by Prolog 
code at the point of the invocation of the escape 
mechanism. If backtracking passes back through a 
point of invocation of the escape4 predicate, the 
escape interface is called with a special first 
parameter to indicate that. All changes made to 
Pascal data by Prolog code are not undoable. This 
solution is not wholly satisfactory, but alterna
tives seem to require re-implementation of a 
backtracking mechanism for Pascal. We are design
ing a mechanism to support backtracking of Prolog 
changes to Pascal data. The mechanism requires a 
stack of previous values for each Pascal variable 
and may offset some of the speed advantage of 
using Pascal. The possibility of using 
precompiled Pascal routines would be eliminated. 
We expect to use the non-undoable version of 
Pascal nearly all the time. 

One evaluable predicate, escape4 was added to 
Prolog. This predicate takes four parameters 
which may be any type of data in the Prolog system 
including anonymous variables, uninstantiated 
variables, unchanged goals, atoms, integers, 
operator expressions, complex terms, or lists. 
This data may be changed in arbitrary ways by the 
Pascal routines. In addition, some routines were 
added to the Prolog interpreter which may be 
invoked by the Pascal programs. These routines 
support retrieval by the Pascal programs of any 
global data from the Prolog side and the execution 
of parts of the Prolog program as subroutines of 
the Pascal programs. They also provide the ability 
for the Pascal programs to use the program modifi
cation facilities of Prolog to change the Prolog 
program. 

The Prolog implementation of escape4 calls a 
Pascal external routine named EscapeRoutine. This 
routine may be written -by the user, but we provide 
two versions which may be used as is or as models. 
The first is given as the appendix to this paper 
and provides some simple routines to manipulate 
the Prolog data passed as parameters, but leaves 
most of the burden of handling the complicated 
Prolog data structures to the user. 

The second version of EscapeRoutine is much 
larger and provides a simple set of abstract 
data types to hide the actual data structure 
implementations. These allow the user to retrieve 
fields of any parameter data structure, and to set 
fields of any accessible data. New data of any 
type may be created as well. The abstractions are 
identical with those we expect to provide to 
Pascal and Fortran from the C implementation of 
Prolog. They involve arrays and single data values 
plus a flag to indicate undefined and another flag 
to indicate if the assignment should be permanent 
or only until backtracking goes through the state
ment which invoked the escape routine. As much as 
possible, we try to present the Pascal or Fortran 
programmer with facilities which are consistent 
with Pascal or Fortran. We try to give the Prolog 
programmer facilities which are consistent with 
Prolog. 



intended for use in large applications where 
different programmers might be writing the proce
dural code from those writing the Prolog code. We 
use a graphical view of the shared data structure 
to indicate to each group and what data is availa
ble and how that data may be used by each side. A 
Prolog program is used to develop and maintain 
these data diagrams. We are implementing a 
program in Prolog to check Prolog and Pascal 
programs for adherence to the constraints 
described in the data diagram. 

Forty-three statements of Pascal were added to 
the existing interpreter in all. The simpler 
EscapeRoutine is 120 lines of Pascal while the 
more complex one is about 2100 lines. We have 
done two applications in Prolog and in the mixed 
Prolog-Pascal system to determine if the mixed 
system was of use or not. In each case, the appli
cation was written in Prolog, and debugged. Then 
a trace was used to identify where in the Prolog 
program significant time was spent. Those sec
tions were considered for reimplementation in 
Pascal. Hence the results are skewed in favor of 
the mixed system. The first application is a 
primitive calendar system which provides reminders 
of appointments on a daily or weekly basis and 
warns of overlapping commitments. The second 
application is a keyword-based reference retrieval 
system. With the first system, approximately 
twelve percent of the total 260 Prolog statements 
were rewritten in Pascal. On a typical run, the 
mixed system ran seventy-two percent faster than 
the Prolog version. With the second system, ap
proximately seven percent of the total 174 Prolog 
statements were rewritten in Pascal. On a typical 
run, the mixed system ran twenty-one percent 
faster than the Prolog version. Results of twenty 
test runs with different data ranged from fourteen 
to forty-one percent faster for the mixed version 
compared to the Prolog version. 

The approach presented here may be extended in 
several directions. Languages which incorporate 
other paradigms (e.g., object-oriented as in 
SMALL TALK) could be accessed from Prolog or a 
procedural language in the same manner. 
Spreadsheets, databases, painting programs, and 
other applications could be accessed in some 
cases. An inter language tracing and debugging 
tool should be developed to assist production of 
multiple language systems. 

REFERENCES 

[1J Campbell, J. A. editor, Implementations of 
Prolog, Ellis Horwood, New York, 1984. 

[2J Spivey, J. J., "Pascal Source Code of the 
Interpreter", University of York Protable 
Prolog System, Release 1, Department of Com
puter Science, University of York, Great 
Britai n, 1983. 

[3J Hailpern, Brent guest editor, IEEE 'Software 
Special Issue on Multiparadigm Languages and 
Environments, Volume 3, no. 1, January, 1986. 

231 

[4J Mellish, C. S., "An Alternative to Structure 
Sharing in the Implementation of a PROLOG 
INTERPRETER", in Logic Programming, edited by 
Clark and Tarnlund, Academic Press, 1982. 

[5J Santane-Toth, E. and Szeredi, P., "Prolog 
Applications in Hungary", in Logi c Program
ming, edited by Clark and Tarnlund, Academic 
Press, 1982. 

[6J Nilsson, M., "The world's shortest PROLOG 
interpreter?", in Implementations of Prolog, 
edited by Campbell, Ellis HorWOOd, 1984. 

[7J Robinson, J. A. and Sibert, E., "LOGLISP: 
Motivation, Design and Implementation", in 
Logi c Programming, edited by Clark and 
Tarnlund, Academic Press, 1982. 

[8J Bellia, M., et aI, "A formal model for lazy 
implementations of a PROLOG-compatible func
tional language", in Implementations of 
Prolog, edited by Clark and Tarnlund, Academic 
Press, 1982.' 



field: 
globalF,localF,heapF 

stringindex· 0 .. StringSpace; 
optype - (fxO,fyO,xfO,yfO,xfxO,xfyO,yfxO,nonO); 
prec·O .. MaxPrec; 
eva1pred· (ca11R, cutR, readR, writeR, ... , escape4R); 
eva1arity· 0 .. MaxEva1Arity; 
key· integer; 

(* StringSpace • 8800 *) 

(* MaxPrec • 1200 *) 
(* see Appendix C -G1oba1s *) 
(* MaxEva1Arity • 4 *) 

A Comple~e Represen~a~ion of the Da~a Structure of a Term 

232 



ESCAPE' ROUTINE 

#include 'prolog2.h' 
#include 'prologEF.h' 

procedure EscapeRoutine (* (al. a2. a3. a4: term; e: env) *); 
(* 

*) 

instructions in this routine are to be written by the user to do 
whateve~ he wishes. BE CAREFUL!!!!! -- this allows you to 
manipulate the PROLOG database containing the 4 terms passed to this 
routine. 

var atoml, atom2. atom3, atom4: atom; 
argval: array [l .. MaxEvalArity] of term; 
str: array [1 •. 1000] of charstr; 

procedure AtomToChar (var answer: charstr; a: atom); 
(* converts an atom to a packed array of character. *) 

var n, k: integer; 
charstring: charstr; 

begin 

charstring := 
k := 1; 
with at. ident do 

(~\- initialize charstring to blanks *) 

for n := index + 1 to index + length do 
begin 

charstring[k] := stringbuf[n]; 
k := k + 1 

end; 
answer := charstring 

end (": AtomToChar 'it); 

procedure WriteEscTerm; 
(~': 

*) 

Will write out the data type and the individual atoms (one per 
line) of each of the 4 terms passed to the EscapeRoutine. 
WARNING: this procedure will not work well for mixed data 
structures such as lists within complex terms, etc. This is only 
given as an example of how to access each atom in a simple data 
type: integer, uninstantiated variable, anonymous variable, 
unchanged goal, atom, lists, operator expressions, complex terms. 

233 



var i: integer; 
s, y: termj 

begin 
argval[l] := al; argval[2] := a2; 
argval[3] := a3; argval[4] := a4; 
for i := I to 4 do begin 

y := Deref(argval[i) ,e); 
case yt.info.tag of 

funcT: 
with yt.info do 

if arity > 2 then begin 
(* complex term *) 

writeln('arg[',i:l, 

(* atom *) 

'] is a complex term whose atoms are:')j 
WriteAtom(name); writeln; 
WriteAtom(sont.info.name)j writeln; 
s := sont.brother; 
while s <> nil do begin 

WriteAtom(st.info.name)j writelnj 
s := st.brother 

end (,,, while *) 
end (* if arity > 2 *) 

else 
case arity of 

0: 
begin 

writeln('arg[' ,i:l, 
'] is an atom whose name is:')j 

WriteAtom(name); writeln 
endj 

1: 
(* unchanged goa 1 ~'r) 

(* operator exp *) 

if name = curlyA then 
writeln('arg[' ,i:l, 

'] ---> goal { .. } to be unchanged') 
else if 

namet.oclass in [fxO,fyO,xfO,yfO] then 
begin 

writelnC'arg[' ,i:l, 
'] is an operator expression of:'); 

case namet.oclass of 
fxO,fyO: 

begin 
WriteAtom(name); writeln; 
writeln(sont.info.ival) 

end; 
xfO,yfO: 

begin 
writeln(sont.info.ival); 
WriteAtom(name); writeln 

end 
end C* case oclass *) 

end (* if namet.oclass *) 

234 



else 
begin 

(* complex term *) writeln('arg[' ,i:1, 

2: 

'] is a complex term whose atoms are:'); 
WriteAtom(name); writeln; 
WriteAtom(sont.info.name); writeln; 
s := sont.brother; 
while s <> nil do begin 

WriteAtom(st.info.name); writeln; 
s := st.brother 

end(* while ~';-) 

end (1r else 1r); 

(* list *) if name = consA then 

(* operator exp *) 

(* complex ~erm *) 

begin 
writeln('arg[',i:l, 

'] is a list of:'); 
if sont.info.tag = intT then 

writeln(sont.info.ival) 
else begin 

WriteAtom(sont.info.name); 
writeln 

end (~';- else ,';-); 
s := Deref(sont.brother,e); 
while IsFunc(s,consA,2) do begin 

if st.info.sont.info.tag=intT then 
writeln(st.info.sont.info.ival) 

else begin 
WriteAtom(st.info.sont.info.name); 
writeln 

end (~';- else *); 
s := Deref(st.info.sont.brother,e) 

end ("r while ,'r) 
end (* if name = consA *) 

else if 
namet.oclass in [xfxO,xfyO,yfxO] then 

begin 
writeln('arg[l,i:l, 

else 

') is an operator expression of:'); 
writeln(sont.info.ival)j 
WriteAtom(name)j writeln; 
writeln(sont.brothert.info.ival) 

end 

begin 
writeln('arg[' ,i:l, 

I) is a complex term whose atoms are:'); 
WriteAtom(name); writeln; 
WriteAtom(sont.info.name); writeln; 
s := sont.brother; 

235 



while s <> nil do begin 
WriteAtom(st.info.name)i writelni 
s := st.brother 

end (* while *) 
end (* else ')'r) 

end (* case arity *)i 
intT: 

begin 
(* integer *) writeln('arg[',i:l, 

'] is an integer with value:'); 
writeln(argval[i]t.info.ival)' 

end; . 
varT: 

(* uninstantiated or anonymous variable *) 
writeln('arg[' ~i:l, 
'] is an uninstantiated or anonymous variable'); 

anonT: 
(* anonymous var *) 

writeln('arg[',i:l, 

end (* case tag *) 
end (* for i *) 

end (* WriteEscTerm *); 

begin 
WriteEscTerm; 

atoml := aIt. info.name; 
atom2 := a2t.info.name; 
atom3 := a3t.info.name; 
atom4 := a4t.info.name; 

writeln 

'] is an anonymous variable') 

('*** Writing out first Atom as a CharacterString ***'); 
AtomToChar(str[l],~toml); writeln(str[l]); 
AtomToChar(str[21,atom2)j writeln(str[21)j 
AtomToChar(str[3),atom3); writeln(str[3); 
AtomToChar(str[4],atom4)j writeln(str[4])j 

(* 

*) 

The following will write to standard output if echoing or not 
telling (and write to the tellfile if telling) each ~erm in PROLOG 
form. Note: writeln's here will not be written to the tellfile. 

WriteOut(al,e)j writelnj WriteOut(a2,e)j writelnj 
WriteOut(a3,e); writelnj WriteOut(a4,e)j writeln 

end (* EscapeRoutine *); 

236 



Knowledge-Based Optimization 
in Prolog Compiler 

N aoyuki Tamura 
Science Institute, mM Japan, Ltd. 

5-19 Sanban-cho, Chiyoda-ku, Tokyo 102 JAPAN 

Abstract 

This paper describes an optimization technique used in a 
Prolog compiler. The compiler generates efficient code for 
several machines including IBM System/370 and a RISC 
machine, IBM RT PC. 

We stress on knowledge-based approach for optimization. 
Prolog programs are compiled into intermediate code and 
the code is translated into a graph for optimization. The 
optimization consists of following two steps; (1) tracing 
the graph to infer the behavior of the intermediate code by 
using a semantic definition of the intermediate language; 
and (2) simplifying the graph by graph reduction rules. 

This optimization improves the performance of a list 
concatenation program by a factor of 1.8. And when some 
user's declarations are added, the improvement of the op
timization becomes about 2.0. 

1 Introduction 

This paper describes an optimization technique used in a 
Prolog compiler. The compiler generates efficient code for 
several machines including IBM System/370 and a RISC 
machine, IBM RT PC [6]. 

Figure 1 shows the outline of the compiler [7]. 
In phase-I, Prolog programs are compiled into interme

diate code. The intermediate language is based on David 
Warren's "Abstract Prolog Instruction Set" [5], but some 
instructions are decomposed into lower level instructions. 

In phase-2, the intermediate code is translated into a 
graph. The optimizations are then performed on this 
graphical representation 9f the program. Then the op
timized graph is translated back to intermediate code. 

In phase-3, the intermediate code is translated into a 
high level language program - PL.8 [1] - as an object 
code. 

Phase-4 is a PL.8 compilation phase. 

2 Prolog compiler 

There are some problems with the compilation of Pro
log programs compared with other conventional languages, 
such as FORTRAN and Pascal. 

CH2345-7/86/0000/0237$01.00 © 1986 IEEE 
237 

Prolog 

Phase-I ~ translation 

Intermediate Language 

Phase-2 ~ optimization 

Intermediate Language 

Phase-3 ~ translation 

PL.8 

Phase-4 ~ compilation 

Target Code (S/370, RT PC) 

Figure 1: Outline of the Prolog compiler 

• typelessness 
Prolog is basically a typeless language. Variables can 
contain any type of data and different operations are 
required for different data types. 

• bidirectionality 
Any argument can work as both input and output. 
The same argument can be used to construct the 
structure or to read the elements of the structure. 

In David Warren's "Abstract Prolog Instruction Set" 
[5], the first point is solved by using tags to distinguish 
data types. The second is done by using read/write modes 
to indicate whether the unification in process is destructive 
or constructive. 

Tick and Warren's "Pipelined Prolog Engine" has a 
piece of hardware to test tags and read/write modes at 
execution time with little overhead [3]. But for conven
tional machines, testing at execution time requires several 
instructions and is an overhead. Therefore, for those ma
chines, optimizing test operations is useful to improve the 
performance. 

However, the level of Warren's instruction set is too high 
to perform the optimization because testing operations are 
implicitly embedded in most instructions. For example, 
the instruction, get..list Ai, implies following operations: 

1. test the tag of the register Ai 



2. if A1 is a bound variable, 
dereference A1 and go to 1 

3. if A1 is an unbound variable, 
create a list cell and set to write mode 

4. if A1 is a list, 
get the address of the list and set to read mode 

5. otherwise, 
fail 

As far as get-1ist is used as a primitive instruction, it is 
impossible to optimize it even if A1 is always a list. 

Therefore, in our compiler, about 30% of instructions 
are decomposed into lower level instructions. Especially, 
in get and unify instructions, testing data types and 
read/write modes are explicitly coded so that the com
piler can optimize the code. 

3 Optimizations 

The optimizer uses a graph representation of the interme
diate language. The graph consists of nodes and directed 
edges, and represents the control flow of the intermediate 
co.de. In general, there is one node for each intermediate 
instruction, and there is a directed edge from a node N I 
to a node N2 if N2 could immediately follow NI during 
execution. 

The following two steps are applied repeatedly for the 
graph: 

• graph tracing 

• graph simplification 

In the "graph tracing" step, the optimizer traces the graph 
in a depth-first manner and infers the possible data types 
and read/write modes. In the "graph simplification" step, 
the optimizer simplifies the graph by using information 
generated in the tracing step. 

These two steps are repeatedly executed as long as there 
is a node that can be deleted. 

3.1 Data types and case instruction 

Before the discussion of the optimizations, data types 
and case instruction of the intermediate language are de
scribed. 

The type of a variable is expressed by the term 
type (V) =T where V is a variable and T is a' type, such 
as int, atom, nil, list, struct, and ref. 

The case instruction is used to test a data type or a 
read/write mode. The case instruction for type testing of 
a variable V has a form: 

case type (V) of { 
T1 - > S1; 
T2 - >- S2; 

238 

Tn - > Sn 
} 

where 
T i is a data type, 
Si is a statement of the intermediate language. 

All Ti must be exclusive like a guarded command [2]. 
As for the case instruction for mode testing, a form is 

case mode of { ... } 

and Ti is either read or write. 

3.2 Graph tracing 

In this step, the graph is traced to get the information 
of possible data types and modes. That is, the optimizer 
starts from an entry node with no information, and then, 
step by step, traces the graph updating the information. 

In fact, the information is a condition of data types and 
read/write modes for each edge of the graph. For example, 
suppose an edge has the condition type(a(1) )=list. This 
implies the register a (1) is always a list at that edge at 
the execution time. 

While tracing, the optimizer uses a semantic defini
tion table to know the effect of each intermediate instruc
tion. The table defines the post-condition of each instruc
tion. For example, the post-condition of the instruction 
put....nil (V) is type (V) =nil that means the type of vari
able V will be nil after the execution of the instruction. 
Post-conditions of some built-in predicates are also de
scribed in the semantic definition table. 

Marking of traced nodes are also performed in this step 
to distinguish unreachable ~odes. 

3.3 Graph simplification 

Graph reduction rules are applied to the graph by using 
the information obtained in the previous inference steps. 
Rules for the following optimizations are described as an 
example. 

1. eliminating redundant case instructions 

2. eliminating never-selected case entries 

3. eliminating unreachable instructions 

For the explanation of 1 and 2, suppose there is a sub
graph shown in Figure 2 where Ai is a condition obtained 
by the inference step, and Bj is a condition to select that 
case entry. Optimization rules 1 and 2 are: 

Rulel:H 
(AI I A21 ... I An) & Bj is false for some j, 

the entry Bj can be omitted. 

Rule2:H 



Figure 2: case node in a graph 

Ai & B j is true for some i and j 
and 

Ai & Bk is false for all k =1= J', 
the edge from Ai can be redirected to Bj to skip 
the case instruction. 

Rule 3 is very simple: 

Rule 3: If 
a node is unmarked in the tracing step, 

it can be deleted. 

3.4 Example 

The following is an example of optimization. 

label_l : 
case type(a(l)) of { 

list -> goto(label_2); 

}; 

label_2 : 
case type(a(l)) of { 

nil -> goto(label_3); 
list -> goto(label_4) 

}; 

<-- (a) 

<-- (b) 
<-- (c) 

239 

Suppose goto statement at (a) is the only one for 
labeL~t Then the condition at the label-2 would 
be type(a(l) )=list. The Rule 1 can be applied to 
the case instruction to delete the entry (b) because 
type(a(l))=nil is always false. And also, the Rule 2 
can be used because then entry (c) -is the only choice. 
Therefore, the second case instruction can be skipped by 
redirecting the destination of (a) to labeL4. Moreover, 
in the next graph simplification step, the case instruction 
at label-2 will be deleted by Rule 3 because there is no 
goto for that label. 

After these optimizations, the code will be as follows: 

label_l : 
case type(a(l)) of { 

list -> goto(label_4); 

}; 

3.5 User's hints 

In DEC-I0 Prolog [4], input/output mode declaration is 
used to improve the performance. Such kind of informa
tion simplifies the control How of the code and helps the 
optimizer by reducing the number of cases to be consid
ered. 

We introduced type declarations. These declarations 
are used to assert the data types of the arguments of a 
predicate. 

When these declarations are added by a user, the code 
is considerably optimized compared to the code with no 
declarations. 

3.6 Measurement of Optimization 

Table 1 shows the improvement of the optimization for a 
list concatenation program. The source code is as follows: 

concat({}.L.L). 
concat({XILl}.L2.{XIL3}) <- concat(Ll.L2.L3). 

In Table 1, are only considered the effects of the opti
mization techniques described in this paper. The results 
displayed in the "Opt" case have been obtained which us
ing all the optimization techniques we have developed for 
our compiler (as described in [7]). In the "No opt" case, 
we have only omitted the optimizations obtained by the 
techniques described in this paper. 

In case of no declarations, the performance is improved 
by a factor of 1. 79, and when mode and type declarations 
are added, by a factor of 1.99. 



Table 1: Improvement of the optimization· for the proce
dure concat 

No Mode & type 
concat declarations declarations 

No opt Opt No opt Opt 
Number 

of 103 95 99 51 
nodes 

Performance 
on mM 3081K 341 611 362 720 

(KLIPS) 

Table 2: Improvement of the optimization for other pr<r 
grams (number of nodes) 

No Mode & type 
Number 

declarations declarations 
of nodes 

No opt Opt No opt Opt 

nreverse 162 143 156 86 

quick sort 260 235 254 169 

N queen 327 287 317 177 

Improvements for other typical benchmark programs are 
shown in Table 2. The number of nodes before optimiza
tion and after optimization is.,displayed in this table. 

4 Conclusion 

In this paper; optimization techniques used in a Prolog 
compiler are described. The optimizer is designed using a 
knowledge-based approach. Optimizations are performed 
by (1) inferring the behavior of the intermediate code and 
(2) simplifying the graph by using the inferred informa
tion. 

This optimization improves the performance of a list 
concatenation program by a factor oI1.8. And when mode 
and type declarations are added, the improvement of the 
optimization is about 2.0. 

Acknowledgement 

I wish to thank Yasuo Asakawa and Hideaki Komatsu for 
their cooperation of designing and implementing the com
piler. I would like to give thanks to Toshiaki Kurokawa, 
Tetsunosuke Fujisaki, and Peter Woon for their helpful 
advice. 

240 

References 

[I} Auslander, M. and Hopkins, M., An Overview of the 
PL.B Compiler, Proc. of the SIGPLAN. '82 Sympo
sium on Compiler Construction, Vol. 17 , No.6, June 
1982. 

[2] Dijkstra; E. W., Guarded Commands, Nondetermi
nancy and Formal Derivation of Programs; CACM 
Vol.18~ No.8, pp.453-457, August 1975. 

[3} Tick, E. and Warren, D. H. D., Towards a Pipelined 
Prolog Processor, Proc. of 1984 International Sympo
sium on Logic Programming, IEEE Computer Soci
ety, 1984. 

[4] Warren, D. H. D., Implementing Prolog - compiling 
predicate logic program, Research Reports 39 & 40, 
Dept. of Artificial Intelligence, Univ. of Edinburgh; 
1977. 

[5} Warren, D. H. D., An Abstract Prolog Instruction Set, 
SRI International Technical Note 309, October 1983. 

[6} International Business Machines Corporation, RT 
Personal Computer Technology, No.SA23-1057, 1986. 

[7] Kurokawa, T., Tamura,N., As akawa , Y., and Ko
matsu, H., A Very Fast Prolog Compiler on Multi
ple Architectures, (to appear in Proc. of the 1986 
ACM/IEEE Computer Society Fall Joint Computer 
Conference) . 



Communication with Expert Systems 

Kathleen R. McKeown . 
Department of Computer Science 

450 Computer Science 
. Columbia University 
New York, N.Y. 10027 

Abstract 
The use of natural language to interact with an underlying expert 

,.system entails problems in both generation and interpretation that 
differ significantly from problems that have been addressed in 
'interfaces. to other types of systems. In-this paper, we show how a 
natural language interface to an expert system can make use of the 
discourse environment to generate explanations that are tailored to 
an individual user's concerns and must derive facts in addition to a 
query when interpreting an input question. The techniques 
'presented are .applicable as well to more general problem solving, 
advising, and consulting systems. 

1 Introduction 
In the past, expert systems that communicated interactively with 
their users to gather data and convey results used relatively simple 
interfaces for interaction such as menus (e.g., MYCIN (Shortliffe 
76» or'restricted forms of natural language (e.g., Prospector (Duda 
78». The development of a full-blown natural language interface 
for expert systems raises a number of difficult research questions. 
This paper explores how questions that must be addressed for 
natural language within the expert system environment differ from 
questions that have been addressed in the database environment, 
shows how the expert system provides an ideal environment to 
address problems in user modeling and . natural language 
generation, and identifies requirements for natural language 
interpretation in the expert system environment 

The use of a natural language interface, in place of a menu 
interface means that any single. request for advice is .embedded 
within an ongoing dialog which can provide information about a 
user's higher level problems and concerns. A natural language 
system can use this information to generate' explanations that are 
tailored to an individual user's concerns. Furthermore, a user can 
provide information in a single natural language question or 
statement that would have to be, requested via a sequence of 
questions in a menu system. . This me~ns that a natural language 
interface can avoid lengthy interactive sequences to gather 
information and more quickly provide the desired advice. To 
achieve this end, however, a natural language interface must be 
able to derive facts as well as a goal to prove from a single input 
question and must be able to use those facts in inferencing to avoid 
asking for irrelevant information. 

These problems are currently being addressed in two ongoing 
projects at Columbia. The generation of explanations tailored to 
the system user is being addressed within the context of a student 
advising system which can provide advice about whether a student 

IThe work described in this paper is partially supported by ONR grant 
NOOO14-82-K-0256 and by NSF grant IST-84-S1438. 

CH2345-7/86/0000/0241$01.00 © 1986 IEEE 
241 

can or should take a particular course (McKeown, Wish, and' 
Matthews 85). Natural language interpretation for expert systems
is being addressed within the .context of a tax advising system2 ' 
which can provide assistance in filling out an income tax return 
(Datskovsky 85; Datskovsky and . Ensor 86). Our examples 'come 
from a subsystem of the tax advisor, the dependency module, 
which can determine whether or not a user can claim another 
specified person on their federal tax return. 

2 Comparisons with Natural Language'Database 
Systems 

In designing a natural language interface for an expert system one 
natural approach is to tum to the database. environment for 
techniques where the development of natural language interfaces 
has been' quite successful. In comparing. the two environments, 
however, it immediately becomes apparent that there are 
significant differences between what is required for natural 
language in each case. The differences appear in the type of 
discourse (i.e., sequences of interaction) that will occur and in the 
results of parsing (Le., the correlate of a natural language question 
in the underlying system). 

2.1 Discourse 
One main difference between the database and expert system 
environment is in the type of extended discourse possible with the 
system. The influence of the discourse situation on the meaning of 
an utterance and on the generation of a response,has been noted by 
many researchers (e.g., Allen and Perrault 80; Appelt 81; Carberry 
83; Cohen 78 Litman and Allen 84; McCoy 85). If a'system can 
identify context and higher-level problems from the discourse that 
the user is attempting to solve through interaction with the system, 
it can supply a meaningful response. 

In a natural language database system, a user is allowed. to .ask 
questions and the system will respond. An extended discourse, 
therefore, would consist of a sequence' of questions. Whether or 
'not questions in a sequence are related to each other depends upon 
whether the user is .randomly asking questions or is gathering 
information to solve a problem. If the latter, then the sequence of 
questions may be related to the underlying problem. 

For example, . suppose the database, contains information about 
course offerings in a university, . as is the case in our student 
advising domain. If the user wants to determine which course to 

. take next semester, s/he might ask the following sequence of 
questions to gather the information needed to make the decision. 

1. What courses are offered next semester? 
2. What are the pre-requisites? 
3. Which of those courses are sophomore level 

Znte tax advisor, TAXPERT, is being developed primarily by AT&T Bell 
Laboratories (Ensor el al. 86). Columbia's focus is on one module, the 
dependency module, and its natural language interface. 



courses? 
4. What is the programming load in each course? 

There are two main observations to be made. First, because the 
user is restricted to asking questions, the underlying problem being 
solved is never clearly stated. If the system wants to use that 
problem in deciding how to respond to a question, it must do quite 
a bit of guesswork in inferring the problemas well as criteria the 
user has for how the problem is to be satisfied. Second, since the 
user has responsibility for determining what information is needed 
to solve the problem and for producing the final solution, whether 
the questions in a discourse segment are connected depends upon 
the user. The user may alternate questions about several problems, 
making the task of inferring the underlying problem more difficult 

In contrast, in the expert system environment, the underlying. 
expert system has responsibility for coming up with a solution to a 
given problem and thus, the natural language interface is aware of 
information needed to solve that problem. It can use that 
information to take responsibility for directing discourse towards 
the problem solution (see Matthews 85). Moreover, since the 
system must ask the user to enter information needed to do 
problem solving, the user has the opportunity to state the problem 
slhe is concerned with and any criteria slhe has for how the 
problem must be satisfied. 

As an example, consider again the problem of deciding what 
course to take in a coming semester. If the underlying expert 
system can determine whether a student should take a course in' 
the coming semester, we might expect extended discourse similar 
to that shown in Figure 1. 

1) User: I'm a sophomore and just finished data structures. 
What courses should I take this spring? 

2) System: Have you taken discrete math? 
3) User: Yes. 
4) System: Are there any courses you'd particularly like to take? 
5) User: I'd like to take less programming courses. 
6) System: I suggest you take fundamental algorithms and finite 

math which are both offered next semester. You 
should have finished both courses by the end of 
your sophomore year and only fundamental 
algorithms requires programming. 

Figure 1: Expert System Discourse 

This discourse segment is clearly concerned with a single purpose 
which is stated by the user at the beginning of the session3. This is 
the goal that the expert system must pursue and the ensuing. 
discourse is directed at gathering information and defining criteria 

, that are pertinent to this goal. Since the system must ask the user 
for information to solve the problem, the user is given the 
opportunity to provide additional relevant information. Even if 
this information is not strictly necessary for the problem-solving 
activity, it provides information about the user's plans and 
concerns and allows the system to select information in its 

30ver a longer sequence of discourse, more than a single user purpose is likely 
to surface. We are concerned here with discourse segments which deal with a 
single or related set of purposes. 

242 

justification which is aimed at those concerns. Thus, in the above 
example, the system can use the volunteered information that the 
.user is a sophomore and wants to take less programming courses 
to tailor its justification to just those concerns, leaving out other 
potentially relevant information. 

2.2 Parsing 
Since the main purpose of a database system is to store and 
retrieve information, most database management systems provide 
formal query languages for searching and retrieving information 
from the database. In a natural language interface, a user asks a 
question in place of issuing a formal query. Parsing a question, 
then, requires producing as output the corresponding query. In 
producing the query, a parser must take into account the kind of 
search that is required and determine constraints on the search. 
Whether a parser uses a syntactic or semantic grammar, a top
down or bottom-up algorithm, its task remains the same: to 
produce the corresponding formal query. 

The main purpose of an expert system is to apply large amou~ts of 
domain specific knowledge on a narrow real-world problem to 
arrive at a solution. Depending on how many problems it can 
solve, an expert system has one or more goals it can prove (e.g., 
one goal in MYCIN (Shortliffe 76) is to determine whether or not 
the patient has meningitus). We might expect a question, then, to 
indicate the goal the user wants proved. 

For example, in our tax advising domain, one goal is (claim ?x) 
(Le. to determine whether the user can claim whoever ?x refers to 
as a dependent). Possible questions for the domain would be of the 
'sort "Can I claim my sister as a dependent?". If an expert system 
has a number of such goals, then parsing questions for this 
environment can be compared to parsing questions for the 
database environment, with instantiated goals replacing formal 
queries as output. 

There are complications, however. In order to do problem solving, 
an expert system must gather information about the problem at 
hand. In the tax advising domain, for example, there are a number 
of tests that must be satisfied in order to allow a user to claim 
another as a dependent. The potential dependent must be a 
relative, a US citizen, if over 19 a student, etc. Existing expert 
systems either query the user for such information (e.g., MYCIN) 
or gather it from the environment (e.g., an online database as in 
ACE (Stolfo and Vesonder 82}}. While a natural language 
interface may also have to ask questions of the user to gather the 
needed information, some facts may be provided in the initial 
question in addition to the system goal, thus reducing the number 
of queries the system must pose. In the question "Can I claim my 
sister as a dependent?", the user indicates that the potential 
dependent is a relative, in fact, a sister. 

An interface for ~ expert system, therefore, must be able to 
produce a. system goal to prove (analogous to a database query) 
and in addition, facts to add to working memory which the 
inference engine can use in the deduction process. This has no 
analogy in current natural language database systems but would be 
similar to allowing a user to both query and update the database 
with a single question (see Joshi 78 for a discussion of an 
approach to this problem). 

2.3 Consequences 
These differences have several consequences for natural language 
in the expert system environment. First, given that discourse 
segments revolving around an underlying problem the user wants 



solved are very likely to occur, an expert system provides an ideal 
.environment for addressing the problem of generating responses 
(in this case, explanations) that are tailored to the user's concerns. 
Second, interpretation requires the development of new techniques 
as opposed to simply adapting those from an existing environment. 
In particular, a system must have the facilities for deriving facts as 
well as the queried system goal from an input question. The 
following sections discuss ongoing work at Columbia that 
addresses these two issues. Since the approaches taken augment 
traditional expert system techniques, they are applicable to general 
problem solving systems as well. 

3 User Modelling for Expert Systems 
Given that natural language sessions with an expert system 
environment lend themselves to problem oriented dialog, one 
thrust of our work on natural language for expert systems involves 
the development of facilities to generate explanations that are 
tailored to the problems of the user. In order to generate tailored 
explanations, we have developed techniques to represent point of 
view in the underlying knowledge base to support different 
explanations, to derive a user goal underlying a discourse segment, 
and to relate the derived goal to different points of view to 
determine explanation content. 

This work is being done within the context of an ongoing project 
to develop a dialogue facility for computer-aided problem solving. 
A student advising system is being developed which can provide 
information about courses and advice about whether a student can 
or should take a particular course. The system is currently 
structured as a question-answering system which invokes an 
underlying expert system on receiving "can" questions (e.g. 
"Can I take natural language this semester?") and "should': 
questions (e.g., "Should I take data structures?"). This production 
system uses its rule base to determine the advice provided (Le., yes 
or no) and the tr~ce of rule invocations is used to provide a 
supporting explanation of the advice. 

3.1 Deriving the User Problem 
If the system is to generate an explanation that addresses the 
higher level problem the user wants solved as well as constraints 
slhe has for solving the problem, the system must be able to 
identify what the higher level problem is. Since this is related to 
the user's goal in pursuing the dialogue, the large body of work on 
goal inference techniques (Allen and Perrault 80; Carberry 83; 
Litman and Allen 84) is applicable for deriving the user's goal. 
We have drawn heavily from Allen and Perrault's (80) work, 
making use of their plausible inference rules, representation of 
domain plans, and representation of speech acts as plans. While 
their work has been extremely useful, it falls short for our 
purposes in several ways. For example, their inferencing 
procedure derives a plausible goal for a user based on a single 
utterance, while we are interested in deriving a goal based on the 
current sequence of utterances4. 

Consider the discourse shown in Figure 2 below. Assuming that a 
database of domain plans common to the student advising domain 
is maintained, Allen and Perrault's techniques could be used to 
derive the domain goal shown following each question. But the 

4In this work, we restrict ourselves to a discourse segment that deals with a 
single or related set of goals. Over a longer sequence of discourse, topics may 
shift and the user may reveal very different goals across such boundaries. 
Detecting topic shifts and radical changes in goals is a difficult problem that we 
are not addressing. 

243 

explanation shown in Figure 2 (c) addresses not the derived goal 
?f (c), nor any of the derived goals of the previous utterances, but 
Instead addresses the higher level goal indicated by the derived 
goals of (a).and (b). ~e problem for responding to such goals in 
an explanation, then, IS to be able to derive a higher level goal 
relating the goals of individual utterances. 

a. S: I've read about the field of AI and I'm interested in learning 
more about it eventually. Is natural language offered next 
semester? 
Plausible goal = take natural language 

A: Yes. 
b. S: Who is teaching artificial intelligence? 

Plausible goal = take AI 
A: Lebowitz this semester. 

c. S: I haven't taken data structures yet Should I take it this 
semester? 
Plausible goal = take data structures 

A: Yes, if you take data structures this semester you can take 
AI next semester which is necessary fo~ all later AI 
courses. 

Figure 2: Goal Oriented Explanation 

We use Allen and Perrault's rules to derive the domain goal of 
eaCh. indi~idual utterance, w~ch we term the current goal. We 
also Identify a goal representing the discourse sequence which we 
term the relevant goal since it will be used to generate later 
explanations. Intuitively, the relevant goal is a higher level goal if 
there is one, relating the goals of several utterances. ' 

The ~rocess of determining the relevant goal involves the 
followmg steps. The current goal is first derived from the initial 
utterance. All higher level domain goals are then derived from the 
c~rre~t goal using Allen and Perrault's body-action inference rule 
(I.e., ~f the user wants a step in the body of a plan to hold, it is 
plau~lble that slhe wants the action to hold). Anyone of these is a 
candidate for the relevant plan. A derivation of the higher level 
plans for the utterance "Is natural language offered next 
semester?" is shown in Figure 3. Note that the action take 
natural langua~e is a step in two separate plans, 
concentrate-on-at and fulfill electives, and thus two parent paths 
are formed. 

~e~ the ,~~cond utterance "Who is teaching artificial 
mtelhgence? IS entered, the current goal take ai is derived and 
all higher level goals derived (see Figure 4) from that using the 
body-action rule. The lowest level node where the two paths 
intersect becomes the relevant plan (concentrate-on-ai in this 
case). If the second utterance had been "When is operating 
systems offered?," the higher level goal fulfill electives would 
have been inferred since this is the only relation between the goals 
take operating systems and take natural language. 

This method is essentially a search for the lowest common 
ancestor of the current goals of two consecutive utterances. When 
the third, or any subsequent utterances are encountered, the 
relevant goal is determined by performing the search for common 
ancestor using the previous relevant goal and the current goal of 
the new utterance. 



MAJOR IN CS 

CONCENTRATE - ON - AI FULFILL ELECTIVES 

TAKE NATURAL LANGUAGE 

"Is natural language offered next semester?" 

Figure 3: Current and Higher Level Goals 
for Utterance 1 

Carberry (83) does present a method for tracking user goals over a 
sequence of discourse, building in the process a hierarchical model 
of user plans for the discourse. She uses this hierarchy and a set of 
focus heuristics to determine for the next incoming utterance 
which of several plausible plans the user could be focusing on. 
She does not specify which plan in the hierarchy best represents 
the overall discourse purpose and therefore should be addressed in 
succeeding explanations. Our model thus augments hers by 
providing this information. 

3.2 How to Respond 
In order to generate a response that addresses the derived relevant 
goal, the system must be able to identify information that is related 
to the goal. To do this, we are using intersecting multiple 
hierarchies to represent different points of view in the underlying 
knowledge base. The hierarchies are cross-linked by entities or 
processes (often courses in the student advisor domain) which can 
be viewed from different perspectives (and thus occur in more 
than one hierarchy). Hence to construct the content for 
explanation (c) in Figure 2 above, the system would extract 
information about data structures as it relates to the AI topics 
hierarchy. If the user had the goal of completing required courses 
as soon as possible, it would extract information from the 
requirements hierarchy. A diagram of a portion of these two 
hierarchies containing information for the two points of view is 
shown in Figure 5 below. 

The partitioning of the knowledge base by intersecting hierarchies 
allows the generation system to distinguish between different 

244 

TAKE AI TAKE NATURAL LANGUAGE 

1: "Is naturai language offered next semester?" 
current goal = take natural language 
2: "Who is teaching artificial intelligence?" 
current goal = take ai 
relevant goal "" concentrate-on-ai 

Figure 4: Relevant Goal for Utterances 1 and 2 

types of information that support the same fact. From this 
partitioning, the system can select the portion that contains the 
information relevant to the current request and user goal. 

After information from the appropriate hierarchy has been placed 
in working memory, the production system uses this information 
to derive the response (for explanation (c) of Figure 2, whether the 
user should take data structures). The trace of the reasoning is 
then available to provide the basis for the explanation, as is the 
case in traditional expert systems. Note, crucially, that information 
extracted from one hierarchy will allow a different set of rules to 
fire than will information extracted from another, thus producing 
different explanation content. 

In constructing the explanation shown in (c) of Figure 2, the 
system first extracts the information shown in Figure 6 from the AI 
topics hierarchy. At this point, it also has information about what 
the student has already taken as well as the plan (here, plan 
concentrate-on c :m) in working memory. After deducing that the . 



Figure 5: Representing Points of View 

student can take these courses5, the production system will 
attempt to prove that the queried action helps the user achieve 
hislher goals. The information shown in Figure 6, enables rule 8 
to fire with ?coursel instantiated as c:data-structures and 
?course2 instantiated as c:intro-ai. This rule concludes 
(precursor c:data-structures c:intro-ai). At this point rule 7 can 
fire, with ?future-course instantiated as c:intro-AI and ?area 
instantiated as c:ai-Area, and ?course instantiated as 
c:data-structures. Thus, the advice is yes since the system can 
conclude (advances-plan c:data-structures). The instantiated 
rules can be used as the basis for the English explanation shown in 
(c) of Figure 2. Currently the in!erencing component is complete, 
but the surface generator only .partly implemented. While we can 
produce the content for explanation (c), we can not yet produce 
full English. 

Note that if the user's plan had been to complete requirements, 
other rules indicating how the plan is advanced (such as "the 
course is a required course") would have fired since different 
information exists in working memory. 

SRegardless of whether the user's queried action helps himlher achieve the 
relevant goal, if it is not permissible or will prevent the student from completing 
the major, the advice is always negative. Rules encoding such absolute 
constraints include "a course cannot be taken before its prerequisite", or "a 
course should not be taken if it prevents the student from completing 
requirements by the time s/he is a senior". Here, we assume, for convenience, 
that the ~tud~nt has already taken the prerequisites to data structures and is early 
enough m his/her program that slhe will be able to finish on time, and thus the 
absolute rules are satisfied. 

245 

Information Extracted: 

(prerequisite c:data-structures c:intro-ai) 

(superc c:intro-ai ai-area) 

Rule 8: 

(IF (pre-requisite ?coursel ?course2» 
(THEN (precursor ?coursel ?course2») 

Rule 7: 

(IF (plan concentrate-on ?area) 
(superc ?future-course ?area) 
(precursor ?future-course ?course» 

(THEN (advances-plan ?course») 

Figure 6: Constructing Explanation Content 

4 Interpretation in Expert Systems 
In order to address the problem of both deriving a query (i.e., a 
goal to prove) as well as facts about the problem at hand from a 
~ingle q?estion, an underlying control structure for expert system 
mferencmg that can support a natural language interface has been 
developed. Future work will address presuppositional analysis of 
noun phrases to add facts to working memory. This work is being 
done as part of the tax advising domain. 

Since a user's question can indicate additional facts about the 
problem to be solved, the underlying expert system should be able 
to use these facts to more quickly arrive at a problem solution. If 
the system follows its normal problem solving chain, however, it 
may not make use of the given information until late in the 
?eduction sequence in which case deduction paths that are 
Irrelevant to the stated problem may be followed and information 
requested that is not needed due to the initial given information. 

In order to make use of facts provided in the initial question and 
avoid unnecessary inferencing and system queries, an underlying 
control strategy is needed that can minimize queries that the 
system asks, maximize relevance of system queries to previous 
dialog, and provide information from any point in the underlying 
inference chain. Datskovsky developed DIRECfOR (Datskovsky 
and Ensor 86), embodyi~g a control strategy for an expert system, 
that supports these reqUIrements for a natural language system. 
She has developed three main techniques to handle these 
obje~tiyes: a combina~on of forward and backward chaining, 
heunsttcs to select which rule to fire next that minimize system 
queries and maximize relevance, and mechanisms to retrieve 
different types of information from an inference chain. 
DIRECfOR is currently being used as the inference engine in the 
dependency module of the tax advisor. 

DIRECfOR's strategy for inferencing includes the following 
steps: 

1. given all facts from the user's input, forward chain 
until all possible rules using existing information 
have fired. 



2. then backward chain from the given goal using 
existing infonnation in working memory. 

3. when no further deductions can be made using 
existing infonnation query the user on firing the next 
rule. 

4. Given new input, start again at step 1. 

DIRECTOR's heuristics apply at step 3. When no further rules 
apply using existing infonnation, new infonnation must be 
obtained from the user to continue problem solving and arrive at a 
solution. At this point, DIRECTOR has made maximal use of the 
initial given infonnation. The rule that is fired next determines 
what to ask the user. As in standard expert system interfaces, the 
user will be queried about any facts in the left hand side of the rule 
not currently known by the system (i.e., not existing in working 
memory). Since Director wants to maximize relevance to the 
user's question, it chooses the rule whose left hand side contains 
the most known facts from the user's last input. While there is no 
guarantee that the solution will be found most quickly, this 
heuristic does guarantee maximum relevance to previous discourse 
and minimizes the number of queries the system will ask. 

5 Conclusions 
The work described here in both the tax advising domain and the 
student advising domain will allow for the ultimate development 
of full-blown natural language interfaces to expert systems. Such 
interfaces allow a user to receive advice more quickly, shortcutting 
questions the system would otherwise have had to ask, and 
provide the user with an explanation that addresses higher-level 
problems s/he is trying to solve. 

References 

(Allen and Perrault 80). Allen, J. F. and C. R. Perrault, 
"Analyzing intention in utterances," Artificial Intelligence 
15,3,1980. 

Appelt, D. E. "Planning Natural Language Utterances to Satisfy 
Multiple Goals." Ph.D. dissertation, Stanford University, 
Stanford, Ca., 1981. 

(Carberry 83) Carberry, S., Tracking user goals in an infonnation
seeking environment, in Proceedings of the National 
Conference on Artificial Intelligence, Washington D.C., 
August 1983, pp. 59-63. 

(Cohen 78). Cohen, P., On Knowing What to Say: Planning 
Speech Acts, Technical Report No. 118, University of 
Toronto, Toronto, 1978. 

(Datskovsky 85). Datskovsky, G., "Designing Natural Language 
Interfaces to Expert Systems" , Columbia University 
Technical Report, 1985. 

(Datskovsky and Ensor 86). Datskovsky, G. and J.R Ensor, 
"Director -- An interpreter for rule-based programs", 
Columbia University Technical Report, 1986. 

(Derr and McKeown 84). Derr, M.A. and K.R McKeown, Using 
focus to generate complex and simple sentences, Proceedings 
of COUNG-84: Tenth International Conference on 
Computational Linguistics, Stanford, July 1984, pp. 319-26. 

(Duda 78). Duda, RO., P.E. Hart, N.J. Nilsson, and G.L. 
Sutherland, Semantic Network Representations in Rule-

246 

Based Inference Systems, in D.A. Watennan and 
F. Hayes-Roth (eds.), Pattern-Directed Inference Systems, 
Academic Press, N.Y.,N.Y., 1978. 

(Ensor et. a1. 85). Ensor, J.R., I.D. Gabbe, and R.L. Blumenthal, 
"Taxpert - A framework for exploring interactions among 
experts," 11354-850130-02-TM, 1985. 

(Joshi 78). Joshi, A.K., A note on partial match of descriptions: 
Can one simultaneously question (retrieve) and infonn 
(update)?, in TINLAP-2, Illinois, July, 1978, pp. 184-6. 

(Litman and Allen 84) Litman, D.J., and IF. Allen, A plan 
recognition model for clarification subdialogues, Proceedings 
of COUNG-84: Tenth International Conference on 
Computational Linguistics, Stanford, July 1984, pp. 302-11. 

(Matthews 85) Matthews, K., Initiatory and reactive system roles 
in human computer discourse, unpublished manuscript, 
AT&T Bell Laboratories, 1985. 

(McCoy 85). McCoy, K. F., The role of perspective in responding 
to property misconceptions., in Proceedings of the Ninth 
International Joint Conference on Artificial Intelligence, Los 
Angeles, Ca., August 1985. 

(McKeown, Wish, and Matthews 85). McKeown, K.R, M. Wish, 
and K. Matthews, "Tailoring Explanations for the User," in 
Proceedings of the Ninth International Joint Conference on 
Artificial Intelligence, Los Angeles, Ca., August 1985. pp. 
794-8. 

(Stolfo and Vesonder 82). Stolfo, S. and G. Vesonder, "ACE: An 
expert system supporting analysis and management decision 
making," Technical Report, Department of Computer 
Science, Columbia University, 1982, to appear in Bell 
Systems Technical Journal. 



Language Analysis in Not-so-Limited Domains 

Paul S . .Jacobs 
Knowledge-Based Systems Branch 

General Electric Corporate Research and Development 
Schenectady, NY 12301 USA 

Abstract 

A fundamental problem in natural language analysis is the 
quantity of specialized knowledge necessary to understand 
language in a particular domain. Interfaces for specialized 
domains have proven successful, yet the amount of engineer
ing required to develop these interfaces is often prohibitive. 
A design that takes advantage of general as well as special
ized knowledge impacts both the portability of the natural 
language interface and the ease with which the interface 
can be extended within the domain. 

Two aspects of language analysis systems are of par-
ticular importance with respect to this extensibility and 
adaptability. The first is the design of the lexicon, and 
the manner in which specialized lexical knowledge is han
dled. The second is in the method by which knowledge is 
combined during semantic interpretation. This combina
tion, called concretion, uses specialized lexical knowledge 
to guide the semantic interpretation process. 

1 Introduction 
The term "natural language" still overstates the current 
ability of computers to communicate in human languages; 
yet the use of reasonable subsets of natural language in 
interfaces is a reality. With a great deal of development 
work, fairly robust and useful products that perform lan
guage analysis have been brought to market [5]. These early 
successes prove both the practicability of language analysis 
and the intensive effort required to achieve it. Surely the 
most important contribution of new natural language in
terface technology will be to minimize the individual effort 
needed for each interface application. 

One area of application for natural language interfaces 
is as help facilities or interactive interpreters for operat
ing systems [17][14][3]. There are dozens of such projects 
underway, and one finds published input and output from 
these systems most impressive. A major reason why these 
systems are absent from the marketplace is that they, like 
many AI systems, are fragile and fail to expand and adapt 
well. Thus a monstrous effort is required to achieve robust
ness. 

This problem of fragility in natural language systems is 
addressed in a language analyzer called TRUMP (TRans
portable Understanding Mechanism Package), a system de
signed to make use of general linguistic knowledge to serve 

CH2345-7j86jOOOOj0247$01.00© 1986 IEEE 
247 

as a natural language front end to a variety of applica
tions. The opera.ting system interface is one such applica
tion. Within this domain, the analyzer must be able to 
handle a range of input such as the following: 

• (la) Send the message to Jones. 
• (lb) Send my job to the line printer. 
• (2a) How can I delete a file? 
• (2b) How can I delete a character? 
• (3a) I want to get write peniiission on /tmp. 
• (3b) Can you give me write permission on /tmp? 
• (4a) What arguments does the command take? 
• (4b) Which command gives the names of my files? 

The effort required to build a robust analyzer is greatly 
increased by the fact that the relationship between verbs 
such as send, delete, get, take and give and their meanings 
is generally defined only in terms of each specialized usage. 
Because delete a file in an operating system has a mean
ing completely different from delete a character, for exam
ple; these expressions are often treated completely indepen
dently. And because get write permission and give write 
permission are specialized expressions, no knowledge about 
the verbs give and get is applied. The linguistic knowledge 
of the system is thus difficult to adapt because it contains 
knowledge of certain expressions but not knowledge about 
language. 

The problem of applying this more general linguistic 
knowledge highlights two issues in the design of analyzers. 
The first is the structure of the lexicon; that is, how infor
mation about words and phrases is encoded to allow for a 
range of applications. The lexicon is the linguistic dictio
nary of the system. The second issue is the mechanism by 
which general interpretations are speciated or concreted to 
derive specific interpretations. For example, the verb give 
seems to refer to some general concept of giving; this con
cept is often concreted to more specific concepts such as 
giving to charity, giving an order, and giving permission. 
This issue is compounded by the fact that common verbs 
such as giving and taking are often used metaphorically to 
refer to events that seem to have little to do with posses
sion, such as kissing ("giving a kiss") and punching ("taking 
a punch"). 



The method by which the TRUMP analyzer applies its 
linguistic knowledge facilitates the use of general knowledge 
even within specialized applications such as the _operating 
system interface. For example, the system commands the 
use of the verb send well enough to understand the two 
senses in (la) and (lb), and in fact makes use of some of 
its knowledge about the more general verb give in doing so. 
TRUMP can also deal elegantly with metaphorical exam
ples such as (4a) and (4b); while the system uses some spe
cialized knowledge about computer metaphors, it can apply 
the same metaphorical knowledge to understand both the 
give and take examples. This makes the' a.t:lalyzer more ro
bust even within a specialized application without requiring 
extensive tailoring and anticipation of linguistic variants. 

The next section describes how TRUMP's lexicon is de
signed to promote robustness and extensibility. Section 3 
then describes how this lexical knowledge is concreted in 
the analysis process. 

2 The Phrasal Lexicon Revisited 
The approach to linguistic representation used in Berke
ley's UNIX Consultant [17] stemmed from a variety of ar
guments, notably Becker's [1], which emphasized the role 
of quite specific. phrasal knowledge in understanding lan
guage. The phrasal approach in UC was implemented in 
an analyzer called PHRAN [16] and a generator PHRED 
[7]. These programs shared a phrasal lexicon, which helped 
in the handling of a wide range of expressions, from "an
swer the door" to "Chinese restaurant" and "working di
rectory" . These expressions share the common aspect of 
being nonproductive; that is, their meaning seems not to be 
fully determined by their parts. 

The problem with most such phrasal approaches is that 
they rely too heavily on the specialized phrasal Knowledge .. 
Expressions such as "send a message" and "send a job" 
were treated independently in UC, essentially as jf they 
involved a different verb. The expression "give write per
mission" was independent of "get write permission". The 
problem seemed to be that the entries in the phrasal lexicon 
were consistently at a very specific level, yet it was difficult 
to incorporate them into more general linguistic knowl
edge. Much of the linguistic work on UC after PHRAN 
and PHRED [8][6] was devoted to making the "specialized" 
lexical knowledge flexible enough to cover the wealth of ex
pressions considered. This work teases apart the phrasal 
knowledge of PHRAN jPHRED into a number of classes: 

1. word sequences- Certain phrases, such as "by and 
large" and "let alone" are still treated simply as com
pound words, since there seems to be little benefit in 
trying to exploit their components. 

2. lexical relations- Compound lexical items, such as 
"pick up" and "wipe out" , are represented as lexical 
compounds of particular categories ("pick up" is of 
the- verb-particle category). This allows these items 
to appear in' a variety of surface forms, specifically, 
any surface form in which the verb-particle relation 
holds between the verb and the preposition. 

3. linguistic relations- Linguistic relations link com
pounds which have syntactic as well as lexical con
straints. For example, the pa8sive-verb-by-adjunct re
lation specifies a verb in the passive voice used with an 
adjunct prepositional phrase with preposition "by". 

4. linguistic/conceptual relations- Certain expressions, 
such as "giving permission", cannot easily be handled 
as exclusively linguistic constructs. The reason is that 
these expressions may be used with a variety of verbs 
in active or passive forms. This type of expression 

248 

can be represented as an abstract possession concept 
where the possessed is "permission", thus combining 
a class of concepts with a lexical category. 

5. conceptual relations- Some "expressions" really do 
not seem to be lexical or syntactic entities at all but 
distinguish different conceptual categories. For e~am
pIe the difference between "delete a file" .and "delete 
!l c~aracter" seems to be th~t th~ two different "delet
mg concepts represent qUIte .dlfferent subcategories 

"of. a general deleting, and it is possible that lexical 
knowledge plays no major role in distinguishing the 
two. In a similar fashion, "cut ones meat", and "cut 
ones hair" seem to express .different cut categories 
but these categories may best be distinguished by con~ 
ceptual rather than lexical roles. 

Entries in the lexicon combine three important types of 
information: (1) the lexical or syntactic knowledge required 
to ~dentify an individual or compound . lexical token, (2) a 
link between t~e token and an associated concept, and (3) 
kn~wl~dge placmg that conc~pt in .th~ conceptual hierarchy. 
ThIS IS analogous to a tYPIcal dIctIOnary, except that in 
the place of linguistic definitions are formal relationships 
among concepts known to the system. 

The various types of lexical knowledge and their encod
ing in TRUMP will be considered below. 

2.1 Basic lexical knowledge 
Example: Send the message to Jones. 

Desired effect: The verb send is interpreted as a verb used 
similarly to give, with its meaning covering a vari;ty of 
forms of transfers. 
Lexical entry: 

DEFINE-WORD send 
type: verb 
forms: past-tense sent 
concepts: 

sending 
(PARENT action 

(ROLE-PLAY actor sender) 
(ROLE-PLAY object sent-object)) 

(PARENT physical-transfer-event 
(ROLE-PLAY source sender)) 

sending-transfer 
(PARENT sending) 
(PARENT transfer-event) 

The above lexical entry provides the knowledge that 
the conjugated verb send refers to a concept sending, and 
possibly to a more specific concept sending-transfer. PAR
ENT relationships place a concept as a subcategory of a 
more general, or parent concept. ROLE-PLAY relation
ships indicate correspondences between roles .of·more spe
cific concepts, such as sender, and, general roles, such as 
actor. These roles may have other information associated 
with them as well. Concepts such as sending-transfer have 
more than one parent, to indicate that their meaning com
bines that of at least two other concepts. In this case, the 
transfer-event concept represents the information that the 
destination of the sending was a recipient, rather than just 
a location. For a discussion of this form of conceptual hi
erarchy, see [6]. 

The entry for send provides sufficient lexical knowledge 
for handling expressions such as "send a file to the printer" 



and "send a note to Jones", as well as' "send Jones a note". 
Sending is categorized as a physical transfer because the 
concept of sending "to" seems to describe a physical des
tination. Thus "send Jones a. note" places' "Jones" in the 
role of both recipient and destination. The details of how 
this is achieved depend on the intricacies of the concep
tual representation, but this treatment seems to help with 
the problem of overly-rigid case structures pointed out by 
Langacker [9]. 

2.2 Word sequences 
Example: The directory is by and large empty. 

Desired effect: The phrase by and large is handled as an 
adverb corresponding in meaning to mostly. 

Lexical entry: 

DEFINE-COMPOUND by-and~large 
parts: word by, word and, word-large 
type: adverb 
concept: most 

This type of lexicon entry is relativelystraightfo~ar~, 
because there is little flexibility in the way the expressIon IS 

used and no real need to account for the role of' each word
d
· 

This knowledge is sufficient to account for the use of by an . 
large as a synonym of largely or mostly. 

2.3 Lexical relations 
Example: I sent the message out. 

Desired effect: The phrase send out, which may be ex
pressed.ln a number of ways, is correctly understood as 
a special type of sending. 

Lexical entry: 

DEFINE-COMPOUND send-out 
part s: verb send, prep out 
type: verb-particle-relation 
concept: 

sending-out 
(PARENT sending) 

The knowledge in 2.1 includes ·very general information 
about the verb send and the concept sending; more specific 
information is often contained in compound lexical entries, 
such as the one above for "send out". This knowledge spec
ifies that send-out is a verb-particle compound that refers 
to the sending-out concept. This compound can appear in 
constructs such as "I sent the message out" and "Has the 
message been sent out to Jones?" The sending-out concept 
is categorized as sending; the difference is that this concept 
has no transfer-event subcategory so "I sent out Jones the 
message" does not work while "I'sent out the message to 
J ones" does. 

2.4 Linguistic relations 
Example: The message was sent out by Jones. 

Desired effect: The object of a prepositional phrase with 
preposition by, used with a passive verb, is understood as 
the actor of the action described. 
Lexical entry: 

DEFINE-COMPOUND passive-verb-with-by-adjunct 
parts: verb (voice passive), prep-phrase (prep b.y) 

249 

type: verb-adjunct-relation 
concept: 

action 
(ROLE-PLAY p.rep-obj actor) 

This type of lexical entry illustrates the flexibility re
quired of the "dictionary" in a system like TRUMP. When 
a passive verb is used with a "by" prepositional phrase, the 
system can use this type of entry to understand the special 
role of the object of the preposition. This is dictionary
type information rather than knowledge about the syntax 
of English, because the prepositional phrase may appear 
anywhere an adverbial prepositional phrase ordinarily ap
pears. 

2.5 Linguistic/ conceptual relations 

Example: Send the message back. 

Desired effect: The adverbial particle "back" is understood 
as reversing the direction of a transfer. 

Lexical entry:' 

DEFINE-COMPOUND transfer-event-xxx-back 
parts: ref verb-adverbial-particle, adverb back 
type: transfer-event 
concept: return 

The analysis of examples where lexical and conceptual 
knowledge combine may be complex. The meaning of the 
expression "send back" seems not tied to "send", but to 
the adverbial particle "back" when it modifies any transfer~ 
Thus "send back", "sell back" "take back" , and many other 
expressions are handled using the above linguistic / conceptual 
compound. The concept return encompasses the knowledge 
that the source and destination of the transfer-event being . 
described are the reverse of some other transfer-event. 

2.6 Conceptual relations 
Example: Send Jones the message. 

Desired effect: Sending here is understood as· referring to 
communication of a message as well as a physical. transfer. 

Entry: 

CONCEPT message-transfer 
(PARENT physical-transfer 

(ROLE-PLAY object message 
(PARENT message))) 

(PARENT communication-transfer) 

The expression "send a message" falls into the class of 
descriptions that are. constrained by conceptual rather t'han 
lexical knowledge. Thus the information that "sending a 
message" describes a communication does not require any 
specific lexical compound. This knowledge is represented 
as above. This piece of knowledge specifies that a message 
transfer is both a physical transfer and a communication; 
thus "I got the message" may describe either a physical or 
communicative process; and "Send Jones the message" may 
describe the same command as "Tell Jones' the message" . 

This section has outlined some of the basic. lexical and 
conceptual knowledge necessary for a range of constructs. 
The verb phrases and particles used as exampks here are 
complex in their behavior, and additional knowledge is re
quired to, account fully for their use. The lexical analysis 



presented here, however, is both sufficient for a technical 
domain and broad enough to apply across domains. For 
example, the concept of a UNIX message may be catego
rized as one type of message within this framework. 

The discussion here has purposefully isolated the dis
cussion of the lexicon from the process through which the 
lexical knowledge is used. The next section focuses on the 
application of lexical knowledge to the analysis of language. 

3 Semantic Interpretation 

Language analysis is frequently subdivided into two pro
cesses: PARSING and SEMANTIC INTERPRETATION. Pars
ing is the construction of a tree that accounts for each word 
and its syntactic role in a sentence; semantic interpretation 
is the derivation of a meaning representation. Some systems 
ignore one or the other; the assumption here is that both 
are necessary, and in fact, in the ideal case should interact 
(cf. [10)). This discussion concentrates on the derivation of 
meaning from lexical and linguistic relations because this 
is the troublesome aspect of constructing robust analyzers. 
While it is not difficult to construct a grammar that parses 
a tolerable subset of natural language inputs, it is extremely 
difficult to construct a system which makes tolerable sense 
of them. 

The language analysis mechanism of TRUMP embodies 
three basic elements: (1) A pattern-matching or grammat
ical mechanism, which combines words into phrases and 
sentences, and instantiates linguistic relations such as those 
described in the previous section, (2) A mapping mech
anism, which produces concepts and conceptual relations 
from linguistic structures, and (3) A mechanism that com
bines these bits and pieces of conceptual knowledge into an 
interoretation of the input. This mechanism, which I call 
CONCRETION, is the critical element of the next generation 
of language analyzers. 

3.1 Concretion 
Concretion is the process of taking abstract concepts and 
producing from them concepts that are more precise, or 
concrete. The motivation for this mechanism is strong in 
story understanding [11], because understanding a story 
seems to involve a continuous refinement of the major con
cepts into more specific categories. The following are two 
"story" examples: 

1. Mary walked down the aisle. She picked up a can of 
tuna fish. 

2. Bill went to the pool. He sat down in a chair. 

In the first example, the concept aisle is being concreted 
to the concept of supermarket-aisle. Presumably, if new in
formation had placed Mary in a church, a different kind of 
aisle would be derived. Intuitively, the term aisle does not 
seem ambiguous, rather it seems a more general concept 
than that which ordinarily results from a complete under
standing. Similarly, the concept of a chair is a general 
one, which in the sentences above is probably concreted to 
lounge-chair. Certainly it does not refer to electric-chair or 
desk-chair. ... 

The process of concretion is eVIdent In understandIng 
simple words and phrases in limited linguistic contexts as 
well. For example, the concept cut mentioned earlier in
vokes different meanings in "Mary cut the salami" and "Bill 
cut his hair". Similarly, the concept deleting may be con
creted to file-deleting or character-deleting. The concept 
of sending may be concreted to message-sending and ulti
mately to UNIX-error-message-sending. 

Most language analyzers do not really perform concre
tion. Unification-based systems [13][12][4] tend to refine se
mantic representations by adding semantic features, repre
sented as variables with assignments. Some of the systems 
which use a KL-ONE knowledge representation [2][14] per
form what is essentially concretion, but use specific inter
pretation rules to place concepts in more specific categories, 
rather than to attempt an algorithm for combining lexical 
and conceptual knowledge. 

Concretion is important because it is the mechanism 
that allows· general knowledge about language to apply at 
very specific levels of semantic interpretation. This is es
sential for interfaces, because it allows a core of linguistic 
and conceptual knowledge to be used for a variety of do
mains, and makes the addition of domain-specific linguis
'tic knowledge easier. For example, knowledge about verbs 
such as give and send and their relation to transfer-events 
as described here applies to the UNIX domain as well as to 
other potential applications. It is hard to see how robust
ness could be achieved without this capability. 

3.2 Metaphor and Indirect Meaning 
Many of the examples given here emphasize the role of the 
interaction between general interpretations of words and 
more specific categories. This is not, however, the only 
way in which specialized constructs manifest themselves. 
Another common way is in metaphorical or indirect refer
ences. In fact, the "give permission" expression is an ex
ample of metaphor, because it does not seem that anything 
is being transferred, even in the abstract sense. Similarly, 
expressions such as "give a punch" and "give a kiss" are 
indirect descriptions of the events punching and kissing. 
As with the other types of specialized constructs described 
here, it is desirable to treat these expressions at a 2en
eral level because of their apparent consistency. The idea 
.is to have general knowle~ge ab<?ut interpreting. such ex-
pressions, even where specIfic leXIcal knowledge IS used to 
trigger the general rule. . . 

Looking back to examples (4) m the first sectIon, ~e 
can see that there are many examples of verbs such as gIVe 
and take in "computer talk" that refer to the input and 
output of operations. As with the "give a kiss" and "take 
a punch" expressions, it is problem~t!c to treat ~hese e~
amples merely as special types of gunng and taking. ThIS 
is because "The command takes three arguments", even 
in the abstract sense, does not suggest that the command 
then has three arguments. In all these examples, what is 
at work is what I call a VIEW [15][8H~]. The e~ecu:tion of 
an operation is being VIEWed as a gunng or taking In each 
expression, and the rol~ of fl.1put and ou~put are VIEWed 
accordingly. Representmg thIS metaphOrical VIEW allows 
much of the same knowledge to be used in understanding 
numerous expressions of the same type. 

250 

In the systems interface domain, the concept of exe
cuting a system command may be a specific execute-shell
command concept. This concept in the ~onceptual hier~r
chy is a subcategory of the execute-operatIon concept, whIch 
may include individual functions and steps. We then have 
the following metaphorical knowledge: 

(VIEW execute-operation causal-double-transfer 
(ROLE-PLAY input object-l) 

. (ROLE-PLAY output object-B) 
(ROLE-PLAY user source-l) 
(ROLE-PLAY operation source-B» 



The concept causal-double-transfer, which may seem some
what arbitrary, is actually a very useful category. It -rep
resents any two transfer-events which are causally related. 
For example, buying and selling, trading, and paying may all 
be handled using this concept. Implicit here, but explicit 
in the knowledge base, is the information that 8ource-l is 
both the source of the first transfer and the recipient of the 
second, while source-I! is the source of the second and the 
recipient of the first. 

This VIEW may be interpreted as follows: When any 
execute-operation concept is VIEWed as a causal-double
transfer, the input, output, user, and operation roles are 
VIEWed as roles of both transfers. Thus when a verb such 
as give or take is used to describe the execute-operation 
concept, the roles of giving or taking may be interpreted as 
the corresponding roles of execute-operation, as specified by 
the ROLE-PLAY relations above. 

The VIEW above can be used to interpret constructs 
such as "the command takes three arguments", "the com
mand gives you the file names" , and even certain less com
mon metaphors such as in " 'Echo' spits back a string." 
Notice that the use of transfer-event-xxx-back, as described 
in section 2, refers to a concept return that is entirely con
sistent with the concept of the causal-double-transfer. The 
expression "spits back" , like "gives back" , is interpreted as 
describing the second transfer event, where the object of 
both transfers is by default the same. The metaphorical 
VIEW can then be applied to result in the interpretation 
that the 'echo' command returns as output the same string 
that it takes as input. 

The point of the VIEW relation here is to allow knowl
edge about transfers to be used to understand commands, 
even though the execution of these commands may not re
ally be a transfer. 

A VIEW is a powerful representational tool for encod
ing metaphorical relationships. A major problem with this 
tool. however. is that there are many metaphorical VIEWs 
associated with an abstract concept such as transfer-event, 
and the application of these VIEWs must be controlled. 
The solution to this problem is that VIEWs, like concre
tion, are performed only when specific lexical knowledge 
applies. Thus general VIEWs are triggered only by certain 
specialized knowledge. The algorithm through which this 
triggering is carried out is described in the next section. 

3.3 The Interpretation Algorithm 
As described earlier, the semantic interpretation process is 
driven by mappings from linguistic to conceptual relations, 
followed by the combination of these conceptual structures. 
The mapping process is initiated by the parser, which is 
not described here. For example, when the parser matches 
a grammatical structure which incorporates a relation be
tween verb and indirect object, this structure is mapped 
into the transfer-event concept, with the indirect object 
playing the role of recipient. Thus" 'mv' takes two argu
ments" results, among other things, in the placement of the 
'mv' command in the (metaphorical) role of recipient. The 
problem, then, is for the concretion mechanism to combine 
this knowledge with other knowleage in the system. 

The details of parsing and semantic interpretation in 
TRUMP are omitted herej however, the following is a sketch 
of the iterative process that the system goes through as it 
scans its input and builds a conceptual interpretation: 

1. Mapping. Apply mappings to produce new concep
tual structures whenever there is a good chance that 

251 

a new piece of linguistic inrormation has changed the 
meaning interpretationj i. e., when each new impor
tant linguistic structure is instantiated. Example: 
In "Send Jones the message.", Mapping produces the 
concept sending, the concept transfer-event (recipient 
Jones), and the concept event (object message1). 

2. When to Concrete. Perfor.n\ concretion whenever new 
conceptual information might result in a more specific 
semantic interpretation. Example: Concretion of 
the event concept in the above sentence occurs after 
"send", "Jones" "message", and after the period. 

3. "How to Concrete. Produce the most specific concep
tual interpretation of the input, with the" appropriate 
roles filled, taking care to avoid conflicting interpreta
tions. Example: Concretion combines sending with 
transfer-e"ent to place Jones as the recipient of the 
message, and combines this with event to place the 
message in the sent-obj role. 

The processing strategy of TRUMP is thus to apply its 
linguistic knowledge to parse the input, apply its lexical 
knowledge to produce conceptual structures, and uflC the 
conceptual hierarchy to build incrementally as specific an 
interpretation as is applicable. This approach allows the 
system to make maximal use of lexical knowledge of the 
various types described in section 2. 

4 State of Implementation 

The TRUMP parser and semantic interpreter are fully im
plemented and use the lexicon and concretion mechanism 
described here. The extensibility of the system is suggested 
by the fact that, once a set of linguistic constructs and their 
related conceptual knowledge are encoded, it becomes rel
atively easy to analyze many similar constructs. The catch 
to this method of handling specialized knowledge is that 
each specialized construct requires the proper encoding of, 
certain general knowledge as well, and the improper treat
ment of this high-level knowledge may lead to the "house of 
cardS" ettectj that is, a modification at the high level neg
atively influences constructs that were previously handled 
correctly. Once the kinks are removed from the abstract 
knowledge, however, extension becomes easy. For example, 
the high-level knowledge about transfer-evenu has sufficed 
well in a variety of domains because it was carefully thought 
out beforehand. 

The richness of lexical knowledge in TRUMP is behind 
two features of the system not described here. One is the 
ability to share a lexicon and grammar with a generator 
that produces natural language output. The development 
of TRUMP has followed from a knowledge representation 
framework called Ace [8] and a generator called KING [6], 
and the interface is thus specifically designed for both in
put and output capabilities. A second advantage of the 
system is the ease with which lexical knowledge is added 
"on the fly" j TRUMP includes a component that adds new 
information to the lexicon based on the dialogue with the 
user. 

This system is being applied to a variety of domains, 
mostly dealing with natural language interactions about 
computers. In these domains, the benefit comes not only 
from the general knowledge about language, but 'also from 
knowledge about "computerese" that prevails regardless of 
the computer system. 



5 Conclusion 
The interaction of general and specialized knowledge is crit
ical for language analysis, even in domains that are appar
ently constrained. The proper handling of general knowl
edge about language is essential both for portability and 
for the addition of new constructs within a given domain. 

Two aspects of language analyzers are particularly use
ful in dealing with this interaction. The first is a lexicon 
that allows a variety onexical collocations. The second is a 
semantic interpretation mechanism that facilitates concre
tion, the process of combining conceptual and metaphorical 
knowledge at various levels to produce a refined interpre
tation. 

References 

252 

[1] J. Becker. The phrasal lexicon. In Theoretical Is
sues in Natural Language Processing, Cambridge, Mas
sachusetts, 1975. 

[2] R. Bobrow and B. Webber. Knowledge representa
tion for syntactic/semantic processing. In Proceedings 
of the National Conference on Artificial Intelligence, 
Stanford, California, 1980. 

[3] R. Douglass and S. Hegner. An expert consultant for 
the UNIX system: bridging the gap between the user 
and command lan~age semantics. In Proceedings of 
the Fourth National Conference of the Candadian So
ciety for Computational Studies of Intelligence, Saska
toon, Canada, 1982. 

[4] J. M. Gawron, J. King, J. Lamping, E. Loebner, A. 
Paulson, G. Pullum, I. Sag, and T. Wasow. The GPSG 
linguistics system. In Proceedings of the eOth Annual 
Meeting of the Association for Computational Linguis
tics, Toronto, Ontario, 1982. 

[5] L. Harris. Experience with INTELLECT: artificial 
intelligence technology transfer. AI Magazine, 5(2), 
1984. 

[6] P. Jacobs. A knowledge-based approach to language 
production. PhD thesis, University of California, 
Berkeley, 1985. Computer Science Division Report 
UCB/CSD86/254. 

[7] P. Jacobs. PHRED: a generator for natural language 
interfaces. Computational Linguistics, 11(4), 1985. 

[8] P. Jacobs and L. Rau. Ace: associating language with 
meaning. In Proceedings of the Sixth European Con
ference on Artificial Intelligence, Pisa, Italy, 1984. 

[91 R. LanJ(acker. An introduction to cOJ(nitive grammar. 
Cognitive Science, 10(1), 1986. 

[10] M. Marcus. Some inadequate theories of human lan
guage processing. In T. Bever, J. Carroll, and L. 
Miller, editors, Talking Minds: The Study of Language 
in the Cognitive Sciences, The MIT Press, Cambridge, 
Massachusetts, 1984. 

[11] P. Norvig. Six problems for story understanders. In 
Proceedings of the National Conference on Artificial 
Intelligence, Washington, D. C., 1983. 

[12] F. Pereira and S. M. Shieber. The semantics of 
grammar formalisms seen as computer languages. In 
Proceedings of the Tenth International Conference on 
Computational Linguistics, Stanford, California, 1984. 

[13] F. Pereira and D. H. D. Warren. Definite Clause 
Grammars for language analysis-a survey of the for
malism and a comparison with augmented transition 
networks. Artificial Intelligence, 13, 1980. 

[14] N. Sondheimer, R. Weischedel, and R. Bobrow. Se
mantic interpretation using KL-ONE. In Proceedings 
of the Tenth International Conference on Computa
tional Linguistics, Palo Alto, 1984. 

[15] R. Wilensky. KODIAK - a knowledge representation 
language. In Proceedings of the Sixth Annual Confer
ence of the Cognitive Science Society, Boulder, Col
orado, 1984. 

[16] R. Wilensky and Y. Arens. PHRAN-A Knowledge
based Approach to Natural Language Analysis. Elec
tronics Research Laboratory Memorandum UCB/ERL 
M80/34, University of California, Berkeley, 1980. 

[17] R. Wilensky, Y. Arens, and D. Chin. Talking to UNIX 
in English: an overview of UC. Communications of the 
Association for Computing Machinery, 27(6), 1984. 



Providing Expert Systems with 
Integrated Natural Language and Graphical Interfaces 

Philip J. Hayes 
Carnegie Group Inc. 

650 Commerce Court at Station Square 
Pittsburgh, PA 15219, USA 

Abstract 

Both natural language and graphical interfaces have been 
advanced as the best way to provide intelligent and user
friendly interfaces to knowledge-based systems. However, 
neither approach is sufficient on its own. This paper outlines 
the design 1 of a generic set of interface facilities that integrate 
the two modalities and allow each to contribute its relative 
strengths to the interface as a whole. A more detailed account 
is given of how the framework interprets in an integrated 
manner references to entities of the underlying application. The 
interpretation is done with respect to both the dialogue and 
visual contexts and for both natural language phrases and 
pointing events. As the detailed account of reference 
processing makes clear, the interface framework described in 
this paper depends in an essential way on the fact that the 
underlying application is knowledge-based. 

1. Introduction 
Through the use of AI techniques, intelligent knowledge-based 
systems are now helping people get their job done in an enormous 
variety of applications, including systems from manufacturing, 
medical, financial, and many other domains. However, the interfaces 
through which people interact with these expert systems often do not 
display a similar level of sophistication, either in intelligence or in 
their ability to interact (from a purely human-factors point of view). 
This has meant that the users have not been able to derive the 
maximum advantage from the exPert systems, or in the worse cases, 
not derived any benefit at all. This is particularly true in those 
knowledge-based systems in which the initiative and responsibility 
for problem solving is divided between user and system. For such 
mixed initative systems, poor interfaces mean that the user cannot 
understand enough about what the system knows and is doing, and 
is also unable effectively to communicate his goals to the system. 
We believe that this mismatch of capability between interface and 
application is a major hindrance to the wider acceptance of 
knowledge-based systems. 

The work described here is the beginning of an effort to remedy that 
mismatch. The work starts from the following assumptions about 
desirable characteristics of interfaces to mixed-initiative knowledge
based systems: 

• The interfaces should use graphical displays to convey 
information whenever appropriate. Well-designed 

1 Nothing in this document should be interpreted as a: committment to nor an 
announcement of specific product enhancements by Carnegie Group Inc. 

CH2345-7/86/0000/0253$01.00 © 1986 IEEE 
253 

graphical output can give the user a much clearer 
overall picture of the system's view of the world than a 
scrolled dialogue (even a natural language dialogue). 
For instance, if the system is concerned with 
scheduling machining orders through various machines 
on a factory floor, then a graphical depiction of the 
machines, their layout, the current and planned 
location of orders, etc. would give the user a much 
clearer overall picture of the current state of planning 
than a textual description of the same information ever 
could. 

• The user should be able to access and modify the 
system's data and knowledge through direct 
manipulation of the graphical display whenever 
possible. For instance, a user might be able to obtain 
and edit a table giving further information about a 
specific machine (its capacity, scheduled down-times, 
etc.) by clicking on the icon the scheduling system 
uses to represent it. Direct manipulation of this kind is 
often more efficient and usually easier to learn than 
any other kind of interaction. 

• The user should also be able to access and modify 
data and knowledge through a natural language 
dialogue. Not all questions or updates can 
conveniently be made by direct manipulation. For 
instance, it might be quite hard to devise a piece of 
direct manipulation that allowed the user to find out if 
all scheduled orders could still be processed with any 
three (out of the current five) milling machines. Yet, as 
the previous sentence shows, it is straightforward to 
pose that question in natural language. 

• The natural language dialogue should integrate as 
closely as possible with the graphical display. In 
particular, the resolution of anaphoric references 
should take account of what is on the screen. For 
instance, if the user says "the grinding machine" and 
only one is visible on the screen, then that should be 
interpreted as the one the user means, even if the 
system knows about four other milling machines 
related to the topic under discussion. Also the user 
should be able to point at the representation of an 
object on the screen instead of giving a natural 
language description of it. It may be a lot faster to 
point at an icon than to type "grinding machine number 
4". 



2. Overall Interaction Model 
With these assumptions in mind, we are investigating generic 
support for a class of user interfaces suitable for a wide variety of 
knowledge-based applications. Individual interfaces built using this 
support would have two conceptually distinct, but highly integrated 
parts: 

• graphical display of the application domain: The 
interface continuously displays a two dimensional view 
of the knowledge-based application's world. The view 
will not be fixed, but will be variable in the amount of 
detail shown and whether all or just a part of the world 
is shown. If specific entities in the world have internal 
structure, that may be displayed in overlaying windows. 
The main display may itself be split into windows for 
simultaneously displaying different parts of the world. 
Aids to locate a detailed view within its larger, 
containing scope will also be provided. The user is 
always free to alter the view of the world along any of 
the available dimensions. However, the system may 
also alter the display based on the dialogue in the 
dialogue window. 

• dialogue window: The interface will also maintain a 
single thread dialogue with the user in natural 
language. The user's side of the dialogue may be 
conducted either through typed or spoken input. In 
either case, the complete dialogue thread will appear in 
a scrollable dialogue window. The user may refer to 
entities that are visible on the screen by pointing at 
them instead of speaking or typing out descriptions. 
Output from the application may also involve 
references or modifications to the display. In both 
cases, display references will appear explicitly in the 
dialogue transcript. 

The overall feel of the interface is intended to be one where the 
user's main picture· of what the application is doing and what 
information it is dealing with is provided by the display of the 
application's world. Navigation (in terms of both location and level of 
detail) around this world will be an important way for the user to 
obtain information that is not immediately visible. The dialogue 
window allows the user to ask for information that is inconvenient (or 
impossible) to obtain through navigation around the visual world, to 
make requests that he finds more natural in natural language, to 
discuss the world at a meta-level, etc.. We believe an interface of 
this kind will be extremely natural and productive to use. The style of 
interaction is analogous to that between two people poring over a 

diagram or having a discussion while writing on a blackboard - a very 
effective and natural form of communication. Moreover, unlike a 
paper diagram or blackboard, the application world display is active 
and can modify itself under control of the user or the 
interface/application system. This allows a very high bandwidth of 
communication and hence a highly productive interaction. 

This kind of interface is highly appropriate to situations where spatial 
relationships between domain entities and movements of the entities 
through the space are an important aspect of the application's world. 
Factory job-shop scheduling is an example of such a domain; the 
paths from machine to machine and the distribution of orders around 

254 

the shop are important features of the domain for the scheduling 
task. In addition, work by Negroponte [8] and the general success of 
the desktop metaphor in user interface design [10, 11] have shown 
that distributing information spatially is a useful information access 
aid, even if the spatial distribution does not correspond to any actual 
spatial relationships. Thus, there is every chance that the kind of 
interface envisaged here will also be useful in domains without a 
specific spatial orientation, such as a personnel database. This kind 
of information distribution is also useful for non-spatial information in 
worlds with a high degree of spatial information. For instance, in a 
factory scheduling application, it might be convenient for the user if 
he could find out about the scheduled down-time for a particular 
machine by "zooming in" on the icon that normally represents the 
machine. Such zooming could overlay the icon with a window in 
which scheduled down-time and other detailed information about that 
machine was displayed in a tabular fashion. 

The dialogue component of the interface is intended to allow the user 
to access information (or issue commands) that is inconvenient to 
get at by navigation through the domain world display. For instance, 
in a factory scheduling system, the user might want to know whether 
one machine could take over the orders scheduled for another 
(perhaps because the first one had broken down). Since this 
question involves a dynamically constructed relationship between 
two machines, there is no obvious "place" to find it in the domain 
world. Instead, the dialogue facilities would allow the user to say (or 
type) something like "Can this machine <point at one machine> take 
over the orders scheduled for that one <point at other machine>". 
The answer could be displayed in text in the dialogue transcript, or 
as an overlay window on the graphical display, or as both. Note how 
intimately the displayed world and the dialogue interact to specify 
this information retrieval. The display is acting analogously to the 
physical context immediately surrounding human participants in a 
dialogue, i.e. something that can be referred to by abbreviated 

language or gesture in the knowledge that the other participant in the 
dialogue can see the same thing as you. 

To support the construction of interfaces of this kind, we have 
designed a set of generic interface facilities for knowledge-based 
systems. The design views the facilities as extensions to the 
Knowledge Craft ™ and Language Craft ™ products of Carnegie 
Group. Knowledge Craft is a knowledge engineering tool based on a 
schema-oriented knowledge representation language, called CRL TM, 

and incorporating OPS-5 and Prolog inference engines and a 
powerful graphics system. Language Craft [7] is a tool system for 
building natural language interfaces based on case frame parsing 
techniques. These techniques make Language Craft a very robust 
language analyser, as is appropriate to deal with the user errors that 
inevitably arise with interactive dialogue. The specific capabilities 
that the design adds to these existing systems include: 

• representation and display of domain world: This is 
a generic facility for mapping the world of objects, 
events, and states of a knowledge-based system onto 
a graphical display which could be browsed by the 
interface user at varying levels of detail. The facility is 
an extension to Knowledge Craft, and its existing 
powerful graphics system. 



• natural language analysis: The dialogue window 
needs to be supported by a robust natural language 
analysis system of the type provided by Language 
Craft. This component of the design would extend 
Language Craft by integrating it more fully ·with 
Knowledge Craft. This will allow the natural language 
analysis to communicate properly with the underlying 
knowledge-based system and the world display 
system. 

• dialogue management: The facilities in this area 
allow natural language input to the system to be 
interpreted with respect to the context built up during 
interaction in the dialogue window and the visual 
context of the world display. In addition to the 
interpretation of ellipsis already provided by Language 
Craft, the design would support a wide variety of 
anaphoric reference with respect to both kinds of 
context through an extension to Language Craft. The 
dialogue context can be altered by things that the user 
or system say and will be represented graphically in 
the domain world display. The display will be managed 
so that the complete dialogue context is always 
displayed. 

• integration of natural language and speech Input: 
While natural language is a highly expressive and 
natural form of input, it can be tedious to input via a 
keyboard. Spoken input is much more convenient. 
Our design integrates the natural language 
interpretation capability of the interface system with a 
speech recognition device. In other words, Language 
Craft will derive the meaning of the word sequences 
reported by the speech recognition device. Since 
speech recognition is inherently error-prone, Language 
Craft will be used to improve the overall recognition 
rate of the speech device. We will do this by making 
all the various word hypotheses considered by the 
speech device (with their associated certainties) 
available to Language Craft and let it make the final 
decision using its syntactic and semantic knowledge. 

• integration of natural language and pointing input: 
Given the explicit graphical representation of context, 
and natural language input capability, particularly in its 
spoken form, it will be natural for the user to mix 
natural language and pointing input (e.g. "move that 
<point> from here <point> to there <point>"). Our 
design modifies Language Craft to deal with such 
pointing input. 

Space does not permit us to go into detail on all these facilities. 
Instead in the remainder of this paper, we will focus on the way the 
design allows the user to refer to objects from the application 
domain. This will involve descriptions of the underlying natural 
language facilities, the way they handle anaphoric reference, and the 
way in which graphical pointing events can be substituted for 
ordinary linguistic anaphors. Before proceeding, we should 
reemphasize that the descriptions that follow refer to the design of a 
system, rather than one that is fully implemented. 

255 

3. Interpreting References to Application Domain 
Entities 

When people engage in a dialogue, they share a context of past 
events, objects and events mentioned in the conversation, mu~ual 
assumptions about each other'S goals and motivations, etc.. This 
shared context allows them to communicate intelligently with each 
other: by resolving pronouns or other abbreviated forms of reference 
into objects just mentioned, by completing elliptical questions by 
analogy to previous utterances, by recognizing that a statement is 
inconsistent with the speaker's assumed goals or b.eliefs and 
(internally) correcting it so it is consistent, etc.. For a machine to 

appear to communicate intelligently with a person, it needs to share 
context in a similar kind of way. Moreover, an ability to deal with 
anaphora and ellipsis allows the natural language input to be much 
more terse. It is much quicker to sayar type "it" or "the machine" 
than always to have to say "grinding machine number 4". 

The dialogue management facilities of the interface framework we 
are building are currently restricted to support for' anaphora and 
reformulation ellipsis, though we hope in the future also to add more 
sophisticated facilities driven by a representation of the user's goals. 
This paper focuses on the way we deal with anaphora, i.e. the way 
we use context to interpret abbreviated descriptions of domain 
entities. Given the integration of graphical and natural language 
modalities in our interface model, we need to use two kinds of 
context to resolve anaphoric references: 

• dialogue context: the set of entities mentioned or 
implied by the recent dialogue. 

• visual context: the set of entities visible on the screen, 
plus perhaps other entities closely associated with 
them. 

Moreover, the two modalities allow two kinds of anaphoric reference: 

• standard natural language anaphora (pronouns, 
definite noun phrases, etc.) 

• reference to objects by pointing at their images on the 
screen. Naturally, this kind of reference is resolved 
only against (a localized subset of) the visual context . 

The following two subsections describe how each of these kinds of 
anaphor are handled by our design for interface facilities. 

3.1. Natural language anaphora 
In this section, we tum to the anaphoric interpretation capabilities we 
have designed as an extension to Language Craft. There is already 
a substantial body of work on the resolution of anaphora with respect 
to dialogue context (e.g. [4,5,6,9]). Our approach does not 
represent a significant departure from this tradition. It uses 
techniques developed in the previous work to produce an anaphora 
capability suitable for restricted domain interfaces, rather than one 
that is completely general. In particular, we expect to make 
maximum use of the restricted domain semantics and not to use any 
techniques that would lead to noticeable (by the interface user) 
processing times. The novel aspects of our approach relate to the 
addition of visual context (though see [1, 5]). 



Many current. treatments of dialogue anaphora (e.g. [5, 9]) use the 
concept of a set of entities that are in the immediate focus of the 
context, plus others that are outside.the immediate focus, but may 
become focussed. The, focus may change through nesting 
(subtopics or digressions) or by moving to related topics. Entities in 
the immediate focus may be referred to by pronouns. Entities that 
are outside the immediate focus may be referred to by abbreviated 
descriptions. We have adopted this kind of approach. The focus of 
the dialogue context is represented as a set of domain world entities. 
These entities may be referenced by pronouns or other abbreviated 
descriptions. There is a second set of entities, those related to the 
focussed entities by one of a (domain-specific) class of relationships, 
that may also be referenced by definite noun phrases, but not by 
pronouns. These' entities forrnthe potential focus [9]. Referring to 
an entity in the potential focus adds it the focus. 

We can see how this works in the following dialogue fragment with a 
hypothetical factory scheduling system: 

User: Are any grinding machines utilized less than 80% ? 
System: Yes, grinding machine 4 has only 65% utilization. 
User: Has it had unscheduled downtime since Monday? 
System: No. 
User: Preventive maintenance? 
System: No. It is not scheduled until Friday. 
User: Who is the maintainer? 
System: Albert Smith. 
User: Ask him to do the preventive maintenance today. 

Here the grinding machine mentioned by the system becomes part of 
the focus and is referred to via the pronoun "it" by the user (and the 
system) in the question about utilization. The next question relies on 
Language, Craft's current ability to handle reformulation ellipsis [3]. 
The system uses the context of the previous question to in~erpret the 
user's input as though he had said "Has it had preventive 
maintenance since Monday?". The user then gees on to refer to an 
entity that has not been mentioned in the dialogue so far, but is in the 
potential focus, viz. the maintainer of grinding machine 4, by the 
incomplete description "the maintainer" (the system would 
presumably know about lots of maintainers). There is only one 
maintainer in the potential focus, so the anaphoric noun phrase can 
be resolved correctly and unambiguously. Mentioning 'the maintainer 
entity adds ,it to the focus, so that the "him" in the next input can be 
interpreted correctly. 

Integration between Language Craft and Knowledge Craft is 
important for the implementation of this anaphora mechanism. We 
represent the dialogue focus as a set of domain entities represented 

as Knowledge Craft schemas. The process of resolving an 
anaphoric referent. against such a context involves integrating the 
constraints provided by the pronoun (e.g: "he" is a male person, 
"there" is a location) or noun phrase ("maintainer" is an entity in a 
maintaining relationship with some,other entity) with the constraints 
provided by sentential context (e.g. in "ask him to do the preventive 
maintenance today", "him" must be an entity that can be asked to do 
maintence - an maintenance employee), and then finding items in 
the context that match the integrated description. Both the 
integration and the matching require the support of an inheritance 
mechanism which Knowledge Craft provides. For instance, in the 
above example, "him" has the, constraint of being a male person 

256 

inherent in the pronoun, and the constraint of. being a maintenance 
employee from the sentential context. These two constraints are 
consistent since a maintenance employee ISA person and may be 
either gender. So the integrated description is a male maintenance 
employee. In the dialogue given above, this description would match 
(again through an inheritance process) with the focussed entity 
representing Albert Smith. 

Knowledge Craft inheritance is also useful in specifying the 
relationships which define the potential focus (e.g. the relationship 
between a machine and its maintainer). Knowledge Craft relations 
are represented by user definable and modifiable schemas. This 
makes it convenient to attach such information to the relations. 

The kind of interface we are considering here is unusual for natural 
language in that it has a representation of the world separate from 
the dialogue itself. 'This allows us to provide some interesting 
capabilities' that have only been touched on in earlier work, in 
particular the work by Grosz [5] on task-oriented dialogues and Bolt 
[1] on an integrated natural language/graphical interface. First, we 
allow the user to refer to any entity visible' in the world display by, the 
minimum description necessary to distinguish it. For instance, if only 
one milling machine is shown on the display at any given time, the 
user would be able to refer to it by "the milling machine" rather than 
by typing its full name. The entities in the world display thus playa 
similar role to the potential focus and are treated in the same way by 
the anaphora resolution mechanism. In otherwords, the system will' 
look for referents for definite noun phrase descriptions both among 
the entities in the potential focus and among the entities currently 
displayed on the screen. 

The second useful capability opened up by the existence of the world 
display is an explicit representation of the dialogue focus' through 
highlighting on the display. This allows the user to be clear at all 

times on what is the system's focus of attention, and helps prevent 
the kind of reference problems that could arise if the user thinks he 
has made a shift of focus, but the system fails to pick up on it. An 
even more intriguing possibility is to allow the user to edit. the 
dialogue context explicitly. In this way, he could make.up for any 
deficiencies in the system's focus tracking.' He could. also, as a part. 
of browsing through the world display, explicitly set up the dialogue 
focus; For instance, if he set the focus of attention to include only a 
particular machine, then on the next natural language input, he 
would be able to refer to that machine by "it". The human factors of 
such an interface feature have never been examined and are hard to 
predict in advance. We, therefore, plan to determine its usefulness 
empirically. 

In order to maintain a visual representation of the {iialogue focus, the 
interface system will, when necessary, adjust the domain display in 
such a way that the dialogue focus remains a subset of the visual 
context. For instance, in the above dialogue example, when the user 
starts to ask about details of the grinding machine (utilization, 
unscheduled downtime, preventive maintenance, maintainer), the 
display of the machine (which we will assume was a named icon) 
would be expanded to or overlayed by a display of its attributes. The 
attributes that the user focusses on would be. highlighted 



appropriately. Again, this is breaking largely unexplored ground from 
a human factors point of view. And we anticipate changes to the 
design based on experience with an implementation. The obvious 
danger is that the user might become confused or annoyed by 
changes to the display that he did not request directly. In addition, 
there is the potential for overly cluttered displays if this mechanism 
only ever- displays additional entities and never removes any. The 
issue of when a defocussed entity can safely be removed from the 
display is a tricky one, involving unresolved research issues in 
dialogue management. Our current design does not address it. 

3~2. Anaphora by pointing 
One of the most interesting capabilities opened up by the kind of 
interface we are discussing is intermixing natural language input with 
pointing input. This would allow the user of a factory scheduling 
system to input, for instance, "Can this machine <point at one 
machine> take over the orders scheduled for that one <point at other 
machine>", where the pointing was done to the world display. We 
will call this kind of pointing natural language pointing and treat it as 
a kind of anaphoric reference. Natural language pointing is 
extremely useful in combination with speech input, allowing a very 
efficient combination of gesture and speech - the most natural way 
for people, to communicate. Its effectiveness in an interface has 
already been demonstrated by work at MIT [1, 8]. It is somewhat 
less attractive for typed input because of the overhead involved in 
moving the hand from keyboard to pointing device and back again. 
However, work on the Scholar project [2] ,has shown that pointing 
can be used effectively with typed input in the context of maps in 
geography lessons. 

Natural language pointing can be more efficient than speech alone 
because it is often faster to point at something than to identify it 
verbally (particularly when it is not in the immediate focus of the 
dialogue and 'socannot be referred to by a pronoun). Moreover, 
pointing is a more direct form of identification than speech, so that its 
processing is likely to be faster and less error prone, considerably 
reducing the need for clarification dialogues, and hence enhancing 
communication efficiency still further. There are even some 
circumstances where pointing can communicate information that is 
very difficult to communicate through speech. For instance, pointing 
at a pOSition on a map is very much easier and probably more 
accurate than trying to give the same information by speaking map 
coordinates into the system. In such circumstances, natural 
language pointing would also be convenient to use with typed input, 
particularly if all the pointing can be done after the entire sentence 
has been entered. 

Though there are numerous advantages to natural language 
pointing, there are several issues which make its inclusion in an 
interface less than straightforward. In particular, it is necessary to: 

• determine when pointing events are natural language 
pointing events; 

• determine where the entities pointed at fit within the 
overall interpretation of the natural language input; 

• identify which entity was actually pointed to (an issue 
when the visual representations of entities are nested 
within each other on the screen). 

257 

The difficulty of identifying pointing events as natural language 
pointing events stems both from ambiguity inherent in the use of the 
pointing device and in ambiguity in natural language as to whether a 
given phrase implies that a natural 'language pointing event will 
occur. In the kind of interface we are discussing, the pointing device 
will have other uses besides natural language pointing. ,In particular, 
it will figure prominently in the interface that allows the user to 
navigate around the world display. Pointing events are then 
potentially ambiguous between natural language pointing and these 

other uses of pointing. There are several potential solutions, none of 
which seems ideal: 

• Make natural language pointing events identifiably 
different from others, for instance, by dedicating one 
mouse button (assuming there are several) to natural 
language pointing. This has, the advantage of being 
clear, but the disadvantages of being· fragile and 
difficult to learn (use of the wrong mouse button could 
produce highly unexpected andunintuitive results), and 
of reducing the options available for the world 
navigation interface. 

.• Overload some kind of neutral pointing event from the 
navigation interface - one that does some kind of 
selection without 'causing any specific action to 
happen. This has the same disadvantages in being 
fragile and hard to learn, and has the additional 
disadvantage of not being totally unambiguous, but the 
constraints it places on the navigation interface are 
different. 

• Poll for the position of the pointing device when a 
deictic phrase is used. This avoids the disadvantages 
of the other alternatives, but runs into serious trouble 
because it is not always possible to identify deictic 
references in natural language just from the words 
involved. For instance, "there" may indicate a deictic 
reference or be a reference to an item in the dialogue 
context ("Order 17 is in the queue forginding machine 
4". "How long has it been there?"). It also reduces the 
freedom of the user in terms of the relative ordering of 
pointing and the deictic reference. 

• Assume that all pointing events during (or close to, see 
below) natural language input are natural language 
pointing events. This has the advantages of simplicity, 
robustness, and lack of ambiguity. Its main 
disadvantage is making world navigation impossible 
during natural language input (even during a pause for 
thought during type in). 

Our design currently calls for us to use the final alternative, but we 
regard the choice.as an empirical matter and expect to experiment 
with several possibilities. 

Once we have determined that a pointing event is a natural language 
pointing event, there is still the problem of matching it up with a 
phrase or hole in the natural Janguage input. The co-occurrence of 
words and pointing events is useful information here, but does not 

give the whole story. All of the following examples and many other 
possibilities are plausible: 



Can this machine <point at one machine> take over the 
orders 
scheduled for that one <point at other machine> 

Can this <point at one machine> machine take over the 
orders 
scheduled for that <point at other machine> one 

Can this machine take over the orders 
scheduled for that one <point at one machine> 
<point at other machine> 

The last of these is most likely in a typed input situation where the 
user wishes to cut down on the overhead of moving between 
keyboard and pointing device. The only real invariant seems to be 
that the natural language pointing events will occur in the same order 
as the phrases (or holes2) in the natural language input to which they 
correspond. Moreover, the pointing events usually come during or 
immediately before or after the corresponding phrase. This latter 
fact means that information on the start and end time of wo;ds in the 
natural language input is important for the analysis of natural 
language pointing input. This information is naturally available for 
speech input, and our design calls for us to extend Language Craft to 
make it available for typed input. 

There are thus two kinds of indication, neither of them conclusive, 
that a phrase in the natural language input corresponds to a natural 
language pointing event: the temporal co-occurrence of the phrase 
with the pointing event, and the actual form of the phrase itseH. For 
instance, phrases with a demonstrative determiner ("this machine") 
are more likely to correspond to natural language pointing than 
phrases with a definite determiner ("the machine"). Once a 
candidate correspondence has been established between a phrase 
and a pointing event, it must be verified that the two are compatible. 
This process is very similar to anaphoric reference determination, 
except that the candidate referent is known in advance. It involves 
determining the constraints on the candidate phrase both 
instrinsically ("this machine" must be a machine) and from the 
sentential context (in the above examples "that one" must be a 

machine since orders are scheduled for it), and then checking if the 
entity pointed at met those constraints. 

Since there is no conclusive way to determine which phrases in the 
natural language input correspond to pointing events, we have 
designed the following heuristic procedure for finding the 
correspondence. 

1. list in left to right order all schemas representing 
phrases in the input that coUld potentially correspond 
to natural language pointing events; 

2. list in left to right order all natural language pointing 
events; 

2Qur current design requires some form of deictlc expression and does not allow 
the !Jssr Just to lea-.:e a gap in the Input corresponding to the pointing event as in "Can 
glolnt at on~ machine> take over the orders schedured for <point a{ other machine>". 
~e ~emantic caseframe appr~ch used .by Language Craft is already quite capable of 
sklpp'lng over gaps and prod!-,clng a partial analysis of the input. The additional ability 
req~lr~a to malch ~p gaps With nc~turallanQuage pointing would be for Language Craft 
~xpllCitly to r~ognlze that there IS a gap In tfle Input and to determine wl1ere in the 
Input that gap IS. 

258 

3. form all lists of pairings between schemas and pointing 
events, such that: 

a. the left to right ordering is preserved for both 
schemas and pointing events; 

b. paired schemas and pointing events are 
compatible in the way described above; 

4. if more than one list of pairings remains, choose those 
with the maximum number of schernas that correspond 
to phrases that are linguistically likely to be deictic 
(including all pronouns and noun phrases with 
demonstrative determiners); 

5. if more than one list of pairings still remains, choose 
those with the shortest time mismatch between the 
pointing events and the phrases corresponding to the 
schemas; 

6. if there is still more than one, ask the user to decide. 

In the example above, little of the complexity of this algorithm is 
needed. There are only two pointing events and three schemas 
(corresponding to "this machine", "the orders", and "that one"), and 
hence there are three possible list of pairings, of which only the 
correct one satisfies all the constraints. More complex sentences 
could, however, require all the steps in the algorithm to find the 
correct pairings. 

The final major issue in dealing with natural language pointing is that 
there can even be uncertainy as to which entity is being pointed to. 
In particular, if one entity has some kind of containment or subset 
relation with another, then the graphical representation of the 
contained entity may be nested within the graphical representation of 
the containing entity, so that pointing at the contained entity would be 

ambiguous between the two. For instance, an icon representing an 
individual machine may be graphically contained within an area 
which represents the factorY shop of which it is a part, so that 
pointing at the machine icon might mean the machine or the shop. 
Sometimes, the corresponding natural language phrase or its 
sentential context can disambiguate. For instance, if the 

corresponding phrase was "this machine", there would be no 
confusion. If such disambigu~tion is impossible, then the system 
must query the user to resolve the issue. Modifying the above 
algorithm to use this approach means creating, for each potentially 
ambiguous natural language pointing event, copies of the pairing 
lists which differ only in the entity referred to by the ambiguous 
pointing event. There would be as many copies as there were 
alternative interpretations. 

A final complication arises if the user desires to identify a group of 
objects or an area of the display through natural language pointing. 
For instance, he might want to ask about the average utilization of a 
group of machines. Conventional graphics applications provide 
ways of making group selections by incremental selection or 
selection by (usually rectangular) area. A similar approach could be 
used for natural language pointing, but it would eliminate some of the 
naturalness that we hope to achieve. Instead, our design allows 
freehand area designation by closed curves. In addition to being 
natural, this allows arbitrarily shaped areas to be designated as well 



as being able to select groups of individual entities. As in ordinary 
natural language pointing, all such line drawing during or temporally 
close to a natural language input will be interpreted as a natural 
language pointing event corresponding to some deictic phrase in the 
input. 

4. Conclusion 
Although natural language is an important component of intelligent 
interfaces to knowledge-based systems, it is not in general adequate 
as an interface in and of itseH. Modern AI workstations provide 

sophisticated graphical capabilities, which can communicate many 
kinds of information much better than natural language dialogue. 

Moreover, direct manipulation of graphical interfaces is often a 
convenient, natural, and efficient way for the user to access and 
update a system's information. 

Fortunately, it is not necessary to make a either/or choice between 

natural language and graphical interaction. This paper has outlined 
a set of generic facilities for constructing combined graphicaVnatural 

language interfaces for a broad class knowledge-based systems. 

We discussed in greater detail the aspects of those facilities that deal 
with the interpretation of references, both natural language and 
pointing, to entities in the application's world. In particular, we 

showed how standard dialogue anaphora resolution techniques can 
be integrated with the presence of a visual context and with pointing 
events into that visual context. 

Unless interlaces to knowledge-based systems display a level of 
intelligence similar to the underlying systems themselves and make 
full use of the capabilities of the available VO hardware, then the 
systems as a whole will fall far short of their potential impact. We 

believe that the way to construct interlaces that satisfy these goals 

lies in the direction we have outlined in this paper, and that this 
direction represents the future of user interfaces to knowledge-based 
systems. 

References 

1. Bolt, R. A. "'Put-That-There': Voice and Gesture at the Graphics 
Interface". Computer Graphics 14,3 (1980), 262-270. 

2. Carbonell, J. R. Mixed-Initiative Man-Computer Dialogues. 1970, 
Bolt, Beranek, and Newman, Inc., Cambridge, Mass., 1971. 

3. Carbonell, J. G. and Hayes, P. J. "Recovery Strategies for 
Parsing Extragrammatical Language". Computational Linguistics 10 
(1984). 

4. Charniak, E. C. Toward a Model of Children'S Story 
Comprehension. TR-266, MIT AI Lab, Cambridge, Mass., 1972. 

5. Grosz, B. J. The Representation and Use of Focus in a System 
for Understanding Dialogues. Proc. Fifth Int. Jt. Conf. on Artificial 
Intelligence, MIT, 1977, pp. 67-76. 

6. Hayes, P. J. Anaphora for Limited Domain Systems. Proc. 
Seventh Int. Jt. Conf. on Artificial Intelligence, Vancouver, 1981, pp. 
416-422. 

259 

7. Hayes, P. J., Andersen, P., Safler, S. Semantic Case Frame 
Parsing and Syntactic Generality. Proc. of 23rd Annual Meeting of 
the Assoc. for Comput. LIng., Chicago, June, 1985. 

8. Negronponte, N. "Media Room". Proceedings of the Society for 
Information Display 22,2 (1981), 109-113. -

9. Sidner, C. L. Towards a Computational Theory of Definite 
Anaphora Comprehension in English Discourse. TR-537, MIT AI 
Lab, Cambridge, Mass., 1979. 

10. Smith, D. C.,lrby, C., Kimball, R., Verplank, W., and Harslem, E. 
"Designing the Star User Interface". Byte 7, 4 (April 1982), 242-282. 

11. Williams, G. "The Lisa Computer System". Byte 8, 2 (February 
1983),33-50. 



TEAM: An Experimental 
Transportable N atural-Language Interface 

Paul Martin, Douglas E. Appelt,Barbara J. Grosz, Fernando Pereira 

Artificial Intelligence Center, 
SRI International 

Menlo Park, California 94025 

Abstract 

This paper is a brief description of TEAM, a project whose goal 
was to design an experimental natural-language interlace that 
could be transported to existing database systems by people 
who already possessed expertise in their use. In presenting this 
overview, we have concentrated on those design aspects that were 
most constrained by the requirements of transportability. 

1 A Functional Description 

A natural-language interlace (NLI) to a computer database pro
vides users with the capability of obtaining information stored 
in the database by querying the system in a natural language 
(e.g., English). The use of natural languages as a means of com
munication with computer systems allows users to frame a ques
tion or a statement in the way they think about the information 
being discussed, thereby freeinl them from the need to know 
how the computer store. or processes the information. How
ever, most existing NLI systems have been desisned specifically 
to treat queries that are constrained in three way.: (1) they con
cern a single application domain; (2) they pertain to information 
in a single database; (3) they handle only a linlle tuk, namely, 
database query.1 Conatructinl a system for a new domain or 
database requires a new effort almolt equal to the orilinal one 
in magnitude. 

Tramportable NLls that can easily be adapted to new domains 
or databases are potentially much more u.eful than domain- or 
database-specific systems. However, because many of the tech
niques already developed lor custom-built IYlteml preclude auto
matic adaptation of the system. to new domain., the construc
tion of transportable systems pOle. a number of technical and 
theoretical problems. In describinl the transportable NLlsystem 
called TEAM (Transportable English database Accels Medium), 
that was the focUl and objective of • four-year project, this ar
ticle emphasizes those choices in system design imposed by the 

This paper hu previoully appeared in the quarterly newlletter 01 the IEEE 
Computer Society Technical Committe. on Databue Enlineerinl, vol. 8, 
no.3. 
The work reported here wu lupported by the Delenee Advanced Reeearch 
Project. Asency under Contract. MDA90a·8a·C·OO27 and DACA 76·86·C· 
0004. 

'This constraint i. more limitml bt tnuy waYI tbaa tU other two. For 
example, queries are typically treated I&r,ely in ilolaticm; very few featurel 
of dialogue are handled. Since this remains a constraint in TEAM it will not 
be discussed further in this article. 

CH2345-7/86/0000/0260$01.00© 1986 IEEE 
260 

requirement of transportability.2 For some problems, the design 
decisions incorporated in TEAM are generally applicable to a 
wider range of natural-language processing systems; for others, 
we were forced to take a more limited approach. 

1.1 Transportability 

One of the major challenges faced in building NLIs is to pro
vide the information needed by the system to bridge the gap 
between the way the user thinks about the domain of discourse 
and the way the computer handles the information it possesses 
about the domain. Existing databases employ different represen
tational conventions, many of which favor storage efficiency over 
perspicuity. For example, one might encode geographic infor
mation about mountain peaks in Switzerland as part of a file of 
information about the mountain peaks of the world, identifying 
them with a "SWZ" in a COUNTRY field, or using a SWISS? fea
ture field for which a "Y" indicates that a peak is in Switzerland 
and an "N" indicates it is not. Or the information might reside in 
a separate flIe on Switzerland, or one on Swiss mountain peaks. 
The kinds of queries a user might pose-for example "What is the 
highest Swiss peak?" "Are there any peaks in Switzerland higher 
than Mt. Whitney?" "Where is the Jungfrau?"-are equally ap
propriate for all the aforementioned encodings and the inputs to 
the NLI (an English query) remain unchanged. The output (com
mandl to a database system), however, will be quite different. 
One 01 the main functions of the NLI is to make the necessary 
tranlformationl, thul insulating the user from the particularities 
of the database structure. 

To provide this insulation and to bridge the gap between the 
uler's view and the system's structures requires a combination 
01 domain-specific and general inlormation. In particular, the 
sy.tem must have a model of the subject matter of the application 
domain. Included in this model will be information about the 
object. in the domain, their properties and relationships, and 
the worda and phrases used to refer to each. Finally, the system 
must know the connection between entities in that model and the 
information in the database. A major challenge in constructing 
transportable systems is to provide a means for easy acquisition 
of domain-specific information. 

TEAM i. one of several recent attempts to build transportable 
systems (some of which are described elsewhere in this issue.) 
Different approaches to transportable systems reflect diverse con
ceptions of the kinds of skills and knowledge that might be re-

2Space limitation. have compelled UI to omit many of the specific prob· 
lems faced in this research; for a fuller treatment, plealle see the more exten· 
sive journal article IGros86). 



qui red of those who will be doing the adaptations (in particular, 
whether they must have expertise in natural-language process
ing), and what parts of the system might change (in particular, 
whether the database can be restructured to fit the requirements 
of the NLI). 

A major hypothesis underlying TEAM may be stated as fol
lows: if an NLI is constructed in a sufficiently well-principled 
manner, the information needed to adapt it to a new database 
(and its corresponding domain) can be acquired fr<?m users who 
have general expertise about computer systems and the given 
database, but who do not have any special knowledge about 
natural-language processing or this NLI. 

. In testing this hypothesis, we also assumed (for both theo
retical and practical reasons) that the database could not be 
restructured. Theoretically, it is the most conservative choice 
we could have made; it imposed general solutions upon certain 
issues of system design, because we could not restructure the 
data to alleviate problems of natural-language processing. Such 
restructuring can often bring about a closer match between the 
way inCormation is stored and the way it is referred to in NL 
expressions. For instance, in the previous example, a database 
structure that includes the SWISS? feature field il more dimcult 
to handle in a general manner than one that ulel the COUN
TRY field encoding. From a practical standpoint, the choice 
reflected our desire to provide techniques adequate to handle 
existing databases, some of which are quite large and complex, 
hence fairly difficult to restructure. 

1.2 Using TEAM 

The TEAM system is designed to interact with two kinds of users: 
a dataoo8e expert (DBE) and an end u.er. The DBE engages in 
an acquisition dialogue with TEAM to provide the information 
needed to adapt the system to a new database, and, when de· 
sired, to expand its capabilitiel in anlwerinl queltion. about a 
database (e.g., by adding new verb. or synonym. for exiltinl 
words). Once a DBE has provided TEAM with the information 
it needs about a database and domain, any number of end usen 
can use the system to query. the database. 

The TEAM system thus has two major model: acqui.ition and 
question-answering. The acquisition dialogue with the DBE i. 
oriented around the database structure. It il a menu· driven in. 
teraction through which the DBE providel information about 
the files and fields in the database,' the conceptual content they 
encode and how they encode it, and the words and phrases used 
to reCer to these concepts. Hence the OBE must know about the 
particular database structure and the subject domain itl infor· 
mation covers, but he does hot need 10 know how TEAM works 
or any special language-processing terminology. 

The question-answering system consistl of two major compo· 
nents: (1) the DIALOGIC system [Gros82] for mapping natural· 
language expressions onto formal logical representationa of their 
meanings; (2) a schema translator that transforms thele repre· 
sentations into statements of a database query language. DIA· 
LOGIC and the schema translator require both domain-spedfic 
and domain-independent information. The requisite domain
independent inCormation is part of the core TEAM systemi the 

3TEAM currently assumes a relational database with a number of files. 
No difficult language·processing problems would result from conversion to 
other models. 

26] 

domain-specific inCormation is obtained by the acquisition com
ponent. 

1.3 A Sample Database 

We will use the database shown schematically in Figure 1 to 
help illustrate various aspects oC TEAM. This database com
prises four file, (or, relation,) of geographic data. The first 
file, WORLDC, has five field.t-NAME, CONTINENT, CAPITAL, 
AREA and POP; respectively, they specify the continent, capi
tal, area, and population for each country in the world. Var
ious mountains in the world are represented in the second file, 
named PEAK, along with their country, height, and an indication 
as to whether they are volcanic. The third file, named CONT, 
shows the hemisphere, area, and population of the continents. 
The fourth file, BCITY, contains the country and population oC 
some of the larger cities of the world. Because several files may 
have fields with the same names, TEAM prefixes file names to 
field names to form unique identifiers (e.g., WORLDC-NAME, 
PEAK-NAME, CONT·POP, BCITY-POP)i we will do likewise in 
our discussion. 

TEAM distinguishes among three different kinds or fields: fea
ture, arithmetic, and symbolic. Feature field, contain true/raise 
values indicating whether or not some attribute is a property 
of the file subject. PEAK·VOL and CONT-HEMI are feature 
fields. Arithmetic field, contain numeric values on which compu
tationa (e.g., averaging) can be performed WORLDC-AREA and 
PEAK·HEIGHT are examples of arithmetic fields. Let us note, 
however, that a field containing social security numbers would be 
treated more naturally as a symbolic field than as an arithmetic 
field, because it is unlikely that any arithmetic computations 
would be done on such numbers. Symbolic field, typically con
tain values that correspond to nouns or adjectives denoting the 
subtypes of the domain denoted by the field. WORLDC-NAME 
and PEAK-COUNTRY are examples. 

More information can be gleaned from a database than simply 
what the individual files contain. For instance, the continent on 
which a peak is located can be derived from the country in which 
it i.located and the continent of the country. Likewise, the hemi
Iphere in which a country illocated can be determined from the 
continent on which the country is located and the hemisphere of 
that continent. TEAM allow. the OBE to specify virtual relation8 
that convey IUch additional information. 

:I The TEAM System Architecture 

The design of TEAM refieds several constraints imposed by the 
demand for transportabilitYi our discussion will emphasize those 
aspedl of the design. The need to decouple the representation 
of what a user means by a query from the procedure for obtain
ing that information from the database obviously affected the 
choice of system components. In addition, the need to separate 
the domain.dependent knowledge to be acquired for each new 
database from the domain-independent parts or the system influ
enced the design of the particular data strudures (or "knowledge 
sources-) seleded for encoding the information used by these 
components. 

Figure 2 illustrates the major processes of TEAM, the vari
ous sources of knowledge they use, and the flow of language
processing tasks from the analysis of an English sentence to the 
generation of a database query. The rectangular boxes represent 



WORlDC PERK 
NAME CONT1NENT CAPITAL AREA pm> NAME COUNTRY HEIIIIfT VOL 

Afghanistan Asia Kabul 260,000 17,450,000 Aconcagua Argentina 23,080 N 

Albania Europe Tirana 11,100 2,620,000 Annapuma Nepal 26,504 N 

Algeria Africa Algiers 919,951 18,510,000 Chlmborazo Ecuador 20,702 Y 

COHT BCITY 
NAME HEM AREA POPUl.A lION NAME COUNTRY pm> 

Africa 8 11,500,000 41,200,000 Brussels Belgium 1,050,787 

Antarctica 8 5,000,000 500 Buenos Aires Argentina 8,925,000 

Asia N 16,990,000 2,366,000,000 Canberra Australia 210,600 

Figure 1: Sample Database 

the processes, and the ovals to their right, the variousJmowl
edge sources. The acquisition box on the right points to those 
knowledge sources that are augmented through interaction with 
the DBE. All other modules and knowledge sources are built into 
TEAM and remain unchan:ged during acquisition. 

In this section we will look at the TEAM system from several 
angles. To begin, we will sketch the overall flow of processing dur
ing question-answering, describing the various processes involved 
in transforming an English query into a formal database query. 
Because the particular logical jorm (LF) TEAM uses to encode 
the meaning of a query plays a crucial role in mediating between 
the way queries are posed and the way information is obtained 
from the database, it affects the design oC several components oC 
the system. We then look in somewhat more detail at the data 
structures that encode domain-specific inCormation. Finally, we 
discuss the overall strategy used Cor acquirin, inCormation about 
specific domains and databases. 

2_1 Flow of Control 

The flow of control during TEAM's translation of a natural· 
language query into a formal query to the databue is illustrated 
as the path. on the left side of Ficure 2, from top to bottom. 
The transformation takes place in two major stepa: lint, a rep
resentation of the literal meaninl oC the query, or 'Dlical jorm, 
is constructed; second, this lo(ical Corm is transformed into a 
database query. 

The translation into logical Corm is performed by the DI
ALOGIC system, which comprises the follow inc components, 
shown surrounded by the dotted box in Ficure 2: the DIA
MOND parser, the DIAGRAM rrammar, the lexicon, semantic
interpretation functions, basic pracmatic functiona, and proce
dures for determining the scope of quantilien. 

Since a description oC DIALOGIC is provided ellewhere 
[Gros82], let us discuss here only those upects of the system that 
were influenced by the development of TEAM. Two central data 
structures in DIALOGIC that are atrected by TEAM's acquisition 
process are described: the le:ricon and the concep'ua/.cla.ma. To 
understand the semantic and pragmatic components of TEAM, 
it is also necessary to appreciate DIALOGIC's separation of se
mantic interpretation operations into two main classes: Iranlio
lora, which define how the interpretations of the constituents of 

262 

a phrase are combined into the phrase's interpretation; basic se
mantic junctions, which are called by the translators to assemble 
the actual logical-form fragments that form the interpretations 
of phrases. 

In brieC, when the end user asks a ql,lery, DIALOGIC parses 
the sentence, producing one or more trees representing possible 
syntactic structures. The "best" parse tree, based on a priori 
syntactic criteria, is selected and annotated with semantic infor
mation [Robi82,Mart83]. Next, pragmatic analysis is applied to 
assign specific meanings that are relevant to the current domain 
to noun-noun combinations and to "vague" predicates like HAVE 
and OF.4 Finally, the quantifier-scope determination process, 
aCter considering all possible alternatives, determines the best 
relative scope for the quantifiers in the query. The logical form 
thus constructed, using a set of predicates that are meaningful 
with respect to the given domain and database, constitutes an 
unambiguous representation of the English query. 

The logical form produced by DIALOGIC is translated into a 
query in the SODA [Moor79] 5 database query language by the 
.claemtl Iron"tllor. In addition to the conceptual schema, the 
schema tranalator uses a database schema that furnishes infor
mation about the particular database structures. This schema, 
described briefly below, is also affected by the acquisition pro
ceu. 

Finally, the database query produced by the schema translator 
is liven to SODA, which executes the query and displays the 
answer for the user. SODA was not developed as part of TEAM 
but wu chosen for it. features, which are consistent with the 
overall goal of transportability. SODA was designed for querying 
distributed databues and is capable of interCacing with several 
actual database manacement systems. 

The proces.es TEAM executes in replying to an end user's 
query are limilar to thOle that any custom-designed NLI would 
execute. What is ditrerent in the cue of TEAM is that the 

·We con.ider the .. predicate. valUe heeau.e they can be applied to many 
kind. of entitie.j they .... replaced by -real- predicates during pragmatic 
proceuinl' 

'SODA i. actuaUy a query compiler that take. queries in a standard rela· 
tional formali.m and compU .. them into optimized queries in the languages 
of oth.r datab". manal.m.nt .yetlINj both relational and codicil DBMSs 
have been accommodated. For our experiments, an interpreter that follows 
SODA command. to acce.1 a small database in primary memory was used 
in lieu of the actual SODA I)'ltem. 



INPUT 
SENTENCE 

r----------------------------------------------

TREE WITH 
PREDICATE 

ARGUMENTS 
ANNOTATED 

DIALOGIC 

SEMANTIC TRANSLATORS 
AND 

BASIC sE!'tANTIC 
FUNCTIONS 

DATABASE SCHEnA 
sCHEI'IA !'tAPPING 

OATABAsE !'tAPPING 
SODA QUERY 

SODA 

1 Figure 2: TEAM System Diagram 
ANSWER FROM DATABASE 

modules must be carefully designed to allow Cor maximal gen
erality, which precludes many of the shortcuts that are common 
in custom-built NLI systems (e.g., LADDER [Hend77], PLANES 
[Walt75]). Two techniques that are ruled out are the using a 
semantic grammar and combining the determination of what a 
query means with the formulation oC the DBMS query. 

Semantic grammars are based on constituent categories that 
are chosen not for their ability to embody linguistic generaliza
tions, but rather for the ease of parsing and interpretation that 
results when the grammar reflects the conceptual structure of 
the database domain. For example, instead of the general cat
egories of "noun" and "verb phrase: semantic grammars may 
have categories such as "country- and "location specification." 
Such grammars are hopelessly tied to a single domain, and prob
ably to a single database as well. 

Efficiency also results from mapping a natural-language query 
directly into the code required for retrieving an answer from the 
database, but at the cost of being tied to a particular database. 
A number of database query systems (e.g., LADDER) construct 
a query directly while parsing the input with semantic grammar 
rules, but without building any other representation of what the 
query means. 

Although the SODA query that results from the analysis of an 
English query represents, at least in some sense, the intended 
meaning of the latter, it does so in a way that directly reflect. 
the structure of the database being queried. Consequently, if 
two databases encode the same information in different struc
tures, the result will be two different databue queries for the 
same English sentence. For example, if a user asks IIHow many 
Swiss mountains are there?" the database queries generated 
in response to his query can look very different, depending on 
whether the tuples representing Swiss peaks are distinguished 
from those representing other peaks by their membership in a 
different relation, or by the presence of the word "SWZ" in a 
COUNTRY field. 

The problem this creates is not just an aesthetic one: to ac
quire the semantic and pragmatic rules necessary for generating 

263 

a database query directly Crom an English query, TEAM would 
have to ask the DBE about far more than the structure and con
tents of the database. Answering the essential questions for such 
an acquisition would require the kind of expertise in natural
language processing that TEAM is intended to render unneces
sary. Thus, the demands oC transportability preclude use of the 
SODA language as the primary representation of the meaning of 
queries.-

2.2 Logical Form 

Logical form plays a central role in TEAM: it mediates between 
the wayan end user thinks about the information in a database, 
u revealed in his queries to the system, and the way informa
tion can be retrieved through queries in a formal database-query 
language. The predicates and. terms in the logical form for. a 
particular query are derived from information in the lexicon and 
conceptual schema;', hence, the choice of logical form indirectly 
affects the design of those components of the system and deter
mines, in part, the information the DBE must supply. 

The logical form employed by TEAM is first-order logic ex
tended by certain intensional and higher-order operators and 
ausmented with special quantifiers for definite determiners and 
interrogative determiners. Much research has been done to devise 
appropriate logical forms lor many kinds of sentences [Moor8l], 
but that investigation lies beyond the scope of this article. 

'In addition, DIALOGIC wu deligned to be a general language under
ltandin, IYltem that can be applied to tuks other· than .database querying. 
Therefore, it wu unde.lrable to restrict its application by choosing an un
.uitable lemantic reprelentation. 

., As noted previoully, the Ipecific (orm depends also on general syntactic, 
lemantic, and pragmatic rule. (or English that are encoded in the various 
components of DIALOGIC. 



2.3 What Information Is Acquired 

2.3.1 The Lexicon 

The lexicon is a repository of the information about each word 
that is necessary for morphological, syntactic, and semantic anal
ysis. There are two classes of lexical items: closed and open. 
Closed classes (e.g., pronouns, conjunctions, and determiners) 
contain only ,a finite, usually small number of lexical items. Typ
ically,. these words have complex and specialized grammatical 
functions, along with [at least some] fixed meanings that are in
dependent of the domain. They are likely to occur with high 
frequency in queries to almost any database. Open classes (e.g., 
nouns, verbs, adjectives) are much larger and the meanings oC 
their members tend to vary, depending on the particular database 
and domain. Therefore, most closed-class words are built into 
the. initial TEAM lexicon, while open-class words are .acquiredCor 
each domain separately. However, there are a number oC open
class words, such as those corresponding to concepts in the ini
tial conceptual schema (see Section 2.3.2) andwords.for common 
units .of measure (e.g., "meter", "pound"), that are so broadly 
applicable to so many database domains that they are included 
in the initial lexicon as well. 

Lexical entries include those Cor the names oC file subjects (i.e., 
the entities about which some relation contains inCormation
e.g., peaks for PEAK, and countries Cor WORLDC in the sam
ple database illustrated in Figure 1.3), field names, and field 
values. In addition, the D BE can 'supply adjectivel and verbs, 
as well as synonyms for words already acquired (see Seetion 2.4). 
Associated with every. lexical entry is syntactic and lemantic in
Cormation Cor each of its senses .. Syntactic inCormation consists 
of its primary category (e.g., noun, verb, or adjective), subcate
gory (e.g., count, unit, or mass Cor noUDS; object types for verbs), 
and morpb,?'.ogy. Semantic·inCormation dependl.on the syntac
tic category. The entry for each noun include. the'sort(s) or 
individual(s) in the conceptual sehema (Section 2.3.2) to which 
that noun can refer. Entries Cor adjectives and verb. include the 
conceptual predicate to··which.they refer, plus information about 
how the various syntactic constituents oC a sentence m.p onto 
arguments of the predicate. Scalar adjective. (e.g., -high") allO 
include an indicationoC direction on the scale (plus or·minus). 

2.3.2 Conceptual Schema 

The conceptual 8chema. contains information. about the objects, 
properties, and relations in the domain of the databue. It in
cludes . sets of individuals, predieatn, constraint. on the arru
ments of predicates, and the information needed for eertain prac
matic processing. The inCormationai content i. similar to that 
commonly encoded in semantic networks, but the apparatus used 
is more eclectic. The conceptual sdlema consist. of a '0" hiem,· 
chy and 'descriptions oC various properties of nODlort predicate •. 

The sort hierarchy relates . certain [monadic] predicates that 
play a primary role in. categorizing individuals. These are called 
80rl predicale8 (represented here in italies as in PERSON). TEAM 
was designed with a considerable amount of this conceptual in
Cormation built in. Figure 3 illustrates.a portion of this hierarchy. 
Each line connecting levels of the hierarchy signifies a set-sublet 
relationship between two categorin of individual I. The'sortl con
nected by the small arcs directly below the nodn are diljointi 
that is, no individual can be in two sorts joined in this man
ner. The sort hierarchy grows as information about a database 

264 

is-acquired. The DBE is required to position some oC the newly 
acquired concepts in their appropriate places in the hierarchy. 

Each field in the database is associated with the sort of objects 
that can appear in· that field. Several additional properties are 
associated with the sorts derived from symbolic fields and from 
certain kinds oC arithmetic fields. 

With each· sort obtained from a symbolic field, TEAM as
sociates a predicate· that !.encodes the relationship between 
that sort and the sort oC· the file subject. For exam
pie, Cor the relation WORLDC in Section 1.3, which in
cludes' inCormation about capitals and continents, the system 
'would link the sort WORLDC-CAPITAL with the predicate 
WORLDC-CAPITAL-OF (in this article, predicates are shown 
in boldface), which takes two ar.guments: the first oC sort 
WORLDC-CAPITAL, the second oC sort COUNTRY. This link is 
used in handling queries like "What is the capital of each coun-

, try in Europe?" . In particular, it is used to determine what it 
means'Cor a capital to be "of" a country, or for a country to be 
"in" Europe. Additional properties oC the sort indicate whether 
individual instances oC it can\modiCy or stand for instances of 
the sort of the file subject (e.g., "European countries," but not 
"Europeans" can be used to reCer to. the countries· c satisfying 
the predication (CONTINENT-OF c EUROPE)). 

Sorts that correspond to arithmetic fields containing measures 
(e.g., length, age) also include inCormation about both the im
plicit unit of measurement (e.g., Ceet, years), and the kind of 
thing being measured (e.g., linear extent, temporal extent). 

Several other kinds of inCormation are associated with nonsort 
predicates. A delineation specifies the constraints on the sorts for 
each of a predicate's, arguments; multiple ,delineations are sup
ported but cannot be described in this brief format. Predicates 
corresponding to comparative-forming adjectives (e.g., "tall") 
have two additional properties: a link to the predicate that spec
ifie. the degree (e.g., PEAK-HEIGHT in our example), and an 
indication oC polarity along the scale being measured (e;g., plus 
tor TALL, minus for SHORT). 

2.... A •• oclat.d . Proc ••••• 

Several general predicate. 'have semantic and pragmatic spe
ciali.t. associated with them. The semantic specialists are Is
semantics .and Degree-.emantics; the pragmatic specialists are 
the Genitive, Noun-noun, Have, Of, 'General-preposition, Time, 
Location, Do-specialist, and Comparative. 

The Is-semantics speciali.t is associated with the predicate IS 
and propagate. sort restrictions across all the variables that are 
beincequated by the II usertion. This specialist is invoked 
prior to pragmatic processing (hence the "semantics" label); it 
attempts to reconcile any conflicts it detects and may revise some 
sort predications on variables in the process. For example, it 
is used in processing the query, "What is the area of Nepal?" 
to ascertain that the variable corresponding to the "what'" is a 
WORLDC-AREA, not a CONT-AREA. 

The Degree-semantics specialist replaces the general predi
cate DEGREE-OF with a more specific one. For example, 
by determining that predication (DEGREE-OF peakl x) refers 
to the predicate PEAK-HEIGHT-i.e., that it is equivalent 
to the predication (PIAX-HIIGHT-OF peakl xl-the special
i.t ,lIow. TEAM to further constrain the sort of % to be a 
linear-measure, thus allowing·the comparative specialist ,invoked 
during. pragmatic processing to make the right choice between the 



THING 

plly:rit:tzl-c<>jlCt 

puk-MiZllt 

Figure 3: A Fragment of TEAM's Sort Hierarchy 

alternatives of comparing the heights of two objects and compar-,. 
ing an object's height with a height value. 

The Genitive, Noun-noun, Have, and Of specialists replace 
the vague predicates GENITIVE, NN (for noun-noun combina
tions), HAVE, and OF with more specific ones. The individual 
specialists differ only slightly, the differences- reflecting the spe
cial restrictions associated with each construction. 

The General-preposition specialist is associated with ON, 
FROM, WITH, and IN, converting these predicates into 
their appropriate domain-specific counterparts. For exam
ple, the Do-specialist determines' that the phrase, "countries 
in Asia" means those countries e for which the predication 
(WORLDC-CONTINENT-OFe ASU) holds. 

The Time-specialist and Location-specialist serve to map 
TIME-OF and LOCATION-OF into predicates that. are appro
priate for the database at hand. They can be invoked'obliquely 
by the interrogative constructions "when" and "where." 

The Do-specialist replaces the predicate DO (from the' verb 
"do") with a more specific verb chosen from those aequired for 
a domain. Although "do" does not appear as: the main verb 
very often in the database query task , the translatora deduce its 
implied presence in some. queries-for instance in such, compar
ative questions as "What countries cover more area than Peru 
[does]?" . 

The comparative specialist examines the two arguments of a 
comparison to determine whether the -comparison to be made' 
is between two attribute values' (e.r., Jaek's heirht and seven 
feet) or between an entity and some value (e.r., Jaekand seven 
feet). In the latter case, TEAM tries.to identify the appropriate 
attribute of the entity (e.g;, Jaek's height). 

2.3.4 Database Schema 

The translation from logical form to SODA query requires know
ing the exact structure· of the target database and the manner 
in which the predicates appearing in the .logical form are asao. 
ciated with the relations' in the database. This. information is 
provided by the databa,e ,ehema, which includes the following 
informationS: 

liThe schema translator also uses certain information in the conceptual 
schema, including taxonomic information in the lIort hierarchy and delin
eation. information associated with nonsort predicate~ 

265 

• Definition of sorts in terms of database relations (subject) 
or fields (and field value for sorts derived from feature 
fields). 

• List of convenient identifying fields for each sort corre
sponding to a file subject or field. 

• Definition of predicates in terms of actual database rela
tions and attributes; this is done for predicates derived 
from both actual and virtual relations (for relation sub
jects and attributes). 

• List of each relation's key fields. 

The database schema relates all the predicates in the concep
tual schema to their representation in a particular database. For 
eaeh predicate, the database schema. generates a logic formula 
defining the predicate in terms of database relations. For exam
ple, the predicate WORLDC-CAPITAL-OF has as its associ
ated database schema a formula representing the fact that its first 
argument is taken from the WORLDC-CAPITAL field of a tuple.of 
the WORLDC relation, and- that its second argument comes from 
the WORLDC-NAME field. of the same relation. If a predicate 
hu, multiple delineations-i.e., if it applies to different . sorts of 
arguments (e.g., a HEMISPHERE-OF predicate could apply to, 
both COUNTRIES and CONTINENT.s?-the,schema·will include 
a separate definition for each set of arguments. In some eases' 
(e.r., predicates resulting from the acquisition of some verbs and 
adjectives)', the mapping associated with a predicate indicates 
that it· ilequivalent to another [conceptual schema] predicate 
with certain arguments aet to fixed values. 

~.4 Acqul.ltloD 

The aequilition component of TEAM is crucial to· its success as 
a transportable system. Recall that one constraint on TEAM is .. , 
that the DDE,not be required to have any knowledge of TEAM's 
internal workinp, nor about the intricacies of. the. grammar, nor' 
01 computationailinguiltici in reneral. Yet de'ailed information,. 
often nece .. arily linguistic in, its. orientation, must somehow be 
extracted from the ODE during an aequisition session. further
more; it is delirable that the aequilition component be designed 
to allow a ODE to change answers to questions and add informa
tion as he gains experience with TEAM and the types of questions 
that are asked by the end users. 



I- • 
~~·l'Ienu WORLDC BCITY ConT 

in~. ~!!nu BCITY-NAI'IE BCITY-POP COln-RREA ~CI Y-COUNTRY PEAK-COUNTRY COI'\T-tlAI'IE COIiT-POP 
PEAK-tlAI'IE PEAK-VOL WORLDC-RRER p~~t~~~~HT 

WDRLOC-cRPITAL WORLDC-COItTIttBtT WORLDC-ttAI'IE WORLDC-POP 

~~ER r~ru CAPITAL (n) CITY (n) 

DNTIttEttT (n) COUNTRY. (n) HEIGHT (n) 

~EI'II (n) HEI'IISPHERE (n) HIGH (edj) 

~~GE (8ClJ) LOW (8Clj) N (n) 

~~I'IE(~) ttORTHEtt (8CI j ) PERK (n) 
POPULRTIOIt (n) POPULOUS (edJ) 

5 (n) SHORT (8Clj) 51'1RLL (edj) 

~~~~t~-lt1~rri~n:.,.':r:r lin ACTUAL. relation. 
T,pe ar fIHI - SYMeOUC AIIfHIIE11C ru. TUII!
Va"" t,pe - DATn MEASURES COUNTS
Are tile 11M. 1IopIdt? YO NO
tnt .. IoopkIt unit - fOOT
~ t,pe .r tIIIt t - TIME WOOKT IPltD VOUJM[~ AIIfA WCfITH TEMl'!l\ATUII! OTHER I
Alllln'llation fW tIIb unit? - "
c-.lon _ n. MtTPIS to PUT - (' X 11.30411)
~ _ n. fUT to METE"'- (* X O.lt04e)

Figure 4: The Acquisition Menu !Po.ltlve ad)ectlvel - HIQH TAU.
I'-tatl¥. acljecthu - IItOftT LOW

In an attempt to satisfy all these constraints, the- menu
oriented system depicted in Figure 4 was developed. The ac·
quisition system consists of a menu of general commands at the
very top, three menus associated with relations, fields, and lexical
items respectively, and, at the bottom, a window for questions
and answers. When the DBE uses the mouse to select one of the
items from the three menus, a set of questions appears in the
question-answering area at the bottom of the display, to which
he can then respond.

One of the general principles of acquisition is evident from
this display, namely, that the acquisition is centered upon the
relations and fields in the database, because this is the informa·
tion most familiar to the DBE. The answers to eaeh question
can affect the lexicon, the conceptual schema, and the database
schema. The DBE need not be aware of exactly why TEAM pOIei
the questions it does-all he has to do is answer them correctly.
Even the entries displayed in the word menu owe their presence
to questions about the database. The DBE volunteen entri" to
this menu only in the case of verb acquisition, to lupply an ad
jective corresponding to some noun already in TEAM'. lexicon,
or to enter a synonym for some lexicon· resident word.

The DBE is assumed not to have any knowledge of formal
linguistics or of natural-language proceuing methods. He il ...
sumed, however, to know some general facts about English-for
example, what proper nouns, verbs, plurals, and tense are, but
nothing more detailed than that. If more sophisticated linguis
tic information is required, as in the case of verb acquisition,
TEAM proceeds by asking questions about sample sentences, al
lowing the DBE to rely on his intuition u a native speaker, and
extracting the information it needs from his responses.

Virtual relations are specified iconically. The left side
of Figure 5 shows the acquisition of a virtual relation
that identifies the continent (PKCONT-CONTINENT, derived
from WORLDC-CONTINENT) of a peak (PKCONT.NAME,
from PEAK-NAME) by performing a database join on the
PEAK-COUNTRY and WORLDC-CONTINENT fields. Similarly,
the right side of Figure 5 shows the acquisition of the virtual re·
lation that encodes the hemisphere (HEMIC-HEMI) of a country
(HEMIC-NAME) by joining on the WORLDC·CONTINENT and
CONT-NAME fields.

If he wishes, the DBE can change previous answers. Incre
mental updates are possible because most of the methods for

266

updating the various TEAM structures (lexicon, schemata) were
devised to undo the effects of previous answers before the effects
of new answers could be asserted. Help information is always
available to assist the DBE when he is unsure how to answer a
question. Selecting the question text. with the mouse produces a
more elaborate description of the information TEAM is trying to
elicit, usually accompanied by pertinent examples.

Finally, the acquisition component keeps track of what infor
mation remains to be supplied before TEAM has the minimum
it needs to handle queries. The DBE does not have to deter
mine himself how much information is sufficient; all he has to
do is to perceive that no acquisition window indicates remaining
unanJwered questions. Of course, the D BE can always provide
information beyond the minimum-for example, by supplying
additional verbs, derived adjectives, or synonyms.

3 Conclusions

TEAM hu been tested in a v,riety of multifile database domains
by a fairly large number of people in addition to its original
implementation team. While the testing has been much less rig
OroUi than would be required for an actual product, enough has
been leamed to conclude that the basic ideas "work" -namely,
that it is possible to build a natural-language interface that is
general enough to allow its adaptation to new domains by users
who are familiar with these domains, but are themselves neither
experts on the system itself nor specialists in AI or linguistics.

TEAM handles a wide ranre of verbs, a capability that is ab
solutely essential for fluent natural-language communication. As
it embodies no discoune mode), its handling of pronoun resolu
tion and determiner leoping is correspondingly limited. While
its grammar coverage is quite extensive, the formalism used to
represent it and the processes used to implement it are yielding
to newer and more perspicuous desi~s(Shie84]. We are now in
vestigating ways to provide transportability in natural-language
systems that can interact with a variety of software services be
yond database access and which more extensive discourse capa
bilities will be embodied.

Acknowledgment,

Jerry R. Hobbs, Robert C. Moore, Jane J. Robinson, and
Daniel Sagalowicz played important roles in the design of TEAM.

Figure 5: Acquiring the Virtual Relationa PKCONT and HEMIC

Armar Archbold, Norman Haas, Gary Hendrix, Lorna Shin
kle, Mark Stickel and David H. Warren also contributed to the
project.9

References

[Gros86] Barbara Grosz, Douglas E. Appelt, Paul Martin, and
Fernando Pereira; TEAM: An Experiment in the De
sign of Transportable Natural Language Interfaces.
Artificial Intelligence{to appear)

[Gros82] Barbara Grosz, Norman Haas, Gary G. Hendrix,
Jerry Hobbs, Paul Martin, Robert Moore, Jane
Robinson, and Stan Rosenschein. DIALOGIC: A
Core Natural-Language Proce"ing S,I"em. Techni
cal Note 270, Artificial Intelligence Center, SRI In
ternational, Menlo Park, Califomia, November 1982.

[Hend77] Gary G. Hendrix. Human engineerin, (or applied
natural language processing. In Proc. of the Fifth
International Joint Conference on Artificial Intel
ligence, pages 183-191, Intemational Joint Confer
ences on Artificial Intelligence, Cambrid,e, Mu
sachusetts, August 1977.

[Mart83] Paul Martin, Douglas Appelt, and Femando Pereira.
Transportability and generality in a natural-Iansuap
interface system. In Alan Bundy, editor, Proe. of
the Eight International Joint Conferenc, on Artifi
cial Intelligence, pages 573-581, International Joint
Conferences on Artificial Intelligence, AUlUlt 1983.

[Moor79] Robert C. Moore. Handling Complez Querie. in a
Didributed Databa6e. Technical Note 170, Artifieial
Intelligence Center, SRI International, Menlo Park,
California, October 1979.

[Moor81] Robert C. Moore. Problems in logical form. In
Proc. 01 the 19th Annual Meeting 01 the A"ociation
lor Computational LinguidicI, Stanford, California,
1981.

[Robi82] Jane J. Robinson. Diagram: a grammar for dia
logues. Communication, 01 the ACM, 25(1):27-47,
1982.

liThe development of TEAM was supported by DARPA contract. NOOO39-
80·C·0645, NOOO39·83-C·OI09, and NOO039·80-C-0575j the National Library
of Medicine NIH grant LM03611j and NSF grant IST-8209346.

267

[Shie84] Stuart M. Shieber The design of a computer lan
guage for linguistic: information. In Proc. 01 Col
ingS", pages 362-366, Association for Computational
Linguisties, June 1984.

[Walt75] David Waltz. Natural-language access to a large data
base: an engineering approach. In Proc. 01 the Fourth
International Joint Conlerence on Artificial Intelli
gence, pages 868-872, International Conferences on
Artificial Intelligence, September 1975.

SUPERCOMPUTING ARENA

Parallel Computation

TRACK CHAIR: Prof. Kai Hwang
University of Southern California

High Performance Numerical Architectures

TRACK CHAIR: Dr. Cleve Moler
INTEL Scientific Computers

Multiprocessors

TRACK CHAIR: Prof. Daniel Siewiorek
Carnegie Mellon University

Optical Computing

TRACK CHAIR: Dr. C. Lee Giles
AFORS NE

Networks

TRACK CHAIR: Dr. Michael Willett
IBM Corporation

Parallel Processing of

a Knowledge-Based Vision System

D. I. Moldovan and C. I. Wu,

Department of Electrical Engineering -- Systems

University of Southern California

Los Angeles, CA 90089-0781

Abstract

A parallel processing algorithm and architecture

ror scene interpretation are presented in this paper.

Scene interpretation and in particular, object

dassification, is an important aspect of high level image

understanding. The algorithm for object classification

presented in this paper is based on comparing image

features with object models stored in a knowledge base

and computing confidence values for object models. The

algorithm is mapped into a multiprocessor system.

Simulation results for this parallel processing technique

are shown.

Index Terms: Symbolic processing, image

understanding, knowledge-based parallel processing.

1. Introduction

A vision system consists of a number of numeric

and symbolic algorithms aiming at understanding

images. Although tremendous effort has been put in the

image understanding field and many efficient algorithms

have been developed, many fundamental problems still

remain to be solved [Brad 82] [Wu 85]. Vision

algorithms span the entire complexity range from

simple purely numeric algorithms with small granularity

to highly complex symbolic algorithms with large

granularity for object classification [Neva 82] [Ball 82].

Historically, the focus of image understanding (IV) field

has been directed more toward low level image

processing [Dani 81] and consequently many parallel

CH2345-7/86/0000/0269$Ol.OO © 1986 IEEE
269

architectures have been proposed and built for these

applications [Duff 81]. High level IV uses the results

produced by image processing algorithms such as lines

or regions a.nd other features and through an inference

process produces scene interpretations. This part of the

vision system is more difficult and less explored than

low level image processing [Wu 85]. It was believed by

many that because of the symbolic nature of high level

vision algorithms, parallelism was very limited in high

level IV. In this paper we show that there is abundent

parallelism in algorithms for object classification. We

present a technique for scene analysis using the

knowledge base approach and show the mapping of this

algorithm into a parallel architecture.

A common technique used for knowledge

processing is to compare the information on hand with

a knowledge base. In the case of scene analysis the

features extracted by image processing algorithms are

constantly compared to known complex object models,

and when the match is satisfactory and global

consistency is achieved, the identity of image objects is

found.

This paper is organized as follows: in section 2

an algorithm for object classification is presented

followed by the description of the main processing

modules, in section 3 the mapping of this algorithm into

a multiprocessor system is shown, and in section 4 there

are simulation results indicating the feasibility and the

performance of this technique.

2. A Paradigm of Knowledge
Based Vision Systems

2.1 System Organization

In figure 2-1 a flowchart of a vision system is

shown [Binf 82]. The input consists of raw images

provided by sensory devices. The purpose of this system

is to obtain symbolic interpretations of images. The low

and medium level processing such as early processing,

segmentation, stereo, motion, occlusion, shading, etc.

are responsible for extracting visual primitives from the

original image such as regions, lines, and their

attributes such as color, texture, size, shape,

orientation, length, etc. Image interpretation is

performed by grouping the visual primitives in various

ways and attaching to them semantic labels under the

constraints imposed by the knowledge base. As a result

of this interpretation, object and scene descriptions are

created which are constantly verified against expected

object and scene models.

For our purpose the vision system from figure

2-1 may be partitioned into the following four main

blocks: low level expert, short term memory, knowledge

base, and high level expert. The low level expert

incorporates all the modules required to transform raw

images into intermediate symbolic representations. In

early image processing, the nature of processing is iconic

i.e. there is a direct relationship between physical
storage location and image pixels [Rose 83]. The short

term memory (STM) is the working memory of the

vision system. It keeps all the symbolic representations

made available by the low level expert and pr.ovides the
(.,.~ .

processing environment for higher . levels of

abstractions [Mold 8Sa].

. The knowledge base (KB), consisting of

declarative and procedural knowledge, contains problem

specific knowledge about the application domain. The

declarative part is a collection of model objects and

their relationships. Each model object is described by a

270

---------------~----, I LON LEVEL. EXPERT .-

L ___________________ _

~-~~ME~y------l
:. I

I
I
I
I
I
I

INTEGRATION
AND

fEATURE EXTRACTION Ie--of--------'

I I
I I L____________ _ ___ J

KNOWLEDGE BASE

Figure 2-1: Main modules of a knowledge
based vision system

frame and represents the classes of objects that are

expected to be encountered during the processing of

scenes. Model objects form an object hierarchy that

plays the role of the hierarchical classifier. An unknown

object is compared with each of the model objects and

is classified to be the best matching class if evidence is

sufficient. In this hierarchy, the scene object is the

most general class and subsumes all other object classes

in the image domain. The procedural part is linked to

the declarative part by means of active demons in the

frame structure and contains algorithms or production

rules for computing attribute values, structures, and

confidence scores. The high level expert (HLE)

performs object classification through reasoning. It

adaptively determines the appropriate levels of

description based on the amount of information

available. Once through the initial segmentation step,

an input image is represented as a group. of regions.

Each region is represented as a frame with its own slot

values for various region attributes such as area,
centroid, and primary and secondary axes. Each region

is initially classified as a scene object which is the most

generic object class in the model object hierarchy. As

the classification process proceeds, each region is further

hypothesized as subclasses of the established hypothesis.

Th,en evidence is collected to confirm or deny these

hypotheses. This cycle of hypothesis generation,

evidence collecting, and confirmation or denial of

hypothesis is repeated for each confirmed hypothesis

until each region is classified as a terminal objects class

of the object hierarchy, or no further subclassification. is

possible becaues of low confidence for the current

classification. Then, as a second phase of scene

analysis, the system checks for global hypothesis

consistency. An object's class hypothesis is represented

as an instance of the class model. Therefore, generation

of a hypothesis corresponds to instantiation of the class

model. The instantiation can be done in either a data

driven or a model driven manner. In the data driven

case, hypotheses are generated in an attempt to

subclassify 'established' objects into their subclasses. In

the model driven case, hypotheses are generated from

the need to find new evidence for the existing

hypotheses.

2.2 Classification Algorithm

The object classification algorithm can be

summarized as the following six-step procedure where

each step consists of one or more routines:

Input: frame representation of image
and frame representation of
knowledge base;

Output: symbolic description of each
image region;

Procedure:

Step 1: Hypothesis screener
Perform a preliminary hypothesiS
check for each hypothesiS to
eliminate the apparently ridiculous
image regions for each hypothesis;

Step 2: Evidence collection
For each hypothesis perform specific
image understanding algorithms to
fill slot possibilities required to
evaluate the confidence values;

271

Step 3: Establishment check
Check if sufficient supporting evidenc
exists for further classification usin
a more specific hypothesis;

Step 4: Local confidence value evaluation
Local confidence value is computed by
optimizing the combination of slot
possibilities;

Step 6: Subclassification
Repeat recursively the classification
algorithm for all the subclasses of
this hypothesis;

Step 6: Global confidence value computation
Compute the final confidence value for
this hypothesis based on the local
confidence value and the global confid
values of its parent and children.

As an example, consider the classification of

objects in the scene shown in figure 2-2. For processing

this scene we use the knowledge base from figure 2-3.

It is assumed that the image has been segmented into

regions as shown in figure 2-4. The classification

proceeds by applying the above procedure to each

region. As a result of this process, each region is

associated with a most likely frame from the knowledge

base, and in the process it inherits the properties of all

parent frames in the knowledge base hierarchy. For

example, the path in the knowledge base most suitable

to region 0 is 'scene-object', 'background', 'wood

object', and 'door'. In figure 2-5 are shown the

confidence values [Shor 76] of all the frames in the

model corresponding to region o. The four numbers

rep~esent local measure of belief LMB, local measure of

disbelief LMD, global measure of belief GMB, and

global measure of disbelief GMD. The global

confidence values (GCV) are computed as difference

between the global measure of belief minus the global

measure of disbelief.

GCV = GMB - GMD

The global measure of belief and disbelief are

computed from local measure of belief and disbelief

Figure 2-2: An example of scene

according to the formulas:

={
LMB.. if this· is' a terminal node

GMB
~ e GMB(its children). otherwise

=&
LMD. if this· is a· root node

GMD

tLMD G> GUO (i ts parent). otherwise

where' % S 1 = % + 1 - %.1.

The optimal, path was selected by picking the

model nodes with the largest global confidence value.
The calculation of local confidence' values is' usually

done in the short term memory by some vision

algorithms. In this paper we do not discuss the

processing performed.

'Omeans baseline objects in the knowledge,base

Parallelism is achieved by simultaneous

processing of many regions. After aU the regions have

been classified as described above, a global consistency

check is necessary. If ther-e are' no conflicts the

classification obtained holds, but if there are

incompatibilities then more features are. extracted from

the image to help improve the decision process.

3. Mapping into hardware

Since the type of algorithms in various stages of

a vision system varies· considerable, no single parallel

architecture can perform efficiently across the entire

spectrum of vision algorithms. The architecture of a

parallel· processing system for the vision system

described in the previous section is shown in figure &-1.

It consists of an intelligent memory [Fost 76], semantic

network array processor (SNAP) [Mold 85b], a

multiprocessor, and host computer. The host computer

is mainly used to manage the' vision tasks. The

multiprocessor is a mesh-connected array of general

purpose microprocessors. The SNAP consists of a square

array of identical processing elements interconnected

both locally and globally and having associative. array

capabilities; The multiprocessor acts as a, controller'·for

the. SNAP array.· The intelligent memory module can be

accessed directly by the other three modules. The

Figure 2..;3: Model object hierarchy for ,office scen-e

272

4

o

10

Figure 2-4: Segmented scene

intelligent memory consists of large number of

processing cells with associative processing capabilities.

The mapping of the vision system from figure 2-1 into

this architecture is· as fallows: the low -level expert is

assigned to the intelligent memory [Rose 83]; the short

term memory is assigned to the semantic network array

processor [Dixi 84] [Mold 85a]; the high level expert and

the knowledge base is distributed over the

multiprocessor system. The SNAP and the

multiprocessor perform symbolic functions while the

intelligent memory performs most of the numeric

functions. In this paper we are interested only in the

operation of the multiprocessor system. Simulation

results are described in the next section.

SEMANTIC
NETWORK
ARRAY
PROCESSOR

IIL...----I"I INTELLIGENT
MEMORY

Figure .3-1: Vision Hardware System Architecture

4. Simulation Environment
and Results

In this section we describe some simulation

results obtained by implementing the knowledge based

vision system on.a multiprocessor. Through this

simulat~on we want to demonstrate the feasibility of the

Figure 2-6: Confidence value for region 0 in figure 2-4

273

approach and to measure the speedup factor offered by

the parallel scheme over the sequential processing. For

this purpose we developed a program in Lisp [Gold 85].

This program simulates the operation of a four-node

multiprocessor with mesh interconnection· network. A

system clock is used to coordinate all timing events. A

time unit of system clock is defined as the time required

to perform a simple arithmetic operation and transmit

data between two adjacent processors. In each time unit

it is determined if a processor is free or busy; if it is free

and its queue contains a process then the processor is

loaded, if busy it is determined what operation to be

performed. A process consists of operatiolls to

instantiate a frame.

The inputs to the simulator are : (1) frame

description of knowledge base vision system, (2) frame

description of segmented scene, and (3) allocation policy

of frames to processors. Three frame structures are

used in our vision system: region frame, model frame

and instance frame. The region frame is used to hold

the spatial scene knowledge directly related with the

image. The model frame contains domain knowledge

and control knowledge as discussed before. The

instance frame is the result of instantiating model
frame a~d serves as the hypothesis of the region frame.

In other words, the instance frame is the bridge between

region frame and model frame. A sample structure of

these three frames is shown in figure 4-1.

In its present form the simulator generates: (1)

the final interpretation of the scene, (2) the parallel

processing time and the sequential processing time, and

(3) the utilization and load factors of each processor.

Simulation Example:

We simulated the interpretation of the scene

shown in figure 2-2. For this purpose the knowledge

base consisting of 20 frames was constructed as shown

in figure 2-3. These frames were allocated to the four

simulation processors according to three different

allocation policies as indicated in table 4-1. In scheme

274

(a) no parent and child or sibling frames are allocated

to the same processor. In scheme (b) a totally random

allocation was selected maintaining however a balanced

load between processors. In scheme (c) an opposite

policy from (a) was selected, in other words, as many

related frames as possible were assigned to the same

processor.

The simulator interpretes the scene by following

the technique described in section 2. Each region is

hypothesized on the hierarchical knowledge base and

measure of belief and disbelief are computed for each

instance. In step 1 of figure· 4-2 is shown the sequence of

instantiations for one region (region 0), and the belief

and disbelief factors for each instance. The four
numbers are in the following order: local measure of

belief, local measure of disbelief, global measure of

belief and global measure of disbelief. Based on the

computed confidence value, the simulator computes the

optimal path for each region, that is the path with the

largest global confidence value. This is shown in step 2

of figure 4-2.

SCHDIE PROCESSOR
Pl P2 P3 P4 . 6. 10. 12. 19 2. 8. e. 14; 18 3. 5. 11. 17. 20 4. 7. 13. 15. 16

b .3.8. 13. 16 4. 5. 9. 12. 17 2. 6. 14. 15. 18 7. 10. 11. 19. 20

c 2. 4. 5. 8. 10 3. 6. 7. 17 9. 11. 12. 13. 14.
15

16. 18. 19. 20

1 scene Object 11 bookcase
2 foreground 12 book
3 background 13 telephone
4 furniture 14 vase
6 office supply 16 trash can
6 wood object 16 picture
7 cement object 17 door
8 desk 18 wall
9 chair 19 ceiling
0 cabinet 20 floor

Table 4-1: Allocation scehemes of
knowledge base frames to
processors

defstruct image-region
name
mbr
bit-mask
hypothesis
snap-pos
attributes
relation

designation of this region
minimum bounding rectangular
binary mask
symbolic description
location of SNAP cell
list of (attribute value) pa
relationship between regions

(a) Region frame

defstruct model
name
location
superclass
subclasses
screener
slot-frame

designation of object model
address of MMS PE
parent of object model
children of object model
hypothesis screener
a list of routines to
collect slot evidences
routine to check establishme established

optimization; routines for slot optimizati
action final phase of control

information

(b) Model frame
defstruct instance

name designation of this instance
location ; address of SNAP cell
parent
children
slot-frame ; list of slot evidences
confidence ; confidence value of this

; instance

(c) Instance frame

Figure 4-1: Lisp definition of three frame structures

STEt:> 'I
******* Result. for region '0' *******

Instances --- SCENE-OBJECT (1, 0 , 1.0 , 0)

STEP 2:

FOREGROUND (0.~, 0.2 , 9.93904F-01 , 0.2)
FURNITURE (0.3, 0.1 , 0.9559 ; 0.28)
CABINET (0.4, 0.4 , 0.4 , 0.568)
BOOKCASE (0.3 I 0.5 I 0.3 ; 0.64)
CHAIR (0.5, 0.2 , 0.5 ; 0.424)
DESK (0.7 I 0.2 ; 0.7 I 0.424)
OFFICE-SUPPLY (0.4 I 0.2 I 0.72352 I 0.36)
BOOK (0.2, 0.6 I 0.2 I 0.744)
TELEPHONE (0.1; 0.7 I 0.1 10.808)
TRASH-CAN (0.2; 0.6 , 0.2 I 0.744)
VASE (0.2 I 0. ~ , 0.2 , 0. 68) .
BACKGROUND (0.3 10.1 ; 9.38068F-01 ; 0.1)
WOOD-OBJECT (0.6,0.1; 0.808 , 0.19)
DOOR (0.4; 0.1 ; 0.4 10.271)
PICTURE (0.2; 0.5 ; 0.2 ; 0.595)
CEMENT-OBJECT (0.2 I 0.7 , 0.5392 ; 0.73)
CEILING (0.2; 0.5 ; 0.2 ; 0.865)
FLOOR (0.2; 0.6 I 0.2 ; 0.892)
WALL (0.1 I 0.3 10.1 10.811)

******* Optimal path for region '0' *******

------) SCENE-OBJECT BACKGROUND WOOD-OBJECT DOOR

Figure 4-2: Sample of simulator printout
result

275

The parallel processing time and the speedup

factor obtained are summarized in table 4-2. The

parallel processing time includes the parallel

computation time as well as .the interprocessor

communication time. Preliminary simulations for more

than four processors indicate that the speedup factor

increases linearly as the number of processors increases.

The processor utilization time is deCined here. as

the ratio between the -busy time- over the parallel

processing time. The utilization factors obtained for this

example under the three allocation schemes considered

are shown in table 4-3.

ALLOCATION
SCHEME a b c sequentfal

PROCESSlIlG
TIME 615 588 723 1637

SPEEDUP
FACTOR 2.66 2.78 2.26 1

Table 4-2: Parallel processing time for 4
processors using different
allocation schemes

ALLOCATION UTILIZATION FACTOR
SCH9IE PI P2 . P3 P4

it 0.53 0.65 0.70 0.72

b 0.55 0.76 0.71 0.70

c 0.64 0.50 0.64 0.43

Table 4-3: Utilization factors

6. Conclusion

In this paper, a knowledge-based vision system

was introduced and the emphasis was put on the

parallel processing of object classification problem. The

structure of the vision system proposed allows the

extraction of some symbolic information from iconic

domain at an early stage, and then provides the

capability of performing complex symbolic processing in

symbolic domain. Oftenly, because of the lack of a

symbolic processor, in some IV systems many symbolic

processing tasks are done in iconic domain. The

proposed hierarchical architecture from section 3 IS

capable of performing a broad range of algorithms in

image understanding. This system consists of an

intelligent memory, a high level symbolic processor, a

multiprocessor and a host computer. A possible

mapping of a knowledge-based vision system into this

architecture was proposed. We have also evaluated a

portion of the architecture, the multiprocessor, using a

software simulator. The results show the feasibility of

parallel processing of a knowledge-based vision system.

Work is in pr?gress to simulate the operation of all the

modules in the hierarchical architecture from figure 3-1

by implementing several algorithms from the vision

system in figure 2-1.

References

[Ball 82]

[Binf 82]

[Brad 82]

[Dani 81]

[Dixi 84]

Ballard, D. H. and Brown, C. M.
Computer vision.
Prentice Hall, 1982.

Binford, T.
Survey of Model-Based Image Analysis

Systems.
The International Journal of Robotics

Research 1(1):18-64, Spring, 1982.

Brady, M.
Computational Approaches to Image

Understanding.
Computing Surveys 14(1):3-71, March,

1982.

Danielsson, P. and Levialdi, S.
Computer Architectures for Pictorial

Information Systems.
IEEE Computer 14(11):53-67,

November, 1981.

Dixit, V. and Moldovan, D. 1.
Semantic Network Array Processor

and Its Application to Image
Understanding.

In Proceedings of Image
Understanding Workshop, pages
65-71. DARPA, Octobor, 1984.

276

[Duff 81]

[Fost 76]

[Gold 85]

[Mold 85a]

[Mold 85b]

[Neva 82]

[Rose 83]

[Shor 76]

[Wu85]

Duff, M. J. B. and Levialdi, S.
Languages and Architectures for

Image Processing.
Academic Press, London, 1981.

Foster, C.
Content Addressable Parallel

Processor.
Van Nostrand Reinhold, New York,

1976.

Gold Hill Computers.
Golden Common Lisp
163 Harvard St., Cambridge, MA

02139, 1985.

Moldovan, D.l. et al.
Parallel Processing of Iconic to

Symbolic Transformation of
Images.

In Proceedings of Computer Vision
and Pattern Recognition. IEEE
Computer Society, June, 1985.

Moldovan, D.l. and Tung, Y-W.
SNAP: A VLSI Architecture for

Artificial Intelligence Processing.
Journal of Parallel and Distributed

Computing, May, 1985.

Nevatia, R.
Machine Perception.
Prentice Hall, 1982.

Rosenfeld, A.
Parallel Image Processing Using

Cellular Arrays.
IEEE Computer 16(1):14-20, January,

1983.

Shortliffe, E.
Computer-Based Medical

Consultations: MYCIN.
American Elsevier, New York, 1976.

Wu, C.l.
Integrated Hardware Structures for

Knowledge-base Vision System
1985.
PhD Thesis Proposal, USC, April.

ACKNOWLEDGMENT

This research was supported by NSF Grant ECS -
8307258, JSEP Constract No. F49620-85-c0071 and
DARPA Contract No. F-33615-82-k-1786.

A FAULT TOLERANT, BIT-PARALLEL, CELLULAR ARRAY PROCESSOR

Steven G. Morton

Staff Scientist, Central Research
ITT Advanced Technology Center

One Research Drive, Shelton, Connecticut 06484

ABSTRACT

We explore the question, "What are the
effects of being able to build large, fault
tolerant processor chips?" on a particular
architecture, the SIMD, massively parallel,
cellular array processor. The potential for high
performance processor chips leads to a projected
baseline configuration, a "personal
supercomputer", that could be a coprocessor on a
single plug-in board for a PC, that would provide
peak performance of over 100 MFLOPS at 32-bits,
or over 2,000 MIPS at 16-bits. The potential for
low cost processor chips drives one to reduce
costs throughout the system, including the
extensive use of inexpensive DRAM, and lead to
projections of price/performance with more than
an order of magnitude improvement over
alternative designs.

INTRODUCTION

The ITT Cellular Array Processor (CAP)
architecture is characterized by its
single-instruction stream, multiple-data stream
(SIMD) design using bit-parallel, fault-tolerant,
large area integration "array chips" for its
parallel execution unit, and by its extensive use
of low cost DRAM. In this paper we focus on the
projected second generation, baseline design that
would be a coprocessor occupying a single card
slot in a PC. It would provide peak performance
of over 100 MFLOPS at 32-bits or over 2,000 MIPS
at 16-bits, as configured dynamically by software
at runtime. A much lower performance, much
larger, first generation prototype model has been
demonstrated.

In thi~ paper we emphasize the key issue of
processor chip fault tolerance that we feel is
the key to achieving the most compact, highest
performance, lowest cost, most reliable, personal
supercomputer for the image processing,
scientific, and engineering marketplaces. The
applications are characterized by matrix algebra,
with either global operations, such as matrix
multiply, for engineering and scientific
processing, or many local operations, such as
correlation windows, for image processing.

We particularly want to point out that we
mean "personal supercomputer" in the sense of a
significant fraction of a CRAY-I or a Goodyear
MPP on a desk top, as opposed to merely tens of
MIPS or MFLOPS, as is getting to be the norm.

We have published several articles on various
other aspects of CAP and its development, so we
will only summarize that material in this paper.
The instruction set, prototype model, and project

CH2345-7j86jOOOOj0277$Ol.OO© 1986 IEEE
277

evolution were covered in [1]. Details of the key
prototype chip, array chip I, werec()vered in-I~
- 5]. The logic simulation tools for chip
development were covered-in [6- - 7]. An
application to image processing was given in [8].

This paper presents the projected second
generation array chip and coprocessor design as
viewed in early 1986. The technology continues to
evolve in response to design and application
experience. However, the underlying fault
tolerant principles and their importance have not
changed.

First, we compare well known cellular array
processors to ours. Then we review our
architecture, and explore the many effects of
processor chip fault tolerance; fault tolerance
that was a logical consequence of the tightly
coupled, highly regular design, of a cellular
array processor. Finally, we project where the
next round of technology could take us.

COMPARATIVE CELLULAR ARRAY PROCESSORS

There are many parallel processors, but only
a few cellular array processors. 9he Goodyear
MPP (Massively Parallel Processor~o' the ICL
DAP (Distributed Array Processor) 'ind the
Thinking Machines Connection Machine l , are the
most often mentioned machines in this class. The
NCR GAPP (Geome12ic Arithmetic Parallel
Processor) chip (not a system) is unique in
its diverse commercial application. Although the
(ITT) CAP is similar to these machines in many
ways, it also differs from them in these
respects:

1. The CAP stores and processes the data
stream differently. The other machines have
I-bit processor cells and are designed to operate
in a bit-serial, word-parallel fashion. They
store each word bit by bit through a succession
of memory locations and increase word size in
tiT3' The second generation CAP, like the Illiac
IV ,has 16-bit processor cells and operates
in a bit-parallel, word-parallel manner and
increases word size in space, rather than in
time. The first generation CAP, with I-bit
cells, is used as though it has 16-bit cells.

2. The CAP's parallel execution unit is fault
tolerant at the level of a single cell. The MPP
has limited fault tolerance, having four spare
columns beyond is 128 minimum, but an entire
column of 128 processors, not just one bad
element, must be switched.

3. The CAP is a parallel reduced instruction
set computer. Its assembly level programming
model looks like a collection of conventional

microprocessors working in lockstep. The MPP,
DAP, and GAPP have single-bit oriented, even
micro-, . instruction sets.

4. The CAP interconnection architecture is an
extension of other cellular array processors'
nearest neighbor, except for the Connection
Machine's hypercube. We use an x-y matrix of
array chips II-M's, but since each array chip-has
16 16-bit data processors, the x-dimension is
nearest neighbor in 1 2-clock cycle, but the
y-dimension requires 16 2-clock cycles to be
nearest neighbor. This imbalance increases our
packing density, reduces our pin count, and is
coupled to our fault tolerant design, which
enables defective elements to vanish from a
one-dimensional array.

·5. Due to both improved technology and
fault-tolerant design, the second generation CAP
would have 16 16-bit processors and large amounts
(32+K bytes) of RAM on a single chip. The other
machines integrate fewer processor bits with much
smaller amounts of memory on a chip. This
combination of large RAM and logic on a single
chip increases the difficulty of chip design,
both technically and administratively, but
tremendously improves the price/performance and
reduces the size of the system.

6. The CAP parallel execution unit has three
levels of memory hierarchy, ranging from working
registers to cache memory to external memory.
The other machines have one level (GAPP and
Connection Machine), or two levels (DAP and MPP),
although the MPP also has a central, staging
memory, as a global interconnect.

7. The CAP parallel execution unit has
distributed memory addressing. The cache and
external memory of each array chip have their
address generated by the array chip. The other
machines have only global addressing due to their
single-bit architecture, making them prone to
single-point failures in the address logic.

SCALAR EXECUTION UNIT

AND CONTROLLER

8. For a given total number of processor
bits~ th: CAP is better suited to engineering
appllcatlons than are the other machines, since
the number of processors it provides is a better
match to the dimensionality of many problems.
Where the DAP would handle 4096 I-bit variables
in bit-serial fashion, requiring enormous
matrices for efficient use of the machine, a CAP
with the same total number of processor bits
would handle 128 32-bit variables in bit-parallel
fashion. This provides efficient operation on
much smaller matrices, as well as providing good
processor utilization on more sizes of large
matrices.

9. The CAP would have integrated, concurrent
I/O so that data acquisition and computation may
occur simultaneously. Multiple buffers would be
provided in each processor cell so that interrupt
service routines can provide direct memory access
to the cache or external memory.

10. The MPP and Connection3Machine processor
cores occupy a volume over 1 m . The CAP would
occupy less that 1% of that.

11. The primary application areas of the MPP,
DAP, GAPP, and CAP are image processing, although
t~e CAP targets engineering and scientific
processing as well. The Connection Machine
targets artificial intelligence - image
understanding.

CAP ARCH ITECTURE

OVERVIEW

The CAP employs a highly regular design based
on an SIMD, cellular array architecture. A first
generation prototype has been built from large
(the largest logic chips in the U. S.), custom
designed, CMOS chips that are feasible due to
their fault tolerant design. A second generation
design has been defined. The dominant chip, the

PARALLEL EXECUTION UNIT

HIGH-SPED!

L-----'-i--t-.l------+--+--4---~-I-..!-+___i_ I/O

FIGURE 1 - PERSONAL SUPERCOMPUTER BLOCK DIAGRAM

278

array chip, has a simple, regular design that
allows all processor elements, including a few
spares, to be configured by software. In this
way, words of varying size may be formed by
cooperating processors, manufacturing defects may
be overcome, and lifetime failures may be
corrected.

A block diagram of the baseline, second
generation personal supercomputer is shown in
Figure 1. The scalar memory and scalar processor
form the scalar execution unit (SEU). Scalar
variables and all instructions are stored in the
32-bit wide scalar memory. A 32-bit wide scalar
processor handles global address calculations,
loop counts, and other scalar variables.

The parallel execution unit (PEU) contains a
4 x 4 matrix of array chip II-M's to provide 256
16-bit data processors, '128 32-bit processors, or
64 64-bit processors as configured by software at
runtime. The array chips may be interconnected in
many ways, but we will assume that they form 4
rows and 4 columns, with spiral connections
between rows and between columns to form a
modified nearest neighbor connection. The array
may also be viewed one dimensionally as a single
row.

Each array chip II-M in the PEU has 16 active
16-bit processors for data, 2 active 16-bit
processors for address, 2 spare processors, plus
on-chip RAM. The assignment of a processor, or
cell, for address computation or data computation
is made by configuration software at runtime. A
16-bit word is formed from a single cell.
Thirty-two bit words are formed from a pair of
adjacent good cells, possibly with a defective
cell in the middle. Likewise, 64-bit words are
formed from four good cells with intervening
defective cells.

The on-chip RAM, nominally lKW per processor,
is a program - controlled cache; it is addressed
by the 10 lsbs of the pair of address processors.
The external DRAM, nominally 512KB per array
chip, is for program-cantrall led page roll-in and
roll-out of the cache, and is controlled by the
pair of address processors, and may be viewed as
a local staging memory.

The controller (C) provides instruction fetch
and decode and drives the SEU and the PEU,
providing a reduced instruction set for scalar
and parallel processing. Operation of the SEU and
PEU are mutually exclusive in order to simplify
the design. Few applications seem to benefit
significantly from their concurrentcy, and
providing it is difficult.

We constructed a mechanical mockup of the CAP
personal supercomputer to help us visualize the
effect of surface mount technology. See Figure 2.
The photograph was taken using a mirror so that
components on both sides of the board may be
seen. The two rows of eight large chips on the
upper surface represent array chip II-M's. A
combination scalar execution unit and controller
(SEU/C) chip would also be on the upper surface.
Four DRAM's external to each array chip would be
on the lower surface, immediately behind the
array chip.

The near-term technology projections for this
second generation configuration design are shown
in Table 1. A comparison of the first and second
generation designs is given in Table 2.

279

Near-Term Technology Projections
for a Fault Tolerant CAP

Table 1

Technology Requirements
1.25 um double metal CMOS
256K DRAM VLSI layout
1M DRAM chips
5x wafer stepper
Double sided surface mount

Architecture
Highly Parallel Cellular Array
SIMD - Parallel RISC
12.5 MHz base clock rate
25 MHz repeat step clock rate
Modified nearest-neighbor interconnections

Scalar Execution Unit (SEU)
Performance (Peak)

12.5 MIPS at 32 bits
6 MFLOPS at 32 bits

Operation of PEU and SEU are mutually
exclusive

Parallel Execution Unit (PEU)
Performance (Peak)

1/8 - 1/2 Cray Research Cray-l
20+ MFLOPS at 64 bits
100+ MFLOPS at 32 bits

1/3 Goodyear MPP
1,000+ MIPS at 32 bits
2,000+ MIPS at 16 bits

100 MB/S concurrent external I/O
bandwidth

Dynamic Configurations
256 16-bit data processors
128 32-bit data processors
64 64-bit data processors

Memory
8KB distributed working registers
512KB distributed cache memory
8MB distributed external memory

Physical Size and Power
Single board - 1" x 5" x 14"
50 watts

FIGURE 2

MECHANICAL MOCKUP OF PERSONAL SUPERCOMPUTER

Comparison of First and Second Generation CAPs

1. Status
2. Word Sizes Supported

SEU
PEU

3. SEU/C Construction

Table 2

First

Demo 1985

32-bits
16-bits
TTL MSI

Second

paper design

32-bits
16-, 32-, 64-bits
custom chip (proposed)

4. PEU Construction
Data Processors
Address Processors

5. Peak PEU Performance

16 x 16-bits
16 x 16-bits

256 x I6-bits
16 x 32-bits

Fixed point
Floating point

24 MIPS/16-bits
none

2,000 MIPS/16-bits
100 MFLOPS/32-bits

6. Array Chip
Type
Status
Processors
Spare processors
Registers per processor
RAM per processor

I
operational
20 x I-bit
4
16
none

II-M
paper design
20 x 16-bits
2
16
1KW (nominal)

7. PEU Configuration
8. Instruction Set

1 column, 16 rows
Fixed point

64 columns, 4 rows
Fixed and floating

'9. Clock Rate
10.Size

Parallel RISC
1. 5 MHz

point Parallel RISC
12.5/25 MHz

11.Power DisSipation
514" x 14" boards
250 watts

1 5" x 14" board
50' watts (est)

SYSTEM PERFORMANCE ESTIMATES

We calculate our architecture's maximum
performance by assuming that all active parallel
data processors are busy all of the time doing
the quickest operation. Since this ~ondition
cannot occur indefinitely, due to the need for
scalar operations, which are mutually exclusive
with parallel operations, as well as iterative
fixed-point operati.ons and data-dependent
masking, we derate the -maximum to arrive at the
peak values reported herein. We use a greater
derating factor for fixed pOint than for floating
'point because the latter are inherently iterative
but many fixed point are not.

For fixed-point operations:
256 16-bit processors x 12;5 MHz = 3,200 MIPS

Derating by 1/3 gives 2,000 MIPS
128 32-bitprocessors x 12.5 MHz = 1,600 MIPS

Derating, by 1/3 gives 1,000 MIPS

For floating-point operations:
128 32-bit processors @ 1 MFLOP = 128 MFLOPS

Derating by 1/6 gives 100 MFLOPS
64 64,-bH processors @ ~375 MFLOP= 24 MFLOPS

Derating by 1/6 gives 20 MFLOPS

Performance estimates for 16-bit operations
on a,,256 by 256 data base are:

256 concurrent, 256-point complex FFTs -
7.5mS, (rate of 1 per 30uS)

matrix transpose - 10mS
2-D FFT (real input) - 22mS
5 x'5 correlation -,2.5mS

ARRAY CHIP II-M

The basic idea for this chip is that one

280

could take a DRAM, keep its common row decoder,
strip off its column decoders, and directly
couple a 256-bit wide bus to 16 16-bit
processors, all on the same chip. Our fault
tolerant design enables us to provide spare
16-bit processors and to widen the DRAM
correspondingly in order to provide excellent
chip yield, and thus keep the cost low. We would
thus couple two fault tolerant designs, memory
with spare rows and columns, and logic with ,spare
processors.

Note, however, that there is common
addressing for all of the memory on a chip. The
address decoder is much too large to provide for
each processor, plus it would be hard to have
variable word sizes with matching memory
address i ng. Di fferent .ch ips may, however, may
have different addresses. This is a compromise
between the Goodyear MPP and the ICL DAP, where
there is a single address for all of memory,
since the memories are only one-bit wide, and
loosely coupled microprocessnrs, where each
processor can freely address its own ,memory.
However, we do provide, at the expense of lowered
efficiency, that processors on one chip may
sequentially, independently, address the memory,
as is valuable for matrix transpose operations.

,Figure 3 shows the array chip II-M block
diagram. We assume at least 256K bits of usable
(320K bits total) on-chip 'DRAM are provided. The
chip's key elements are the 20 (18 plus 2 spares)
16-bit processors, or logic cells, each of which
is coupled toa 1K-word (or more) memory cell.
All of the memory cells are addressed in parallel
by the 'row decoder pl us 'di str,i buted group
(1-of-4) decoders. The ,DRAM is used as a data
cache and is program controlled.

T£'T~_m<RROA

"'-00<9. a>m<oL 0----(>---
F'OWf:AO .,

FIGURE 3

ARRAY CHIP II-M BLOCK DIAGRAM

We est i mate. that the array ch i p I I -M/256K
would contain 600,000 transistors, 2/3 of them in
DRAM, and would have a die size of 500 x 600 mils
in 1.25um double-metal CMOS. Later versions
presumably would have a larger DRAM and thus
substantially more (1,000,000+) transistors.
While the typical process for a 256K DRAM is
1.5um, double poly, single-metal, we would use
1.25um and double-metal for the benefit of the
logic cell s.

The target clock rate is 12.5 MHz for a
32-bit, register-to-register ADD over 32 bits
(two good cells with one bad in between).
Iterative operations such as 2-bit multiply would
use a 25 MHz clock. Note that we do word-serial
arithmatic for multiply, divide and floating
point operations, as explained later~

All memory cells simultaneously provide a
word to their respective processor for a. net
transfer of 256 bits. In a conventional DRAM,
many bits are fetched but only a few are output.
This is terribly inefficient; the design of
Video DRAMs recognizes this inefficiency. This
combination of memory. and logic on a single chip
provides an enormous reduction in the number of
chips and' pins required to implement a system.

Manufacturing data, particularly the location
of defects, would be stored in the INIT/PROM
block at the time of factory testing. This data
would be read by the system controller from each
array chip II-M in turn when the system is turned
on. Since the PEU is "defective", presumably
having 1 or 2 bad cells per array chip~ it must
be "repaired"; the array chips do not repair
themselves. Each array chip may be selected
individually by an external decoder driving its
chip select pin, and each cell maybe se.lected by
its physical address (0-19) in an array chip.
Each cell in each array chip is turned off, to
become invisible, or is set into the desired word
configuration. The application may then refer to
cells by their virtual address, 0-15, for.data
movement, independent of the physical locations
of the defects. The. configuration may also be
changed as needed, such as following' a diagnostic
program that locates newly failed cells.

LOGIC CELL

The basic structure is a 16-bit slice, where

281

in one cycle two operands are read from the
multiport RAM (MPR), operated upon by the ALU and
shift logic, and returned to the multiport RAM.
The microinstruction set of array chip II-M (a
"vector bit-slice" chip) resembles that of a
collection of 64 AMD 2903 4-bit slice chips, plus
memories and address logic. Register - to -
register boolean operations are done in BOnS.
Iterative multiply, divide, and floating point
operations are done in a 40ns cycle. The logic
cell block diagram is shown in Figure 4.

The path logic contains the mechanism for
hiding defective cells, for connecting cells
within a chip to form words longer than 16 bits,
and for performing functions such as shift. and
rotate. A defective cell is bypassed, with data
flowing over it as though it were nat there.
Extensive processor enable, or mask logic,
controlling storage in both a logic and its
memory cell, is also provided.

Words are configured by software at runtime
by initializing the "configuration masks" in each
logic cell. These masks are stored in the
processor status word, along with the virtual
cell ID, and control the flow of data within and
between cells. The basic states of these masks
are:

O. Inactive
I. 16-bit data
2. lsbs of 32-bit data
3. msbs of 32-bit data
4. lsbs of 32~bit address
5. msbs of 32-bit address

We have additional states to handle the
assignment of a 16-bit cell to the 32-bit common
bus, and to control the movement of data among
processors.

PalhL Palh R

Enable L _i---~~""l---L..-_ Enable R

I Bus

FIGURE 4

LOGIC CELL BLOCK DIAGRAM

MEMORY CELL

One memory cell, containing 2K bytes of
storage, is provided for each logic cell. No
provision is made for interconnection between one
memory cell and other logic cells due to the
complexity of interconnect that would arise. The
memory cells share a common row decoder, as is
found in ordinary DRAM designs. The two-bit
group select from each logic cell selects
one-of-four I7~bit groups (I6-bits of data +
I-bit of parity) within a 256-row by 68-column
memory cell. Spare rows, common to all cells,
and a spare column per cell, improve the
manufacturing yield. See Figure 5.

Although we assume the use of DRAM in this
paper, the choice of DRAM or SRAM is based upon
the availability of RAM technology to the design
team, and the level of concern over soft errors.
The general thought is that since no amount of
memory is ever enough, the 4x (or higher for
trench capacitors) density of DRAM over SRAM
makes DRAM preferable.

a.""," ----+--+1

......
l-BIT

C<LLS

FIGURE 5

MEMORY CELL BLOCK DIAGRAM

PROGRAMMING MODEL

Unlike many array processors tnat are
programmed only by microcode and are used to
implement a library of Fortran-callable
subroutines by a host, the CAP would run entire
applications, written in assembly or high level
language, often on live data. This would be
possible because the CAP uses a simple, highly
efficient, register-based, load/store
architecture with deferred loads and jumps. The
design of the instructi~n set is strongly
influenced by the RISC - reduced instruction
set computer - philosophy. Our set contains only
33 basic instructions, including the load, store,
arithmetic, logic, shift and program control.
Instructions for configuration, scientific
computation and SIMD support, such as
interprocessor communication, are also provided.

From the system point of view, the programmer
will begin a task on the host. The host would
spawn a task that invokes a task on the CAP. The
task on the CAP may be arbitrarily complex,
accessing dedicated peripherals or communicating
with the host operating system for file and user
access.

282

Figure 6 shows a simplified programming model
for the CAP. Each processor has sixteen
registers, and each PEU processor has a local
memory. All data processors have processor
status words, and the PEU data processors have
enabling masks (we call them vector if ... else
stacks - VIES). Notice the strong similarity to
the programming models for ordinary, SISD,
machines. This is in sharp contrast to today's
supercomputers and array processors that have
radically different programming models compared
to SISD machines.

One easy way to visualize the CAP is as a
collection of conventional SISD processors, each
operating on its own data. The processors
operate in lockstep and pass data to the left,
right, up and down, to communicate in an
organized fashion. Multiple concurrent FFTs or
even recursive filters can be readily
implemented. Fewer FFTs, each involving multiple
processors, may also be done but with less
efficiency. Implementing a perfect shuffle
network on a fault tolerant grid is a problem
that we have not solved .

Scalar Execution Unit
and Controller Parallel Execution Unit

C)[::::::JQO
1 0 L:II::J

c:;::Jo-PSW
CJ+VIES

o

FIGURE 6

SIMPLIFIED PROGRAMMING MODEL

FAULT TOLERANCE IN THE CAP DESIGN

Array
Chip
II-M
#0

Array
Chip
II-M
15

We recognized that the highly regular
architecture of the parallel portion of a SIMD
cellular array processor provides a design that
is well suited to a fault tolerant design. (This
realization occurred to us when our original chip
design became too big to build any other way.)
Just as DRAM's have employed spare elements for
years, selected at the time of manufacture by a
laser, our array chips provide a few spare
elements selected at runtime by software. These

spare elements may compensate not only for chip
birth defects (from time of manufacture), but
lifetime defects (wear out) as well, and are tied
to our variable word size design.

Unfortunately, we have not found an efficient
solution to the problem of fault tolerance in the
common logic. Triple modular redundancy is too
expensive for our tastes. Any failure in the
scalar execution unit, controller, the power and
clock distribution system, and the
interconnections between chips will cause the
failure of the system. We considered using error
correcting codes on the microinstruction bus and
data paths, but felt it was too much trouble.
Furthermore, we have not found an efficient
solution to detecting faults in the parallel
execution unit other than running diagnostic$.
What we have done, however, is to use fault
tolerance to reduce the cost of the largest
portion of the system.

Having a few spare elements means we can
increase the number of elements on a chip and
maintain excellent yields. We thus need fewer
chips, with fewer total interconnections to build
a system. Mechanical connections, as from chip
die to package to board, appear to be the least
reliable portion of a system, so any attempt to
reduce the number of connections should greatly
improve reliability. The use of fault tolerance
thus makes economic sense - it reduces the size
and cost of our system.

ARRAY CHIP I

Array Chip I tested our fault tolerant
technique. This device is our first-generation
processor chip and is the basis for the prototype
system we have built. See the chip photo in
Figure 7. It uses 3um double metal CMOS
technology and contains twenty I-bit cells (in
four groups of five cells for power
distribution), of which only 16 are required for
proper system operation, plus common logic and
I/O buffers. Its block diagram is similar to the
one for array chip II-M but without the DRAM, and
its logic cell is similar to the one in array
chip II-M, except the paths are I-bit wide rather
than 16. The locations of the bad cells are
invisible to both the programmer, via cell bypass
logic, and to the I/O pins, via an on-board,
software - controlled, cellular switching
matrix.

Array chip I has 120,000 transistors, 144
pins (many unused in our prototype system), a
power consumption of about 500 mW, and a die size
of 650 x 500 mils, the largest logic chi~ in the
U.S. Any combination of word sizes, down to a
single bit and upward without limit, extending
across chip boundaries, may be selected by
software with no external logic.

Its farget clock rate for a 16-bi t
register-to-register ADD over 20 cells was 10
MHz, although its actual clock rate is closer to
3 MHz, due in part to miscalculated capacitive
loading on clock buffers. Critical signal paths
that use many pass transistors and that cross the
entire chip make performance estimation
particularly difficult. Our second generation,
array chip II-M design, with closely contained
critical paths, removes this latter difficulty.

283

FIGURE 7

ARRAY CHIP I PHOTOGRAPH

FIGURE 8

WAFER OF ARRAY CHIP I's

Array chip I may be viewed as 21 small chips
rather than one large chip from a manufacturing
yield point of view. Each of the 20 cells, plus
one block of common logic, provide the 21
regions. Each cell area for yield analysis
purposes is reduced by the small (10%) amount of
critical logic area that must work, and the total
amount of this critical logic area is "added to
the area of the non-fault tolerant common logic,
which also must work. We estimated chip yields
(at least 16 of 20 cells goo~) in the 25%-30%
range, assuming 2 defects/cm , and we were

happy to have this proven true. VLSI Technology
Inc. fabricated our chips. The yield is the sum
of all of the yields for the many combinations of
20 cells taken 16 at a time, times the yield of
the common logic area.

A photograph of the array chip I wafer is
shown in Figure 8, showing the large size of the
dice. The 4" wafer contains only 23 array chip I
dice (plus 4 small test dice), compared to a
hundred or more for most designs.

Our first generation system prototype uses 36
array chip I's and has been in operation since
late 1985. Four array chip I's form the scalar
execution unit, providing 32-bit words for each
of the address and data processors. Thirty-two
array chips form the parallel execution unit,
providing 16 16-bit processors, each with address
and data units. A photograph of one of the
wirewrap boards is shown in Figure 9. Twelve
array chips I's, having large (and rotated)
ceramic lids, form six of the parallel
processors.

FIGURE 9

PROTOTYPE BOARD PHOTOGRAPH

EFFICIENCY OF DESIGN

We chose to use repetitive word-serial
arithmetic for multiply, divide, and floating
point operations. By word-serial we mean, for
example, eight 2-bit ADD and SHIFT operations for
a 16~bit by 16-bit multiply. This is in contrast
to the parallel, often single-cycle, multipliers
and floating point units that are common in many
array processors. We did this for several
reasons.

First, the amount of logic required and the
amount of chip area required is much less for
repetitive rather than parallel techniques. The
yield of a processor element is inversely related
exponentially to its size, so we want to keep the
size small.

Second, we can support various word sizes.

284

An add and shift structure grows linearly with
the length of the word, requiring more cycles,
whereas a parallel structure grows with the
square of the word size. However, our throughput
falls with the square of the word size for
repetitive operations, since 2 cells are required
for 32-bit operations, and twice as many cycles
are required. Worse, we must lower the clock
rate when switching from 32-bit words to 64-bit
words. Our 16-bit timing is set at 32-bit cycle
times because of instruction fetch limitations in
the controller.

Third, the efficiency of a repetitive
structure is higher than for a parallel
structure. That is, there is a higher fraction
of gates active for a larger portion of the time
in a well-used repetitive structure than in a,
parallel structure. Consider a ripple-carry
adder. Only one bit at a time is doing anything
in the worst case carry propagation, as the carry
flows from one bit to the next. There is no
reasonable way to vary the clock rate depending
upon when the summation is finished. Most of the
adder is thus idle most of the time.

A parallel multiplier is similar. There is a
wave of activity as the product formation flows
through, but again, most of the gates are idle at
any instant.

Thus, jf one has a problem that can benefit
from parallelism, the objective becomes to find a
design that keeps most of the elements active and
to increase the clock rate to get the most
computation per unit area. This puts the speed
burden on a small number of local registers,
rather than on a larger, off chip memory.

This is an argument for memory hierarchy; the
closer storage is to the arithmetic element, the
smaller it may be and the faster it should
operate. In array chip II-M we would have three
levels: 16 registers, 1KW of cache, and 16KW of
shared RAM, per parallel processor.

As a result of the increased number of
processors that we may have per unit area of
silicon because our structure is more efficient,
we may keep more temporary variables in
registers. This is a variation of the RISC
philosophy. Thus instead of reading and writing
vectors from and to RAM for each of a series of
vector operations, we can be more like a systolic
array, minimizing the number of memory transfers,
by keeping temporaries in registers.

This enables us to use slower, denser, less
expensive off-chip DRAMs rather than SRAMs.
Further, the price and size disparity between
SRAMs and DRAMs should be heightened as DRAMs
become three - dimensional, using trench
capacitors, for which there is no analogy in
SRAMs.

NUMBER OF PROCESSORS PER CHIP

For a regular design that can use our cell
bypass technique, one can increase the processing
power per chip by increasing the number of cells
so long as the I/O requirements to sustain those
cells can be fulfilled. The memory on board
array chip II-M, coupled to an I/O channel, is
intended to help keep the cells busy.

Since the yield decreases as chip size
increases for a non-fault tolerant chip, one may

include some additional elements beyond the
number required for a particular throughput.
This further increases chip size, reducing the
number of dice per wafer, but we found a broad
range of choices. Better than a factor of ten
improvement in yield may be observed. In
addition, if one can use grade-outs, say chips
with half of the cells good, one may opt for
fewer spares. Thus we went from four spares to
two in going from array chip I to array chip
II-M, although decreased defect densities over
the last few years increase our conviction for
doing so.

A limit on chip size is set by the capability
of the photolithographic equipment that exposes
the wafers. In 1984, for 3um features as used by
array chip I, one had lOx or Ix reticles; that
is, the mask is ten times or one time the size of
the die. A lOx wafer stepper can only build up
to a 400 x 400 mil chip. A Ix stepper can build
a chip the size of the wafer. For 1.25 um
features, as would be used by array chip II-M,
one generally uses a 5x stepper, limiting the
size to 800 x 800 mils. Building a single device
bigger than that size would require tiling the
device with multiple sub-chips that are minimally
interconnected due to alignment problems between
them.

We miaht have built arrav chiD I with few
enough processors to achieve a chip size that was
considered an upper limit, 400 x 400 mils.
Instead, driven by an interest in wafer scale
integration, we addressed the issue of what
constitutes a limit on size. We were fortunate
in being able to translate our interest in a
highly regular, cellular array structure with
bit-parallel, variable size words, into
bypassable, fault tolerant cells.

NUMBER OF BITS PER PROCESSOR

The MPP, DAP, GAPP, and Connection Machine
all have one bit per processor. Our array chip
II-M would have 16 bits, and we use array chip
as though there is a single 16-bit processor.

We found how inefficient it is to build wide
words in space from I-bit cells. Holding
fabrication technology constant, one can build a
16-bit cell in about twice the area of our I-bit
cell. The inefficiency in our one-bit cell
results from the very high overhead that we paid
to string one-bit cells side-by-side to build
words of arbitrary size.

If, however, one is content to build long
words in time, by using multiple cycles rather
than multiple cells, which is better? The answer
seems to lie in the amount of parallelism that
one can use effectively, and the degree of
freedom that one would like to have in addressing
memory.

One reason that we went to 16-bit words was
so we could afford some flexibility in addressing
memory. We can accept having all parallel
processors reference the same register, but
having all the processors reference the same
cache or bulk memory location severely limits the
efficiency of many operations, such as matrix
transpose, which needs a diagonal of addresses.
No processor using I-bit elements can afford to
independently address each bit of memory. We can

285

not afford in array chip II-M to have ail
processors independently address each 16-bit
word, but at least each array chip may form a
different address. We can then do time-division
multiplexing between processors within an array
chip, with 1/16 efficiency, to independently
address the cache or external DRAM.

We also considered 8-bit and "32-bit cells.
We had no applications for 8-bits, and the yield
improvement of the smaller cell was
insignificant. We liked 32-bits for floating
point, but would have lost half our capability at
16-bits which we wanted for image processing, and
the cell would have been bigger than we liked.
So we chose 16 bits, with the provision that a
pair of cells may work together to form 32-bit
words, and the provision that a defective cell
may be between them.

ONE-DIMENSIONAL FAULT TOLERANCE

The key to fault tolerance in array chip I
and array chip II-M is that bad cells are
invisible. Data flows across them from the left
to right and vice-versa as though the cell were
not there. Array chip I has five so-called
horizontal paths, and array chip II-M would have
twelve. These paths are local, from the left of
cell N to the right of cell N+l, and are easily
implemented. The implementation of a
2-dimensional bypass network, however, is
extremely cumbersome as we found on the I/O pin
reconfiguration logic on array chip I which
connects good cells in one chip to good cells in
another chip regardless of the locations of
defects.

DIRECTIONS FOR FUTURE WORK

One of the most difficult problems is how to
interconnect processors. We are currently
limited to two-dimensional structures on the
surface of a chip or board. The application of
optical communication through stacks of wafers,
unknown today, would give us a third dimension
and should pave the way for far more powerful and
more compact structures. Enormously parallel
processors with capabilities in the near teraFLOP
region and with multi-gigabit I/O rates,
dissipating only 10KW, and contained in a
liquid-cooled, six inch diaTster cylinder six
inches long are conceivable .

CONCLUSION

We have demonstrated a first generation, and
defined a second generation, cellular array
processor using large area integration chips for
the parallel execution unit - the bulk of the
system. These chips are feasible only because of
their fault tolerant design. We believe that the
high performance, low cost, and small size that
result from the use of these or like chips will
dramatically improve the price,. performance, and
reliability of cellular array processors.

ACKNOWLEDGEMENTS

Many people contributed to the project from
its inception in 1981 until its prototype

demonstration in 1985. Figure 10 shows the team
that was closely involved at the time of the
demo. Particular recognition goes to the project
founder, Jack Cotton (not shown), and the
division director, Santanu Das (not shown) for
their belief in the project.

FIGURE 10

CAP TEAM PHOTOGRAPH

Back row, from left: Steve Demianczyk, Dave
Jenkins, Craig Barrila, Dave Evans (project
manager), Ravi Masand, Steven Kulick, Enrique
Abreu; middle row: Fred Tse, Sarma Jayanthi, Nick
Carter, Mark Hervin; on floor: Steven Morton
(author).

BIBLIOGRAPHY

[1] S. Morton, E. Abreu, and F. Tse, "ITT CAP -
Toward the Personal Supercomputer", IEEE Micro,
December 1985, pp. 37-49.
[2] S. Morton and E. Abreu, "A Dynamically
Reconfigurable Array Chip", IEEE Journal of Solid
State Circuits, (in preparation).
[3] S. Morton, U. S. Patent #4,536,855,
"Impedance Restoration for Fast Carry
Propagation", Aug 20, 1985.
[4] S. Morton, U. S. Patent #4,546,428,
"Associative Array Processor With Transversal
Hori~ontal Multiplexer", Oct 8, 1985.
[5] S. Morton, U. S. Patent #4,580,215,
"Associative Processor with Five Arithmetic
Paths", Apr 1, 1986.
[6] S. Morton, "Use of Zycad logic Evaluator",
Electronics Business, Oct 15, 1985, pp 76-77.
[7] D. Jenkins and S. Morton, "Transistor level
logic Simulation on the Zycad logic Evaluator",
Proceedings of the ADEE-East Conference, Oct
1985.
[8] S. Morton and S. Jayanthi, "Image Compression
on a Parallel RISC Machine", Mini-Micro Northeast
Professional Program, May 1986, pp 15/1 - 15/11.
[9] K. E. Batcher, "Design of a Massively
Parallel Processor", IEEE Transactions on
Computers, 1980, pp 836-845.
[10] J. Modi, "DAP-Fortran and Programming
Techniques on the Distributed Array Processor

286

(DAP)", Cambridge Univ. Eng Dept Tech Rep
CWED/F-CAMS TR 250, Feb 1985.
[11] W. D. Hillis, The Connection Machine, MIT
Press, 1985.
[12] R. Davis and D. Thomas, "Systolic Array Chip
Matches the Pace of High Speed Processing",
Electronic Design, Oct 31, 1984, pp 207-214.
[13] Barnes et al, "The IlLIAC-IV Computer", IEEE
Transactions on Computers, Aug 1968, pp 746-757.
[14] D. A. Patterson, "Reduced Instruction Set
Computers", Communications of the ACM, Vol. 28,
No.1, Jan 1985, pp 8-21
[15] S. Morton, "A Fault Tolerant, Enormously
Parallel Processor Architecture Using Optical
Interconnections for near TeraFLOP Performance",
in preparation.

BIOGRAPHY

Steven G. Morton was born in Yokosuka, Japan,
in 1949. He is a member of the IEEE and is
married, has two children, and lives in Oxford,
Connecticut. He is the architect of the CAP on
which he has filed for 15 patents. He joined ITT
in 1979, and his first responsibility was the
construction of a digital signal processor for
the ITT System 12 Digital Switch. Prior to ITT,
he was with the MIT lincoln laboratory where he
worked on attitude control and ground - based
telemetry systems for the lES-8 and lES-9 Air
Force communication satellites. He received his
BSEE and MSEE from MIT in 1972, where he
specialized in computer architecture. He is now
in Central Research at ITT studying the limits of
optoelectronics.

IMPLEMENTATION OF PARALLEL PROLOG ON TREE MACHINES

Hajime MIURA*
Masafumi YAMASHITA***

Masaharu IMAI**
Toshihide IBARAKI****

*
**

Fujitsu Limited, Kawasaki, Kanagawa, 211 Japan
Toyohashi Univ. of Technology, Dept. of Information
and Computer Sciences, Toyohashi, 440 Japan

*** Hiroshima University, Dept. of Electrical Engineering,
Higashi Hiroshima, 724 Japan

**** Kyoto University, Dept. of Applied Mathematics and Physics,
Kyoto, 606 Japan

Abstract

In this paper, parallel a1gori thms to control the
execution of Prolog programs on tree machines are
proposed, and their efficiencies are compared
through simulation experiments. The model of the
tree machine used in this experiment consists of a
single-tree engine, a multiplexer, and a system
controller. The single-tree engine is a common part
of tree machines and has generality. From the
experimental results through simulation, it appears
that if the given problem has enough parallelism,
then high performance can be obtained by the algo
rithms proposed in this paper. While a better uti
lization of processing elements and a better load
balancing are future research problems, tree :nac
hines are found to be sui table for parallel imple
mentation of Prolo&

.In.ttmm: Prolog, knowledge-based problems, tree
machines, logiC programming, mul tiprocessor sys
tems, parallel algorithms.

.I.. Introciugtion

Logic programming is one of the best methods to
formalize and solve knowledge-based problems
[Nils80 1. Prolog is a logic programming language
based on first order logic [Kowa791, where knowl
edge is represented by a set of facts and a set of
inference rules. The ICOT (Institute for New Gene
ration Computer Technology) started its research
project for the Fifth Generation Computing Systems
(FGCS) in 1982 under the auspices of MITI (Ministry
of International Trade and Industry) of Japan
[Mot082 1, [Feig83 1. Prolog is supposed to be the
kernel language of the new computer systems in its
project.

One of the main difficulties in solving knowl
edge-based problems is that many of them are NP
hard, that is, the computation time needed to solve
these problems on a conventional sequential comput
er will increase exponentially as the problem size
increase& One of the best solutions to overcome
this difficulty is to implement special purpose

C H2345-7/86/0000/0287$0 1.00 © 1986 IE E E
287

multiprocessor systems for logic programming. If
the problem has enough parallelism, the computation
time to solve these problems on such ~stems will
be effectively reduced as the number of processing
elements (PE's) is increased.

Mu1 tiprocessor systems can be classified in
two categories. The first includes tightly coupled
systeas where PE'S are connected through shared
common memories; and the second includes ,loosely
coupled systeas, where PE'S are connected through
message links.

One of the advantages of tightly coupled sys
tems is that the communication between PE's can be
quickly executed if the number of PE'S is small.
However, if the number of PE'S is large, the per
formance of communication among PE's tends to be
reduced due to memory access contention. Another
disadvantage of tightly coupled systems is that
their system software tends to be harder to design
and implement compared to the loosely coupled sys
tems. As a consequence, the construction of effi
cient tightly coupled systems that have a large
number of PE's is more difficult.

Loosely coupled systems are designed to avoid
these problems. Though the message transfer rate
between PE'S of these systems is slower than that
of tightly coupled systems with a small number of
PE'S, loosely coupled systems have some advantages.
One is that access contention for message transfer
can be reduced; and another is that system software
is relatively easy to design and implement due to
its modularity. Therefore, it is easier to con
struct loosely coupled systems that have a large
num ber of PE'S.

The choice of interconnection topology is one
of the critical problems in constructing efficient
loosely coupled systems. In regard to the intercon
nection topologies for loosely coupled systems,
various possibilities have been proposed. They in
clude: ring, mesh, hypercube, and tree structures.
Interconnection topologies based on tree structure
seem to be efficient for solving knowledge-based
problems because the computation process for solv
ing these problems can be naturally represented in

the form of a tree.

Another important key to constructing effi
cient loosely coupled systems is the design of
parallel algorithms that· fit the interconnection
topology of the system. In this paper, several
parallel algorithms' to control the execution of
Prolog programs on tree machines are proposed, and
their efficiencies are compared through simulation
experiments.

The model of the tree machine used in this
experiment consists of a single-tree engine, a mul
tiplexer, and a system controller. The single-tree
engine is a common part of tree machines and has
generality. From the experimental results through
simulation, it appears that if the given problem
has enough parallelism, then high performance can
be obtained by the algori thms~i prop.osed in this
paper. While a better uti11zation~fProcessing'
Elements and a better load balancing are: future
research problems, tree machines are found to be
suitable for parallel implementation of Prolo~

.II.. Parallel Processing Sghewes ~ .fmJ.g&

A Prolog program consists of a database and a
question. The database· consists of a set of. facts,
which represent properties of objects and/or rela
tions among objects, and a set of inference rules,
which are used to obtain an answer to the question.
As an example, conSider the following databas~

baIIple 1

1 : offspring (John, Matt).
2: offspring. (Matt, Don).
3: descendant (*X, *y) :-

offspring (*X,. *y).
4: descendant (*X, *y) :

offspring (*X, *Z),
descendant (*Z, *y). [1

In this example, constant objects (John, Matt, and·
Don) are assumed to begin with alphabets, while
variables (*X, *Y, and *Z) are assumed to beg~n
with an asterisk.

The database in Example 1 describes the facts
(lines 1 and 2):

1: "Matt" is an offspring of "John";
2: "Don" is an offspring of "Matt";

and the inference rules· (lines 3 and 4):

3: If *y is an offspring of *X,
then *y is a descendant of *X;'

4: If, for some *Z, *Z is an offspring of *X
and*Y is a descendant of *Z,
then *y is a descendant of *L

A question to the database is of the form
like:

?- descendant (John,. *A),

288

which means "Who are descendants of John?" The
answer to this question will be:

*A=Matt;
*A=Don;

which means "Matt and Don are." And if a question:

?- descendant (J ohn, Don),

which means "Is Don a descendant of John?" is
given, the Prolog system will-reply:

yes.

A question to the Prolog system is also called a
goal clau8~

.2.2. Parallel Processing Sche_es

An inference process in Prolog can be represented
in the form of a state space search tre~ As an
example, the state space search tree that corre
sponds to the question "?- des(John, *A)" to the
database of Example 1 is shown in Figure 1. In this
figure, each node (box) represents a sub-goal of
the given goal (or in other word, a sub-question of
the given question). Each edge represents the
super/sub relation between two goals; and the num
ber on the right hand side of each edge represents
the applied rule num~e~ Here, "off" and "des"
represent the rel ations "offspring" and "descend
ant" respeCltively.

Several parallel schemes for processing Prolog
programs have been studied. They include: OR-Paral
lel Sche.e, OD-Parallel Sche.e, Strea.-Parallel
Sche.e, and Search-Parallel Sahe.e [Cone81 1. The
basic idea of the OR-Parallel Sche.e can be
explained in the following way. The sub-goals in
the state space search tree can be solved independ
ently if there is no side effect; that is, each
fact and inference rule can be unified at the same
time. For example, clauses "off(John, *A)" and
"off(John, *Z), des(*Z, *A)" in Figure 1 can be proc
essed simultaneously.

In. the AID-Parallel Sche.e, all literals in
the goal clause are unified to the corresponding
literals in the right hand side. of a infer'ence
rule. For example, two literals "off(John, *Z)" and
des(*Z, *A)" in the clause

"off(John, *Z), des(*Z, *A)"

of Figure 1 can be unified at the same· tim~ While
this scheme introduces more parallelism then the
OR-Parallel Scheme, this scheme· could be ineffi
cient because all possible combinations of values
should be assigned to the variables included in the
literals and investigated whether or not the
aSSignment. causes a contradiction.

The Strea.-Parallel Scbeae is one of the meth
ods to realize the AND-Parallel Scheme. In this.
scheme, every literal is treated as an independent
process, and each common variable is treated as a
message channel. For example, "off(John,*Z)" and
"des(*Z; *A)" in',=the "of1'(John, *Z), des(*Z, *A)"are

considered as two independent processes, and n.Z n
is considered as a message channel. However, effi
cient implementation of this scheme awaits future
research.

In the Searcb-Paral.lel. Scheae,the database is
decomposed into subsets and 'they are placed in dif
ferent PEts. The goal clause is se'nt to each PE and
then examined .simul taneously.

Because the OR-Parallel Scheme is the easiest
to implement, many parallel Prolog systems are
based on thi's scheme [Aida83], [Yasu83], [Maru84].
However, ,parallel Prolog systems based on the
Stream-Parallel Scheme are also studied [Ito_84],
[Onou85]. These systems are supposed to execute the
programswri tten in Concurrent Prolog [Shap83].

+------------+
Ides(John,·A) 1

+------------+
1 1

+-------+3 +-----------+4
1 1
v V

+------------+ +------------------------+
loff(John, ·A) 1 loff(John,.Z), des(.Z,·A) 1

+------------+ +------------------------+
1 1 1 I
11 12 11 12
1 1 1 1
v v v v

+-------+ +-----+ +------------+ +-----+
I·A=Matt 1 Ifalse 1 Ides(Matt, ·A) 1 Ifalse 1

+-------+ +-----+ +------------+ +-----+
1 1

+-----------------+3 14
I I

V v

+------------+ +------------------------+
loff(Matt, ·A) 1 loff(Matt,-Z), des(·Z,·A)I

+------------+ +------------------------+
1 1 1 I
11 12 11 12
1 I I I
v v v v

+-----+ +------+ +-----+ +-----------+
Ifalse 1 I-A=Don I Ifalsel Ides(Don, ·A) I

+-----+ +------+ +-----+ +-----------+
I I

+------------------+3 14
I 1

V v

+-----------+ +-----------------------+
loff(Don, ·A) I loff(Don,-Z), des(·Z,·A)1

+----------+ +-----------------------+
1 1 I I
11 12 11 12
1 I I I
v v v V

+-----+ +-----+ +-----+ +-----+
Ifalse I ffalse I Ifalse 1 Ifalse 1
+-----+ +-----+ +-----+ +----+

Figure 1 - ec.putatlon Process of a Prolog Progr_

289

~~MaM1nft~

.3.1 Conyentional ~ MaMines

Tree machines are loosely coupled systems where
PEts are connected to form a tree structure. In
these machines, each PE has its own local memory
un! t and works independently. Messages are trans
ferred between PEts through message links that
connect them. One of the advantages of tree mac
hines in problem solving is that the structure of
these machines fit the state space search trees of
problems.

Though tree machines fit .state space trees,
there are several drawbacks to tree machines. One
of them is that the load tends to concentrate at
PEls near the root of the tree. Load balancing is
one of the critical problems in designing efficient
algori thms for tree machines.

TYpical structures of tree machines are shown
in Figure 2. In this' figure, circles and rectangles
denote PEls, and arrows denote <the message links.
Messages are transferred along the direction of
these -·arrows. System (a) is the 'simplest model
called a single-tree machine [Brow80], [Taka81],
[Shaw8.1], and [Sto182]. DADO [Sto182] and NON-VON
[Shaw81] arede,signed for production systems and
expert systems. System (b) and (c) are called
double-tree machines, which ,include Bentley's mac
hine (b) for database operations such as sorting
and searching [Bent79], and the DON S¥stem (c) for
combinational optimization problems [Imai84].

. The double-tree machines have 'several advan
tages over the single-tree machines. In the single
tree machines, messages are transferred in both'
directions of the message links, while they are
transferred in .only one direction of the message
links in the 'double-tree machines. As a resul t,
effective bandwidth of a .message link in the
double-tree 'machines is twice as .wide as that in
the single-tree machines. And it is easier to
implement algOri. thms that have pipeline 'f~tures on
double tree machines than single-tree achines.
Therefore, double-tree machines will hay better
performance than Single-tree machines. Otheradvan
tages of double-tree machi'nes are 'discussed in the
Ii terature [Imai84 1.

The model of the tree machine used in the simula
tion experiment is show n 1n Figure 3, which con
sists of a single-tree engine, a multiplexer, and a
system controller. The reason behind the selection
of this model is that the si.ngle-tree engine is a
common part to all tree machi'nes and .has generali
ty. The system controller is involved in this model
in order to improve the efficiency of ·the tree mac
hine.

In this model., it is assumed, that messages
can be transferred through the multiplexer quickly
enough not to affect the efficiency of the computa
tion in the single-tree engine' and .the system con
troller. Note that this model is more efficient
than other tree machines under 'this assumptio~

Especially, in the single-tree machine, messages
must be transferred in both direction of the mes
sage links, which causes conflicts at PE's. There
fore, single-tree machines will be less efficient
than this tree machine model. And double-tree mac
hines will be about as efficient as this tree
machine model.

(a) Si.ng1e-Tree MacbiDe

(b) Double-Tree Machine

290

D-Net M-Net

, ,
, "

~--------------------------

(c) '!be DOH Systell

F1.gure 2 - Typical Tree MacbiDes

SC: System Controller

Figure 3 - '!be Tree Machine Model

.IL. h:glgg Dplementation jlD .Il:u Machines

~ Observation

The process in which a Prolog program is executed
can be represented in the form of a state space
search tree like Figure 1. Comparing the structure
of this tree with the interconnection topology of
the tree machines, the following observations can
be made. First, while the number of successors of a
node in the state space search tree is indefinite,
internal PElS of the tree machines have up to two
successors or up to two predecessors (in the case
of double tree machines).

Secondly, the depth of a leaf node of a search
tree is also indefinite. As a consequence, it would
not be effective to map a search tree directly to a
tree machine, because some of the nodes of the
search tree could not be assigned to PEl s and the
load of PEl s would not be balanced. Therefore, it
is important to design efficient algorithms that
distribute the load to the P~s as evenly as possi
ble.

L2.. AssuwptioM

For the rest of this paper, the OR-Parallel Scheme
is implemented because the OR-Parallel Scheme is
the easiest to implement on mul tiprocessor systems.
The purpose of the simulation experiment is to
investigate the efficiency of tree machines in the
application to parallel Prolog implementatio~
Evaluation of other parallel schemes awaits future
work.

The implementation of Prolog in this paper is
an extension of the scheme for the DON System as
proposed by Sano, et ale [Sano84]. In this scheme,
programs are written in "pure Prolog," where no
side effect is allowed and no "cut operator" is
used. The outline of the OR-Parallel Scheme used in
this experiment is as follows. Further details of
this Scheme are shown in the literature [Miur85].

(1) The unification operation is executed simulta
neously in each PE and the database of the
program is stored in each PE prior to the
execution.

(2) Each PE has an input queue to store the mes
sages. A message sent from the predecessor PE
is placed at the tail of the input queue, and
the PE gets a message from the head of the
queue in the order of arrival.

(3) If the depth of the state space search tree is
deeper than that of the processor tree, the
unsolved sub-goals are resent to the root PE
and processed in the processor tree in the
pipeline manner.

(4) .Th.e ~~o19g interpreter uses the "c~py method"
instead of the "structure sharing metho~" The
source program is converted into an intermedi
ate form. The goal clause is also converted
into the intermediate form.

291

!J DeCQJIoosition ..m.: .t.U. .an..m.: Unifiable ClAU3es

When a goal clause is examined in the tree machine,
the set of unifiable clauses is decomposed into two
or three subsets in order to make the load of each
PE balanced. There are two decomposition methods
used in the experiments.

Method D-2 (Decomposition into two):

Decompose the set of unifiable clauses into
two subsets that have as equal a number of clauses
as possible; then, send them to successors. []

Method D-3 (Decomposition into three):

Keep one of the clauses for the PE, and decom
pose the rest of the clauses into two subsets that
have as equal a number of clauses as possible; then
send the subsets of clauses to successors. []

The difference between Methods 0-3 and 0-2 is
that one of the unifiable clauses is kept for the
PE in Method D-3. As an example, suppose that a
goal clause can be unified with clauses 11 through
15. In Method 0-2 (decomposition into two), clauses
11 through 13 will be sent to the left successor
and clauses #4 and 15 will be sent to the right
successor. On the other hand, in Method 0-3 (decom
position into three), clause 11 is kept for the PE,
clauses 12 and 13 are sent to the 1 eft successor,
and clauses #4 and 15 are sent to the right succes
sor.

!.!. Control Progedures

Though the use of Method D-3 is expected to reduce
the message transfer overhead, it is possible that
the PE's near the root of the tree become a bottle
neck. To avoid such a situation, the control proce
dures switch the use of these decomposition methods
according to the following information:

(1) Depth of the PE, and
(2) Number of goal clauses stored in message

queues.

However, in the leaf PE's, Method D-3 is
always applied in order to make the leaf PE's as
busy as possible. Because the number of leaf PEls
is about the half of that of all PE's in the sys
tem, this strategy will yield a better utilization
of PE's.

De1'1D:1tloD

Let d(i) be the depth of PEli, which is
defined as the path length from the root PE to
PEli. And let q(i) be the number of goal clauses
stored in the message queue of PEli. []

Three control procedures D, Q1, and Q2 for the
non-leaf PEls are given in the following way.

(1) Contro1 Procedure D

The basic idea of procedure D is to divide the
set of PE's into two subsets. Then, Method D-2 is
used in the PE's which are near to the root PE,

while Method D-3 is used in the PE's which are far
from the root P~ More formally, this procedure is
described as follows.

Control Procedure D:

Let Dt be a positive parameter.
If d(i) 2 Dt then use Method D-3;
otherwise, use Method D-2. []

(2) Control Procedure Q1

In procedures Q1 and Q2, the number of mes
sages in PE's are used to switch the decomposition
procedures. In procedure Q1, if the number of mes
sages in the PE does not exceed the given thresh
old, then Method D-3 is used; otherwise Method D-2
is used. Procedure Q1 is described as follows.

Control Procedure Q1 :

Let Qt. be a positive parameter.
If q(i) ~ Qt then use Method D-3;
otherwise, use Method D-2. []

(3) Control' Procedure Q2

Control procedure Q2 takes advantage of the
num ber of messages in the successor PE's. Let PEilj
and PEilk be the successor PE's of PEDi. The num ber
of messages in the message queues of the PEDi,
PEilj, and PEilk are used to switch the decomposition
method. After the decomposition, sub-goals are sent
to the successors so that the number of messages in
the message queues of P~s Dj and ilk becomes as
equal as possible. There are three variations of
this method.

Procedure Q2-a:

If q(i) ~ q(j) or q(i) ~ q(k)
then use Method D-3;
otherwise, use Method D-2. []

Procedure Q2-b:

If q(i) ~ q(j) + q(k) then use Method D-3;
otherwise, use Method D-2. []

Procedure Q2-c:

If q(i) ~ minE q(j), q(k)
then use Method D-3;
otherwise, use Method D-2. []

L. Simulation Bxperiments

5.1 AssumptiOns

Simulation experiments have been conducted to
investigate the efficiency of the tree machines
that execute Prologprogr:oams. The following. assump
tions have been made in the simulation experiments:

Asslapt.1on 1
Any number of messages can be stored in an

input queue of aPE. []

292

Assumption 2
The computation time needed to manipulate the

message queue (such as insert and remove) is small
enough to ignore compared to the computation time
needed to process a clause. []

The uni t of the computation time is the time
needed to move one Byte of data between memory
cells. The computation time needed to compare two
data items (one Byte each) is assumed to take one
un.1t of time, and the computation time to transfer
one Byte of data item between adjacent PE's is
assumed to take tvo un.1ts of time because the
message link is slower than the internal bus in a
PEe

Let T(n) be the computation time required to
solve a problem by a tree machine that has n PE's.
Then the speedup rate Rs(n) of the tree machine is
defined by:

Rs(n) = T(1) / T(n)

Note that the minimum configuration of the single
tree engine has only one PE.

The following test problems were solved in the
simulation experiments:

(1) Quicksort for 50 items [Okun84],
(2) Ancestor/descendant database search problems

[San084] ,
and

(3) N-Queens problems [Okun84], where all sol u
tions are searched.

s...z. Bxperimental Results

Experimental resul ts for the above problems are
summarized in Figures 4 through 7. In each figure,
the x coordinate denotes the number of PE's in the
single-tree engine of the tree machine model, on a
log scale; and the y coordinate denotes the average
speedup rate (Rs), also on a log scale. From these
figures, the following observations can be mad~

(1) Quicksort

The results for the quicksort problem for the
control procedure Q1 are summarized in Figure 4.
The speedup rate of the system did not exceed 1.5,
due to the lack of parallelism in the quicksort
algori thm. The resul ts when control procedures D
and Q2 are used are almost the same as those shown
in Figure 4.

(2) Ancestor/Descendant Database Search

The results are summarized in Figure 5. Here,
the resul ts for the control procedure D are shown
in Figure 5 (a), and the one for the control proce
dure Q1 are shown in Figure 5 (b).

When control procedure D is used, the best
speedup rate was obtained by setting Dt = 1. And
better speedup rates were obtained by setting Dt =
2, 0, and 3, in this order. When control procedure
Q1 is used, almost the same best speedup rate was
obtained by setting Qt = 1, 2, or 3, except O. The

results when control procedure Q2 is used are
almost the same as those shown in Figure 5 (b).

(3) H-Queens Problems

The results for the 5-Queens problem are sum
marized in Figure 6. Here, the results for the
control procedure D are shown in Figure 6 (a), and
the one for the control procedure Q1 are shown in
Figure 6 (b). When control procedure D is used, the
best speedup rate was obtained by setting Dt = 3.

When control procedure Q1 is used, the speedup
rate was only slightly affected by the value of
parameter Qt. The results when control procedure Q2
is used are almost the same as those shown in
Figure 6 (b).

(4) The Eff'ect of' the hount of' ParalleliSli in the
Problems

The efficiency of the control procedure is
affected by the properties of problems being
sol ved. The speedup rates of the tree machine for
the 5-Queens Problem and the 6-Queens Problem are
shown in Figure 7. The control procedure used in
this experiment is Q1 with Qt = O.

50
°t 0 ?:i>~ ~

[9- -m Ot 1 e-e-30 .&.--.....l. °t 2 ~~
(!)-.-e) Ot 3 '(,{, 20

• ~e-
OJ v""

+J
to 10 p::

0..
:J
'0
OJ 5 OJ
0..
CI)

3

2

3 15 31 63 127
No. of PEls

Figure .II - Speedup Rate f'or the Quicksort ProblE:a
(Control Procedure Q1)

50

30

20
OJ
+J
to

10 p::

0..
:J
'0
OJ 5 OJ
0..
CI)

3

2

50

30

20

OJ
+J

& 10
0..
:J
'0

5 OJ
OJ
0..
CI)

3

2

Figure 5 -

293

~ Dt 0 ov~
[9- -m Dt 1 e-e-
.&.--.....l. Dt 2 ~~
(9---E> Dt 3 '(,{,

• ~e-
v""

3 15 31 63 127
No., of PE's

(a) - Control Procedure D

Ot = 0 ov~ ~
I!I- -m 0t = 1 e-e-
.&.--.....l. Ot = 2 ~~
G---e) 0t = 3 '(,{,

~~e-
V

3 7 15 31 63 127

N.c. of PEls

(b) Control Procedure Q1

Speedup Rate f'or the Ancestor/Descendant
Database Search ProblE:a8

50
Dt = '(:).,><J, ~ 0

I!r- -e::J Dt = 1 ee
30 .&.--.--4 Dt = 2 ro~

(9---E) Dt = 3 'lJ-<-20 o~e
QI v

.j.J

lIS
10 ~

0..
:J
rc
QI 5 QI

0..
CI)

3

2

3 7 15 31 63 127

No. of PEls

(a) - Control Procedure D

50
Ot = 0 '(:).,>-Q. .~

I!r- -e::J Ot = 1 ee
30 .&.--.--4 Ot = 2 ro~

(9-o-E) Ot = 3 'lJ-<-20 o~e
QI y

.j.J

8! 10
0..
:J
rc
QI 5 QI

0..
CI)

3

2

3 15 31 63 127

No. 9f PEls

(b) - Control Procedure Q1

Figure 6 - Speedup Rate tor the 5-Queens Problea

294

50
'(:).,><J,

30 ee
I!r- -e::J 6-0ueens ro~ _I!l

20 ~ 5-0ueens 'lJ-<-

QI
..... ~e

.j.J v
~ 10
0..
:J
rc
QI 5 QI

0..
CI)

3

2

3 7 15 31 63 127
No •. of PEls

Figure 7 - Comparison of the Speedup Rates for
5-Queens Probles and 6-Queens Probles

(Control Procedure Q1 with Qt = 0)

5.3. Discussion

From the above observations, the following discus
sion can be made.

(1) The Choice of Control Procedure

Comparing this resul t with that of the data
base search problems, it is known that the optimum
value of parameter Dt changes depending on the
problems to be solved. And the efficiency of con
trol procedure D is also affected by the types of
problems to be solve~ Though this procedure might
bring the best results by chance, it does not
steadily yield a good efficiency. Therefore, it is
not considered the best metho~

On the other hand, control procedures Q1, Q2-
a, Q2-b, and Q2-c show similar resul ts. The val ue
of the parameter Qt slightly affects the efficiency
of the control procedure Q1. In regard to the
ancestor/descendant relation database search prob
lem, procedure Q1 is a li ttle more efficient than
Q2 procedures. In conclusion, control procedure Q1
is considered the best method among procedures D,
Q1, and Q2' s.

(2) The Effect of the Amount of Parallelism in
Problems

Comparing the resul ts of the Quicksort Problem
(Figure 4), 5-Queens Problem, and 6-Queens Problem

(Figure 7) with each other, it is known that the
speedup rate of the tree machines is improved for
larger problems which have more parallelism. The
efficiency of the tree machine is affected by the
possible parallelism included in the problems to be
solved. If the problems have enough parallelism,
the tree machines show a good speedup rate compared
to the num ber of PE's.

(3) Cclmparison with other Macb1.nes

The speedup rate of the tree machine model is
comparable to that of another parallel inference
machine PIM-R designed by ICOT [Onou85], where the
speedup rate of the PIM-R machine is up to three
times as fast for nine PE's. Comparison with other
machines, such as DADO or NON-VON, awaits future
work.

(4) Load Balancing

In regard to the load balancing, the load
tends to be concentrated at PE's near the root of
the tree, depending on the problems being sol ved.
Especially, in problems like the Ancestor/Descen
dant Database Search Problems where the branching
factor is large, the load still tends to be concen
trated at the root P~

For example, according to the simulation
results, when these problems are solved on the tree
machine with 127 PE's (except the system control
ler) with the control procedure Q1 (Qt = 0), the
maximum and average number of messages stored in
the message queue of the root PE were 39 and 14
respectively.

Accordingly, the efficiency of the tree mac
hines could be improved by developing more sophis
tica ted control procedures than those proposed in
this paper. The improvement of algorithms is one of
the future research problems.

.IL. Conclusion

In this paper, a tree machine model was described
to implement parallel Prolog schemes. Then, an OR
parallel Scheme for Prolog implementation was
shown, and several control procedures were proposed
in order to make the load better balanced. Finally,
the efficiencies of these control procedures were
compared through simulation experiments.

Among the proposed control procedures, Proce
dure Q1 showed the best results, which switches the
decomposi tion methods according to the num ber of
messages in the message queue. Though the efficien
cy of the tree machine is affected by the potential
parallelism included in the problems, if the prob
lems have enough parallelism, the speedup rate of
tree machines is comparable to that of other multi
processor ~stems that have been investigate~

In conclusion-, tree machines are promising
candidates for future super computer ~stems that
sol ve complicated knowledge-based problems.

295

The following will be included in futUre
research projects:

(1) Introduction of control structures to Prolog
which play the role of the "cut" operato~

(2) Study on the implementation of the predicates
that cause side effects, such as database
manipulation operations.

(3) Development of more sophisticated algorithms
that achieve better load balancing and better
utilization.

(4) Study on the implementation of the AND-Paral
lel Scheme, in particular the Stream-Parallel
Scheme, on tree machines.

(5) Study on the parallel Prolog machines based on
the Search-Parallel Scheme, that have a dis
tributed database ~stem.

Ackpnyledgements

The authors would like to thank Mr. Sano of Sony
Corp. who designed the preliminary version of the
simulation program as a part of his Master's pro
ject. The authors are also grateful to President
Honda of Toyohashi University of Technology and
Prof. M. Everson of Nagoya Universi ty for their
helpful comments and encouragement. This work was
supported in part by the Ministry of Education,
Culture and Science of Japa~

References

[Aida83] H. Aida, H. Tanaka, T. Moto-oka: On Paral
lel Processing System "Par al og", Jour. of the
IPS of Japan, Vol. 24, No.6, pp. 830-837
(Nov. 1983); in Japanese.

[Bent79] J.L. Bentley, H.T. Kung: A Tree Machine
for Searching Problems, Proc. Int'l Conf. on
Para. Proc., pp. 259-268 (1979).

[Brew80] S.A. Browning: The Tree Machine: A Highly
Concurrent Computing Environment, Ph.D.
TheSiS, Cal tech (Jan. 1980).

[Cloc81] W.F. Clocksin, C.S. Mellish: Programming
.in.lU:.Ql.Q.g, Spri nger-Verlag Pu b. Co. , (1981).

[Cone81] J.S. Conery, et al.: Parallel Interpreta
tion of Logic Programs, Proc. of Functional
Prog. Lang. and Compo Archi., ACM (1981).

[Feig81] E.A. Feigenbaum, P. McCorduck:.I.h.e. fi.t:.t.h
Generation; Artificial Intelligence ~
Japan's Computer Challenge J& ~ JiQr.l.j1,
Addison-Wesley, Reading, Mass. (1983).

[Hor083] ~ Horowitz, A. Zorat: Divide-and-Conquer
for Parallel ProceSSing, IEEE, Trans. on
Com~, Vol. C-32, N~ 6, p~ 582-585 (June
1983) •

[Ito_84] Y. Ito, Y. Masuta, et al.: The Architec
ture of a Parallel Inference Machine based on
the Data-FlOW Computation, ICOT, proc. of the
1984 Logic Programming Conference (1984); in
Japanese.

[Imai84] M~ Ima:1" _et al.: The Al"chitecture and
Efficiency of DON: A Combinatorial Problem
Oriented Multicomputer System, Proe. of the
4th Int'l Conf. on Distributed Computing Sys
tems, pp. 174-182 (May,- 1984).

[Kewa79] R. Kowalski: ~..f:.21: Problem SolVing,
North Holland Pub. Co, (1979).

[Maru84]T.Maruyama, K. Hirata, et al.: The Archi
tecture of A highly Parallel Inference Engine
- PIE - and its Simulator, IECE of Japa~
Papers of Tech. Group of Electrical Computer,
EC 84-45, pp. 1-11, (1984); in Japanese.

[Miur85] H. Miura: Implementation and Efficiency of
the OR Parallel Prolog System on a Double-Tree
Structured Multicomputer System DON, Master
thesis, TUT (1985); in Japanes~

[Moto82] T. Moto-oka: ~ Generation Computer
'Systems, North';'Holland Pub. Co., (1982).

[Nlls80] N.J. 'Nilsson: Principles .Q! Artif! cia]
Intelligence, Tioga Pub. Co. (1980).

[Nitt84] K. Nitta: Parallel Prolog, Proe. of IPS of
Japan, Vol. 25, No. 12, pp. 1353-1359 (Dec.
1984); in Japanese.

[Okun84] H. Okuno: Proposal of the Bench Mark Prog
rams for the Third Lisp Contest and the First
Prolog Contest, IPS of Japan, Papers of the
Tech. Group on Symbolic ProceSSing, SP 28-4
(1984); in Japanese.

[Onou85] M. Onouchi, et al.: Software Simulation of
the Parallel Inference Machine PIM-R, IPS of
Japan,Proc. of the 30th Nat. Conf., 6C-9, pp.
201-202 ·(1985);, in Japanes~

[Pete81] F.J. Peters: The Tree Machines and Divide
and-Conquer Algorithms, Lect. Note in Compo
Sci., Vol. 111, pp. 25-36 (1981).

[Shap81] E~ Y. Shapiro: A Subset of Concurrent Pro
log and its Interpreter, Tech. Rep. TR-003,
ICOT (1983).

[Shaw81l D.E. Shaw: NON-VON: A Parallel Machine
Architecture for· Knowledge-Based Information
ProceSSing, Proc. of the 7th Int'l Conf. on
AI, pp. 961-963 (1981).

[StoI82] S.J. Stolfo, D.E. Shaw: DADO: A Tree
Structured Machine ,Architecture for Production
Systems, . Proc. of Nat. Conf. on A·I (Aug.
1982).

[Taka81] Y. Takahashi, et al.: A Binary Tree Multi
processor: CORAL, Jour. of IPS of Japan, Vol.
3, No.4, pp. 230-237 (1981).

[Yasu83] Yasuhara, et al.: On an OR Parall el Model:
ORBIT, Proc. of the 1983 Logic Programming
Conference, ICOT (1983); in Japanese.

IECE: Institute of .Ele.ctronics and Communication
Engineers

IPS : Information Processing Society

296

OPTIMAL GRANULARITY OF
PARALLEL EVALUATION OF AND TREES

GucrJie Li and Benjamin W. Wah
Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

1101 W. Springfield Avenue
Urbana, IL 61801

ABSTRACT
AND-tree evaluation is an important technique in artificial

intelligence and operations research. An example is the divide
and-conquer algorithm. which can be considered as the evalua
tion of a precedence graph consisting of two opposing AND-trees.
In this paper. the optimal granularity of parallelism of AND
tree computations is quantitatively analyzed. The efficiency
analysis is based on both preemptive and nonpreemptive
critical-path scheduling algorithms. It is found that the optimal
grain depends on the complexity of the problem to be solved. the
shape of the precedence graph. and the task...,time distribution
along each path. The major results consist of tight bounds on
the number of processors; within which the optimal grain can be
sought efficiently. In view of the optimal granularity. architec
tural requirements for parallel AND-tree evaluations are also
discussed.

INDEX TERMS: AND trees. critical-path scheduling. divide
and-conquer algorithms. granularity. processor-time efficiency.
processor utilization.

1. INTRODUCTION
A wide class of problems arising in artificial intelligence.

operations research. decision making. and various scientific and
engineering fields involve finding a solution of a problem. which
is made up of a large number of subproblems to be solved. Solv
ing these subproblems can be represented as AND-tree computa
tions. Examples include evaluating arithmetic expressions.
searching possible solution trees of logic programs. evaluating
functional programs. scheduling operations in assembly lines.
finding the extremum. merge-sorting. and quick-sorting.

There are two kinds of AND-trees. intrees and outtrees. In
an intree (resp. outtree). each node has at most one immediate
successor (resp. predecessor). and the root/is an exit node (resp.
entry node). The intrees and outtrees specify the precedence
relationships among the nodes. Every node is reachable from the
entry node for an outtree .or can r~ach the exit node for an
intree. In recursive computations. such as divide-and""Conquer
algorithms. a problem is partitioned into smaller and distinct
subproblems. and the solutions are found for the subproblems
and are combined into a solution for the original problem. The
procedure is applied recursively until the subproblems are so
small that they can be solved directly. In this way. the evalua
tion can be viewed as a process with two phases. the decomposi
tion of subproblems based on an outtree and the composition of
results based on an intree. Hence. the precedence graph is com
posed of an intree and an outtree. We call this particular graph
an outin tree. Deterministic programs can be represented by

Research supported by National Science Foundation Grant DMC 85-19649.

ACM-IEEE Computer Society 1986 Fall Joint Computer Conference.

CH2345-7/86/0000/0297$01.00 © 1986 IEEE
297

outin trees. Functional programming. which is considered as an
important programming 'style to resolve the von-Neumann
bottleneck. deals exclusively with AND-graphs [1]. Similarly.
data-llow graphs are AND-graphs [7].

Outin trees have the following characteristics. First. there
is no cycle in an outin' tree. Second. in contrast to general
forests. an outin tree consists of one outtree and one intree and
have a one-to-one correspondence of all the leaves in the two
trees. We call these leaves the leaves of the outin tree. In this
paper. we will mainly discuss outin trees. However. the results
derived apply to intrees and outtrees as well. Here. AND-trees
and outin trees are used synonymously. Figure -l(a) illustrates
an outin tree. which rellects the precedence relationships among
tasks in a merge-sort problem shown in Figure l(b) to sort six
elements. The nonterminal nodes in the outtree part represent
decompositions. each of which split a (sub-) list into two smaller
sublists. whereas the nonterminal nodes' in the intree part
represent composition. each of which generate a sorted list based
on two smaller sorted sublists.

Evaluation of outin trees naturally suggests implementa
tion on parallel computers due to the independence of subprob
lems. AND-tree evaluations are important in evaluating logic
programs. especially when parallel processing is used .[5]. Stu
dies conducted on parallel computers for executing divide-and
conquer algorithms can be classified into. three types. First. mul
tiprocessors that are connected in the form of a tree. especially a
binary tree. can be used to exploit the potential parallelism of
divide-and""Conquer algorithms [13'.23]. A second approach is
the virtual tree machine [2]. which consists of a number of pro
cessors with private memory connected by an interconnection
network. such as the binary n""Cube. and a suitable algorithm to
decide when and where each subproblem should be solved. The
third approach is a variation of the above approaches using a
common memory. All processors are connected to the, memory
by a common bus [14].

To evaluate an AND-tree in parallel. it is necessary to
schedule the subproblems to achieve high throughput and proces
sor utilization. An important problem is to determine the proper
granularity of parallelism. that is. the minimum size of a sub
problem that should be computed by a single processor. If the
grain is too large. then the processors can be loosely coupled but
may be under-utilized. In contrast. if the grain, is too small.
then the processors can be better utilized. but tight coupling may
be necessary. and the communication overhead may be prohibi
tive. The grain must be properly chosen to obtain a proper bal
ance between processor utilization and communication overhead ..

In previous studies. one can find di1Ierent points of view on
the issue of granularity. Some researchers advocate a fine grain.
while others suggest a coarse grain. For example. in designing
the FFP machine [21]. a small grain is chosen based on the
hypothesis that appropriately designed small-grain multiproces
sors will prove superior to large-grain ones in supporting ease
and generality of parallel computations. In contrast. in

iIltr~
part .

. 1

Procedure mergesort

integer low. high

if low < high

then call split Clow. high. mid)

call mergesort Clow. mid)

call mergesort (mid+1. high)

call merger Clow. mid. high)

endif

end. mergesort

(b)

{6}

{6}

Figure 1. The merge-sort problem represented as an outin tree.

Rediflow [17]. large-grain parallelism is used to minimize com
munication overheads. Moreover. most previous studies on
granularity were discussed qualitatively. In this paper. we will
analyze the optimal granularity of parallel evaluation of outin
trees quantitatively. We will identify the factors that infiuence
the optimal grain. in particular. the relationship between the
optimal granularity and the problem complexity.

2. SCHEDULING PARALLEL OUTIN-TREE EVALUATIONS
To analyze the optimal granularity of parallel evaluation

of outin trees. an asynchronous model for parallel computation
is adopted here. The precedence graph of an outin tree is
oriented such that the entry node is at the top of the figure and
the exit node is at the bottom. An arc is assumed to be always
directed towards the bottom of the graph. The number inside a
node is the task execution time. while the number next to a node.
called its length. is the sum of the task execution times for nodes
in the longest path from this node to the exit node. Figure 2ea)
is an example of an outin tree.

The execution time of a task can be interpreted as either its
maximum processing time or its expected processing time. In the
former case. the worst-case time to complete the schedule is con
sidered. while in the latter case the length of the schedule
represents a rough estimate of the average time of computation.
In some outin-tree problems. the execution time of each task can

298

be predicted quite accurately. For example. in evaluating arith
metic expressions. the time to execute a primitive operation. such
as a multiplication. is known. In other cases. the average execu
tion times may have to be estimated from statistics or from pre
vious experience. In all cases. the communication overhead is
non-trivial when preemptions are allowed. and the task time
should also include the overhead of preemptions.

Our goal is to choose an algorithm that minimizes the max
imum completion time for scheduling outin trees on a set of P
identical processors. and to find the optimal granularity based on

6

(a) Task precedence graph as outin tree.

eb) Task precedence graph as e-outin tree using chain tasks.

t..(2)
t..(2) \ \1 Tpc(2) ~ -tTpc(2)I' Tpc(2)

0 1 2 4 5 6 7.5 8.5 10.5

~ I

F

I I ~
C F

E

D D E

B H
G G D

Cc) General scheduling (processor sharing) of e-outin tree in Fig
ure 2(b).

o 2 3 4

F

D I G

Cd) Preemptive CPS scheduling of e-outin tree in Figure 2Cb).
012

1
F G

E D

ee) Nonpreemptive CPS scheduling of outin tree in Figure 2ea).

Figure 2. Outin tree and CPS scheduling.

this scheduling algorithm. Our scheduling problem is similar to
the P/tree/Cmax scheduling problem in which tree precedence
graphs are considered [12. 6.4]. Note that the proper granular
ity is related to the scheduling algorithm. If the underlying
scheduling algorithm does not minimize the completion time.
then the granularity found with respect to this scheduling algo
rithm is suboptimal. In this paper. our analysis of optimal
granularity is based on optimal scheduling algorithms. The
method of granularity analysis used here can be applied to
choosing the best grain for other scheduling algorithms.

If preemption is allowed. P/preemption.intree/Cmax can be
solved optimally either by Muntz and Coffman's Critical Path
Scheduling (CPS) algorithm in O(N) time [22]. or by other
polynomial-time algorithms [9]. In the CPS algorithm. the next
job chosen is the one with the longest length of unexecuted jobs.
This longest path is called the critical path. If preemption is not
allowed. then optimal scheduling algorithms have been obtained
only for two cases: (a) all tasks have equal execution times and
the precedence relationships are in the form of an intree (Hu's
algorithm) [15] and (b) when two processors are used [3]. Hu's
optimal scheduling algorithm is indeed a CPS algorithm. Many
other cases have been proved to be NP-hard [25.19]. Besides
efficient and optimal. the CPS algorithm is easy to implement
and. consequently. is one of the most common scheduling algo
rithms [20. 18].

In case that the precedence graph is a tree. that all proces
sors are identical. and that each task requires tt. O<ti~tmax.
units of time to complete. the nonpreemptive CPS algorithm
turns out to be almost-optimal in the sense that

T p(k) ~ T np(k) ~ T p(k) + tmax (2.1)

where Tnp(k) and Tp(k) are. respectively. the total times
required by the nonpreemptive and preemptive CPS algorithms
using k processors [16]. Some researchers have strived for
nonpreemptive scheduling algorithms to solve scheduling prob
lems with tree precedence [12.8. 18]. Recently. Garey. Dolev. et
al. have studied the scheduling of forests consisting of intrees
and outtrees. Given a fixed number of processors. polynomial
algorithms with high complexities to find an optimal schedule of
these forests have been developed [10.8].

In our research. we are interested in a special. but widely
used. case of outin trees. From the point of view of optimal
granularity. evaluating an outin tree can be divided into the
splitting. all-busy. and combining phases with respect to k. the
fixed number of processors. In the splitting phase. the problem is
decomposed. and the number of busy processors is increased
from one up to at most k-1 (the number of busy processors
must always be less than k if the number of available tasks at
any time is less than k). In the cOJl)bining phase. the subprob
lems are composed. and the number of busy processors is
decreased from at most k-1 to one. During these two phases.
some processors are idle. In contrast. in the all-busy phase. all
the k processors are busy. Schindler has proved that the
schedule of a precedence graph is optimal if either the computa
tions can be completed in only the all-busy or combining phase.
or it can be partitioned into the all-busy and combining phases
by a "heightline" [24]. We will show that this result can be
extented to scheduling outin trees. and that the CPS algorithm
guarantees the optimal preemptive scheduling and near-optimal
nonpreemptive scheduling of outin-tree evaluations.

To analyze the properties of preemptive CPS. in short.
PCPS. algorithms. it will be more convenient to represent a task
(a node of the outin tree) of execution time tt by a chain-task.
which is ti element-tasks (or element-nodes. or in short. e-tasks or
e-nodes). each of which has one unit of execution time (see Fig
ure 2(b)). We will use a subscript i in the task identifier to indi
cate the i'th e-task in the chain-task. Hence. F2 is the second e
task of task F. The new outin tree is called the element-outin
tree (or e-outin tree). For each chain-task. the e-task farthest
from the exit e-node of the e-outin tree is called a task-head e-

299

node. It is easy to verify that the length of the task-head e-node
is the same as the length of the original multiunit task. Two e
nodes are said to be in the so.m.e e-level of the e-outin tree if their
lengths are identical. that is. the e-level number of an e-node is
equal to its length assuming that the exit e-node is in Level O.
To distingUish between no-des -and levels in the original outin tree
(as exemplified by Figure 2(a)) and in the e-outin tree (as
exemplified by Figure 2(b)). we will use tasks and levels with
respect to the or!omal outin tree and e-task and e-level with
respect to the e-outin tree in subsequent discussions.

There is another variation of preemptive scheduling algo
rithms called General Scheduling (GS) discipline [22]. which is
extremely useful in studying the granularity of parallel outin
tree evaluations. In the GS algorithm. each processor in the sys
t~m is considered to have a certain amount of computing capa
cIty rather than as a discrete unit. and this computing capacity
can be assigned to tasks in any amount between zero and the
equivalence of one processor. For example. if we assign half of a
processor to task Pi with execution time tie then it will take 2·tt
units of time to complete Pl' In the GS discipline. one processor
is assigned to each of the k e-nodes farthest from the exit e-node
of the e-outin tree to be evaluated. If there is a tie in the lengths
among u e-nodes for the last v. u>v. processors. then v/u of a
processor is assigned to each of these u e-nodes. Each time when
either (a) a chain-task of the e-outin tree is completed. or (b) a
point is reached where. if we continue with the present assign
ment. some e-nodes will be computed at a faster rate than other
e-nodes that are farther from the exit e-node. then the processors
are reassigned to the remaining tree according to the CPS princi
ple. Situation (b) occurs when an e-node that is being computed
has the same length as that of some unexecuted task-head e
node(s). In this case. one (or par~ of a) processor must be
assigned to the unexecuted task-head e-node.

The GS discipline is illustrated in Figure 2(c). Muntz and
Coffman have proved the equivalence between the GS and PCPS
~lgorithms [22]. That is. if preemptions are permitted. then the

processor-sharing" capability is not needed for optimal schedul
ing. To illustrate this equivalence. Figure 2(d) shows the
preemptive schedule for the corresponding e-outin tree in Figure
2(b). Note that in the scheduling algorithms discussed in this
paper. all idle processors. if any. must be used to compute an
available executable task.

. In pra~tice. p~eemptions are usually restricted at the begin
n.1Og o~ a time UOlt. so the overhead of a practical PCPS algo
rIthm IS equal to that of Hu's algorithm. which assumes that
tasks have unit execution times. From Eq. (2.1). we have [22]

Tp(k) = Tg.(k) ~ Th(k) ~ [Tga(k) + 1] = [Tp(k) + 1](2.2)

where Th(k) and Tga(k) are the times required by Hu's and GS
algorithms. respectively. Eq. (2.2) shows that the behavior of
GS is ve:Y close to that of any PCPS algorithm that only allows
pree~ptlons at the beginning of a time unit. In subsequent dis
CUSSIOns. the results will be derived without any restriction on
the allowable times for preemptions. Moreover. we will use GS
as a model to analyze the properties of PCPS algorithms. The
granularities derived are the same as those when the PCPS algo
rithm is used.

At time t. an e-node is said to be active if either a processor
or part of a processor is. assigned to it. The total number of
a~tive e-nodes may be greater than the number of processors
smce some e-nodes may share processors. All active e-nodes
form a wave-front in the e-outin-tree evaluation. Two particu
lar times of the wave-front are of special interest: taCk) and
tae(k). The computation enters the all-busy phase al taCk) and
enters the combining phase at t,c(k). In both times. the wave
fronts serve as phase-boundaries. We call the former phase
boundary Bsa(k) and the latter BIe(k).

For the task graph in Figure 2(a). if the PCPS algorithm is
employed. then ta(2)=1 and tac(2)=8.5 (see Figures 2(c) and
2(d)). The corresponding phase-boundaries B (2) and B (2) are
indicated in Figure 2(b). sa Ie·

If a preemptive (resp. nonpreemptive*) CPS algorithm is
applied. then the computational times required by k processors
to complete the splitting. all-busy and combining phases are
denoted by TpsCk). Tpa(k) and Tpc(k) (resp. Tnps(k). Tnpa(k) and
T npc(k)). In the intree part of an e-outin tree. each e-node
corresponds to a path to the exit e-node. while each e-node in the
outtree part may have more than one path to the exit e-node.
The longest path from an e-node to the exit e-node is selected as
the execution-path through this e-no~e. For a.!1_ e-node.}f more
than one such longeSt path exist. then a left-to-right orientation
or any tie-breaking rule is used to break the tie. In the outtree
part. if an e-node has q immediate successors. one of which is in
its execution-path called the immediate execution-successor. then
the other q-1 immediate successors serve as heads of new
execution-paths. called path-heads. As a result. each active e
node corresponds to a unique execution-path to the. exjt e-node.

For example. in Figure 2(b). the execution-path from e
node Al is (AI' C1• Fl' F2• F3• 11' 12, J1• J2) and e-node Bl is the
head of the execution-path (B1• D1• D2• D3• HI' J1• J2). Note that
when k processors are used. only the topmost k-1 path-heads
are active in the splitting phase. Other path-heads are active in
the all-busy phase.

Let A(t.k) be the set of active e-nodes at time t when k
processors are used. This set can be divided into two classes in
terms of the lengths of the corresponding execution-paths. At
time t. the active e-nodes whose execution-paths are the shortest
among all active e-nodes belong to a subset As(t.k). and lie in a
single e-level. called the minimal active e-level. The other active
e-nodes belong to another subset Ah(t.k). (If t and k are obvious
in the context. they will be omitted for brevity). For example.
in Figure 2(b). when t is 2. e-nodes Dl and G1 belong to A.(2.2).
and e-node Fl belongs to Ah(2.2).

In the following four propositions. we will show the pro
perties of the PCPS algorithm. which are related to the optimal
granularity of parallel outin-tree evaluations. It is easy to
observe that the active e-nodes are executed at different rates
depending· on whether the assigned processor is shared or not.
Let rl(t) be the processing rate in e-node per time unit of active
e-node i at time t. The following proposition distinguishes the
processing rates under various conditions.

Proposition 2.1: During a parallel evaluation of an outin tree
with k processors. rl(t). the processing rate of active e-node i at
time t. satisfies the following equations.

j
- 1 if e-node iEAh(t.k) or I A(t.k) I ~k

ri(t) < 1 otherwise

where IA(t.k)1 is the number of active e-nodes in the set A(t.k).
Proof: This follows from the GS strategy immediately. 0

Proposition 2.1 reflects the following facts. First. in the
splitting and combining phases. the processing rate for any e
node is one. that is. an e-node is processed in each time unit.
Second. if an active e-node is not in the minimal active e-level.
then one processor (rather than part of a processor) has to be
assigned to it. that is. its corresponding processing rate is one.
Third. in the all-busy phase. if the number of active e-nodes is
equal to the number of processors. then the processing rates for
e-nodes in the minimal active e-level is also one. Only when the
number of active e-nodes is larger than the number of processors
used. the processing rates of .e-nodes in the minimal active e
level are less than one.

Let hmax be the length of the critical path in the outin tree
to be evaluated. Since at least one time unit is needed to com
plete each e-node. it is evident for any scheduling algorithm that

T(k) ~ hmax (2.3)

where T(k) is the completion time using k processors under a
preemptive or nonpreemptive scheduling discipline. The follow
ing proposition shows the relationship between T p(k) and the

• We will discuss nonpreemptive CPS algorithms in Section 4.

300

shape of the phase-boundary.

Proposition 2.2:** (a) Tp(k) > hmax implies that all a<;:tive e
nodes on the phase-boundary Bac are located in the same e-Ievel.
(b) If an active e-node on the phase-boundary Bac belongs to Ah•
then T p(k) = hmax.

The example in Figure 2 illustrates Property (a) above .. At
time t=4. e-node G1 in the critical path "enters" the set As. and
hereafter all active e-nodes are in the same e-level. Proposition
2.2 reflects the fact that preemptive scheduling algorithms distri
bute work uniformly among the available processors. thereby
reducing the computational time required in the combining
phase. This is the reason for a preemptive algorithm to run fas
ter than the nonpreemptive counterpart.

To investigate the optimal granularity. we need to examine
the phase-boundaries when different numbers of processors are
used. The following proposition compares two boundaries with
respect to k and k+ 1 processors. In subsequent discussions. the
phase-boundary in a single e-level will mean that all active e
nodes on this boundary have execution-paths with the same
length.

Proposition 2.3:** If phase-boundary Bac(k+1) is in a single e
level. then the phase-boundary Bac(k) must be in a single e-level.

If the phase-boundary Bac(k+l) is not in a single e-Ievel.
then there are k: O<k'<k. active e-nodes belonging to Ah(k+1)
on this phase-boundary. During the splitting and all-busy
phases. we can partition the (k+1) processors into two groups.
The first group consists of k' processors that only evaluate e
nodes in the k' execution-paths from the topmost k' path-heads
to the k' e-nodes. Other (k+1-k') processors constitute the
second group. which evaluate all e-nodes in the two phases
except for e-nodes in the aforementioned k' execution-paths.
Accordingly. we can prove the following proposition.

Proposition 2.4:** If an outin tree is evaluated by the PCPS algo
rithm. then TpsCk+1) ~ Tps(k). and Tpc(k+1) ~ Tpc(k).

The following theorem shows that the PCPS algorithm can
be used to find the optimal preemptive schedule for outin trees.

Theorem 2.1.: PCPS is a minimum-completion-time scheduling
algorithm for an outin tree.
Proof: Let cltps(k) and cltpc(k) be the total amount of idle times in
the splitting and combining phases when the PCPS algorithm is
applied and k processors are used .. Clearly.

Tp(k) = cltps(k) + T~l) +cltpc(k) (2.4)

Minimizing Tp(k) implies minimizing (cltps+cltpc). In the PCPS
algorithm. once an e-node is available. that is. its predecessor
node has been finished. a processor is assigned to it immediately.
The time spent in the splitting phase for any schedule cannot be
shorter than that in the PCPS algorithm. It also means that cltps
for the PCPS algorithm is the minimum. We now consider cltpc.
If the phase-boundary Bac is not in a single e-Ievel. then
Tp(k)=hmax according to Proposition 2.2. That is. the PCPS algo
rithm achieves the minimum computational time T(k) according
to Eq. (2.3). What we need to consider is the case when the
phase-boundary Bac is in a single e-level. This boundary is indi-
cated by a dark line B in Figure 3. .

Suppose that an arbitrary scheduling algorithm is used. the
corresponding phase-boundary is denoted by B'. which is shown
as a dashed line in Figure 3. Note that it is impossible for all e
nodes on boundary B' to be beneath boundary B. otherwise at
least one processor is idle before the wave-front achieves B:
which implies that B' is not a phase-boundary. In other words.
af least one e-node on boundary B' is above or on boundary Bac.
Similarly. it is impossible for all e-nodes of boundary B' to be

•• Due to space limitation. the proofs of PropositiOns 2.2 thru 2.4. Lemmas 3.1
thru 3.4. and all lemmas and theorems in Section 4 are omitted.

Splitting phase

All-busy phase

Figure 3. Proof of Theorem 2.1.

above boundary B.

Phase-boundary
(another scheduling)

B.
(PCPS phase-boundary)

B'

(another scheduling)

Let Npc and Nc' be the amount of task times in the combin
ing phase of the PCPS and another scheduling algorithm. Let
Tc'(k) and cl>c'(k) be the computational time and the total idle
time in the combining phase when an arbitrary scheduling algo
rithm using k processors is adopted. If Tpc(k) equals Tc'(k). then
Npc(k)~Nc'(k). hence. (cl>c'-cl>pc) - (Npc-Nc') ~ O. If Tpc(k) is
less than Tc'(k). since at least one e-node on boundary B' is
beneath or on boundary B.c. (Nc'-Npc) cannot be larger than the
amount of task times for e-tasks beneath B' and above B (the
shaded area in Figure 3). Since. from Proposition 2.1. the pro
cessing rate for any path in the combining phase is one. then
after (Tc'-Tpc) time units. alle-nodes in the shaded area in Fig
ure 3 must be completed. As less than k e-nodes can be com
pleted during a time-unit in the combining phase. the amount of
e-nodes in the shaded area must be less than k(Tc'-Tpc). There
fore.

(cl>c' - cl>pc) = [k(Tc' - T pc) - (Nc' - Npc)] > O.

This means that cl>pc. the total idle time in the combining phase.
is also minimum for the PCPS algorithm. The proof does not
imply that the PCPS algorithm is the unique optimal algorithm.
but rather that the amount of idle times introduced by the PCPS
algorithm is the minimum. 0

3. OPTIMAL GRANULARITY IN PREEMPTIVE SCHEDUL
ING

The criteria generally used to define the optimal granular
ity are the processor utilization (PU). k'f2. and A'f2. where k is
the number of processors. T is the ~omputational time. and A is
the area of a VLSI implementation .. The complexity of divide
and-conquer algorithms in an SIMD model and the conditions to
assure the optimal processor utilization have been studied [14].
However. processor utilization increases monotonically with
decreasing number of processors. which means that PU achieves

301

the maximum when one processor is used. Hence. PU is not an
adequate measure for the effects of parallel processing. A more
appropriate measure is the kT2 criterion. which considers both
PU and computational time. since

kT2(k) = T(l)T(k) where PU speedup and T(k)- T(1)
PU k speedup

To minimize kT2 means to reduce the computational time and to
maximize the processor utilization. k'f2 is linearly related to
A T2 if the area of connection wires is proportional to the area of
processing elements. as in systolic arrays. Both computational
time and processor utilization are important in many applica
tions. hence. kT2 is a good criterion to optimize. In other appli
cations. such as real-time processing. the completion time may be
more critical and the PU is a secondary consideration. In this
case. a different optimization criterion may have to be used.

In this paper. we have adopted k'f2 as a criterion of
processor-time efficiency to derive the optimal granularity for
parallel outin-tree evaluations. That is. given an outin-tree. we
need to either choose k to minimize k'f2. or given a fixed k. deter
mine the type of outin trees (their shapes. complexities. etc.) and
its proper size that can be solved most efficiently by this system.

It is difficult to find the optimal granUlarity with respect to
k'f2 directly because the optimal granularity depends on the exe
cution time of each task and the shape of the outin tree. We
now try to find an efficient and systematic method to determine
the optimal grain via an intermediate variable. the total idle
time. Let cl>p(k) (resp. ~np(k)) be the total amount of idle times
when a preemptive (resp. nonpreemptive) scheduling algorithm
with k processors is used. ~p(k) takes into account the idle
times in both the splitting and combining phases. Clearly.
cl>p(k) = [cl>ps(k)+cl>pc(k)] and

kT(k) = T(l) + cl>(k) (3.1)

Eq. (3.1) holds for both preemptive and nonpreemptive schedul
ing algorithms.

The total idle time cl>p(k) is related to both k and k'f2. The
following two lemmas show the difference between the total idle

, times when different number of processors are used.

Lemma 3.1:"" Suppose that an outin tree is evaluated by the
PCPS algorithm. then

[cl>p(k+l) - cl>p(k)] ~ hmax (3.2)

where hmax is the length of thecriti~l path.

Lemma 3.2:"" Suppose that an outin tree is evaluated by the
PCPS algorithm. then

[cl>p(k+l) - cl>p(k)] ~ [Tps(k) + Tpc(k)] > 0 (3.3)

Lemma 3.3:·" Suppose that an outin tree is evaluated by the
PCPS algorithm. then

Tp(k+1) ~ Tp(k)

The above lemmas reveal that when the number of proces
sors used are increased. the total idle times must increase. and
the difference of the total idle times with respect to kl and k2
processors is bounded by (k2-k1)[Tps(k)+Tpc(k)] and
(k2-k1}hmax• respectively. From these facts. we can determine
the conditions under which k'f2 is either monotonically increas
ing or decreasing with respect to k. The following theorem
shows the relation between cl>p(k) and k'f2.

Theorem 3.1: Suppose that an outin tree is evaluated by the
PCPS algorithm. kT i(k) is monotonically increasing with k if
[cI>p(k+l)-cI>p(k)] > Tp(k)/2. kTi(k) is monotonically decreas
ing with k if [cl>p(k+l)-cl>p(k)] < Tp(k)/(2 + 11k).

Proof: By Eq. (3.1). we get

(k+l)Ti(k+l) - kTi(k) (3.4)

_ [Tp(l) + ~p(k+l)]2 _ [Tp(l) + ~p(k)]2
- k+l k

_ k[Tp(l)+~p(k+l)]2 - k[Tp(1)+~p(k)]2 - [Tp(1)+~p(k)]2
- k(k+t)

_ [~p(k+l)-~p(k)] [2Tp(1)+~p(k+l)+~p(k)]- kTi(k)
- k+l

_ [~p(k+l)-~p(k)] [(k+l)Tp(k+l)+kTp(k)]- kTi(k)
- k+l

Since. from Lemma 3.2. ~p(k+l) > ~p(k). hence

(k+l)Tp(k+l) = [Tp(l)+~p(k+l)] (3.5)

> [T p(l)+~p(k)] = kT p(k)

From Eq's (3.4) and (3.5). we conclude that if [~p(k+l)-~p(k)]
> Tp(k)/2. then (k+1)Ti(k+1) > kTi(k). By Lemma 3.1. Eq's
(3.4) and (2.3). we obtain the following condition.

Tp(k)
H [~p(k+l) - ~p(k)] < 2 + 11k'

then [(k+l)Ti(k+l) - kTi(k)]

< ! k;:~ [2kT.(k)+T,c10]- kTi(k) 1= 0 0

Theorem 3.1 restricts the ·region within which we need to
find a value k that minimizes kT i(k). In other words. the
approximate condition that adding a processor will not degrade
the processor-time efficiency is that aU processors will be busy at
least half of the time.

In the example shown in Figure 2. Tp(l) = 18. Tp(2) = 10.5.
~p(2) = 3. Tp(3) = 9. and ~p(3) = 9. (Readers are suggested to
schedule this outin tree with three processors). Since ~p(2) = 3
< Tp(1)/3 = 6. and [~p(3) - ~p(2)] = 6 > Tp(2)/2 = 5.25.
according to Theorem 3.1. we can conclude that the use of two
processors minimizes kT2 for this outin tree.

A question about the monotonicity of [kT2(k+l)
- kTi(k)] now arises naturally. H [kTi(k+l) - kT!(k)] is
increasing monotonicaUy with k. then kT i(k) is a unimodal
function of k. and the optimal value of k can be found easily.
This monotonicity will be proved in the following theorem.

Theorem 3.2: Suppose that an outin tree is evaluated by the
PCPS algorithm. then kTi(k) is a concave function of k. that is.
kT2(k) achieves the minimum when k = k: and kT2(k) is mono
tonically decreasing (resp. increasing) with k when k < k' (resp.
k> k').
Proof: To show kTi(k) is a concave function of k. we need to
prove that its second-order di1ference is positive. namely.
[(k+2)Ti(k+2) - (k+l)Ti(k+l)] > [(k+l)Ti(k+l) - kTi(k)].
Let A(kTi(k) denote [(k+l)Ti(k+l) - kTi(k)]. Then

A(kTi(k)) = k[Ti(k+l) - Ti(k)] + Ti(k+l) (3.6)

A«k+l)Ti(k+l)) = (k+l)[Ti(k+2)-Ti(k+l)]+Ti(k+2) (3~7)

Subtracting Eq. (3.6) from Eq. (3.7) and applying Eq. (3.1)
yields

A«k+l)Ti(k+l)) - A(kTi(k)) (3.8)

= (k+2)[Ti(k+2) - Ti(k+l)]- k[Ti(k+l) - Ti(k)]

= [Tp(k+2) + Tp(k+l)] [~p(k+2) - ~p(k+l) - Tp(k+l)]

- [Tp(k+l) + Tp(k)] [~p(k+l) - ~p(k) - Tp(k+l)]

From Eq's (2.3) and (3.8) and Lemmas 3.1. 3.2 and 3.3. we con
clude that {A«k+l)Ti(k+l)) - A(kTi(k))} > O. 0

We have found the condition under which kT2 is increased
or decreased based on the intermediate varIable. ~). and that

kT i is a concave function. Next. we will determin~!.he number
or~processors such that kTi is minimum for a given outin tree.

Note that in the original outin tree (see Figure 2(a)). each
node is a multiunit task. and tasks in a level may have di1ferent
lengths. H there are m(i) tasks in level i. then there are m(i)
paths from level i to the exit node. Among these paths. the
minimum length is denoted by Q (i). Similarly. we can define the
depth of a node as the sum of task-times along a path from the
entry node to and including this node. and denote the shortest
depth from the entry node to level i by d(i).

Given k processors. we can fuld: Ck' a particular level in the
intree part of the original outin tree. such that m(ck). the
number of tasks in this level. is less than k. but m(ck+1) ~ k.
This particular level is called the minimum-all-busy level. Like
wise. in the outtree part. there is a level caUed the maximum-all
busy level and denoted by Sk' such that m(sk) < k and
m(sk-1) ~ k. By recognizing the minimum-aU-busy and
maximum-all-busy levels. we can roughly estimate the locations
of the phase-boundaries. Recall from Proposition 2.2 that
T p(k) = hmax if the phase-boundary Bac is not in a single e-Ievel.
In this case. (k+1)Ti(k+l) > kTi(k). To achieve the minimum
kTi(k). the number of processors should be reduced until the
phase-boundary appear in a single e-Ievel. (When Bac(k) is not
in a single e-Ievel but Bac(k-l) is. kT i(k) may be minimum.)
This observation shows that the use of the minimum-aU-busy
level to estimate Tpe is accurate in most cases. The following
lemma shows that the shortest length from the minimum-all
busy (resp. maximum-all-busy) level to the exit (resp. entry)
node gives the lower-bound computational time in the combining
(resp. splitting) phase.

302

Lemma 3.4:·· Suppose that an outin tree is evaluated by k pro
cessors. H Sk and ck are the maximum-aU-busy and minimum
all-busy levels. then (a) Tpa(k) ~ desk)' and (b) Tpe(k) ~ Q (Ck)'
Further. if the phase-boundary B.c(k) lies in a single e-Ievel.
then Tpe = Q (Ck)'

This lemma is illustrated by the example in Figure 2(a).
Suppose that three processors are used. the maximum-all-busy
level contains tasks B and C. and the minimum-aU-busy level
contains tasks H and I. Tpa(3) (resp. Tpe(3)) cannot be less than
2 (resp. 3) because if either task B or C. which are associated
with the shortest depth from the entry node to this level. is not
finished. then the computation cannot enter the all-busy phase.
Likewise. if task H has been assigned to a processor. then the
computation must have entered the combining phase. Since
Bac(2) lies in a single e-Ievel. Tpe(2) - Q (~) = 3.

For an arbitrary outin tree.

Tps ~ ten. Tpe ~ tex• and ~p ~ (ten + t ex) (3.9)

where ten and tex are the task times of the entry and exit nodes.
respectively.

When more than one processor are used. some processors
must be idle when the entry and exit nodes are evaluated. H the
times spent in evaluating the entry and exit nodes dominate over
aU other computations. then parallel processing is definitely
inefficient. The following corollary identifies the condition under
which sequential computation is better than parallel processing.

Corollary 3.1: Suppose that an outin tree is scheduled by the
PCPS algorithm and (ten+tex) > T(1)/2. then sequential process
ing. i.e .• k-1. achieves the minimum kT2.
Proof: This follows from Theorem 3.1 immediately. 0

Having proved a series of propositions. lemmas. and
theorems. the main theorem to derive the optimal granularity
under the PCPS scheduling algorithm can be obtained now. In
the following theorem. the region on k in which we can find the
optimal granularity of parallel outin-tree evaluation is given.

Theorem 3.3: Suppose that an AND-tree is evaluated by the
PCPS algorithm and k>1. then

(k+l)Ti(k+l) > kTi(k) if k > 2Tp(1) and (3.10)
hmax

(k+l)T2(k+l) < kT2(k) if k < ITp(l)+ten+tex -.!..] (3.11)
p p 2hmax 2

Proof: From Lemma 3.2,

~cI>p(k) ~ TpsCk) + Tpe(k). (3.12)

Since the idle time of each processor cannot be larger than
(Tps+Tpc), we have

cI>p(k) ~ (k-l) [T ps(k) + T peek)] (3.13)

By Theorem 3.1. Eq's (3.1), (3.12) and (3.13), the condition that
guarantees the monotonic increase of kT i(k) with k is

(k+l)Ti(k+l) > kTi(k) (3.14)

if [Tps(k)+Tpe(k)] > Tp(l) + (k-l)[Tpa(k)+Tpe(k)] .
2k

On the other hand, when a11 tasks but those in the critical path
can be completed by (k-l) processors during hmu:
- [T ps(k)+T peek)] time-units, i.e.,

() T p(l) - hmu: ()
k-l > hmax _ LTpa{kJ+Tpe{kJ]' 3.15

the phase-boundary Bac must not be in a single e-Ievel. As dis
cussed before, the optimal grain cannot be larger than the RHS of
Eq. (3.15) plus one. By Lemma 3.4, Eq's (3.14) and (3.15).

(k+l)Ti(k+l) > kT;(k) if

k > min I Tp(l) -1 Tp(l)]
d{st)+O {CtJ • hmax - Ld{stJ+O (ctJ] (3.16)

The condition described in Eq. (3.10) is obtained from Eq.
(3.16).

Note that ~cI>p(k) ~ hmax• and that
kTp(k) > [Tp(l)+ten+tex] according to Lemma 3.1, Eq's (3.1) and
(3.9). By Theorem 3.1. the fo11owing result can be derived.

() 2() 2() Tp(l) + ten + tex
k+l Tp k+l < kTp k if hmax < 2k + 1

which is equivalent to Eq. (3.11). 0

To find optimal granularity. we need to search the sma11
region of k defined by Theorem 3.3. The lower and upper
bounds of this region are. respectively. (Tp(1)/(2hmu:) -1} and
(2Tp(1)/(hmax) + 1}. Note that we have not made any assump
tion about the distribution of task times in deriving these
bounds. Since kT; is a concave function of k (Theorem 3.2). the
desirable number of processors can be found easily by a binary
search. The binary search can be completed within about
log2(Tp(1)/hmax) steps. Each step in the binary search tests
whether ~(kT;(k)) is positive. If it is, then a sma11er value of k
will be checked in the next step. otherwise. a larger k will be
tested.

For any k inside the search region, the phase-boundary
Bac(k) is in a single e-Ievel. hence the location of Bac(k) can be
uniquely determined without knowing the detailed schedule.
Accordingly.

cI>p(k) = k[Tps(k) + Tpe(k)] - [Nps(k) + Npe(k)]

where Nps(k) and Npe(k) are the amount of task times in the
splitting and combining phases. From Lemma 3.4.
Tpc(k) = 0 (Ck)' and Tps(k) can be found directly from the e
outin tree. As a result.

kT2(k) = [Tp(l) + cI>p(k)]2
p k

For instance. suppose that N items need to be sorted. It is
well-known that T(l) - N·log2N if a merge-sort algorithm is
used. In this case, the overhead in the intree part dominates that

303

of the outtree part. For the intree part.
hmax = N + N/2 + ... + 1 = 2N-l. so the lower and upper
bounds of the search region can be determined from Theorem
3.3, which are close to (lOg2N)/4 and log2N. respectively. Since
there are only (3·log2N)/4 candidate values in this search region.
log2log2N steps of a binary search can guarantee to find the
optimal grain of para11el merge sorting. For problems such as
evaluating numerical or logic expressionS and finding the max
imum (or minimum) value. a11 task times are identical.
Theorem 3.3 predicts that the optimal grain is between
N/(2·log2N) and 2N/log2N. Figure 4 shows the simulation
results of applying a nonpreemptive CPS algorithm to a binary
intree of 4096 terminal notes and tt,=1 for all i. Since all tasks
have unit execution times. the performance of the nonpreemptive
CPS algorithm is very close to that of OS algorithm (see. Eq.
(2.2)). In this example. kT2 is minimum when 431 processors
are used. which is between N/(2·10&sN) (-170) and 2N/log2N
(=683).

The above analysis reveals that the optimal grain of an
outin-tree evaluation is related to the following parameters:
(a) T(l). the time required by a sequential evaluation. which is

the sum of all task times in the outin tree:
(b) hmax• the length of the critical path:
(c) deSk)' the shortest depth from the entry node to Sit' the

maximum-aU-busy level: and
(d) 0 (Cit). the, shortest length from cit. the minimum-a11-busy

level. to the exit node (reca11 that cit and Sit depend on k).
T(l)/hmax reflects :the shape of the outin tree. while T(l)/d(slt)
and T(l)/O (Sit) reflect the distribution of the task-times. If the
outin tree is "wide" and nearly balanced. i.e .• Tp(1)/hmax is large.
then a fine grain is more appropriate. otherwise. a coarse grain is
more suitable. Further. if tasks in levels closer to the entry and
exit nodes have longer execution times. i.e .• Tp(l)/[d(slt)+O (Cit)] is
sma11. then the optimal grain should be larger. otherwise. a finer
grain is better with respect to kT2. Both T(1)/hmax and
T(l)/[d(slt)+O (Cit)] are related to the problem complexity. We
will again show the influence of problem complexity on the

6.0

1f.8

3.6

-..0
0

* -
~ 2.1f

~

1.2

.00 -t---.----r--. -r---r---,----.---r----,
.00 .50 1.0 1.5 2.0 2.5 3.0 3.5 Lt.O

NUNIBER OF PROCESSORS (* 103)

Figure 4. Simulation results to find the optimal granularity of
evaluating an intree with 4096 leaves and unit execu
tion times for all nodes.

optimal granularity in the next section. where nonpreemptive
algorithms will be used.

4. OPTIMAL GRANULARITY IN NONPREEMPTIVE
SCHEDULING

Nonpreemptive CPS algorithms are similar to the PCPS
algorithm except that preemption is not allowed. In the
nonpreemptive CPS algorithm •. one processor is assigned to each
of the k nodes farthest from the exit node. If there is a tie in
lengths among more' than' one node. then a left-to-right tie
breaking rule is used, to assign a processor to one of these 'nodes.
When a task of the outin tree is completed. the free processor is
assigned to the node farthest from the root in the remaining
outin. tree to be evaluated. Figure 2(e) illustrates an example of
nonpreemptive CPS scheduling. In. general. nonpreemptive
scheduling is more practical due to' the smaller task-switching
overheads: however. it is more difficult to predict its perfor
mance and determine the optimal grain in. parallel processing.

The problem of determining the optimal granularity' of
nonpreemptive CPS algorithm is complicated by its anomalous
behavior. Graham has proved that if an AND-tree is evaluated
twice by using kl and k2 processors. respectively [11]. then

T np(k1) "'I k2 - 1 I ~;;::: 1+--
Tnp\k2J kl

The above inequality implies that the anomaly
Tnp(k+1)/I'np(k) < k/(k+1) is possible. In other words. kT;p(k)
is generally not a concave function of k and cannot be searched
by a binary search or other efficient search methods.

In a special case. if the execution times of tasks of an out
tree are monotonically decreasing as the tree is decomposed. then
it will be shown below that c7>np(k2) > c7>np(k1) holds for
k2>2k1. Likewise. the same relation holds for the case when the
execution times of tasks of an intree are monotonically increas
ing as the tree is composed. Here. the optimal granularity of
outin-tree computations based on a nonpreemptive CPS algo
rithm can be bounded in a relatively small region. The assump
tion on monotonic distribution of task times is valid in divide
and-conquer algorithms.

In this section. we will develop conditions under which kTl
is monotonically ~creasing or decreasing with k for the special
case in which the task times are monotonically decreasing in the
outtree and monotonically increasing in the, intree. We will
investigate the difference of the total idle times with respect to
different number of processors 'under nonpreemptive CPS. The
following lemma gives the lower and upper bounds of
[c7>np(k2) - cI>np(k1)].

Lemma 4.1:** Suppose that an outin tree' is scheduled by a
nonpreemptive CPS algorithm and that tt>tj if task i is a prede
cessor (resp. successor) of task j in the outtree (resp. intree) part.
then

[cI>np(k2) - c7>np(k1)] ~ {(k2-k1)[Tps(k1) + Tpe(k1)] (4.1)

- kltnpa(kl)} > 0 if k2 > 2kl

[cI>np(k2) - cI>np(k2)] ~ {(k2-k1)[Tps(k2) + Tpe(k2)] (4.2)

+ k2tnpa(k2)} if k2 > kl

where tnpa(k) is the longest task-time among all tasks in the all
busy phase when k processors are used.

We should point out that the above lemma holds for the
case in which a part of the phase-boundary is in the intree and
another part is in. the outtree. The above lemma is true because
the task time of a node in the all-busy phase is less than either
T ps or T pe from the assumption of monotonically distributed
task times. That is. [Tps(k1) + Tpe(k1)] > tnpa(k1) is always true
regardless the location of the phase-boundary.

Similar to Theorem 3.1. we first study the relationship

between kTl and the idle times. The following theorem g~ves the
conditions under which kTl is· monotonically increasing or
decreasing based on the intermediate variable c7>np(k).

304

Theorem 4.1:** Suppose that an outin tree is scheduled by a
nonpreemptive CPS algorithm and that tl>tj if task i is a prede
cessor (resp. successor) of task j in the outtree (resp. intree) part.
then

k2T;p(k2) > k1T;p(k1) if [cI>np(k2) - c7>np(k1)] (4.7)

> Ik'~k' T.p(k,) I and k, > 2k,:

k2T;P(k2) < k1T;p(k1) if [c7>np(k2) - cIInp(k1)] (4.8)

1

2(k2-k1)k1 I
< 2k

1
+3k

2
Tnp(k1) and k2 > kl

The main theorem to find the optimal granularity can be
derived from Theorem 4.1. Before this theorem is proved. the
following lemma is needed.

Lemma 4.2:** For a given outin tree. suppose that both PCPS and
nonpreemptive CPS algorithms are applied. then
[T nps(k)+T npe(k)] ~ [T ps(k) + T peek) + tnpa(k)].

The example in Figure 2 illustrates this lemma. Here.
[(Tnps+Tnpe) - (Tps+Tpe)] = 1. which is less than t npa (... 3).

Theorem 4.2:** Suppose that an outin tree is scheduled by a
nonpreemptive CPS algorithm and that tl>tj if task i is a prede
cessor (resp~ successor) of task jin the outtree (resp. intree) part.
then k. the number of processors that minimizes kT;p(k). is
bounded between [Tnp(1)+ten+tex]/(8hmax) and 3Tnp(1)
![d(sk)+O (Ck) - 2tnpa(k)]

As an example. we can determine the area within which the
optimal granularity can be found for the parallel merge-sort of
N elements. In this problem. the computational overhead in the
intree is dominant. so only the part of the intree has to be con
sidered in the scheduling. From Theorem 4.2. the lower bound
of the search region is (log2N)/16. since Tn~(l) = N·log2N and
hmax <2N. If N is large enough. then [d(SkJ+O (Ck) - 2tnpa(k)]
will be larger than 1.5N. hence. the upper bound of the search
region is 2·log2N.

Comparing these bounds with Theorem 3.3. we see that the
range within which an optimal-grain for a nonpreemptive
schedule can be found is larger than that of a preemptive
schedule. Moreover. kT2 is not monotonically decreasing or
increasing with k for nonpreemptive scheduling~ i.e .• kT2 is not a
unimodal function of k. hence. an exhaustive search is required
to find the optimal grain.

To predict the optimal order-of-magnitude granularity in
general. we now briefly discuss the asymptotically optimal
granularity of parallel outin-tree evaluations with nonpreemp
tive CPS algorithm. Let C(n) be the overhead of a node in the
intree. which has n leaves rooted by this node. C(n) represents
the overhead of combining the results from its immediate prede
cessor nodes in the intree. Likewise. let D(n) be the overhead of
a node in the outtree. which has n leaves rooted by this node.
D(n) represents the overhead of decomposing the given node into
its immediate successor nodes in the outtree~ For an outin tree
with N leaves. C(N) and D(N) represent the, overheads of the
exit and entry nodes. respectively. Let 9be the set of functions
of the same order. For problems such as summing a set of
numbers. finding the maximum of N numbers. and returning
logical values to the main goal in evaluating logic programs.
C(n) = 9(1). In quicksort and merge sort. C(n)+D(n) =9(n).

The asymptotically optimal grain depends on the complexi
ties of C(n) and D(n). The higher the order-of-magnitude com
plexity of C(n) and D(n) are. the larger the granularity . is.
When the order-of magnitude complexity of C(n) (andlor D(n))

is large. the time .spent in the combining (andlor splitting) phase
is domInating the time in the all-busy phase. and the perfor
mance gain in the all-busy ph~e wi~ finer grains is negligible.
In other words. a small granularity may result in under
utilization of processors.

To isolate the impact of the complexities C(n) and D(n) on
the optimal granularity from the shape of the outin tree. we dis
cuss the complete. binary outintree. and assume that. for all
nodes in a level of the intree (resp. outtree) part. the order-of
magnitude complexities of C(n) (resp. D(n)) are identical. This
assumption enables us to estimate T(O. The following theorem
gives the condition under which the asymptotically minimum
kT2 is achieved for various complexities ofC(n) and D(n).

Theorem 4.3:** Suppose that a' nonpreemptive CPS algorithm is
applied to evaluate an outin tree of N leaves by k processors.
Assume that. for all nodes in a level of outin tree. the order-of
magnitude complexities of C(n) (and D(n)) are.the same and that
t1> tj. if task i is a predecessor (resp~ successor) of task j. in the
part of the outtree (resp. intree). Then the order-of-magnitude
kTi(N) is the minimum if 9(Tnpa(k(N)))
= 0(T nps(k(N))+T npe(k(N))).

The above theorem shows that if the number of leaves of
an outin tree is very large. then. to achieve the minimum
kT 2(k). the number of processors should be chosen such that the
tinies required by the all-busy phase and the total times required
by the other two phases are approximately equal. This result
also shows the relationship between the processor utilization and
kT2. Let Nsc be the amount of task-time in the splitting and
combining -phases. and Tnpa(k) = [Tnps(k)+Tnpe(k)]. Then. for
arbitrary outin tree computations. an asymptotically optimal
granularity is achieved when

()
_ kT npa(k) + Nsc

PU k - 2kTnpa(k)

Since Tnpa(k) ~ Nsc ~ (k-l)Tnpa(k). we conclude that the
corresponding processor utilization is between 0.5 and 1. In
other words. when a problem is solved by a parallel divide
and-conquer algorithm and there are a large number of leaves in
its outin-tree representation. to pursue more than 50% processor
utilization will reduce the utilization-time efficiency. According
to Theorem 4.3. the asymptotically optimal granularities with
respect to various C(n)+D(n) are summarized in Table 1.

Complexity
of C(n)+D(n) Optimal Architectural
l~n~N Granularity Requirements
o (logln)

e [logi~IN I
A very large number

s~O of processors: tree or o~her'

efficient interconnection
o (nrlogln) A large number of

O<r<l [Nt"' I processors: tree or other o 10glN
s~O efficient interconnection

0(n logln) A small number of
s~O o (10g2N) processors: loosely coupled:

simple interconnection
0(nP) 0(1) Single or few processors:
p>l shared memory

Table 1. Asymptotically optimal granularities in parallel pro
cessing of outin trees with respect to order-of
magnitude kT2 (N is the number of leaves of the outin
tree).

305

s. CONCLUDING REMARKS
In this paper. we have derived tight bounds within which

the optimal granularity of parallel AND-tree evaluations under
preemptive' and nonpreemptive critical path scheduling can be
found. For nonpreemptive scheduling. the asymptotically
optimal granularities with respect to various problem complexi
ties have been derived. These theoretical results provide an
upper bound on the number of processors to achieve the
minimum kT2 criterion.

According to our efficiency analysis. we found that the
optimal granularity depends on the problem complexity. the
shape of the precedence graph (balanced or skewed). and the
task-time distribution along each path (random or monotonic).
It is usually difficult to predict the shape and the task-time dis
tribution. One possible way is by statistical analysis. In con
trast. the complexity of a problem to be solved is generally
known before the problem is solved.

The complexity of each node in·the outin tree is an impor
tant factor that influences the optimal granularity. As illus
trated in Table 1. if C(n)+D(n) is 9(nP). p> 1. and a large
number of processors are used. then the processor-time efficiency.
kT2. must be poor regardless of the capacity of the interconnec
tion network. In this case. the time needed to evaluate a sub
problem will be increased quickly during the.decomposition pro
cess in the outtree and the composition process in the intree.
Hence. the root and exit nodes of the tree are obvious
bottle~ecks. In contrast. if C(n) and D(n) are 9(1). then the
time needed to evaluate any subproblem is bounded by a con
stant. . and the root and exit nodes will not be bottlenecks.
Examples of this kind of problems include finding the maximum
and evaluating an arithmetic expression. Here.' a fine-grain
architecture is appropriate. and a large speedup will be obtained
by . using a large number of processors. Tree-structured com
puter architectures [13.21] and virtual-tree computers· [2] are
good candidates in these applications. In.cases when C(n) equals
either Sen) or e(1og-n). s~O. the time needed to evaluate a sub
problem is increased slowly during. the decomposition process in
the outtree and the composition process in the intree. A
medium-grain architecture will be more cost-effective. For
example. to sort 4000 elements by a parallel merge-sort algo
rithm. using ten to twelve processors will be a good choice. For
many practical problems. especially when divide-and-conquer
algorithms are used. the precedence graph is nearly balanced. and
the task-times of all nodes in each level are approximately equal.
hence. the nonpreemptive critiCal path scheduling algorithm may
be viewed as a parallel breadth-first search. In this case. well
balanced workloads with overlapped process communications
can be assigned to the processors working under an SIMD model.
The optimal grains will. therefore •. be close to the theoretical
ones predicted in Sections Three and Four. The architectural
requirements for various cases are summarized in Table 1.

In many problems. the order-of-magnitude complexities of
C(n) and D(n) may be different. For example. for the quicksort

algorithm. C(n)=9(1) and D(n)=9(n). that is. most of the com
putational overhead is spent in the decomposition phase. and the
composition operation is trivial. In contrast. for the merge-sort
algorithm. C(n)=9(n) and D(n) .. S(l). In many logical and
functional programs. the return operation is usually simple. i.e .•
C(n) ... e(l). but the complexity of asubgoal or function call
depends on the number of the parameters passed and the method
of copying data. For these problems. the optimal grain can be
determined by the part of the tree that has dominant overhead.

The shape of the AND-tree and its task-time distribution
are also important factors to be considered. Let Tp(l)/hmax be
"average width" of an AND-tree. The optimal granularity is
found to depend strongly on the average width. If the AND-tree
is "wide." then the degree of parallelism is high and the granu
larity can be small. On the other hand. if the AND-tree is "nar
row." then the degree of parallelism is low and the granUlarity

is necessarily large. Here. the tree mlly have to be restructured
to arrive at a different representation.

In many problems involving AND-trees. the trees are usu
ally irregular. and the workloads may be data dependent. An
important functional requirement is. therefore. the ability to
dynamically distribute the workload m the architecture. For a
computer architecture with a small granularity. an efficient
interconnection network is needed. In a loosely coupled system
with a coarse grain. an effective load balancing mechanism is
necessary. Here. process communications may not be well over
lapped with computations. and the corresponding task-times
should include the communication overhead. As a result. the
optimal number of processors may be less than the theoretical
values predicted in Sections Three and Four.

REFERENCES

[1] J. Backus. "Can Programming be Liberated from the von
Neumann Style? A Functional Style and Algebra of Pro
grams:' Comm. of the ACM. vol. 21. no. 8. pp. 613-641.
ACM.1978.

[2] F. M. Burton and M. M. Huntbach. "Virtual Tree
Machines:' IEEE Trans. on Computers. vol. C-33. no. 3.
pp. 278-280. 1984.

[3] E. G. Coffman. Jr. and R. H. Graham. "Optimal Schedul
ing for Two Processors Systems:' Acta Informatica. vol. 1.
no.3.pp.200-213.1972.

[4] E. G. Coffman. Jr. (ed.). Computer and Job-Shop Schedul
ing Theory, Wiley. New York. NY. 1976.

[5] J. S. Conery and D. F. Kibler. "AND Parallelism and Non
determinism in Logic Programs." New Generation Comput
ing. vol. 3. no. 1. pp. 43-70. OHMSHA Ltd. and Springer
Verlag. 1985.

[6] R. W. Conway. W. L. Maxwell. and L. W. Miller. Theory
of Scheduling, Addison-Wesley. Reading. MA. 1967.

[7] J. B. Dennis. "Data Flow Supercomputers." Computer. vol.
13. no. 11.pp.48-56.IEEE.Nov. 1980.

[8] D. Dolev and M. Warmuth. "Profile Scheduling of Oppos
ing Forests and Level Orders." SIAM Jaurnol of Algorithm
and Discrete Mathematics. vol. 6. no. 4. pp. 665-687. Oct.
1985.

[9] M. R. Garey and D. S. Johnson. "Scheduling Tasks with
Nonuniform Deadlines on Two Processors." Jaurnol of
ACM. vol. 23. no. 3. pp. 461-467. 1976.

[10] M. R. Garey. D. S. Johnson. R. E. Tarjan. and M. Yan
nakakis. "Scheduling Opposing Forests:' SIAM Jaurnol of
Algorithm and Discrete Mathematics. vol. 4. no. 1. pp.
72-93. March 1983.

[11] R. L. Graham. "Bounds for Certain Multiprocessing
Anomalies." The BeU System Technical Jaurnol. vol. 45.
no.9.pp. 1563-1581. Nov. 1966.

[12] R. L. Graham. E. L. Lawler. J. K. Lenstra. and A. N. Kan.
"Optimization and Approximation in Deterministic
Sequencing and Scheduling: A Survey." Ann. Discrete
Mathematics. vol. 5. pp. 287-326. 1979.

[13] J. A. Harris and D. R. Smith. "Simulation Experiments of
a Tree Organized Multicomputer:' Proc. 6th Annual Symp.
on Computer Architectw-e. pp. 83-89. IEEE/ ACM. April
1979.

[14] E. Horowitz and A. Zorat. "Divide-and-Conquer for
Parallel Processing:' Trans. on Computers. vol. C-32. no. 6.
pp. 582-585. IEEE. June 1983.

[15] T. C. Hu. "Parallel Sequencing and Assembly Line Prob
lems:' Operations Research. vol. 9. no. 6. pp. 841-848.
1961.

[16] M. Kaufman. "An Almost-Optimal Algorithm for the
Assembly Line Scheduling Problem:' Trans. on Computers.
vol. C-23. no. 11. pp. 1169-1174. IEEE. 1974.

306

[17] R. M. Keller. F. C. H. Lin. and J. Tanaka. "Rediflow Mul
tiprocessing:' Proc. COMPCON Spring. pp. 410-417. IEEE.
1984.

[18] M. Kunde. "Nonpreemptive LP-Scheduling on Homogene
ous Multiprocessor Systems." SIAM Jaurnol of Comput
ing.vol. 10. no. 1.pp. 151-173. Feb. 1981.

[19] J. K. Lenstra. A. R. Kan. and P. Brucker. "Complexity of
Machine Scheduling Problems:' Proc. Discrete Mathemat
ics. pp. 343-362. North-Holland. 1977.

[20] E. L. Lloyd. "Critical Path Scheduling with Resource and
Processor Constrains." Jaurnol of ACM. vol. 29. no. 3. pp.
781-811. 1982.

[21] G. Mago. "Making Parallel Computation Simple: The FFP
Machine." Proc. COMPCON Spring. pp. 424-428. IEEE.
1985.

[22] R. Muntz and E. Coffman. Jr .• "Preemptive Scheduling of
Real-Time Task on Multiprocessor Systems." Jaurnol of
the ACM. vol. 17. no. 2. pp. 324-338. ACM. April 1970.

[23] F. J. Peters. "Tree Machine and Divide-and-Conquer Algo
rithms." Lectw-e Notes CS 111 (CONPAR81). pp. 25-35.
Springer-Verlag. 1981.

[24] S. Schindler. "On Optimal Scheduling for Multiprocessor
Systems:' Proc. of Princeton Conf. on Information Science
and Systems. pp. 219-223. 1972.

[25] J. D. Ullman. "NP-Complete Scheduling Problems." Jaur
nol of Computer and System Sciences. vol. 10. pp. 384-393.
1975.

PARALLEL PREPROCESSING AND. POSTPROCESSING

IN FINITE-ELEMENT ANALYSIS ON A 'MULTIPROCESSOR COMPUTER 1

P. S.TSENG
Dept. of Electrical
and Computer Engineering
Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

Finite-element analysis requires extensive
computations in the preprocessing and postprocessing
stages, which could become the real bottleneck. This
paper presents a multiprocessing and macropipelining
approach to overcome this difficulty. We demonstrate
through ti~ing analYSis that using a linear array of
p.roc.e.ssors In a macropipelined fashion, one can achieve a
slgnrflcant throughput improvement in preprocessing the
data elements and outputing the results after a finite
eleme~t analysis. We provide analytical methods for
matching the processing bandwidths among the host
computer, the preprocessor, the linear system solver, and
the postprocessor. The time savings in these
~reprocessing and postprocessing steps will greatly
Improve the overall system performance.

1. Introduction

The Finite Element Method (FEM) for solving Partial
Differential Equations (PDE) consists of three phases: the
input of data elements, the solution of a linear system of
equations, and the output of analytical results 1. In' the
past, most efforts have concentrated in the middle phase
of solving a linear system of equations Kx = f, where K is
an nxn stiffness matrix obtained by discretizing the given
PDEs: Very little has been done in the speedup of the
input and output phases.

Finite-element analysts often refer to the input phase
as preprocessing and the output phase as
postprocessing. Besides 1/0 of elemental data and
results, computations are also needed in these two phases
in order to produce the stiffness matrix and to display
graphically the analytical results obtained in the middle
phase. In this article, we propose a pipelined approach for
speeding up the extensive computations involved in the
preprocessing and postprocessing phases.

1 The research was supported in part by NSF grant DMC-84-21022 and
in part by AFOSR grant 86-0008

CH2345-7/86/0000/0307$01.00 © 1986 IEEE
307

Kai HWANG
Computer Research Institute

Univ. of Southern California
Los Angeles, CA 90089-0781

Finite-element discretization often yields a linear
system of equations with n = 105 or more unknowns in
structural engineering. In most cases, the stiffness
matrices obtained are highly sparse and symmetric positive
definite. Sequential algorithms such as adaptive
Successive Over Relaxation (SOR), preconditioned
Conjugate Gradient (CG) methods2 have been
developed for solving sparse linear systems on
conventional uniprocessor computers. These algorithms
can produce the solution in O(n 1.5) time, contributed by
0(nO.5) iterations with O(n} time required for each iteration3.

Pipelined vector processors have been used in
supporting computations of this type4, 5. Solving a linear
system with n=106 unknowns can now be done in minutes
using a Cray X-MP or a Floating-Point Systems attached
processors, 6. However, these sequential algorithms do not
fully exploit para"elism contained in a" three phases.

The parallel algorithm obtained by Pan and Reif7
decomposes a stiffness matrix into recursively nested
dissections, which requires 0(log3 n) time and O(n 1.5)

processors. After the decomposition, 0(log2 n} time and
O(n) processors are needed to solve the linear system of
equations. In order to match the high speed of para"el
computations performed in the middle phase, speCial
hardware is needed to speedup the preprocessing and
postprocessing phases. This will be crucial to the overall
system performance.

In this paper, we propose a method to speedup the
pre/p.ostprocessing steps. We present the limitations in
speeding up the pre/postprocessing. using a data-transfer
model. A linear array of processors is used to yield
optimal performance under the revealed limitations on 1/0
bandwidths.

2. The System Architecture

A finite-element machine consists of five major
components: the host computer, the preprocessor, the
interface unit, the parallel linear system solver, and the
postprocessor as shown in Fig. 1. The host computer
generates finite elements by applying a discretization
algorithm to the space domain. The preprocessor

generates elemental stiffness matrices and corresponding
force vectors. The interface unit assembles elemental
stiffness matrices and force vectors to yield the global
stiffness matrix K and force vector f.

The linear system solver solves the system Kx = f for
the unknown vector x. The results are then sent back to
the interface unit, which associates finite elements with
their solved nodal values and sends the combined terms to
the postprocessor. The postprocessor interpolates the final
results and sends them back to the host computer. The
host computer then displays the final solution to the user.

The use of the host computer, the interface unit, and
the highly parallel linear system solver have been similarly
practiced in the MPp8, the connection machine9, and the
finite-element machine 10. What we propose here is an
architectural setup for faster preprocessing and
postprocessing. The intention is to match the processing
bandwidth of all the component subsystems involved in
finite-element analysis. The parallel system solver
demands the use of a large memory space to
accommodate. the huge stiffness matrix involved. The
interface unit demands also a large memory space to
accommodate the discretized space domains and their
~Iations to the stiffness matrix. The pre/postprocessors
are designed as functional units with a small working
memory.

Host Computer

Multiprocessor
(Linear System Solver)

Figure 1: The system architecture of a parallel
FEM-POE solver

3. Preprocessing and Postprocessing in the FEM

Pre/postprocessings are essential in supporting real
time input of data elements and the generation of 3-D
graphic displays. Most simulation studies in structural
analysis, flight control" oil reservoir modeling, biological
and seismological experiments demand a heavy degree of
pre/processing. We define an elemental
computation as follows: Consider an element Ej in the
discretized domain, Let X be the input set, Y be the output
set and F be a function independent of the index i. Then
we have Y = F(X) associated with element Ej•

308

In preprocessing, the set X is generated from the
host computer, and the set Y is sent to the interface unit.
In postprocessing, X is generated from the interface unit,
and Y is destined to the host computer. These elemental
computations are performed repeatedly for the generation
of elemental stiffness matrices and force vectors , the
derivation of dependent variables, graphical curve
interpolations, and geometrical transformations. All of
them are main operations contained in the
pre/postprocessing phases.

There is no data dependence between different
elemental .computations This implies the existence of
massive parallelism in these elemental computations.
However, the limited data transfer bandwidth between
system components constrains this parallelism. We define
several parameters below which will be used in the
architectural designs of the preprocessor and the
postprocessor. :

Tj The average time for transferring one
elemental data set from the host
computer to the preprocessor.

The average time for transferring one
elemental data set from the the
postprocessor to the host computer.

T c The preprocessing time of one element.

T c' The postprocessing time of one element.

Ne The number of elements in a discretized
POE problem.

P The number of processors used in the
preprocessor.

P' The number of processors used in the
postprocessor.

Let T be the total time required for a preprocessing
procedure and l' be that for a postprocessing procedure.
Then we can prove that:

(1)

where, Ne Tj is the minimum time required to transfer all
data from the host computer to the preprocessor. Since
the overall processing time must be larger than the time
for loading the data from the host computer, the inequality
is thus obvious. Similar arguments hold for the
postprocessing. Furthermore, one can easily show that:

(2)

where (NeT cliP is the minimum time required if P
processors are used in preprocessing. P' is the number of
processors used in postprocessing.

For the best performance, the above results lead to
the use of P = NeT/T and P' = NeTc'IT' respectively. This
leads to the following conditions:

(3)

These findings reveal that the maximum speedups
obtainable in pre/postprocessing are T clTj and T c'lT 0

respectively. If' the speedup factor does not match with
the speed of the linear system solver, multiple lines of
pre/postprocessors may be needed to support parallel data
streams flowing between the host and interface unit. We
concentrate on a single stream of pre/postprocessors in
this study.

4. Linear Array and Macropipelining

A simple linear array of processors is proposed in
Fig.2 for either preprocessing or postprocessing. Linearly
connected processors requires minimum communication
links between adjacent processors. The linear array can be
designed to be modularly extensible, easily
synchronizable 11, and fault tolerant 12. In order to avoid the
use of a large amount of data memory in the array, systolic
processing is preferable. Most computations for FEM
pre/postprocessing are complex, they may not map nicely
with a linear systolic array. For this reason, we propose a
macropipelining approach to achieve a pseudo
systolic data flow. Macropipelining refers to the practice of
pipelining in the processor level, as originally suggested in
Handler13 and Briggs, et a1 14.

In macropipelining, the data context of each element
are processed on the fly similarly to that of a systolic
array. Once a processor receives the data context of an
element, it continues the computation of the element for
T /P (or T c'/P') time and passes the partial results to the
next processor. The processors in the linear array pass the
results to the interface unit in preprocessing stage or to
the host computer in postprocessing stage. The purpose is
to average the load of all processors involved and to
achieve an optimal pipeline rate.

309

The original sequential program is repeated in each
processor, no recoding is needed. Only a hardware timer
is required in each processor for generating interrupt
signals every T/P time to pass the elemental context
between processors. Only a small amount of memory is
used in each processor to accommodate the context of
three elements, one being received, one, being processed,
and the third one being sent out.

The pipelining of multiple processors into a macro
pipeline demands a special processor architecture as
suggested in Fig.3. The dual port memory uses one
port for data transfer between processors, and the other
for data processing within the processor. The numerical
processing unit performs floating point arithmetic. The

input/output of data are done through parallel data
channels. The input/output link processors contain data
buffers to interface communicating processors in the array.

Besides parallel data links between processors, there
are links connecting the control units of each processor.
These interprocessor control links are used to synchronize
the computations and communications along the linear
array. The control unit sequences the local operations in
each processor and communicates with the neighboring
processors. The timer is designed to support
macropipelining, which generates interrupt signals to the
control unit and initiates the context switching between
processors.

Hbst ~omputer

> > ~ cg .. • ..
~ <t •
0
III
en
Q)
CJ
0
Co
Q)

0:

Interface Unit

Figure 2: Suggested processor archi~ecture for
the construction of I/O processing units

Macropipelining is limited by excessive context size
of each element. A large context size may create a data
transfer bottleneck in the array. This interprocessor data
transfer rate may substantially limit the throughput of the
linear array. Several parameters thus are crucial to the
performance of the preprocessor array are defined below.

t, The average time for transferring one byte
through the data links between adjacent
processors in the linear array.

The size of the context of an element,
measured by bytes.

The average time for transferring one byte
through the data channel between host
computer and the preprocessor.

The size of input data set of each element,
measured by bytes. Note that Tj = tjnj"

Using the above parameters, we found the following
conditions for optimal design of the preprocessor array:

(4)

This condition implies that T /P delay is needed in
processing each element in a processor, where net, is the
time required to transfer the context of each element
between adjacent processors in the macropipeline.
Similarly, to yield optimal performance in the postprocessor
array, we need to satisfy:

(5)

This condition leads to the maximum speedup T /T j, where
Tj = njtj and Te > (TefTj)net,.

We define a software ratio a = n/ne between
the size of input data set and the size of context per
element, and a hardware ratio S = (t/t,) between
interprocessor link bandwidth and the host-preprocessor
channel bandwidth. These two ratios are crucial to the
performance of the two arrays used. In most cases, a < 1,
since the context must contain the input data set. The
value of a provides a guideline for choosing the hardware
parameter S. In practice, we prefer the use of smaller
value of S, say S < 8.

The condition as > 1 is necessary in applying
macropipelining in the preprocessor array to achieve
maximum speedup. However, if the number of processors
available in the system is less than T efTj' we have a loose
condition for obtaining optimal performance from
macropipelining as specified above. The performance of
the preprocessing macropipeline is analyzed below under
two assumptions, Te > PTj and Te > Pnet,. The total
processing time of the preprocessing array is:

T = Te + Pnet, + (T/P)Ne < 2Te + (TeNe)/P, (6),

310

where T e + Pnet, is the time for the interface unit to
receive the first output, it is the pipeline startup time. The
throughput of the liner pipeline is T/P. As a result, it
takes (T /P)Ne to process the last elements. The total
processing time is thus Te + Pnet1 + (T/P)N

e
. The

condition T e > Pnet, leads to the inequality in Eq. 6.

The above result shows that macropipelining often
results in a nearly optimal performance with small start up
overhead. Once a solution vector is produced by the iinear
system solver, it needs to be displayed graphically. To
generate graphical primitives from the discretized solutions,
one need to perform geographical transformations,
perspective transformations, and polynomial interpolations.
The outputs from the postprocessor array are mainly the
graphic primitives needed by the host computer for display
purpose.

Macropipelining can be similarly used in the
postprocessor array. To measure the performance of the
postprocessor array, the following parameters are used:

n '
e

the average time of transferring one byte
between the postprocessor and the host
computer.

the size of the output data set of each
element transferred to the host computer,
measured by bytes.
Note that, To =tono.

the size of the data context of an element in
postprocessing, measured by bytes. Input

Interproceslor
control
link

dltl
link

Input
link

procesaor

numericil
processing

unit

dUll
port

memo'ry

Vo
I-r-~..---.,;d::.;ltl bus

.Interprocessor
control
link

output
link

processor

output
dati
link

Figure 3: Proposed architecture of the processors
used in the preprocessing and

postprocessing arrays

a' the ratio of ninc.

B' the ratio of tit,.

In case T c' > ToP' and T c' > Pnc't" the total
postprocessing time T' < 2Tc' + (NeTc')/P' can be similarly
derived.

The use of a linear array of processors can achieve a
nearly optimal speedup in FEM pre/postprocessing.
However, the conditions for achieving this performance, T c
> Pnct, (Tc' > P'nc't,) and as > 1 (a'B' > 1) should be
carefully examined in real applications. The gains from
exploiting overlapped parallelism in these I/O operations
must be balanced by the increased cost of the
pre/processors arrays.

5. Parallel Elemental Computations

Examples of FEM pre/postprocessing are given below.
We consider first the computational demand in FEM
preprocessing, namely for the generation of elemental
stiffness matrices and elemental force vectors. To simplify
the explanation, consider a 2-D 4-node quadrilateral
Lagrange element for a poisson equation:

a2u a2u
- + - = f(x, y}
ax2 ay2

(7)

The elemental stiffness matrix K = [kjj] is an 4x4 matrix
defined by the following equation :

alJ!j alJ!j alJ!. alJ!.
k.

,I
' = f f [-, -] [_I, _I]T dxdy

ax ay ax ay
(8)

where lJ!.'s are the basic shape functions associated with
each node. These shape functions are predefined from a
standard square element on a natural coordinate
system (~, n). The standard element and a real element
are iinked by an isoparametric transformation between the
two coordinate systems (~, n) and (x, y) as illustrated in
Fig.4. To perform the integration, Gauss quadrature is

performed as follows:

2 2
K= L L B(f;k'nl B(~k'nl) det(J(~k'nl» Wkl

k='I=l

(9)

where (f; n) are the Gauss points inside an element. In
the abov: ex~mple 2 x 2 Gauss points are used. J is a 2x2
Jacobian matrix on the Gauss pOint, which depends on 4
nodal coordinates of real elements. B is a 2x4 matrix
defined on each Gauss points by the following equation :

(10)

alJ!j
n =-

2j an

N is a precomputed constant matrix for the standard
square element. The computations involved are elemental.
The inputs are the nodal coordinates of each real element,
and the outputs are the elemental stiffness matrices. Since
the stiffness matrix is symmetric, only the diagonal and
upper triangle of the stiffness matrix need to be computed.
The values of nj and nc are estimated to yield the ratio a.
With the ratio a determined, the ratio B for macropipelining
can be determined accordingly.

The input data set corresponds to the coordinates of
4 nodal points, which requires 8 words or nj = 32 bytes.
The context of the computation includes the input
coordinates of 4 nodal points, the diagonal and upper
triangle of the stiffness matrix, the Jacobian matrix, the B
matrix, auxiliary integer indexes and other temporary
variables. A context of 32 words is large enough for the
given example, which makes nc = 128 bytes. Note that, the
constants are part of the program which does not belong
to the context of an element. The ratio a = n/nc =1/4
implies that B > 4 is required to achieve maximum
speedup.

311

y

x

(-1, 1) (1, 1)

-(-1,-1) (1 ,-1)

4 4

x= La;c/>;(~,7J) Y = L b;c/>; (~, 7J)
i-I i-I

Figure 4: The isoparametric transformation of a
quadralateral finite element

The total number of floating point operations involved
determines the ratio T cfTj' which corresponds to the
maximum parallelism achievable in the preprocessing array.
Two parameters are used:

nf
The total number of floating point
operations (multiplication or addition)

used in the element based computation for
an element.

t
f

The average processing time of a. floating
point operation in ,a processor.

Since most operations involved in the stiffness matrix
, generation are floating point computations, T c is estimated
to be nft

f
. The speedup for the given example is thus

upper bounded by

ell)

The ratio' e .= (n,fnj) is a software parameter
independent of the hardware configuration. The larger is
the value of e~ the:. higher parallelism is available in the
preprocessing. phase. The ratio y = t,ft j is a hardware
parameter that reflects the hardware configuration used
in the linear array. Since a fast communication' channel .is
assumed in .the system architecture, we can assume y > >
1. An estimation of nf for the given example is 640, which
implies 9=20. In case y = 10, a speedup of 200 is possible
in the preprocessing stage.

. The computational 'properties of various finite
elements in solving. a ·linear elastic problem are given
below for a 3-D problem.

au

ax

av
e: =-

v ay

au av au aw
E =-+- E =-+-

xv a y a x xz a z a x

a a x a T xv a T xz
-+--+--=-f
ax ay az x

a T vx a ova T vz
-- + - + --'=-f ax ay az v

a T zx a T zv a 0 Z

--,,+ -- + - = -f
ax ay az Z

aw
e:=

Z az

av aw
E =-+-

V
Z az ay

(12)

fox, ay' az' T xy' Txz' Tvz]T = E[E x' Ey' e: z' e:xy' Exz' Eyz]T

whereE is a 6x6 constant matrix. For structures 'of thin
thickness, it can be simplified to a .2-0 problem and
qudrilateral plane element can. be applied in discretization.
For a general problem, a 3-D cubic solid. element needs to
be used for the discretization. To generate the local
,stiffness matrix K and force vector f, two numerical
integrations are performed:

K = f~f~f~ BT E Bdet[J] dtdndc

f = f~f~f~ (B T E {e:o}- B T{OO} +

N T{fo})det[J] dtdndc

(13)

where matrix B depends on nodal coordinates 'of an
element, J is the the Jacobian matrix which links the real
coordinate system (x, y, z) to the natural coordinate system
(t, 'fl, C). Matrix N depends on the shape functions used.
The size of matrices, Band N depends on the number of
nodal pOints used to model the elements. To compute this
integration numerically, the Gauss Quadrature method is
applied. The number of Gauss points used for the
numerical integration depends on the order of the shape
function.

In Table.l, we summarize the computational
properties for various elements used in a linear elastic
structural analysis. These properties correspond to the
hardware independent parameters which are used in the
performance analysis· and design of the preprocessor. The
geometrical shapes of these' elements are shown in Fig.S .
Inall.cases the value of a and 9 are large enough to
justify the use of a linear array as a ·preproces·sor.

Table 1: Computational Properties For Preprocessing
Of Various Finite Elements in Fig.4

2-D plane elements

nodes d.oJ G-points nc nj nf a e

4 8 2x2 512 176 2400 0.34 13.6

4 8 3x3 512 176 5400 0.34 30.7

4 8 4x4 512 176 9600 0.34 54.5

8 16 3x3 1120 352 10.800 0.31 30.7

8 16 4x4 1120 352 19.200 0.31 54.5

8 16 5x5 1120 352 21.000 0.31 59.6

3-D solid elements

nodes d.oJ .. G.,.points nc nj nf . a e

8 24 3x3x3 3136 672 135.000 0.21 200

8 24 4x4x4 3136 672 320.000 0.21 476

20 60 4x4x4 12.000 1680 768.000 0.14 457

20 60 5x5x5 12.000 , 1680 1.500.000 0.14 893

Note that:
nodes: number of nodes used in one element.
d.o.f. : degree of freedom In the finite element.
G-points : number of Gauss points used In each dimension.

312

y.

y

x
(a) 2-D 4 Node Element

(b) 2-D 8 Node Element

3

4\ __ -+ __ ~

5

5

(c) 3-D 8 Node .Element (d) 3-D 20 Node Element.

Figure 5:. Various finite elements for an elastic structural analysis
defined in Eq. (12)

Using the same linear elastic elements, consider a
simple postprocessing algorithm which interpolates the
solution vector, generates the graphical 'primitives, and
sends them to the host computer. The interpolated picture
provides a clear contour of the solution vector or the
derived solution vector. The software parameter a'is
determined to examine achievable speedup. The value. a'
can be' estimated from the computation performed to
generate one interpolation point and the number of bytes
used for coding one such point in graphics. For example,
to interpolate the solution for a point (f,;p' np) in a 2-D
element, first the norm of the· interpolated solution at pOint
P (up' vp) needs to be computed:

u = p

nodes

L
k=l

nodes

V = L vk1llk(f,;p' np)
p k=l

C = (u2 + v2
)112

p p p

(14)

313

Then the natural coordinate of point P(f,;p,np) is transformed
into its real coordinate (xp' y p) by :

nodes

L xk1llk(f,;p' np)
k=l

(15)
nodes

y = L Yk1llk(f,;p' np)
p k=l

Then the value of (xp' y p' v p) is scaled into integers
corresponding to· the graphical primitives. Table 2 lists the·
2-D elastic elements discussed in the previous section with
an estimated e' value. The estimations are based on the
fact that 4 bytes are· used to code' one interpolation points
inside an element. The estimated a' value for 3-D
elements are also given in the table. In all cases, a' are
greater than 112. This implies that the hardware with S'= 2
is good for achieving the maximum speedup. Again, the
table justifies the choice of a linear array for FEM
postprocessing.

The importance of using fast pre/postprocessing
systolic arrays in a finite-element machine becomes
apparent with the increasing use of highly parallel linear
system solvers. Computational properties of FEM
pre/postprocessing steps reveal that linear arrays are
indeed a good choice for these steps. The hardware
demand is low and the array is modularly expandable.
Macropipelining avoids the problem of software recoding.
Our case studies reveal that high speedup factors of 100 or
1000 (assuming y=10) can be achieved with the
macropipelining approach. To reach the maximum
speedup, the data transfer rate between processors should
be 4 to 8 times faster than the host computer channel
speed. The results being presented should be useful to
those who are involved in developing efficient 1/0 and
parallel POE solvers on a multiprocessor supercomputer 15.

12.

13.

14.

15.

314

References

R. D. Coo~ Concepts and Applications of
Finite Element Analysis, 2nd ed., John
Wiley & Sons, 1981.

L. A. Hageman and D. M. Young, Applied
Iterative Methods, Academic Press, 1981.

A. Jennings, Matrix Computation for
Engineers and SCientists, John Wiley &
Sons, 1978.

K. Hwang, "Multiprocessor Supercomputers for
Scientific/Engineering Applications", IEEE
Computer Magazine, June 1985.

O. Lubec~ J. Moore and R. Mendez, "A Benchmark
Comparision of Three Supercomputers: Fujitsu
VP-200, Hitachi S810120 and Cray X-MP/2", IEEE
Computer Magazine, December 1985.

A. E. Charlesworth and J. L. Gustafson, "Introducing
Replicated VLSI to Supercomputing the
FPS-164/MAX Scientific Computer", IEEE
Computer Magazine, March 1986.

V. Pan and J. Reif, "Efficient Parallel Solutions of
Linear Systems", Proc. of the 17th Annu.
ACM Sgmpo. on Theory of Computing, May
1985.

K. E. Batcher, "Design of a Massively Parallel
Processor", IEEE Trans. on Computers,
September 1980.

W. D. Hillis, The Connection Machine, MIT
Press, 1985.

P. B. Schneck, S. L. Squires, J. Lehmann, D. Mizell
and K. Wallgren, "US Government Parallel Processor
Programs", IEEE Computer Magazine, June
1985.

A. l. Fisher and H. T. Kung, "Synchronizing Large
VLSI Processor Arrays", IEEE Trans. on
Computers, August 1985.

H. T. Kung and M. Lam, "Wafer-Scale Integration and
Two-level Pipelined Implementation of Systolic
Arrays", Journal of Parallel and
Distributed Computing1984, pp. 32-63.

W. Handler, "The Impact of Classification Schemes
on Computer Architecture", Proc. of Int' 1 •
ConE. on Parallel Processing , 1977.

F.A. Briggs, K.S. Fu, K. Hwang and B.W. Wah, "PUMPS
Architecture for Pattern Analysis and Image
Database Management", IEEE Trans.
Computers, October 1982.

K. Hwang and F.A. Briggs, Computer
Architecture and Parallel Processing,
McGraw-Hili, , 1984.

A NEW CLASS OF PARALLEL ALGORITHMS FOR SOLVING
,LINEAR TRIDIAGONAL SYSTEMS *

S. Lakshmivarahan and Sudarshan K. Dhall
Parallel Processing Institute

School of Electrical Engineering & computer Science
University of Oklahoma

Norman, OK 73019, U.S.A.

ABSTRACT

A new class of parallel algorithms
for solving linear tridiagonal systems,
which compares very favorably with the
existing parallel algorithms, is
described.

1. INTRODUCTION

There are basically two classes of
methods for solving linear tridiagonal
systems in parallel. The first of these
due to Stone [4,5] is called the method
of recursive doubling. This method
introduces parallelism in the now
classical Gaussian elimination algorithm.
The second method is called the method of
cyclic reduction and is due to Hockney
[1,9]. There are in fact two versions of
this algorithm: one is called the odd
even reduction [3] (also known as serial
cyclic reduction [1]) and the other is
called the odd-even elimination [3] (also
known as parallel cyclic reduction [1]).
A version of the recursive doubling given
in [1] takes 24logn (all logarithms are
to base 2) units of time using a
parallelism of size n. Refer to Table 1.
The odd-even reduction, on the other
hand, takes only 19logn units of time
using a parallelism of size n'" /2 where
n~n+l=2t for some t~1 [1]. The odd-even
elimination, however, using a parallelism
of size n"', takes only 14logn'" units of
time. It can be easily shown that both
the recursive doubling and odd-even
elimination require a total of 0 (nlogn)
scalar operations but odd-even reduction
needs only o(n) (that is, about 19n)
scalar operations. Thus, for large n,
when the available parallelism is
limited, the odd-even reduction is widely
recommended [3]. For a succinct summary
of these and many other parallel
algorithms, refer to the survey by Heller
[3]. The performance of these algorithms
on vector machines has been thoroughly
analyzed in Stone [5] and Lambiotte and
Voigt [11].

In this paper, we describe a new
class of parallel algorithms for solving
linear tridiagonal systems. Like the
method of recursive doubling, this method
also introduces parallelism in the
solution of the recurrences· arising from
the Gaussian elimination algorithm. Our
method is very flexible, permi ts vector
or multi-processor or a combination of
vector and multiprocessor implementations
and is adaptable to a wide range of the
size of parallelism. This new algorithm
is based on the shared memory model
called PRAM [10] which allows
simul taneous read but only single write
in the same memory location. More
specifically, it is shown that a linear
tridiagonal system of size n can be
solved in (n/p[(32/3)+6Iogp]-3 units of
time using (3/2)p processors where n=2mp
for m, a multiple of 3, and p=2k for some
k~l. Thus, using only 3 processors (p=2)
this method takes only 8.33n-3 units but
the widely preferred odd-even reduction
needs 9n units of time. When p=n/3, that
is, using a total of n/2 processors, the
new method takes 18logn units which is
nearly the same performance as the odd
even reduction method. Further, if p=n/2
that is, using 3n/4 processors, our
method needs only 121ogn+7 units of time.
Further, using n/2 processors, our new
method is 55% more processor efficient
compared to recursive doubling and 31%
more processor efficient compared to odd
even elimination.

In section 2, we describe the
mathematical framework. The algorithm
itself is given in Section 3. section 4
provides a thorough comparison of all the
existing methods and suggests
improvements in implementing odd-even
reduction should more processors become
available. Concluding remarks are given
in section 5.

* This work was supported in part by the AMOCO Research Center in Tulsa
and Energy Resource Center at the University of Oklahoma.

315
CH2345-7j86jOOOOj0315$01.00© 1986 IEEE

2. A MATHEMATICAL FRAME-WORK

Consider a linear tridiagonal system

Ax = K (2.1)

where

b 1 cl 0 0 0 · 0

a2 b 2 c2 0 0 · . . 0

0 a3 b 3 c3 0 · 0

A= .

o o o

o o o 000 o

and

where T denotes the transpose. The
classical Gaussian elimination algorithm
provides a framework. for our analysis.
We follow the notations given in [1].
Let A=LU be the factorization of A, where

o o •

and

1 o . • • 0

o . 0

U= •

o o o • • • 0 1

Given the factors Land U, it is well
known that solving (2.1) is equivalent to
solving a system of three recurrences in
the following order:

316

(a)

(b)

and

c· J.
Wi=------

(bi-a i Wi-l)
, for n-l~i~2

Wi
Notice that ei = -

ci

(ki-ai gi-l)
gi = , for n~i~2

(bi-ai Wi-I)

kl
gl=-

bl

Xn=gn

(2.2)

(2.3)

(2.4)

Solving these three recurrences serially
requires not more than 8n scalar
operations.

Our method, I ike the recurs i ve
doubling, consists in first converting
the first-order nonlinear recurrence
(2.2) into a first-order linear
recurrence in vector form. More
specifically, define

Yi-l
Wi=-- , 1~i~n-1,

Yi

YO=l and Yl=b1/cl

Substituting in (2.2), we obtain

(2.6)

Thus, in this framework, solving (2.1)
reduces to one of solving the following
two sub-problems:

Problem 1: Solve for Vi, i=2 to n when

(2.7)

where V~ and Ai are 2xl and 2x2 matrices
respectJ.vely, given VI and Ai'S.

Problem 2: Solve for Zi, i=2 to n when

Zi = fiZi-l+d i (2.8)

where Zl,(f2,f3, ... ,fn)
(dl,d2, ... ,dn) are given.

and

The following section contains our
main result. For other methods of
solving linear recurrences refer to
[2,6,7,B].

3. A NEW PARALLEL ALGORITHM

We begin by presenting a new
parallel algorithm for solving Problem 1.
The solution Vi,i~2, to (2.7) in closed
form is given by

i
Vi = AiAi-l ... A2Vl = [,rr Aj]Vl (3.1)

J=2
As a first step in computing Vi's define
for u~v

u
B[u,v] = AuAu-l ... Av = rr Aj

j=v
Since the matrix product is not
commutative, the order of multiplication
is very important to our development.
(Vacuous products are taken to be unit
matrices) . The following properties of
the B[.,.] function are obvious:

Lemma 3.1

(a) For any r>l, B[u+r,v]
B[u+r,u+l]B[u,v]

(b) VI = B[i,2]Vl for all i~2.

This lemma readily suggests the
following parallel algorithm. Let P=2k,
n=2mp, q=p/2 where k~1 and m is a
multiple of 3. The following algorithm
uses 3q processors.

Algorithm V: Let Qj, O~j~q-l, refer to a
group of 3-processors. For consistency
assume, that Al is a 2x2 identity matrix.

stage 1: The processor group QO computes
the following:

FOR i = 1 to 4m
Vi = AiVi-l

END

Each of the processor group Qi, l~j~q-l
computes the following in paral~el.

FOR i = 1 to 4m
compute B[4mj+i, 4mj+l]

END

stage 2:

FOR s = 1 to k-l
base = 4m x 2s - 1
Using 2s 3-processor groups, compute
the following in parallel.
FOR i = 1 to 4m x 2s - 1
Vbase + i = B[base + i, base + 1] Vbase
END

317

FOR g = 1 to 2k- s - 1-l
using 2s 3-processor groups compute the
following in parallel.

FOR i = 1 to 4m x 2s - 1

END
END.

Compute B[m(I+2g)2 s +1+i,mg2 s +2+1]
END

The following example illustrates the
above algorithm.

Example 3.1: Let p=16, q=B and n=32m for
some m~3r,r~l. Various steps in each of
the stages of the Algorithm V are given
in Figure 1.

The following theorem is immediate.

Theorem 3. 1: Algori thm V computes V, IS

given in ,(3.1) for 2~i~n using 13q
processors 1n

(n/p) [2+4Iogp]-3

units of time.

Proof: In stage 1, there are q
independent segments of computations.
The first segment involves a chain of
4m-l matrix-vector products and each of
the other segments involves chains of
4m-l matrix products. Allot a 3-
processor group to each of the q
segments. The multiplication of two 2x2
matrices, using 3-processors can be done
in 5-units of time. However, since there
is a chain of products, referring to
Figure 2, it is readily seen that the
chain of (4m-l) matrix products can be
completed in 4(4m-l)+1 = 16m-3 units of
time: Likewise, the chain of (4m-l)
~atr1x-vector products can be completed
1n 3 (4m-l) 12m-3 units of time.
Clearly, the matrix products dominate,
and stage 1 takes (16m-3) units of time.

F~_gDf's=1 to k-2 in stage 2, there
are 2 segments of independent
computations. The first of these
segments involves matrix-vector products
and the rest of the segments involve
matrix products. By allocating 2s sets
of 3-processor groups to each of the
segments, (since the matrix products
dominate) it is easily seen that each
processor performs (2/3)m matrix
products. (Remember that m is a multiple
of 3). Thus, the computation in each
step s=1 to k-2 can be completed in
(2/3)mxI2 = Bm units of time.

The last step (s=k-l) involves only
the chain of matrix-vector products.
Each of the 3-processor group performs
only 2m matrix-vector products and this
step takes (2m/3)x6=4m units. Thus the
total time needed by the algorithm V is
(16m-3)+(k-2) (Bm)+4m=4m(I+2k)-3. since

n=2mp, the theorem follows.

We now present a parallel algorithm
for solving Problem 2 [12,13].

The solution to the linear first
order recurrence (2.8) in closed form is
given by

i i
Zi = E [~ fs]dj

j=O s=)+l
(3.2)

In the following we present a new
parallel algori thm for computing (3.2).
To this end, we introduce two functions
A[u,v] and Y[s,t] of ai's and di's.

Let

A[u,v]
v
II

r=u+1
(3.3)

where vacuous products are taken to be
unity and let

t
Y[s,t] = E A[j,t]dj' for t~s (3.4)

j=s

A number of useful properties of the
functions A[.,.] and Y[.,.] are developed
in the following lemmas.

Lemma 3.2: The function A[u,v] satisfies
the following:
(a) A[u,v]=l for all u~v
(b) A[u,v+m]=A[u,v]·A[v,v+m] for any

integer m>O
The proof of this lemma is
straightforward.
Lemma 3.3: The function Y[s,·] also
satisfies the recurrence of the type
(1.1), that is,

Y[s,t]=ftY[s,t-1]+dt (3.5)

Proof: Rewriting (3.4) we readily obtain

Y[s,t]
t-1

E A[j,t]dj+A[t,t]dt
j=s

Since A[t,t]=l and A[j,t]=ftA[j,t-1], the
lemma follows.

Lemma 3.4: Zt=Y[l,t] for all l~t~n. The
proof follows from the definitions.

The following lemma which is a
generalization of the Lemma 3.3 provides
the basis for our algorithm.

Lemma 3.5: If t~s then for i>o

Y[s,t+i]=A{t,t+i}Y[s,t]+Y[t+1,t+i] (3.6)
Proof: From equation (3.4) it follows
that

318

Y[s,t+i]
t+i

E A [j , t+ i] dj
j=s

t t+i
E A[j,t+i]dj+ E A[j,t+i]dj

j=s j=t+1
(3.7)

It is readily seen from equation (3.4)
that the second term is in fact
Y[t+1,t+i]. From Lemma 3.2

A[j,t+i]=A[j,t]A[t,t+i] (3.8)

Substituting (3.8) in the first term of
(3.7), the lemma follows.

Let n=2mp, p=2k q=p/2 where m~l and
k~l. In the following we ui~s 3q
processors. Let l~s~k and O~g~2 -1.
Our algorithm for solving (2.8) consists
of two parts: (1) a parallel Algorithm A
for computing A[U,v] and (2) a parallel
Algori thm Y for computing Y [s, t] . In
fact Algorithm A computes all those
A[u,v] which are needed in the
computation of Y[s,t]. Since these two
algori thms are working in parallel, the
total number of processors is equal to
the sum of the processors used in both
the algorithms but the time is maximum of
the time needed by the two algori thms.
The Algori thm Y uses p processors
PO,P1 ... Pp-1 and Algorithm A uses q
processors QO,Q1 ..• Qq-1.

Algorithm A:

Stage 1: Each processor Qj,O~j~q-1,
computes the following:

FOR i=l to 2m
Compute A[2m(1+2j),2m(1+2j)+i]
END

In this stage totally 2qm number of the
A[.,.] functions are updated using q
processors. Each update involves one
multiplication. The stage takes n/p(=2m)
units of time. '

Stage 2: Each processor Qj,O~j~q-2,
computes the following:

FOR i=l to 2m
Compute A[4m(1+j),4m(1+j)+i]
END

In this stage totally 2m(q-1) number of
A[.,.] functions are updated using (q-1)
processors. This stage also takes nip
units of time.

stage 3:

FOR s=1 to k-1
FOR j=O to 2k - s -2
Let h'=6m2 s - 1+2 s +1mj

FORJ i=1 to 2ms
compute A[hj-2mS, hj+i]
END

END
END

In any step s, there are 2k - s -1 groups of
computations and wi thin each group 2ms
number of A[.,.] functions are updated.
Since 2ms(2k-s-1)~2m(q-1), using not more
than (q-1) processors, each of the above
steps can be finished in not more than
nip units of time. Thus the entire
Algorithm using q processors does not
take more than (n/p[1+logp] units of
time.

Algorithm Y:

stage 1: Each processor Pi,O~i~-1,
computes the following:

FOR j=O to m-1,
Y[2im+1,2im+1+j]=a2im+1+jY[2im+j]
+d2im+1+j
END

stage 2: Each of the processors
Pi,O~i~-1, computes the following:

FOR j=O to m-1,
Y[2im+1, (2i+1)m+1+j]=

a(2i+1)m+1+jY[2im+1),

(2i+1)m+j]+d(2i+1)m+1+j
END

In each of the stages 1 and 2, totally
n/2 of the Y [. , .] functions are updated
using p processors. since each update
requires two operations (a multiplication
and an addition) each of the above stages
takes nip units of time.

stage 3:

FOR s=1 to k
FOR g=O to 2k - s -1

FOR i=1 to m2 s
Y[2 s +1mg+1,2 s m(1+2g)+i] =
A[2 Sm(1+2g),2 s m(1+2g)+i]Y[2 s +1mg+1,
2s m(1+2g)]+Y[2 s m(1+2g)+1,2 s m(1+2g)+i]
END

END
END

It is readily seen that at any step s in
stage 3, the algorithm identifies 2k - s
groups indexed by g and within each group
there are 2s processors working in
parallel. Thus within each group 2s m
number of Y [. , .] functions are updated.
It readily follows that computations in
each group take the same amount of time

319

equal to nip units. Thus the entire
stage 3 takes (n/p)logp units of time.

For the correct functioning of the
Algorithm Y, the values of A[2 s m(1+2g),
2s m(1+2g) i] for O~g~2k-s and 1~i~k must
be made available for each 1<s<k. In
fact, these functions are generated in
parallel by the Algorithm A. A close
scrutiny reveals that all the values of
the A[.,.] functions that are needed in
stage 3 of Algorithm Yare in fact
generated by Algorithm A at least one
step ahead of time. Thus the Overall
time for solving for Zi I S in (2.8) is
decided by the running time of the
Algorithm Y.

We now illustrate the Algorithms Y
and A through an example.

Example 3.2: Let. p=8, q=4, k=3, m=6,
n=96. The var10US stages of the
Algorithm Yare shown in Figure 3. In
Figure 4 further details of the
computations in stage 3 of Algorithm Y
are illustrated. Figure 5 illustrates
various stages of Algorithm A. Comparing
Figures 4 and 5, it is readily seen that
the values of the A [. , .] function are
made available at least one step ahead of
the time they are needed in Algorithm Y.

Theorem 3.2: Using a total of 3q
processors, Algorithms Y and A compute
Y[1,t] for 1~t~n in (njp) [2+logp] units
of time.

Proof: At the end of stage 1 of
Algorithm Y, Y[1,t] for 1~t~m anQ at the
end of stage 2, Y[1,t] for 1~t~21+1m are
computed. Thus the entire sequence of
Y[1,t] for 1~t~n is available at the end
of stage 3. This proves the correctness
of the Algorithm Y.

Of the (3/2)p processors, Algorithm
Y uses p and Algorithm A uses p/2.
Further, since Algori thms A and Yare
acting in parallel and Algorithm Y takes
longer time compared to Algorithm A, the
total time is that of Algorithm Y. It is
readily seen from the description of the
algorithms, that this latter algorithm
takes (nip) [2+logp] units of time and the
theorem follows.

We now state our main result.

Theorem 3.3: Let P=2k, q=(pj2), n=2mp
and k~1 and m is a multiple of 3. A
linear tridiagonal system of size n can
be solved, using 3q processors in

(njp) [(32j3)+6logp]-3

units of time.

Proof: Setting up each matri~ Ai
involves 2 divisions and 1 sign change
operation. since there are (n-1)
matrices and an initial condition to be
computed, this overall initialization,
using 3q processors takes (2n/p) units of ..
time. Solving. for Wi, and setting up the
g i computation in the form (2.9) needs
the computation of (Wi/ci), ki(Wi/ci) . and
ai (Wi/ci) . This part takes, using 3q
processors (8n/3p) units. Then solving
for gi and xi using Algorithms A and Y
takes (2n/p) [2+logp] units. Adding up
all these factors the theorem follows.

4. A COMPARISON OF VARIOUS ALGORITHMS

Table 1 gives the time and processor
requirements for a.: number of known
algori thms . It is readily" seen from
Table 1 that, with (n/2) processors, the
new method has 55% more processor
efficiency compared to recursive doubling
and 31% more processor efficiency
compared to odd-even·elimination.

For the purposes of comparing the
new method with the widely preferred odd-,
even reduction, we describe the latter as
follows [1]:

Let n~=n+1=2t for some t>O. Define

p~u)=(a~U),b~U) ,c~U) ,k~U» where
1 1 1 1 1

(0)
Pi =(ai,bi,ci,ki)·

Odd-Even Reduction:

Stage 1: (Ufhis' stage computes a set of
vectors Pi :

FOR u=l step 1 unitl t-1
FOR i=2u step 2u until n-2u

H 2u - 1

~1' (U-1)/b(U-1)
"" a i i-H

Yl' (U-1)/b(U-1)
c i i-H

c~u)
1

-Yi (u-1)
a i - H

b ~U-1) _a. (u-1) -Yi (u-1)
1 1 c i - H a i - H,

k~U-1) -ai (u-1) -Yi k (u-1)
1 k i - H i-H

END

END.

320

Stage 2: This stage recovers the
solution recursively. Let XO=Xn=O

FOR u=t step -1 until 1

END

FOR i=2u - 1 step 2u unitl n~_2(U-1)

H=2u - 1

X·=[k<,U-1)_a~U-1)x.
1 1 1 l-H-

-c ~U-1) x.]/b ~U-1)
1 l+H 1 END

This algorithm requires a total of only
19n scalar operations and thus is widely
preferr.ed when only a small number of
processors are available. It is readily
seen that the body of the loop in stage'l
involves a total of 14 scalar operations
and that in stage 2 involves a total of 5
scalar operations. Analyzing the data
dependency in the computations of the
above loops, it can be seen that with 3
processors, stage. 1 takes 5n uni ts and
stage 2 takes 4n units requiring a total
of 9n units. However, with 3 processors
the new algorithm requires only 8. 33n-3
units.

Likewise, if there are 6 processors
available, each iteration through the
loop in stage 1 takei 4 units and that in
stage 2 takes 4 units, requiring a total
of 8n units. But the new method takes
only 5.67n-3 units. Thus, the new method
compares favorably with the odd-even
reduction.

5. CONCLUSION

A new class of parallel algorithms
for solving tridiagonal systems that are
suitable for implementation on shared
memory multi-vector architectures such as
CRAY-XMP, Alliant, etc. is described.
While our analysis primarily relates to
the arithmetic complexity , it should be
interesting to actually implement and
compare its performance with other
parallel algorithms for solving
tridiagonal systems.

1.

2.

3.

REFERENCES

R.W. Hockney and C.R. Jesshope,
Parallel Computers, Adam and Hilger
Ltd, Bristol, 1981, Chapter, 5.

D.J. Kuck, The Structure of
Computers and Computations, Vol. 1,
Addison-Wesley, 1980~ Chapter 2.

D. Heller, "A Survey of Parallel
Algorithms in Numerical Algebra,"
SIAM Review, Vol. 20, 1978, pp. 740-
777.

4. H.S. stone, "An efficient Parallel
Algorithm for the Solution of
Tridiagonal System of Equations,"
Journal of ACM, Vol. 20, 1973, pp.
27-38.

5. H.S. Stone, "Parallel Tridiagonal
Equation Solvers," ACM Transactions
on Mathematical Software, Vol. 1,
1975, pp. 289-307.

6. S.c. Chen, D.J. Kuck and A.H. Sameh,
"Practical Parallel Band Triangular
System Solvers," ACM Transactions on
Mathematical Software, Vol. 4, 1978,
pp. 270-277.

7. ,A.H. Sameh and R.P. Brent, "Solving
Triangular Systems on a Parallel
Computer," SIAM Journal on Numerical

.. Analysis, Vol .. 14, 1977, pp. 1101-
1113.

8. D.O. Gajski, "An Algorithm for
Solving Linear Recurrence Systems on
Parallel and Pipelined Machines,"
IEEE Transactions on Computers, Vol.
30, 1981, pp. 190-206.

9. B.L. Buzbee, G.H. Golub and C.W.
Nielson, "On Direct Methods for
Solving Poisson's Equations," SIAM
Journal on Numerical Analysis, Vol.
7, 1970, pp. 627-655.

METHOD TOTAL TIME NUMBER OF
PROCESSORS

Serial
Gaussian 1 8n
El imin at ion

[1]

Recursive
Doubling n 2410gn

[1]

odd-even·
reduction n/2
[1],[3] 1910gn

~

-14

odd-even·
elimination n"
[1],[3] 1410gn

~

+1

n/2
1810gn

3n/4
New Method 1210gn+7

3p/2
(n/p)[(32/3)+610gp]-3

2~p~n/2

10. S. Fortune and J. Wylie,
"Parallelism in Random-Access
Machines," Proceedings of the loth
Annual ACM Symposium on Theory of
Computing, 1978, pp. 114-118.

11. J.L. Lambiotte, Jr. and R.G. Voigt,
"The Solution of Tridiagonal Linear
Systems on CDC-Star 100 Computer,"
ACM Transactions on Mathematical
Software, Vol. 1, 1975, pp. 308-329.

12. S. Lakshmivarahan and S,. K. Dhall,
"New Parallel Algorithms for Solving
First-Order and Certain Classes of
Second-Order Linear Recurrences, "
International Conference on Parallel
Processing, August 20-23, 1985, pp.
843-845.

13. S.K. Dhall, S. Lakshmivarahan and
M. V.R. Seshacharyulu, "Solving ,for
Cascade Sums and First-Order Linear
Recurrence on the 'HEP, "Proceedings
of ,the Workshop on Parallel
Processing Using the HEP, March 20-
21, 1985, pp. 303-326.

TABLE 1

SPEED-UP EFF IC IENCY TOTAL NUMBER

I
RATIO OF SCALAR

OPERATIONS

- - 8n

n 1 0(n10gn)

I
310gn ~

Bn 16
1910gn~-14 1910gn-14 1 9n~

8n 8
1410gn"+1 1410gn+1 14n"10gn ..

__ 4_n_ _8 _
910gn 910gn

8n 32
1210gn+7 3610gn+19

8p 16
(32/3)+10gp-(3p/n) 32+1810gp-9p/n

321

STAGE2
STAGE 1

Step 1 Step 2 Step 3
'..i1..i" m '..i1..i" m 1..i1..i8m 1..i1..i16m

QO
VpA1 Vi-1

Q1 QO-Q1
B[lIm+1,lIm+1] V IIm+ ~ ::

B[lIm+1, m+1]V4m

Q2 QO-Q3
B[Sm+1,8m+1] VSm+ i ::

B[Sm+i,Sm+1]V8m

Q3
B[12m+1, 12m+1]

Q2-Q~
B[12m+1, m+1]

QII QO-Q7
B[16m+1,16m+1] v'6m+i ::

B[16m+1,16m+1]V'6m

Q5 QII-Q5
B[20m+1,20m+1] B[20m+1,16m+1]

Q6 Q4-Q7
B[2I1m+i,2I1m+1] B[24m+i,16m+1]

. Q7
B[28m+i,28m+1]

Q6-Q7
B[28m+i,2I1m+1]

FiBur~ 11 An Illustration of Algorithm V. p::16, q::8, n::32m for 90me m!1.

Let

r' r, "'] . 91 ["' °1

b,]
d1

8nd for i!1

[1+'
r1+1

"+!]
91+1 ·r ri

Time ~

o 2
Prooessor

I 1

2

81 82 81 b2

b, 0 2 b1d2

3 Pi

I"

la,
°2

b']
d2

"'] [a1+2
si e i+2

b1+2]
d1+2

3 II 5 6

°1 8 2 °1 b2 P1 a 3 P1 b3 _ ..
d, c 2 d , d2 q1 c 3 q, d 3

q, Y2 s2 P2

7

r, a 3 r1 b3

s1 b3 s1 d3

8 9

P2 a q
-~--

Q2011

s2

10

P2 b3
q2 dq

P3 q3
II units q units II units

FiBure 21 A schedule for obtaining the ohain of matrix
produots required in Algorithm Y in stage 1.

322

STAGE 1 STAGE 2 STAGE 3

O • .$,j.$,S O.$,j.$,S s=1 s=2 s=3
1.$,i.$,12 1.$,i.$,24 1.$,i.$,lIa

Po: Y[1,1+j]

Po: Y[1,7+j]

Pp Y[13,13+j] PO-P,
Y[1,12+i]

Pp Y[13m19+j]

P2: Y[2S,2S+j]

P2 1 Y[2S,31+j] PO-P3
Y[1,211+i]

P3: Y[37,37+j] P2- P3
y[2S,36+11

P3 IY [37,1I3+j]

PII:' Y[1I9,1I9+j]

PS:

P6:

P7:

Y[61,61+j]

y[73,73+j]

Y[all,all+j]

g

g

g

g

g =

g

g

PII: Y[1I9,55+j] PO-P7

PII-PS
Y[1I9,60+i] Y[l,lIa+i]

Ps: Y[61,67+j]

P6: Y[73,79+j] PII-P7

P6- P7
y[73,8IJ+i] 1[1I9,72+i]

P7' [all,91+j]

Figure 3: Various Stages of Algorithm T when
n = 96, p = a, m = 6.

s = 1, 1 < < 12

0: Y[l,12+i] A[12,12+i]Y[1,12] + Y[13,12+i]

1 1 Y[25,36+i] A[36,36+i]Y[25,36] + Y[37,36+i]

2: Y[1I9,60+i] A[60,60+i]Y[1I9,60] + Y[6I,60+i]

31 Y[73,all+i] = A[all,all+i]Y[73,all] + Y[aS,all+i]

s = 2, 1 < <211

0: Y[1,211+i] A[2I1,211+i]Y[1,211] + Y[2S,211+i]

1 1 Y[1I9,72+i] = A[72.72+i]Y[1I9.72] + Y[73. 72+i]

s = 3. 1 < 1< lIa

0, Y[1,lIa+1l = A[lIa,lIa+i]Y[1,lIa] + Y[1I9.lIa+1l

Figure II, Details of the Stage 3 Computation for Algorithm T

when n = 96. p = a and m = 6.

323

STAGE 1 STAGE 2 STAGE 3

1.s,i.s,12 1.s,i.s,12 s = 1 s = 2

1.s,1.s,12 1.s,1.s,24

QO: A[12,12+i]

QO: A[24,24+1]

Q1 Z A[36,36+i] QO: A[24,36+i]

Q1 Z A[48,48+i]

Q2: A[60,60+i] Q1 : A[48,60+1]

Q2: A[72,72+1] QO-Q1

A[Q8,72+i]

Q3: A[8Q,84+i] Q2: A[72,8Q+i]

Figure 5z Various Stages of the Algorithm A when

n = 96, m = 6 and p = 8.

324

A PARALLEL COMPUTER BASED ON CUBE CONNECTED CYCLES
FOR WAFER SCALE INTEGRATION

Moon Jung Chung. Edward J. Toy*. Aarti, Gupta

Rensselaer Polytechnic Institute. Troy NY 12180

ABSTRACT

The wafer scale integration (WSI) implementation of
a single instruction multiple data (SIMD) computer with
processing elements (PEs) grouped in a Cube Connected
Cycles (Ccq network is presented. Such a network is a
good candidate for WSI due to the homogeneity of the
network's PEs and the localized processor connections. A
RISC based instruction set and an architecture supporting
such an instruction set has been developed for the process
ing element. The data path design for a single chip imple
mentation of this processing element is outlined. along with
initial timing and area estimates. Programming is accom
plished by the specification of logical networks of processors.
providing great flexibility in using the CCC network. Yield
considerations for the implementation of this parallel com
puter with 512 PEs capable of operating on up to 128k data
points for a 2J1. m CMOS process in WSI are given.

Keywords: Cube Connected Cycles. Parallel Processing.
Wafer Scale Integration. VlSI. Computer Architecture.

Introduction

Scientists and engineers are frequently confronted by
computationally intense problems. Solving these problems by
traditional sequential algorithms are proving inadequate due
to their lengthy processing times. In response. parallel algo
rithms for such problems as Fourier Transforms. convolu
tion and matrix manipulation have been developed l .21.26.29.36
To realize the computational power of these algorithms.
massively parallel computers need to be developed. Applica
tion of this technology in such diverse fields as physics.
computational geometry. signal processing and design auto
mation and could potentially lead to the solutions of prob
lems beond the scope of present computers.

This work .describes the implementation of a parallel
computer consisting of 512 processors functioning as an
SIMD machine. connected with the Cube Connected Cycles
(Ccq network32

. capable of operations on problem sizes of
up to 128k data points. Wagner has developed a boolean
vector computer based on this network39. While this
machine is only capable of boolean operations on three 1 bit
variables. it serves to demonstrate the versatility of the net
work. The salient features of the CCC network are: 1) inter
processor connections are strictly limited to three: 2) the
network control is highly regular: 3) all processing elements

* Supported by a Dig,}tal Equipment Corporation Fellowship

CH2345-7j86jOOOOj0325$Ol.OO© 1986 IEEE
325

are identical. A CCC network can also efficiently emulate
other networks (e.g. Shuffle Exchange. Tree based. Mesh
networks). It is also our intention to demonstrate that WSI
is an effective means of implementation of such systems.
The design will be discussed from the point of view of both
hardware and software.

The paper is divided as follows Wafer Scale Integra
tion is introduced first. giving the rational. problems and pro
posed solutions of the technology. A brief review of the
CCC interconnection network. followed by a novel method of
supplying instruction streams to the network is then
described. The envisioned programming environment is then
outlined. Detailed description of the processing element. cov
ering the instruction set. data path archictecture. timming.
floor pain and initial area estimates are given. In conclusion.
implemetaion of this computer in both a wafer scale integra
tion and hybrid packaging enviornments are considered. A
summary of this work was presented by Chung et. al67

Wafer Scale Integration (WSI)

Large digital circuits can be fabricated through WSI
technology to yield a complete component encompassing an
entire silicon wafer. The silicon wafer is then packaged
intact and can be used as a component in conventional (i.e.
board level) design methods. forming a complete system. In
WSI. these large circuits are partitioned into modules which
form the die sites on the wafer. The fabrication of these die
sites is identical to that of current VLSI fabrication technol
ogy. After fabrication. the devices are tes ted and functioning
dice are connected in place to form a working component.
The main deviation from current IC technology is that the
wafer is left intact. Not all the dice fabricated will be func
tional and hence WSI is dependent upon the wafers yield.
implying the need for redundancy and fault tolerance in
desi gn&·2U 1.33. An effec tive method must exist to intercon
nect the functioning devices on the wafer if WSI is to be
considered a viable technology2315,33.34 The following sec
tion gives the rationale behind WSI. An overview of the obs
tacles in WSI. along with some of the proposed solutions for
these obstacles are outlined. Concluding our discussion of
WSI will be a description of the technology selected to
implement this project.

Why Wafer Scale Integration?

The concept of wafer scale integration (WSI) to pro
duce large scale integrated (lSI) circuits was first proposed
by 122). Initially. it was seen as a method for combatting
poor yield in fabricating lSI circuits. As semiconductor
manufacturing matured. increased die sizes permitted the
required levels of integration within a single chip. At that
point. the WSI concept was no longer considered a viable

technology2s.

Over the past two decades. the majority of the cost
in electronics systems has migrated from the raw com-

ponents to packaging and assembling the components s.
Avoid~nce of costly printed circuit packaging has led to

interest into better utilization of silicon interconnect8.2J

While the cost of a silicon wiring layer is approximately ten
times that of a printed circuit wiring layer. three orders of

magnitude increase in wire density is achieved 8
. The result is

a system with near a factor of 100 increase in function/cost

with silicon wiring8. By using WSI. an order of magnitude
increase from conventional packing density can also be

achieved l9
.
27

Another concern in electronic systems is the com
munication speeds between modules. With conventional
technologies. significant delays can accrue when signals

travel between packages 38. By incorporatin'g signal paths
within a single package. the inter-module delay will be

reduced due to shorter wire lengths 34. If all the critical paths
reside within the wafer. significant performance gains can be

achieved38. Further gains in signal speed can be realized by
fabrication of thick wires on the wafer ('" 5/1 m thick X
10,1 m wide on 511 m of dielectric). Signal paths of these
dimensions exhibit lC-transmission line behavior as
opposed to RC charging lines. reducing the delay to that due
to propagation at the speed of light (in the dieletric medium

being used) over the length of the wire 2.lo Silicon wiring
also reduces the capacitive loads seen by the chip' s drivers.
resulting in smaller drivers and reduced power supply require·

ments2S.27.38. Although the power consumption will

decrease. the heat flow (watts/cm 2
) will increase due to the

much denser system.

With WSI the overall system reliability can be
improved. The major failure sites of modern electronic sys
tems occur at the interface of the various packaging levels

usedls.2s.31. It has been noted in 116] that the chip to pin
connections are the major source of device failure. Causes of

such failures include weakened die to package bonds ls and

thermal stresses l6. By incorporating a majority of the con
nections within a single package (i.e. a wafer). the intercon
nection system remains mono-metallic and will therefore be
more reliable. If the number of external I/0 ports on the
wafer are less than the pin to chip connections in a printed
circuit board. the overall system reliability will increase. The
entire wafer would finally be hermetically sealed. further

reducing the system's vulnerabili ty 27.

326

WSI Problems & Solutions

Current problems inhibiting the development of WSI
systems include developing a feasible interconnection tech
nology. heat dissipation. package design. CAD tool develop
ment and architecture selection. The development of a
method to reconfigure wafers is crucial for the successful
implementation of WSI systems. Proposed methods for res-

tructuring· the wafer include laser programming 4.13 .. electri

cally alterable signal paths17 . electron beam programming of

floating gate transistors34 and discretionary wiring22.2s. (Dis
cretionary wiring connects working modules with additional
layers of interconnect). Some functioning wafer scale sys

tems have been fabricated with such techniques 12.17.33.34. If

conventional geometries are used to form the interconnect.
coupled with parasitics introduced in the restructuring pro
cess. the speed of the interconnect can restrict the overall

system performance 10. WSI packages employing water3t .

liquid nitrogen and air l9 cooling techniques have been

developed for heat flows of up to 50 W / cm 21J11. Although
extensive CAD tools have been developed for the routing of

WSI circuits 919 3133. simulation tools for such large systems
are still unavailable.

Using WSI for logic intensive applications has been
criticized in the past due to the redundancy required when

using different reticles on the same wafers.s.l7. To avoid such
problems. the architectures considered in this work have
been limited to the Single Instruction Multiple Data (SIMD)
type. Since the wafer will be populated with a single die
type (neglecting the I/O circuitry). any defective processor
can be replaced with any available spare. Another advantage
with the SIMD approach is that the PEs will require a lim
ited amount of control circuitry. reducing the overall area of
the die significantly. A number of SIMD np.tworks were
considered. with the CCC being selected as the best avail
able.

The discretionary wiring approach as outlined in [25)
will provide the implementation vehicle for the CCC com
puter. An intermediate step towards this goal using the

Wafer Transmission Module (WTM) 10.37 will also be used.
Both these issues are briefly outlined below.

Discretionary Wiring With Wafer Transmission lines

The approach to wafer customization in [25) com

bines discretionary wiring with a thick film liftoff process2.
The wiring formed by this approach will be of transmission
line quality. layers are provided for the power and ground
planes. two signal layers and three via layers for interconnec
tion of signals between layers. First a lOllm dielectric
(polyimide) layer is deposited on the wafer. A pattern is
then defined and etched. providing stud vias from the die
sites to the remaining signal layers. Anothe'r layer of
polyimide is applied. patterned and etched defining the the
ground plane. The process is then repeated for successive
layers. Note that this process results in planar layers of
metalization on the wafer.

Since each wafer will have a unique interconnection
pattern. an efficent method of transferring this pattern to the
wafer is required. The use of optical masks would be ineffi
cent since such masks would be used once and then be

discarded. A system to directly transfer the interconnection
pattern from a computer data base to the wafer is being
developed using an IBM EL-2 Direct Write Electron Beam
system9 . The discretionary wiring must have a 100% yield.
or a system to repair wiring faults will have to be developed.
Since no fabrication process can provide a 100% yield. a wire
repairing system is being developed through the use of a
scanning electron microscope to locate faults in conjunction

with a focussed ion beam to repair such faults 9
.

The Wafer Transmission Module (WTM)

To avoid the initial fabrication problems associated
with discretionary wiring. the Wafer Transmission Module
(WTM) was proposedIO. 37

. The WTM is a hybrid package
incorporating signal interconnect. bypass capacitors and
power buses on a substrate. Differences between the WTM
and current hybrid packaging include the use of thick film
interconnect and a silicon wafer as a substrate. Using a sili
con substrate permits batch processing of the substrate with
current Ie processes. while also minimizing the thermal
stresses within the package. Chips are fabricated. tested and
scribed as in conventional processing. Functioning chips are
then affixed to the wafer by wire bonding or solder bumps.
Faults in the WTM interconnect are avoided by providing
redundant signal paths such as 10 bit lines for an 8 bit bus.
2 control lines where 1 is required etc. The interconnect
would be tested prior to mounting the chips. which are then
connected to only functioning wires. If a wafer does not have
enough good wires. it will be discarded. The WTM elim
inates the dependence on yield and reconfiguration in the
WSI approach while achieving comparable speed. density and
reliability. A similar package has been fabricated using thin
film interconnect for a four chip Wallace multiplier!:;.

The Cube Connected Cycles (Ccq

The cce is derived from the binary n-cube30 such
that the network has a bounded node degree with no signifi
cant loss in processing speed. Galil and Paull I have used the
cec in defining a universal parallel machine. implying that
the cee can be used to simulate any special purpose parallel
computer with a reasonable slow down factor (~ O[Iog22n]
time). The cee can also do certain permutations in

0llog2n] time 32

The CCC network consists of n=2k processing ele
ments. k being an integer such that k~r+2r. r being the
small('st integer that satisfies this equation. Each PE has a
k bit address M. which is partitioned into two fields I«p. p,
such that M=- <1>2r + p. The PEs are grouped into 21k- r
cycles of 2r nodes per cycle. The (k-r) bits of the <l> field
specifies the PE's cycle. while the r bits of the p field gives
the PE's position within the cycle. The inter-cycle connec
tions form a (k·r) dimensional cube or hypercube .. A 64 PE
CCC network is shown in figure 1 with n=64. k=6 and r=2.
Note that there are 21k - rl=16 cycles of 2r =4 nodes per
cycle. The connections between PEs of the same cycle are
termed links. while connections between processors in dif
ferent cycles are called sheaves. The PEs of the CCC net
work have three I/O ports denoted forward (F). backward
(B) and lateral (L). The F. B. and L PE interconnections are
defined by the following .t!quations:

327

Figure 1 : 64 PE CCC Network

1) F(<l>.p)= B(<J>.(p+1)mod 2r)
2) B(<J>.p)= F(<J>.(p-1)mod 2r)
3) L(<l>.p)= L(<1>+(.2P.p):

where (-'1- 2.bit p (<<P)

The term bit p(<P) is the value of the pth bit of the binary
expansion of <1>. and can take a value of 1 or O. Note that the
F-B connections are links and the L connection is a sheaf.
The cce network of figure 1 will be controlled by a host
computer. The controller will provide both instruction and
data streams. along with other control signals. to the cec
network. The controller's design is the subject of future
research.

Instruction Broadcasting

In a synchronous SIMD machine (as in this case). all
PEs must execute the same instructions at the same time.
Ideally. it would be desirable to broadcast instructions to
each processor in the network concurrently. Unfortunately. in
this network it is also desirClble to minimize the global wir
ing since signal transmission via this wiring would be slow
and consumes much power. An alternative to global broad
casting is necessary that minimizes the delay of instruction
distribution while ensuring that all PEs execut~ the same
instruction at the same time. The approach taken restricts
communication of instructions to occur only between adja
cent processors within a cycle (i.e. those whose p addresses
differ by 1). Instructions are broadcast from the controller to
the first node of each cycle (i.e. to node of address (* ,0)).
The instructions are then transferred from this node to the
rest of the nodes within the cycle. The instruction transfer
is pipelined so that only one instruction per execution phase
need be transmitted to the cycle. This method is similar to
that of filling a data path pipeline before a result can be out
put.

To minimize delay in instruction transfer. each PE is
equipped with an instruction queue (IQ) which stores the
instructions to be executed by the PE. Consider the instruc
tion stream that is to be executed as shown in figure 2 and
the CCC cycle in figure 3A. Note that the length of the

Instruction Instruction
number

0 INST A
1 INST B
2 INST C

• •
• •
• •

2'-2 INST (Q-2)
2'-1 INST (Q-1)
2' INST (Q)

Figure 2- Instruction stream for input to the cycle

instruc tion queue is· different for each node and depends on
its position within the cycle. The length of the instruction
queue can 'be determined from' the cycle length and the
node's p address field by the following equation:

Queue Length (QL)=2' + 1- P

Where p is the node' s position within the cycle and 2' is the
number of nodes within the cycle. Before instruction execu
tion can begin. we must distribute the first 2r+1 instructions
to each cycle within the network.

The process begins by transmitting the first instruc
tion to the first node of the cycle (see figure 3A). This
instruction is stored in the front of node(* .O)·s instruction
queue. In 'the next phase. the second instruction is transmit
ted to node(* .O} of the cycle and is placed in the second
position of nodt'(* .O)'s instruction queue (see figure 3B),
Concurrently. the -instruction located in the front of
node(*.O)'s instruction queue is transmitted to node(*.!)
and is stored in the front of node(* .1)" s instruction qup.ue
(see figure 3B). This process repeats for a total of 2' steps.
at which time the first instruction to be executed is

. transmitted from node(*.2'~2) to node(*.2'-1) (see
figure 3C). Recall that each cycle contains 2r nodes labeled
(*.0).(*.1).(*.2)• (*.2r-1). where * denotes the
cycle number.

After the first instruction is received at node(*.2'-1).
execution can commence. At step 2'-1. the instructions are
distributed within the cy.cle as shown in figure 3C and
instruction execution proceeds' as follows. First. each node
within the cycle executes the instruction 'at the front of its
instruction queue. Upon completion of this instruction.
node(* .p) transmits the instruction at the rear of its instruc
tion queue to node(*.(p+1)mod 2') (see figure 3D). Note
that node(* .0) receives an instruction from the controller and

·that node(*.2'-1) does ,not have a node above it to transmit
to The instruction queue is then shifted forward one posi
tion(see figure 3E). overwriting'the front of the queue. The
front of the queue now contains the next instruction to be
executed. The process repeats for all .subsequent instruc
tions. requiring only one instruction transfer between adja
cent nodes per execution cycle. New instructions enter the
cycle during successive phases through node(* .0) ,of each
cycle.

328

R
115nUC11D_

OIJ(U(S B
11STlUCII0I

Dums

Ilatt

i:t~!:!

t:i
a-I_

E IISTlUCTIOI
.oocuu

Figure 3: Instruction Broadcasting Example

Programming by Logical Networks

It is known that CCC can operate as a universal

parallel machine ll
. It can simulate every reasonable parallel

machine with only a small loss of time and with essentially

the .same number of processors II. For example. the CCC can
emulate a hypercube with a 0llog2n] slowdown factor. In
fact. it can emulate a large class of hypercube algorithms
(Ascend and Descend type) within a constant slowdown fac-

tor32. Any fixed dimensional cube (eg. 2D mesh. 3D cube)
can be emulated·. efficiently by a hypercube Consider. for
example. the mesh network of figure 4. Each PE is identified
by an ordered pair of its cartesian coordinates. 'Note that
adjacent PEs differ by only one in any of the two coordi
nates. We determine the address of the node (to which each
mesh PE is mapped) by applying Gray code to the mesh
PE's coordinates. In this way adjacent PEs get mapped onto
nodes whose addresses differ in a single bit position. These
nodes therefore form a hypercube with the required adjacen
cies being the hypercube connections. These are easily realiz
able on the CCc. In this manner a mesh network can be

Figure 4: Logical Mesh Connected Network

efficiently realized on the CCc. Also. tree networks can be
emulated by CCC within a 0l'og2n] factor. Tree-like compu
tations (such as counting) can be emulated within constant

factor3
. We therefore propose a parallel programming

environment for the CCC based on the specification of logical
networks of PEs.

A user may specify any logical network to execute
algorithms written in a programming language similar to
Concurrent Pascal. In the network specification. the user will
specify a PE node type. define the interconnection pattern
between nodes. describe .data and control communications
and finally the instruction set to be executed by the node.
The instruction set will be restricted to a finite set of inter
node. 'as well as intra-node data movement and data path
instruc tions. Initially. we intend to support the specification
and programming of the CCc. Hypercube. Mesh'. Tree.
Pyramid. and Shuffle Exchange networks.

For example. consider the logical mesh connected
network of figure 4. The network could be specified by
defining the interconnections in terms of the cardinal direc
tions such as NorthIPE(3.2)]f--tSouthIPE(2.2)]. The pro
gram segment shown in figure 5 could then be specified for
such a network. The program first specifies the network as
an n by n mesh of PEs. each containing two integer type
records. The next section of the program specifies the type
of operations to be performed. If the four connections to a
PE are denoted by the cardinal directions. this operation
specifies that a PE is to sum and store the values stored in
its north and west neighbors. This network specification and
program is then mapped onto the CCC and its instruction
set

By allowing programming via the specification of a
logical network. the details of the physical CCC network
remain hidden. This eliminates the need for programmers to
provide information concerning the pipelining of instructions
and data on the CCc. These details will be extracted from
the logical network's specification and its associated instruc
tion sequence. To further aid the user friendliness. we intend
to provide a graphical interface for entering the network's
connection pattern and program

A compiler will take the network specification (and
its program) and will generate a sequence of "MACRO"
instructions that are supported by the underlying CCC. A
MACRO instruction specifies the movement and processing
of data via the CCCs sheaves. cycles. and nodes. To do

network A: MESH nby n of

end:

record X: integer;
Y: integer:

end

for if p .. n]. j (p .. m) do

AIi.jJf- AIi.j+ J]+AIi-1.jJ

Figure 5- Sample program for a logical mesh. network

329

sllch emulations. MACRO instructions such as BSHIFT.
FSHIFT (forward and batkvyard cyclic shift). LSHIFT (left
lateral shift) RSHIFT (right lateral shift). and NO-OP
instructions are necessary. These MACRO instructions are
then mapped into sequences of CCC instructions.

If the logical network is not already specified in the
compiler. the network and its program must be defined
using MACRO instructions of the type listed above
(e.g. BSHIFT. FSHIFT. LSHIFT and RSHIFT). This allows
a user to emulate an arbitrary.network. However. a program
mer must fully specify the operations. in terms of the
MACRO instructions. necessary to emulate the logical net
work.

The Processing Element (PE)

In this section. the PE instruction set and architec
ture are detailed. We start with a brief description of the
number representation llsed. We then present an instruction
set based on the RISC conceptI4.2028.35. and relate this
instruction set to the instruction execution cycle of a con
ventional processor. An example of a typical execution
sequence is shown. Details of implementation of conditional
blocks have also been given. This is followed by a descrip
tion of the hardware elements in the PE. In conclusion. we
briefly give some timing estimates for performance evalua
tion.

Number Representation

We have adopted a very simple number representation
for the processing elements. The word length is 16 bits.
with negative numbers in two's complement notation.
Integer data can be represented by any number of words.
depending on the size of the number. For floating point data.
the mantissa is 32 bits long organized as two 16-bit words.
The exponent is represented by a separate 16-bit word. This
representation enables floating point operations to be imple
mented as a series of integer operations and avoids the task
of field extraction. While this system is simple. it allows
much faster execution of floating point operations with our
instruction set than would be possible with a standard float~
ing point representation.

The PE Instruction Set

A normal data path cycle on a conventional processor.
as shown in figure 6 consists of the following phases:
1) Operand Fetch: 2) ALU Operation: 3) Result Store. The
aggregate of these phases is denoted as a major cycle. A
processor implementing a major cycle must contain a certain
amount of control logic to schedule these events. breaking
this major cycle into a series of operations we term minor
cycles (see figure 6). Note that a significant amount of
information must also be provided in an instruction
representing a major cycle (i.e. source operand. addresses.
opcode. and destination address). Providing such information
to a processor efficiently will require a large number of bits
even with encoding and will also require a co~plex 'control
circuit. To have a processor that is as simple as possible. we
provide instructions as minor cycles. Providing instructions
as minor cycles allows great flexibility in controlling the
PE's actions. Such flexibility will be needed if the emulation
of other networks is to be done efficiently.

I IF I EX IDIOI

/~

MRJOR
CYCLE

MINOR
CYCLES

Figure 6- Conventional Processor Cycle

The decoding for each of these minor cycles is going
to be .simple and can be done in parallel with execution i.e.
instruction i+1 is decoded while instruction i is being exe
cuted. (Note that this implies an extra queue position per
processor for the 10 scheme discussed earlier). Since an
SIMD machine does not allow branching within program
memory. this decode/ execution pipelining does not intro
duce any constraints. It is completely transparent to the user
in that the user is aware of one minor cycle being executed
every clock cycle.

The proposed instruction set is shown in figure 7
(and the associated data path is shown in figure 14). The
instruction set can be split into the following three
categories: 1) Load-Store: 2) ALU: 3) Data Transfer. The
complete instruction set has been encoded into a format 12
bits long. Details of the encoding scheme can be found in
(7).

The Load-Store type instruct ions control the move
ment of data between the register file and the ALU. To facil
itate floating point (32-bit) operations. separate load-store or'
the high and low words (16-bits) have been provided. An
option is also provided to load an 8-bit immediate data into
the ALU.inA register using the LLIT (Load LITeral) instruc
tion.

ALU instructions are those that implement data
modifications within the PE. One input to the ALU (R1) is
always provided by the register ALU.inA The other ALU
input (R2) can be either ALU.inB or ALU.out. For the unary
ALU operators. the input (Source) can be either R1 or R2.
The result of the ALU operation (Dest) can again be either
ALU.inB or ALU.out. The flexibility in choosing the sources
and destination of the ALU operations helps in handling of
floating point operations. For the same reason. a 16-bit as
well as a 32-bit mode has been provided for the ALU. The
AL U also has a set of four condition flags- C:Carry.
V:Overflow. Z:Zero and S:Sign. These flags are set or reset
based upon the result of the ALU operation. The status of
these flags can be used to conditionally execute instructions
as explained in a later section. It is to be noted that instead
of providing a separate Shift instruction. an option is avail
able to cyclically shift (left/right. with/without carry) the
results of some ALU instructions (PASS.ADD.SUB). The
shift is performed immediately before the results are sent to
their destination ego an add and shift can be done in one
cycle.

Data transfer instructions control the PE's three con
nections (i.e. Forward. Backward. Lateral). These instruc
tions simply schedule de&ta transfers between processors.

330

A sample of a typical sequence of instructions imple
menting a data path major. cycle is shown in figure 8. The
normal data path cycle starts with the loading of the ALU's
input buffers with two operands. followed by the execution
of the operation' within the AL U. The result of this operation
is then stored in the register file. Note that we show the
two operands being read ,in sequence rather than in parallel.
This is because the PE's register file has only one port. as
described in the next section.

The overhead associated with the transfer of instruc
tions between nodes can be eliminated as follows. Since the
operations of the instruction decoder. data path and the I/O
circuits are disjoint. the three phases of instruction decode.
execution and transfer can be overlapped as shown in fig
ure 9. This pipelining eliminates the delay in instruction dis
tribution in all but the initial phases of the CCCs operation.

The data transfer between nodes by the FWDTR.
BWDTR and LATTR instructions can also be pipelined.
Note that the data transfer instructions are disjoint in opera
tion from all but the LOAD/STORE type instructions. Pro
vided that the effects of LOAD/STORE instructions remain
orthogonal to the effects of the data transfer instructions.
the data transfer instructions can be executed concurrently
with the remaining instructions. Th~ Controller can ensure
that the data transfers and LOAD/STOREs are disjoint by
prohibiting access of an I/O register while it is transmitting
or receiving data. To implement this pipelining. two addi
tional bits of the instruction field will be used to specify the
state of the I/O operations (i.e. OO:FWDTR. 01:BWDTR.
10:LATTR. 11:no transfer). We will therefore have two
instructions executing concurrently in one cycle.

Conditional Instructions

When implementing conditional blocks of code in an
SIMD machine. as found within an IF- THEN-ELSE state
ment. the instruction streams must. remain identical in all
PEs. Standard implementations can not be applied because
bypassing blocks of instructions via branching in the instruc
tion memory is not allowed. The processors must be pro
vided with each block of instructions for all possible out
comes of a conditional statement. executing only the block
that corresponds to the satisfied value of the condition.

To illustrate. consider the IF-THEN-ELSE block
shown in figure 10. When providing a PE in an SIMD net
work with instructions that implement this program. both
the block of instructions for the IF segment (B1 etc) and the
ELSE segment (B2) must be provided to the PE. If this is
not done. the SIMD network controller will be required to
monitor each proces sor to determ ine the outcome of the
conditional test. and will then have to provide each individual
processor with a unique instruction stream. This is not a
feasible scheme. especially if there are a large number of PEs
(as in our casel

III order to have the same instruction stream for all
PEs. the condition codes of an earlier instruc,tion must be
able to affect the execution of future instructions. A scheme
for implementi ng this structure is as follows (see figure 11).
We have a one-bit wide and N-word deep stack called the
Condition Stack (CS). Any instruc tion is enabled to execute
if and only if all the 1-bit words of the CS are set i.e. the
execution Enable signal is derived by a logical AND of all the

PROCESSOR ELEMENT INSTRUCTION SET

Instruction Operation Comments

Load-Store
LOA L Rs ALU.in~ L +- Rs Load low 16 bits of ALU.inA with RF(Rs)
LOA H Rs ALU.inA H +- Rs Load high 16 bits of ALU.inA with RF(Rs)
LOB L Rs ALU.lnB L +- Rs Load low 16 bits of ALU.inB with Rr(Rs)
LOB H Rs ALU.lnB H +- Rs Load high 16 bits of ALU.inB with RF(Rs)
STR L Rd RF(Rd) +- ALU.out L Store low 16 bits of ALU.out in RF(Rd)
STR H Rd RF(Rd) +- ALU.out H Store high 16 bits of ALU .out in RF (Rd)
LLiT L ALU.inA +- literal Load ALU.inA bits 0-7 with literal from the IQ.
LLlT'H ALU.lnA +- literal Load ALU.inA bits 8-15 with literal from the IQ.

ALU t
NOP none No operation- nothing happens
PASSt Oest +- Source Pass the selected operand to the ALU Destination.
AODt Oest +- Rl + R2 Integer addition
ADDC Oest +- Rl + R2 + Carry Integer addition with carry
SUBt Dest +- Rl - R2 2's complement subtraction
SUBC Dest +- Rl - R2 - Carry 2's complement subtraction with borrow
AND Dest +- Rl n R2 Logical And
OR Dest +- Rl u R2 Logical Or
XOR Dest +- Rl @ R2 Logical Exor
COMP Dest +- Source Logical (1's) complement .
INC Dest f- Source + 1 Increment
DEC Dest Source - 1 Decrement

Data transfer

FWDTR BRin[*. (p+ 1) mod2 rJ
+- FRout(* ,pJ (ForWarD TRansfer] Data contained in the forward out-

put register of node (* .p) is transferred to the backward
input register of node (*(p+ 1}mod 2r)

BWDTR r Hln(·, (,,-1 'mod2'J
+- BRout[* ,pJ [BackWarD TRansfer] Data contained in the backward

output regis ter of node (:4:. p) is transferred to the forward
input register of node (*.(p-l)mod 2T

LATTR LRin[*+24> ,pJ--LRout[* ,p)
LRln[* ,pJ+- LRout[*+2¢ .pJ [LATeral TRansfer) Simultaneous data transfer between

PEs connected by a lateral connection,

t ALU instructions will set the ALU's condition codes
(C:carry. V:overflow. Z:zero. S:sign)

t Optional shift of results (shift right.left.with carry. without carry)

Figure '1: 7 Processing Element Instruction Set

INST I INST I+1 INST I+[
EXEC EXEC EXEC

LOA Rs LOB Rs ALU op STR Rd
INST 1+1 INST 1+[INST 1+3

DEC DEC DEC
INST 1+[INST 1 +3 INST 1+4

TRRNS TRRNS TRRNS
Figure 9· Instructions implementing a data path cycle

Figure c. fit Instruction Pipelining

331

r-~1fTe~~~111--ti~~;;=-=c_-_c·: .. (~r
begin
B1
if (eond2) then

begin
(1
if (cond3) then

01
else

02
endif
end

else
(2
endif
end

else
B2

I endif

.... (b)

.... (e)

.... (d)

.... (e)

.... (f)

.... (g)

.... (h)

.... (i)

Figure 10- Sample Conditional Program

CONDITION fLAGS C V Z S C V Z S
(fROM RLU)

MUX
SELECT

(fROM INST.
DECODER)

TOP

CONDITION
STACK

8: I MUX

AND

ENABLE

'I' fILL

Figure 11 : Hardware for Conditional Evaluation

CS bits. As mentioned earlier, the ALU has 4 condition flags
(C.V,Z,S) and their status can be used to execute an
instruction conditionally. We provide an 8-to-1 mUltiplexer to
select one of these (or their negated versions) and this
selected status can then be pushed on the CS.

Consider the implementation of a simple IF-THEN
ELSE block using the above scheme. Let all CS bits be ini
tially set. Upon encountering the if (condition) part. an ALU
instruction is performed to evaluate the condition and the
appropriate flag is selected and pushed on the CS. If the
Enable signal (derived by ANDing all CS bits) is true. the
THEN block is executed, otherwise it is skipped. When we
reach the ELSE block. the top of CS is simpiy comple
mented. Note that if this bit was initially zero (i.e. the if
condition was false). it will now get set enabling the execu
tion of the ELSE block. Conversely. if the bit was initially
set (i.e. the if-condition was true). it will now get reset disa
bling the ELSE block. In this manner only one of the two
THEN or ELSE blocks - is executed even though both blocks
are part of the instruction stream. Upon reaching the end of
the conditional block, the top bit is popped off the CS and it

332

EN = I

(A)

EN • 1

(f)

EN • 0

(8)

EN • I

(G)

EN • 0

(C)

EN • 0

(H)

EN • 0

(D)

(])

EN • 0

(E)

Figure 12 : Snapshots of the CS for sample program

no longer affects the instruction execution. To summarize.
for every conditional block. we select and push for IF. com
plement for ELSE and pop for ENDif.

To illustrate use of the above scheme for a Nested
conditional structure consider the program given in figure 10.
Snapshots of the CS at different points in the program
(labelled a. b. etc.) are also given in figure 12. At (a). cond1
is selected and pushed on CS. Suppose it is true. The
Enable signal is therefore true and B1 is executed. At (b)
cond2 is selected and pushed. Let us assume it is false. The
Enable signal is now false and execution of C1 is disabled.
At (c) we select and push cond3 (true) on CS. (Note that
this selection and push is done in spite of execution being
disabled i.e it is not affected by the status of the Enable sig
nal). Whatever be the status of cond3 the Enable stays false
because of the false cond2. (For that reason it does not
matter whether or not the test for cond3 is even valid). 01
is therefore disabled. At (d). we complement top of CS. the
Enable remains false and D2 also is not executed At (e)
the ENOif for cond3 occurs and we pop CS. At (f) we again
complement top of CS. This time the Enable becomes true
and we execute 02- the ELSE part of cond2 At (g) the CS
is popped and we then complement top of CS at (h). The
Enable signal now becomes false and execution for the ELSE
part of cond1 is disabled. B2 is therefore not executed.
Upon reaching (i) CS is popped again and the scope of cond1
ends. Note how pushing/ complementing/ popping for
corresponding IF /ELSE/ENOif maintains the correct Enable
status inside a nested conditional structure. The maximum
allowable nesting depth is determined by the depth of the
CS.

A si mple format for the conditional control field,
which can implement the above operations. is given in fig
ure 13 Note that this control field will be needed only with
the ALlJ instructions. Rest of the instructions will simply
use the Enable signal provided by the CS.

The Processor Architecture

The PE architecture is shown in figure 14. It consists
of a register file (RF). a 32/16 bit arithmetic logic unit
(ALU). a shifter. an exponent register. an address register.
instruction queue (IQ). I/O Buffers and a simple instruction

r-=~-'----N:B!~~~t~oCn~~~~-:~~=:~~ ~ondi~~ni~~~:le~- -- - - i
selected & pushed

----------+---------------
Bits Bits

2.3.4
100
101
110

: no operation
: complement
: pop

2.3.4
000 1100)
001 (101)
010 (110)
011 (111)

: r (e) selected
: Y.. IVI selected
: ~ (Z) selected
: S (5) selected

Figure 13- Conditional Control Field

decoder _ The functions of each of these blocks are summar
ized in Table 1.

The PE will be implemented as follows_ The register
file is organized as 256 16-bit words. The lowest 8 bits of
the IQ are always input to the RF address decoders. There
fore address decoding for a potential memory instruction
always takes place simultaneously with the instruction
decoding. If the instruction is indeed decoded to be a
memory operation then the appropriate word-line is asserted
during the execution phase of the instruction. This is done
to save address decoding delay during the actual execution of
Load-Store instructions.

For the ALU. there are two 32-bit input registers
(ALU.inA & ALU.inB) and one 32-bit accumulator
(ALU .out) _ The ALU is capable of performing arithmetic
operations on 16-bit as well as 32-bit data. Even though the
PE's datapath is 16-bit wide. it was decided to have the 32-
bit option for the ALU to speed up floating point operations.
Integer operations (16-bit) are performed by using the lower
half of the ALU's datapath_

The Shifter is capable of shifting a 32-bit word right
or left by one bit and is used as a post-processor to the
ALU. The Exponent register is used to hold the exponent
during floating point operations and can be addressed as part
of the RF. It is also used as an up/down counter and is

I
I
I

3Z116

a: I

~~ :: :
~ :

I
I
I

16 :

16

16

I DUTM
I 1- _______________ ..

TO NODE

1£

~ I NmUCTIONS
fROM

Ie NODE P-I

Figure 14- Processor Architecture

333

automatically incremented (decremented) whenever the
Shifter does a shift right (left) operation. The (<t>.p) register
consists of 10 bits and contains the PE's address. This
register can also be addressed as a special (read-only) RF
position with the six high order bits set to zero. This way a
processor can be selectively masked out based on its loca
tion within the CCC nehyork. For the I/O buffers. two 16-bit
buffers will be used for each port (i.e. one for input. one for
output). These buffers are addressable as registers in the
register file and the input buffers can also be loaded from a
port (i.e. F.B or L). Finally. the instruction decoder will be a
small finite state machine and will be implemented with a
PLA and random logic. The hardware used for conditional
evaluation (the Condition Stack and the Enable logic) will
form part of the decoder logic.

Processor Timing

The basic timing scheme for each PE consists of
pipelining the three operations of instruction decode. execu
tion and transfer per clock cycle. As discussed earlier. the
instructions have been provided in the form of minor cycles
leading to simple decode logic. Also. since instruction
transfer takes place between adjoining processors. its timing
is not critical in determining the clock rate. The determining
factor for the maximum achievable clock rate is the longest
delay in the datapath during instruction execution. An initial
estimate of the datapath timing for the given processor
architecture has led to a 50ns. clock cycle. All instructions
listed in the instruction set take one cycle time to execute.
This gives a performance figure of 20 Mips per processor.
Note however that our instructions are minor cycles. Since
three to four minor cycles are equivalent to a conventional
processor cycle. one-third to a quarter of the above rate
would be a reasonable figure of merit for comparison.

The PE architecture does not have any special
hardware unit for performing floating point operations. How
ever by using the Exponent register. the Shifter the 32-bit
mode of the ALU and the given instruction set. we have
been able to implement one floating point operation every

Table 1- PE Function Block Descriptions

Section

ALU

Shifter

Exponent Register

Register file

1-0 Buffers

Instruction Queue

Instruction decoder
(~.p) Register

Function

The Arithmetic Logic Unit executes data path instructions
of the type add. subtract. not etc (16 or32 bit ALU)
The Shifter shifts the data (16 or 32 bits) right or !lift by
one bit This can be done with or without carry wrap
around
The Exponent Register can be accessed as a register file
position or it can be used as an up/down counter. A shift
right (left) operation by the shifter is accompanied by an
auto-increment(decrement)
The Register File contains the local memory. This is a
single port read/write RF. organized as 16 bits by 239
words Note that its address space (0.255) includes
scratch area and special registers.
There are three 1-0 buffers denoted FORWARD. BACK
WARD and LATERAL. Each contains two registers. one
for input and the other for output. Each 1-0 register can be
accessed as a either a register pOSition or from the port
connection
The instruction queue holds the instructions to be executed
by the PE.
A simple finite state machine. implemented with a PLA.
This register contains the nodes (~.p) 10 bit address
This register is set when the network is ,onfigured (i.e it
is a ROM register)

5/1 ~ i.e. each PE is capable of performing at a rate of 0.2
Mrlops. This leads to a figure of 102.4 MFlops for the
entire network having 512 PEs.

Implem entation

In our implementation. 512 PEs will be connected in
a CCC network in wafer scale integration. A floor plan of the
PE die is shown in figure 15. Table 2 gives the initial area
estimates for each section of the PE's circuits for a 2Jlm
scalable CMOS (A= IJlm) technology. The PE will contain
256 addressable memory locations (RF). The address space
is partioned as follows: 239 data registers. 8 general pur
pose registers (i.e. scratch memory. constants etc.). 6 posi
tions !or the I/O registers. one for the (cI>.p) address (a read
only location). one position for the exponent register and one
constant register set to O. To reduce the read/write delay
caused by long word lines. the register file has been split
into four equal parts of 64 register positions each. Splitting
the register file also improves the aspect ratio of the die.
Each of the four register file banks will be addressed by a
separate decoder. Since the address field is eight bits. the
two most significant bits will select one.of these four banks
while the remaining six bits will select a register from within
it. Note that 0.25mm has been added to the perimeter of the
die for the I/O pads. routing and random logic. The PE die
size will be approximately 3.32mm X 2.2mm.

Following the Discretionary wiring approach 25 dis
cussed earlier. dice will be first fabricated on a wafer and the
functioning die sites will be then connected with discretion
ary wiring. Assuming that a 6 inch diameter (~15 cm)
wafer is used. there will be only 100cm2 of usable area equal
to that of the square inscribed in the wafer. With a die size
of 8.964mm2

. there will be 1114 possible die sites. With a
50% yield of dice. there will be approximately 557 function
ing dice after fabrication. providing more than the minimum
requirement of 512.

2.7
MM

3.33MM

J.9tlll

REGISTER FILE
[0:63]

REGISTER FILE
[64: le7]

REGISTER FILE
[le8: 191]

~l REmrE1R4illE! :1
L-____ ~------------~~

us IHI

r--

ARITHMETIC 1 S
H
I
F LOGIC .. . •
T UNIT

1
E
R

-

Figure 15- Processor Element Floor Plan

334

Table 2- Initial. PE area estimates

PE Unit Cell Cell Overall Area % Total
Circuit Dimensions Organization Dimensions mm2 Area

Ad Row x Column hA

Register File
RF(0239) 30x30 16x240 480x7200 3.456 38.55
RF (i e 4) 75xl000 0.075 0.83
Decoders
AlU 30x500 32xl 960x500 0.720 8.03
Shifter 30x50 32xl 960x50 0.048 0.54
Exponent 30x50 16xl 480x50 0.024 0.27
Register
~.p register 30x20 10xl 300x20 0006 0.07
1-0 registers 30x35 16x6 480x210 0101 113
InstruCtion 30x30 12x9 360x270 0.097 1.08
Queue
Instruction 400x400 txl 400x400 0.16 178
Decoder
Routing &. 2.760 30.79
1-0 padst
Die size 2700x3320 8.964 100

f This refers to the 0 25mm perimeter of the PE die

Alternatively. implementation of this network with

the WTM,037 is as follows. A custom 6 inch interconnec
tion wafer will be designed for maximum packing. There will
be space for 512 processor chip. along with a number of
specical I/O chips. The chips will be bonded to the wafer
using a solder bump technology as described in 118]

Packages for both the approaches listed above are
currently under development at Rensselaer Polytechnic
Institute's Center for Integrated Electronics.

Conclusion

The preceeding sections have presented a feasible
parallel computer with a large number of processing ele
ments for wafer scale integration. Use of a RISC based
architecture for the processing element allows great flexibil
ity in using the computer. The architecture is both simple to
construct and flexible enough to permit the emulation of log
ical networks in an p.fficient manner. The instruction set is
designed for pipelined execution of instructions. Processor
allocation and scheduling is done by a dedicated controller.
Programming can be done by users unfamiliar with the inter
nal architecture of the computer. Many practical problems
can be solved efficiently with this computer and it effective
computing power is estimated at approximatly 6MIPS per
processor.

Future directions for this project include working on
the design details of each PE. The PE is currently being
modelled and sim ulated using the N.2 Simulator. Following
verification of the PE architecture and instruction set. each
of the modules (ALU. RF etc.) will be designed and simu
lated at the gate level The transistor level desigh and simu
lations for all circllit elements will be done next. Finally. lay
outs for the complete processor will be made and verified.

Acknowledgments

The authors wish to thank Randy Steinvorth for the
detailed explinations of the wafer transmission module tech
nology and Austin Lobo for his sugestions during the early
stages of this project. The comments and financial support

from Digital Equipment Corporation were also greatly appre
ciated

REFERENCES

(I) Atallah. Mikhail. S. Rao Kosaraju. "Graph problems on a mesh
connected processor array". 1982 ACM Symposium on Theory of Com
puting pp. 345-353.

(2) Bergendahl. A.S .. J.F. McDonald. R.H. Steinvorth. G.F. Taylor. "Thick
Film Micro-Strip Transmisson Line Interconnect for Wafer Scale
Integration". Proceedings of the ECS Meeting on VLSI 1985.

(3) Carlson. David A .. "Parallel Processing of Tree-Like Computations"
Proceedings of the 4th International Conference on Distributed Com
puter Systems. 1984. pp.192-200.

(4) Chapman. G.H .. et al.. "A laser Linking Process for Restructurable
VlSI". 1982 OSA/IEEE Confrence on lasers and Electro Optics Techn
ical Digest. pp. 60-62.

(5) Chesley. G.D .. "Main Memory Wafer Scale Integration". VlSI Design.
March 1985. pp. 54-58.

(6) Chung.M.J .. E.J. Toy. A.A_ lobo. "A parallel Computer Based on Cube
Connected Cycles (An Abstractl". Proceedings of the Army Research
Office Workshop on Future Directions in Computer Archecture and
Software. May 5-7. 1986. Charleston. SC

(7) Chung.M.L et. al. "A parallel Computer Based on Cube Connected
Cycles". RPI-CIE Technical Report. March 1986. Rensselaer Polytech·
nic Institute's (enter for Integrated Electronics. Troy. New Vork.

(8) Daughton. J.M .. B.K. Koeneman. "Cost Trade Offs in Wafer Scale
Integration". Proceedings of the IEEE 1984 ICCD. pp. 88·94.

(9) Donlan. Lt. B.J .. J.F. McDonald. G.F. Taylor. R.H. Steinvorth. A.S.
Bergendahl. "Computer Aided Design and Fabrication for Wafer ScalE
Integration". VlSI Design. Vol. VI. No.4. April 1985

(10) Donlan. It. B.J .. J.F. McDonald. R.H. Steinvorth. M.K. Dhodhi. G.F.
Taylor. A.S. Bergendahl. "The Wafer Transmission Module". VlSI
Systems Design. January 1986. pp. 54-58 & 88-90.

(11) Gail. lvi. W.J. Paul. "An Efficient General Purpose Parallel Computer".
Journal of the ACM. Vol. 30. No.2. April 1983. pp.336-387.

(12] Garverick. S.l.. E.A. Pierce. "A Single Wafer 16-Point 16Mhl FFT
Processor". Proceedings of the 1983 IEEE Custom Integrated CirCUits
Conference. pp. 244· 248

(13] Graber. W.S.. et al. "Reconfiguring Semi- custom ICs Using laser
Microchemical Techniques". pp. 453-456.

(14] Hennessay. J.. et al.. "Design of a High Performance VLSI Protessor".
Proceedings of the Third Caltec Conference on VLSI. 1983.

(15] Hewitt. C.L .. "VlSIC Packaginging for High Reliability Applications".
Proceedings of the 1984 IEEE Custom Integrated Circuits Conference.
pp.135-141.

(16] Holems. R.E .. "VLSI Packageing and Interconnect Technologies".
Proceedings of the 1983 IEEE Custom Integrated Circuits Conference.
pp. 132-134.

(17] Hsia. V .. G.c.c. Chang. F.D. Erwin. "Adaptive Wafer Scale Integra
tion". Proceedings of the 11th Conference (1979 Internationall on Solid
State Devices. Tokyo. 1979. Japanese Journal of Applied Physics. Vol.
19. Suppleement 19-1. pp. 193-202.

(18] Huang. C. et al.. "Silicon Packaging- A New Packaging Technique".
Proceedings of the 1983 IEEE Custom Integrated Circuits Conference.
pp. 142·146

(19] Johnson. R.R .. "The Significance of Wafer Scale Integration in Com
puter Design". Proceedings of the 1984 IEEE Custom Integrated Cir
cuits Conference. pp. 101-105.

(20] Katevenis. M .. "Reduced Instruction Set (omputers for VLSI" Doctoral
Dissertation. U.c. Berkeley. October 1983.

(21] Kung. H.T .. C.E. Leiserson. "Algorithms for VlSI Processor arrays". in
"Introduction to VlSI Systems". sec 8.3 pp 271-292. C.A. Mead & l.
Conway. Addison-Wesley. Reading. MA. 1980.

(22) Lathrop. J.W .. R.S. Clark. J.E. Hull. R.M. Jennings. "A Discretionary
Wiring System as the interlace Between Design Automation and Sem·
iconductor Array Manufacture". Proceedings of the IEEE. November.
1967

335

(23] Mangir. T.E .. "Interconnect lec.hnology I~sues for testing and Reconfi
guration of Wafer Scale Integration". Proc.eedings of the IEEE ICCD.
1984 pp. 127-131.

(24] Mangir. T.E_. "Sources of Failures and Yield improvement for VLSI and
Restructurable Interconnects for RVlSI and WSI: Part II: Restructurable
Interconnects for RVlSI and WSI" Proceedings of the IEEE. Vol. 72.
No. 12. December 1984. pp. ~687-1694.

(25] McDonald. JF. E.H. Rogers. K. Rose. A.J. Steckel. "The Trials of
Wafer Scale Integration" IEEE Spectrum. October. 1984.

(26) Nath. D. S.N. Maheswari. P.c.P Bhatt. "Efficient VLSI Networks for
Parallel Processing Based on Orthogonal Trees". IEEE Transactions on
Computers. Vol. C-32. No.6. June 1983. pp. 569-581.

(27) Neugebauer. C.A.. "Comparison of VlSI Packaging Approaches to
Wafer Scale Integration". Proceedings of the IEEE 1985 Custom
Integrated Circuits Conference. pp. 32-37.

(28) Patterson. D .. C Sequin. "A VLSI RISC". IEEE Computer. September
1982.

(29) Pease. Marshal c.. "An Adaptation of the Fast Fourier Transform for
Parallel Processing". J. ACM. Vol. 15. April 1968. pp.252-264.

(30) Pease. Marshal c.. "The Indirect Binary n-cube Microprocessor Array".
IEEE Transactions on Computers. Vol. C-26. No.5. May 1977. pp_
458-473

(31) Peltzer. D.L.. "Wafer Sade Integration: The Limits of VLSI?". VlSI
Design. September 1983. pp. 244-248

(32) Preperata. F.P .. J. Vuillemin. "The Cube Connected Cycles: A Versa
tile Network For Parallel (omputation". Comm. of the ACM. Vol 24.
No 5. May 1981

(33) Raffel. J.1.. A.H Anderson. G.H. Chapman. K.H. Konkle. B Matur.
A.M. Soares. P. W. Wyatt. "A Wafer-Scale Digital Integrator". Proceed·
ings of the IEEE ICCD. 1984.

(34] Shaver. D.C.. R.W. Mountain. D.J. Silversmith. "Electron-Beam Pro
grammable 128k-bit Wafer Scale EPROM". IEEE Electron Device
letters. Vol. EDl-4. No.5. pp.153-155. May 1985.

(35) Sherburne. R. W. Jr. "Processor Design Tradeoffs in VlSI". Doctoral
Dissertation. U.c. Berkeley. April 1984.

(36) Stone. H.S .. "Parallel Processing and thE' Perfect Shuffle". IEEE Tran
sactions on Computers. Vol C·20. Feburary 1971. pp. 153-161.

(37) Taylor. G.F .. Lt. B.J. Donalan. J.F. McDonald. A.S. Bergendahl. R.H.
Steinvorlh. "The Wafer Transmission Module- Wafer Scale Integration
Packaging". Procedings of the IEEE 1985 Custom Integrated Circuits
Conference. pp. 55-58.

(38) Taylor. G.F .. "A Two·Dimentional Fast Fourier Transform Processor
Suitable for Wafer Scale Integriltion". Doctor of Engineering Thesis.
Rensselaer Polytechnic Institute. Troy. New Vork. October 1985.

(39) Wagner. David. "The Arcitecture of a Boolean Vector Machine". Depat
ment of Computer Science Technical Report CS-1982-8. December.
1980. I Revised October. 19811.Duke University. Durham. NC.

MUPPET - A Programming Environment for Message-Based Multiprocessors

H. Muehlenbein, F. Limburger, S. Streitz, S. Warhaut

GMD - Gesellschaft fUr Mathematik und Datenverarbeitung mbH
P.O. 1240, D-5205 St. Augustin 1

Abstract:

MUPPET is a problem solving environment for scien
tific computing. It consists of four areas - con
current languages, programming environments,app1i
cation environments andman-machine interfaces.
The programming paradigm of MUPPET is based on ab
stract machines and transformations between them.
This paradigm allows the development of pr09rams
which are portable among different machines.
In this paper we discuss the programming paradigm
and give a brief introduction to the language
CONCURRENT MODULA-2 and the simulation system.
MUPPET is being developed as part of the German
supercomputer project SUPRENUM.

1. Introduction

The new generation of scientific supercomputers
depends more and more on parallel processing.
Supercomputers can be divided into two groups

- multi processors with shared memory
- mul ti processors with 1 oca 1 memory

The latter systems are a more radical departure
from the sequential von Neumann type of machines.
They can employ more than one thousand individual
processors giving peak rates of more than 10 Giga
flops. Most notable is the recently announced T
series from Floating Point: Systems. This incre
dible hardware speed,has to be matched by ade
quate IIsuperll software. This super software
should support

- the fast development of programs
- the efficient use of the'supercomputer
- the. reusabi 1 i ty of software

MUPPET (a multiprocessor programming environ
ment) is a-rong-term effort to address these
issues. in the area of scientific computing. MUPPET
is designed for multiprocessors with local memory.
It is part of the German supercomputer project
SUPRENUM [GiMu86] , the goal forwhich is to build
a supercomputer of more than one Gigoflop.
MUPPET is not simply a programming environment,
but it is designed as a problem solving' environ
ment for scientific computing.

CH2345-7/86/0000/0336$01.00 © 1986 IEEE 336

A problem solving environment can be divided into
at 1 east four areas -([FOR86])

- CONCURRENT LANGUAGES
- PROGRAMMING ENVIRONMENT

syntax editor, program templates, library
- APPLICATION ENVIRONMENTS

e.g. language for the solution of partial
differential equations, multi grid expert
systems

- MAN-MACHINE INTERFACE
graphics, algorithm animation

Concurrent languages are necessary for driving the
multiprocessors efficiently. The programming environ
ment tri es to support the programmer. Its goal is to
make programming significantly easier, more reliable
and cost effective by reusing previous code and pro
gramming experience to the greatest extent possible.
The application environments support the end user
who does not want to do low level programming. App
lication environments should include knowledge about
the application domains and application specific
technical languages.
Most of the MUPPET tools will run on a high-perfor
mance scientific workstation with a graphic oriented
man-machine interface.
The standard tools of the programming and application
environment (a language-based editor supporting pro
gramming in the small, a fragment library supporting
incomplete specifications and an interpreter) will be
generated by the programming system generator PSG,
which is described elsewhere (BSN 85]. This approach
makes rapid prototyping of environments possible.
In this paper we concentrate on the specific problems
encountered in parallel programming. MUPPET is being
developed in close cooperation with the PIE project,
whose goal is to develop a programming environment
for a shared memory system [SE RU85] .
The outline of the paper is as follows:
In chapter two we introduce the programming paradigm
of MUPPET, in chapter three we discuss an implemen
tation tradeoff by using the randomization method.
lhe programming paradigm is explained in more detail
in chapter four. The examples are downloading and
matrix multiplication. The next two chapters., describe
the language CONCURRENT MODULA-2 and the MUPPET si
mulation system. In the last chapter we discuss some

problems encountered an lessons learned.

2. Parallel progranming paradigms and
abstract-machines

Programming is the conversion of an abstract
(machine independent) algorithm into a program

- that can be run on a particular computer. A pro
gramming paradigm can be seen as a way of approa
ching a programming problem and therebyrestric
ting the solution set.
Following Browne [BROW 86J we define a parallel
computation as a graph where each node is the
binding of an action to a data object and the
edges are the dependency relationships between
the computations executed at the nodes. In this
paper we use a simpler model to describe a
parallel program on a parallel computer ([SNY84]).
The model consists of

a graph G = (P, E) whose node set P repre
sents processes and whose edge set E re
presents the communication scheme
a similar graph H = (N, L) representing the
parallel computer (nodes N and links L)
a function~: P->N mapping processes to
processors
a process set P describing the computational
acti vity
a communication model

MUPPET is based on this model but it is allowed
that processes can be created dynamically. This
model can be formulated as an abstract machine,
which we call LAM-local memory abstract machine.
LAM is defined as follows

(I) LAM consists of disjoint processes
(no shared variables)

(II) Processes can create other.processes
and can terminate

(III) Communication is done by asynchronous
message passing between partners
(processes which know each other)

In [FIL84 p.344] this abstract machine has been
advocated also as a basis for coordinated com
puting.
LAM can handle arbitrary communication schemes.
More specific abstract machines can be defined
by adding additional constraints. This will be
explained by the ring local memory abstract
machi ne·,RLAM. RLAM is defi ned i nforma 11y by

(IV) In RLAM every process has exactly two
communication partners, called the
neighbours. Communication is re
stricted to neighbours only

Similarly other abstract machines can be de
fined like the tree, the lattice, the hypercubes
and the direct interconnected abstract machines.
Ultimately these abstract machines have to be
mapped onto real machines of a given connection
scheme, e.g. lattice, hypercube, butterfly.
Examples are shown in Fi~ure 1.

337

LATTICE
MACHINES

SUPRENUM
MACHINES

Figure 1: Abstract machines

HYPERCUBE
MACHINES

The programming task can now be characterized as
follows:The problem -is formulated in an appl ication
oriented abstract machine, then it is transformed
(manually and/or automatic) to a LAM imDlemention
and may be to a-more: specific abstract ~achine im
plementation. This machine will then be mapped onto
the topology of the real machines. We believe that
this layering defines clear interfaces, which can be
used to create portab 1 e and effi ci ent programs.
The programmer has access to every layer. If the
given problem has a regular communication scheme, e.g.
a 2-D lattice structure, the programmer can use the
2-D lattice abstract machine directly.
The mapping of specific abstract machines to the phy
sical machines can often be done optimally. We take
as an example the mapping of a ring onto the
SUPRENUM machine.
The SUPRENUM architecture can be characterized as a
2-D 1 atti ce of ri ng buses [GIMU86]. The strai ght for
ward mapping uses only the row or the column ring
buses. The optimal mapping is the familiar Hilbert
curve, which uses the communication network more
equally.

Figure 2: Mapping RLAM onto the 8 x 8 SUPRENUM
machine

3. Tradeoffs for the implementation of abstract
machines

Transformations of abstract machines should be
guided by a goal. In order to define the goal we
have to introduce a metric. In this paper we use
a very simple one.
Let G1 and G2 be two graphs representing abstract
machines. Gl shall be mapped onto G2. We define
the Size S (G1, G2) to be
(1) S = max. distance in G2 between

communicating partners of G1
The goal of the transformations is to reduce the
size. Ultimately the size should be one and the
resulting communication scheme should be mapped to
the connection scheme of the real machine so that
the size remains one in this topology.
If we end up with a size greater than one, the
real system has to provide some kind of routing.
Otherwise the communication scheme has to be en
hanced by intermediate processes which handle the
routing of messages and reduce the size to one.
This observation shows the impontance of a rou
ting service. The implementation of an efficient
routing service depends on the topology of the
machine and can be done by different methods.
It has been shown that random routing is a good
heuristic for topologies with a rich inter
connection structure (i.e. there exist many
different routes between nodes). In particular,
it has been proven for hypercubes and similar
topologies that random routing gives a nearly
optimal communication time for many interesting
algorithms [ULL84 pp.232].
On these machines therefore it makes sense to
provide the LAM abstract machine directly by
an operating system. The operating system
would use randomization and not transformations
of abstract machines. It cannot be shown in
general which of the two methods is more effi
cient. First studies on a 64-processor hypercube
machine indicate that regular communication
schemes with a small size should be implemented
by the first method, other schemes by randomi
zation.

4. Examples

The first example is downloading an abstract
hypercube machine from a single source. The pro
blem is to transfer M blocks from the source to
all other nodes.
If we use a doubling method, downloading takes
time

(2) TH = 1092 N . M . T
where T is the time for one communication and N
is the number of nodes.
If we use the ring abstract machine we get

(3) TR = (N + M - 2) . T

338

The ring abstract machine can be mapped easily onto
the hypercube so that the size is one.
We have TH >TR, if

(4) M.>_N_-_2 __
1092 N - 1

This proves the rather astonishing result, that using
the most primitive abstract machine gives a more
efficient implementation if the problem size (M) is
large enough.
The importance of the ring abstract machine has been
dicovered recently by different authors (see
[KRU841). This should not really be surprising, since
the ring machine is nothing else but a pipeline, a well
proven paradigm for achieving high throughput.
The next example is the matrix multiplication. The
multiplication of two matrices A and B is given by

(5) Cij = ~ aik bkj

We use a 2-D lattice abstract machine to implement
the multiplication. In order to do this we have to
make the following decisions

- how to partition the problem domain
- how to distribute the partitions

A simple distribution binds a.·, b .. and c ..
lJ lJ lJ

statically to process Pij. The case N = 9 is shown in
the next fi gure

I ,JJ cl

allc ll a12 ci2 a13 cl3

~bll
~ b12

r;>
bl3

J ..L ~
a21 c21 a22 c22 a23 c23
b21 b22 b23

J\II ~
a31 c31 a32 c32 a33 c33

b31 ---7 b32 -) b33

Figure 3: Matrix multiplication

This implementation gives a size of 0 (~) and re
quires routing.
We will now try to find a communication scheme with a
smaller size by applying transformations. We list only
two important transformation rules

8~1~_1~ (How to start)
The data should be distributed in such a
manner that all the processes can start with
a computation.

B~l~_g~ (How to bind data to processes)
If processes Peand Pmrequest the same
data d from process Pn and if the

distance (Pe' Pn) = distance (Pe' Pm)
+ distance (Pm' Pn)' we replace request
(d, Pn) in Pe by a request (d, Pm) after
Pm has got d from Pn.

The second rule describes a dynamic binding of the
data d to the processes. These two transformation
rules and a very complicated rule taking into
account the data dependencies transform the first
implementation to an implementation already found
by Cannon.

Figure 4: Matrix Multiplication by Cannon

The second implementation uses a modified 2-D lattice
machine (torus), a dynamic binding of a and b to the
processes and a distribution which obeys rule one. The
implementation has a size of 1.
These examples demonstrate the usefulness of the pro
posed approach. But it should be remarked that the
transformation rules are still rather informal We
see the mathematics for communication schemes and
their transformations slowly emerging. First steps
are the metric pattern theory (GRE861 and the auto
matic synthesis of systolic algorithms [QUI84].
The MUPPET programming environment supports the ap
proach outlined in chapter two and four. Generic ab~
stract machines are provided by programm templates.
The transformations will be implemented semi-auto
matically, this means the programmer directs MUPPET
interactively.
We also want to note the similarity of this approach
to the implementation assistant of the PIE pro
gramming environment [SERU851.

339

5. CONCURRENT MODULA-2

CONCURRENT MODULA-2 is based on the actor model of
Hewitt [HEW77] and is an upward-compatible ex
tension of Modula-2 [WIR831. We chose Modula-2
as the base language, because it is well
structured, offers a module concept for modular
programming and separate compilation of modules,
and can be implemented efficiently even on micro
computers.
A CONCURRENT MODULA-2 program is based on LAM. It
consists of a set of processes, communicating with
acquainted processes by sending and receiving
messages. In accordance with SCRIPT rFRA83Jwe have
introduced an abstraction mechanism Tor communi
cating processes.
Severa 1 modern programmi ng 1 anguages [C00801 (DAN81]

(OCC83J have constructs to support inter-process
communication; some of the constructs are slightly
higher-level than others, but most can be con
sidered low-level, because they handle some primi
tive communication between two partners at a time.
The following description presents the main features
of CONCURRENT MODULA-2 .

. A parallel program in CONCURRENT MODULA-2 comprises of
a set of communication patterns and process modules
that limportl some of these pattern to be used in
communication steps.
A special module, marked as the initial process
module is created as the first process of the parallel
application and typically behaves as a supervisor of
the computation.
The actions of a process in CONCURRENT MODULA-2
are specified in a program module, a syntactic entity
of Modula-2, which is called process module in the
following. A process is an instaBtiation of a
process module. These process modules assure that
processes operate only on local data objects, be
cause none of the local definitions can be exported
and used by other processes. Therefore no shared data
can be provided between different processes.
Processes in CONCURRENT MODULA-2 may be created
dynamically during runtime with a create operation
called NEWTASK. NEWTASK applied to a name of a
process module creates and activates a new process
and returns a reference to the active process, exe
cuting the corresponding process module.
References to processes are values of type TASK or
of a special process type denoted by the name of
the process module. In the same way variables can
be declared of type TASK or typed with the name of
a process module.
Within a process module coroutines of Modula-2 may
be used to structure the internal behaviour of the
process and to get smaller entities of parallelism.
Processes terminate by executing an explicit termi
nate statement. They cannot be killed by other
processes, except by the initial supervisor process,
controlling the computation.
Processes communicate by asynchronous message
passing. As indicated above, a process can only
communicate with acquainted processes, which means,
that the process reference must be known. Each pro
cess has its own mailbox, in which the arriving

messages are collected.
To participate in a communication, processes im
port communication patterns, which define the
message types for the transaction.
Two processes can communicate successfully, if
they know each other and use the same communi
cation pattern. The use of patterffifor the commu
nication allows to check the message passing
activity. Type checking can be done during
compile and link time, provided typed processes
are used.
A pattern definition for an ansynchronous commu
nication consists of a pattern name and a list
of types, indicating the types of the parameters
of the message.

PATTERN
PatternName (TypeList):

The basic communication primitive in CONCURRENT
MODULA-2 is the asynchronous send statement with
no-wait semantic according to the classification
of Liskov LIS79. In a communication trans
actio~ a sending process executes a send state
ment with an underlying pattern. The send state
ment specifies the pattern name, actual message
parameters and the receiver process.

SEND PatternName (ActualMessageParms)
TO Process:

A receiver process executes a receive statement,
specifying the pattern and a variable list to
store the incoming values of the expected message.
Optionally the sending process may be denoted.
During the execution of a receive statement, the
mailbox of the process is checked for a matching
message, i.e. a message with the respective
pattern name. If no matching message is found,
the process will be blocked. Otherwise the actual
parameters of a message are bound to the variables
of the VariableList. If a DO-END block is speci
fied, the corresponding statements are executed
with the variable bindings of the message re
ceived.
The variables in the VariableList may either be
globally defined or local to the DO-END block
of the receive statement.

RECEIVE PatternName (VariableList)
FROM Process DO StatementSequence END

Higher level communication is supported by the
following additional features:
A select statement allows a process to wait for
the first of several acceptable messages. Every
select alternative can be attached with a
boolean expression and is a set of CONCURRENT
MODULA-2 statements, whereby the first state
ment is a receive statement.
The semantic of the select statement is well
known from the ADA 00080 select.
One of the most important features of CONCURRENT
MODULA-2 is the following:
Processes can be combined into sets. Sets can
be used in send/receive statements. Therefore

340

messag~can be sent to several processes simul
taneously. The usual operation on sets like union,
exclusion etc. support the creation and transfor
mation of communication schemes.
If a process set is used in a receive statement,
it is possible to receive a message from one of
the processes without specifying any precedence.
We illustrate the flavour of CONCURRENT MODULA-2
by means of a simple example
a parallel program with a buffer manager, a producer
and a consumer process.
The parallel module BoundedBuffer, given below,
includes the process descriptions for buffer, pro
ducer and consumer processes.
The supervisor module is assumed to be separately
compiled and represents the actions of the process
created at the beginning of the computation. The
supervisor's task is to create buffer, producer and
consumer processes and to install the necessary
communication scheme, i.e. to send the process re
ference of the buffer process to both producer and
consumer processes using the pattern InitProdCon.
For communication transactions with a buffer pro
cess, the pattern put is imported into the pro
ducer's module and get is imported into the con
sumer's module.
InitProdCon is the pattern for the necessary ini
tializations done by the supervisor. The code seg
ments in the producer/consumer modules are trivial:
messages of the corresponding patterns are
sent/received. Communication is done with the buffer
process, referenced by the variable BufferProcess,
declared as a Buffer-typed process. To use the name
of a process module as type of a process variable
the modules name must be declared in a USE-list.
A buffer process with local declarations for the
control of the buffer array repeatedly waits for
either a put or a get message. Put messages contain
a character to be storedin the buffer array: get
messages don't contain a message value.
A get transaction returns a character value to the
sending consumer process, put transactions return
no value.
The select statement within the buffer module has
two alternatives. The first alternative handles a put
message, which can be accepted whenever the buffer
array is not yet filled. The second alternative
accepts get messages, when data is available i.e.
the buffer array is not empty.
Note that a producer process is not blocked after
sending the message even if the buffer array is
full. A consumer process executes a send-wait and
is blocked until the reply message arrives.

PARALLEL MODULE BoundedBuffer;
USE supervisor;
PATTERN

put (CHAR);
get 0 : (CHAR);
InitProdCon(Buffer);

MDDULE Buffer;
IMPORT get, put;
CONST MaxSize=1000;
VAR in, out, n : CARDINAL;

buf: ARRAY [0 .. MaxSize-1] OF CHAR;
BEGIN

n: =0; in: =0; out: =0;
LOOP

SELECT
WHEN n < MaxSize

RECEIVE put(buf[in]);
in:=(in+1) MOD MaxSize;
n:=n+1; I

WHEN n > 0 :
RECEIVE get REPLY (buf[out]);
out:=(out+1) MOD MaxSize;
n:=n-1;

END (* SELECT *)
END (* LOOP *)

END Buffer.

MODULE Producer;
USE Buffer;
IMPORT InitProdCon, put;
VAR BufferProcess: Buffer; data: CHAR;
BEGIN

data:="any char";
RECEIVE InitProdCon(BufferProcess);
LOOP

SEND put (data) TO BufferProcess;
END (* LOOP *)

END Producer.

MODULE Consumer;
USE Buffer;
IMPORT InitProdCon, get;
VAR BufferProcess: Buffer;

data: CHAR;
BEGIN

RECEIVE InitProdCon(BufferProcess);
LOOP

SEND get TO BufferProcess WAIT (data);
END (* LOOP *)

END Consumer.

INITIAL supervisor;

END BoundedBuffer.

Figure 5: Bounded buffer in CONCURRENT
MODULA-2

341

6. Tools of the MUPPET programming environment

MUPPET tri es to help the programmer as much as
possible before the program is run on the target
machi ne. MUPPET re 1 i es on the synergy effect bet
ween scientific workstations and supercomputers.
Some of the tools are shown in the next figure.

WORKSTA TI O(PS G- i nterpreter1
'" I S IMUL~N

'" SYSTEM

~
TARGET
MACHINE

Figure 6: The MUPPET programming scenario

We will describe the simulation system in more
detail. The goals of the simulation system are
as follows
- the simulator should run concurrent programs

unmodified

- the simulator should support different hardware
topologies

- the simulator should allow interactive use

The simulator is written in MODULA-2. It is based
on a discrete time, event driven and objected
oriented simulation model. Some of the problems of
simulators are broadly discussed in [FUJ85]. Very
important is the method to determine the time which
would elapse on the target machine while the program
executes.
The MUPPET simulator currently supports CONCURRENT
MODULA-2 and MIMD FORTRAN.
For a specific language only a preprocessor and a
run-time system has to be provided. Necessary opera
ting system services are implemented in the kernel
of the simulator.
The simulator supports the MUPPET programming paradigm,
Therefore it can handle different abstract machines.
The hardware machine is specified by a simple hard
ware description language. Predefined hardware objects
like processors and buses are instantiated at runtime
and connected according to the specification. In a
later version the hardware specification will be
assisted graphically. Each hardware object acts as
a coroutine in MODULA-2. The coding of the hardware
objects is hidden from the user. The programmer may
also use predefined hardware machines like the 2-D
lattice machine, a hypercube machine and the SUPRENUM
machine. The user can specify and evaluate any process
to processor mapping strategy. The runtime interface
of the simulator supports interactive use. The user is

able to intervene in a running experiment at
any time e.g. to display some informations or to
start debug actions. For that purpose a special
interface language is provided.
Special emphasis has been given to the debugging
features. We devide debugging into two parts
- debugging of the communication part
- debugging of sequential process
The first part will supervise and influence the
flow of messages between interacting processes.
The debugging features will be similar to the
ones discussed in [SMI85].
Experiences with former simulation projects
([MUH81], [BMS83J) greatly influenced the de
sign of the simulation system.

7. Experiences and Conclusions

A number of studies have been made so far, most
ly with numerical applications [HOMU86]. We have
found that parallel algorithms for local memory
multiprocessors can be formulated either data
structure or macro data-flow oriented.
The data structure oriented approach emphasizes
the global aspects of the algorithm, whereas
the macro data-flow solution concentrates upon
the dynamic interaction of parallel processes
by the flow of data. The LAM machine can be
thought of as a macro data flow machine if the
processes do not have information about inter
nals of other processes.
SIMD machines support the data structure
approach. It is obvious, that a SIMD machine can
easily be implemented by LAM while the reverse
is not true.
The macro data flow approach leads to very
simple programs for the numerical parts, but new
problems arise with the control part-initializa
tion and termination of processes and their map
ping to processors.
Every "real life" algorithm seems to need at
least two different communication schemes:
one scheme for the numerical algorithm and one
for the control part. The best way seems to
implement the two communication schemes by two
different process nets, one process net super
vising the other net. This separation of con
cerns makes it possible to implement different
control strategies without changing the numeri
cal process net. We have shown that distribut~d
process initialization and termination can be
implemented efficiently with a quadtree abstract
machine [HOMU861.
More research has to be done to test the relia
bility of the macro data flow aaproach. Of parti
cular importance is the definition of well
structured communication schemes for a broad
class of applications, the integration of these
schemes into the programming languages and into
the programming environment.
Another important observation is that local me
mory multiprocessor systems have most ot he pro
blems of distributed systems. Fundamental pro-

342

blems are distributed termination, distributed snap
shots and the management of time. Without solving
these problems by using newest results of computer
science research, the above systems have only limi
ted applicability.

References

BMS83 C.Beilken, F.Mattern, M.Spenke: Entwurf
und Implementierung von CSSA - Teil C:
CSSA - Systembenutzung, Interner Bericht
67/83~ Universitat Kaiserslautern,
Feb. 1983

BSN85 R.Bahlke, G.Snelting: The PSG - Pro
gramming System Generator, Proc. ACM
SIGPLAN 85 Symp. on Language Issues in Pro
gramming Environments, Seattle, Washington,
25-28. Juni 1985

BR086 J.C.Browne: Framework for formulation and
analysis of parallel computation structures,
Parallel Computing 3 (1986)

C0080 R.P.Cook:~MOD - A Language for Distributed
Programming, IEEE-Transaction on SE, Vol.6
No.6, pp 563-371, 1980

DAN81 R.B. Dannenberg: AMPL - Design, Implementa
tion and Evaluation of a MultiproceSSing
Language, Tech. Report, Department of Com
puter Science, Carnegie Mellon University,
1981

00080 Reference Manual for the ADA Programming
Language US DOD-Report, July 1980

FIL84 R.E.Filman, D.P.Friedmann: Coordinated Com
puting, McGraw-Hill, New York 1984

FOR86 B.Ford: The What and Why of Problem Solving
Environments in: Problem Solving Environ
ments for Scientific Computing; B.Ford
ed. to be published 1986

FRA83 N.Francez, B. Hailpern: A Communication
Abstraction Mechanism. ACM Operating Systems
Review, Vol.19, No.2, 1985

FUJ85 R.M.Fuijmoto: The Simon Simulation and De
velopment System, Proc. Summer Computer
Simulation Conference, July 1985

GIMU86 W.Giloi, H.Muehlenbein: Design and Rationale
for the SUPRENUM architecture, Proc. 1986
Int. Conf. on Parallel Processing, 1986

GRE85 U.Grenander: Pictures as complex systems
in: Complexity, Language and Life: Mathe
matical approches; J.L. Casti, A. Karlquist
eds. Springer Berlin 1985

HEW77 C.Hewitt: Viewing Control Structures as
Patterns of Passing Messages, Artifical In
telligence, Vol.8, pp 323-364, 1977

HOMU86 H.C.Hoppe, H.Muehlenbein: Parallel adaptive
full-multi grid methods on message-based
multiprocessors; to be published in Parallel
Computing, 1986

KRU85

LIS79

MUH81

OCC83
QUI84

SERU85

SMI85

SNY84

ULL84

WIR83

C.P.Kruskal: Performance Bounds on
Parallel Processors: An Optimistic
View; in: Control Flow and Data Flow:
Concepts of Distributed Programming,
M. Broy ed. Springer, Berlin 1985

B.Lishko~ Primitives for Distributed
Computing. Proc. of the 7th Symp. on
Operating System Principies, pp 33-42,
1979
H.Muehlenbein: IITOCS - A SIMULA-based
Simulator for the Analysis of Main
frame-oriented Distributed Systems",
LNCS 123, Springer-Verlag, Berlin
1981
INMOS, Occam Programming Manual 1983
P.Quinton: Automatic Sythesis of
Systolic Arrays form Uniform Re
current Equations, Proc. of the 1984
Int. Conf. on Parallel Processing
1984 pp 208-214
Z.Segall, L.Rudolph: PIE: A Pro
gramming and Instrumentation Environ
ment for Parallel Processing, IEEE
Software, Nov. 1985 pp 22-37
E.T.Smith: A Debugger for Message
based Processes, Software - Prac
tice and Experience, Vol.15 (11),
Nov. 1985
L.Synder: Parallel Programming
and the Poker Programming Environ- -
ment, IEEE Computer July 1984
pp 27-55
J.D. Ullmann: Computational Aspects
of VLSI, Computer Science Press
1984
N.Wirth: Programming in Modula-2
Springer-Verlag, Berlin, 1983

343

DISTRIBUTED FUNCTIONS ALLOCATION FOR

RELIABILITY AND DELAY OPTIMIZATION

S H C ** . arlrl,' • S. Raghavendra

Department of Electrical Engineering-Systems
University of Southern California

Los Angeles, CA 90089.

ABSTRACT

. In this paper, we present two optimization algo-
rIthms for allocating the functions of a given distributed
task so that the reliability is maximized and the com
munication delay is minimized. A distributed task relia
bility Inea;'ures the probability of executing successfully a
task that IS composed of a set of functions running on re
mote processing elements, while task .delay describes the
average delay incurred during the processing of a task.
The allocation of resources, such as computing functions
a~d files influences the reliability and the delay. Two
dIfferent approaches are developed to allocate the
reso~rces of a given tas~. In the first method, the prob
lem IS reduced to a 0-1 mteger linear programming prob
lem and can be solved as two sub.,.problems. First, the set
of allocations that maximize reliability is found using an
approach based on a branch-and bound technique. Then
standard delay analysis is adopted to assess the averag~
packet delay' associated with each of these allocations to
choose the optimal solution. In the second approach a
compound objective function is constructed to meas~re
bot.h reliabil}tyand delay. Then, it is used in an optimi
ZatIOn algOrIthm to obtain the optimal distribution of a
task's functions. A detailed example is presented to illus
trate the optimization methodology.

1. INTRODUCTION

. A Distrihu~ed System (DB) can be viewed as a col
l~ctIOn of Proc~ssmg Elements (PE's) that are connected
v!a ~ commulllcations network and are controlled by a
dIstrIbuted operating system. A distributed task(T) is
defined. as a set of functi<;ns suc~ as, updating a database,
requestmg ,a system serylce routme, and calling a remote
procedure.. The processmg elements cooperatively execute
~asks .for Improved performance. The number of PE's
mvolved and the degree of cooperation among them may
vary considerably with the tasks. The static distribution
?f the resources (functions) associated with tasks
mfluences their reliabilities, the recovery from failures
a.nd. the communication delay; the delay become~
,slgmficantly long when many intermediate computers
must be visited before required resources can be accessed.

* Supported by Agency for International Development (AID)
Fellowship.
**Supported by NSF Presidential Young Investigator Award No .

. ECS-8452003 and a Grant from AT&T Information Systems.

CH2345-7/86/0000/0344$01.00 © 1986 IEEE
344

Several optimization problems have been addressed
in the context of computer communication networks for
example, the' capacity assignment problem, and the t~pol
ogy ·optimization problem [FRAN 72, KLEI 76, GERL 77,
KLEI 80]. These problems minimize the total cost of the
system to satisfy certain performance constraints such as
average delay. Topology optimization with reliability
constraint is a hard problem, and a heuristic solution is
usually used which is to provide two or more node
disjoint paths between every pair of PE's. The optimal
allocations of the resources of a distributed database for
minimizing storage cost . and response times have been
widely investigated [COO 69, MARl 79, LANI 83, RAMA
83]. Researchers have also investigated the problem of
combined allocation and network design to minimize
storage and communication costs [MAHM 76, MARl 79,
CHEN 80, IGNI 82, IRAN 82].

Algorithms that assist designers in determining the
optimal allocations of the resources are important espe
cially in the early stages of designing reliable distributed
systems; they provide the initial estimation of the best
preformance measures that can be obtained with a given
set of resources. If they do not satisfy the system's re
quirements, alternative designs or more resources can be
added. In this paper, the topology of a distributed sys
tem is assumed to be fixed, and it is required to distribute
the resources of a task so that· reliability is maximized
and delay is minimized. In distributed systems, we are
more interested in the allocation of multiple tasks than
that of one task. However, our approach is still applica
ble to this case because these tasks can be combined to
gether to form one task whose functions are the union of
those associated with the given set of tasks. The optimi
zation problem to be solved here is formulated as:

GIVEN

MAXIMIZE

MINIMIZE

OVER DESIGN

: Fixed topology.
n processing elements.
a task T of n f functions.

: Distributed task reliability (R).

: Task Packet Delay (TPD).

VARIABLES : Allocation variables.

SUBJECT TO : Redundancy used is less than
an upper bound.

Two different approaches are used to solve this
complex optimization problem. In the first method, it is
decomposed into two sub-problems: 1) find the set of allo
cations that maximize the reliability, and 2) find the task
packet delay associated with each of these allocations and
choose the solution that minimizes the delay. In the
second approach, a compound objective function is con
structed to measure· the effects of resource allocations on
both reliability and delay. Then, this objective function
is maximized using an algorithm similar to the one
developed in the first approach. Such an optimization
procedure can be used during the design phase and when
there are changes in the distributed system. The optimi
zation can be performed periodically to account for the
time varying reliabilities.

The organization of this paper is as follows: in the
next section, reliability analysis of distributed systems is
presented. A method for estimating the average task
packet delay is discussed in Section 3. Optimization algo
rithms, which are based on the branch-and-bound tech
nique, to solve different variations of the problem formu
lated previously are developed in" Sections. 4 and 5. An il
lustrative example is presented in Section 6. Concluding
remarks and summary of the paper are discussed in the
final section.

~."RELIABILITY ANALYSIS
In our analysis, a distributed system is modeled as

an undirected graph in which the nodes and the edges
represent the processing elements and the communication
links, respectively. The conventional reliability measures
used in communications networks such as network con
nectivity" and terminal reliability [Wll.K 72, GRNA 80,
HARI 86a] are not sufficient to describe accurately the re
liability in distributed systems.. This has led researchers
to develop new reliability measures, such as source-to
multiple:-terminal reliability [SATY 81], survivability in
dex [lv1ERW 80], and distributed program and system re
liabifity measures [PRAS 86, HARI 86b].

A distributed task (T) which consists of nf func
tions can run successfully when all these functions are
processed correctly and are accessible for information ex
change. The reliability of a task can therefore be meas
ured by the probability of processing all its functions

. successfully. This depends on the reliability of the pro
cessing elements and the communication channels, and
the allocation of the interacting functions. The reliability
Pi of a component Xi (it can be either a computer or a
communication channel) represents the probability of be
ing operating.

Redundancy in the functions (1 i 's) of a distribut
ed task is introduced to increase reliability and fault
tolerance. The level of redundancy (number of redundant
copies of functions or files) can be increased up to the to
tal number of processing elements in the system. Howev
er, a large number of redundant copies of resources (such
as replicated files) introduces additional traffic to main
tain consistency. Typically, the number of redundant
copies will be small (2 or 3 copies).

In what follows, we briefly discuss an approach for
evaluating the task reliability associated with a given dis
tribution of its functions. This is done by· first determin
ing the set of all trees that provide· the required accessi-

345

bility to the cooperating functions. These trees are re
ferred to as Minimal Task Spanning Trees (MTST 's).
An MTST is minimal when there is no other MTST· of
smaller size (smaller number of nodes). Then, the proba
bility of executing a given distributed task successfully is
evaluated as the probability that there exists at least one
MTST in the operational state (all its nodes and links
are fault-free) in spite of channel and node failures, i.e.,

R = Pr (at least one MTST is operational) (1)

Let Nt denote the total number of MTST 's for a
given allocation of the functions. The distributed task
reliability can be written as:

Nt
R = Pr (.U MTSTi

1=1
(2)

The evaluation of Equation 2 can be explained
through an example. Figure 1 shows an allocation of the
duplicated functions (J 1 , 1 2) of a distributed task T.

h

h
Figure 1: A maximal-reliability allocation of 4 functions.

For example, in MTST 1 = X IX 2X s of Figure 1,
the functions (J 1, 1 2) are processed on nodes X 1 and X 2,

respectively, while channel X s is used for data exchange.
The other trees that run the task under consideration are:

MTST 2 = XIX 4 X S

MTST 3 = X2 X 3 X 6

MTST 4 = x3x 4x 7

Substituting these trees in Equation 2, yields the follow
ing:

4

R = Pr (. U MTSTi)
1=1

The reliability expression of Equation 2 can be ob
tained using any terminal reliability algorithm based on
path enumeration when the set of MTST's are used in
stead of the set of the simple paths. A detailed descrip
tion of algorithms to enumerate efficiently these trees and
then to determine the corresponding reliability expression
can be found in [PRAS 86, HARI 86b]. If we apply the

. SYREL algorithm in [HARI 86aj to the above example,
the following reliability expression is obtained:

R = PIP 2P s + PIP 4P s(I-p 2P s)
+ P2P3P6[ql+PlqS(I-P4PS)]

+p 3P 4P 7[q I(I-p 2P 6)+P 1 q s(q 2+P 2q sq 6)]
where Pi and qi denote the reliability and the un

Teliability (I-Pi) of an element xi' respectively.

The reliability expression can be modified by re
placing the reliability of the components (Pi'S) with the
corresponding time-related functions to derive other relia
bility measures, such as availability, mean time to first
failure, and mean time between failures [RAGH 83]. To
measure the amount of reliability improvement achieved
from adding redundant copies of the functions, we intro
duce a measure that relates the increase in reliability
resulted from redundancy level r to the maximum ob
tainable improvement. This maximal reliability increase
occurs when the non-redundant reliability R (0) is im
proved up to 1 (the maximal reliability). The Reliability
Improvement Factor (RIF) is used to measure this rela
tive improvement, and is defined as:

RIF = R (r) - R (0)
1 - R (0)

(3)

where R (r) and R (0) denote the reliability with r
redundancy and with no redundancy, respectively. If we
assume all the processing elements and the channels have
a reliability of 0.9, the RIF of the functions allocation
shown in Figure 1 equals 90.37%.

The evaluation of task's reliability can not be
achie~e~ in polyno;nial execution time [BALL 80]; there
fore, It IS not pOSSIble to evaluate it at each iteration of
an optimization algorithm that deals with large distribut
ed systems. Furthermore, the purpose of reliability
eyaluation is to direct the search of an optimization algo
rIthm toward the allocations that maximize the reliabili
ty. Hence, the approximation of task reliability can be
used effectively in this type of application. Most of the
components' reliabilities are generally within a close
range. Therefore, with a good approximation, we can as
sume th~t all the computers and communication links
have t~e same reliabilities and are equal to Pc and Pl,
respectIvely. Let nt denote the number of nodes in an
MTST of a task T. The reliability and unreliability of
that tree are:

_ nt nt-l
rt - Pc ,Pl

qt = 1 - rt

If we assume that there are only two disjoint trees
(trees with no common nodes or links) for a given distri
bution of functions, then the reliability of executing that
task is:

R = 2 rt qt + rt 2

If we assume that all the Nt trees of Equation 2 are all
disjoint, then its evaluation can be generalized as shown
in Equation 4.

(4)'

d hHowever, the sets of trees are not usually disjoint
an t erefore there will be some common components
~mong them .. The failure of anyone of them will contri-
u~e ~~ the .fallure of more than one tree. As a result the'

relIabIlIty gIven in Equation 4 can be viewed as an u~per
bh'und ~n~ c::n be used to approximate the reliability in
t e optImIzatIOn algorithm presented in Section 5.

3. DELAY ANALYSIS

I.n addition to .studyin? the task reliability associ
ated WIth an allocatIOn of ItS functions, one can also

346

analyze the corresponding packet delay, throughput, or
any other useful performance measure. In this section,
we present an approach for estimating a packet delay in
curred during its movement in a store-forward message
switching network. It is based on queueing network
models. Queues on a single communication link are
characterized by the arrival rate of packets flowing
through it and the distribution of transmission times.
The major difficulty of the queueing network model is
that the flow of traffic throughout the network is not in
dependent. To simplify the analysis of these queueing
models, the independence assumption is introduced in
which the length of a message (packet) is considered as
an independent random variable as it moves from one
node to another. If we also assume Poisson processes for
all packet arrivals, exponential distribution of packet
length with ~ bits per packet, fixed routing, and no no-

J1.
dal delay, tlien the average delay Tk on channel k is
given by [KLEI 76] as:

1 (5)

where Ck and Ak denote the capacity of channel Xk and
the traffic flow on it (both in bits per second), respective-

1
ly, and - represents the average packet length.

J1.

Equation 5 is an approximation of the delay asso
ciated with a channel. The consequent analysis is not
restricted to that formula or to the assumptions used in
its derivation. However, any other equation derived
based on more realistic assumptions can be used to re
place Equation 5. A Task Packet Delay (TPD) is denned
as the average packet delay incurred during the informa
tion exchange between the cooperating computers. The
links of an MTST can be used to dictate the routes of in
formation exchange among the cooperating PE's. One
criterion for choosing an appropriate tree is identifying
the one that leads to a better load balancing of the distri
buted system.

Figure 2: An MTST with the allocation of aT's functions.

For example, Figure 2 shows an MTST and the
allocations of three functions (I 1 , 1 2 , 1 3) that com
pose a distributed task. In that tree, the following routes
are used for information exchange among the functions:
1) x7 for transferring packets between 1 1 and 1 2' 2) x
for transferring information between 1 1 and 1 3' and 3)
x 7 x 8 for transferring packets between 1 2 and 1 3' Since
there are many trees for each allocation of the functions,
the TPDp of an Allocation ap can be computed in term

of the Packet Delay (PDi) associated with each MTS'J'i·
This can be expressed as follows:

1 Nt
TPDp = - E PDi (6)

Nt i=1

where Nt denote the number of trees that can run a
given task.

Let tr (i ,j) denote the number of. ~ackets
transferred between functions (I i , 1 j) and el (~ ,)) be a
binary variable that takes on value 1 when XI of an
MTST· is included in the route between 1 i and 1 j.
The t~tal amount of traffic ("Y) flowing on an MTSTi is
the summation of all the traffic between all the pairs of
the functions, i.e.,

n, n,
"Y = E E tr (i ,j)

i =1 j =1

(7)

The packet delay PDi of an MTSTi can be found
by applying the following five steps [TANE 81]:

1. Find the traffic flow on each channel of MTSTi . n, n,
Al = E E el (i ,j) tr (i ,j) ,'d xI EMTSTi

i =1 j =1

2. Find the total traffic on all channels.

A= E Al
\;/x/EMTST.

3. Find the mean number of hops per packet.
A

n =-
"Y

4. Find the Mean Channel Delay (MCDi).

MCDi = E
\;/x/EMTSTj

Al TI

A

5. Find the Packet Delay of MTSTi (PDi).

(8)

(9)

(10)

(11)

(12)

The objective of the optimization algorithms
presented here is to find the set of allocations that optim
ize both reliability and delay. The comparison among al
locations is not straightforward because of their different
effects on reliability and delay. Hence, in order to simpli
fy the comparison, the TPD is normalized with respect
to the Worst Task Delay (WTD). This delay is comput
ed in similar steps to the one used in computing the
TPD after considering the following changes:

1. The mean channel delay (MCDi) associated with an
MTSTi is considered the worst possible delay. This oc
curs when the maximal traffic flows through the
minimal capacity channel, i.e.,

1 (13)
pC min -"Y

where C min denotes the minimal capacity channel of
MTSTi ·

2. The mean number of hops per packet is equal to the

347

number of links in MTSTi , that is:

n = nt -1
where nt denotes the number of nodes in MTSTi .

The ratio (TPD) is unitless and therefore can be
WTD

used with the reliability function to form a compound ob-
jective function that measures both reliability and delay.

4. DECOMPOSING THE OPTIMIZATION
PROBLEM

This approach is suitable for large distributed sys
tems because it does not require the evaluation of a relia
bility expression to determine the allocations that maxim
ize it. It has been shown in the literature that the time
complexity of reliability algorithms is not polynomial
[BALL 80]. A property of the allocation that maximizes
the reliability is identified to guide the search for this
type of allocation.

Let T be a distributed task of n f functions and
also require the cooperation of n f computers. The func
tion 1 i that is assigned to run on a computer does not
necessarily need to be only one function; it could be a set
of small functions grouped together to form one entity in
order to satisfy some other performance constraints. For
a given distributed system, let n max be the maximum
number of trees of nf PE's that run T and n be the
total number of PE 'so

Definition 1: A tree of nf PE's is said to cover a dis
tributed task T if its nodes can run all the functions
such that each one runs on a distinct PE.

Theorem 1: In a distributed system with only one func
tion allocated to each node, the reliability of a distributed
task T requiring n f functions is maximized if each of
the n max trees covers T .

Proof: Let us assume that there exists an allocation of
the functions (a max) such that each tree of n f nodes cov
ers T. The number of trees covering T in any other allo
cation is either less than or equal to n max because any al
location that has number of trees larger than n max will
have some trees with larger than n f nodes. These trees
do not contribute to the reliability of a task since they
are supersets of smaller size trees of n f nodes. If it is
equal to n max' the reliability is the same because they
both have the same set of trees that cover T. Let a j be
an allocation in which the number of trees covering T
(nc (a j)) is less than that of a maX" This set of trees is a
subset of that corresponding to a maX" Hence, the task re
liability corresponding to aj' which is the probability
that there exists at least one tree in the operational state,
is less than that associated with a maX"

o

Most of the optimization algorithms of computer
networks and distributed systems that address reliability
as a performance requirement to be met do not use the
reliability expression in their formulations. Instead, they
use a simpler criterion such as the connectivity of the
network or maintaining a lower bound on the number of
node-disjoint paths between node-pairs. We also do not
use the reliability expression to guide the search toward

maximal reliability allocations, but the result of Theorem
1 is used instead to identify those solutions. That is, the
num ber of trees executing the given task is maximized.
This allows us to formulate the problem as a 0-1 integer
linear programming problem.

Let Xi ' denote a binary variable that takes on
value 1 when 'function f i runs on node x' and a other
wise. Also, let nc (ap) represent the number of trees of
nf PE's covering a distributed task T for an allocation
ap ' The allocation procedure of a task's functions can be
formulated as follows:

Formulation 1

GIVEN

MINIMIZE

SUBJECT TO

: Fixed topology.
n processing elements.

nf n

: :E :E Xi,j
i =1;' =1
; mmimize the total number of

allocated functions.

: nc (ap) = n max .

; all tre;s of n f nodes cover T .

and :E Xi ,j :::; ri i =1 , ' " nf
j=1

; ri is an upper bound of redundancy
in f i'

In large distributed systems where the number of
PE's is much larger than the number of functions to be
distributed, it is not practical to allocate them so that all
the trees of nf PE's cover the task under consideration
(T); to cover all trees, the upper bound on redundancy
could be increased up to (n) which is not feasible be-

cause of the difficulty in m:i~taining consistency and the
overhead traffic. As a result, the previous formulation is
modified so that the number of trees that cover a given
task is maximized. We introduce a control variable Ck to
refer whether or not tree tk covers T. It is a binary
variable which takes on a value of 1 only when each PE
in that tree processes a distinct function of T and (j oth
erwise.

The formulation of the problem becomes as follows:

Formulation 2

GIVEN : Fixed topology.
n processing elements.

MAXIMIZE : nc (ap) = E ck'
\I tt

; where nc (ap) denotes the number of
trees covering T for allocation ap •

n
SUBJECT TO :E Xi ,j :::; ri ,i =1 , ' , , , nf

j=1
; ri is an upper bound of redundancy

in f i'

348

Form ulation 2 is a standard 0-1 integer linear pro
gramming problem and therefore any efficient algorithm
can be used to solve this allocation problem. An algo
rithm based on a branch-and-bound technique is used to
solve Formulation 2 [HILL 80]. The algorithm consists of
four steps: branch, bound, fathoming, and stopping. In
the branch step, one set is selected according to a cri
terion which could be the one that gives the better bound
or the most recently created set. In the bound step, the

.number of trees covering T (nc (a)) is determined for
a . I'n the fathoming step, the selected set is checked and
then dropped if it violates the set of constraints. Once it
is removed, the algorithm proceeds from the branch step.
Otherwise, the following steps are performed before it
proceeds to the stopping step: 1) the current lower bound
(Z[) is reset to nc (ap) whenever it is larger than Z[; 2)
the selected allocation ap' is partitioned into two subsets
about an allocation variable Xi j' In the first subset, Xi j
is set to 1 while in the second subset, it is set to O. In tne
stopping step, the algorithm is stopped when all the allo
cation variables of the remaining subsets have been con
sidered; otherwise, it proceeds from the branch step and
so on. The optimal allocations are those whose nc (ap)'s
are equal to Z[.

If all the computers and the communication links
have the same reliability, then any allocation a that
maximizes the number of trees covering a task T will
result in a maximal reliability. This is true because in
this case all the trees will have the same reliability and
therefore the highest value is achieved when the number
of trees is maximized. However, if the elements have
different reliability values, it is possible for an allocation
a' to exist, for which nc (a') < nc (a), and its reliabil
ity is larger than that of a. In general, the reliability
values of computers as well as communication channels
are in a close range, and therefore algorithms for solving
Formulation 2 will identify optimal or near optimal solu
tions. Now we present the optimal file allocation pro
cedure algorithm.

Function Allocation Procedure (F AP)

1. Initialization.
1.1 Z[= a ; the current lower bound is zero.
1.2 A = a 0 ; list A has allocation a 0 in which no func
tion has been assigned to any node.

2. Branch step.
2.1 select the newest partitioned subset, say aj'

3. Bound step.
3.1 find nc (aj) ; the number of trees covering T .
3.2 the number of trees that can not cover T
(nc(aj)').

4. Fathoming step.
4.1 aj is fathomed, and is therefore removed from list
A , when one or more of the following constraints are
violated:

n
:E Xi ,j :::; ri ,i =1 ',.,., nf

;'=1
n max - nc (a L)' > Z[; the number of trees that
could cover l' is greater than Z[.

4.2 .if aj violates the constraints, go to branch step; oth
erWIse, do

4.2.1 if nc (aj) > Z/, then Z/ = nc (aj)
4.2.2 partition aj into two subsets (ajl ' aj2) about the
unconsidered variable xp ,k such that xp ,k = 1 in a j 1

and xp ,k = 0 in aj2'

5. Stopping step.
If all the allocation variables Xi j have been considered,
the procedure stops; otherwise, go to the branch step.

Algorithm 1

1. Enumerate all the trees of n f nodes.

2. Apply F AP to obtain the set of allocations that max
imize the number of trees covering T.

3. For each allocation obtained in 2, evaluate the task
reliability using the approach discussed in Section 2.
Then, discard from the set of allocations the ones that
have lesser reliability than other allocations with maxi
mal reliability.

4. Find the TPD associated with each allocation ob
tained in 3.

5. Choose the optimal allocation such that TPDp is
minimized, i.e.,

TPDopt = MIN (TPDp)
'dP

5. CONSTRUCTING A COMPOUND OBJEC
TIVE FUNCTION

Instead of solving the optimization problem
sequentially as done in Algorithm 1, one could form a
function that measures both reliability and delay and
then find the allocation that maximizes that function.

TPD
F = a R - f3 WTD (14)

where a and f3 are weight factors assigned to reliability
and delay functions, respectively.

This function (Equation 14) can further be
simplified if we normalize their summation, i.e.,
a+,B=1

Substituting f3 with 1 - a in Equation 14 yields to:

F = a (R + TPD) _ TPD
WTD WTD

(15)

The value of the parameter a can be used to
reflect the relative importance of the reliability with
respect to delay. For example, maximizing the function
F can either lead to optimizing separately the reliability
or delay or both combined. If a=O, this results in
minimizing the delay function while setting a=1 leads to
maximizing the reliability. However, if a=O.5, both
functions will receive equal weight. The optimization
problem can be solved as shown in Formulation 3.

349

Formulation 3

GIVEN : Fixed topology.
n processing elements.
parameter a.

MAXIMIZE : F = a (R + TPD) _ TPD
WTD WTD

n
SUBJECT TO :.~ Xi,j:::; ri ,i=1, ... , nf

} =1
; ri is an upper bound of redundancy

of f i'

In some applications, it is required to reduce the
cost of running the functions of a given task on the com
puters and also satisfy some reliability and delay con
straints. Let us assume that c· . denotes the cost of

. f . f I,} runnmg unctIOn i on computer x'. If the cost is a ma-
jor objective in the functions all~cation problem one
could solved it as shown in Formulation 4. '
Formulation 4

GIVEN

MINIMIZE

SUBJECT TO

: Fixed topology.
n processing elements.
parameter a.

nf n

: COST = " " C· . x· . L...J L...J I,} I,}

i =lj =1

n

~ Xi ,j :::; ri ,i =1 , ... , nf
j=1
; ri is an upper bound of redundancy

of f i'

R 2: R min; reliability must be larger
than a lower bound.

TPD :::; TPD max; delay must be smaller
than an upper bound.

The Formulations 3 and 4 can be solved using a
procedure similar to the one described in F AP. Algo
rithm 2 describes the steps of a procedure to solve For
mulation 3, and also it can be used to solve Formulation
4 with a slight modification to the objective function and
the set of constraints.

Algorithm 2

1. Initialization.
1.1 F/ = 0 ,A = ao

2. Branch step.
2.1 select the newest created allocation aj'

3. Bound step.
3.1 evaluate nc(aj) and and nc(aj)' (the number of
trees covering T and those do not cover it, respective-
ly).
3.2 evaluate TPD.

3.3 evaluate the task reliability using either the ap
proach discussed in Equation 2 or 4.
3.4 evaluate the objective function F .

4. Fathoming step.
4.1 aj is fathomed when one or more of the following
constraints are violated:

n
E xi ,j ~ ri , i =1 .,.,., nf
j=1
n max - nc (an' > Z, '
4.2 if the constraints are not violated then

4.2.1 if F > F, then F, = F.
4.2.2 partition aj into two allocations about xp k such
that I

a) in the first allocation, node xk has function / p •

b) in the second allocation, node xk does not have
/p.

5. Stopping step.
If all the allocation variables have been considered, the
algorithm stops; otherwise, go to the branch step.

6. AN ILLUSTRATIVE EXAMPLE

Let us assume that we have a distributed task T
consisting of three (unctions (J 1'/ 2'/ 3) which are to be
distributed among the PE's of the distributed system
shown in Figure 3 so that the reliability is maximized and
the delay is minimized. The capacity of the communica
tion channels, the traffic rate between functions
(J 1'/ 2'/ 3)' and the redundancy level in this example
are assumed as follows:

C 7 = C 8 = C 9 = C 14 = 20 Kbits/sec.

C 10 = C 11 = 30 Kbits/sec , ~ = 1000 bits/packet

C 12 = C 13 = C 15 = 15 Kbitr/sec.
tr (1,~) = 1 packet/sec.
tr (1,3) = 3 packets/sec.
tr (2,3) = 4 packets/sec.
rl=r2=r2=2

Figure 3. A six node distributed system.

In the following discussion, we use the two algo
rithms developed in the previous section to obtain the al
location that optimizes both reliability and delay. For
simplicity, we assume that only one function could be al
located to a computer. The first step of Algorithm 1 is to
find the number of trees of 3 computers that can be con
nected with trees of size 3. By doing so, the following 12
trees are obtained:

350

(x l'x 2'x 3) , (x l,x 2'x 4) , (x l,x 2,x 5) , (x l'x 3'x 5)
(x 2,x 3'x 4') , (x 2,x 3'x 5) , (x 2,x 4,x 5) , (x 2,x 4,x 6)
(x 2,x 5,x 6) , (x 3,x 4,x 5) , (x 3,x 5,x 6) , (x 4'x 5'x 6)

Applying FAP leads to 18 allocations where each
one of them covers only six trees of the 12 listed above.
Although, these allocations cover the same number of
trees, the corresponding reliability for each allocation is
different because the number of MTST's spanning the
nodes of each tree depends on the degree of the nodes.
For example, in Figure 3, there are three trees of size 3
that span nodes (x I'X 2,X ~), while there is only one tree
spanning nodes (x l,x 2,x 4)' Hence, the distributed task
reliability (R) must be computed for each allocation to
identify the one that maximizes it. By doing so, the
number of allocations decreases to six. The distribution
of the functions for each allocation of these six identified
allocations is shown in Table 1.

, Once the -set of allocations is obtained, the next
step is to use the equations in Section 3 to find the aver
age packet delay associated with each allocation. The
resulting delays and reliability of each allocation are also
given in Table 1. The optimal allocation is a 2 since it
has the minimal TPD 2 (107.6 msec), while allocation a 5

has the worst delay (154.6 msec) as shown in Figures 4
and 5, respectively. This can be explained as follows: in
a 2' the functions that interact with each other heavily
(J 2'/ 3) are allocated such that they use highest capacity
links (x lO'x 11), while the opposite is done in a 5' in which

,light interacting functions (J 1'/ 2) are assigned to use
those links of high capacity.

If we assume all the nodes and links have the same
reliability of p=0.9, the reliability of executing that task
without any redundancy is

R (0) = P 5
and the reliability improvement factor for anyone of the
six allocations is

RIF = R (2)-R (0) = 0.9597-0.5905 = 9 %
I-it (0) 1-0.5905 0.17 0

The reliability R(~) is obtained by applying the MFST al
gorithm given in [PRAS 86] and SYREL algorithm [HARI
86a].

Applying Algorithm 2 identifies the same optimal
distribution of the functions obtained by allocation a 2'

Maximal Rellablllty Allocations

Maximal Task ReUablllty ==0.0&07

Allocation Xl X2 X3 X. Xl) Xa TPDi (in ms)

a1 11 12 13 13 12 /1 126.6

a2 11 13 12 12 /3 /1 107.6

a3 12 11 13 /3 11 /2 130.3

a. 12 13 11 11 /3 /2 112.0

as 13 II' 12 12 11 /3 154.6

a6 13 12 11 11 12 /3 143.6

Table 1.

TPD 's of the allocations resulted from applying F AP.

Is

~ Xg

~
Xs)-------j

Xu

/s

Figure 4. Distribution of functions according to a 2.

Xs)-------(
Xu

Figure 5. Distribution of functions according to as.

7. SUMMARY AND CONCLUSIONS

In this paper, we addressed the problem of
resource allocation for combined reliability and delay op
timization and present two algorithms. Algorithm 1
decomposes the optimization problem into two sub
problems. First, the allocations of the functions that
maximize the task reliability are determined using a
method based on the branch-and-bound technique. Next,
channel delays are analyzed using queueing network
model to estimate the task packet delay for each alloca
tion resulted with maximal reliability. The optimal allo
cation solution is then chosen to be the one with minimal
delay. This algorithm is useful in handling large distri
buted systems because it does not require the evaluation
of the task reliability at each iteration. It is fairly
efficient due to the 0-1 integer linear programming formu
lation. Algorithm 2 solves the reliability and delay op
timization simultaneously by maximizing a compound ob
jective function that captures both reliability and delay
using a similar technique to Algorithm l.

The proposed algorithms can also be applied to op
timize other performance measures along with the relia
bility of a given set of distributed tasks.

351

ACKNOWLEDGMENT

The authors wish to thank Dr. F. Parisi-Presicce
for several useful discussions.

REFERENCES

[BALL 80] M. O. Ball, "The Complexity of Network Reli
ability Computations," Networks, VoL 10, 1980, pp.
153-165.

[CHEN 80] P. P. S. Chen, J. Akoka, "Optimal Design of
Distributed Information Systems," IEEE Trans.
Computers, Vol. C-29, December 1980, pp 1068-1080.

[CHU 69] W. W. Chu, "Multiple File Allocation in Multi
ple Computer System," IEEE Trans. Computers, Vol.
C-18, October 1969, pp 885-889.

[FRAN 72] H. Frank, W. Chou, "Topological Optimiza
tion of Computer Networks," Proceedings of the
IEEE, Vol. 60, No. 11, November 1972, pp 1385-1397.

[GERL 77] M. Gerla, L. Kleinrock, "On the Topological
Design of Distributed Computer Networks," IEEE
Trans. Communications, Vol. COM-25, No.1, Janu
ary 1977, pp 48-60.

[GRNA 80] A. Grnarov, L. Kleinrock, M. Gerla, "A New
Algorithm for Symbolic Reliability Analysis of Com
puter Communication Networks," Pacific Telecom
munication Conference, June 1980.

[HARI 86a] S. Hariri, C. S. Raghavendra, "SYREL: A
Symbolic Reliability Algorithm based on Path and
Cutset Methods," Proceedings of the IEEE IN
FOCOM 86, April 1986, pp 293-30l.

[HARI 86b] S. Hariri, C. S. Raghavendra, V. K. Prasanna
Kumar, "Reliability Analysis in Distributed Sys
tems," Proceedings of the 6th International Confer
ence on Distributed Computing Systems, May 1986,
pp 564-571.

[HILL 80] F. S. Hillier, G. J. Lieberman, Introductions to
Operations Research, San Francisco: Holden-Day,
1980.

[IGNI82] J. P. Ignizio, D. F. Palmer, C. M. Murphy, "A
Multicriteria Approach to Supersystem Architecture
Definition," IEEE Trans. Computers, Vol. C-31, No.
5, May 1982, pp 410-418.

[IRAN 82] K. B. Irani, N. G. Khabbaz, "A Methodology
for the Design of Communication Networks and the
Distribution of Data in Distributed Supercomputer
Systems," IEEE Trans. Computers, Vol. C-31, No.5,
May 1982, pp 420-434.

[KLEI 76] L. Kleinrock, Queueing Systems, Volume II:
Computer Applications, Wiley, New York, 1976.

[KLEI 80] L. Kleinrock, F. Kamoun, "Optimal Clustering
Structures for Hierarchical Topological Design of
Large Computer Networks," Networks, Vol. 10, 1980,
pp 221-248.

[LAN! 83] L. J. Laning, M. S. Leonard, "File Allocation
in a Distributed Computer Communication Net
work," IEEE Trans. Computers, Vol. C-32, No.3,
March 1983, pp 232-244.

[MAHM 76} S. Mahmoud, J. S. Riordon, "Optimal Alloca
tionof Resources in Distributed Information Net
works," ACM Trans. Data Base Systems, Vol. 1,
March 1976, pp 66-78.

[MARC 81] R. Marcogliese, R. Novarese, "Module and
Data Allocation Methods in Distributed Systems,"
Proceedings of the 2nd. International Conference on
Distributed Computing Systems, 1981, pp 50-59.

[MERW 80] R. E. Merwin, M. Mirhakak, "Derivation and
Use of a Survivability Criterion for DDP systems,"
Proceedings of the 1980 National Computer Confer
ence, May 1980,pp 139-146.

[PRAS 86] V. K. Prasanna Kumar, S. Hariri, C. S.
Raghavendra, "Distributed Program Reliability
Analysis," IEEE Trans. Software Engg.-, VoL SE-12,
No.1, January 1986, pp 42-50.

[RAGH 83] C. S. Raghavendra, S. V. Makam, "Dynamic
Reliability Modeling. and Analysis of Computer Net
works," Proceedings of the International Conference
on Parallel Processing, Augest 1983.

[RAMA 83] C. V. Ramamoorthy, B. W. Wah, "The Iso
morphism of Simple File Allocation," IEEE Trans.
Computers, Vol. C-32, No.3, March 1983, pp 221-
231.

[SATY 81] A. Satyanarayana, J. N. Hagstrom, "A New
Algorithm for Reliability Analysis of Multi-Terminal
Networks", IEEE Trans. Reliability, Vol. R-30, No.4,
October 1981, pp 325",333.

[TANE 81] A. S. Tanenbaum, Computer Networks, Pren
tice Hall, New Jersey, 1981.

[WILK 72] R. S. Wilkov, "Analysis and Design of Reliable
Computer Networks," IEEE Trans. Communications,
Vol. COM-20, No.3, June 1972, pp 660-678.

352

DCBL: DATAFLOW COMPUTING BASE
LANGUAGE WITH n-VALUE LOGIC

Jayantha Herath*, Nobuo Saito*, Kenji Toda, Yoshinori Yamaguchi, Toshitsugu Yuba

Electrotechnical Laboratory, 1-1-4, Umezono, Sakuramura, Ibaraki 305, Japan.

* Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan.

Abstract

An abstract model of parallel computation, specification of
a base language for. the abstract model, design of a high
level language and design of an architecture are steps to
constructing a computing system. This paper introduces
and describes the n-value logic, the NOT (OPERATION)
abstract computing model based on the dataflow.comput
ing concept, functional programming and n-value logic,

. its effectiveness· over the traditional dataflow computing
models and defines DCBL, a Dataflow Computing Base
Language based on NOT(OPERATION) model as a base
for an .efficient new class of dataflow computing languages.
The major features of DCBL expressions, the expression -
graph translation process, and formal and informal opera
tional semantics are discussed in detail.

1 Introduction

Dataflow'computing [1], a radical departure from von Neu
mann computing, supports multiple processing on a mas-:

sive scale and has the potential to playa major role in next
generation computing machines. In"dataflow, an instruc
tion is enabled immediately after the arrival of operands.
The computations are free of side effects, and independent
computations proceed naturally in parallel. The dataflow
approach has the.potential of exploiting large scale concur
rency efficiently, maximum utilisation of VLSI in computer
design, compatibility with distributed networks, and com
patibility with functional high-level programming. The
dataflow concept can be easily implemented in both ma
jor computing application areas: numerical computations
such as scientific and technological computations and non
numerical computations such as symbolic manipulation in
knowledge processing. Several dataflow computing models
have been proposed for implementing dataflow computing
concept in practical machines [5], [10] All these models are
based on the Dennis's initiative work [1], [2]. Dynamic
computing models, proposed separately by Arvind at MIT
[3] and Gurd at Manchester, [4] are more efficient than the
basic model.

CH2345-7/86/0000/0353$01.00 © 1986 IEEE
353

The language is very important in representing parallel
algorithms efficiently. Side-effect-free functional languages
such as Pure Lisp and FP can be used effectively to exe
cute computations in dataflow computing machines since
they do not reflect the properties of von Neumann com
puting. Dataflow languages [1],[2],[3] should be designed
with the dataflow concept in mind. Users should not con
sider the explicit control of memory allocations in using
machines, but deal only with data values. Low-level lan
guages for dataflow computing machines should describe
dataflow computing efficiently.

In section 2, the n-value logic and NOT(OPERATION)
computing model is introduced and its effectiveness over
the traditional model in some important issues in dataflow
computing is discussed. Section 3 introduces and defines

the dataflow computing base language, DCBL (pronounced
decibel) and discusses its specifications. Section 4 outlines
a dataflow graph specification language since the. opera
tional semantics of DCBL expressions consist of expres
sion translation to dataflow graphs and specifying the func
tionality of DCBL operators. Here, a simple specification
language for parallel system specifications is introduced.
Section 5 details the translation process of expressions to
dataflow graphs which specify informal operational seman
tics. Section 6 specifies the functionality of the DCBL
operators which give the formal operational semantics of
DCBLexpressions.

2 . NOT(OPERATION) computing
model

The NOT(OPERATION) model (see Fig. 1) is based on
the dataflow computing concept, functional programming
and n-value logic. This model .provides very high per
formance with multi-dimensional parallelism, for parallel
computing. Here, the control structures in parallel com
putations are composed of three primitive functions: se
quential computations, parallel computations and decision
making .computations. Strict rules govern the way each
control structure is used, guaranteeing the consistency and
completeness of the specifications. Sequencing parallel com
putations is necessary to ensure logical correctness of the

? ~ ... ~
Fig. l(b)

Fig. l(a)

Fig. 1 NOT(OPERATION) abstract model

computations. Sequential computation control functions
composed of functions that depend on the previous result
of some other function. Fig. l(a) represents the execu
tion of ordered sequential computations Sl, S2, ... Sn.
Each successive computation depends on the result of its
predecessor. Here, input to the S2 is the output of the
predecessor S1. Parallel computations are composed of
functions independent of the other for data. They are ex
ecuted in parallel. Fig. 1 (b) represents the execution of
independent parallel computations Sl, S2, ... Sn. Decision
making computations use n-value logic.

• n-value logic: All dataflow computing languages
developed so far [1] - [12] represent the class of op
erational semantics with two-value logic proposed by
the traditional model. Executing conditional compu
tations result in two values, TRUE (1) and FALSE
(0) boolean values. These values trigger remaining
computations.

In n-value, logic the execution of a conditional com
putation does not give strictly TRUE or FALSE val
ues but gives any value, including no value, instead.
The translation of two-value logic conditional com
putations to n-value logic is performed in two steps.
First, the traditional conditional computation is dis
integrated into two complementary basic operations.
Both operations must be executed for deadlock free
computation. The next step of the translation de
fines the semantics of the execution. One of the two
operations executed will give an output value if the
operation is satisfied. I-value logic generates TRUE

boolean value and n-value logic generates any value,
including no value, instead of boolean values.

Proposition 1: The traditional conditional com
putation can be divided into two OR parallel com
putations. One represents the positive state and
the other represents the negative state.

The positive state of a conditional computation is de
noted by OPERATION and the negative state by NOT
(OPERATION). Two input tokens which will satisfy only
one of the operations are required to enable the condi
tional computation. The parallel computing of conditional
computation can be represented as IF (OPERATION)
THEN Sl OR IF (NOT(OPERATION)) THEN
S2. It is shown in Fig. l(c).

Proposition 2: NOT(OPERATION) provides an
efficient facility to implement conditional opera
tions and hence iterative and recursive computa
tions in parallel computing systems.

In I-value logic the execution of both OR combined
operations gives a TRUE boolean value output when the
operation is TRUE. No FALSE output is given. Succes
sive computations receiving the TRUE boolean value are
executed. Boolean value generation complicates dataflow
computing. n-value logic greatly simplifies the conditional
computations, iterative and recursive computations in dataflow
computing. Here, when the OPERATION is satisfied in-
put data is given as the result of execution, and the ~ut-
put of the NOT(OPERATION) is frozen. Otherwise, the
NOT(OPERATION) gives the data value output while the
OPERATION output is frozen. Boolean values can be ob
tained by executing CONSTANT operations when neces
sary.

Proposition 3: Boolean value generation in the
execution of conditional computations in a dataflow
computing environment is not a requirement .

354

There are three types of conditional computations:

• IF A(x) THEN B(x) ELSE C(x) Here, the value
of A(x) is used in the successive B(x) and C(x) com
putations.

• IF A(x) THEN B(x) ELSE C(z) Here, the value
of A(x) is used partially in the successive B(x) com
putation.

• IF A(x) THEN B(y) ELSE C(z) Here, the value
of A(x) is not used in the successive B(y) or. C(z)
computations.

In the first and second cases, the value of conditional oper
tion execution is used in the following executions. There
fore, n-value logic is more efficient than 2-value logic. In
the third case, B(y) and C(z) are invariants. These compu
tations can be performed independent of A(x) whenever.y
and z become available and the result of A(x) can be used
to trigger the final result. Fig. 2 shows the implementa-

Fig. 2{a)

C(X)

SWITCH

T F

Fig. 2{b)

Fig. 2 Conditional computation - Traditional

Al{x) ... An{x)

Fig. 3 Conditional computation-
NOT{ OPERATION)

tion of conditional computation, IF C(x) THEN AI, A2,
... An ELSE B1, B2, ... Bn, with 2-value logic. It is also
possible to use a complex, macro version of switch-t and
switch-f operations as shown in fig. 2(b) [3]. Fig. 2(c)
shows the execution of IF C(x) THEN AI, A2, ... , An IF
NOTC(x) THEN B1, B2, ... Bn. Here, the data value
'x' flows to the parallel operations, 'C OPERATION' and
NOT'C OPERATION'. If it satisfies the 'C OPERATION'
the same 'x'. data value is given as the output value and
sent to the defined destinations (thin lines in Fig. 3). The
output of the NOT'C OPERATION' is frozen (dark lines
in Fig. 3). If the data value 'x' satisfies the NOT'C op
ERATION' the same data 'x' is given as the output and
sent to the defined destinations (dark lines in Fig. 3).
Here, the output of 'C OPERATION' is frozen (thin lines
in Fig. 3). It is also possible to use a complex, macro ver
sion of OPERATION and NOT(OPERATION). Iterative
and recursive computations are extensions of conditional
computations. Hence, the representation of conditional
computations has a large impact on computations. The
boolean expression in the general iterative and recursive
computations, can be substituted by two OR PARALLEL
operations. Hence, the general while loop computation

355

While(boolean expression) (loop 81); 82, can be
represented as (While (OPERATION) (Loop 81))
OR (NOT(OPERATION)(82)). and the general re
cursive computation f(x) = IF c(x) then f(B(x) else
x in f(z) can be represented as f(x) = IF c (x) then
f(B(x) OR IF NOT c(x) then x in f(z).

2.1 Effectiveness

It is easy to prove that the number of tokens necessary for
the conditional computation and the time taken to enable
successive computations of the condition.al operation are
always less in n-value logic based models than the 2-value
logic based models. Several non-numerical and numerical
computations were performed in the EM-3 [8],[9],[12],[13].
and the corresponding frequency of operations executed
in each benchmark program was measured. These results
show that SWITCH operations share a large percentage
of all operations executed. The implementation of n-value
logic in the EM-3 solved some problems in data-flow com
puting [13]. These results are summarized below.

1. Matching bottleneck: The basic computing cycle
of double operand operations consist of: 1. match
ing operands 2. fetching instructions 3. executing in
structions 4. dispatching results to destinations. The
basic computing cycle of single operand operations
consist of 2, 3, and 4 steps. A dataflow processing
element basically consists of a matching unit, execu
tion unit and a destination unit. (See Fig. 4.) The
execution unit performs the execution and structure
handling. The matching unit sequentially matches
and synchronises the operands for execution. The
larger the number of double operand operations the
more matching to be performed in the matching unit.
This narrows the pipeline between the matching unit
and execution unit and reduces the computing speed.
This is the matching bottleneck. Double operand
switch operation is the major source of this. The tra
ditional dataflow··computing model reduces the com-
puting speed described by the concept at the very
first level of implementation. The implementation of
n-value logic decreased significantly the number of
single operand packets, double operand packets and
operations executed. This results in a proportionate
reduction of computing and communication cost and
increase in computing speed. Fig. 5 shows machine
cycles needed for single operand and double operand
conditional computations with 2-value logic and n
value logic. Performance evaluation measurements
in the EM-3 support these conclusions.

2. Remaining packet garbage: In dataflow com
puting, a large number of unexecuted packets wait
in the matching unit until they are removed by some
process. This is remaining packet garbage, RPG.

_.
I i

IIMATCHING I
UNIT

II
II EXECUTION

UNIT I

r I
I DESTINATION I
UNIT

l
1

Fig. 4 Data-flow PE
--

• • • ----Fig. 5(a) Single operand - Traditional

Fig. 5(b) Double operand - Traditional

Fig. 5(c) Single operand -
NOT(OPERATION)

Fig. 5(d) Double operand -
NOT(OPERATION)

Fig. 5 Machine cycles

Condition

T F

Fig. 6(a) Fig. 6(b)
~----~~------~

Fig. 6 Remaining packet garbage

356

Vertical branches created by conditional computa
tions and multi-argument functions generate RPG.
Fig. 6(a) shows RPG generation with single argu
ment functions. A conditional computation divides
the dataflow computing into two vertical branches.
Execution of the conditional computation makes one
branch LIVE and the other DEAD. Data flow to the
operations ignores the liveness of the branch. Load
ing only one operand of a double operand opera
tion in the DEAD branch results in RPG. Fig. 6(b)
shows RPG generation with multi-argument func
tions. The multiple arguments in a function divide
the dataflow computation into live vertical branches.
Here, RPG is created when a DEAD branch of a con
ditional computation in one vertical branch receives
the data values from the same vertical branch and/or
from some other vertical branch. The n-value logic
completely stops the flow of data from just above
the conditional computation to the DEAD branch of
the conditional computation. A control operation to
stop the data flow into the DEAD branch, setting life
time to double operand packets, dispatching a special
COMMANDO packet to execute all the operations in
the DEAD branch or other efficient garbage collect
ing mechanism must be implemented to completely
remove RPG.

3. Control of parallelism:. Dataflow computations
have huge parallelism, many times larger than the
parallelism available in the hardware. Such computa
tions tend to use excessive amounts of storage, since
many partial results are created long before resources
are available to process them. Therefore, it is neces
sary to restrict excess program parallelism to approx
imately match machine parallelism. A large number
of unnecessary computations with pseudo parallelism
in the traditional model is removed by n-value logic.
Dataflow computing requires very large, complex in
struction sets. n-value logic provides the facility to
design an efficient, refined and reduced instruction
set.

4. Sequential computing segments: A sequential
computing segment is a program segment in which
the maximum parallelism is less than the number of
processors and/or pipeline stages. Such computa
tions are involved in conditional computations, re
cursive procedure calls and iterative computations
which uses previous computing results to continue
computation. The performance of the sequential com
puting segments in a program is important in paral
lel computing. Dynamic dataflow computing mod
els unfold loops to compute iterative computations
dynamically. n-value logic eliminate sequential com
puting segments implemented in loop unfolding and
gives high computing speeds.

3 Specification of DCBL

This section discusses the specifications of a base language
for the NOT(OPERATION) model. The main objective
of DCBL design is to introduce and define a new class
of operational semantics with n-value logic for dataflow
computing languages. The other objective is the devel
opment of high-level dataflow computing languages which
are comfortable for machines and users to express many
forms of concurrency. The language considered here is a
preliminary version of the DCBL, therefore, it does not
include features such as static arrays or dynamic arrays
such as streams, records or unions. Such extensions are
considered later. DCBL, a VAL like language [1], [2] al
lows user selected, highly concurrent algorithms to be ex
pressed as a collection of expressions. Therefore, the execu
tion of a DCBL program consists of a sequence of parallel
executions of side effect free expressions. All individual
operations in a DCBL expression are executed simulta
neously. An expression execution may generate zero (no
value expression), one (uni-value expression), or more than
two (multi-value expression) values. Tuple expressions,
multi-value function expressions, conditional expressions
and parallel expressions are multi-value expressions. The
specification of BNF syntax for iterative computations of
DCBL is given below.

exp ::= function(exp)
I exp, exp, ... exp
I IF exp THEN exp IFN OT exp THEN exp
I identifiers
I constants
I LET idlist = exp IN exp
I IF exp THEN exp
I FOR idlist = exp DO iteration

iteration ::= ITER exp NOTITER exp
I LET idlist = exp IN iteration
I IF exp THEN iteration
I IF exp THEN iteration
IFNOT exp THEN iteration
idlist ::= id
I idlist id

The application of a function to an expression, funct (exp),
is used to represent sequential computations. The elemen
tary functions are operators. The operations performed on
expressions can be characterised by mathematical func
tions. The application of function F to the imports, x,
y, and z, produces export F(x,y,z). The expression tuple
lexp, exp, ... exp I is used to represent parallel com
putations. Identifiers and constants are the most

357

elementary expressions in DCBL. Values can be bound to
identifiers. Identifiers can be bound to simple types (in
teger and real), structured types and function calls. The
LET ... IN... expression provides local binding to
extend the execution environment.

Decision making computations, conditional expressions
and the FOR ... DO ... expressions in DCBL, se

quence the parallel computation to ensure logical correct
ness and avoid initiating computations whose results can
never be used. Huge collections of IF-THEN rules are used
in numerical and non-numerical computations, especially
in expert systems. Therefore, in the DCBL design, spe
cial attention is given to the implementation of conditional
expressions. DCBL has a special conditional expression,
representing the features described in the n-value logic.
Therefore, DCBL has new operational semantics for con
ditional, iterative and recursive computations. In DCBL,
the general IF THEN ELSE expressions and case expres
sions are represented by the IF exp THEN exp condi
tional expression. All predicates in IF exp THEN are
supported by expressions, and depending on the imports,
produce and seize exports, instead of producing boolean
values. IF exp THEN exp provides the single branch
conditional expression. IF expl THEN exp2 IFNOT
expl THEN exp3 is a two branch conditional expression
with two complementary conditional computations. These
expressions are executed in parallel. Combining n IF exp
THEN exp expressions, n parallel computations with a
live branch and n-l dead branches, provides guarded com
mand feature.

Sequential expressions of the type of iterative compu
tations that depend on the previous iterative computation
result are executed sequentially. However, the hidden par
allelism of the iteration expression is exploited and the
computing speed is increased by the NOT(OPERATION).
The FOR idlist = exp DO iteration expression imple
ments loops that cannot execute in parallel because values
produced in one iteration must be used in the next. The
FOR expression has loop initiation and a loop body. Loop
initiation is performed by the FOR idlist = exp part
and the loop body appears in DO iteration. Side effect
free conditional expressions are included in the decision
making 'for loop iteration. The iterative expression FOR
idlist = exp DO iteration is evaluated by binding the
iterative identifiers, the elements of idlist, to the values
of expo The evaluation of the iteration body results in a
NOTITER expression and an ITER expression. Both
these expressions are evaluated concurrently in each itera
tion. If the NOTITER expression satisfies the condition,
this terminates the iteration and gives the computation re
sult. Otherwise, the output is given by ITER expression.
Here the ITER expression is satisfied and continues it-

, I .
eration. The iteration is terminated when the eva uatIOn
of the ITER body results in an ordinary NOTITER
expression. The value of this expression is the value of the

ITER expression. Parallel expressions for the computa
tions of the type For I := 1 to n do C[i] := A[i] *
B[i], which represents iterations that do not depend on the
previous computation result, are not discussed here. The
following section describes the dataflow graph specification
language.

4 Dataflow graph specification lan
guage

Expressions and compiler help identify concurrency in al
gorithms and their program and map that concurrency
into graphs. The translation of DCBL expressions gives
new dataflow graphs presenting the NOT(OPERATION)
abstract computing model. The graph, which connects
sub-graphs composed of operators, is an explicit represen
tation of the concurrency available in evaluating expres
sions. An element of a dataflow computation consists of
import ports, imports, export ports, exports, import links,
export links and operators. Specifications of a dataflow
graph include imports, exports, data links and operators.
Specification of operators is defined recursively using local
imports and exports. Imports to the operator embark at
import ports. Exports of the operators disembark at ex
port ports. The number of imports or exports in a link
is unlimited. This gives the dynamic computing features
[3] [4]. The restriction of values to one gives the static
computing feature [1] [9] [11]. The operators communi
cate values through their import and export ports. The
graph has an import port for each free variable of the ex
pression and an export port for each value returned by the
expression. The following notations are used to specify the
dataflow graphs. IM.T(exp) and EX.T(exp) are the
set of imports to the operators of the translation of (exp)
and the exports at the export ports of the operators of
the translation of (exp). These imports and exports have
defined import ports and export ports. Links are repre
sented by EX.T(expl)->, IM.T(exp2) which means
that the exports of translated expression expl are linked to
the defined import ports of the translated expression exp2
as imports. The import ports of all parallel sub-graphs
are assigned the set of import values. The graph export
ports are formed by concatenating the export ports of the
component sub-graphs. An extension of this language will
provide facilities to specify parallel systems.

5 Translation of DCBL expressions
to graphs

Transfer function T maps DCBL expressions to dataflow
graphs and functionality of the DCBL operator, F, map
imports onto exports. The operational semantics is de
fined and derived by the application of F(T(exp)). This

358

section discusses the expression specification translation
to graphs and gives the informal operational semantics of

the dataflow graphs.

Figure 7 [T(funct(exp))]

I imports: (IM.T(exp)) I
I exports: (EX.T(funct)) I
I links: EX.T(exp) -> IM.T(funct) I

~
l T(funct)1

I
I operators : I

I T(exp) I
I imports:(IM.T(exp)) I
lexports:(EX.T(exp)) = (IM.T(funct)) I

I T(funct) I
I imports:(IM.T(funct)) = (EX.T(exp)) I
I exports:(EX.(funct)) I

The translation of funct(exp), T(funct(exp)), is shown
in Fig. 7. This shows sequentially connected dataflow
sub-graphs. The translation is made by connecting the
export ports of T(exp) to the import ports of T(funct).
Fig. 8 shows the translation of [T(expl, exp2, ... expn)]
which consists of n sub-graphs, [T(expl)], [T(exp2)], ...
and [T(expn)], that can be executed in parallel. The T(let
idlist = expl IN exp2) is shown in Fig. 9. Fig. 10 shows
the implementation of the simplest conditional expression
IF expl THEN exp2. Two sub-graphs are connected
sequentially in this graph. Predicate expl controls the
evaluation of exp2. No special gates are used in this trans
lation. The import data value is the export of T(expl)
if this data satisfies the condition expressed by explj if
not, the data value is simply absorbed. This expression
provides the facility to evaluate n parallel conditional ex
pressions. A simple extension of the conditional expression
is the parallel execution of complementary expressions, IF
expl THEN exp2 IFNOT expl THEN exp3. Fig.
11 shows the translation of this expression. The transla
tion of identifier, [T(id)], gives a graph with no operators.
The translation of a constant expression gives the const
operator with import export links. A trigger-value import
produces the value const as the export.

Figure 8 [T(exp,exp, ••. exp)]

! imports: (IM.T(expl) + IM.T(exp2) ... + IM.T(exp)) I
I exports: (EX.T(expl) + EX.T(exp2) ... + EX.T(expn» I

I ij? §p ... §fJ I
I operators: I

I T(expl) I
I imports:(IM.T(expl» I
I exports:(EX.T(expl» I

I T(exp2) I

I imports:(IM.T(exp2» I
I exports:(EX.T(exp2» I

IT(expn) I
! imports:(IM.T(expn» I
I exports:(EX.T(expn» I

Figure 9 [T(LET idlist = expl IN exp2)]

I imports: (IM.T(expl) + (IM.T(exp2) - EX.T(expl» I

I exports: (EX.T(exp2» I
I links: (EX.T(expl) -> (IM.T(exp2» I

I
!T(exp1)

I
I

IT(exp2) I
I

I operators: I
IT(expl) I

! imports:(IM. T(txpl» I
I exports: (EX.T(expl» I

!T(exp2) I
!imports:(EX.T(expl» + (IM.T(exp2)) I
I exports:(EX. T(exp2» I

359

Figure 10 [T(IF exp1 THEN exp2)]

! imports: (IM.T(expl) + (IM.T(exp2) - EX.T(expl» I

! exports: (EX.T(exp2» I
I links: (EX.T(expl) -> IM.T(exp2) I

r
[T(exp1) -1

1
I T(exp2) I

I
I operators: I

I T(expl) I
I imports:(IM.T(expl» I

I exports:(EX.T(expl) I

I T(exp2) I
I imports:(IM.T(exp2» I
I exports:(EX.T(exp2» I

The iteration expression FOR idlist = exp DO it
eration is translated as shown in Fig. 12. DCBL ·binds
identifiers locally. In evaluating FOR idlist = exp DO
iteration, the elements of idlist are bound to the val
ues of exp, and iteration is terminated when the iteration
results in an ordinary expression. Fig. 12.1 shows the
translation of ITERexp NOTITERexp. ITER(exp)
supports iteration if the imports satisfy the expression
expo NOTITERexp gives the result of the computa
tion. The iteration body LET idlist = exp IN it-
eration is implemented in the same way as the expres
sion LET idlist =expl IN exp2 is implemented. The
dataflow graph implementation of the conditional itera
tion body IF exp THEN iteration is similar to that
of the conditional expression. See fig. 12.2. Both sub
graphs, IF exp and IFNOTexp, provide a complete set of
exports. [T(exp)] and [T(notexp)] are placed on the import
paths of the iteration body sub-graphs, [T1(iteration1)]
and [T1(iteration2)]. Exports of [T(exp)] or [T(notexp)]
enable the evaluation of a selected iteration body.

6 Functionality

The operational semantics of DCBL expressions represent
the formal simulation of dataflow graph execution. The
operational semantics of the expression is the functionality
of its graph. The graph is mapped onto its semantic char-

acteristicsusing the functionality. The functionality of a
graph is characterised by the functionality of its operators.
There are two types of operators; one produces exports in
the execution with the arrival of imports, and the other
produces and seizes or freezes the exports, depending on
the arrival of imports. In the first type, the availability
of all imports enables the execution of an operator and
produces -exports and export via export ports to defined
destinations. The destination of an export value is speci
"fied by the number of the import port of the destination
operator. The export port of an operator is connected by a
link to the import port of another operator; therefore, the
export value of one operator is the import value to another
operator. In the second type, an operator receives import
values at each import port and produces or seizes export
values at the export port during the execution. Producing
an export value enables successive computations. These
operators are used in the implementation of conditional,

Figure 11 [T(IF expl THEN exp2 IFNOT expl THEN exp3))

I imports: (IM.T(expl) + (IM.T(NOTexpl)= IM.T(expl)) (IM.T(exp2) -1
(EX.T(expl)) + (IM.T(exp3) - (EX.T(NOT(expl))

I exports: (EX.T(exp2» = (EX.T(exp3)) I
Ilinks:(EX.T(expl) -> IM.T(exp2)) + EX.T(NOTexpl) -> IM.T(exp3)) I

/~
I T(expl) I I T(NOTexpl)j

I I
IT(exp2) I I T(exp3) I

I I
I operators: I

I T(expl) I
1 imports:(IM.T(expl)= EX.T(NOTexpl)) I
I exports:(EX.T(expl)) I

I T(NOTexpl) I
I imports:(IM. T(NOTexpl))

1

I exports:(EX.T(NOTexpl) = IM.T(expl)) I
1 T(exp2) I

I imports:(IM.T(exp2)) I
1 exports:(EX.T(exp2)) 81

1 T(exp3) I
1 imports:(IM.T(exp3)) I
1 exports: (EX.T(exp2)) I

iterative, and recursive computations.

The operational semantics of a dataflow operator is
given by its functionality, which maps its imports onto
exports. The specifications of the functionality of various
dataflow operators are discussed in this section. The func
tionality of an operator is the usual arithmetic or boolean
function associated with it. For example, F+(x,y) = x+y
and Fconst(x) = const. Here, x triggers the operator,
const, to give the export defined by the const operator.
The functionality can be extended for an ordered set of
dataflow imports. The operator, plus, can be performed "
to the ordered sets x.X and y.Y where x represents the first
value of one ordered set, X represents the rest of that or
dered set, y represents the first value of the other ordered
set, and Y represents the rest of that ordered set. Hence,
Fplus(x.X, y.Y) = Fplus(x,y). Fplus(X,Y)

360

= (x+y). Fplus(X,Y).

In executing conditional operators, the data value im
ported is exported when it satisfies the conditional oper
ator; if it does not satisfy the conditional operator, no
export values are produced. The pair Fcond(x) and "Fnot
cond(x) is the complementary set of conditional operators
that can execute concurrently. Here N implies frozen or

seized exports.

Fcond(x) = x if x satisfies the condition

Fcond(x) = N if x does not satisfy condition

Fnotcond(x) = x if x riot satisfies the condition

Fnotcond(x) = N if x satisfies.condition
- -- -+- .

Figure 12 [T(FOR idl ... idn = exp DO iteration)]

limports:(IM.T(exp) + IM.T(iteration) - EX.T(exp)) I

lexports:(EX.T(iteration)) I
Ilinks:(EX.T(exp) -> (IM.T(iteration)) I

I
IT(exp) I

I
I T(iteration) I

I
I operators: I

1 T(exp) I
I imports:(IM.T(exp)) I
I exports:(EX.T(exp)) I

1 T(iteration) I
limports:(IM.T(iteration) + EX.T(exp)) I
lexports:(EX.T(iteration)) I

Figure 12.1 [T(NOTITER exp, ITER exp)]

I imports: (IM.T(ITER exp) + IM.T(NOTITER exp)) J

1\ exports: (EX.T(ITER exp) or EX.T(NOTITER exp)) J

/~
II T (ITERexp ~ I T(NOTITERexp) I

I 1
I operators: I

I T(ITERexp) I
limports:(IM.T(ITERexp)) I
I exports:(EX.T(ITERexp)) I

I T(NOTITE!texp) I
I imports:(IM.T(NOTITERexp)) I

lexports:(EX.T(NOTITERexp)) I

The operator will not execute without its complete set
of imports.

F(X, Y, ...) = e if X or Y ... = e = empty

Foper(e) = e

Fconst(e) = e

Fcondop(e) = e

Fcondop (e,x) = e

Fcondop(x,y) = x or y (predefined)

The functionality of DCBL operators for list opera
tions, numerical operations and conditional operations are
shown below Here, E implies error value export.

List operations

Ffirst«xl x2 ... » = xl
Frest«xl x2 ... » (x2 x3 ...)

Ffirst(O) = E
Frest(O) = E

Fcons(xl (x2 ...) = (xl x2 ...)

Numerical operations

Fplus(x y)
Fquotient(x y)
Ftimes(x y)

= x+y
= x/y
= x * y

Fdifference (x y)
Fremainder(x y)

Conditional operations

Fnull(O) 0 Fnotnull(xl ...)
Fnull(xl ...) N Fnotnull (())

Fatom«x)) (x) Fatom«xl ...)
Fatom «xl. ..)) N Fnotatom(x)

x-y
rem x/y

(xl ...)
N

(xl ...)
N

Figure 12.2 [T(IF exp1THEN iteration1 IFNOT exp1 THEN itera-
tion2)]

'[imports:(IM.T(eXPl)+(IM.T(NOTeXPl)=IM.T(exPl))+(IM.T(iteration 1)-
(EX.T(expl))+(IM.T(iteration2)-EX.T(NOTexpl)) I
I exports: (EX.T(iterationl)) = (EX.T(iteration2)) I
Ilinks:(EX. T(expl)-> 1M. T(iterationl)),
(EX. T(NOTexpl)-> 1M. T(iteration2)) I

/ ----IT(exp1) I I T(NOTexp1) I

I I
I T(iteration1) I I T(iteration2) I

I I I
I operators: I

I T(expl) I
I imports: (1M. T(expl)) I
I exports:(EX.T(expl)) I

I T(NOTexpl) I
I imports: (1M. T(NOTexpl)) I
I exports:(EX.T(NOTexpl)) I

I T(iterationl) I
I imports: (IM.T(iterationl) I
I exports:(EX.T(iterationl)) I

I T(iteration2) I
I imports: (1M. T(iteration2) I
I exports: (EX.T(iteration2)) I

Fnumberp(1) = 1 Fnotnumberp (1 ...) = 1
Fnumberp(1 ...) = N Fnotnumberp(l) = N

Fequal(x x) = x Fnotequal (x x). = N
Fequal(x y) = N Fnotequal(x y) = x

for integers x greaterthan y
Fgreater(x y) = y Fnotgreater(x y) = x
Fgreater(y x) = N Fnotgreater(x y) = N

361

7 Conclusions

Parallel processing systems give ultra-high computing speeds.
The dataflow computing concept seems to be the most ef
fective, promising computing method to implement in ma
chine architecture for high speed computing. In this pa
per, n-value logic and. the NOT(OPERATION) abstract
computing model were introduced and their effectiveness
over traditional models was discussed. In general, the
NOT(OPERATION) model increases the speed of the dataflow
computing by decreasing machine cycles for conditional
computations, reduces the number of operations, especially
double operand operations in the computation, reduces the
computing and communication costs, and remove an RPG
source.

All dataflow computing languages proposed so far are
based on the 2-value logic. The preliminary version of the
dataflow computing base language using the n-value logic
based NOT (OPERATION) model, the DCBL, was intro
duced and defined. The BNF specifications of DCBL and
a dataflow computing graph specification language were
presented. The new class of operational semantics was
described in detail by translating the DCBL expressions
to dataflow graphs and defining the functionality of the
dataflow graphs.

Acknow ledgements

We wish to thank Dr. Shimada, Dr. Hiraki and Dr. Uchi
bori of Electrotechnical Laboratory for their constant sup
port and helpful discussions. We also extend our thanks
to Dr. Nakamura, Mr. Kitagawa, Mr. Yamaoka, Mr.
Sakurai and other members of Saito lab. Special thanks
to Susantha and Rosemary for helping in many ways to
produce this paper.

References

[1] J. B. Dennis, W. Y. P. Lim, W. A. Ackerman, "The
MIT Dataflow Engineering Model", Proe. of IFIP
(1983), 553-560.

[2] J. D. Brock, "Operational Semantics of a Data flow
Language", MIT/LCS/TM-120

[3] P. Arvind, V. Kathail, K. Pingaley, "A Dataflow
Architecture with Tagged Tokens", TM-174, Lab.
Compo Sci., MIT (Sept, 1980).

[4] J. Gurd and I. Watson, "Preliminary Evaluation of
a Prototype Dataflow Computer", IFIP (1983), 545-
551.

362

[5] T. Yuba, "Research and Development Efforts on
Data-flow Computer Architecture in Japan", SICOB,
(1984).

[6] K. Hiraki, K. Nishida, S. Sekiguchi, T. Shimada
"Maintenance Architecture and LSI Implementation
of a Dataflow Computer with a Large Number of Pro
cessors" , Proe. of Int. ConE. on Parallel proeessing'86
(1986) 486-490.

[7] T. Shimada, K. Hiraki, K. Nishida, "An Architecture
of a Dataflow Machine and its Evaluation", Proe. of
COMPcaN '84 Spring (1984) 486-490.

[8] Y. Yamaguchi, K. Toda, T. Yuba, "A Performance
Evaluation of a Lisp Based Data-driven Machine
(EM-3)", Proe. 10th Ann. Int. Symp. Compo Arch.,
(1983) 363-369

[9] Y. Yamaguchi, K. Toda, J. Herath, T. Yuba, "EM-
3: A Lisp Based Data-driven Machine" , Proe. of Int.
ConE. on Fifth Generation Computing Systems, (Nov.
1984) 524-532.

[10] Vason P. Srini " An Architectural Comparison of
Dataflow Systems", IEEE COMPUTER, (March
1986) 68-88.

[11] A. A. Faustini, S. G. Matthews, A. AG. Yaghi, "The
PLUCID Programming Manual", Technical Report,
Arizona State University, TR-83-004 (October 1983).

[12] J. Herath, "Performance Evaluation of a Data-driven
Machine Using a Software Simulator" , Masters The
sis, Univ. of Eleetroeommunications, Tokyo, Japan,
(March 1984).

[13] J. Herath, N. Saito, K. Toda, Y. Yamaguchi, T.
Yuba, "NOT(OPERATION) for High Speed Data
flow Computing Systems" ,. Proe. of Int. ConE. on Su
per Computing Systems, (Dec. 1985) 524-532.

Evon: an Extended von Neumann Model for Parallel Processing

Wai-Mee Ching

IBM T. 1. Watson Research Center
P.O. Box 218

Yorktown Heights, New York 10S98

Abstract

We propose an extended von Neumann model called Evon for
parallel processing. It is centrally controlled, and is capable of
exploiting instruction level as well as expression level parallelism
inherent in high level language programs. Its effectiveness in
exploiting parallelism depends crucially on powerful primitives,
and we illustrate this point by several short programming
examples written in APL. We then report our work on the design
of an instruction set embodying the Evon model, and a portable
compiler for that instruction set aimed at extracting parallelism
automatically. Finally, we compare Evon with other computa
tional models and architectures proposed for parallel processing
with pragmatic considerations and programming concerns.

1. Introduction
Different approaches to parallel processing can be discussed
around several distinct axes. The first axis is whether the machine
is of a special-purpose or a general purpose nature. For special
purpose parallel machines we have seen examples like the
Yorktown Simulation Engine which is about SOOO times faster
than what is available on sequential machines [9] , [19 J. For
general-purpose machines, on the other hand, only moderate
parallelism has been achieved in actual use such as on the Cray
X-MP. In the search for general-purpose highly parallel
architectures, many computational models and accompanying
architectures have been proposed. This constitutes the dominant
axis in the discussion of parallel processing. • Among the
contending models of computation, the following are the most
actively pursued in research on parallel processing: control-driven
or multiprocessing von Neumann style, data-driven or data flow,
and demand- driven or reduction (see [1] , [14 J) •
Furthermore, there are also hybrid models like Rediflow [1 8]
and Eazyflow [1 6] • Different computational models
emphasize the exploitation of parallelism at different levels of
granularity. Generally speaking, multiprocessing von Neumann
architectures aim at procedure-level parallelism while data flow
aims at expression-level. Among multiprocessing von Neumann
models, there is the distinction of SIMD and MIMD, differences
in switching network interconnection topologies and whether
packet-switching or circuit switching is used.

Treleaven and Hopkins [24] pointed out that the success of the
von Neumann model is related to its general-purpose nature. The
flourishing of contending models for parallel processing in

CH2345-7/86/0000/0363$01.00 © 1986 IEEE
363

contrast to the limited parallelism available for general-purpose
applications so far bespeaks the great difficulty in identifying a
truly general-purpose model of parallel computation. We believe
the success of the von Neumann model also has to do with its
conceptual simplicity, and practicality in terms of hardware
implementation and programmability. Thus, another important
axis which is often neglected in discussing parallel processing is
the set of issues involving programming and languages. Should
parallelism be explicitly specified or implicitly programmed and
extracted by a high-level language compiler? Should we use an
established language or a brand new language for parallel
processing (see [21], [20] , [15 J) • Compilers .have
traditionally played second fiddle to hardware projects in parallel
processing. Two exceptions are the VLIW architecture and the
ELI-S12 machine of Fisher [10] with a compiler doing trace
scheduling, and University of Illinois's Ceaar Project with
Parafrase [11].

Our approach to parallel processing is also compiler-oriented.
We propose an extended von Neumann model, called Evon, for
parallel processing. Evon is centrally controlled globally but
functional and data independent instructions can be executed
simultaneously, similar to the ELI-S12 machine of VLIW
architecture which has a single instruction stream but is not a
traditional SIMD machine. Like the very long instruction word
in ELI-S12, each instruction in Evon can potentially command a
substantial amount of hardware to operate in parallel. Like in
Cedar, Evon uses powerful (compound) functions to organize
computations to be carried out in parallel, and also applies the
principle of data flow at certain levels. As both in VLIW and
Cedar, Evon is accompanied by a sophisticated compiler respon
sible for extracting parallelism from programs written in a
high-level language, so programmers are free of the job of parallel
decomposition and subtasks synchronization. Evon differs from
both VLIW architecture and Cedar in the implicit assumption of
the high-level language most likely, or most suitable, to be used
on proposed parallel machines. Both ELI-S12 and Cedar assume
that programs are written in a traditional scalar von Neumann
language like Fortran, while Evon assumes that programs are
written in a vector von Neumann language like APL. We shall see
from programming examples later that this change of language
does have great significance on previous assumptions on what are
the main impediments to execution in parallel of a high-level
language program. Although Evon is very much like a vector

supercomputer, it will become clear in the following sections that
Evon can afford a much higher degree of parallelism than that
offered by traditional vector processors.

We shall report our research work on defining an instruction-set
E-code as a particular embodiment of the Evon model, and the
work of a compiler (called E-compiler) which translates a
substantial subset of present APL into E-code. The work on
E-compiler is but a first step in our effort to achieve the goal of
automatic extraction of inherent parallelism in high-level
language programs. The successful completion of its first phase
can provide us a valuable tool in studying inherent parallelism in
various programming tasks much like Parafrase did for scientific
programs written in Fortran. But we will be able to cover a wider
area of applications including scientific and engineering
computations, design automation algorithms and financial data
processing.

2. The Evon Instructions and Instruction-level
Parallelism

Like the classical von Neumann model, Evon has a central
processing unit (CPU) and a linearly addressed global memory
connected to the CPU by a bus of sufficient bandwidth. The
memory is interleaved so as to increase its effective bandwidth.
For example, if it is organized into 32 banks, then the famous von
Neumann bottleneck is still there but its capacity has been
increased by 32-fold. Obviously, an increase in the memory
bandwidth has to be matched by an increase in the concurrency
of the CPU operations to boost overall performance.

In the von Neumann model each instruction either moves one
scalar datum from memory to CPU, manipulates a scalar datum
in the CPU's execution unit or stores a datum in CPU to memory.
In Evon each instruction can manipulate scalar as well as vector
data, move a segment of vector data or a scalar datum from CPU
to memory, or vice versa. Evon manipulates four primitive types
of data: boolean, fixed-point number (integer), floating-point
number (real) and character, both in scalar and vector. An Evon
can have all the scalar instructions of some popular von Neumann
machine, but most of all an Evon has vector instructions. The
vector instruction-set repertoire of Evon certainly contains all
those arithmetic operations found in a typical vector processor.
But it must further include the following

1. calculation of all partial results of a binary arithmetic
operation on a vector which corresponds to the scan operator
\ in APL and includes the special case of reduction;

2. selection and expansion of vectors according to a boolean
vector;

3. finding membership and indexes of a vector of elements with
respect to another vector.

4. rotation and shift of vectors.

5. shuffle exchange of elements of a vector (This one has no
corresponding APL primitive).

However, it shall not include functions of a special nature like
matrix multiplication, inversion, or a random number generator.
We also note that in the basic model the length of a vector is not
restricted. But in any particular hardware realization there must
be some limit mvl put on the length of a vector in cpu (we envision
that 1 2 8 :s;;mvl:S;; 1 0 24 for a machine not geared towards any
particular scientific application). In other words, when a vector

364

in memory is longer than the limit mvl imposed by CPU, the
vector has to be wrapped around a real cpu vector register with
masked tail.

In order to pursue our research in parallel processing using the
Evon model and to make our case more concrete, we have
designed an instruction-set, E-code, for a hypothetical simplified
Evon machine. A sketch of the machine organization is given in
Figure 1. The machine has four vector accumulators of a certain
maximal length: BV, CV, IV, EV, one for each data type:
boolean, character, integer and floating-point. The effective
length of a vector residing in one of the vector accumulator is
controlled by a (internal) length register BL, CL, IL, or EL
according to its type. It also has several scalar registers RO-R15
and FO, F2, F4 and F6 as in System 370. E-code, like System
370, is a two-address code, i.e. one of the operands serves as the
destination, which can be a scalar register, a vector accumulator,
or a memory location in case of store operations. Further
description of E-code is in [4] • A basic implementation of
E-code on System/370 has already been accomplished. We
remark that E-code is introduced here only as a convenient tool
for discussing machine-code translation of some programming
examples. Its underlying machine organization is not intended to
represent an ideal implementation of the Evon model.

In general, an Evon CPU has three parts: (1). the I-box for
instruction decoding, scheduling and issuing. (2) the M-box for
memory address calculation, register file and memory accessing
and data transfer. (3) the E-box for the functional execution of
arithmetic and logical operations. The E-box is a collection of
functional elements including operational units for + , x ,
=, etc. For each arithmetic function, there are separate scalar
and vector execution elements. For each vector arithmetic
functional element, there are duplicate hardware execution units
to carry out the actual calculation in segments of a vector. For
example, there can be 32 floating-point multipliers. However, the
number of duplicates can vary among functional elements. This
has to do with the relative spread or the number of pipeline stages
of each function's execution unit. For example, there should be
more fixed-point adders than multipliers. Duplicating hardware
units would overcome the limitation on effective parallelism by
the pipeline stages of traditional vector processors.

It is well known that typical vector instruction can save the
repeated instruction fetches and decodes in a vector loop on a
conventional machine. But Evon incorporate further parallelism
with the following two features which are absent in all vector
machines:

First, Evon hardware supports the parallel execution of some
important compound operations listed in 1) - 4) above. In
particular, operand registers and the array of execution units of a
functional element can be hardwired to achieve log n time for
calculating all partial results of a particular binary operation on a
vector. We illustrate the basic idea for a vector of 8 elements in
Figure 2. Let us say the particular functional element is additi~n.
At the first row, 8 elements vO .. v7 of a vector v are sitting in 8
registers rO .. r7. After first round of parallel operation by 4
adders, the even numbered registers' contents are not changed
while the odd numbered registers all contain the sum of the
original content and it left-neighbor. We note that a joint of two
lines in Figure 2 represents the employment of an operational

unit, like an adder, of a functional element. After third round of
operation, the total sum is in r7. At the end of 4(=1+log8)-th
round of operation, all partial sums are calculated and reside in
rO-r7 (See [5] and [6] for detail). The instructions in group 4) can
also be implemented by circuits doing a parallel associative search
on a vector register with respect to another (However, Evon is
not an associative processor because it does not employ associa
tive memory).

Second, Evon expects each basic block of instructions
(defined in the next section) to be grouped into streams by a
compiler. A v-stream (of instructions) is an instruction sequence
such that 1) all involve vectors of the same length (or all scalars)
and 2) the result of one instruction is used as an operand of the
next. The grouping of instructions into v-streams by a compiler
represents static chaining. The chaining technique of the Cray-l
which permits successive (vector) operations to be issued as soon
as the first result becomes available as an operand is well known.
And we note that the chaining in Cray-l is done at run-time while
in an Evon it is going to be done at compile time. The effect of
(static) chaining is that of loop fusion of the controlling micro
code. For example, the following line of code in APL

E+D+A+CxB

translated into E-code:

L1A Rl,100
LD1 Rl,aB
MP1 Rl,aC
ST1 Rl,aA
ADI Rl,aD
ADI Rl,aE

where RI is a vector length register indicating vector length with
respect to an implicit vector accumulator. The particular meaning
of these instructions is not important. The point we want to make
is that the last five instructions, which either move data between
integer vector accumulator and memory or operate on the integer
vector accumulator, can be chained together. That is, these five
instructions will share the same control structure of micro
instructions. An operation on a vector element of instruction is
carried out as soon as the operation of the previous instruction
on that element has been completed. At the micro-code level,
there is only one length checking for the five loops.

Another example for the first point above is the following:
Calculate the population distribution when given B as the base
population and A [° J, A [1 J, ..., A [9 9] as the death
rate for age 1 to 99. In PASCAL we have,

P[D]:= Bi
FOR 1=0 TO 99 DO

P[I+1]:= P[I]*(1-A[I])
ENDi

while in APL it is

P+Bxx\1-A

translated to E-code:

365

LIA Rl, 100
LDE Rl,aA
SBEM 0
ADEM 1
MPEP
MPEM aB

where MPEP computes all partial product of the elements in the
vector and can be implemented by (n/2)-execution units with a
(n/log n) speed-up. We note that this is basically the same
example discussed in sec.3 of [1 5] in a multiprocessing von
Neumann style with explicitly programmed synchronization.

Basically, there are two kind of loops (in programs written in
scalar von Neumann languages): independent loops, i.e. the data
of one iteration is independent of data in the previous iteration,
and dependent loops, Le. the data of one iteration is intrinsically
dependent on previous iterations (this means the dependency can
not be removed by renaming). The first example of chained
vector instructions given above is a loop of the first kind. A
vector machine can easily handle a speedup of loops of the first
kind by pipelining, and machines of array architecture can also
ideally handle this kind of loop. The data dependent loop
presents difficulties for parallelization even if it can be recognized
by a vectorizer. In general, nothing can be done to speed up such
loops besides detecting certain independent portions to be
executed in an overlapped fashion. The Evon approach is to use
the scan operator of APL as a centerpiece to express such
dependency and provide a machine priinitive, Le.instructions of
class 1), which controls a large amount of hardware in parallel to
carry out the execution in a theoretically optimal time. It is
amazing that a large amount of seemingly intrinsically sequential
code can have a speedup factor of (n/logn) where n/2 is the
number of available execution units in the functional element.
For example, the first order linear recurrence equation

X[D]:= XDi
FOR 1=0 TO 99 DO

X[I+1]:= X[I]*A[I]+D[I]
ENDi

can also be coded in one line of APL:

Z+(RT~((~x\(O,L)+(RT+-1L)~(SQp~A) ,
(SQ+2pL)pO) , (L+pA)pl))+.xXO,D

and benefits from the hardware supported primitives for fast
execution. It is not the virtuosity of one-line coding we want to
show. Rather, if a language (and machine) contains a sufficient
amount of high-level primitives then we can trade storage for
speed in dealing with some important classes of data dependent
loops. One line APL code is functional programming, i.e. there
is no change of state in the computation. The high-level
primitives absorb the control structures originally in the
corresponding PASCAL version, and turn the data dependent
loop into an expression tree. Besides parallelism exploited in
executing each node which roughly corresponds to an Evon
instruction, many parts of the tree can be executed in parallel as
we shall show in the next section.

From the perspective of scalar von Neumann languages, very
little parallelism can be gained from instruction-level parallelism.
But in the extended von Neumann model Evon where many

hardware supported high-level primitives are available, the
situation becomes quite different. We can profitably utilize
instruction-level parallelism to speedup computation consider
ably.

3. Basic Block Scheduling and Local Data Flow
Compiled programs are executed on Evon one (maximal)

basic block at a time. A (maximal) basic block is a (maximal)
group of instructions without a branch instruction except the last
one and without a branch into it except to the first one. We shall
simple use 'basic block' to mean 'maximal basic block'. If we
adopt an APL-like high-level language as a source language, then
a basic block consists of a string of expression trees (each tree
corresponds to a line of source code) produced by the parser of
a compiler. Each of these expression trees can be executed in
parallel within the constrains of data dependency and the
availability of hardware execution units. Furthermore, the
expression trees in a basic block need not be executed in the
sequential order of their corresponding source code lines. In
other words, Evon is globally centrally controlled in that it
executes one basic block of code at a time according to a program
flow graph, but locally executes its block of code according to the
data flow principle.

Before we discuss the instruction scheduling scheme, let us
describe Evon's instruction processing unit, the I-box, in general
terms. The I-box has an instruction buffer which is large enough
to hold all machine instructions in a basic block of average size.
The front-end of the I-box is the instruction decoding unit which
can decode several instructions simultaneously. For sake of
concreteness, we can assume that each instruction is 32 bits wide,
and 4 to 8 instructions can be decoded at the same time. This
aspect of Evon is very similar to ELI-512's having very long
instruction words. The instruction decoding unit has its own
adders to calculate addresses. There is a functional elements'
usage register, called f-register, to indicate at any machine cycle
which function execution elements are idle and which are
executing. The back-end of the I-box is a group of independent
instruction-stacks. We can assume that there are anywhere from
3 to 8 instruction stacks in a Evon. The top of each stack holds
an instruction ready to be issued for execution as soon as a
hardware functional unit is available.

We have already introduced the concept of v-streams (of
instructions) in the previous section. An expression tree can be
decomposed into groups of v-streams of instructions. However,
the compiler first calculates internal data dependency, i.e. the
dependency created between instructions assigning variables in
the basic block of our concern and instructions using these
variables as operands. The reason we ignore data inter-block data
dependency is simple: compiled programs execute one basic block
at a time on Evon. When the code block of a basic block is loaded
into the instruction buffer, all instances of exposed-used
variables, i.e. variables assumed to be assigned outside of the
basic block', should already have correct values. V -streams are
then broken into pieces, called i-sequences (of instructions) so
that only the head instruction of an i-sequence is possibly data
dependent on any other instruction in the same basic block.

The basic instruction scheduling scheme for a basic block of
code can now be described: Independent i-sequences of
instructions in a basic block are decoded and loaded into separate

366

instruction stacks waiting to be executed. In the beginning of the
execution a group of i-sequences chosen at compile-time, whose
first instructions are all independent of intra-block data and
execute on disjoint functional elements, are loaded on instruction
stacks and simultaneous execution of i-sequences starts. If there
is competition, due to the limited number of instruction stacks
and functional elements, between i-sequences of instructions to
be in that first group the compiler chooses one by one according
to who has the most number of i-sequences data dependent on it.
Each instruction will set the occupied bit of the functional
element it is going to use and each assignment instructions will set
the enable bit on all instructions depending on the variable getting
written into that instructions. Decoded and enabled instructions
then check the f-register to see if the required functional
element(s) is free. If it is, the instruction on the top of an
instruction stack is issued for execution. In case of a vector
i-sequence, if not all functional elements can be secured at one
time, the machine breaks the stream of instructions. That is, an
Evon machine would not insist on executing vector loops in a
fused fashion. It can execute the loops separately to utilize
available functional units. Hence it is very likely that an adder
and a multiplier, or a scalar multiplier and a vector one, operate
concurrently in executing a compiled program. We note that this
type of functional parallelism is available on the CDC Cyber
series and on the CRA Y -1 where this is carried out by a
scoreboard involving registers as well as functional units. Hence
the run-time checking in these traditional vector machines for
overlapping execution is considerably more elaborate than in
Evon.

We shall briefly illustrate the scheduling and intra-block
multi-functional parallelism based on compile-time dependency
calculation by the following example: Find all the prime number
from 2 to N. Unlike in FORTRAN or PASCAL where loops are
most likely to be used, we have

VZ+PRIME N;V
[1] Z+2,(~V€(2+~lN*.5)o.x2+l.rNT3)/

V+1+2tl+(N-1) +2

and its parse tree is shown in Figure 3. Basically, it sets up a
multiplication table and has the vector of odd numbers up to N
be checked against that table. The ones not in the table are prime
numbers. The instruction stream corresponding to the right
corner subtree calculating V is mutually independent with respect
to the instruction stream corresponding to the subtree
(2 + ••) 0 • x 2 + •• 3 rooted at the outer product node which

set up a multiplication table. In short, the two subtrees delineated
by the two dotted semi-circles in Figure 3 are data independent.
They are the main parts of the computation and can be executed
in separate hardware components if such components are
available. This example shows that Evon can successfully support
implicit parallelism at the expression level.

We remark that there are some broad similarities between our
approach to the exploitation of expression-level parallelism and
that of the expression processor [2 3 J, the block-driven
data-flow processor [3] and the works on parallel execution of
sequential programs [2 0] , [2 1] and [2 4] • Our
scheduling is much more specific and quite different in detail from
that discussed in [3 J. In [2 3 J, the execution is ultimately

carried out in a tree complex of processing elements, each of
which has instruction decoding capability. Our functional
elements only have the capability to execute specific functions.
Most works on the parallel execution of sequential programs
assume that the program is already serialized which we do not
assume. And we restrict our attention to a basic block. Our
v-streams and i-sequences bear resemblance to the parallel
execution strings of [2 4] • But they differ in many aspects.
In particular, each instruction is not assumed to take an equal
amount of time here, and we have taken the limitation of
hardware execution units into consideration.

Both Evon and typical vector machines are aiming at fast
execution of vector instructions. But the Evon comes with
duplicate hardware execution units, not just the pipelining of one
functional unit for each operation, to speedup execution on
multiple data, and supports some compound operations like scan
as a primitive whereas most vector machines only support
reduction at most. More importantly, the Evon model relies on
compile-time detection of data dependency among instructions in
a basic block and appropriate hardware support to systematically
achieve any possible parallelism at expression level which
traditional vector machines can hardly handle.

4. Languages and Compilers
Most research in parallel processing of multiprocessing von

Neumann style implicitly assumes that the source language is a
scalar von Neumann language like FORTRAN or PASCAL.
While data flow or reduction architectures usually explicitly
require a new data flow language like VAL or Id, or a functional
programming language of Backus style. We can also design a new
language without blemish for parallel processing but with all
desirable features. The problem with a new language is that there
usually will be a scarcity of written real-life programs for
experimentation (on the effectiveness of any parallel processing
model). We can also use some old language like FORTRAN and
then develop a sophisticated vectorizer like Parafrase to extract
vector operations and piece together compound functions for
Evon. This is beyond the scope of the present project.
Fortunately, a well established language naturally suited for our
purpose is readily available, namely APL. This will save us the
demanding job of vectorization because programs in APL are not
serialized as in FORTRAN. In fact, programming style in APL
emphasizes the importance to turn a problem solution in a vector
form whenever possible. Even though APL's usage is not as
extensive as that of FORTRAN in scientific and engineering
fields, it has been used for long time in wide range of applications:
scientific and engineering computations, design automation
algorithms and financial calculations. It is very important to have
a variety of real-life programs for experimentation in research on
parallel processing models for general purpose applications. The
fact we choose APL as a source language for experimentation
should not confuse our effort with what people usually call an
APL machine. As APL's implementation at least so far is by
interpreters, a so called APL-machine is mostly aimed at fast
interpretation, i.e. it typically has an interpreter as its model of
execution. This also includes fast recognition of syntactic units
from source code which is a totally irrelevant issue and a waste
of time for us. Past efforts in this direction include work on
microprogramming a model of 360 to aid interpretation (see
[11]).

367

The problem with using APL is that a compiler is not yet
generally available. This hinders our research since we have no
compiled code to study, to rearrange and to use for scheduling
experiments. Hence our effort after designing E-code is to
implement a compiler for a subset of APL to E-code. The subset
excludes features which make APL not .compilable. It covers
about 95 % of the language features of APL so most APL
programs in scientific and engineering applications can be
compiled without any change. In particular, it does not require
declaration of variables and their types. Such an extra require
ment would defeat our intention to have a ready set of programs
for experimentation. The front end of the compiler is basically
complete [4] • It contains a component to analyze type and
shape (dimensions) of variables based on local type-shape
inference and global data flow analysis. Local data dependency
calculation can be easily inserted in to the part implemented. We
can also add a component to group i-streams and cut them into
i-sequences. A major portion of the compiler back end has also
been implemented. In fact, we can already compile some simple
functions and (together with the 370 E-code simulator mentioned
above) run compiled code on System 370. However, due to the
extremely large number of primitive functions in APL (66), not
all code-generation functions (for corresponding APL primitive
functions) have been implemented as of this writing.

A preliminary result of our compiler effort is the confirmation
that APL programs do indeed have large basic blocks. The front
end of our compiler has successfully processed three APL
programs: i) a workspace called SIMPLE which is for impact
printer simulation and involves finite element differential
equation calculations, ii) a workspace called CUT which is for
PLA minimization (in the area of design automation) and
involves a large amount of boolean calculations and topological
algorithms and iii) part of a workspace called GRAFSTAT which
is for statistical analysis and graph drawing (the part not
processed by the compiler has to do with so called auxiliary
processors in the APL system controlling graphic terminals). We
have the following table

Program Fns

CUT 4
SIMPLE 9
GRAFSTAT 22

Lines

241 (104-17)
64 (19-1)

488(71-1)

Blocks Nodes Node/Bloc~

57(22-2)
18(5-1)

188(28-1)

2014
629

6136

35.33
34.94
32.63

indicating the number of functions in the program, total number
of source code lines excluding comments with the maximum and
minimum number of lines of functions in brackets and similarly
with blocks, the total number of parsing nodes and the average
nodes per basic block. We note that the Node/Block number for
a typical FORTRAN program is likely to be about 10. Also we
note that in APL, operations are more likely to be coalesced, so
it actually would use less nodes for the same computation than
FORTRAN. Note that the average number of the large blocks,
namely those likely to dominate computation time, is likely to be
at least twice at large as the over all average. The large size of a
basic block is important because it means rich opportunities to
apply the local data flow principle to schedule instructions in
parallel.

Finally, we remark that these three programs are all used
without a corresponding FORTRAN or PASCAL version. That
means that there must be sufficient vector operations using APL

primitives to compensate for the ineffiency of an APL interpreter
so that overall computation times become tolerable in comparison
with possible FORTRAN versions. This indicates good opportu
nities for the instruction level parallelism in these programs. We
hope to process and study more existing programs from more
areas of applications. We also intend to write new APL programs
for some computation intensive jobs for which only FORTRAN
versions exist at present.

5. Comparison with Other Parallel Architectures
The multiprocessing von Neumann model and the data flow

model are two of the most actively pursued directions in parallel
processing research. There are critiques of each model offered
by proponents of the other (see [2] and the article 'A Second
Opinion on Data Flow Machines and Languages' by Gajski,
Padua, Kuck and Kuhn in [1]). We shall compare the Evon
model with both the multiprocessing von Neumann model and the
data flow model, and also with the VLIW architecture of Fisher.
(We shall ignore the systolic array approach here because we feel
that it is more towards the special purpose end of the spectrum
of parallel processing.) It is not that we are necessary critical of
the ambitious attempts of the two prevalent approaches or the
innovation in VLIW. Rather, we simply argue that Evon is a
pragmatic approach to parallel processing· for general purpose
applications, and a new direction worth pursuing.

Both Evon and the data flow model attempt to find parallelism
at the expression level, or parallelism of fine granUlarity. In both
cases parallelism is implicit, not explicitly programmed. The basic
idea of data flow computation is to have an instruction executed
as soon as its arguments are available, giving a high degree of
parallelism. This does away the program counter of the von
Neumann model to break the so called 'von Neumann bottle
neck'. However, instructions may waste time waiting for
unneeded arguments. Data values pass through data flow graph
as tokens and an operation is triggered whenever all input tokens
are available. Since side-effects are disallowed by using single
assignment data flow languages, any two enabled operations can
be executed in either order or concurrently. For data dependent
loop iteration, there is nothing to stop further iteration from
proceeding, even though one is not yet completed. This causes
tokens to accumulate on certain arcs of the data flow graph, hence
the need to mark tokens for different rounds of computation.
Complicated internal control schemes have been developed in
attempts to solve this problem. The difficulty in managing
input-output token queues is largely due to an abstraction at too
low a level; in other words, the granularity of parallelism is too
small.

In contrast, Evon explicitly employs vector operations and
supports some important high-level primitives to deal with vector
loops and frequently occurring data dependent loops. The overall
control is centralized but computations in· a basic block are
distributed while the control of subtasks is diffused. In other
words, by first organizing computations into some pre-specified
computation chunks which absorb frequently used microprogram
controls and then limiting the application of data flow principles
to a basic block we greatly simplify the control structure of our
computational model and make its machine realization more
practical.

368

We can look atthe multiprocessing von Neumann model as a
horizontal extension of the classical von Neumann model, while
Evon is a vertical extension. Strictly speaking, Evon is neither
SIMD nor MIMD, but conceptually it is more like a SIMD
machine. In a SIMD machine, each processing element has
instruction decoding capability as instructions are broadcast to
them. In Evon the functional execution elements can only
execute specific operations. Centralized instruction decoding and
scheduling saves hardware circuits. Even in a MIMD multiproc
essing von Neumann machine, functional parallelism in terms of
operating an adder and a multiplier of one processing element
concurrently is almost impossible. Hence from a hardware
utilization point of view, Evon is more efficient. On the other
hand, the processor array configuration of multiprocessing von
Neumann model has two advantages. First, as microprocessors
are now widely available, aside from the complication of an
interconnection network, an assemblage of processors can readily
be made. Second, such a scheme is scalable, i.e. we can talk of
thousands of (identical) processors connected together with
potential speedup in the thousands. In Evon, if on the average
we can have 1.5 of the 4 functional elements busy (for example,
if floating-point adds and multiplications balance to within 50
percent), then 64 execution units in each functional elements will
give us a speedup of approximately 100. Naturally, pipelining
techniques can further increase the speedup rate, but this is not
unique to Evon.

In a multiprocessing von Neumann model, the programmer
needs to explicitly manage synchronization unless a very sophis
ticated compiler like Parafrase is employed to automatically
transform sequential codes into parallel forms. In Evon, the
programmer is freed from the concern of synchronization as this
is done by the compiler during dependency calculation and partly
managed by the instruction scheduling hardware.

In theory a MIMD machine like the NYU Ultra computer,
which has a very ingenious synchronization primitive, can also
exploit expression level parallelism. As Gottlieb and Schwartz
pointed ouUn 'Networks and Algorithms for Very-Large-Scale
Parallel Computation' in [1 2] the Ultracomputer is fully
capable of simulating a data flow machine. In reality, to explicitly
program synchronization to systematically exploit parallelism at
the expression level in the manner of the data flow model would
be a formidable job. Also, network traffic for such fine grain
parallelism on a MIMD machine is likely to be congested. Hence,
a multiprocessing von Neumann MIMD machine is best suited to
exploit parallelism at the procedure or task level. This requires a
certain amount of job regularity, and the programmer has to
decompose a programming job for parallel execution. On the
other hand Evon offers ease of programming and requires less
regularity within its jobs. For jobs with regularity, like physical
simulation on lattice points, we can most likely turn them into
vector forms to be efficiently processed by Evon. However, on
those jobs an Ultracomputer-like MIMD machine can deliver
much higher speedup than Evon. In a sense, Evon trades high
potential parallel speedup with that of general applicability.

The VLIW architecture also requires less regularity of its jobs
than do typical multiprocessing von Neumann machines. The
reason the sophisticated trace-scheduling techniques has been
developed for the VLIW architecture is the underlying assump
tion that basic blocks on a typical scientific or engineering

program are quite small. We have seen that this assumption need
not be true if we use a vector von Neumann language with enough
high-level primitives as a source language. Indeed, many
instances where the trace-scheduling techniques can successfully
predict the direction of branches in the VLIW approach are the
vector loops. The Evon model can apply to a much wider range
of application areas for parallel processing, because when
programs are written in a vector 'von Neumann language with
sufficient high level primitives, the compiler can do a more
effective job of parallelization.

6. Conclusion
We have presented the Evon model for parallel processing. It

is a multifunction machine organization with global central
control and local distributed computations. It executes vector
instructions very efficiently and has hardware supported
compound primitives to speedup. some typical data dependent
loops. The parallelism comes not only from parallel execution on
vector instructions but also from the simultaneous execution of

Acknowledgements
My thanks to George Almasi for his support and encouragement
of this research.

References
[1] T.Agerwala and Arvind, ed., Data Flow System, IEEE

Computer, Feb., 1982.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Arvind and RA. Iannucci, A Critique of Multiproc
essing von Neumann Style, Proc. 10th Annual Int'l
Symposium on Computer Architecture, 426-436, 1983.

T.L. Chang and F.D. Fisher, A Block-driven Data-flow
Processor,Proc. InCI Conf. on Parallel Processing,
151-155, 1982.

W.M. Ching, A Portable Compiler for Parallel
Machines,Proc. IEEE InCI Conf. on Computer Design,
592-596, 1984.

W.M. Ching and D. L. Ostapko, Hardware and an
Algorithm efor Performing Parallel Prefix Calculation,
IBM Technical Disclosure Bulletin, No. Y0884-0007,
May, 1984.

W.M.Ching and D. L.. Ostapko, Regular and Fast
Hardware Interconnection for a Group of Execution
Units to Calculate All Partial Results of an Associative
Operation, IBM Technical Disclosure Bulletin,
No.Y0884-0694, February, 1985.

M. Denneau, The Yorktown Simulation Engine, Proc.
ACM- IEEE 19th Design Automation Conf., 55-59,
1982.

J. Fisher, Very Long Instruction Word Architectures
and the ELI-512, Proc. 10th Annual Int'l Symposium
on Computer Architecture, 140-150, 1983.

369

different hardware functional units on independent data.
Parallelism is not explicitly programmed, but rather automatically
extracted by a compiler from what is inherent in a high level
language program. We report our research on defining an
instruction set and implementation of a compiler. We believe that

. for many scientific, engineering as well as. commercial applica
tions, vector loop operations are most likely to dominate a large
portion of computation time. If we can find an efficient and
cost-effective solution to that particular form of computation, we
would have made a great progress toward a practical exploitation
of parallelism in computations.

We compare the Evon model with other models of parallel
processing, and we see some advantages of our approach. But
different models designed to exploit different levels of parallelism
can be complementary to each other. We need more experimen
tation with existing programs as well as rewriting existing
programs in languages of different style in research on parallel
processing to better understand the effectiveness of various
approaches.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Gajski, D. Kuck, D. Lawrie, and A. Sameh,Cedar
A Large Scale Multiprocessor, Proc. InCI Conf. on
Parallel Processing, 524-529, 1983.

A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe,
L. Rodulph and M. Snir, The NUY Ultracomputer
Designing aMIMD Shared Memory Parallel Computer,
IEEE Trans. on Computers, vol.32, 175-189, 1983.

A. Hassitt, J. Lageshulte and L. Lyon, Implementation
of a High Level Language Machine, ACM Comm.,
16(1973), 199-212.

L Haynes, ed., Highly Parallel Computing, IEEE
Computer, Jan., 1982.

H.A. Hartung, FORTRAN: "for the birds", 11, Physics
Today, September, 1984.

R Jaganathan and E.A. Ashcroft, Eazyflow: A Hybrid
Model for Parallel Processing, Proc. Int'l Conf. on
Parallel Processing, 514-523, 1984.

A. Kapauan, K.Y. Wang, D. Cannon, J. Cuny and L.
Snyder, The Pringle: An Experimental System for
Parallel Algorithm and Software Testing, Proc. 1984
Int'l Conf. on Parallel Processing, 1-6.

RM. Keller, F.C.H. Lin and J. Tanaka, Rediflow
Multiprocessing, Proc. IEEE COMPCON, 1984.

E. Kronstadt and G. Pfister, Software sopport for the
Yorktown Simulation Engine, Proc. ACM-IEEE 19th
Design Automa- tion Conf., 60-64, 1982.

[18]

[19]

[20]

[21]

D. Kuck, A debate: Retire FORTRAN? No, Physics
Today, May, 1984.

1.R McGraw, A debate: Retire FORTRAN? Yes,
Physics Today, May, 1984.

C.V. Ramomoorthy and W.H. Leung, A Scheme for the
Parallel Execution of Sequential Programs, Proc. Int'l
Conf. on Parallel Processing, 312-316, 1976.

H.D. Shapiro, A Comparison of Various Methods for
Detection and Utilizing Parallelism in a Single Instruc
tion Stream, Proc. Int'l Conf. on Parallel Processing,
67-70,1977.

M
E
M
a
R
y

RO ••• R1S

FO .. F3

[22]

[23]

[24]

P.C. Treleveaven and RP. Hopkins, Decentralized
Computation, Proc. 8th Int'l Symposium on Computer
Architecture, 279-290, 1981.

1.R Vanaken and G.L. Zick, The Expression Processor:
A Pipelined, Multiple-Processor Architecture, IEEE
Trans. on Computers, vo1.30, 525-536, 1981.

P.S. Wang and M.T. Liu, Parallel Processing of
High-level Language Programs, Proc. Int'l Conf. on
Parallel Processing, 17-25, 1981.

LOGICAL
UNITS

CHAR UNIT

CONTROL
UNIT

Figure1. Logical Structure of a Evon machine

EV: floating-point vector accumulator

EL: floating-point vector length reg.

370

CR: condition-code reg.

CHR: chaining register

6:7

4:7

0:7

Figure 2 • Interconnection Scheme for the Execution of
Scan operation (the boxes represent the operand registers and

the array of execution units of a functional element).

Figure 3.

Parse tree for the prime-number finding example, illustrating

expression-level parallelism within a basic block. The leaf

nodes are variables or constants, the internal nodes are operations.

Two dashed circles indicate two intra-block data independent subtrees.

371

OPTIMAL CODE GENERATION FOR EXPRESSIONS ON SUPER SCAUR MACHINES

Pradip Bose

IBM T.J. Watson Research Center, H2-B48
P.O. Box 218, Yorktown Heights, NY 10598

Abstract

The problem of generating optimal code to evaluate expression
trees under varied assumptions of the underlying execution model is
considered. A RISC-style load/store instruction set architecture is
assumed throughout. Initially, a simple non-pipelined, serial
execution model, with N registers is considered. The machine model
is then modified to allow pipelined execution of a single instruction
stream. Finally, a decoupled access/execute (DAE) model is
considered, in which each (decoupled) unit is pipelined. Concepts of
optimum register allocation and code scheduling are combined into a
single, efficient, tree-walk algorithm.

I. INTRODUCTION

Sethi et al [1] and Aho et al [2] consider the problem of
minimizing the number of instructions and/or the number of storage
references in the evaluation of an expression, given a fixed number
of registers. The implicit model of the underlying execution process in
such a study, is that of a strictly sequential, non-pipelined machine
with infinite memory (see Figure 1). In [1], a specific architecture
(instruction set) is assumed, whereas the results in [2] are applicable
to a wider range of architectures; nonetheless, the underlying
execution model in each case is as depicted in Figure 1. Under this
assumption. code length is a valid metric for judging the optimality of
a given code generation algorithm; in this sense. the algorithms
presented in [1.2] do generate" optimal" code.

In this paper, we consider the task of speeding up execution of
expression trees by progressively complicating the execution model
without changing the basic idea of single instruction stream flow
(fetch) from memory. Pipelined execution [10] is one of the principal
features of modern day supercomputing. In addition. various forms
of overlapped/decoupled processing combined with pipelining
[3,4,6.7] have been used and/or suggested in order to enhance
J)erformance. These approaches. in effect. incorporate more and more
parallel/pipelined execution modes. without diverging from the basic
philosophy of "single instruction counter" processing. Our intent in
this paper is to generalize the classical results of [1.2] by considering
models of execution used in single instruction counter super scalar
machines. In [11], we presented a brief outline of the basic structure
of algorithms implemented by us. with such target machines in mind.

In this paper, we present detailed algorithms, along with formal
justifications of our claims and results.

Two distinct (albeit related) issues in code generation are register
allocation and instruction (code) scheduling. Efficient register
allocation is necessary to minimize so-called "spill-code" [12], which
has the desired effect of reducing execution time, since certain
unnecessary references to data memory are eliminated. Instruction
scheduling as a code-generation-time optimization is also known to
be beneficial [13] and has been implemented in some compilers, such
as the IBM PL.8 compiler [14]. The results presented in this paper

CH2345-7/86/0000/0372$01.00 © 1986 IEEE
372

effectively illustrate that at least for straight-line tree code (Le., no
common sub-expressions, single root or result node) optimum register
allocl:ldon and code scheduling can be achieved via a single tree-walk
code generation algorithm.

An important parameter in generating efficient code is of course
the set of commands (or instruction set) available to the compiler
writer. Since our ultimate objective is to study the optimal
compilation problem for decoupled access/execute (DAE) type
organizations [3, 4], our assumed kernel instruction set is a basic,
load/store or RISC (Reduced Instruction Set Computer)
architecture, in which all arithmetic operations are performed in
register-to-register (RR) style only. The only instructions which
involve data transfers to and from memory, are the LOAD and
STORE instructions. Thus, access/execute decoupling is reflected
naturally in the instruction set architecture. Decoupling
considerations aside, there are other basic justifications for RISC
architectures which have been pointed out by proponents of this
concept of "simple" instruction sets; -- the concept and its benefits,
for both compilers and hardware implementations, are presented in
[15,16].

Another important parameter in enhancerT'ent of supercomputer
performance is the "instruction issue logic." By adopting more and
more sophisticated issue mechanisms, out of order executions may be
initiated to ease bottlenecks and hence improve performance [5,6].
Such sophistication in the instruction issue logic can be seen to ease
the burden on the compiler writer, since sophisticated code
scheduling algorithms are rendered almost unnecessary. Since this
paper is mainly geared toward the compiler aspect of performance
enhancement, sophistication in the instruction issue logic will not be
considered; in other words. a simple, serial ins:ruction fetch and issue
mechansim is assumed throughout.

Note that. this paper deals only with execution of expression
trees; detailed consideration of the general problem of executing loop~
of basic blocks (dags) is beyond the scope of this paper. Our attempt
here is to describe a natural generalization of the classical results in
[1]. under super scalar models of execution.

PROCESSOR
(non-pipelined)

Figure 1. Machine Model A.

II. INITIAL ASSUMPTIONS

We state below, the initial set of assumptions regarding the
structure of expressions, and the basic architecture and organization
of our machines.

Expressions

As in [1], we assume that there are no nontrivial relations between
operators and elements. For example, we assume that all data
elements are distinct, and that laws such as a*b + a*c = a*(b + c) are
not applicable. All operations are binary; all operations are taken to
be noncommutative. Thus, effectively, no restructuring of the
expression tree is allowed.

Architecture

The commands permitted are of the following kinds:

1. C(mem) --> C(reg); i.e., LOAD reg, mem-addr.
2. C(reg) --> C(mem); i.e., STORE reg, mem-addr.
3. OP[C(regl),C(reg2)] --> C(reg3); i.e., OP reg3, regl, reg2.

Note that the exact address computation mechanism is left
unspecified; it is not of concern to us in this paper. We assume a fixed
number of cycles needed to decode, generate effective address and
send request to memory, and receive data back from memory.
Implicit in this is the possible use of a separate set of (index) registers
for address computation. We are not concerned here with the number
or availability of such registers: for all practical purposes we assume
unlimited resources (and hence no conflicts) in that regard. We are
concerned here with doing the required arithmetic computation, as
fast as possible, given a fixed number of (arithmetic) registers. N.

Memury and Instruction Fetch/Dispatch

We effectively assume unlimited (infinite) storage for both
instructions and data. We assume that instruction prefetch
mechanisms are available, so that instruction(s) are ready for
dispatch on demand. (Note, once again. that we are not dealing with
branches. merely straight-line code resulting from expressions).
When decoupled organizations are considered. we assume split.
(infinite) I-cache and D-cache. so that conflicts resulting from trying
to ac-:ess memory at the same time, are absent.

Hardware, Organization and Timing

With pipelined execution, a LOAD or STORE (access) instruction
is assumed tl.> take A (~1) cycles (stages) to complete. Each
arithmetic (execute) instruction is assumed to take E (~1) cycles
(stages) to complete.

The register file is assumed to have two i/o ports; a data "read"
(for a computation) and a data "write" (from the putaway bus) can
be initiated in the same cycle. (Where the same re~ister is involved in
the read and write. a read-before-write interlock mechanism is
assumed). The register load/store mechanism uses a separate bus.
Attempting to write into the same register from the .two bus~ at ~he
same cycle is not possible in any of our schemes; I.e .• the SituatIOn
does not arise.

No buffers are assumed in front of the decode unites); instruction
dispatch is just assumed to block (to a given unit) once an instruction
is blocked in the decode stage due to an interlock.

373

III. CODE GENERATION ALGORITHMS

In this section, we present specific algorithms to generate
time-optimal code (under the assumptions made) for various models
of execution. First. we state the modified tree labeling algorithm [1]
needed for our load/store architecture.

The Tree Labeling Algorithm

Each node of the expression tree is labeled with a number that
turns out to be the minimum number of registers needed to evaluate
the node without stores. To each node n is assigned a label L(n). from
the bottom up.

1. If n is a leaf then L(n) = 1.

2. If n has descendants with labels II and 12 , then for II '# 12 , L(n) =
max (ll' 12), and for II = 12 , L(n) = II + 1.

The first model we consider is that of a serial, non-pipelined
machine: this is just for the sake of completeness and eventual
comparison with the pipelined machine models.

A. Serial, Non-Pipclined, Single Dispatch Execution

Figure 1 shows the assumed model of computation, where the
dispatcher (I-unit) issues a single instruction to the E-unit as soon as
the E-unit finsishes a given computation fully. In this case. of course.
minimizing the total number of LOADs and STOREs results in a
time-optimal code sequence. It is easily seen that Algorithm 1 of [1].
suitably modified by the constraint of our load/store architecture,
can be used to generate the optimal code in this case. We call this
Algorithm A.

ALGORITHM A

After generating the expression tree and labeling the nodes: .
(1) Apply (2) to the root with registers RI' R2 , ••• , RN available.
Routine (2) will evaluate the expression represented by the subtree
extending from the node to which it is applied. The result will appear
in the lowest numbered register available.

(2) Let n be a node, L(n) = I. Suppose, Rm,~I' ...• RNare available.
1 ~m ~ N.

Case 1: I = 1.
(A) n must be a leaf. Enter (LOAD) the value of n, which is an input
datum. into Rin •

Case 2: I > 1; let the descendants of n have labels II and 12 ,

(B) If II' 12 ~ N, apply (2) to the right descendant with registers R.."
Rmrl' .,,' R,.available. STORE the value of the right descendant into a
temporary memory location T. Apply (2) to the left descendant with
registers RI't\ ~1' ••• , RNavailable, leaving the result in RI~' LOAD the
value of the'right desc(:ndant from T into R.ntl' Evaluate n using the
values in R..,and RIf\+I leaving the result in R",.
(C) If II = 12, and al least one of 11' 12 is less than N, apply (2) to the
descendant with the higher label with registers R ... , Rht-I' ...• RN
available. Leave the result in Rm.Apply (2) to the other descendant.
with registers, RIrl+I' ~+2' ••• , RN available. The result will appear in
~I' Evaluate n using the values in Rlfland ~I and leave the result
inR
(D) If II = 12 < N, treat the right descendant as the node with the
higher label and proceed as above.

Example I. taken from [1]:

Consider the expression a/(b+c) - d"'(e+f), whose tree is:

The integers at each node are the labels assigned by the labeling
algorithm. Algorithm A produces the following code for N = 2:

1. LOAD Rt , addr(f)
2. LOAD R2 • addr(e)
3. ADD R J• R2 • R t
4. LOAD R2 • addr(d)
5. MPY R t • R2 • R,
6. STORE Rl' addr(T)
7. LOAD R" addr(c)
8. LOAD R2• addr(b)
9. ADD Rl' R2• R,

10. LOAD ~,addr(a)
11. DVD Rt,~, R t
12. LOAD ~,addr(T)
13. SUB R t , R t , ~

The proof that Algorithm A produces optimal code for the
execution model under consideration and the stated assumptions, is
along the lines stated in [1J and is being omitted in this paper; a couple
of relevant lemmas and a theorem are stated here for completeness.

Lemma 1: Algorithm A evaluates a tree with no STORES when at
least as many registers as the label of the root are available.

•
Lemma 2: The label of a node is a lower bound on the minimum
number of registers required to evaluate the node without any stores.
(Lemma 1 is a special case of Lemma 2, where the node being
considered is the root node).

•
Theorem 1: Algorithm A produces an optimal code sequence for the
stated machine model and assumptions.

•

B. Serial. Pipelined, Single Dispatch Execution

Figure 2 shows the new machine model under consideration. The
dispatcher dispatches a single instruction to the decode unit on a given
cycle, if it is free to do so, i.e., if the decoder is not blocked.
Assumptions regarding hardware, organization and timing are as
stated in section II.

374

Interlock Mechanism

A hardware interlock mechanism is assumed to ensure that (1) a
LOAD is not decoded until the previous data in the register has been
used; (2) an arithmetic instruction is not dpcoded until its source
registers have been written with the right data and until the previous
data in the target register has been used (or stored); (3) a STORE is
not decoded before data in the register is ready. Essentially, we
assume the existence of two 'interlock bits' or flags (READY and
BUSY) associated with each register. The bits are all OFF initially.
The BUSY bit of register R j is turned ON either when a LOAD Rl or
STORE Rj instruction is initiated (i.e., is dispatched to the decode
unit), or when an arithmetic instruction in which R t is an operand, is
initiated. When an arithmetic instruction completes, all associated
interlock bits of the source registers are turned OFF; the target
register READY bit is turned ON and its BUSY bit is turned OFF.
When a STORE completes, the BUSY bit of the STOREd register is
turned OFF. The STORE is decoded if and only if the register to be
STOREd is READY and NOT BUSY. When a LOAD completes, the
BUSY bit of the LOADed register is turned OFF and its READY bit

,is turned ON. The LOAD is decoded if and only if the register to be
LOADed is NOT BUSY. An arithmetic instruction is allowed to
decode if and only if the two source register~ are .READY and th~
target register is NOT BUSY. It is not necessary to assume that the
dispatcher has access to the interlock information per se; rather, it
may be assumed that the dispatcher blocks only if the decode unit of
the processor blocks, in a given cycle.

Under these assumptions of hardware and architectural support,
the code sequence generated for Example 1 by Algorithm A (N = 2)
can be shown to execute in 30 cycles on Model B (with A = 3, E =
2). By contrast, for the serial, nonpipelined case, the time to execute
would have been 34 cycles, assuming the timings to be identical, i.e. a
LOAD or STORE takes 3 cycles and an arithmetic instruction takes
2 cycles to execute.

If the number of registers, N is just 2 then it can be shown that
we cannot decrease total execution time in this case, under the simpl~
issue and decode mechanisms adopted. However, if N ~ 3, (Le.
greater than or equal to the label of the root), then one can obtain
optimal performance, by using the following algorithm.

MEMORY

------1

PROCEUOR '------- - --_______ - ----.I

Figure 2. Machine Model B.

ALGORITHMB

Like Algorithm A, Algorithm B walks through the expression tree
in emitting code; however, unlike Algorithm A, the number of visits
per node is not a constant number. Also, in general, the overall tree
traversal pattern can be quite complicated, depending on the tree
structure and the pipeline parameters A and E. Nevertheless, the
worst case complexity of the algorithm is still linear in the number of
tree nodes (see section IV). For simplicity, we state this algorithm for
the case: N 2: L(root), where N = number of registers and the labels
L are generated by the basic tree labeling algorithm, as before. In
other words, this algorithm generates (time) optimal code (without
stores) for the machine model described (Model B, Figure 2).

Node attributes:

For a given node n of the tree, its ancestor node is denoted as
father(n), its left descendant node as left-son(n) and its right
descendant node as right-son(n). All non-leaf nodes of the tree are
called op-nodes. Associated with each tree node is a set of attributes,
which in a sense defines the "state" of the node at any given point
durir.g code generation. Following is the set of node attributes:
(a) n: integer; 1 $ n ~ number of nodes; (* node number *)
(b) node-type: (leaf, op); (* node descriptor *)
(c) 1..: integer; L 2: 1; (* static label *)
(d) Tt, T2: integers; Tt 2: 0, T2 2: 0; (* dynamic attributes *)
(e) OP: ('ADD', 'SUB', 'MPY', 'DVD'); (* operation identifier *)
(OlD: ('a', 'b', ... , 'z'); (* operand identifier *)
(g) I-enabled, r-enabled, Is-enabled, rs-enabled, I-visited, r-visited:
boolean; (* dynamic attributes *)
(h) I-reg, r-reg: integer; (* source operand reg numbers *)
(i) t-reg: integer; (* target reg number *)

In addition, each node is understood to have upto three defined
(static) pointer attributes: uptr, Iptr and rptr, linking it to its ancestor,
left descendant and right descendant respectively.

The static labels (L) are obtained by applying the basic tree
labeling algorithm as before; in principle, these could be attached to
tree nodes during actual parsing (i.e., tree-building). Similarly, the
other static attributes [(a), (e), (0, along with "uptr", "Iptr" and
"rptr" (see above»), are all fixed during tree. initialization. The
attributes Tt and T2 may be looked upon as "time-to-fire" labels; i.e.,
Tt(n) specifies the adaitional number of time units (after the last
initiated instruction) one must wait before the left operand is
available in a register; T2(n) specifies the same thing, but for the right
operand. Thus, T(n) = max (Tt(n), T2(n» specifies the waiting
period (in machine cycles) for this op-node (instruction) to be
decoded, counting from the last initiated instruction. Initially, these
values are all set to 00, for each node n.

An op-node is said to be "enabled" if LOAD/OP instructions for
both its son nodes have already been generated. Initially, therefore,
all the op-nodes are disabled. An op-node is said to be r- (1-) enabled
if the LOAD/OP instruction for its right (left) son node has been
generated. The boolean attributes l .. enabled and r-enabled are. used
to record the above conditions. The attributes Is-enabled and
rs-enabled are defined as follows: ls-enabled(n) = I-enabled
(left-son(n» and r-enabled (left-son(n»; rs-enabled (n) = I-enabled
(right-son(n» and r-enabled (right-son(n». The attribute I-visited
(r-visited) is set to "true" if the left (right) son of this node has been
visited most recently. Initially, both flags are false; both these flags
cannot be "true" at the same time.

375

Global data structures:

The registers (numbered 1 through N) are initially organized as a
"free queue", called f-queue. This can be imagined to be a simple
FIFO queue, for example. Each entry of this queue has two fields:
(a) the actual register number, i (c [1,2, ... , N]); and, (b) a dynamic
attribute t(i), associated with the register i. The t value may be
looked upon as a "time-to-free" attribute, which specifies the
additional number of (machine) cycles, after the last initiated
instruction, one must wait before an instruction using that register as
an operand can be allowed to decode. Initially, the "t field" of each
entry in the free queue is set to O. Any time a register is needed to
emit a LOAD instruction, it is taken from the head of the queue;
when a register is freed (after a STORE or arithmetic instruction), it
is put back at the tail of the queue. The variable "f-reg" always refers
to the register at the head of the free queue; f-reg = 0 signifies that
the free queue is empty. Initially, f-reg = 1 and size (f-queue) = N.

Also, an "enabled queue", called e-queue, is maintained: this is a
FIFO queue of pointers to enabled op-nodes at any given point of the
algorithm. Initially, this queue is empty, of course. During the
(algorithmic) step that a node becomes enabled, it is entered at the
tail of e-queue in case it is not scheduled immediately. During the step
in which an op-node (arithmetic instruction) is scheduled (emitted)
by the algorithm, the corresponding entry at the head of e-queue is
removed. Each valid entry of e-queue consists of two fields: (a) the
(static) node number (n) of the enabled node; and (b) T(n), a
dynamic attribute, signifying the "wait period", in machine cycles,
(counting from the cycle of last initiation), before this node can be
decoded. When a node n is first entered into e-queue, the value of
T(n) is set to max (Tt(n), T2(n». The variable "e-ptr", when defined,
is the node pointer at the head of e-queue; i.e., the node pointed to by
e-ptr, called "e-ptr@", is always the enabled node with the minimum
T value; (e-ptr = nil <==> e-queue is empty).

In addition, a "partially enabled queue", called pe-queue is
maintained. This is similar to e-queue, except that it carries
information about partially enabled nodes, i.e., those which are
I-enabled or r-enabled, but not enabled. Once again, nodes are
entered into this queue, only if necessary, (i.e., if m becomes 0), in the
order in which they become (partially) enabled. The timing field T of
each entry in this case is Tt(n), if the node n under consideration is
I-enabled, and T2(n) if n is r-enabled. At a given step, a partially
enabled node is entered into pe-queue if and only if: (a) its disabled
son is a leaf node, and (b) the number of available registers at that
step is O. An entry is removed from the head of pe-queue when the
next LOAD has to be scheduled. The variable "pe-ptr", when
defined, is the node pointer at the head of pe-queue; i.e.,' the node
pointed to by pe-ptr, called pe-ptr@, is the current candidate op-node
whose disabled leaf node must be LOADed.

The queues f-queue, e-queue, pe-queue, the associated variables
f-reg, e-ptr, pe-ptr and the dynamic time attributes T, Tt, T2, and t
are basically managed and manipulated (updated) by the code
emission routines "gen-load" and "gen-op". These routines, it should
be noted, make use of the pipeline parameters A and E (see section II)
in setting and updating the above attributes (see below). The
variables enabled-node-count and leaf-node-count keep track of the
number of enabled nodes and the number of remaining leaf nodes of
the tree respectively. The variable m records the current number of
available (free) registers, where 0 ~ m $ N. The condition (e-ptr =
nil) is identical to the condition (enabled-node-count = 0). (Note
that once an op-node is enabled, its son nodes may conceptually be
deleted from the tree, since they will not be visited by the algorithm
again).

Informal Description of Algorithm B:

The expression tree is first initialized, with the node attributes set
to proper initial values. The L labels are generated by using the basic
tree labeling algorithm as in Algorithm A. The global data structures
are also initialized as indicated during their definition. Tree traversal
is initiated with the root node. The initial traversal pattern down the
tree from the root is almost exactly along the lines of the
corresponding traversal in Algorithm A; the purpose, at this stage, is
essentially: selection of a start leaf node for emission of the first
LOAD instruction. During subsequent traversals up and down the
tree, code is generated by taking into account several factors: (a)
availability of "free" registers (for LOADs); (b) state of the node
visited: "enabled" or "not enabled"; (c) the scheduling strategy
(based.on maintained timing information) which will ensure emission
of optimal code. The normal traversal pattern down the tree is:
father, least recently visited son (subtree), other son (subtree), father.
If neither son has been visited earlier, the one with the larger label (L)
is visited first, as in Algorithm A. Similarly, the normal traversal
pattern!!Q the tree is: current son, Cather, other son, Cather.

A visit to node n may be classified as casual or busy according to
the complexity oC the tasks involved. A casual visit results in routine
checking and book-keeping operations, without actual code emission.
The book-keeping actions are mostly local node operations; Cor
instance, the attributes I-visited, r-visited, Is-enabled or rs-enabled oC
the Cather may be set. A partially enabled or enabled node may be
entered into the corresponding queue. The checking actions are local
as well as global; for instance, the current state (enabled, I-enabled,
r-enabled, etc.), of the node is checked; also, global values like m
(number oC free registers), enabled-node-count, leaf-node-count, etc.,
may have to be checked. A busy node visit results in some routine
checking operations, as well as actual code emission by invocation of
the routines "gen-load" and "gen-op". Substantial local and global
attribute modification actions are associated with such invocations
(as described shortly). Thus, during a given visit to a node n, the
corresponding code emission task may be accomplished by invoking
gen-load or gen-op (busy visit), or, if the conditions checked are not
right the next node in the traversal path is visited, postponing code
emission for this node to a subsequent visit. The normal traversal
path is altered, at a given step of the algorithm, only if the current
node visit is a casual visit, and, a specific condition is detected; for
example, m = O. In such special cases, the next node to be visited is
eptr@ or pe-ptr@. (See the actual algorithm for details). A busy
node visit (code emission) always results in continuation of a normal
traversal pattern; i.e., the next node visited, in this case, is always the
father. Invoking "gen-Ioad" or "gen-op" requires updating of one or
more of the queues f-queue, ·e-queue and pe-queue. "Updating",
includes addition/deletion of entries as well as decrementing T and t
values by proper amounts (see below).

The routines: "gen-load" and "gen-op"

These are the basic routines invoked by the algorithm for
generating LOADs and OPs. By construction, the algorithm visits a
leaf node if and only if the number of available registers, m, at that
point is non-zero and the corresponding LOAD can be scheduled.
Thusgen-Ioad is invoked if and only if the visited node n is a leaf
node. In addition to actual emission of the LOAD instruction, the
Collowing actions are associated with an invocation of gen-Ioad Crom
(leaf) node n:
(a) The entry at the head of f-queue is removed; the corresponding
register f-reg is used for the target, t-reg, of the LOAD; f-reg is
updated to indicate the new entry at the head oC f-queue; the values
oC leaf -node-count and m are decremented by 1.
(b) The following attributes oC father(n) are set/modified as
applicable: I-enabled (or r-enabled), TI (or Tz). Thus, for example, if
n is the left son of its father, then: TtC!ather(n» is set to the integral

376

value A, where A is the pipeline parameter for LOADS (see section
II); also, I-enabled (father(n» is set to true.
(c) Thet values of registers in f-queue, and the (TI, Tz' T) values of
father(n), together with those of all nodes ine-queue and pe-queue
are decremented by the amount k ='1 + t(t-reg), where the
necessary t value was obtained from the head entry oC f-queue,
during target register (t-reg) selection. (This decrementation of time
attributes corresponds to advancing the pipeline execution by the
minimum number (k) of cycles before the next instruction can be
decoded).

The next node visited after the invocation: "gen-Ioad(n)" is always
father(n).

The routine gen-op generates the required OP with I-reg and r-reg
as source registers, and either I-reg or r-reg as the target (depending
on context) as far as this particular algorithm is concerned. In
addition to emission of the required OP instruction (ADD, SUB, MPY
or DVD), the following book-keeping operations are associated with
the invocation of gen-op from node n:
(a) The freed register(s) are added to the tail of C-queue; the
associated t value(s) are copied from the T value of this op-node. The
value of m is incremented.
(b) Node attributes of the father are updated in the same manner as
before, except that now the pipeline parameter E is used.
(c) The time attributes of the global data structures f-queue, e-queue,
pe-queue, as well as those of father(n) are decremented by k = 1 +
T«father(n»).

The next node visited after the· invocation: gen-op(n) is always
father(n).

We now present Algorithm B using a high-level (Pascal-like)
notation. The detailed specification of routine book-keeping
operations for casual node visits is omitted for clarity; also, the
expansions of gen-load and gen-op (with their associated
book-keeping actions) are not shown explicitly. (The informal
description above should be referred to for completeness).

The Actual Algorithm

After the tree and the data structures .are initialized as described.
(1) Apply (2) to the root with all N registers availal:ile (free).
(2) Let n be a node, with L(n) ~ 1 and T(n) ~ 0; suppose m registers
are available, 0 :S m :S N.
CASE 1. L(n) = 1; hence, m > 0 (n is a leaf node).
begin

gen-load(n);
apply (2) to father(n);

end; (* CASE 1 *)

CASE~ L(n) > 1 (n is an op-node).
begin

update-Iocal-attributes(n);
if enabled(n) then begin

r
iC (n = root) or (T(n) = 0) or (n = c-ptr@) then begin

gen-op(n);
if (n ~ root) then apply (2) to Cather(n);
if (n = root) then return;

lend

, [else begin
enter-into-e-queue(n);
if (m >0) and (pe-ptr ;a! nil) and (min (Tt(pc-ptr@),
Tz(pe-ptr@» :S T(e-ptr@» then apply (2) to pe-ptr@
else apply (2) to e-ptr@;

end
end

[

else if l-enabled(n) or r-enabled(n) then begin

if (m > 0) then begin
if r-enabled. (n) and r-visited(n) and (not ls-enabled(n»
then apply (2) to left-son(n)
else if l-enabled(n) and l-visited(n) and (not
rs-enabled(n» then apply (2) to right-son(n)

, els'e apply (2) to father(n);
end
else begin

if (l-enabled(n) and (node-type(right-son(n» = leaf» or
(r-enabled(n) and (node-type(left-son(n» = leaf» then

end

[

begin
enter-into-pe-queue(n);
apply (2) to e-ptr@;

end
else apply (2) to e-ptr@;

end

else (* n is disabled *) begin
if (m > 0) and (leaf-node-count > 0) and (pe-ptr = nil) then
begin

if rs-enabled(n) then apply (2) to left-son(n)
else if ls-enabled(n) then apply (2) to right-son(n)
else begin

[

if (L(right-son(n» ~ L(left-son(n») and (not
r-visited(n» then apply (2) to right-son(n)
else if (not l-visited(n» then apply (2) to left-son(n);

nd
end
else if (m > 0) and (pc-ptr ¢ nil) and (min (Tt(pe-ptr@),
T2(pe-otr@» ::; T(e-ptr@»then apply (2) to pe-ptr@
else apply (2) to e-ptr@;

end;
end; (* CASE 2 *)

The proof of the following theorem is straightforward; it follows
from construction of the algorithm, as discussed earlier. The formal
proof is omitted in this paper.

Theorem 2: Algorithm B produces an optimal code sequence
(without storc~) for the stated machine model and assumptions, with
N ~ L(root).

•
For N = 4. the followg code generated by Algorithm B (with A =

3, E = 2), executes (on model B) in 16 cycles (optimal).

1. LOAD Rl, addr(f)
2. LOAD R2, addr(e)
3. LOAD R3, addr(d)
4. LOAD R4, addr(c)
5. ADD Rl, R2, Rl
6. LOAD R2, addr(b)
7. MPY Rl, R3, Rl
8. LOAD R3, addr(a)
9. ADD R2, R2, R4
10. DVD R2, R3, R2
1 L SUB Rl, R2, Rl

Figure 3 shows the timing chart for the above example.

Note that the code generated by Algorithm A (with N = 4, A =
3, E = 2) would require 24 cycles (far from optimal) on Model B,
even though the same number ol'instructions (11) would be ernitted!
Also, note that code emitted by Algorithm B is always optimal for
Model A as well, in that a minimum number of instructions is
generated. An additional note of interest is that for A = 1, E = 1, the
code produced by Algorithm B would be identical to that generated
br Al~,?rithm A.

377

The generalization of Algorithm B to the case where N may be

smaller than the L label of the root is easy. In this case STOREs have
to be scheduled appropriately for optimal performance. Timing
charactersitics of LOADs and STOREs are assumed identical in our
implemented program, CODEGEN (see section IV).

~
0::: -0 0- 0

txl !-< txl ><
txl 0::: en !-< <:
Q ::> ~
0 Z Q U <:
u txl <>: txl

....
It

txl t.!l 0 X ::>
Cycle Q <>: ...l txl

p...

1 CD
2 CV CD
3 CD (]) CD
4 C0 Q) (])
5 (2) G) G)
6 ® C0 CD
7 ®
8 (}) ®
9 ® ® (])
10 ®
11 ® ®
12 @ ® ®
13 @
14 Q) @
15 Q)
16 0

Figure 3. Timing Chart (Alg. B, Model B).

C. Serial, Multi-Dispatch, Pipelined, Decoupled Execution

Figure 4 shows the excution model, under consideration, which
has been fonned from the notions expressed in [3,4]. While retaining
the single instruction flow from memory, this organization allows
upto two instructions to be dispatched every cycle to the two separate
functional units: one for processing LOADs/STOREs (access
processor) and the other for performing actual computation (execute
processor). We assume the same hardware interlock mechar.ism for
registers as before, to ensure correct usage and storage of data. Our
optimization problem, as before, is to generate code which would
produce the required results of the computation in the fastest possible,
time.

I

: Ace... Proc ... or : _______________ ---______ 1

Figure 4. Machine Model C.

Algorithm C, for optimal code generation under this assumed
model, is almost identical to Algorithm B. The main difference is in
the management of some of the global data structures. The manner in
which some of the dynamic variables are manipulated (updated) is
different in this case, because of the provision of multiple instruction
dispatch. The basic methodology and complexity of the algorithm
remains unchanged. We omit the detailed description of Algorithm C
in this paper. For N = 4. the code generated by Algorithm C (with
A = 3, E= 2) executes (on model C) in 15 cycles (optimal).

In our implemented program CODEGEN (see section IV), we
have coded Algorithms Band C, together with modified versions of
e, in which buffers have been added before the decode units and also
other organization/architecture changes have been experimented
with. We leave the detailed description of these models and
algorithms for presentation in a later, detailed version of th,is paper.

IV. Al.GORITHM COMPLEXITY

In this section, we present an informal discussion of the
complexity of our algorithms. We indicate, without formal proofs,
that Algorithms A, Band C are all linear in the number of tree nodes,
n. In each case, we shall estimate complexity of code generation after
the tree has been constructed and initialized (Le., static attributes and
labels have been evaluated as applicable).

Algorithm A: In this case, as discussed in [1], the number of visits per
node is constant, nan.ely 2: the first time each node is visited is when
the tree is traversed from the root down to the leaves to determine
the order of evaluation; the second visit occurs during traversal up the
tree from the leaves producing the evaluation sequence. Hence, for
this simple tree-walk algorithm, the total number of node visits is 2n;
i.e., the number of steps required by the algorithm is linearly
proportional to the number of tree nodes, n.

Algorithm B: In this case, the number of visits per node is not a
constant number; however, there is a pre-determined upper bound
on the number of visits per node (irrespective of the tree), as seen
from the following lemmas.

Lemma 3: In Algorithm B, each leaf node is visited exactly once.

•
Lemma 4: In Algorithm B, the number of visits to an op-node, NVo,
is bounded as follows:

3::: NVo::: 4

•
The proofs of the above lemmas follow easily from the

methodology expressed in the statement of our algorithm. A leaf node
is visited if and only if the corresponding LOAD is to be scheduled;
hence, the number of visits per leaf node is always 1. Under normal
traversal pattern, each op-node is visited at least thrice. Upto 4 visits
are needed in case a node is entered into e-queue or pe-queue and
visited later to complete code generation.

Lemma 5: The total number of node visits (NV), i.e., the total
number of invocations of part (2) of Algorithm B, is bounded as
follows:

NL + 3*NO ::: NV ::: NL + 4*NO
where, NL is the number of leaf nodes and NO is the number of
op-nodes. The above inequality can obviously be re-written as:

(n + 2*NO) ::: NV ::: (n + 3*NO),
where n is the number of tree nodes (since n = NL + NO).

•
Lemma 5 clearly follows from Lemmas 3 and 4.

378

Thus, we see that in the worst case, the total number of node visits
Is linearly proportional to the number of nodes. Every visit to a node
does not result in the same amount of work for the code generator
(algorithm), however. Let us try to see how the total cost (TC) is split
up among the tasks performed by the algorithm.

Let,
Ct = cost per casual node visit (no code emission).
Cl = cost per busy node visit (code emission).

Then,
TC = (NV - n)*Ct + n*Cl .

If Ct and Cl are fixed (constant) costs per casual and busy node visit,
respectively, then C must clearIy be linear in the number of nodes, n,
since NV is proportional to n. However, depending on the exact
implementation of the data structures (e.g., fixed length arrays versus
variable length arrays), and the manner in which they are
manipulated (updated), C2 may vary from visit to visit. For a given
node, numbered i, C2(i) = C2t + e22(i); where, e2t is the cost
(invariant with i) for actual code emission and other routine tasks,
and Cll(i) is the cost for updating the global data structures. Cl2(i),
at worst, is proportional to the lengths of f-queue, e-queue and
pe-queue at the point of the algorithm where code for node i is
emitted. The length of f-queue, at worst is proportional to the
number of registers N, which is a constant, independent of n. The
maximum length to which pe-queue can grow (for expression trees)
can be shown to be 1; and, the maximum length to which e-queue can
grow can be shown to be (A - E) where A and E are the pipeline
parameters. It follows from the above discussion, that the total cost
TC is linear in the number of tree nodes, n.

The basic methodology used in Algorithm C is the same as that in
Algorithm B; it can easily be shown that in this case too, the worst
case complexity is linear in the number of tree nodes, although, the
number of actual node visits is slightly higher.

1
0 N=L(root) 0

N

>
<Xl ..,

1
z
III

NV

~ 0

> 0 '" .0

'" U
'0 E-<

~

~ III

0 0 .. 0 .0
U

'" '" ~ ~ .0

= ~ ,;
TC E-<

0 0
N <Xl

10 20 30 40

Number of tree nodes (n) ----.

Figure 5. Performance of Algorithm B.

Family of expressions: (for Fig. $)

n=5: a/(b+c).
n= 11: a/(b+c)-(d*(e+f».
n= 17: a/(b+c)-(d*(e+f»+(g/(h-j».
n=23: a/(b+c)-(d*(e+f»+(g/(h-j»-(k*(l+m».
n=29: a/(b+c)-(d*(e+f»+(g/(h-j»-(k*(I+m»+(n/(p-q».
n=35: a/ (b+c)-(d *(e+f»+ (g/ (h-j))-(k*(1 +m» + (n/ (p-q))-(r*(s+t».

Implemented Program

As mentioned previously, a program called CODEGEN has been
implemented successfully, in order to experiment with tne various
algorithms for code generation referred to in this paper. The fact that
Algorithm B (or C) is linear can be easily proved, as discussed above.
We present actual experimental results (Figure 5) for the family of
arithmetic expressions shown. The total cost plotted is based 01'\

realistic (relative) cost units, and is based on actual number" and sizes
of tasks involved; thus, the TC plot is truly representative of the
actual execution time characteristics of our implemented
algorithm(s). Experimentation with a wide class of expression
structures has exhibited, the same lZeneral characteristics.

CODEGEN has been written in Pascal and runs on an IBM 370
mainframe. It includes an expression parser, tree builder and labeler,
a tree printer along with the actual code generation procedures.

V. CONCLUSION

Code generation algorithms for more generalized models of
execution than those considered in the classic papers of Sethi et al [1]
and Aho et al [2], have been sketched. With the growing importance
of high performance (super) computer architectures, such algorithms,
which fully exploit the parallelism available, are deemed to be of
considerable significance. We have presented outlines and
performance results of basic algorithms for simplified models. Our
implemented program CODEGEN is actually capable of handling
more complicated models and is parametrized to handle various
architecture/organization changes. In particular, methods for
designing the instruction set suitably for enhanced performance, have
been experimented with using tcchniques described in [9];
systematically derived stack [8] and other generalized instruction set
architectures have been considered in conjunction with the various
execution models. We are currently experimenting with an
implemented program capable of handling basic blocks (expression
dags), for our pipelined machine models.

REFERENCES

JI] R. Sethi and J. D. Ullman, "The Generation of Optimal Code for
Arithmetic Expressions," JACM, Vol. 17, No.4, October 1970, pp.
715-728.

[2] A. V. Aho and S. C. Johnson, "Optimal Code Generation for
Expression Trees," JACM, Vol. 23, No.3, July 1976, pp. 488-501.

[3] J. E. Smith, "Decoupled Access/Execute Computer
Architectures," Proc. 9th. Ann. Symp. on Computer Architecture,
pp. 112-119, April 1982.

[4] T. K. Agerwala, "How Fast Can a Single Instruction Counter
Machine Execute?", several invitcd talks delivered: Stanford
University (May 1983), University of Illinois (July 1983),
Massachusetts Institute of Technology (April 1984).

379

(5] S. Weiss and J. E. Smith, "Instruction Issue Logic for Pipelined
Supercomputers," Proc. 11th Ann. Symp. on Computer Architecture,
pp. 110-118, June, 1984.

[6] R. M. Tomasulo, "An Efficient Algorithm for Exploiting Multiple
Arithmetic Unit"," IBM Journal of Research and Development, Vol.
II, Jan. 1967. .

(7] R. M. Russell, "The CRAY-l Computer System," Comm. ACM,
Vol. 21. No. I, January 1978, pp. 63-72.

[8] J. L. Bruno and T. Lassagre, "The Generation of Optimal Code for
Stack Machines," JACM, Vol. 22, No.3, pp. 382-397.

[9] P. Bose and E. S. Davidson, "Design of Instruction Set
Architectures for Support of High-Level Languages," Proc. 11 th Ann ..
Symp. on Computer Architecture, June 1984, pp. 198-206.

[10] P. M. Kogge, "The Architecture of Pipelined Computers,"
McGraw-Hill,1981.

[11] P. Bose, "Optimal Code Generation Algorithms for Arithmetic
Expressions Executing on Pipelined, Decoupled Architectures," Proc.
International Conference on Computer Design (ICCD). October
1986.

[12] G. J. Chaitin, "Register Allocation and Spilling via Graph
Coloring," SIGPLAN NOTICES, Vol. 17, No.6, June 1982, pp.
98-105.

[13] F. E. Allen and J. Cocke, "A Catalogue of Optimizing
Transformations," in Design and Optimization of Compilers, R.
Rustin (Ed.), Prentice-Hall, Englewood Cliffs, N.J., 1972, pp. 1-30.

[14] M. Auslander and M. Hopkins, "An Overview of the PL.8
Compiler," SIGPLAN NOTICES, Vol. 17, No.6, June 1982, pp
22-31.

[15] G. Radin, "The 801 Minicomputer," Proc. Symp. on
Architectural Support for Programming Languages and Operating
Systems, Palo Alto, March 1982, pp. 39-47.

[16] D. A. Patterson, "Reduced Instruction Set Computers," Comm.
ACM, Vol. 28, No. I, January 1985, pp. 8-21.

A SYMMETRIC CONCURRENT B-TREE ALGORITHM

Vladimir Lanin and Dennis Shasha

Courant Institute of Mathematical Sciences,
New York University, New York, New York 10012

lanin@nyu-csd2.arpa, shasha@nyu.arpa

ABSTRACT: We present a method for concurrent B-tree
manipulation in which insertions are performed as in an earlier
paper by Lehman and Yao, and deletions are done in a
symmetrical, novel fashion. The result is an algorithm in which
each process holds locks on at most one node at a time, except in
rare cases. To allow this low level of synchronization, the
integrity constraints on the data structure are re-examined. This
is useful in verifying the algorithm by a general semantic
serializability proof method. Simulation shows that the algorithm
is capable of achieving significantly better concurrency than other
algorithms that perform insertions and deletions symmetrically.

1. INTRODUCTION

B-trees are a popular implementation of the dictionary, an
abstract data type (ADT) that supports the actions search, insert,
and delete. A full review of B-trees may be found in [Comer 79],
but let us say here that a sequential algorithm for performing the
above actions in a B+ tree usually runs in three stages: a descent
through the tree to a leaf node, an operation on the leaf node that
either checks for the existence of a key, adds a key, or removes a
key (for search, insert, and delete, respectively), and an optional
ascent during which the tree is restructured in order to rebalance
it. It is also possible to restructure the tree during the descent, as
described in [Guibas, Sedgewick 78]. Restructuring is done by
splitting a single node into two neighboring ones and by merging
neighboring nodes into one. The execution of an entire action
takes time logarithmic in the number of keys stored in the
structure.

It is useful to allow several different, asynchronous
processes to access the B-tree concurrently. This is easy when all
the processes are searches, but the goal is to also allow concurrent
insertion and deletion, while ensuring correctness and allowing as
much concurrency as possible.

1.1. Previous Work

The first concurrent B-tree algorithms ([Samadi 76], [Bayer,
Schkolnik 77]) ensure correctness by isolating each action from
the effects of all other actions active in the structure concurrently:
a concurrent action never encounters a situation that it could not
encounter if executing alone. Two techniques are used to achieve
this isolation. We present them with their rationale:
a) An action descending from a parent node to one of its children
must acquire a lock on the child before releasing the lock on the
parent (lock-coupling). Without this lock on the parent, a writer
action could acquire locks on both nodes, change them (e.g. split

This work was partially supported by the National Science
Foundation under grant DCR8501611 and by the Office of Naval
Research under grant NOOOI4-85-K-0046

CH2345-7/86/0000/0380$Ol.OO © 1986 IEEE
380

the child), and release the locks (Fig. 1). This could cause the
descending action to perform incorrectly, as the search(d) in fig. 1
does.
b) A writer action (which in [Samadi 76] and [Bayer, Schkolnik
77] restructures during the ascent) must lock out other writer
actions from the entire subtree dominated by the highest node it
has to modify. This averts another danger: suppose writer w

needs to ascend to and modify node n, and writer w' is already
active below n. Since w' might also have had to modify n, either
w or w' would update n first. The other would then access a
different version of n than during its descent, potentially causing
errors.

These techniques guarantee correctness at the expense of
concurrency. Locking processes out of entire subtrees is a severe
disadvantage in itself. Furthermore, the most straightforward
method of achieving the subtree-locked state (which is used in the
above algorithms) is for writer processes to begin placing
exclusive (or at least writer-exclusion) locks from the top of the
tree. This temporarily locks out new actions entirely. The
simultaneous use of lock-coupling by other processes aggravates
the problem by increasing the interference.

Another algorithm in [Bayer, Schkolnik 77] mitigates the
above effects of subtree-locking by having writers first perform
an optimistic search-like descent that uses read locks on all nodes
but the final leaf, on which it uses an exclusive lock. A writer can
complete after the optimistic descent if it does not have to split or

merge the leaf. This has a probability of about k-l if the
k

number of keys stored in each leaf ranges from k to 2k.
Otherwise, the writer must give up and re-descend using the
normal protocol.

The algorithm in [Mond, Raz 85] is a concurrent version of
the [Guibas, Sedgewick 78] algorithm, and avoids subtree-locking
by doing restructuring during the descent. However, it still

(a)

~
............ : ~

:1 \ : !

••••• :::::: .::::~....... 0- ./~-, t-..-,
:a I::C :--->I~>~
: ••••••••••• : : ••••••••••• : L _____ :..J

--->

(b) (c)

Figure 1. A sequence of events leading to error
in the absence of lock coupling

Descending action searched) releases its lock (shown in dashes)
on the parent node in (a) before acquiring lock on child node in
(c). Meanwhile, action insert(c) splits the child node in (b),
making the key d unavailable to the search.

employs lock-coupling and requires using exclusive locks starting
at the root. We note that the [Mond, Raz 85] algorithm can also
be enhanced by optimistic descents.

Simulation shows (as presented in this paper, as well as in
[Ellis 80], [Shasha 84]) that in a high update environment,
algorithms that use exclusive locks high up in the tree in the initial
descent can not achieve significant concurrency. Although
optimistic descents help considerably (especially in the [Mond,
Raz 85] version), they depend on the number of keys in a leaf
being large. They seem to employ more locking than absolutely
necessary.

1.2. The Lehman and Yao Algorithm and Deletions

A more radical approach to achieving a minimal amount of
locking is not to try to isolate actions from each other (by lock
coupling and subtree-locking); IJu-i -to -enabIe- them to -recoverTr-om
the effects of other actions. [Ellis 80] and [Lehman, Yao 81]
present such algorithms. The latter avoids both lock-coupling and
subtree-locking and is simple; we base our approach on it.

The Lehman and Yao algorithm introduces the B-link
structure, obtained from a B+ tree by connecting each level into a.
singly linked list. A pointer called a rightlink points from every
node to its right neighbor, so actions can stray to the left of the
direct path to a desired node, and still recover by following the
rightlinks. For example, a split occurs in two stages (see Fig. 2):
first, half the data is moved out of n into n', and n' is inserted
into the linked list; next, a pointer to n' is put into the parent of
n. Between the two stages, descending processes can be allowed
to make the transition from the parent of n to n, because even if
they need data that was moved to n' , they can still reach it. Thus,
lock-coupling is unnecessary. Subtree locking is unnecessary
because ascending writers can follow rightlinks to the appropriate
place to make their updates.

Although it is not apparent in [Lehman, Yao 81] itself, the
B-link structure allows inserts and searches to lock only one node
at a time. This is fully utilized in algorithms in [Sagiv 85] and
[Shasha 84].

The major problem with the [Lehman, Yao 81] algorithm is
that no provision is made for the merging of nodes. Thus, the
structure never becomes smaller even after many deletions,
although Lehman and Yao propose to rebalance it off-line. This
deficiency has been addressed in the algorithms of [Salzberg 85]
and [Sagiv 85], which give procedures for restructuring the entire
tree that can run concurrently with the other actions. However, it
is not clear how often such procedures should be run.

No algorithm has previously been given for performing a
deletion analogously -to an insertion, by using merges where the
insertion uses splits. Independently, [Sagiv 86] has a nearly
symmetric deletion algorithm similar to ours. Our merge is
different and should result in fewer locks and/or accesses, but we
expect the performance of our two algorithms to be close. We
learned of the algorithm too late to include it in the simulation.

---> ~m>I!3C~1
n n n' n n'

(a) (b) (c)

Figure 2. A split in the B-link structure.

Processes looking for d in n in (b) or (c) can proceed to n' and
s till find d.

381

1.3. Symmetric Deletion Approach

Let us consider various implementations of merging a node
n with its right neighbor n' in the B-link structure. If we move
the data in n' to n (Fig. 3a), there is no path that processes can
follow from n' to the data moved out. This may, for example,
lead a process to conclude that c is not in the structure. l If we
move the data in n to n' (Fig. 3b), we will need to access the left
neighbor of n to remove n from the linked list. Finding the left
neighbor requires either much time or a doubly linked list, which
increases complexity and the locking overhead (see [Shasha 84]
for example).

Our novel way of doing merges solves the above problems.
We move the data from n' to n, but also direct a pointer called an
outlink from n' to n (Fig. 4). Any action needing data that was in
n', and still expecting to find it there, can access n' , see that it is
em pty, and fo llow the ou tlink to n.

The outlink is actually another application of the link
technique, other examples of which include the original Lehman
and Yao rightlinks, as well as elements in the algorithms of
[Kung, Lehman 80] and [Ellis 83]. In general, the link technique
calls for processes that change sections of a data structure in a
way that would cause other processes to fail to provide a link to
another section of the data structure where recovery is possible.

2. OUR ALGORITHM

The following section fleshes out the short description of our
algorithm given above. Please refer to Fig. 5 for an example of a
B-link structure and to the appendix for a pseudo-Pascal program
implementing the algorithm.

2.1. Some Definitions

Each internal node consists of a rightlink, and a sequence

1 This illustrates a general principle that data should only move to
the right in the singly-linked B-link structure.

~---~~
~::::-" n <al n n'

n n' ~ ~ ____ >~
~ n

(b)

Figure 3. Two possibilities in merging nand n' .

Unfortunately, (a) is incorrect and (b) is inconvenient.

~-~~-->~
n n n n

(a) (b) (c)

Figure 4. Merging in the B-link structure.

Processes looking for d in n' in (b) and (c) can proceed to nand
s till find d.

anchor
Ih=4,f=3!

Figure 5. A possible legal state of a B-link structure.

1) The top pointer. 2) The fast pointer. 3) A downlink. 4) An
empty node. 5) An outlink. 6) A rightlink. 7) A leaf's only
separator.

(PpSI,P2,S2' ... ,Pq,Sq)' where each Pi is called a downlink and si
a separator. A downlink is a pointer to a (usually nUll) chain of
empty nodes terminating in a non-empty node on the level below.
A downlink is said to trans-point to this non-empty node. A
separator is a value from the same domain as keys, but serves
only as a navigation guide and not as a key entry. For lsi<q,
s;< s;_I. Each leaf consists of a rightlink, a sequence of keys
(v;,v2' ... ,vq), and a single separator s, where v;<vi_l:5s for
1:5i<q.2

Let us define:

rightsep(d), where d is a downlink: the separator on the
immediate right of d. Note that it is always in the same node as d.

rightsep(n}, where n is a non-empty node: the rightmost (largest)
separator in n.

leftsep(d}, where d is a downlink in node n: the separator to the
immediate left of d. If d is the leftmost downlink in n, leftsep (d)
is the rightmost separator in the left neighbor of n. If n is the
leftmost node on its level, leftsep(d) is considered to be - co.

leftsep(n), where n is a non-empty node and d is the leftmost
downlink in it: leftsep (n) = leftsep (d). If n is an empty node
whose outlink points to n' , let us define leftsep (n)= leftsep (n').
coverset(n), where n is a ~non~eml'iy node:
{xlleftsep(n)<x:5rightsep(n)}.

2.2. Locks

The locking model used in [Lehman, Yao 81] assumed that
an entire node could be read or written in one indivisible
operation. This assumption enabled that algorithm to let reader
processes access nodes without first locking them in any way.
Since it is not always reasonable to assume the availability of
atomic node reads or writes (such as when the structure is in
primary memory), and in order to make comparisons to other
algorithms easier, we use a more general locking scheme similar
to the one in [Bayer, Schkolnik 77]. It is a simple matter to
convert our algorithm to fit the [Lehman, Yao 81] model, as
should be done when atomic node accesses are provided by the
hardware.

Two kinds of locks are used: a read lock and a write lock.
Many processes may hold read locks on a node at the same time,

2 For the sake of simplicity, we have restricted the structure to hold
ing only unique keys.

382

but a write lock demands exclusive access to a node, allowing no
other locks. A process must hold at least a read lock to perform a
non-modifying operation on a node; a process must hold a write
lock to modify a node. Deadlock is not possible in our algorithm,
so lock managers of different nodes may be co-independent.

Each action holds no more than one read lock at a time
during its descent, an insertion holds no more than one write lock
at a time during its ascent, and a deletion needs no more than two
write locks at a time during its ascent.

2.3. The Locate Phase and the Decisive Operation

The first phase of all three actions (search(v), insert(v), and
delete(v» is called the locate phase, as its function is to locate and
place a lock on a leaf n such that v Ecoverset(n). That is, n should
be the node where v should be if it is anywhere in the structure.
The locate phases of all three actions are identical, except that the
last two must leave a write lock on n, not a read lock.

The locate phase does not use lock-coupling. On the path to
the appropriate leaf, the locate phase locks each node, determines
which link to follow out, and unlocks the node. It does not,
however, unlock the final leaf. Each node-to-node transition
usually follows a downlink, but follows a rightlink or outlink if
necessary. Write locks are used on the leaf level if the calling
action is insert or delete, and read locks elsewhere.

Once the locate phase completes, an action performs its
decisive operation, which consists of· checking for v (for search),
adding v (for insert), or removing v (for delete) in the locked
leaf.

2.4. Restructuring

Adding or removing information in a node may leave it too
crowded or too sparse. As in sequential B-tree algorithms, this is
rectified by normalizing the node: i.e. splitting it into two nodes or
merging it with its neighbor. 3 Since a split or a merge involves
inserting or removing the pointer from the parent node to the
node being created or vacated, the normalization of a node may
make further splits and merges higher in the structure necessary.
Thus the tree is restructured by an ascent from the leaf accessed
by the decisive operation.

2.4.1. Two-Phase Splits and Merges. In order to avoid
having to lock the parent (and possibly more distant ancestors) of
a node while normalizing it, our algorithm performs splits and
merges in two stages, as shown in figures 2 and 4. The first stage
(fig. 2b and 4b), which does not involve the parent of the node
being split or merged, is called the half-split or the half-merge,
respectively. After a half-split, nand n' may still be regarded as
one logical node. The half-merge may be regarded as logically
merging nand n', and re-directing to n the downlink to n'. After
the completion of a half-split or a half-merge, all locks are
released.

The second stage (Fig. 2c and 4c) is called the add-link or
remove-link. This operation takes place on an "appropriate" node
on the level above the node n which has just been half-split or
half-merged. In a sequential computation the appropriate node is
always the (unique) parent of the node involved. This can not
work in our algorithm because a node may (rarely) have several
or no parents. The purpose of a downlink - to channel to its
target the locates of keys in the target's coverset - suggests a
better criterion. Let s be the rightmost separator in the left node
after a half-split, or the rightmost separator in the left node
before a half-merge. The (unique) appropriate "parent" node p
is the one for which s E coverset(p).

__ ~n _~~:!~nk consi~~f inserting s and the downlink to the

3 Merging two nodes into one may result in a node that is too
crowded .. Thus a merge may be followed by a split; this is our ver
sion of rotation.

new node into the sequence in p, with s on the immediate left of
the downlink. A remove-link consists of removing s and the
downlink to the empty node from p, with s on the immediate left
of the downlink4.

Normally, finding the node with the right coverset for the
add-link or remove-link is done as in [Lehman, Yao 81], by
reaccessing the last node visited during the locate phase on the
level above the current node. Sometimes (e.g. when the locate
phase _had started at or below the current level) this is not
possible, and the node mu·sfbe found by a new descent from the
top.

2.4.2. Changing the Height of the Structure. If an ascent
can not proceed because the current level is the top level, a new
top level is created (by the grow operation). Safely removing
unneeded top levels turns out to be too difficult. However,
descending through them for every action is unacceptable. Thus,
instead of actually removing them, we simply avoid searching
through them. A continuously running process called the critic
keeps track of (a good guess at) the highest level containing more
than one downlink, called the fast level. The critic uses only read
locks in getting this information. Pointers to the leftmost nodes
of both the fast level and the top level are kept in the anchor,
whose address is known to all processes. If need be, the critic
modifies the fast pointer. The locate phase of all actions begins at
the leftmost node on the fast level. (The locate phase will
complete at the correct leaf regardless of the precise height of the
fast level because it is in fact safe to start a locate at any level.)
The levels above the fast level remain unused until they are
needed again when the fast level contains too many (e.g. more
than 2) non-empty nodes. Since these levels normally consist of
only one node and number no more than the maximum height of
the structure over time, they take up little space.

2.5. Freeing Empty Nodes

Once all pointers to an empty node are removed, the node
becomes a candidate for re-use5

• However, it can not then be
freed immediately since processes may exist that obtained some
pointer to it before the pointer was removed. If such a process
were to access the node once it was re-inserted into the structure,
the process might be misdirected or damage the node.

Two approaches are possible. One, introduced in [Kung,
Lehman 80] and called the drain technique, is to delay freeing the
empty node until the termination of all processes whose locate
phase began when pointers to the node still existed. The other
approach is to store information in every node (its height and
leftsep) such that a process can recognize that it has become lost
and recover by going back to the previous node it accessed or to
the anchor. The appendix does not contain code for either
approach, but freeing empty nodes by the drain technique is
transparent to the rest of the algorithm and can be added on as a
separate module.

3. CORRECTNESS

We verify the algorithm by applying the ideas of

4 There are special cases in performing the remove-link. If s is the
rightmost separator in p, then the downlink is leftmost in the right
neighbor of p. The simplest solution is to merge p and its neighbor
prior to the remove-link and to normalize afterwards. In rare cir
cumstances, s and the downlink will not be in p at all, in which case
we reissue the remove-link later. We know that it will eventually
succeed because the empty node was originally created by a half-split,
and all half-splits are eventually followed by the appropriate add
links. The remove-link is this add-link's counterpart and was delayed
because the add-link was slow in completing. Similarly, an add-link
has to be tried again if s is already present in Pi this happens only
when this older s's remove-link has been slow.

383

semantically-based concurrency control to the dictionary abstract
data type ([Ford, Calhoun 84], [Goodman, Shasha 85]). [Kung,
Papadimitriou 79] established the theory of a semantic approach
to concurrency control by showing the relationship between the
information available to a concurrency control algorithm and the
achievable concurrency. Our algorithm, like Lehman and Yao's,
is not serializable in the usual syntactic sense (i.e. in the
unrestricted reads and writes model), thus the more general
semantic approach is necessary.

The state of the dictionary abstract data type (ADT) is a set
of keys. The set of all potential keys is called KeySpace and we
assume it contains the values +00 and -00 which are, respectively,
larger and smaller than all others. The dictionary ADT supports
the dictionary actions search (x), insert(x), and delete (x), which
map a dictionary state s to a dictionary state s' and return value
v. For search(x), s'=s and v=(xEs); for insert(x), s'=sU{x} and
v=(x!!s); for delete(x), s'=s-{x} and v=(xEs).6 A sequence of
dictionary actions a p a2 ••• ,ak maps an initial dictionary state So

to a final state sk and a sequence of return values vi' v2' ••• ,vb

where each a i maps si-i to si and returns Vi. It is the job of our
algorithm to implement dictionary actions correctly when they
execute concurrently.

A search structure state (a set of nodes and edges with
associated information) implements a dictionary state. For each
node n in the search structure, contents(n) is the set of keys in the
node. The dictionary state implemented by a set of nodes N is
U contents(n). Operations on the search structure state are called
nf.N
search structure operations. For our algorithm, these are
operations like half-split, add-link, and check-key. Search
structure operations map a search structure state to another search
structure state and a return value. Each dictionary action is
implemented as a program of search structure operations.

Let a set of dictionary actions A be run concurrently.7 The
resulting computation C consists of an initial search structure state
$, a final search structure state s' , the set of dictionary actions A,
the set of executed search structure operations 0, a function
parent from the members of 0 to A, a function r from the
members of A U 0 to their return values, and a partial order <
on the members of A U 0 (where 0<0' means 0 completes
before 0' begins, and -(0<0' v 0' < 0) means 0 and 0' were at
least partially concurrent). We assume that for dictionary actions
a and a' , a<a' only if for every operation 0 of a and operation
0' of a' 0<0', i.e. a terminated before a' began.

Definition: A computation C with s, s' , A, rand < defined
as above is serializable if the members of A can be arranged in a
sequence A' such that A' maps the dictionary state represented by
$ to the dictionary state represented by $', produces the same
return vales for the members of A as does r, and extends the
partial ordering imposed on A by < (i.e. if a < a' , then a precedes
a' in A'). An algorithm is serializable if all computations it
produces are serializable.

In our algorithm, locking ensures that only non-modifying
operations are allowed to access the same node concurrently.
This implies that the final state and return values of every
computation are as if the operations occurred in an interleaved
sequence that extends the partial ordering < ([Goodman, Shasha
85]). This makes it possible to think of each operation as
occurring alone and starting and finishing in a well-defined search
structure state, which facilitates reasoning about computations.

We now develop several results needed to show that our
algorithm is serializable.

5 A counter of the number of outlinks pointing to the empty node
must be used. Furthermore, just the absence of a downlink to the
node is insufficient, as the add-link may simply be very slow and still
active. _The correct condition is the completion of the remove-link.

Definition: A B-link structure state is legal if
LSI) There exist values hand f, 1s f s h, such that the non-empty
nodes form h linked lists through the rightlinks, where all leaf
nodes are on list 1, all downlinks. from list i trans-point to nodes
on list i-I, and the anchor-contains pointers to the source nodes
of lists hand f, as well as the values hand f.
LS2) The separators on each list form a strictly ascending
sequence terminating in + 00. The keys in each leaf are in the
leaf's coverset.
LS3) If a downlink d points to node n, leftsep(d)';?leftsep(n).
(This is the minimal condition sufficient for safe descents. If
leftsep(n) were greater than leftsep(d), actions could follow d to n
while the data they seek lies to the left of n.)

B-link Proposition: For all operations mapping legal search
structure state s to state s', for all nodes n present in s, if
leftsep (n) = I in sand leftsep (n) = I' in s' , then I' S I.

Proof: This follows directly from the definitions of the
operations, as the reader can easily verify. For example, an add
link can not violate .. the proposition because it never adds the
largest separator to a node, . thus not changing~ any leftsep s. As
another example, a half-merge decreases the leftsep of the node it
empties (by the definition of leftsep for empty nodes). This
proposition is a formal re-statement of the rule that information
never moves to the left in the B-link structure. 0

Lemma 1: If d is one of the operations check-key(x ,n), add
key(x ,n), or remove-key(x ,n) in computation C of our algorithm
(Le. d is a decisive operation), and C starts in a legal state and all
operations up to d finish in a legal state, then n is a leaf. and
x E coverset(n) in the search structure state preceding d.

Proof: It is the locate phase that finds and locks the node·on
which the decisive operation acts. We note that the height of a
node is never changed by any operation that maintains a legal
state. The locate phase starts out at the leftmost node' n at some
height f. Since f is read from the anchor and the heights of all
nodes remain the same, the locate phase can correctly calculate
the height of any node it accesses. Furthermore, since it starts at
the leftmost node, leftsep (n) = - 00 < x. The next node to be
visited, m, is chosen such that ieftsep (m) is as large as possible
without violating x>leftsep (m). (LSI, LS2 and LS3 guarantee
that this decision can. be safely based on the values of the
separators in n.) By the B-link Proposition, leftsep (m) can only
get smaller with time~ Thus, when a lock is placed on m,
x>leftsep (m) still. Since m now becomes the new value of n,
x> leftsep (n) remains invariant throughout the locate phase. The
locate phase terminates only when the leaf level is reached and
xSrightsep (n), which, together with the invariant, implies
x E coverset(n)8. 0

Lemma 2: If 0 is one of the operations add-link(s ,c ,p) or
remove-link(s,c,p) in a computation C of our algorithm, and C
starts in a legal state and all operations up to 0 finish in a legal
state, then a pointer toc trans-points to a'node on the level below
p and s E coverset(p) in the search structure state preceding o.

Proof: The argument that this condition is met (by the
locate-internal subroutine) is similar to the. proof of Lemma 1.

6 For simplicity, we omit a formal description of the handling of
records usually associated with keys.

7 The following definitions are actually applicable to two-level compu
tations on any abstract data type. Simply replace the words "dic
tionary" with "top level", and "search structure" with "bottom
level".

8 Note that there is no guarantee that the locate phase will terminate.
For example, a slow search could be indefinitely delayed by continu
ous half-splits on anode it needs to access. Thus, the algorithm is
susceptible to livelock.

384

The condition that c is at height one below p is met because node
height does not change and is calculated correctly. As for the
coverset condition, it is satisfied as it was for the decisive
operations, except that locate-internal does not always start at a.
leftmost node. However, when it doesn't, the leftsep of the
starting node is known to have been smaller than s at some
previous time. By the B-link Proposition, the leftsep can only
have gotten smaller since that time and the invariant condition is
met. 0

Lemma 3: If o' is an operation in a computation C of our
algorithm, and C starts in a legal state and all operations prior to
o finish in a legal state, then 0 will finish in a legal state ..

Proof: Clearly, no operations other than those in Lemmas 1
and 2 are capable of mapping a legal state to an illegal one. By
the lemmas, these remaining operations must satisfy their
respective height and coverset conditions, which implies that they
too can not violate LSI or LS2.

It remains to consider LS3. The only operations that could
conceivably change the leftsep of any existing downlink are add
link and remove-link, which add,and remove separators as well as -
downlinks. However, since the separator added or removed is the
one on the left of the downlink added or removed, these
operations do. not change the leftsep of any existing downlink. By
the B-link Proposition, the leftsep of any existing node can only
get smaller. Thus, LS3 can only conceivably be violated in the
introduction of a new node or downlink. Newly created nodes do
not have downlinks pointing to them, so LS3 is not violated.
Thus, a problem can only arise if for some add-link(s ,c ,p),
s<leftsep(c). However, we note that an add-link(s,c,p) is done
only after a half-split(c' ,c) which results in
s= rightsep (c')= leftsep (c). By the B-link Proposition, leftsep (c)
can only get smaller between the half-split and the add-link, thus
LS3 is never violated. 0

Theorem: All computations produced by our algorithm that
begin in a legal state are serializable.

Proof: All keys reside in non-empty leaves. By LSI and
LS2, the coversets of the non-empty leaves in a legal B-link
structure partition KeySpace. By LS2, the keys in each leaf are in
that leaf's coverset. Thus, for every key and every legal B-link
structure there is exactly one node (Le. the leaf into whose
coverset the key falls) that could possibly contain the key.

By induction on Lemma 3 we have that the algorithm'
maintains a legal state throughout a computation if it begins in
one. Then Lemma 1 shows that for every decisive operation on
key x in node n, x Ecoverset(n) and n is a leaf, which implies that
x e U contents(m) in the state preceding the operation.

mEN-~n}

By inspection of each action, only the decisive operation is
capable of changing the set of keys in the structure and only the
decisive operation affects the return value of the action.
Furthermore, the definition of each decisive operation is identical
to the definition of its parent action, except that it acts on a single
node instead of the entire structure. Since we know that this node
is the only one that contains any information pertinent to 'the
action by Lemma 1, each decisive operation correctly performs all
of the work of its parent action. Thus the sequence of actions
given by the. sequence of their decisive operations would produce
the same final set of keys and the same. return values as the actual
computation. 0

It should be pointed out that although the algorithm is
susceptible to livelock, it is free from deadlock on lock resources
because of a well-ordering on the acquisition of locks; Whenever
a process holds two locks simultaneously, the two nodes are
always adjacent at the same height, and the lock on the node on
the left is always obtained. first.

4. PERFORMANCE SIMULATION

In order to compare the actual performance of the B-link
algorithm to that of previous algorithms supporting insertion and
deletion, we have run the algorithms under various conditions in a
simulated concurrent environment provided by the language
Concurrent- Euclid [Holt 83].

4.1. Model of Concurrency

We compare speedup, i.e. the ratio of the time it takes one
processor to doa given amount of work to the time it takes n
processors to do that same amount of work. Ideally, the speedup
achieved by n processors is n, but actual concurrent algorithms
achieve lower speedups due to interference through waiting for
locks.

In our simulation, the processors receive a common list of
actions constituting the work to be done. Each processor removes
an action from the list, executes it, gets another, etc. When the
last action completes, the simulated time is noted.

The -only activity which takes time in the simulation is
reading and writing nodes. (An action reads a node after
obtaining a lock on it, and possibly writes it out before releasing
the lock.) However, a process maybe delayed while waiting for a
lock held by another process which itself is reading or writing a
node.

A node access (a read or a write) always takes exactly one
time unit. If n processors issue n node accesses at the same time,
all n accesses complete at the same time, after one time unit.
Thus, node accesses are simulated to occur completely in parallel.
Studies ([Schultz, Mukkamala 85], [Ford et al 85]) have shown
that when several physical processors contend for a single
relatively slow storage device capable of handling only one
request at a time, the storage device can become a bottleneck and
prevent the realization of most of the potential concurrency.
Thus, our model of complete non-interference at the physical
storage access level is most applicable to systems where data is
distributed over many storage modules (such as disk drives)
:capable of operating in parallel. Our results are actually quite
close to those obtained in [Schultz, Mukkamala 85] for the
Lehman and Yao algorithm in a simulated system containing as
many storage devices as processors.

4.2. Parameters of the Simulation

For each simulation run, the values of the keys in the initial
B-tree and of the arguments of the job actions were randomly and

S
P
E
E
D
U
P

[MR85] with optimistic descents ; :
[BS77] Alg. 2 (optimistic descents)

[BS71] Alg. 1 and

10 20
NUMBER OF PROCESSORS

Figure 6.
Simulation of insertions and deletions in a 7-13 B-tree contallling 800
keys.

385

uniformly distributed over KeySpace. The values picked for
insertions and deletions were guaranteed not to be redundant.

The parameters that could be varied in comparing the
algorithms were the number of keys in the initial B-tree, the order
of the tree (Le. the out-degree of nodes), and the proportion of
searches, insertions, and deletions in the actions. Since searches
never interfere with each other and in the absence of updates
achieve perfect speedup, including them in the simulation only
masks the amount of interference produced by. updates, the source _
of the problem. Thus, we excluded searches from the actions
performed and simulated a "mix" where half the actions were
insertions and half deletions.

Besides the symmetric B-link algorithm, we simulated four
other algorithms. Two of these, algorithm 1 of [Bayer, Schkolnik
77] and the [Mond, Raz 85] algorithm, use lock-coupling (and,
for the former, subtree-locking) with exclusive locks from the top
of the tree. Algorithm 2 of [Bayer, Schkolnik 77] strives to
reduce subtree-locking and exclusive locking high up in the tree
by having updates first perform an optimistic search-like descent
using read-lock lock-coupling. We also simulated our own
version of the [Mond, Raz 85] algorithm which uses an optimistic
descent like algorithm 2 of [Bayer, Schkolnik 77] and re-descends
by the [Mond, Raz 85] method.

We did not simulate algorithm 3 of [Bayer, Schkolnik 77] (as
well as an analogous version of the [Mond, Raz 85] algorithm)
because it differs from algorithm 1 only in the partial substitution
of exclusive locks by writer-exclusion (or alpha) locks. Although
this substitution can improve performance by allowing read-locks
to be held on alpha-locked nodes, only searches use read-locks in
this algorithm (alpha-locking and optimistic descents can not co
exist because of the possibility of deadlock). Since our simulation
excludes searches, its results would not be changed by the
subs ti tution.

4.3. Results of the Simulation

Figure 6 shows the speedups achieved by the various
algorithms in an initial B-tree containing 800 keys with each node
having between 7 and 13 children or keys. Under these
conditions (and all other update-intensive conditions we have
tried), the algorithms that place exclusive locks from the root
during the initial descent achieve a maximal speedup of only
about two. Optimistic descents improve this result significantly,
with our version of [Mond, Raz 85] achieving a maximal speedup
of around 10 before ceasing to get better performance with larger

s
P
E
E
D
U
P

1 5 10 20 40
NUMBER OF PROCESSORS

Figure 7.
Simulation of insertions and deletions in a 20-39 B-tree containing
10,(00 keys.

numbers of processors. The somewhat worse performance of the
second [Bayer, Schkolnik 77] algorithm must be attributed to the
use of subtree-locking by the latter. The B-link algorithm,
however, gets a speedup of 26.5 with 40 processors and would
probably get a better speedup with a larger number of processors
(compiler constraints prevented simulation of more than 40).

Varying the parameters to the simulation brings some
significant changes to the results. When the algorithms were run
on a 7-13 tree with 100 keys, the small size of the tree (only two
levels) increased the interference and thus decreased the
performance of all algorithms. The B-link algorithm was still
best, but achieved a maximal speedup of only 7. This figure
increased to 14 with an initial tree size of 200 keys.

More significantly, increasing the size of leaves greatly
improves the performance of the algorithms employing optimistic
descent. This is because splits and merges become less frequent,
increasing the probability that the optimistic descent will succeed.
In a 20-39 tree with 10000 keys (roughly three levels), our version
of the [Mond, Raz 85] algorithm achieves only slightly lower
speedups than the B-link algorithm, as shown in Fig. 7. The
second [Bayer, Schkolnik 77] algorithm lags somewhat behind
these two, probably because of its subtree-locking.

5. CONCLUSION

We have presented a deadlock-free concurrent B-tree
algorithm supporting search, insert, and delete which employs less
locking than any other algorithm that treats deletions
symmetrically with insertions. To verify the algorithm, we use a
correctness criterion based on the semantics of the dictionary
ADT. This criterion permits executions that would not be
considered correct in the model of uninterpreted reads and writes.
Simulation has shown that the algorithm is capable of achieving
much better concurrency than the earliest (and still most widely
used) concurrent B-tree algorithms that employ much exclusive
locking high in the tree. It performs at least as well as other
algorithms which also try to avoid using exclusive locks, and
performs significantly better than these in trees containing a small
number of keys (e.g. under 20) in each leaf.

REFERENCES

[Bayer, Schkolnik 77] BAYER, R., and SCHKOLNIK, M.
Concurrency of operations on B-trees. Acta Inf. 9,1
(1977) 1-21.

[Casanova 81] CASANOVA, M. A. The concurrency problem for
database systems, Lecture Notes in Computer Science, vol
116, Springer-Verlag, 1981

[Comer 79] COMER, D. The ubiquitous B-tree. ACM
Computing Surveys, 11,2 (June 1979) 121-137

[Ellis 80] ELLIS, C. Concurrent search and insertion in 2-3
Trees. Acta Inf. 14,1 (1980) 63-86.

[Ellis 83] ELLIS, C. Extendible hashing for concurrent
operations and distributed data. Proc. Second ACM
SIGACT-SIGMOD Symp. on Principles of Data Base
Sys., Atlanta (1983) 106-115

[Ford, Calhoun 84] FORD, R. and CALHOUN, J. Concurrency
control mechanisms and the serializability of concurrent
tree algorithms. Proceed. of the ACM Symp. on the
Princ. of Database Syst. 1984

[Ford et al 85] FORD, R., JIPPING, M., and SHULTZ, R. On
the performance of an optimistic concurrent tree
algorithm. Technical Report 85-07, Dept. of Compo
Science, University of Iowa, 1985

[Garcia 83] GARCIA-MOLINA, H. Using semantic knowledge
for transaction processing in a distributed database.
ACM Trans. on Database Syst. 8,2 (1983)

386

[Goodman, Shasha 85J GOODMAN, N., SHASHA, D.
Semantically-based concurrency control for search
structures. ACM SIGACT-SIGMOD Symp. on Princ. of
Database Syst., 1985.

[Guibas, Sedgewick 78] GUIBAS, L., and SEDGEWICK, R. A
dichromatic framework for balanced trees. Proc. 19th
Annual Symposium of Foundations of Computer
Science, 1978, 8-21

[Holt 83J HOLT, R. C. Concurrent Euclid, the Unix system and
Tunis, Addison-Wesley, Reading, Mass., 1983

[Kung, Lehman 80J KUNG, H.T., and LEHMAN, P.
Concurrent Manipulation of Binary search trees. ACM
Trans. on Database Syst. 5,3 (1980) 339-353

[Kedem, Silberschatz 83J KEDEM, Z. and SILBERSCHATZ, A.
Locking protocols: from exclusive to shared locks. J. of
the ACM 30,4 (1983) 787-804

[Kwong, Wood 82J KWONG, Y. S. and WOOD, D. Method for
concurrency in B-trees. IEEE Trans. on Software
Engineering SE-8,3 (1982) 211-223

[Lehman, Yao 81J LEHMAN, P., and YAO, S. B. Efficient
locking for concurrent operations on B-trees. ACM
Trans. on Database Syst., 6,4 (Dec. 1981) 650-670.

[Mond, Raz 85J MOND, Y. and RAZ, Y. Concurrency control

in B'" -trees databases using preparatory operations.
Proceedings of Internat. Conf. on Very Large
DataBases, 1985, 331-334

[Owicki, Gries 76] OWICKI, S., and GRIES, D. An axiomatic
proof technique for parallel programs 1. Acta Inf. 6,1
(1976) 319-340

[Papadimitriou 79J PAPADIMITRIOU, C. H. Serializability of
concurrent database updates. JACM, 26, 4 (Oct. 1979)
631-653

[Sagiv 85J SAGIV, Y. Concurrent operations on B-trees with
overtaking. ACM SIGACT-SIGMOD Symp. on Princ.
of Database Syst., 1985, 28-37

[Sagiv 86J SAGIV, Y. Concurrent operations on B- -trees with
overtaking. Manuscript, to appear in JCSS. Stanford
Univ., Dept. of Compo Sci., Stanford, Calif. (1986)

[Salzberg 85J SALZBERG, B. Restructuring the Lehman-Yao
tree. Manuscript. College of Compo Sci., Northeastern
Univ., Boston, Mass. (1985)

[Samadi 76] SAMADI, B. B-trees in systems with multiple users.
Inf. Process. Lett. 5, 4 (Oct. 1976) 107-112

[Shasha 84] SHASHA, D. Concurrent algorithms for search
structures. Ph. D. Thesis, Harvard University. TR-12-
84, June 1984

[Schultz, Mukkamala 85J SHULTZ, R., and MUKKAMALA, R.
Multiprocessor B-link Tree Access. Manuscript. Dept.
of Compo Science, University of Iowa, 1985

APPENDIX

The following implementation of our algorithm is written
mostly in Pascal. Two non-Pascal constructs are used: the use of
records as return values of functions, and the use of spawn as a
way of invoking processes. A value of a record type is
represented as (fl' ... ,fn). The semantics of spawn(procedure
call) are to create a process to perform the procedure call. No
further communication takes place between the spawner and the
process spawned, and the two execute at the same time and
terminate independently. The parameters to this procedure must
be entirely call-by-value; in particular, the descent stacks must

actually be copied l . No requirement is placed on the length of
time that may pass before the spawned process becomes active. If
the drain technique is used, the starting time of each spawned
process must be recorded as the starting time of the parent
process.

1 This restriction may be lifted for those parameters that will not be
accessed again by the spawner (or passed to another spawned process).

The ascent is performed by creating a new process for each
add-link or remove-link to be done. We choose this method for
simplicity of presentation, although it is more efficient to spawn
fewer processes. For example, the add-link and remove-link
necessitated by a rotate are usually both done in the same node
and should thus be done by a single process. However, this can
not always be done and makes the code more complex, although
this heuristic was implemented for the simulation. Whatever
method is used, it can not make one add or remove wait for the
completion of another if the other is redundant and must wait,
since this can cause deadlock.

type

var

locktype = (readlock, writelock);
nodeptr = Anode;
height = 1 .. maxint;
task = (add, remove);

anchor: record
fast: nodeptr; fastheight: height;
top: nodeptr; topheight: height;

end;

function search(v: value): boolean;
var

n: nodeptr;
descent: stack;

begin

end;

n := locate-Ieaf(v, readlock, descent);
{v E coverset(n), n read-locked}
search := check-key (v , n); {decisive}

unlock(n, readlock)

function insert(v: value): boolean;
var

n: nodeptr;
descent: stack;

begin

end;

n := locate-Ieaf(v, writelock, descent);
{v E coverset(n), n write-locked}
insert := add-key(v, n); {decisive}
normalize(n, descent, 1);
unlock(n, writelock)

function delete(v: value): boolean;
var

n: nodeptr;
descent: stack;

begin

end;

n := locate-Ieaf(v, writelock, descent);
{v E coverset(n), n write-locked}
delete := remove-key(v, n); {decisive}
normalize(n, descent, 1);
unlock(n, writelock)

function locate-Ieaf(v: value; lastlock: locktype; var descent:
stack): nodeptr;
{ locate-leaf descends from the anchor to the leaf whose
coverset includes v, places a lock of kind specified in lastlock
on that leaf, and returns a pointer to it. It records its path in
the stack descent. }
var

n,m: nodeptr;
h,enterheight: height;

387

ubleftsep: value;
{ ubleftsep stands for "upper bound on the leftsep of the
current node". This value is recorded for each node on
the descent stack so that an ascending process can tell if
it's too far to the right. }

begin

end;

lock -anchor(readlock);
n := anchor. fast; enterheight := anchor.fastheight;
ubleftsep := -00;
unlock-anchor(readlock) ;
set-to-em pty (descent);
for h := enterheight downto 2 do begin { v > lejtsep (n)}

move-right(v, n, ubleftsep, readlock);

end;

{ v E coverset(n) }
push(n, ubleftsep, descent);
(m, ubleftsep) := find(v, n, ubleftsep);
{v> lejtsep(m) }
unlock(n, readlock);
n:= m

move-right(v, n, ubleftsep, lastlock); {v E coverset(n) }
locate-Ieaf:= n

procedure move-right(v: value; var n: nodeptr; var ubleftsep:
value; rw: locktype);
{ move-right scans along a level starting with node n until it
comes to a node into whose coverset v falls (trivially, n
itself). It assumes that no lock is held on n initially, and
leaves a lock of the kind specified in rw on the final node. }
var

m: nodeptr;
begin {assume v > /ejtsep (n)}

lock(n, rw);
while empty(n) or (rightsep(n) < v) do begin

{v> lejtsep(n) }
if empty(n) then

m := outlink(n) { v > leftsep(n) = leftsep(m) }
else begin

m:= rightlink(n); {v> rightsep(n) = leftsep(m)
}

ubleftsep := rightsep(n);
end;
unlock(n, rw);
lock(m, rw)
n:= m;

end;
end;

procedure normalize(n: nodeptr; descent: stack; atheight: height);
{ normalize makes sure that node n is not too crowded or
sparse by performing a split or merge as needed. A split may
be necessary after a merge. n is assumed to be write-locked.
descent and atheight are needed to ascend to the level above
to complete a split or merge. }
var

sib, newsib: nodeptr;
sep, newsep: value;

begin
if too-sparse(n) and (rightlink(n) < > nil) then begin

sib := rightlink(n);

end;

lock(sib, writelock);
sep := half-merge(n, sib);
unlock(sib, writelock);
spawn(ascend(remove, sep, sib, atheight+ 1,

descent»

if too-crowded(n) then begin
allocate-node(newsib);

end
end;

newsep := half-split(n, newsib);
spawn(ascend(add, newsep, newsib, atheight+ 1,

descent»

procedure ascend(t: task; sep: value; child: nodeptr; toheight:
height; descent: stack);
{ adds or removes separator sep and downlink to child at
height toheight, using the descent stack to ascend to it. }
var

n: nodeptr;
ubleftsep: value;

begin

end;

n := locate-internal(sep, toheight, descent)
while not add-or-remove-link(t, sep, child, n, toheight,

descent) do begin

end;

{ wait and try again. very rare}
unlock(n, writelock);
delay; {s.ep > leftsep(n)}
move-right(sep, n, ubleftsep, writelock)
{ sep E coverset(n) }

normalize(n, descent, toheight);
unlock(n, writelock)

function add-or-remove-link(t: task; sep: value; child: nodeptr; n:
nodeptr; atheight: height; descent: stack): boolean;
{ tries to add or removes sep and downlink to child from
node n and returns true if succeeded. if removing, and sep is
rightmost in n, merges n with its right neighbor first. (if the
resulting node is too large, it will be split by the upcoming
normalization.). A solution that avoids this merge exists, but
we present this for the sake of simplicity. }
var

sib: nodeptr;
newsep: value;

begin

end;

if t= add then add-or-remove-link := add-link(sep, child,.
n)

else begin {t= remove}
if rightsep(n) = sep then begin

end;

{ the downlink to be removed is in n's right
neighbor. }
sib := rightlink(n);
{rightsep(n) sep < + 00, thus
rightlink(n)< > nil}
lock(sib, writelock);
newsep := half-merge(n, sib); {newsep = sep}
unlock(sib, writelock);
spawn(ascend(remove, newsep, sib, atheight+ 1,

descent))

add-or-remove-link : = remove-link(sep, child, n)
end

function locate-internal(v: value; toheight: height; var descent:
stack): nodeptr;
{ a modified locate phase; instead of finding a leaf whose
coverset includes v, finds a node at height toheight whose
coverset includes v. if possible, uses the descent stack (whose
top points at toheight) }
var

n, m, newroot: nodeptr;
h, enterheight: height;
ubleftsep: value;

388

begin
if empty-stack(descent) then

ubleftsep := + co { force new descent}
else pop(n, ubleftsep, descent);
if v < = ubleftsep then begin

end;

{ a new descent from the top must be made}
lock-anchor(readlock) ;
if anchor.topheight < toheight then begin

unlock-anchor(readlock); lock-anchor(writelock);
if anchor.topheight < to height then begin

allocate-node(newroot) ;
grow(newroot)

end;
unlock-anchor(writelock); lock-anchor(readlock)

end;
if anchor.fastheight > = toheight then begin

n := anchor.fast;
enterheight:= anchor.fastheight

end
else begin

n := anchor. top;
enterheight : = anchor. top height

end;
ubleftsep : = - 00; { v > leftsep (n) }
unlock -anchor(read lock);
set-to-empty(descent);
for h := enterheight downto toheight+ 1 do begin

{ v > leftsep (n) }

end

move-right(v, n, ubleftsep, readlock);
{ v E coverset(n) }
push(n, ubleftsep, descent);
(m, ubleftsep) := find(v, n, ubleftsep);
{v> leftsep(m)}
unlock(n, readlock);
n:= m

{ v > leftsep (n), height of n = toheight}
move-right(v, n, ubleftsep, writelock); { v E coverset(n) }
locate-internal := n

end;

procedure critic;
{ the critic runs continuously; its function is to keep the target
of the fast pointer in the anchor close to the highest level
containing more than one downlink. }
var

n, m: nodeptr;
h: height;

begin
while true do begin

lock-anchor(readlock);
n := anchor.top; h := anchor.topheight;
unlock-anchor(readlock) ;
lock(n, readlock);
while numberofchildren(n)< = 3 and rightlink(n)= nil

and h> 1 do begin

end;

m := leftmostchild(n);
unlock(n, readlock);
n := m;
lock(n, readlock);
h:= h - 1

unlock(n, readlock);
lock-anchor(readlock);
if anchor.fastheight = h then

unlock-anchor(readlock)
else begin

unlock-anchor(readlock);

end;

lock-anchor(writelock) ;
anchor.fastheight := h; anchor. fast := n;
unlock-anchor(writelock)

end;
delay

end

The search structure operations, arranged alphabetically.
Locking ensures that they are atomic. }

function add-key(v: value; n: nodeptr): boolean;
{ if v is not a key in n then it is added into the sequence of
keys in the leaf n at an appropriate location and true is
returned. otherwise, return value is false. }

function add-link(s: value; child, parent: nodeptr): boolean;
{ The smallest index i in parent such that si~S is identified.
If s;= s, the operation returns false. Otherwise, it changes the
sequence in parent to (... ,pi,s,child,si' ...), and returns
true. }

function check-key(v: value; n: nodeptr): boolean;
{ returns true if v is a key in n, false otherwise. }.

function empty(n: nodeptr): boolean;
{ returns true if n is an empty node. }

function find(v: value; n: nodeptr; ubleftsep: value): (nodeptr,
value);
{ The smallest si in n such that v ~ s, is identified. If i> 1,
returns (Pi' Si-l)' otherwise (Pi' ubleftsep).}

procedure grow(n: nodeptr);
{ n is made an internal node containing only a downlink to
the current target of the anchor's top pointer and the
separator + 00 to its right. The anchor's top pointer is then
set to point to n, and its height indicator is incremented. }

function half-merge(l, r: nodeptr): value;
{ The sequence in r is transferred to the end of the sequence
in 1. The rightlink of I is directed to the target of the
rightlink in r. r is marked empty, its outlink pointing to 1. If I
is a leaf, its separator is set to the largest key in it. The
previous value of the rightmost separator in I is returned. }

function half-split(n, new: nodeptr): value;
{ The rightlink of new is directed to the target of the rightlink
of n. The rightlink of n is directed to new. The right half of
the sequence in n is moved to new. If n and new are leaves,
their separators are set equal to the largest keys in them. The
return value is the new rightmost separator in n. }

function leftmostchild(n: nodeptr): nodeptr;
{ returns the leftmost downlink in n. }

function numberofchildren(n: nodeptr): integer;
{ returns number of downlinks in n. }

function outlink(n: nodeptr): nodeptr;
{ returns the outlink in node n. }

function remove-key(v: value; n: nodeptr): boolean;
{ if v is a key in n, it is removed and true is returned.
otherwise, return value is false. }

389

function remove-link(s: value; child, parent: nodeptr): boolean;
{ If the sequence in parent includes a separator s on the
immediate left of a downlink to child, the two are removed
and true is returned; otherwise the return value is false. }

function rightlink(n: nodeptr): nodeptr;
{ returns the rightlink in node n. }

function rightsep(n: nodeptr): value;
{ returns the rightmost separator in n. }

function too-crowded(n: nodeptr): boolean;
{ returns true if n contains too much information. }

function too-sparse(n: nodeptr): boolean;
{ returns true if n contains too little information. }

ARCHITECTURE OF A FIBER OPTICS BASED DISTRIBUTED INFORMATIOI NETWORK
FORTIS: Local Area Network

Paul C. Barr* - Suban G. Krishnamoorthy**

Aetna Telecommunication Labs, Westboro, Mass
*
**

Northeastern University, Boston and MITRE corp. Bedford, Mass
Framingham State College, and Prime Computer, Framinghaa. Mass

ABSTRACT

This paper describes a fiber optics based
distributed information network named
FORTIS. FORTIS is an integrated (voice,
data, video, and sensor), end-to-end
digital packet switching system. FORTIS
is implemented as a multilevel, mUl
tiprocessor distributed network system
using MPUs, IIO processors and the latest
VLSI components. The system can modularly
expand from a one device-one node system,
to a subnet, net and supernet. The system
can be connected to existing networks and
various data LANs, as well as serve as a
data extension to existing PBXs. Cur
rently FORTIS can support the RS232C
asynchronous protocol for data, and RJ11
physical connection for phones. It will
support other higher level protocols in
the near future.

INTRODUCTION

There are three major areas of computer
applications growing in importance during
the next decade. One, as is traditional,
will be the use of computers for the pur
pose of numerical analysis [1]. This com
puter application will require computers
with greater throughput than presently
available, especially for applications in
meteorology, nuclear physics and modeling
large scale systems.

The second major area of computer ap
plications concerns the massive quantity
of data in large databases used for deci
sion support systems [2]. This applica-
tion area will continue to play a growing
role in banking, insurance, record
processing, information retrieval, etc.
In these applications, the number
crunching capabilities of traditional
computers are not as important as the
capability to store and retrieve large
amounts of data rapidly and at reasonably
low cost. Computer networking will play
an expanding role in these applications,
for they will have to access not just a
single database but a collection of in-

CH2345-7/86/0000/0390$01.00© 1986 IEEE
390

terconnected databases. In response to
this need, many advances in computer net
working are required [3].

The third major area for computer ap
plications is what has become to be known
as "Knowledge Engineering". Knowledge en
gineering is one of the major areas of
Artificial Intelligence [4]. Within
knowledge engineering, a field of primary
importance is the expert system. The re
quired computers for this application are
different than those needed in the other
two areas.

All of these computer application areas
are growing in importance, some more
rapidly than others. This paper primarily
addresses the second area: the accessing
of interconnected databases. It also ad
dresses the interconnection of all types
of communication devices such as
telephones, data terminals, workstations,
disks, printers, plotters and sensors, as
well as computers.

Technology in areas of voice communica
tions, data communication, distributed
computing, and fiber optics have evolved
in parallel but through fairly independ
ent approaches. The creation of function
ally and physically independent networks
to share resources for voice communica
tion and data communication is in
efficient and provides for a costly solu
tion to the user's management of infor
mation. Presently, users are increasingly
demanding a convergence of these tech
nological approaches as a result of their
need to share voice and data information
by more convenient and less costly
methods.

A traditional approach to handling in
trapremise communication consists of a
centrally located circuit switch such as
a PBX which connects pairs of intercom
municating devices for the duration of a
session. This approach is adequate for
voice applications since voice traffic is
continuous but is inefficient for inter
active data terminal usage. The capacity
of the PBX circuit switch is in
efficiently used in the case of the in-

teractive data terminal usage since most
data sessions consist of short bursts
with long idle periods. A local area
network which uses packet switching for
interconnection is superior to circuit
switching because the network connection
is not used during idle periods and is
available for use by others.

The Fiber Optics based Distributed Infor
mation Network (FORTIS) is a state of the
art, end-to-end digital packet switching
system which is capable of fully in
tegrating voice, data, video communica
tion and other types of information, such
as sensor data, into an intelligent dis
tributed system. FORTIS utilizes a packet
switching technique to permit devices
connected to the network to transmit in
bursts, thereby allowing the bandwidth of
the network to be used more efficiently.
At the same time, it preserves the real
time nature of voice communication by
prioritizing it.

The system provides to the user the
properties of economy (cost per
connection), integrity (robust and fault
tolerant design), performance (parallel
processing through local and network
distribution) and modularity (expandable
and simple to maintain). It uses multiple
dsitributed microprocessors and the
latest in VLSI components to provide max
imum programmability, reliability and
flexibility at minimum cqst.
The system can also be configured with
existing networks and various data LANs
[5-10] as well as a data extension to an
existing PBX. The FORTIS system is
described in detail in the rest of the
paper.

FORTIS SYSTEM DESCRIPTION

By design, the FORTIS system is modular.
The system can be visualized in three
ways: (1) as a standalone node, (2) as a
subnet with two or more nodes linked
together and (3) as a network with two or
more subnets connected together. Each of
these structures is explained in detail
in this section.

The node design is a unique three level
distributed processor architecture as
shown in figure 1. A design requirement
for the standalone node was to provide
the capability of allowing 256 devices
(telephones and/or terminals) to communi
cate with each other in a non-blocking
environment. The design was also predi
cated upon being event-driven, rather
than polled. It was evident that a single
or multiple processor (68000 class) con
nected in a traditional bus structure
would not be able to handle that many
devices in real time. An architecture was

391

Figure 1. FORTIS: NODE ARCHITECTURE

needed which exhibited the characteris
tics of pipe lining and parallel process
ing, as well as asynchronous processing.
It was also determined that a bus struc
ture which permitted parallel transfers
was necessary. The rationale for this
unique architecture was driven by the
tradeoff of speed versus intelligence.
The more intelligence demanded of a
processor, the more time it takes to
achieve it. Levell is the intelligence
level. Level 2 peforms the task of I/O
and is the device handler level. Level 3
is the communication level whose task is
to communicate to devices in a network
that are external to the node.

As depicted in figure I, a user is logi
cally connected with level 1. Levell
contains the node specific information
such as the types of devices connected to
the node, the list of valid node users,
etc., as well as subnet and network
specific information. Level 1 also has
the necessary system software for sup
porting user interface, establishing con
nectivity between various resources in
the system, and for system monitoring. A
more detailed configuration of Level 1 is
shown in figure 2a. As shown, it is a
traditional architecture using a 68000
MPU interconnected with a VME bus struc
ture and a disk subsystem.

User resources such as terminals, phones,
(micro, mini, and mainframe) processors,
etc., are physically connected at level
2. The devices in this level are con
figured into clusters. Each cluster can
have up to eight devices of the same

Figure 2A. LEVEL 1 ARCHITECTURE

type, as shown in figure 2b £or the phone
cluster and figue 2c for the terminal
cluster. The minimum configuration is one
cluster with up to 8 devices. The system
can expand by modules of eight devices,
up to 256 devices (or 32 clusters of 8
devices per cluster). Clustering in
creases the modularity and reduces the
cost of the system.

Each of t'he clusters of level 2 has a
processor, memory and enough intelligence
to handle packet creation and transfers.
As shown in figure 2, a cluster .is com
posed of three logical elements: (1) the
cluster control unit (CCU) (2) a device
line interface card (telephone or data
terminal - TLIC or DLIC) and (3) a physi
cal card to hold the connectors (PIC or
DIC). The CCU is a high speed I/O proces
sor (5 mips). Level 2 handles in
tracluster and intercluster information

. exchange within a node. It has the
ability to do self-diagnosis and to
report any.' abnormali ty or error con
ditions to the network/node manager resi
dent in Levell.

Figure 2B. LEVEL 2 PHONE CLUSTER (PC)

Figure 2C. LEVEL 2 TERMINAL CLUSTER (TC)

The physical connectivity of levelland
level 2 with the parallel bus structure
is shown in figure 2d. Level 1 communi
cates to level 2 clusters via the I/O bus
controller. This path is selected when
level 1 intelligence sets up the path be
tween devices (for example, source device
1 in cluster 4 is to be virtually con
nected to destination device 1 in cluster
7 for packet transfers). The actual

. packet transfer is accomplished in a
burst mode on the level 3 burst bus. The
burst bus controller performs a hardware
poll of all clusters requesting the use
of the burst bus. The arbitration is ac
complished by ring priority; the last to

392

LEVEL 1 VME BUS

LEVEL 3 BURST BUS

Figure 20. FORTIS: NODE ARCHITECTURE

use the bus has theclowest priority. The
actual transfer between cl.usters is ach
ieved at ~a· 10 .megabyte rate (a 64 byte
transfer is achieved in 6.4
microseconds) .

The FORTIS architecture design is aimed
at providing a maximum of asynchronous
parallel operation at all levels by
design of multiple parallel processors
and multiple parallel bus structures
within each node. Each level has at least
one processor, and memory. Level 2 could
have as many as 32 processor with 32 'pro
gramming streams executing in parallel.

Subnet Architecture

The architecture of the FORTIS system al
lows networked expansion of the self
standing .nodes. Two or more nodes could
be interconnected through passive fiber
optic star couplers to form a subnet as
shown ~n figure 3a. The connectivity
using a passive star coupler between
nodes operates in a broadcast fashion and
therefore is 'a fully interconnected
topology.

After level 1 has determined the connec
tivity, level 2perf.orms the" packet
transfers. ·Apacket transfer is achieved
by a handshake and a burst transfer to
another level 2 cluster or to level 3.
Level 3 is the off~node communication

handler. As depicted in figure 3b, level
3 consists of a cluster control unit
(CCU) identical to the level 2 CCU's (and
a programming stream), a link line inter
face card (LLIC) whose function is to
provide the interface between the CCU and
the optics interface card (OIC). The OIC
contains the following modules: (1) byte
to bit serial and bit serial to byte con
vertors, (2) mod~lator and demodulator to

NODE 1

NODE 2

Figure 3A. FORTIS: SUBNET ARCHITECTURE

drive the fiber optic ~ransmitier, (3)
LED or laser transmitter to launch the
energy onto the fiber, (4) receiver
module designed to settle in 4 bit times,
and (5) high, speed state machine to
provide real time state information to
the level 3 CCU.

The link arbitration protocol is a
priorty round-robin technique. This tech
nique combin~s priority with a virtual
token passing scheme. With the combina
tion of packet switching and the priority
round robin link protocol, a real time
response of 8 milliseconds is guaranteed
for resources such as phones. The same
modular design philosophy is followed in
deployment of the fiber communications
link. A minimum of two links.is provided,
each operating at a 20Mhz rate. More than
one link supports a more robust system
operation, and eliminates any single
point failure mechanism [11]. However,

LEVEL 3 BURST BUS

LEVEL 2 1/0 CHANNEL BUS

r OIC

I
TO PAS

i---STARCO
SIVE
UPLER

LLiC

~

CCU
I--

Figure 3B. FORTIS: FIBER LINK ARCHITECTURE

393

the system is capable of operating on a
single link. If more throughput on the
communication between nodes is desired,
the system is designed to stack multiple
links. As technology advances, the link
rate could be increased to the 40-100Mhz
range. Also, the modular design of FOR~
TIS enables the use of advanced technol
ogy such as Wave Division·Multiplexing
(WDM) [12].

The minimum number of nodes in a subnet
is two; the maximum number in a single
subnet is 20. The maximum is governed by
present fiber component technology and
optical power budget calculations. As
fiber technology advances, this number
can increase to the logical FORTIS ad~

dressing limit of 256 nodes per subnet.
The framework of' each of the nodes in a
subnet is identical and represents an in
dependently operating part of the system.
The intelligent nodes therefore operate
in a distributed fashion which is in
herently fault tolerant.

Network Architecture

Subnets can be interconnected via bridges
to form a FORTIS net as shown in figure
4a. The subnets and/or nets can also be
connected to other networks such as
Ethernet [10], through gateways as in
figure 4b. FORTIS allows 256 subnets per
net. Two hundred and fifty six such nets
can be interconnected to forma supernet
as in figure 4c. (Practical problems in
designing nets and supernets are cur
rently under study..) FORTIS has. a, total
address space of 256x256x256x256
4,294,967,296 devices. At the same time

Figure 4A. FORTIS NET USING SUBNETS

Figure 4B. FORTIS NET WITH OTHER NETWORKS

Figure 4C. FORTIS SUPERNET

it is modular enough to grow in small
steps of one cluster to satisfy the fu
ture requirements of customers. Modular
expansion alleviates large capital ex
pense problems associated with capacity
planning.

Software Structure

The FORTIS system was designed to allow
software visibility to all levels of the
hardware. This allows greater program
mability and more extensive diagnostics.
Resident in each of the nodes is a real
time networking ope~ating system. The
software is structured in a layered fash
ion as shown in figure 5. Also, 99% of
the code is written in C language. Hence,
it is easy to debug, integrate, maintain
and transport the software.

The FORTIS software can be divided into
three major categories: (1) system
software, (2) application software and
(3) diagnostic software. The system
software performs major networking func
tions. It can be further classified into:
distributed real-time operating system,

394

networking, user interface and system
microcode. The distributed real-time
opeating system performs functions such
as multitasking, memory management, in
terrupt handling, real time clock, error
processing, performance monitoring, etc.
The networking software has many modules
to perform network related functions such
as node supervisory, phone supervisory,
data supervisory, global and nodal sys
tems management and monitoring. The sys
tem microcode resides in level 2 and
level 3 of the node. It performs tasks
such as packet transfer between different
devices anywhere in the FORTIS system.

The user interface is the logical connec
tion between the FORTIS users and level 1
mentioned earlier. This portion of
software provides user friendly inter
faces to phone and data including help
provision. It also has a command proces
sor to process all the user commands. An
example of commands provided for the data
users include connectivity, program
mability, and positive flow control which
allows speed matching. With a standard
2500 telephone set, the phone commands
include standard PBX features such as
hold, transfer, forward, pickup, etc.

The FORTIS application software consists
of voice mail and electronic mail. In the
future, it will be possible to provide
many more application software packages
such as word processors, distributed file
servers, database management, language
processors and even computing power.

The final piece of system software is the
diagnostic software. Diagnostic software
exist at all levels to test various parts
of FORTIS system. Provisions exist to
diagnose individual boards, each node,
and the link in the network.

FORTIS also provides many value-added
features to the end-users as well as to
the network. Some of the value-added net
work features are: accounting, load
balancing, security by password and
encryption, on-line help, system manager,
system monitor.

It is important to note that each node
has information about its own
devices/resources only. Information about
devices/reources existing in other nodes
in the system are obtained 'on demand'
basis in real time. This allows dynamic
changes to resources in a node without
any need to update or inform other nodes
in the system. The totality of infor
mation is distributed across the network.

Network Protocols

Currently FORTIS system supports RS232
asynchronous protocol. Data terminals and

USER DATA INTERFACE VOICE INTERFACE

USER AUTHORIZATION
DIAGNOSTIC
SOFTWARE

MEMORY
MANAGEMENT

OS INTERFACE

TIMER

UTILITY
PROGRAMS

KERNAL

1/0 VOICE INTERRUPT

SOnwME 1 L-.-"T"""--'---:r---'----r----iL.---z----..L....."""T-..... ---r' ROUTINES

HARDWARE 1

Figure 5. FORTIS SOFTWAY STRUCTURE

CPUs are connected to the system through
RS232 lines. Phones are connected to the
system using standard RJ11 connectors.
However, in the future, FORTIS can easily
support other higher level protocols such
as HDLC, X.25, ISO-OSI, SNA, etc. [3,13].

FORTIS APPLICATIONS

The typical environments where FORTIS is
applicable today and in the near future
include: offices, companies and univer
sities, factories, laboratories, hospi
tals, distribution and sales, banking,
easily maintainable and cost saving
building wiring distribution, and so on.
FORTIS supports office automation func
tions such as electronic mail, text/word
processing, document distribution, and
voice mail. It provides communication,
links for accessing centralized or dis
tributed databases and mainframes using
terminals or teller machines. It also
provides a medium for factory automation,
including automated manufacturing tech
niques such as CAD/CAM, robotics, and
numerically controlled manufacturing
processes requiring real-time response.
It can provide the communication links
which are needed for order entry and in
ventory control systems, patient diagnos-

395

tics, file retrieval and status monitor
ing. Other user needs [14] are extensive
network management services for system
administration and maintenance. FORTIS
allows the users to efficiently ac
complish these required tasks and in
crease individuals' productivity. To fur
ther emphasize possible applications, two
are explained in detail in the following
paragraphs.

Multistory Building or Industrial Park

A typical application for the FORTIS is a
multiple story building or an industrial
park with multiple tenants. For the pur
pose of this example, a floor in a multi
story building can be configured iden
tically to a building in an industrial
park. The pictorial view of this applica
tion is depicted in figure 6. As shown,
it represents an eight story building or
eight separate buildings in an industrial
park. Each floor is divided into multiple
tenants.

To distinguish business types of tenants,
four classes are defined below: (a)
class 1 busines 64 phones, 32 ter
minals, (b) class 2 business - 64 phones,
8 terminals, (c) class 3 business 16
phones, 4 terminals and (d) class 4 busi
ness - 8 phones, 0 terminals. The dis-

CASE STUDY' MULTI-TENANT SHARED SERVICE

UP TO
256D£VICES

UP TO
256 D£VICES

UP TO
256 D£VICES

HOOE

NODE

NODE

NOD£

NOD£

UP TO
256D£VlCES

UP TO
256 D£VICES

UP TO
256 D£VICES

UP TO
256 D£VlCES

FIGURE 6 MULTIPLE STORY BUILDING OR INDUSTRIAL PARK

tribution of the multiple tenants and
their respective business types for each
of the floors is provided in Table 1.

Floor 1 will be reserved for the inter
face to the local central telephone of
fice. The interface could be multiple
wire-pairs as used in analog voice con
nections and/or T1 carrier and SLC 96 as
used for digital connections. The cabling
media to interface could be wire or
fiber. All of the tenants share the trunk
lines and the inherent lower costs of
connection to the outside business world.
This is true because the subnet pools the
outside lines and requires fewer trunks
to provide the same grade of service. In
this application, the subnet connects 520

396

Tabl. 1. Olstr1buUcn of MuiUpl. Tenanta

tlcorlbuildina

8 aneclass1

7 one class 1 84

8 one clas 2 84

8 four clas 3 18

5 one class 2 64

" two class 3 84

" on. class ~ 32
~ oneclasa1 8

3 one class 1 84

2 light class ~ 84

·2 one cI .. 3 18

32
32
8

" 18

8

8
o

32
o

"
144

telephones for a grade of service of B.05
(4 ccs) and requires only 58 trunks or 3
Tl lines into the network. For the 22
tenants this reflects a savings of
greater than 40 percent over that of each
tenant bringing in individual trunk
lines, as well as simpler cable instal
lation. Further, each tenant has the
potential to share a mainframe, word
processing services, energy management
and security to the building. The build
ing management offers additional value to
the user of the space which reflects a
competitive edge over other building
space of comparable value.

Data Networking Architecture

Examining the requirements of the data
market in a little more detail could
provide some further networking insight.
There exist today two architectures for
networking computer systems. These are
the "Computer Network Architecture" and
the "Terminal Access Network
Architecture". The "Computer Network
Architecture" is suited for CPU to CPU
communication and sharing of peripherals
(SNA of IBM Corp., DNA of Digital Equi
pment Corp., DEC Clustering Architecture,
etc. [3].) and is an adjunct to "back-end
processing". "Terminal Access Network
Architectupe" is, as the name implies, an
interconnection of a terminal to a com
puter port and is an adjunct to "front
end processing". The relationship of both
of these networks is shown in figure 7a.
At present, both networks coexist in many
computer systems. FORTIS can combine both
of these networks into one for greater
economy and ease of maintenance as shown
in figure 7b.

SUMMARY AND CONCLUSION

This document describes the FORTIS net
work and provides the rationale for its
development. FORTIS provides the user
with real-time response which is a re-
quirement for voice communication, and
other applications such as process con
trol. The network differs from many sys
tems by providing a packetized virtual
circuit between devices such as digitized
voice, data, video, sensor interfaces and
the central telephone office. Ease of use
was an important consideration in the
design of the node, subnet, net, operat
ing system and other support software.

FORTIS provides a cost effective solution
for interconnection requirements by
providing an integrated information net
work with productivity enhancements
provided by software value-added fea
tures. The truly integrated approach and
the value-added capability provided by

397

the software of the FORTIS system creates
the foundation and framework for new
solutions for a variety of application
areas. The programmable FORTIS hardware
framework allows quick development of
specific interfaces as dictated by a
rapidly changing market place.

Presently, three nodes interconnected as
a subnet are operational in our Westboro
facility. They are connected with two
passive star couplers at a distance of 1
kilometer from each other with a link
rate of 20 Mbps. Multiple telephones,
terminals and CPUs are connected in the
subnet. Aetna Telecom. Labs has many
patents on various technical aspects of
the FORTIS network.

The system described in this paper was
conveived in the last quarter of 1982,
designed and successfully implemented by
the spring of 1985 as a fully populated
three node system. An equal number of
standard telephone sets and VT100 like
terminals were connected to these nodes.
Now that we have demonstrated the system,
the team can reflect back and provide
others with observations which we feel
are meaningful.

In this age of openness, standards, and
multi-vendor environments, propriety com
munication systems have a short future.
The impetus for the work of the IEEE 802
LAN committee was that standardized LAN's
are a requirement. The team extends this
requirement further suggesting that there
should be one LAN network which not only
handles interconnection between
mai~frames, and mainframe peripheral
equlpment but also handles voice com
munication. Further we feel that not
only physical integration between the
telephone sets and terminals should be a
requirement but lo~ical integration as
well.

It would be a serious omission on our
part when a paper on high-speed fiber
based networks does not menSlon (the
stanard currently being developed by the
IEEE and ANSI) the Fiber Distributed Data
Interface (FDDI), which is a 100 Megabit
T~ken-ring communication system, using
flber. (FDDI-2 is an alternative
specification using slots for synchronous
(voice) data. A reference [15] is
provided for additional information.

ACKNOWLEDGEMENT

The FORTIS net is the accomplishment of a
highly talented team whose efforts some
times knew no bounds. The authors express
their sincere appreciation to all the
members of Aetna Telecom. Labs for their
cooperative efforts.

[1]

[3]

COMPUTER
NETWORK ARCHITECTURE

TO/FROM
CENTRAL OFFICE

Figure 7A. PRESENT COMPUTER NETWORKING SCHEME

TOTAL SYSTEM
NETWORK ARCHITECTURE

TOIFROM
CENTRAL OFFICE

Figure 7B. FORTIS COMPUTER NETWORKING SCHEME

REFERENCES

A. Ralston and P. Rabinowitz,
A First Course in Numerical
Analysis, 2nd Ed., McGraw
Hill, 1978.

M. M.
Base:
QED
Inc. ,

Gorman, Managing Data
Four Critical Factors,

Information Sciences
1984. '

A. S. Tanenbaum, Computer Net
works, Prentice-Hall, Inc.,
1981.

R. Davis and D. B. Lenant,
Knowledge-Based Systems in Ar
tificial Intelligence, McGraw
Hill, 1982.

[5]

[6]

[7]

398

K. Kummerle and M. Reiser,
"Local Area Communication
Networks-An Overview,"
J. Telecomm. Networks, Vol. 1,
no. 4, pp. 349-370, 1982.

M. Wilkes and D. Wheeler, "The
Cambridge Digital Communica
tion Ring," Proc. Local Area
Comm. Network Symp., pp.
47-62, May 1979.

B. K. Penney and
A. A. Baghdadi, "A Survey of
Computer Communication Loop
Networks, part 1 and 2," Com
put. Communications, Vol. 2,
pp. 165-180 and pp. 224-241,
1979.

[8] W. Bux, F. Closs, P. Janson,
K. Kummerle and R. R. Muller,
"A Reliable Token-Ring System
for Local Area Communication,"
NTC Proc., pp.A2.2.1-A2.2.6,
1981.

[9] C. David Tsao, "A Local Area
Network Architecture
Overview," IEEE Communications
Magazine, Vol. 22, no. 8, pp.
7-11, 1984.

[10] R. M. Metcalfe and
D. R. Boggs, "Ethernet Dis
tributed Packet Switching for
Local Computer Networks,"
Comm. ACM, Vol. 19, pp.
395-404, 1976.

[11] A. Albanese, "Fail-Safe Nodes
for Lightguide Digital
Networks," Bell Syst. Tech.
J., Vol. 16, no. 2, pp.
247-256, 1982.

399

[12] B. Hillerich, et aI,
"Wavelength Division Mul
tiplexing in Fiber Optics
Systems," Telecommunications,
pp 73-78, July 1985.

[13] H. Zimmerman, "OSI Refrence
Model The ISO Model of Ar
chitecture for Opening Systems
Interconnection," IEEE Trans.
C omm., COM-28, no. 4, pp.
425-432, 1980.

[14] G. J. Lanford, "Local Area
Network User Needs," Localnet
'83 Conf. Proc., pp. 31-40,
Sept. 1983.

[15] F. E. Ross, R. K. Moulton,
"FDDI Overveiw - A 100 Megabit
per second Solution", 1984
WESCON Convention Proc., pp
2/1, 1 - 9 Sept. 1984.

ON THE DESIGN· OF FAULT-TOLERANT SYSTOLIC
ARRAYS WITH LINEAR CELLS

Chien-Yi Chen and Jacob A. Abraham·

Computer Systems Group
Coordinated, Science Laboratory

University of Illinois
Urbana, IL 61801

ABSTRACf

In many numerical systolic systolic arrays. each processing
element in the regular part of the array is itself a linear system
(we call this a linear cell). A systematic approach to the design
of fault-tolerant systems for such systolic arrays is developed in,
this paper. Most of the proposed systolic arrays' for matrix
operations. polynomial operations. and digital signal process~g
can be made fault-tolerant using .our procedure. The desIgn
procedure preserves the structure of the original (non-fault
tolerant) systolic array making it easy to incorporate fault
tolerance; the faulty units, can be identified. which permits
reconfiguration if necessary.

The design methodology encodes the inputs data at a high
level and ensures that the algorithm generates encoded output
data; the encoding is tailored' to the structure of the systolic
array. The encoded input data are passed through the systolic
array in ways which will avoid problems with error masking
due to failures. This approach. therefore. results in extremely
low overhead for fault tolerance.

I. INTRODUCflON
Conventional general purpose machines are unable to

support. without· high cost. the increasing demands for large
amounts of computation in many real-time scientific and signal
processing applications. Fortunately. the tremendous progress of
VLSI technology has made feasible cost-effective parallel
computation. Among these parallel schemes. systolic arrays
have earned a great, deal of research attention since they are
amenable to special-purpose VLSI design. Many algorithms.
well suited for VLSI implementation. have been developed for
matrix multiplication •. QR decomposition. LU decomposition.
Discrete Fourier. Transform (DFf). solution of Toeplitz linear
systems. eigenvalue problems. etc [1]. However. along with the
tremendous increase in the performance. reliability has become a
serious consideration: all cells or Processing Elements (PE s) in
the array need to be fault free for correct operation. and· the
overall system reliability decreases rapidly as the number of
PE s increases.

Fault tolerance can be obtained either by masking the error
caused by physical failures or by detecting them. isolating the
faulty unit. and reconfiguring.the system around the faulty unit.
Fault masking is usually done by replicating the hardware and
voting on the outputs of the replicated modules. but this is
extremely costly in terms of hardware redundancy. An
alternative is to detect errors by periodic testing.
Unfortunately. the. increase. in transient errors caused by

This research was supported by the Semiconductor Research Corporation
(SRC) under Contract SRC-RSCH' 84-06-049-4.

CH2345-7j86jOOOOj0400$01.00 © 1986 IEEE
400

decreasing geometries means that off-line testing, alone cannot be
used to detect erroneous modules. Techniques for Concurrent
Error Detection (CED) are therefore needed to detect errors,
concurrently with normal operation.

Fault-tolerant structures for systolic arrays have been
proposed by many authors [2-7]. However. in all these papers.
discussions are'limited to the problem of reconfiguration, and,the
difficult problems of CED and fault location have not been
discussed. Other papers [8-12] did discuss the problem of
concurrent error detection. However. as far as systolic arrays
are concerned. [8] and [9] can only be applied to matrix
multiplication. In [10]. each PE has to be implemented, with
PLAs. and this is impractical for VLSI implementation of the
multipliers and adders. Techniques proposed. in [11] and [12]
require double or triple calculations to compare or vote.
resulting in time penalties. It has been shown in [13-15] and [8]
that we can always fully utilize the systolic arrays. i.e .. with no
idle PE s during the operation of the systolic array. even for ·the
case of bidirectional systolic arrays. Therefore. duplicated or
triplicated operations will certainly mean a large overhead.

In this paper. efficient fault-tolerant schemes for systolic
arrays are developed through the analysis of some common
features of most existing numerical systolic arrays. These.
require low hardware overhead and low. time redundancy. and
can be applied to most existing numerical systolic arrays.
including those for matrix multiplication. Finite Impulse
Response (FIR) filters. Infinite Impulse Respons~'(IIR) filters •. LU
decomposition. matrix triangularization. least square
minimization. convolution. polynomial multiplication.
polynomial division. etc. It is well known that there is no clear
definition of a systolic array. Generally speaking. according. to
[15]. a systolic array is a computing network possessing the
follOWing features: (1) synchrony. (2) regularity. (3) temporal
locality. and (4) pipelinability. From this definition. it is clear
that systolic arrays will differ significantly in their: specific
structures. Moreover. even with the same structure. the systolic
arrays may still differ a lot from each other due to the different
functions of each individual PE and the irregular PE s at the
boundaries. Thus. since systolic arrays are not clearly defined. it
is likely that a universal approach toward the design of fault
tolerant schemes for diverse systolic arrays is extremely
difficult. or even impossible. Therefore. in this paper. instead of
trying to derive a scheme which can be applied to all systolic
arrays. we set our goal to develop a scheme to successfully
handle most of the existing systolic, arrays for numerical
computations.

In this paper. the general fault model is defined in Section
II. and the linear cells and the linear property are, defined in
Section m. Section IV develops the CED design for one
dimensional systolic arrays using the linear property encoding.
while Section V develops the CED deSign for. two-dimensional
systolic arrays. The fault location and reconfiguration problems
are discussed in Section VI. finally. Section VII presents the
conclusion of this paper;

II. FAULT MODEL
As the geometric features of integrated circuits become

sma1ler. any physical defect which affects a given area ona chip
will affect a greater amount of the circuitry and will cause a
larger logic block to become faulty. Thus. the traditional gate
level fault models are not satisfactory. In this paper. we a1low a
computation unit (such as multiplier or adder) to produce any
arbitrary logical errors under failures. Furthermore. a single
computation unit fault model is used. where we assume that at
most one computation unit could be faulty within a given period
of time which will be reasonably short compared with the mean
time between failures.

Since effective error detecting (or detecting and correcting)
schemes. such as parity. Hamming codes [161 and alternate data
retry [171. exist for communication lines and memories. failures
in the communication lines and memories can be readily detected
(or detected and corrected) by those methods. We therefore
co~centrate on detecting and, correcting errors due to the failure
of each' computation unit. e.g;. an adder or a multiplier.
However. faults in the. communication lines will also be
specifica1ly discussed (to a1low the fault model to cover faulty

lines and registers) in this paper.

III. LINEAR CELLS AND THE LINEAR PROPERTY
Through an extensive study of systolic schemes. we found

an interesting feature which is common to most existing
numerical systolic arrays proposed for Digital Signal Processing
(DSP). matrix-related operations. polynomial operations. etc.
That is. each Processing Element (PE) in the ,repetitive part of
the systolic array is itself a linear system (we ca1l it a linear cell
in the following discussion). As an example. the inner product
cell used in matrix multiplication is a linear system. Figure 1(a)
shows the function of the ,inner product cell. Note that. to
simplify the'discussion. input and output buffers are not shown
in this diagram. If we use Lto denote this linear system. then
the input vector and coefficient of· this linear system L can be
identified as follows: (b. c) is the input vector of L. and a is
.the coefficient of L (will be explained later). In the following
discussion. La is used to represent a linear system L with
coefficient (or coefficient vector) a. When we say that a is the
coefficient (or coefficient vector. when a contains more than one
value) of the linear system L . we mean that if a is kept fixed.
and X 1 and X 2 are two input vectors (we use the term vector to
specify that it may contain more than one value) to L. then

a

c'

b

-t~------_t--~ a'

c

b'
a'=a
b'=b

c' =c +ab

(a)

a b

l -t--..--+--__ --+---+-. l'

m' ---f--+-m

n' ~----------~ n

l' = l
m'=m+al
n' =n +bl

(b)

Figure 1. Example of Linear cells.

401

La (mIX 1+m 2X 2)=m1La(X 1)+m2La (X 2).

where. m 1 and m2 are any real numbers. (Notice that. in this
paper. when we use the term PE we norma1ly mean the PE in
the repetitive part of the systolic array (instead, of the irregular
boundary PE).) By using this terminology. Figure 1(a)is shown
to be a linear cell as follows:

For any real numbers nl.1 and m2' and input vectors
(b l' c 1) and (b 2• C2):

La (m 1(b 1. c 1)+m2(b 2• C2))

=m1La (b 1• C1)+m2L a (b 2• C2)·

This shows that La is a linear system. Note that. given the
functional description of a linear ce1l. there may be different
ways to identify the input vector and the coefficient vector. For
example. in Figure 1(a). we can either say that a is the coefficient
and (b • c) is the input . vector. or we can also say that b is the
coefficient and (a. c) is the input vector. In other words. we can
also show that Lb is a linear system with input vector (a • c).
Another example of a linear cell is the PE used in the design of

Infi.ni~;Puls~- Respo~ (IIR) filters (shown in Figure l(b))
[15]. where 1 is the coefficient of the linear ce1l. and (m. n. a. b)
is the input vector. Although each linear system L can be of
any form of a linear function. say. a differentiator. an analog
linear system. etc .. in this paper. we will focus on the situation
where each L consists of· only multipliers and adders. because
this is the case with most existing numerical systolic arrays.

A property exists for linear systems (we ca1l it the linear
property):

Linear Property:

La (m1X 1)+La(m2X 2)+ ... +La(1nn Xn)= La (r,mi X;).
i=1

where. each Xi is an input vector of La (Le .• a linear system L
with coefficient (or coefficient vector) a). and each mi is a real

~ number. Based on this linear property. a word level encoding
scheme (we ca1l it the linear property. encoding) is proposed as
follows:

Linear Property Encoding :

In this encoding scheme. each La (mi Xi) is calculated by a

distinct PE and is accumulated to get r,La(mi Xi) (i.e.. by
i=1

adding extra variables to' pass through the systolic array to get

this value). A different PE is used to compute La (Emi Xi).
i=1

Finally. r,La(miXi) is compared with La (r,miXi). Any
1=1 i=1

inconsistency will reveal that there exists a ,faulty PE. Since
roundoff errors may occur during the computation. a relative
small difference must be a1lowed in checking for equality. even
though we will imply mathematical equality in equations and
lemmas by using the equal sign. Notice that if each La (mi Xi) is
not calculated by a distinct PE. it is possible that an error may
be masked. For convenience of description. we ca1l the
requirement that each La (mi Xi) be calculated by a distinct,PE.
the independence goal. Note that during the normal operation.
we set the value of each mi to be 1. Different values of mi will
be used in the fault location'phase discussed in Section VI.

In order to obtain fault tolerance. we are trying to encode
data into the form of a linear property encoding. and trying to

input vector input vector input vector
mput vector

c~~~nt ~\~ -rEt _ ... ~
unmodified coefficient stream

Figure 2. Diagram to show the coefficient stream
passing through the array.

achieve the independence goal at the same time.

IV. CED TECHNIQUES FOR
ONE-DIMENSIONAL SYSTOLIC ARRAYS

Another feature common to most existing numerical
systolic arrays is that the coefficient stream for each PE (which
is a linear cell) passes through the whole array without being
modified. For example. in Figure 1(b). I' ... I. This situation is
shown in Figure 2. where the coefficient stream passes from the
left end to the right end of the array without being modified. At
each PE. there will be an input vector. Note that each value of
the input vector can come from an adjacent PE. external input.
or an accumulator inside the PE. For example. if each PE is the
same as in Figure l(b). then the I stream is the ,coefficient stream
which passes through the array without being modified. and the
input vector is (m. n. a. b). A CED scheme can be designed for
those systolic arrays which satisfy the following two conditions
(these are the two features common to most numerical systolic
arrays):

Condition 1:
Each PE in the repetitive part of the systolic array is a
linear cell.

Condition 2:
The coefficient stream passes through the array without
being modified.

As was discussed in the previous section. there may be
different ways to identify the input vector and coefficient vector.
For example. if each PE in Figure 2 is like that of Figure l(a).
then we will choose the a (instead of b) to be the coefficient
because it passes through the array without being modified.

The CED scheme using the linear property encoding is
described as follows:

If v is a coefficient vector (we use the term vector to specify
that it may contain more than one value) of the coefficient
stream. then. when v reaches PEl • PEl becomes Lv (i.e .. a linear
system L with coefficient v). Suppose that v meets input vector
X 1 at PE 1 to generate Lv (X 1)' meets input vector X 2 at PE 2 to
generate Lv (X 2)' ...• meets input vector X N at PEN to generate
Lv (XN). During the operation. each Lv (X;) is accumulated to

N
generate ELv (Xi). By using a distinct (extra) PEi to calculate

i=1
N N

'Lv (EXi) and compare it with ELv (Xi)' we can achieve CED
;=1 1=1

through the linear property encoding (with each m; .. 1). Note
that the independence goal is also achieved by using a distinct
PE to calculate each La (X;).

Therefore. it is clear that we need an extra PE to calculate
N N

Lv (EXi). and. thus. we also need to pass the vector EXi to
i=1 N ;=1

this extra PE for the calculation of Lv (EXi). Finally. we will
i=1

402

m'

n'

ak

l' m'
n'

m

n
IS'=IS+m+n

l' = l OS' = OS+m' +n'
m'=m+akl l' = l
n'=n+bkl m'=m+akl

n' -n +bkl

(b) (c)

Figure 3(a). A systolic array for the ITR filter
(b). PE used in the original (non-CED) design:

(c). PE used in the CED design.

N
also have to pass the vector ELv (Xi) to this extra PE. and

N
;=1

compare it with Lv (EX;) to achieve the CED through the linear
i=1

property encoding. All of these extra operations are performed
by adding extra variables to pass along with the coefficient
stream. In most cases. the number of extra variables can be
reduced. by using the specific structure of a systolic algorithm.

Details are shown in the following examples:

EXAMPLE 1: Infinite Impulse Response CrrR) filter.

A systolic array for an Infinite Impulse Response (IIR)
filter defined by the difference equation

N N
Y (k)= E x (k -m)b (m)+ E y (k -m)a (m)

m=1 m=1

is shown in Figure 3(a). and the function of each PE is shown in
Figure 3(b). This design is by S.Y. Kung in [15]. which is
derived from the signal flow graph in [18]. Note that in this
design b (0) is assumed to bo zero. However. if b (0) is not zero.
we can slightly modify the left boundary part (simply add a
multiplier and an adder). and the PE s at the regular part of the
array remain the same. Detailed procedures for transforming a
signal flow graph into a systolic array are discussed in [15]. We
add an extra PE (shown by the dashed box PEN +1) at the right
end of the array for the CED design. The procedure to
incorporate CED into this IIR filter is described in the following
three steps:

Step 1: Check the function of each PE to make sure that
it is a linear cell. In this example. it is easy to show that this
condition is true.

Step 2: Identify which variables form the coefficient
vector or the input vector of each PE. and see if the coefficient
stream passes through the array without being modified. In this
example of the IIR filter. the coefficient for each PE is I. and the
input vector is (m. n ~ at. bt). Moreover. the coefficient stream

(i.e.. I stream) flows through the array from left to right
without being modified.

Step 3: Add extra variables and the extra PE to the
systolic array.

The extra variables and the extra PE are added as follows.
Consider Ip which is a coefficient of the I coefficient stream. It is
clear to see that Ip passes through the array without ~ing
modified. When Ip reaches PEt. PEt becomes Lzp (a lmear
system L with coefficient Ip). and the input vector is
(mt • nt • at • bt). such that

(mt " nt ')=Lzp (mt • nt • at • bt).

Here. mt and nt are used to represent the m -value and n -value
which Ip meets at PEt. and mt ' and nt' are used to represent the
m' -value and n' -value generated at PEt (when Ip is at PEt)·

Now. sin~ that I meets (m l' n l' a l' b 1) at PE 1 to generate
(ml'. nl'). meets (m2' n2' a2' b 2) at PE2 to generate (m2'. n2').
...• meets (mN' nN' aN' bN) at PEN to generate (mN'. nN '). the
independence goal has been achieved. Then according to the
linear property encoding discussed in Section III. we have to
compare

L z (m l' n l' a l' b 1)+Lz (m2' n2' a2' b 2)+ ... + Lz (mN' nN' aN' bN) p p p

with
N

Lp (E(mi' ni' ai' bi)).
i=1

Here.

L z (ml.nl.al.bl)+Lz (m2.n2.a2.b2)+ ... +Lz (mN.nN.aN.bN) p p p

N
= E(m,'. ni')

i=1

N N
=(Emi " Eni ').

i=1 i=1

N
On the other hand. Lz (E(mi. ni. ai' bi)) is equal to

p i=1

N N N N

(1)

(Em, + (Eai)Ip • Eni + (Ebi)Ip). (2)
i=1 1=1 i=1 i=1

Thus. if the linear property is satisfied. vector (1) will have to
be equal to vector (2). However. it will be shown in this
example that it is easy to implement the PE such that any
faulty adder or multiplier will cause at most one component of
vector (1) or vector (2) to become erroneous. Therefore. instead
of comparing vector (1) with vector (2). we can simply compare

N N
(Emi'+ Eni') (3)
i=1 i=1

with
N N N N

(Emi + (Eai)lp + Eni + (Eb,)lp)' (4)
i=1 i=1 i=1 i=1

That is. we can simply compare the sum of the two components
of vector (1) (i.e .• term (3)) with the sum of the two
components of vector (2) (i.e .• term (4)). Therefore. it is clear
that we need an extra PE to calculate term (4). and. thus. we

N N N N
also need to pass Emi + Eni' Eai' and Ebi to this extra PE

i=1 i=1 i=1 i=1
for the calculation of term (4). Since each ai and ,each bi are
system parameters. which are precalculated and used for a long

N
time witp,out being modified. we can precalculate both Eai and

i=1
N
r,bi • and directly apply them to the extra PE (as shown in
i=1

403

N N
Figure 3(a)). Thus. we only have to pass Emi + Eni to the

1=1 i=1
extra PE for the calculation of term (4). Finally. we will also
have to pass term (3) to this extra PE and compare it with term
(4).

Based on the above analysis. a CED scheme for the IIR filter
can be designed. Along with the clocking of each coefficient of
the I coefficient stream. two new variables are added:

IS' = IS+m+n •

oS' = OS +m' +n' •

where IS' and OS' are the updated values of IS and OS at each
PE. and the IS and OS which enter PE 1 are both 0 (see Figure
3(c)). Finally. at the right end of the array. we use an extra PE
(i.e .• PEN +1 in Figure 3(a)) to compute

N N
val 1= IS + I (Eai + r,bi) •

i=1 i=1

and compare vall with OS. Any inconsistency will reveal that
there exists a faulty PE (will be shown in Lemma 1). According
to the implementation of IS and OS. it is easy to show that.
under the fault free situation. at PEN +1 (the extra pEl.

N

IS=E(mi + nil.
i=1

and
N

OS= E(mi' + ni').
i=1

Note that
N N

OS=Emi' + Eni'.
i=1 i=1

This is the sum of the two components of vector (1) (i.e .• term
(3)).

Notice that. under the fault free situation.
N N

vall=IS +(Eai + Ebi)Ip
1=1 i=1

N N N N
= Emi + (r,ai)lp + Eni + (r,bi)Ip .

i=1 i=1 i=1 i=1

This is the sum of the two components of vector (2) (i.e .• term
(4)).

Notice that since the linear property encoding is mainly
used to detect the faults in the regular part of the array. the
adder at the left end of the array (see Figure 3(a)) has to be
duplicated or specially designed with some other technique to
make sure that it functions correctly.

LEMMA 1: In the above design. by using different adders to
compute IS' and OS' • if there exists a faulty multiplier or adder
in the array. then we have vall~OS at PEN+1'

PROOF: To satisfy the linear property. vector (1) will have
to be equal to vector (2). Thus. the sum of the two components
of vector (1) will have to be equal to the sum of the two
components of vector (2). i.e .• at PEN +1' OS will have to be
equal to vall. If there is a faulty multiplier or adder in PEl
(where 1 ~, ~N). then either the correct value of
Lzp (mi. ni • ai • bi) will not equal (mi'. ni') (i.e.. OS' will be
erroneous). or IS' will be erroneous. Thus. either IS' or OS'
(but not both) at PE, will become erroneous. If IS' at PE,
becomes erroneous. then vall at PEN+1 (the extra PEl will
become erroneous. If OS' at PEi becomes erroneous. then OS at
PEN +1 will be erroneous. If there is a faulty multiplier or adder
in PEN +1' then vall will become erroneous. Therefore. under

the assumption of single computation unit fault (described in
Section II). any faulty adder or multiplier will change the value
of either OS or vall (but not both) at PEN+l' and results in
OS¢val1. 0

Notice that the same adder should not be used to calculate
IS' and OS': otherwise. it is possible that a faulty adder will
cause both IS and OS to become erroneous. Since we assume
that any faulty module may result in a random output. it is
possible that the error will be masked (i.e .• it is possible to cause
both vall and OS at PEN+l to become erroneous). However. the
probability of a fault being masked due to this reason is very
small (will be discussed later).

In the above discussion. we only consider the faults coming
from an adder or multiplier. However. it is very easy to extend
the discussion to cover the faults from the busses or
interconnection lines between two computation units. Consider
the PE in Figures 3(c) and 4. which is redrawn in Figure 4 with
each line being labeled with a number. Notice that in Figure 4.
two extra adders are shown to calculate IS' and OS' (see Figure
3(c)). Actually. there are several ways to avoid the increase of
the number of extra adders. For example. the extra adders can
be shared between two adjacent PE s to cut the number of extra
adders to half (by using some tricky interconnections). The
other way is to use the original adders to calculate IS' and OS' .
For the latter case. if a transient fault occurs during the
operation of an addition. then only IS' or OS' (but not both)
will be faulty. thus it will be detected at PEN+l' If it is a
permanent fault. and if the probability of a fault being masked
at a faulty PE during a single linear property checking is p.
then the probability of having an undetectable fault is pt • where
t is the total number of inputs (x ·s). The reason ihat we have
this value is explained as follows. Since there are t inputs (x ·s).
there will be t linear property encoding groups. Thus the fault
will have to be masked for t times. An experiment has shown
that p is about 0.02. This means that. for the case where t = 50.
the probability of having an. undetectable fault is about pt. =

0.0250. which is almost equal to zero. This shows that even if
we use the original adders to calculate IS' and OS' • although it
is theoretically possible to have an undetectable fault. the
probability of having such an undetectable fault is almost equal
to zero. Moreover. it will be shown later that we can timeshare
the same bus to pass l. IS. and OS. However. to simplify the
discussion. we simply assume that the two extra adders and two
extra busses are used as shown in Figure 4. The results are
applicable to other cases (i.e .• the case with no extra busses. or
the case with fewer extra adders).

It is easy to prove that any single fault in lines 1. 4. 6. 9.
and 10 will make m' become erroneous. which in turn causes
OS' to become erroneous. Any single fault in lines 2. 5. 7. 13.
and 14 will make n' become erroneous. which in turn causes OS'
to become erroneous. Any single fault in lines 16. 17.20. and 21
will also cause OS' to become erroneous. Any single fault in
lines 18. 19. 22. and 23 will cause IS' to become erroneous.
Since all the above line faults will cause either IS' or OS' to
become erroneous (but not both). they will be detected at PEN+l'
Now consider the case where line 11 becomes faulty. Assume
that the value at line 11 is different from the correct value by d.
i.e .• its value is equal to (correct value + d). Then IS' will be
increased by d. and OS' will be increased by d. and this fault
will not be detected. Similarly. the fault at line 15 will not be
detected. either (note that line 8 and line 12 are treated similarly
at the next PE). Finally. if line 3 becomes faulty in PEt. and
its value is different from the correct value by d • i.e .• its value is
(correct value + d). then. at PEN+l' vall will be equal to

N N
(correct value +d (Lai + Lbi)).

;=1 i=1

404

m'

n'

as

IS

14

Figure 4. Circuit diagram to show the possible
line faults of Figure 3(c).

While OS will be equal to

N N
(correct value +d (Lai + Lbi)).

i=k i=k

l'

11 m
15 n

oS'

IS'

Therefore. it is clear to see that. normally. only when k =1 will
a fault possibly cause an undetectable error. Thus. by specially
designing the line 3 in PE 1 (such as adding a parity bit). we do
not have to consider the line 3 fault in all other PE s. From this
discussion. it can be seen that the only lines to which we have to
apply some encoding scheme (e.g .• parity bit) are lines 8. 11. 12.
and 15. Faults in all other lines will be detected by the linear
property encoding.

Notice that the faults in the input or output buffers (to
simplify the discussion of linear property encoding. they are not
shown in the figures) can be considered similarly as line faults.
and are covered by the above discussion.

Since each coefficient 1 is multiplied_ by at and bt and then
m and n are added at each PEt. while each IS and OS is only
added once. and since l. IS. and OS are going in the same
direction. we can use the same bus for the 1 stream to pass IS
a?d OS by time-sharing the bus. In other words. the processing
time for the value 1 at each PE is much longer than that for IS
or OS • thus we can pass the value 1 and let it be processed first.
and pass IS and OS subsequently by using the same bus as for
the value l. Sinc~ the bus transmission time is usually very
small compared WIth the processing time. the clock period will
be almost the same. Therefore. the system throughput will also
be the same. The two extra busses shown in Figure 4 can thus be
avoided. that is. no extra busses are needed between two adjacent
PEs. However •. the adder at the left end of the systolic array
has t.o be duphcated or specially designed with some other
techntques to make sure that it functions correctly. Consider the
case wh~re each bus contains 24 bits. and a fixed point number
system IS used (where the layout area of an array multiplier is
much larger than that of an adder). then the estimated hardware
redundancy in terms of CMOS layout area for each PE is less
than, 5% ~nd can be assumed to be negligible. In the case of
~oa:II~g pomt number systems. where the compleXity of an adder
1S s1m1la~ to that of an array multiplier. the redundancy ratio at
~ach PE 15 about.l~%. However. as is discussed previously. even
1f we use the or1gmal adders to calculate the IS' and OS' the
probability of having an undetectable fault is almost eqU~1 to
ze:o. Thus. we can avoid the redundancy at each PE if we use
th1s approach. Moreover. the extra PE at the right end of the

array is about half the complexity of the regular PE. Thus. the

total hardware redundancy is about 2~' Since the whole

computation. including the extra PE. is pipelined. there is no
time redundancy in terms of performance (i.e .• the throughput is
the same as before). However. if we consider the total job
latency (between the time a job enters the IIR filter and the time

this job leaves the IIR filter). the redundancy is less than ~.

Another way to implement the IIR filter can be found in
[19]. where again each PE is a linear cell. and the coefficient
stream (x. Y) passes through the array without being modified.
Thus a similar CED design approach can be applied.

In Figure 3(a). there are N PE s used in the IIR filter.

However. in actual implementation. only N PEs are needed.
2

The reason is as follows. It is clear that for a bidirectional linear
systolic array such as in Figure 3(a). there will be a zero value
between any two consecutive input x's (for the sake of
simplicity. we did not show it in Figure 3(a)). thus only one Of
two consecutive PEs will be active at any instant. Therefore a
group of two PE s can share a common arithmetic unit (including
multipliers and adders) without any penalty in the throughput
rate. Another way to keep the processor utilization ratio equal
to 1 (Le .• no idle processors during the operation) is to interleave
two jobs. Similar arguments can be found in [13.14.15]. From
the linear property encoding discussed previously. it should be
clear that having a zero value between any two consecutive
input x's or interleaving two jobs will not change our scheme at

all. In other words. even with ~ PE s (a zero value between

any two x 's) or Iv PEs (two jobs are interleaved). the linear
property encoding will remain valid. That is. we still can fully
utilize all the PE s without leaving any PE idle during the
operation even for the case of bidirectional systolic arrays.
Considering this. those schemes which duplicate the operations
and compare the results of these operations to detect the faults
(discussed in Section I) will certainly mean at least 100% time
redundancy. 0

ExAMPLE 2: Elimination of a subdiagonal of a band
matrix [20].

A systolic array to eliminate a subdiagonal of a band
matrix is shown in Figure 5(a). Here. we use N to represent the
number of PE s in the repetitive part of the systolic array. For
example. in Figure Sea). N ... 4 (the extra PE is not included).

The procedure to incorporate cim into this systolic array is
described in the following three steps:

Step 1: Check the function (in the repetitive part of the
array) of each PE to make sure that it is a linear cell. From the
equation in Figure S(b). it is easy to show that this condition is
true.

Step 2: Identify which variables are part of the coefficient
vector or input vector of the linear cell. In this example. the
coefficient vector is (c • s). and the input vector is (Xi' Yi)' The
coefficient stream. i.e.. the (c. s) stream. passes through the
array from left to right without being modified.

Step 3: Add extra variables and an extra PE into the
systolic array.

The way to add the extra variables and an extra PE is
analyzed as follows. Consider a coefficient vector (cp • sp) which
passes through the array from the left end to the right end of the
array without being modified. When (cp • sp) reaches PEi • PEi
becomes L(C

p
.6

p
) (i.e .• a linear system L with coefficient vector

(cp • sp)). and the input vector is (Xi' Yi)' That is. (cp • sp) meets
input vector (x 1. Y 1) at PElto generate (x I', Y I'). meets input
vector (x 2' Y 2) at PE 2 to generate (x 2', Y 2'). meets input
vector (XN' YN) at PEN to generate (XN'. YN '). Thus. the

405

independence goal has been achieved. Here we use (Xi' Yi) to
represent the input vector that (cp • sp) meets at PEi • Thus. at
eachPEi •

According to the linear property encoding. we want to
compare

L(C
p

.6
p

)(X 1. Y1)+L(c
p

.6p)(X2' Y2)+ ... +L (Cp .6p)(XN' YN)

with

That is. to compare

with

Note that

N

L(Cp .6p)(.r.(Xi' Yi)).
1=1

N N
(Lxi'. LYi')
i=1 i=1

(5)

However. it will be proved in this example that it is easy to
implement the PE such that any faulty multiplier or adder will
cause at most. one component of vector (S) or vector (6) to
become erroneous. Therefore. instead of comparing vector (5)
with vector (6) we can simply compare

N N

(Lxi '+ LYi ') (7)
i=1 i=1

with

That is. we can simply compare the sum of of the two
components of vector (S) (i.e .• term (7)) with the sum of the
two components of vector (6) (Le .• term (8)). Therefore. it is
clear that we need an extra PE to compute term (8). and. thus.

N N
we also need to pass LXi and LYi to this extra PE for the

i=1 i=1
calculation of term (8). Finally we also need to pass term (7) to
this extra PE and compare it with term (8).

Based on the above analysis. a CED scheme is proposed.
Along with the propagation of each (c. s) to the right of the
array. three new variables are added:

XI'=XI+xi'

YI'= YI+Yi'

val 1'= vall +Xi '+Yi'.

This is shown in figure S(c). Here. ihe XI • YI • and vall which
enter PE 1 are all O. Finally. at the right end of the array. there
is an extra PE (shown by a dashed box in Figure Sea)). Inside
this extra PE (at the right end of the array). we compute

val 2= c XI + s YI - s XI + c YI.

Then we compare val 2 with vall. any inconsistency will reveal
that there is a faulty PE (will be discussed in Lemma 2). From
the implementation of XI. YI. and vall. we have. at PENH

(this is the extra PE • i.e .• the dashed box in Figure Sea)).

21
32
43
54

31
42
53

x.' x.' , ,

C -9,= C C'?C s _ _ Xi Yi Xi
s s s

i i

x.' = (x.2 + y.2)1/2 , , ,
c=x. / x.' , ,
s = Yi / x/

(b)

x;,' -cxi +sYi

Y;,' - -s Xi + C Yi

11

22
33
44
55

21
32
43
54

12
23
34
45

11

22
33
44
55

13
24
35

12
23
34
45

(a)

x.' ,

14
25 extra PE

)
r 1 ,

r--.-..
'--

L f .J

13
24
35

c, XI, Y,I? c, XI', YI'
Yi Xi

s, vall s, vall'

i

XI' =XI +x. ,
YI' - YI + Yi

vall' = vall + x/ + Y/

x/ = C Xi +S Yi

y.' = -s x. + C y. , , ,

(c)

+===:::;:====:;:==:l=l- c

s -t::======t:======~ s

Cd)

Figure Sea). A systolic array to eliminate a subdiagonal of
a band matrix. (b). PE .used in the original (non-CED)

design. (c). PE used in the CED design. (d). Circuit
diagram for the regular PE in Figure 4(b).

N

XI=LX;'
;=1

N
YI=Ly;·

1=1

N
val 1= L(xi '+YI ').

1=1

It is easy to see that. under normal operation. vall will be equal
to term (7). and val 2 will be equal to term (8). Note that the
boundary PE at the left end of the array needs to be duplicated
and outputs compared to make sure that it functions correctly.

LEMMA 2: In the above design. by using different adders to
compute XI'. YI'. and vall'. if there is a faulty adder or
multiplier in the array. then we have vall¢val2.

PROOF:

If the linear property is satisfied.
N N
LXI'+ LYI' = vall
1=1 1=1

406

will have to be equal to
N N N N

(cp LX; + Sp LYI - Sp LXI + Cp LY;) = val2.
1=1 1=1 1=1 1=1

That is. vall will have to be equal to val 2. By using the same
argument as we did for IIR filter (due to the limited space. it
will not be given here). it is easy to show that any faulty adder
or multiplier will cause either vall or val 2 to become erroneous
(but not both). Thus. we have vall¢val2. 0

Note that the same adder should not be used to calculate
XI' • YI' • and vall'. Otherwise. it is possible that a faulty adder
will cause both vall and val 2 (at PEN +1) to become erroneous.
Since we assume that a faulty unit will result in a random
output. it is possible that the error will be masked. However.
the possibility of a fault being masked due to the reason that we
use the same adder to calculate XI' • YI' • and vall is very small
as is discussed in the example of IIR filter. By using the same
approach to analyze the communication lines as we did for the
previous IIR filter example. we can show that only some lines
need to be treated by a coding scheme (e.g.. parity bit). All
other line faults will be detected by the linear property encoding
at PEN +1. Due to limited space. this analysis will not be shown

c' -c+a b
a'=a

Figure 6. A systolic array to solve linear systems.

here.

Since each coefficient vector (c. s) will need four
multiplications and two additions in each PE. while each XI.
YI. and vall just does one addition in each PE. we can time
share the busses for the (c • s) stream to pass XI. YI • and vall
as discussed in the example of fiR,filter. However. the boundary
PE (whose structure is different from all other PEs) must be
duphcated or Specially designed to make sure that it functions
correctly. Generally speaking. the hardware redundancy is

about N ~1· The time redundancy in terms of performance is

almost zero (i.e.. the throughput is the same as before).
However. if we consider the total job latency (between the time
a job enters the systolic array and the time this job leaves the

systolic array). the redundancy is less than ~. 0

ExAMPLE 3: Solving linear systems [14].

The systolic array to solve this problem is shown in Figure
6. Here. each PE is again an inner product cell (which has been
shown to be a linear cell). and the.a stream is the coefficient
stream flowing from the left end to the right end of the array
without being modified. Therefore. the same scheme as in the
previous examples can similarly be applied to this example. 0

From the above examples. we know that the key point of
the CED design is that each PE has to be a linear cell. and
coefficient stream flows through the whole systolic array without
being modified. The question arises as to whether this will
become a serious restriction to the above design. The answer is
no. since most all the existing systolic arrays for numerical
computations do share this common feature. In other words. the
design proposed in this section can be similarly applied to many
other systolic algorithms. including those for convolution [21].
Finite Impulse Response (FIR) filter [22]. matrix multiplication
[14]. polynomial multiplication [23]. polynomial division [23].
polynomial evaluation [24]. Kalman filter [25]. etc.

v. CED FOR TWO-DIMENSIONAL SYSTOLIC
ARRAYS

The key point in designing a CED for two-dimensional
systolic arrays is to partition the array by rows or by columns.
and to let each row or each column function like a one
dimensional systolic array which has been discussed in Section
IV.

ExAMPLE 4: LU decomposition [14-15].

In LU decomposition. a given matrix C is decomposed into
C =A*B. where A is a lower- and B is an upper-triangular
matrix. The recursions involved (from [15]) are

CiJt)= CiJt-l).-ai (t ~b}t).

where

407

x'=x
z'=z

y' =y+xz

~z.
, y

X

x'=x
z'=xy

M: Multiply

MA: Multiply and Add

Figure 7. A systolic array to solve LU decomposition.

and

b}t)= CtSt - 1).

for k =1.2 •...• n: k ~i ~n. k ~j ~n.

The systolic array for the above iteration is shown in Figure 7
[14-15]. The Whole n by n array is divided into n columns and
one row. each of which is identified by a dashed box. where each
PE is an inner.product cell (which has been shown to be a linear
cell) and an unmodified coefficient stream flows through each
one-dimensional systolic array (shown by the dashed box).
Therefore. the scheme proposed in the previous section can be
individually applied to each of these one-dimensional systolic
arrays. Since the divider at the left top of the array does not
contain the same structure as the others. we will have to

duplicate it. The hardware redundancy is about 0 (~). The
n

time redundancy in terms of the performance is almost zero (Le .•
the throughput is the same as before). However. if we consider

the job latency. the redundancy is less than *. 0

ExAMPLE s: Orthogonal Triangularization [26].

A systolic array to perform orthogonal triangularization is
shown in Figure 8 (x' is the updated value of x). where each
dashed box denotes a one-dimensional systolic array. with each
PE being a linear cell and with an unmodified coefficient stream
flowing through each one-dimensional array. Thus. by using the
same scheme as for one-dimensional systolic arrays. a systolic
array with CED for orthogonal triangularization can be designed.
Notice that all the boundary cells (which are not linear cells)
represented by circles should be duplicated to make sure that
failures in them will be detected. 0

Other examples to which the scheme proposed in this
section can similarly apply include QR decomposition [27]. least
square minimization [28-29]. eigenvalue computation [30]. two
dimensional convolution [31]. etc.

Before finishing our discussion of CED. one thing should be
especially noted: that is. even though all the above examples in
Sections IV-V are confined to the discussion of systolic arrays.

x.

c£-(c, s)

x' = (x2 + x. 2il2
In

c = x / x'
s = x. / x' zn

x.

(c, s) -$-(c, s)

x out
x = -s x + c x. oll/ zn

x =cx+sx. In

Figure 8. A systolic array for the orthogonal
triangularization.

the same scheme can be similarly used to more general cases. for
example. wavefront array. processors [32]. and general
multiprocessor systems. The reason that we specifically
emphasized systolic arrays is that it is quite difficult to design
systolic arrays with CED capability due to their local
interconnections. simple structure for each PE. and synchrony
of the whole system.

VI. FAULT LOCATION AND RECONFIGURA TION
A successful'recovery from a hardware failure is essential

to ensure continuous system operation. To achieve this i.e .• to
design, a fault-tolerant system. three things have to be done:
(1) Concurrent Error Detection (CED). (2) fault location. and
(3) error correction and reconfiguration. Among these three
steps. CED is the most important factor which affects the
performance of the whole system. because it is necessary to
continuously check for errors during the normal operation of the
system. Therefore. it is ,always important to use as little time
redundancy as possible during the CED phase. However. most
existing schemes proposed [11-12][33] use duplicated operation

"as, described in Section II. This will take too much time
redundancy even under the fault free condition and may not be
suitable for high performance special-purpose machines. Other
schemes such as Triple Modular Redundancy (TMR) with voting
[34] and Hybrid Redundancy [35] require several times the
hardware of a single machine. However. the CED design
proposed in the 'previous sections requires overheads of only

about 0 (.!.) in hardware redundancy. and almost zero in time
n

redundancy (the throughput is the same as before).

Fault location. correction. and reconfiguration in our design
are performed only after an erroneous signal has been detected.
Upon detecting the erroneous signal. we can choose one of the
following two 'methods to recompute and obtain the correct
result. while identifying the faulty unit.

Method 1: Recompute the operation by adding a
weighted linear property encoding to pass along with the normal
linear property encoding. i.e.. without weighting. Note that
during the normal CED phase. the linear property encoding is

La (X 1)+ La (X 2)+ ... + La (Xn)= La (.Ex;).
;=1

where a is a coefficient vector flowing through the array. and X;
is an .input vector to PE; which meets a at PE; during the
propagation. That is. the weighting for each term is 1. Now. we
have a weighted linear property encoding passing along with the
normal encoding. In other words. the weighted linear property
encoding

408

La (WIX 1)+La(W2X2)+ .. , +La(wnXn)=La(.Ew;X;).
;=1

is also applied.

For the convenience of description. we again take the IIR
filter as an example. At each PE; (where 1 ~i ~N). add four
variables to pass along with the l coefficient stream. i.e .•

IS' =IS +m +n •

OS' =OS+m' +n' •

NIS' =NIS +w; (m +n).

NOS' =NOS +w; (m' +n').

At the extra PE (at the right end of the array) and its adjacent
PE. we compute

N N
IS +l (Laj + Lb j) (9)

i=1 i=1

and compare.it with OS • and compute
N N

NIS+l(Lw;aj+ Lwjbj) (10)
;=1 ;=1

and compare it with NOS. Suppose PEl; (1 ~k ~N) is faulty.
the amount of difference detected with the first comparison is
D l' and the amount of difference for the second comparison is
D 2. Then it can be shown that D2 - wl;Dl' Thus. by dividing
D2 by D 1 we can get wI;' Therefore. if we choose W lw2 ... wN

to be N distinct values. then as soon as we get the value WI;. we
can identify the faulty PE. However. the calculation of term
(9). term (10). and the subsequent comparison should be
performed by two different PEs (e.g .• PEN+1 and PEN)' and the
results are compared to make sure that the operation is correct.
Thus. if PEN +1 becomes faulty. it will be detected. This finishes
the fault location phase. Immediately following the fault
location phase. we can simply bypass the faulty PE by using the
schemes shown in [2-7][36-37] and continue the operation (of
course. the last job should be recomputed).

Method 2: Each single operation is ,performed by two
adjacent PE s and compared to each other to locate the fault.
Then. continue the operation as described in Method 1.

Therefore. through either Method 1 or Method 2. the
system can resume its normal operation. after bypassing the
faulty unit.

VII. CONCLUSION
Low. overhead fault-tolerant schemes have been proposed.

which are applicable to most existing numerical systolic arrays.
Partitioned by rows or by columns. two-dimensional arrays are
similarly treated as one-dimensional arrays.

By using the schemes proposed ,in this paper. the function
of eachPE remains unchanged (el:cept for the added variables)
after becoming a fault-tolerant systolic array. Moreover. the
structure of the systolic array is almost the same as before. All
the designs proposed in this paper are based on optimal systolic
arrays: therefore. the fault-tolerant systolic arrays are also
optimal. All the schemes proposed in this paper can be readily
extended to wavefront array processors and general
multiprocessor systems.

REFERENCES

[1] H.T. Kung., "On the Implementation and Use of Systolic
Array Processors." Proceedings of ICCD, pp. 370-373. Oct.
1983.

[2] D.S. Fussel and P.J. Varman. "Designing Systolic Algorithm
for Fault Tolerance." Proceedings of ICCD, pp. 616-621.
Oct. 1984.

[3] H.T. Kung and M.S. Lam. "Fault-Tolerance and Two-level
Pipelining~" MIT Conference on Advanced Research in
VLSI,pp.74-83.Jan.1984.

[4] M. Sami and R. Stefanelli. "Reconfigurable Architectures of
VLSI Processing Arrays." Proceedings of the IEEE Special
Issue on Fault Tolerance in VLSI, vol. 74. no. 5. pp. 712-
722. May 1986.

[5] A.L. Rosenberg. "The Diogenes Approach to Testable
Fault-Tolerant Arrays of Processors." IEEE Trans. on
Computers, vol. C-32. no. 10. pp. 902-910. Oct . .1983~

[6] A. Khurshid and P.D. Fisher. "Design of a Reconfigurable
Systolic Array Using LSSD Techniques." Proceedings of
ICCD, pp. 171-175. Oct. 1984.

[7] I. Koren. "A Reconfigurable and Fault-Tolerant VLSI
Multiprocessor Arrays." Proceedings of the 8th Annual
Symposium on Computer Architecture, pp. 425-442. May
1981.

[8] K.H. Huang and J.A. Abraham. "Algorithm-Based Fault
Tolerance for Matrix Operations." IEEE Trans. on
Computers, vol. C-33.no. 6. pp. 518-528. June 1984.

[9] J.Y. Jou and J.A. Abraham. "Fault-Tolerant Matrix
Arithmetic and Signal Processing on Highly Concurrent
Computing Structures." Proceedings of the IEEE Special
Issue on Fault Tolerance in VLSI, vol. 74. no 5. pp. 732-
741. May 1986.

[10] V.S. Iyengar. "Concurrent Testing of Microprogrammed
Control Units and Systolic Arrays." Ph.D; dissertation,
Univ. of Minnesota. June. 1983.

[11] Y.H. Choi. S.H. Han. and M. Malek. "Fault Diagnosis of
Reconfigurable Systolic Arrays." Proceedings of ICCD, pp.
451-455. Oct. 1984.

[12] J.H. Kim. "A Fault-Tolerant Systolic Array Design Using
TMR Method." Proceedings of ICCD, pp. 769-773. Oct.
1985.

[13] C.E. Leiserson. "Systolic and Semisystolic Design."
Proceedings of ICCD, pp. 627-632. Oct. 1983.

[14] C. Mead and L. Conway. "Introduction to VLSI Systems,"
Reading. MA: Addison-Wesley. 1980.

[15] S.Y. Kung. "On Supercomputing with Systolic/Wavefront
Array Processors." Proceedings of the IEEE, vol. 72. no. 7.
pp. 867-884. July 1984.

[16] R.W. Hamming. "Error Detecting and Error Correcting
Codes." Bell System Technology Journal, vol. 29. no. 1.
pp.147-160. Jan. 1950.

[17] J.J. Shedletsky. "Error Correction by Alternate-Data
Retry." IEEE Trans. on Computers, vol. C-27. pp. 106-114.
Feb. 1978.

[18] A.V. Oppenheim and R.W. Schafer. Digital Signal
Processing, Prentice-Hall. inc;. Englewood Cliffs. NJ. 1975.
pp.151.

[19] H.T. Kung. "Special-purpose devices for signal and image
processing: an opportunity in very large scale integration
(VLSI). Proceedings of SPIE, Real-Time Signal Processing,
vol. 241. pp. 76-84 1980.'

409

[20] I. Ipsen. "Singular Value Decomposition with Systolic
Arrays." Proceedings of SPIE, Real Time Signal Processing
VII, vol. 495. pp. 13-21. 1984.

[21] H.T. Kung. "Why Systolic Architecture?". IEEE Computer,
pp. 37-46, Jan. 1982.

[22] D.E. Heller. "Decomposition of Recursive Filter for Linear
Systolic Arrays~" SPIE proceedings, Real, Time Signal
Processing VI, pp.55-59, 1983.

[23] H.T. Kung. "Use of VLSI in Algebraic Computation: Some,
Suggestions." Proceedings of the 1981 ACM Symposium on
Symbolic and AlgebraiC Computation, pp.218-222. 1981.

[24] M.S. Lam and J. Mostow. "A Transformational Model of
VLSI Systolic Design." IEEE Computer, pp. 42-52. Feb.
1985.

[25] S.Y. Kung. H.J. Whitehouse. and T. Kailath. Editors. "VLSI
and Modern Signal Processing," Reading. NJ: Prentice Hall.
pp. 375-388. 1985.

[26] W.M. Gentleman and H.T. Kung. "Matrix Triangularization
by Systolic Arrays." SPIE proceedings, Real. Time Signal
Processing, vol. 298. pp. 19-26. 1981.

[27] D.E. Heller and I.C.F. Ipsen. "Systolic Networks for
Orthogonal Equivalence Transformations and Their
Applications." Conference on Advanced Research in VLSI,
MIT,pp. 113-122. 1982.

[28] J.G. McWhirter. "Recursive Least-Squares Minimization
Using a Systolic Array." SPIE Proceedings, Real Time
Signal Processing VI, pp. 105-112. 1983.

[29] C.R. Ward. A.J. Robson. P.J; Hargrave. and J.G.
McWhirter. "The Application of a Systolic Least Squares
Processing Array to Adaptive Beamforming." Proceedings
of ASSPConf., vol. 2. pp. 34A.3.1-34A.3.4. 1984.

[30] R. Schreiber. "Systolic Arrays for Eigenvalue
Computation." Proceedings of SPIE, Real Time Signal
Processing V, vol. 341. pp. 27-34. 1982.

[31] H.T. Kung and S.W. Song. "A Systolic 2-D Convolution
Chip." Tech. Report, CMU-CS.,.81-110, Carnegie-Mellon
Univ .• Computer Science Dept .• Mar. 1981.

[32] S.Y. Kung. K.S. Arun. R.J. Gal-Ezer. and D.V. Bhaskar Rao.
"Wavefront Array Processor: Language. Architecture. and
applications." IEEE Trans; on Computers, vol. C-31. no. 11.
pp. 1054-1066. Nov. 1982.

[33] S. Laha. and J.H. Patel. "Error Correction in Arithmetic
Operations Using Time Redundancy." Proceedings of 13th
Annual International Symp. Fault-Tolerant Computing, pp.
298-305. June 1983.

[34] J. Von Neumann. "Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable Components."
Automata studies, no. 34. pp. 43-99. Princeton U. Press.
Princeton. NJ.

[35] F.P. Mathur and A. Avizienis. "Reliability Analysis and
Architecture of a Hybrid-Redundancy Digital System:
Generalized Triple Modular Redundancy with Repair."
IEEE Computer Group Workshop on "Reliability and
Maintainability of ComputingSystems," Lake of Ozarks.
Missouri. Oct. 1969.

[36] S.Y. Kung. D.D. Souza. and J.T. Johl. "On Fault-tolerance in
Array Processing." Proceedings o/ICCD, pp. 764-768. Oct.
1985.

[37] J.A.B. Fortes and C.S. Raghavendra. "Dynamically
Reconfigurable Fault-Tolerant Array Processors."
Proceedings of 14th Int'l Symp. on Fault-Tolerant
Computing, pp. 386-392. 1984.

The Design and Development of a Very High
Speed System Bus - The Encore Multimax

Nanobus

David J. Schanin

Infinity Systems, Inc.
S July Road

Sudbury, Massachusetts 01776
(617) 443-5104

Abstract

This paper presents the design analysis and
tradeoffs that drove the design of a very high speed
backplane interconnect in a new, tightly-coupled
multiprocessor system. The involvement of cache
and memory subsystem designs with the
interconnect architecture are explored. The various
tradeoffs in arbitration techniques and bus protocols
are analyzed. In addition, a discussion of atomic
operations in a multiprocessor environment are
covered. Finally, an innovative technique for
interrupt vector handling in a multiprocessor system
is described.

IntroducUon

Through improving technology and innovative
CPU architectures, the performance capability of
modern computing systems is growing at a rapid
pace. As the CPU's computing capabilities increase,
the rest of the system's requirements tend to scale
up with it. The physical and virtual memory
capacity, the I/O bandwidth, and the secondary

E!9!!:t 1 - n.. Yon NNNnn Bott1tntclc

CH2345-7/86/0000/0410$01.00 © 1986 IEEE
410

storage trafTic generated all increase.

These developments aggravate the traditional
Von Neumann bottleneck between the Central
Processing Unit (CPU) and the program/data
·memory subsystem, illustrated in figure 1. Current
trends in computer architecture are towards
multiprocessors, and in particular tightly-coupled
multiprocessors, where many CPUs share a common
memory subsystem. Tightly-coupled systems
increase the pressure on the bottleneck by creating
even higher memory bandwidth requirements, as
illustrated in figure 2. In addition, a common
memory computer system which contains more than
one CPU complicates memory contention logic
because there is now a need to arbitrate fairly
among the many CPUs, as well as among the I/O
devices accessing memory.

CPU

I/O
Dmce

Fialrt 2 - n.. Yon NNntnn Bottl!ntck it to ... Sustem

The traditional method for addressing this
bottleneck involves the design of a memory
subsystem, an interconnect, and module interfaces
(CPU and I/O) that will support the theoretical
bandwidth required. In the design of the Nanobus,

the interconnect used in the Encore Multimu (a
tightly-coupled multiprocessor), a different approach
was taken. The Nanobus interconnect and the
memory subsystem were actually designed as a
single, integrated unit.

The MUittmaJ - An Arcbltectural
Overview

The Multimax is a classic tightly-coupled,
Multiple Instruction Multiple Data (MIMD) computer
system. Figure 3 illustrates its architecture.

n
t

16 Tarminals Tapa Drivas

Tarminal E

Conten- t

tnrtor h
B

r
n
II

l

Disk DrivlI

Ethernet
and

Mass Storage
Card

4Mb
Memory Card

Dual
Processor

Card

Figure 3 - The MuJtimox System

To reduce project risk and enhance time to
market, the design philosophies of the Multimax
were simplicity of hardware design and ease of
program development; features which created
programing restrictions were avoided whenever
possible. Some examples of hardware features
implemented with this goal of simplicity are:

411

• A bus design that is non-multiplexed and very
wide, rather than employing complex (and
potentially error prone) protocols, and multiplexing
addresses and data.
• Complete parity protection on every operation and
memory element in the system, to help detect any
design problems.
• Identical bus interfaces on all modules in the
system, so that only one interface type needed to be
designed and debugged.

Some system features implemented to provide
the simplest software interface possible are:

• Caches which were made software transparent, so
cache concurrency was always handled by the
hardware.
• Semaphores which were implemented to allow
their placement anywhere in physical memory, not
to restrict them to certain special regions or to
restrict their number.
• Hardware which was deSigned to allow load
leveling and directing of interrupt vectors to the
"most interruptible" CPU.

All Multimax mass storage operations are
handled through an inteUigent Ethernet/Mass
Storage Card, which needs only high level
commands. All terminal traffic interfaces to the
Multimax from an Ethernet connection through an
intelligent terminal concentrator box called the
Annex. Each Annex interfaces with up to sixteen
simple RS-232 type terminals.

Memory Subsystem DesIgn

In most new supermini computers, the memory
subsystem usually consists of a single memory
controller with multiple attached memory array
cards. The former contains all of the bus interface
and control logiC, and the latter contains only arrays
of memory chips with some driver/receivers. The
problem with such an architecture lies in the
contention that occurs for the single controller. The
V AX family, from the 11/750 on up, uses buffering
and FIFOs to reduce the busy state of the controller.
However, this technique is valuable only for a
system where one or two CPUs are generating traffic.
In a large, tightly-coupled multiprocessor, these
techniques would prove inadequate for handling the
high volume of memory traffic generated.

Cycle
Number

c
p
U

M
E
M
o
K
y

Request en
~t Ct.Ich

2

Transf ..
Adci"ess

3 4

If Irlte
Operation,
Transfer

Irlta Data

o.coct. s.Mi
~s ~tor

Rejec:t
Response

5 6 7

Receive Retry Transfer
Accept or ~t Adcftss

Reject and
Response 6rcrIt eve Ie

It.brn
Read
Data

Flgyre 4 - CPU and Memory Data Transfer States

Examining the problem yields the following analysis:
Since the lowest indivisible level in the memory
subsystem is really one row of RAM chips, it is
ideally at that level only that one would want
contention to occur. Therefore, the ideal memory
subsystem would have one controller and bus
interface per row of memory chips. This would
allow the maximum overlapping of memory
operations since each bank could cycle
independently. Unfortunately, this is also clearly the
most expensive solution. In compromising between
these two extremes, by grouping just a few rows of
memory chips on each controller, one can achieve a
reasonable tradeoffs between cost and contention.
The current Multimax memory subsystem groups
four rows of RAM chips per controller, and builds a
memory subsystem out of multiple cards, each of
which contains its own controller. Note that this
very much mirrors the traditional mini-computer
memory architecture, where each memory card
contained its own controller.

The design of the memory subsystem had to
insure that the memory subsystem and the Nanobus
would function as a single, synchronous unit. The
usual synchronizer delays, bus interface protocol
overhead, and general mismatch in performance
between the RAM controllers and the bus had to be
avoided. The solution was to have the memory
cards actually derive all of their internal clocks from
the Nanobus itself, and they therefore run
completely synchronous to the bus. This not only

412

eliminates any lost access time due to synchronizer
delays (which would be present if the memory was
clocked asynchronously to the bus), but also makes
memory access time deterministic. As a result, the
bus protocol on the Nanobus was designed
specifically around the ability of a memory
controller using 150 nsec access time RAMs to
receive addresses, validate them for both range and
parity errors, and respond. As can be seen in figure
4, the bus protocol allows for the transfer of an
address in cycle 2 and, if a write operation is being
performed, the write data in cycle 3. Both are
checked for range and parity errors, and the internal
state of the memory card is checked to see if the
requested bank is available. If aU these tests are
passed, an accepted signal is returned in cycle 4. If
a read operation has been requested, and a refresh
or a bank busy condition has not occurred, the data
will be ready for return in cycle 5. As can be seen
from the figure, memories can cycle every four bus
cycles. The Multimax supports data transfers at the
full bus bandwidth by supporting four way
interleaved memories.

By designing the bus protocol to match the
memories, and by running the memories
synchronously to the bus, the memory system
functions as a direct extension of the bus. This
yields the optimum performance interface between
the memory subsystem and a CPU or 110 card.

Nanobus Structure

The Multimu's Nanobus is designed to support
eight memory and twelve requester (CPU or 110)
modules for a total of twenty interfaces. The target
bandwidth for the Nanobus was 100 Mb per second
to allow for a minimum of a five year product life,
and to support very high bandwidth custom
modules, such as high speed video interfaces, array
processors, and custom compute engines.

It was intended that 100 Mb per second be the
actual data transfer rate through the system, not just
a theoretical protocol limit, i.e. using zero access time
memories. To insure support for such a transfer
rate, a data path width of eight bytes (64 bits) would
have to be clocked at 12.5 Mhz. However,
maintaining the 100Mb data transfer rate on a single
bus would not allow time slots for multiplexing
addresses and data, so separate address and data
buses are used. The phySical address space of the
Multimax is four gigabytes (232), so the Address Bus
contains 32 bits of address. Even interrupt vectors
do not contend for the Data Bus - there is a separate
10 bit wide bus dedicated to the transfer of vectors.

The technologies that made the Nanob us speeds
possible are the new Advanced Schottky and Fast
technologies. Bidirectional b us data signals are
driven by 74AS652, and most other tri-state bus
signals are driven by 74AS821, 841. Bus control
lines are driven by 74AS821, except for open
collector signals which are driven by 74AS756.

The Nanobus was designed as a pended bus, so
that after a read address is transferred to the
memory, the bus is released. This makes the bus
available for other address/data transfers while the
requester is awaiting the return of the requested
read data from memory. To insure guaranteed
delivery of addresses and write data, an
accept/reject handshake is built in to the Nanobus so
immediate confirmation of delivery is received. A
rejected cycle is then automatically retried by the
bus interface. However, a pended bus adds a new
dimension to the traditional address/data bus.
Addresses transferred to memory are typically used
to identify which memory location is being read or
written. But when the read data is ready to be
returned by the memory to the requester, the
requester has already released the bus. Therefore
the data must be "addressed" back to its requester.

413

To support this function, a second set of addresses,
that of one of twelve possible requestors, is also
implemented on the Nanobus. This address is
referred to as the "Requester J.D.... This feature has
some innovative implications when dealing with
caches, as discussed later.

All address, data and protocol paths are parity
protected, to insure reliability. A module receiving a
parity error can reject the bus cycle, and the bus
interface will retry the operation. Retrys on errors
are performed automatically by the bus state
machines, and are therefore transparent to the rest
of the system. Although all address and data lines
are tri-state, some critical control lines are open
collector, including the retry signal. This is
important to note because it allows any module that
detects a parity or protocol error on the b us to assert
signals which cause the errant cycle to be re-tried.
A system with distributed caches requires this
capability. Since all the distributed caches monitor
the system bus for addresses of data that is locally
cached, a cache must be able to cause a cycle to be
retried if it detects an address parity error and
therefore cannot validate the address of the transfer
in process.

Distributed Cache SUIUM~rt

The Nanobus was designed specifically to support
tightly-coupled multiprocessing. Such a system
must support cache memories at each processor
module to achieve acceptable performance. The
Multimax integrated support for a multiprocessor·s
distributed caches into the system bus itself, to
ensure that cache concurrency can be simply and
absolutely maintained. The first Multimax system
CPU modules were built using caches employing a
standard write-through algorithm. A write-through
cache forces all write operations to pass through the
cache to main memory, regardless of whether or not
the data is cached. The data in a write-through
cache may be updated or invalidated, and the cache
mayor may not be allocated. In the Multimax
system, write-through data is updated on a cache
hit, and the cache is allocated on a longword write.
This algorithm produced the highest cache hit ratio.
Regardless, a write-through cache's advantage is that
it is the simplest cache algorithm to implement from
a hardware perspective. However, this scheme is
less than optimal. It incurs performance penalties at
the CPU level (because all write operations require

bus and main memory access) and on a system level
(Because all CPU write traffic appears on the system
bus and at the memories).

Maintaining data consistency across the
distributed caches and main memory is an absolute
requirement. In order to ensure consistency, each
write-through cache in the system· always monitors
the Nanobus for bus write operations. Write
operations to main memory can create cache
consistency problems since they modify the contents
of main memory without explicitly modifying the
potentially distributed cached copies of ~ location.
When a main memory write is monitored to a
location that is cached, the monitoring cache must
update or invalidate its local copy of the data. In the
Multimax design, the decision was made to
invalidate the local copy, because this minimized the
interference with the local CPU. Updating instead of
invalidating would require the bus interface to
obtain access to the CPU cache at the expense of the
CPU. Simply invalidating the location requires access
only to the Valid bit of the cache tag store, a feat
which is much easier to accomplish because the
Valid bit is just one bit. The net result of the
Multimax implementation of write-through is that at
any point in time there may be many copies of a
memory location distributed among the many caches
in the system. However, once a modification to that
memory location occurs, all but two copies of the
data anywhere in the system will be invalidated -
the copy in main memory, and possibly a copy in the
cache of the CPU performing the write.

The Nanobus also supports caches implementing
a non-write through, or write-deferred algorithm. A
write-deferred algorithm allows write operations to
be performed only in the cache. Such an algorithm
enhances the CPU and system level performance by
filtering write operations from the system bus and
main memory. However, a write-deferred algorithm
in a multiprocessing system aggravates the problem
of data consistency across the system. When a
write-deferred cache allows a write operation to
take place only in the cache, the cached content of
the memory location now no longer agrees with the
main memory location, or with any other copies of
this location in other CPU caches.

This data consistency problem can be solved
through implementing a concept of data ownership.
One method of implementing data ownership was

414

discussed by Dr. Goodman, and one commercial
application of data ownership was implemented by
the Synapse Computer Corporation in their N .. I
computer system. Past solutions to the data
ownership problem have been usually been complex.
As an example, the Synapse N .. I's implementation
required extensive additional hardware. The
concept of ownership was implemented with extra
data bits in memory and in the caches.

The scheme planned for the Multimax involves
using a "Public Read" to satisfy all cache misses.
When a write operation is attempted, a "Private
Read" occurs to main memory. All other caches
monitoring a "Private Read" will invalidate their
local copies. By performing a "Private Read", the
non-write through cache now "owns" the data.
Ownership is maintained through a familiar
mechanism (as seen in write-through caches) -
monitoring the bus for addresses that have been
privately read. If a bus read is attempted by any
other device in the system on a privately owned
location, the monitoring cache signals the memory to
ignore the pending read request.

The write-deferred cache will now access the
locally modified (and therefore owned), cached data,
and write it back to main memory, updating the
system and ensuring consistency. On write-back to
main memory, the address on the Address Bus
always specifies the memory location that is being
updated. During a write operation which does not
transfer data ownership, the "Requester LD.",
described previously, that is supplied with the write
data, is not set to match any card in the system. The
data is therefore transferred only to main memory.
However, during a write operation which does
transfers data ownership, the "Requester LD." is set
to match the LD. of the card whose pended read
operation started the whole write back process. In
this manner, the data is simultaneously. in one bus
operation, returned to both the memory and the new
"owner", another cache.

Bus Access Arbitration

The Nanobus consists of three primary buses -
the Address Bus, the Data Bus, and the Vector Bus.
Access arbitration for each of these three buses
bears examining, as each presents a unique set of
problems.

Access to the Address Bus by CPUs and 110
devices determines the basic "fairness" of sharing
the bottlenecked resource - the memory - because
data transfers to or from the memory are always
stimulated by addresses. To insure true fairness in
Address Bus access, the Address Bus arbiter
implements a dynamically modified round robin
scheme.

Once a module has been granted access to the
Nanobus Address Bus, it then becomes the lowest
priority module in the round robin. However, the
Nanobus protocol specifies that four bus clock ticks
after an address is transferred, notification of its
acceptance or rejection is returned by the addressed
memory. At this time, if the address has been
rejected, the Address Bus arbiter dynamically
re-assigns the rejected module as the highest
priority module at the same time the rejected
module retries its request to the Nanobus during the
next bus cycle. Therefore, the module's access to the
bus is guaranteed.

Once a module has been retried at least once, its
asserts a signal labeled "Priority". This halts new
entries to the bus request round robin until aU
outstanding requests have been satisfied. The
priority signal ensures that modules being retried
are never caught in a potential lock out situation
where it is continually retried and never gets access
to the memory due to other modules interference
between its retrys.

The implementation of the address arbiter is also
unique. It is a combination of both a centralized and
a distributed arbiter. The centralized section of the
arbiter decides which module is to be granted the
bus according to the retry rules previously
described. The distributed part of the arbiter, which
exists on each module, determines when and if a
module will retry its request, or whether to holdoff
due to the priority signal being asserted, as well as
other conditions. This split arbiter allows the
advantages of both centralized and distributed
arbitration to be combined. The centralized arbiter
avoids the need for every module to know the
external state of every other module in the system,
i.e. whether any other module in the system was
requesting the bus. This would have required a
large number of signal lines and redundant
hardware on each module. The distributed arbiter

415

allows local decisions to be made based on the state
of the local module without the need to communicate
this information around the system. The resulting
implementation is both fast and simple.

The Vector Bus arbiter implements the same
dynamically modified round robin algorithm as the
Address Bus arbiter. However, since there is no
concept of a "busy memory" on the Vector Bus, the
retry mechanism is meaningless and not
implemented. Once granted the Vector Bus, a
transfer occurs only once.

The Data Bus arbiter is much simpler than the
Address Bus arbiter. The Data Bus is used by
memories wanting to return read data, or by CPU's
or 110 devices sending write data. Memories must
request access to the Data Bus through the Data Bus
arbiter. This arbiter is very simple and grants
access based on fixed priority due to a module's
physical position in the backplane. The requests to
the Data Bus, because they are stimulated by the
"fair" addresses, tend to be fair themselves, and
therefore a truly fair arbiter for the Data Bus is
unnecessary.

However, there are some perturbations to the
fairness of the Data Bus. Nanobus protocol requires
that a write address on the Address Bus be followed
during the very next bus cycle by the write data on
the Data Bus. It is therefore possible that a memory
might be. granted access to the Data Bus to return
read data just as a CPU or 110 device is transferring
write data on the Data Bus. Oashes on the Data Bus
are avoided by having the memories monitor the
type of address that is transferred on the Address
Bus. If a write address is detected, a memory will
abort an attempt to return read data during the next
Data Bus cycle, even if it has been granted the Data
Bus by the Data Bus arbiter, and thereby avoiding a
clash. Another perturbation to the fairness of the
Data Bus happens because of refresh conflicts at the
memories, which may delay the return of read data
from some memory modules.

These perturbations to fairness can result in
pathological conditions whereby a low priority
module (due only to physical location) can be locked
out from returning its read data for an extended
period of time. To overcome this case, an UNJAM
signal is available to all memories. When a memory
has not been able to return requested read data for

several bus clock cycles following its request, it
asserts UNJAM until it is able. to return its data.
Asserting UNJAM· causes the Address Bus arbiter to
suspend granting the Address Bus (this eliminates
write data traffic), and· aU memories not already
requesting the Data Bus' hold off posting new
requests (eliminating more read,data traffic). These
changes to the. arbiters aUow the Data Bus bottleneck
to unjam ~d the system to clear itself.

Atomic Operations

Due to the MIMD architecture of the Multimu, aU
syste m resources. are shared and can be dynamically
re-assigned· by the operating system. Therefore,
ownership identification of every system resource
must always be clear and unambiguous, and
arbitration. for a shared resource must always have
one and only one winner. Traditional methods for
ensuring . only one winner is through the use of
indivisible flags or' software locks in main memory.
An indivisible, or atomic operation on a flag location
typicaUy requires a test~and-set function.

The atomic test-and-set· function allows the CPU
to read the state of a lock and then set it, while
guaranteeing that there are no intervening
operations by other devices between the read and
the. set, or write, operation. If such an operation by
another device. were to occur, the lock could be
corrupted.

In the past, there have been several basic
approaches to implementing atomic operations. The
simplest has been to lock the entire system, bus and
memory, between the read and the write of the
atomic operation. While' this may be- adequate on a
non-pended bus, or in a system of only moderate
performance, this was neither possible on the
Nanobus due to its pended deSign, nor· desired
because of the performance implications of locking
the entire system bus for a period of time. Other
typical solutions' involve creating special hardware,
either in the memory system or the 110 space~ that
either allows· artificially partitioning memory into
blocks and locking various blocks of memory for the
atomic operation (Synapse N+ I >, or allows the
creation of "special" dedicated semaphores that are
not in memory (Sequent's Balance). None of these
solutions were deemed acceptable because they
imposed software restrictions on'the architecture of
the operating system.

416

To aeate semaphores in the Multimu, Nanobus
memories incorporate a design feature to implement
atomic test and set operations at the memory chip
level. Since the memory chip is . the least divisible
memory element in the memory SUbsystem, atomic
operations at this level will· by definition always be
indivisible. When an address is received by a
memory with an indication. that the addressed byte
is to be atomicly read and set, the memory conducts
a read operation and returns the data to the
requester. However, before it completes the
memory chip cycle, it performs a. write cycle and
sets the contents of that byte to aU· ones. This
performs the atomic bit test. and' set functionwithout~
having ever locked .. the bus or the memory
controller, . and without restrictions on the software
as to the number, location, or use of semaphores.
The only limitations are on· the composition of the
semaphores, which must be an entire byte, rather
than (potentiaUy) one bit, and that the "set"
condition of the semaphore be all ones.

Resetting a semaphore is by its nature atomic,
since if the set technique' is . successful in only ever
allowing one owner, only one CPU will ever clear the
semaphore.

Vector Bus Vector' Arbitration

The Vector Bus vector arbitration on.the Nanobus
is unique in that it supports two ·types of vector
transfers. In directed vector. mode, interrupt vectors .
are addressed to one specific module,' and therefore·
they pass directly from one module to another. In
this mode, the Vector Bus functions. as a standard ..
data transfer bus. Directed vectors are very useful
for an application typified by real time
requirements, where the user may want· to dedicate
one processor to only execute an interrupt driven
task or set of tasks to minimize'execution latency.

The Vector Bus also supports a second mode of
operation whereby the vectors themselves are
arbitrated for. This mode allows the broadcast.of a
vector to one of three software controlled classes of
modules, and then allows the hardware of' all
modules within the selected' class to arbitrate among
themselves as to which module . should receive the
vector. This mode is very useful for interrupt
services that want to be spread across more than
one processor to maximize the compute power that
can be applied to an event; and to allow a variable

amount of compute power to be applied dynamically
as needed. An example of one such operation is the
handling of terminal traffic. In a large system such
as the Multimal, which can support hundreds of
terminals, one would want to apply varying amounts
of compute power to terminal service depending on
the dynamics of the load.

Arbitrating for a vector is an important feature of
the Multimax system because it causes the interrupt
vector always to be directed by the hardware to the
most interruptible module within a software
selected class. All modules, capable of receiving
vectors have vector FIFOs for storing received
vectors until they can be processed by the CPU. The
vector arbitration allows the leveling of vectors in
the FIFOs among modules, i.e. the module with the
least number of interrupts in its FIFO and the lowest
software· set priority is the candidate for the
interrupt vector.

This method for arbitrating among a variable
number of modules for interrupt vectors is made
possible because the Vector Bus is an open-collector
bus. In order to arbitrate for a vector, all modules of
the selected class assert on the Vector Bus a binary
number representing the number of vectors in their
FIFOs, and their physical slot number. All selected
modules asynchronously compare each received data
line from the Vector Bus with the data that it itself is
driving onto the bus. The comparison starts with the
most significant bit and works towards the least
significant bit.

'When a' mismatch of any bit is found, the module
disqualifies itself from .the arbitration and stops
driving the Vector Bus. Only one module in the
system will walk down all the Vector Bus lines with
a successful comparison. (Including the physical slot
number in the arbitration process breaks any ties
between modules in identical classes with the same
number of vectors in their FIFOs.), This comparison
technique is asynchronous, and results in a settling
out between all of the modules in a class, leaving one
and :onJy one winner. Since the Nanobus is a
synchronous bus, this asynchronous event is allowed
to occur over multiple Vector Bus cycles, and during
this time the synchronous state machines controlling
the Vector Bus simply wait for a winner.

This Vector Bus design yields a very high
performance system ,capable of supporting 1.2

417

million directed interrupts per second, and 500,000
arbitrated vectors per second.

ConclUsions

The observed behavior of the Multimax system,
and the Nanobus, have to date verified the analytical
model that has been presented, though so far only
write-through caches have been used in the system.
The current system with 20 National Semiconductor
32032 CPUs uses an average of III of the available
bus bandwidth. Theo hardware and· software have
required little tuning to ,achieve nearly linear
increases in performance for each additional CPU
added because of the simplicity and no restrictions
guidelines around which the system was designed.
A twenty processor system yields over· nineteen
processors worth of performance. The system has
been proved capable of' maintaining the 100 Mb
throughput that it was designed for. The
-architectural concept of integrating the memory and
interconnect design has proven very successful.

When deSigning a new interconnect system, one
is sometimes tempted to concentrate the solution on
only the problem immediately at hand, i.e. not
designing for significant future expansion. Designing
a point solution will almost always lead to a simpler
and ~cheaper interconnect, but the penalty will be
readily apparent when a second or third generation
product is attempted and the foundation that has
been laid is found to be inadequate. While the
Nanobus design goals resulted in a system whose
foundation is capable .of delivering nearly ten times
the throughput that the current system requires,
and consequently results in slightly higher cost and
longer development time, the nelt several

, generations of products now have a solid foundation
on which to grow. This should yield computer
systems which can elpand si~nificantly in
,performance, yet which can be developed within a
short development cycle.

Annel, Multimal, and Nanobus are trademarks of
Encore Computer Corporation.

Acknowledgement

The author wishes to acknowledge the invaluable
contributions of the Multimo hardware
development team to this project. They include:

John Bartlett - Designer of the Annex
Steve Corbin - Designer of the System Control Card.
Trevor Creary - Designer of the Shared Memory
Card.
David Ford - Co-designer of the Dual Processor Card.
Brian Gill - Designer of the Ethernet and Mass
Storage Card.
Russ Moore - V.P. Hardware Engineering
Charlie Namias - Co-designer of the Dual Processor
Card.
Mark Natale and Dave lopf, engineering assistants.

Bibliography

1. M. Ajomone, et. a1. "Modeling Bus Contention and
Memory Interference in a Multiprocessor System",
IBBIi Tr8.0slIclions on Computers, January 1983.
2. Bell, Mudge and McNamara, Computer Bngineerinj
- A OBC View oJ'HudJVue Systems Design, Bedford,
Ma: Digital Press, 1978.
3. Kenneth I. Cohen, "Multiprocessing Architecture
Tunes in to Transaction Processing",B1ectroni~

january 27, 1983.
4. Encore Computer Corporation, MullimllI TecbniC1lJ
Summuy, Marlboro, Ma.: First Printing, 1985.
5. Eli T. Fathi and Moshe Kreiger, "Multiple
Microprocessor Systems: What, Why, and When",I£BJ.
Computer, March 1983.
6. Steven Frank, "Tightly Coupled Multiprocessor
System Speeds Memory Access Times", B1ectronics,
january 12, 1984, pp. 164-169.
7. James Goodman, "Using Cache Memory to Reduce
Processor - Memory Traffic", Proc. It!" Annu8.llnl
Symp. on Computer Architecture, june 1983, pp.
124-131.
8. L.H. Holley et. aI., "VM/370 Asymmetric
Multiprocessing", IBM Syslems ./Ourn8/, Volume 18,
number 1, 1979.
9. Dave Rodgers and Gary Fielland, "32-bit COmputer
System Shares Load Equally Among Up To 12
Processors", B1ectronic Design, September,· 1984.
pp.153-168.
10. Stone et. aI., Introduction to Computer
Architecture - Second Edition, Chicago, 111.: SRA,
1980.

418

/

11. Alan jay Smith "CPU Cache Memories", Draft,
April 24, 1984, to appear as a chapter in 'Th~

Hll11dbook for Computer Designers:- Ed. M. Flynn and
G. Rossman.

About the Author

David J. Schanin received a B.S. degree in
Computer Science from The City College, CUNY, in
1973, and an M.S. in Systems Engineering from
Boston University in 1976. He has spent eleven
years in industry, including over seven years at
Digital Equipment Corp. Mr. Schanin was the
founder and chief systems architect of Hydra
Computer Systems, the company that was acquired
by Encore Computer Corp. to build the Multimax
computer system. He is currently president of
Infinity Systems Inc., a consulting company
specializing in in the design of multiprocessor
computer systems, and high speed buses.

Mr. Schanin is an Adjunct Associate Professor at
the Boston University College of Engineering,
presently on leave. He is a member of the IEEE.

Optoelectronic Devices for Computing

By

Fred J. Leonberger

United Technologies Research Center
Silver Lane

East Hartford, Connecticut 06108

ABSTRACT

The status 0 f a variety 0 f optoelectronic
devices for optical computing is reviewed. Most of
these devices are useful for optical interconnects
at the chip, intraboard and interboard level.
Emphasis in the review will be on optical sources,
detectors and switches. Materials and device
technology that lead to integration with electronic
devices will also be described. Finally, a brief
overview of optoelectronic spatial light modulators
useful for processing two-dimensional optical inputs
is reviewed.

Optical techniques have a promising future in
computing, with initial impact in the interconnec
tion area. l This stems from problems using conven
tional electronics ranging from those at the chip
and board level (pin-out 1 imitations, wiring
dominated speed, loading, etc.) to the back plane
(ground loops, terminating resistors, etc.). The
rapid progress of optoelectronics and fiber optics
can be brought to bear on these issues. Many
computer companies are already installing fiber
links, optical isolators, etc., and fiber optic
local area networks will soon follow. Here, we will
focus on recent research and development results to
give an indication of future trends.

Illustrative data distribution examples from
the areas of free space, guided wave and fiber optic
technology are presented to show the range of opto
electronic technologies that could impact the inter
connect problem. Figure 1 illustrates a free
space/holographic approach. Here GaAs source arrays
are hybridized with si chips that incorporate photo
detectors. This approach leads to large fan out and
the possibility of dynamic interconnects if the
hologram were replaced with a reflective spatial
light modulator. Initial work on hologram require
ments2 as well as independent work on surface
emitting lasers3 ,,+ has been reported. A second
concept is the use of planar waveguide technology to

CH2345-7/86/0000/0419$01.00 © 1986 IEEE
419

achieve fixed but global interconnects for such
problems as the perfect shuffle as shown in Figure
2. He re, source and detector arrays a llow inter
connections on Si wafers. Progress in this area
include low-loss glass waveguideS> and the demon
stration of laser and detector arrays.6 A third
type of interconnect ut il izes the high speed 0 f GaAs
electronic and optoelectronic components to time
multiplex signals from an array of si circuits, as
shown in Figure 3. This method is well suited for
fiber communications across large boards and between
boards.

In all of the above examples, the rapid devel
opment progress of efficient optoelectronic compo
nents makes the approaches worthy of investigation.
For example, lasers with efficiencies of,.. 30
percent with power dissipation of a few mW can lead
to signals of 100 mW from photodiode-t ransiropedance
ampl ifiers (detector quantum efficiency,.. 70%, f <
100 MHz). On ly a few transitors are required for
t he detector circuit and subsequent ampl ificat ion 0 f
logic levels, so it is not unreasonable to consider
integrating such circuits where necessary in VLSI
wafers and boards. These high performance devices,
c an be comb ined with advanced hybridizat ion tech
n iques that minimize bond-lead parasitic effects.
Further enhancement is possible with advances in
GaAs monol ithic optoelectronic integrated c ircuits.7
An exciting possibility for the longer term is the
monolithic integration of GaAs and Si devices on a
common substrate. Much progress has been made in
the past year in GaAs/Si heteroepitaxy as well as a
demonstration of GaAs lasers on Si8 and negligible
d egradat ion 0 f si CMOS transistors following the
growth of GaAs layers and formulation of FETs on a
common substrate. 9

Integrated optic devices for switching fiber
optic signals are also under development and have
numerous computing applications. These switches are
formed monolithically on wafers of electrooptic
material using microelectronic technology. They are
useful where fast (multi-GHz) low voltage « 10 V)
switching between fibers is required for single or
small switch array applications. A schematic of a

2 x 2 directional-coupler switch is shown in Figure

4. LiNb03 switches and modulators have received the
most attention in recent years and are therefore
more highly developed than their semiconductor
parts. Drive voltage for a single device is gener
ally < 10 V. Low insertion loss is an important
parameter in designing any practical integrated
opt ic device, and fiber pig tailed modulators with
< 2 dB insertion loss (fiber-chip-f iber) have been
achieved. Multiple devices integrated in the form
of arrays 0 f 4 x 4 directional coupler switches have
been reported by several groups and recently and
8 x 8 switching has been demonstrated.l 0 A 4 x 4

device has been pigtailed11 and exhibited crosstalk
of -25 dB, excess loss of 5 dB and switching volt
ages 0 f ,... 30 V. In another a rea, arrays 0 f Mach
Zahnder interferometers have been used to demon
strate analog-ta-digital conversion at 4 bits and 1
Gigasample/sec, which is faster than currently
achievable by electronic means. 12

In GaAs swi tches, much recent progress has been
made in developing low loss channel guides (,... 0.2
dB/ cm at 1.3 llm) with low fiber coupling loss (up to
70% coupl ing efficiency). GaAs directional coupler
switches with 30 dB extinction and Mach-Zehnder
modulators with 3 GHz bandwidth have been demon
strated. Typical switching voltages are"" 20V. In
principal such devices can be integrated with

electronic devices on a common substrate. Recently
the use of GaAs/GaAlAs quantum-well devices has led
to the potential of high efficiency electrooptical
waveguide modulators as well as the prospect of
practical all-optical switching devices. The latter
would be particularly attractive in computing
applications provided adequate switching contrast
ratio and fan-out can be demonstrated.

The last device to be described is the spatial
1 ight modulator. Th is in general is a two d imen
s ional device that allows programmed control
(modulation, transmission or reflection) of each
pixel. Devices under development utilize optical or
electrical control. Here, we will focus on devices
that use CCDs as part of the structure. Such
devices are of special interest in optical proces
sing because they allow lines of data to be scrolled
(line transfer) which is attractive for a number of
algorithms. Devices which are under development
include those utilizing si CCD/deformable
membranes13 and GaAs CCD/electroabsorption. 1 '+

Figure 5 shows a schematic of one such device.

In summary, a large variety of optoelectronic
devices are under development that can have
important roles in computing. In itial appl ications
are in interconnection, but the future impact will
be in actual computation.

420

References

1. J. W. Goodman, F. J. Leonberger, S. Y. Kung and
R. A. Athale, Proc. IEEE~, 850 (1984.)

2. R. K. Kostak, J. W. Goodman and L. Hesselink,
1984 OSA Annual Mtg, San Diego, CA, Paper
ThP2.

3. Z. L. Liau and J. N. Walpole, App!. Phys.
Lett., 467, 115 (1985); J. J. Yang et aI,
CLEO'86 Digest, Paper PD-ThT7 (OSA, 1986).

4. K. Iga, S. Ishikawa, S. Ohkouchi and T.
Nishimura, Appl. Phys. Lett. 45, 348 (1984).

5. J. T. Boyd, R. W. Wu, D. E. Ze1mon and A
Nauman, Optical Engineer 24, 230 (1985).

6. See, for example, P. P. Deimal, et al 1985
IEEE/OSA Optical Fiber Communication Conf., San
Diego, CA, Paper ThC4.

7. See, for example O. Wada, H. Hamgauchi, S.
Miura, M. Makinchi, K. Nakai, H. Hermiatsu and
T. Sakurai, Appl. Phys. Lett. 46, 981 (1985).

8. T. H,. Windhorn and G. M. Metze, App!. Phys.
Lett. ~, 1031 (1985).

9. R. Fischer et aI, Appl. Phys. Lett. 47, 983
(985).

10. P. Granestrand et aI, Digest OFC'86 p. 4 IOSA,
1986.

11. G. A. Bogert, E. J. Murphy and R. T. Ku, Digets
IGWO'86, paper PDP3 (OSA, 1986)

12. R. A. Becker, C. E. Woodwand, F. J. Leonberger
and R. C. Williamson, Proc. IEEE 11., 802
(984).

13. D. R. Pape, Proc. SPIE 465, 17 (1984)

14. R. H. Kingston, B. E. Burke, K. B. Nichols and
F. J. Leonberger, ibid, 9.

HOLOGRAPHIC
ROUTING ELEMENT

SOURCES

"'--

Fig. 1. Hybrid Ga/As si free-space approach to data
communication.

S
D

Si CHIP

PERFECT SHUFflE WAVEGUIDE NETWORK
RETURN DATA PATH (No Permutation)
SOURCES
DETECTOR

Fig. 2. Optical perfect shuffle network.

Fig. 3. Modules of si chips surrounding GaAs chips,
a nd with communication between GaAs chips via
optical fibers.

421

v
Fig. 4. Directionar coupler switch.

- ~ Fourier transform

/' plane

/~ \BLens
GaAs CCO

I--- spatial light
modulator

Line·by·line entry
of two-dimensional data

Fig. 5. Two-dimensional optical signal processing
using GaAs spatial light modulator.

ARCHITECTURES FOR OPTICAL MATRIX MULTIPLIERS

Ravindra A.Athale

The BDM Corp.
7915 Jones Branch Drive

McLean, VA.2210a

The operation of multiplying two
matrices is one of the fundamental
operations that is frequently encountered
in signal processing, image processing
and numerical computations. This
operation can be performed by optical
systems employing parallelism. This paper
discusses different architectures for
optical processors performing this
operation. The architectures are divided
into several classes according to the
degree of parallelism entailed and the
type of interconnections employed.

The operation of multiplying two
matrices is one of the most common
operations encountered in signal
processing, image processing, and
numerical computation involving solutions
of a system of linear simultaneous
equations. This operation is
mathematically defined in equation 1
below:

Ci j = L Ai kBkj [1]
k

For i=l to Nand j=l to N

In FORTRTAN , this operation can be
coded by the following program:

DIMENSION A(N,N), B(N,N), C(N,N)
DO 10 I=l,N
DO 10 J=l,N
DO 10 K=l,N
C(I,J) = C(I,J) + A(I,K) * B(K,J)

10 CONTINUE

It should be noted that there are
three DO loops in the program with N
passes per loop. Since the ?pe:ati?ns
performed in the loops are mult1p11cat10n
and addition, this program involves N3
multiplications and additions. The
indices I and J orrespond to the array
index of the output matrix C, and the
index K is the common array index for the

CH2345-7/86/0000/0422$01.00 © 1986 IEEE
422

input matrices A and B, over which
summation is performed

Optical processing systems are
capable of performing the operations of
analog multiplication and addition in
parallel between one- or two-dimensional
array of positive real numbers and
achieve global communication between
them. This property of optics has been
used in the past for signal processing
and image processing operations primarily
based on Fourier transforms. Recently,
optical processing systems have been
investigated for performing matrix
operations in parallel, which will make
them more widely applicable. The large
variety of optical architectures reported
in the literature can be classified into
three different categories according to
the level of parallelism:

(i)
performing

(ii)
performing

(iii)
employing
operations

one-dimensional systems
N operations in parallel

two-dimensional systems
N2 operations in parallel

two-dimensional systems
multiplexing performing N3

in parallel.

The first two categories can be
further subdivided according to which of
the DO loops in the program for matrix
multiplication are implemented in
parallel. The optical processors in each
subcategory can be implemented with
different technologies, such as
integrated optics, acoustooptics,
electrooptics etc. A further
classification results when one considers
which parameters - e.g. time or space,
temporal or spatial frequency - are used
to multiplex the operations and which are
used for summation/integration. A truely
comprehensive study which includes a
detailed analysis of all of these
variations will indeed be massive. In
this paper we will briefly discuss the
different optical architectures in a
generic way. We will place particular
emphasis on the types interconnects
involved in each of these archietctures
since it will high light the special
advantages offered by the use of optics.

Other details can be found
articles that are referenced at
of the paper.

N-PARALLEL OPTICAL SYSTEMS:

in the
the end

The optical processor in this
category perform N multiplications and/or
additions in parallel. If we look at the
program listing, we will get three
choices for the DO loop index that we
could implement in parallel with an
optical system. The indices I and J
correspond to the array indices of the
output matrix C, and hence are equivalent
for the purpose of this analysis. Hence
there are two choices, (i)parallelizing
the DO loop over index I (or J), and
(ii)parallelizing the DO loop over index
K.

(i) This choice of the DO loop
index (I) leads to optically performing N
multiplication in parallel and the
summation over the K index 'and the DO
loop over J sequentially. The resulting
optical architecture is shown in Figure
1. This system contains a one-dimensional
(l-D) spatial light modulator (SLM), a
point modulator, a 1-D time-integrating
detector array, and collimating optics (
for signal broadcasting) and imaging
optics. The basic operation that this
processor performs in one clock cycle of
the 1-D SLM is that of scalar-vector
multiplication defined by equation 2:

= a Q [2]

It should be noted that this system uses
an interconnection network for
broadcasting in one dimension.

(ii) This choice of the DO loop
index (K) leads to performin N
multiplications and additions in
parallel. The resulting architecture is
shown in Figure 2. This system contains
two 1-D SLM, a point detector, and
focussing optics (for fan-in) and
imaging optics. The basic operation that
this processor performs in one clock
cycle of the 1-D SLM is that of vector
inner product defined by equation 3:

c = [3]

It should be noted that this system uses
an interconnection network for fanning in
N-data channels in one dimension.

Both of these optical architectures
do not fully exploit the 2-D parallelism
of optics. However, their 1-D nature

423

allows for an integrated optic
implementation that allows for higher
speed operation (100 MHz) in a small
and rugged package. It should also be
noted that the operations described above
are of interest in and by themselves for
signal processing/symbolic processing
operations and do not have to be
considered in the context of matrix
multiplications alone. The scalar-vector
multiplication is is useful in
calculating a weighted version of a given
input and the vector-vector inner product
can give a similarity measure between the
two vectors to be compared.

The optical processors in this
category perform N2 multiplications
and/or additions in parallel and hence
fully exploit the 2-D parallelism offered
by optics. If we look at the program
listing, we will get two distinct choices
for the two DO loops that we can
implement in parallel with an optical
system. (i) this choice involves
performing the DO loops over I and J
index in parallel, (ii) the second choice
involves performing the DO loops over I
(J) and K in parallel.

(i) This choice of DO loop indices
(I and J) leads to performing N2
multiplications in parallel and the
summation over the K index sequentially.
The resulting optical architecture is
shown in Figure 3. This system contains
two 1-D SLMs arranged orthogonal to each
other, optics for collimating and
focussing simultaneously along orthogonal
directions, and a 2-D time-integrating
detector array. The basic operation that
this processor performs in one clock
cycle of the 1-D SLM is that of a
vector-vector outer product defined in
equation [4]:

C' = [4]

where C'is a rank one matrix that is NXN
in dimension. It should be noted that
this optical architecture uses two 1-D
input arrays and yet calculates a 2-D
output array. The interconnections
utilized by this system are quite complex
in that they involve broadcasting along
one spatial dimension and fanning-in
along orthogonal spatial direction. One
element of the 1-D SLM encoding one
element of the vector b is simultaneously
accessed by N elements of the other input
vector g without contention. The data
path for an element of vector g, retains

its identity. So after being multiplied
by an element of vector Q, it is directed
to a specific location on the 2-D time-
integrating detector array as shown in
Figure 3. This system can be considered
to be a spatially multiplexed version of
the 1-D scalar-vector multiplier depicted
in Figure 1.

(ii) This choice of DO loop indices
(I and K) leads to performing
N2multiplications and additions in
parallel and performing the DO loop over
the remaining index (J) sequentially.
The resulting optical architecture is
shown in Figure 4. This systemcontains
one 1-D SLM, one 2-D SLM, one 1-D
non-integrating detector array, and
optics for imaging/collimating on the
input side and for imaging/focussing on
the output side. The basic operation that
this processor performs is that
-multiplying a column vector of matrix B
by 'matrix A defined in equation [5]:

= A Q [5]

The interconnections utilized by this
system involve broadcasting the vector Q
to all rows of matrix A on the input side
and fanning in the product of a row of A
and vector Q on to a spec~fic detector
element on the ,output side. This system
can be considered to be a spatially
multiplexed version of the 1-D
vector-vector inner product processor
depicted in Figure 2.

The optical processors in this
category do utilize the 2-D parallelism
of optical systems by employing the
spatial variables for multiplexing and/or
for integration. These two _operations are
also useful in and by themselves in
signal and image processing. The
operation of outer product is critical in
synthesizing a complicated matrix (e.g.
an image) from several simple
"primitive" images corresponding to rank
~ne matrices. .The vector-matrix
multiplication implements a generalized
linear transformation on a 1-D input. The
optics utilized by these systems contains
off-the-shelf components like spherical
and cylindrical lenses to give different
properties along the two orthogonal
directions.

The optical processors in
category perform N3 multiplications
additions in parallel. Since
matrix-matrix multiplication involves

this
and
the

N3

424

multiplications/additions this class of
optical processors will perform the
operation in one clock cycle of the
active devices involved. Since we are
performing all the 'DO loops in parallel,
there is only one way of formulating the
processor mathematically. Different
architectures result, however, when
designing such a system optically.

The schematic diagram of the
N3~parallel optical Bystem .is shown in
Figure 5. This system uses two 2-D SLMs
for inputing matrices A and B and a 2-D
detector arrayfor detecting the output
matrix C. The optics involved is
complicated and has to be implemented via
computer generated holography.

One intriguing feature of this
architecture is that it employs only N2
active elements and still performs N3
'operations in parallel. Therefore the
efficiency of this architecture as a
parallel processor (computational speedup
/ number of processing ,elements) is N
which can be 'much larger than 1! In most
other designs for parallel processors the
goal is to achieve an efficiency of 1,
indicating a linear speedup with the
number of processors. This indeed
represents a unique .feature of optics in
that it utilizes the parallel, contention
free, multiple-access communication
capability of optics to add an extra
dimension to the computational power of a
paralle processor. Since the operation of
matrix-matrix multiplication is a well
structured operation with little
interdependance between the calculations
of the elements of the output matrix,
this feature of optical systems can be
exploited to fullest extent to achieve
superlinear ,speedup ,in a _parallel
'archi tecture.

The N3-parallel optioal processor
'can be viewed as a ;multiplexed 'version of
the N2-parallel optical architectures.
Since in the earlier section we discussed
two different optical systems for those
architectures, we can view the
N3-parallel architecture -as multiplexed
versions of either the outer product
optical processor or the vector-matrix
optical processor. It should be

-emphasized that this division is strictly
for conceptual clarity and is not
indicative of a deeper category.

Figure 6(a) shows the schematic
diagram of an N3-parallel optical
processor viewed as N outer product
optical processors that are spatially

multiplexed. In the system depicted in
Figure 3 the addition of the outer
product matrices for calculating the
output matrix C was performed by
integration in time on. the 2-D detector
array. In Figure 6(a), all the outer
products are simultaneously calculated
and are therefore added by integration of
N terms in space by fanning in the
apropriate signals emerging from the
elements of the second matrix B. Each
column of matrix A is. encoded by a light
beam traveling at an apropriate angle so
as to interact with the correct row of
matrix B as' indicated' in Figure 3. On the
output detector array, the results of the
different outer products performed in
parallel converge thus performing the
final integration. Figure 6(a) shows the
optical paths for only two outer products
for clarity.

Figure 6(b) shows the schematic
diagram of the N3-parallel optical
processor viewed as a spatially
multiplexed version of the optical
vector-matrix multiplier shown in Figure
4. In that system, the operation of
vector-matrix multiplication was
performed in one cycle generating one row
of the output matrix C. The full answer
was calculated by generating different
rows of matrix C in a time-sequential
fashion. In the system depicted in Figure
6(b), all rows of matrix A are available
simultaneously while the matrix B is used
in N different vector-matrix products
simultaneDusly. The resultant N rows of
the output matrix C are spatially
separated and are detected by' the rows of
the output detector array. In this
processor, each row of matrix A is
encoded by a light beam traveling. at an
appropriate angle. At matrix B, all rows
of A are simultaneously accesing the
elements of B while keeping their
distinct identity. The unique encoding of
the light beam for- each row of A causes
the output to be separated on the
detector array thus providing all rows of
matrix C in parallel.

Optical processors offer the unique
features of two-dimensional parallelism
in the basic arithmetic operations of
analog multiplications and additions and
global, parallel, and contention-free
communication between the two-dimensional
array of simple processing elements.
These features can be exploited to build
optical processors for performing the
general. operation of matrix-matrix

425

multiplication. In this paper, we
outlined several different architectures
of parallel optical processors for
performing this operation with varying
degree of parallelism. In each category
the type of communication involved were
emphasized. A unique optical architecture
was described that uses the
contention-free communication offered by
optics to obtain a speedup of N3 with a
system containing only N2 active
processing elements.

RE~N..CE_Q

GENERAL OPTICAL PROCESSING REFERNCES:

J.W.Goodman, "Introduction to
Optics", McGraw-Hill, 1968.

Fourier

S.H.Lee ed. "Optical
Processing: Fundamentals",
Springer-Verlag, 1981.

Information
New York:

Proceedings of IEEE Special Issue on
Optical Computing, Volume 65, No.1,
January 1977.

Proceedings of IEEE Special Issue on
Optical Computing, Volume 72, 1984.

GENERAL REVIEW ARTICLES ON OPTICAL MATRIX
PROCESSORS:

R.A.Athale, 10t h International Optical
Computing Conference, April 6-8, 1983,
Cambridge, Mass. IEEE Catalog Number
83CH1880-4.

D.Casasent,
p.831,1984.

Proc. IEEE, Vol. 72,

W.T.Rhodes and P.S.Guilfoyle, Proc. IEEE,
Vol.72, p.820, 1984.

1-D INTEGRATED OPTICAL ARCHITECTURES:

C.Verber,
1984.

Proc. IEEE, Vol. 72, p.942,

OPTICAL VECTOR-MATRIX MULTIPLIERS:

M.A.Monahan, K.Bromley,and R.P.Bocker,
Proceedings of IEEE, Vol.65, p.121, 1977.

J.W.Goodman, A.R.Dias, and L.M.Woody,
Optics Letters, Vol.2,p.1, 1978

H.J.Caulfield,
and S. Horwitz ,
p.80, 1981

W.T.Rhodes, M.J.Fos.ter,
Optics Comm., Vol.40,

OPTICAL OUTER PRODUCT PROCESSORS:

R.A.Athale and W.C.Collins, Applied
Optics, Vol.21, p.2088, 1982.

R.A.Athale and J.N.Lee,
Vol.72, p.931, 1984.

Proc. IEEE,

R.P.Bocker, H.J.Caulfield, and K.Bromley,
Applied Optics, Vol.22, p.804, 1983.

OPTICAL FULLY PARALLEL PARALLEL
MATRIX-MATRIX MULTIPLIERS:

R.A.Heinz, J.O.Artman, and S.H.Lee,
Applied Optics, Vol.9, p.2161, 1970.

P.N.Tamura and J.C.Wyant, Proceedings of
SPIE, Vol.83, 1975.

A.R.Dias, in "Optical Information
Processing for Aerospace Applications",
NASA Conference Proceedings 2207, (NTIS,
Springfield, VA.).

Y-Z Liang and H.K.Liu, Optics Letters,
Vol.9, p.322, 1984.

H.Nakano and K.Hotate, Applied Optics,
Vol.24, p.4238, 1985.

OPTICAL MATRIX PROCESSORS: ALGORITHMS AND
HIGHER ORDER OPERATIONS

H.J.Caulfield,
W.T.Rhodes,
p.2263, 1981.

D.Dvore, J.W.Goodman, and
Applied Optics, Vol.20,

D.Casasent and M.Carlotto, Applied
Optics, Vol.21, p.147, 1982.

R.A.Athale and J.N.Lee, Optics Letters,
Vol.8, p.590, 1983.

D.Casasent, C.Neuman, and J.Lycas,
Applied Optics, Vol.23, p.1960, 1984.

ELEMENT OF A

COLLIMATING
OPTICS

ROW OF B ROW OF C

Figure 1. The N-parallel scalar-vector product
optical processor. (Imaging optics ommitted.)

426

ROW OF A COLUMN OF B ELEMENT OF C

FOCUSSING
OPTICS

o

Figure 2. The N-parallel inner product optical
processor. (Imaging optics ommitted.)

COLUMN OF A

ASTIGMATIC
OPTICS

ROW OF B PARTIAL MATRIX C

ASTIGMATIC
OPTICS

Figure 3. The N~parallel outer product optical
processor.

COLUMN OF B

ASTIGMATIC
OPTICS

MATRIX A COLUMN OF C

ASTIGMATIC
OPTICS

Figure 4. The N 2 -parallel vector-matrix optical
processor

MATRIX A

MULTIPLEXED
OPTICS

MATRIX B

MULTIPLEXED
OPTICS

MATRIX C

Figure 5. The N3-parallel optical processor.

MATRIX A MATRIX B MATRIX C

Figure 6(a). The N~parallel optical
processor viewed as a multiplexed outer
product processor.

MATRIX B MATRIX A MATRIX C

Figure 6(b). The N~parallel optical
processor viewed as a multiplexed
vector-matrix processor.

427

OPTICAL REALIZATIONS OF NEURAL NETWORK MODELS

Demetri Psaltis

California Institute of Technology
Department of Electrical Engineering

Pasadena, CA, 91125

INTRODUCTION

The optical implementation of computing systems
whose structure and function are motivated by natural in
telligence systems is a subject that involves optical com
puting and neural network models for computation. These
are two areas that have individually received attention in
recent years and they share the common property that
they promise to provide solutions for fundamental prob
lems in computation. In the case of optical computers the
limitation that is being addressed is communication. With
optics it is possible to have large arrays of processing ele
ments communicating with each other without connecting
a wire between each pair. The need to provide wires for
communication in an electronic circuit is perceived as a
major technological limitation of VLSI [1]. The primary
justification for optical computing is therefore to extend
the communication capability in computers [2,3]. It is not
clear however precisely how this global communication ca
pability can be put to good use. Through free space inter
connects and volume holograms we can have thousands of
computing elements all talking to each other at the same
time. Is it possible to do useful computation in such a
system? We look at neural network models for an answer
to this question.

NEURAL NETWORK MODELS
OF COMPUTATION

Natural systems of intelligence are being examined
as a possible source of inspiration for building comput
ers, partially because of the persistent difficulty we have
had in performing tasks such as simple pattern recognition
problems. Such problems appear trivial for humans but
very cumbersome for conventional computers. Moreover
these problems have not become substantially easier to
solve as the processing power of computers has increased
and allowed them to tackle problems that are well beyond
the capability of a human. There is a suspicion therefore
that the way in which these problems are tackled by neu
ral networks is fundamentally different from the way we
approach these problems in conventional computers. If
we understand what these differences are this will help us
design better computers to solve these problems.

CH2345-7/86/0000/0428$Ol.OO© 1986 IEEE
428

An electronic computer and a neural network have
some morphological similarities. They both consist of a
large number of simple processing elements (neurons ver
sus gates) that are connected to each other. In both sys
tems the individual computing elements perform simple
operations but the organization of the simple elements
into a large system allows complicated tasks to be per
formed. The most striking difference between a neural
network and an electronic circuit in a computer is the
degree of connectivity. Each neuron is connected to thou
sands of other neurons whereas in an electronic computer
typically each gate receives inputs from few (two or three)
other gates. The type of connectivity that exists in a neu
ral network allows thousands of neurons to collectively
and simultaneously influence the state of each neuron.
The role of this extensive and complex communication
network must play a prominent role, indeed the domi
nant role, in providing neural networks their computing
power. Another basic difference is the role of time. In
conventional computing ti~e is paramount. The number
of steps required for the execution of a program is the pri
mary measure of complexity. The speed-up that one ob
tains by breaking down a problem to many smaller tasks
that are executed in parallel is the driving force for most
of the developments in computer architecture. Certain
computations are done quickly with neural networks be-

cause they process information collectively. We draw the
distinction here between parallel and collective processing.
In a parallel computer a problem is decomposed into small
pieces that are individually worked upon. In the compu
tations that we envision being performed by networks,
a set of neurons collectively work on the same problem.
The global communications allow each node (neuron) to
change its state in response to the state of the entire net
work. The transitions from one state to another are deter
mined in part by the operation of the neurons themselves
but principally by the connections amongst them. The
program is stored in the communication network. Neural
nets modify their structure to fit the requirements of the
problem. The distinction between software development
and hardware organization is almost entirely removed.

The highly abstract neural network models which are
of primary interest to us share two properties. The first is
the Hebbian [4] hypothesis which states that information
is stored by modifying the strength of the connections be
tween neurons. The second is that the nonlinear operation
performed by the neurons is relatively simple, often as
sumed to be a thresholding operation [5]. Accordingly an
optical realization of a neural network model requires two
main components: an array of optical nonlinear elements
to simulate the action of the neurons and a system to
specify the optical interconnections among the processing
elements (neurons); since the connections in this case con
stitute the memory, they must be modifiable. A diagram
of a generic optical implementation of a neural network is
shown in Fig.1. We envision that the processor array will
be fabricated using planar technology (most likely semi
conductor technology) and thus the array of neurons is
arranged on a two dimensional planar configuration. The
merit of the optical approach is that the interconnections
are specified externally to this plane. The three dimen
sional construction of the optical system is the key feature
that allows us to a) fully utilize the real estate on the pro
cessor plane for the simulation of neurons and b) possibly
use the volume of a nonlinear crystal to record a holo
gram that specifies the interconnections. In what follows
we will discuss candidate emerging optical technologies for
simulating neurons and their interconnections and review
optical implementations of associative memories.

OPTICAL REALIZATIONS

There are three candidate device technologies for op
tically simulating the nonlinear mapping performed by the
neurons: spatial light modulators [6], integrated optoelec
tronics [7], and arrays of nonlinear optical switches [8].
8patiallight modulators have been investigated for many
years primarily for optical image processors. A practically
useful device is not yet available, but several decvices suit
able for laboratory experiments exist. Most of the 8LM's
can be operated in a high contrast mode, producing a
two dimensional light modulation that is proportional to
a thresholded version of an image, thereby simulating the
action of neurons in network models that are based on
threshold logic. These devices are playing an important
role at this stage, because they allow us to perform mean
ingful experiments. They will continue to play this role in
the foreseeable future but in the long term optoelectronics
and nonlinear optics appear more promising.

The optoelectronic approach to simulating an array of
neurons involves the integration of two dimensional arrays
of detectors and light emitters (LEDs) on a single (pos
sibly hybrid) chip. The output of each detector can then
be connected via a saturating amplifier, or an appropriate
analog circuit that perfroms the required nonlinear map
ping, to the corresponding LED. Thus the combination
of the detector, the LED, and the intervening electrical
circuit comprise the neuron. There are several advanta-

429

geous features of this approach. First, it is technologically
the most straightforward. The integration of optical de
vices and electronic circuits is currently being pursued for
providing optical interconnections to VLSI circuits. The
devices required for simulating an array of neurons are
particularly simple and regular and therefore they ought
to be relatively easy to manufacture. It is worth point
ing out that the only electrical connections that would
be required to such an optoelectronic chip are to provide
power. The second interesting aspect is the relative flex
ibility there is in specifying the action of the neurons by
designing the electronic circuit. Probably the most dif
ficult problem in manufacturing practical devices of this
type is power dissipation. Nevertheless, we believe that
optoelectronics is the technology that is most likely to
provide us with devices that are practically useful for im
plementing optical networks.

In recent years we have seen dramatic improvements
in the area of nonlinear optics that has led to numerous
demonstrations of optical switching including two dimen
sional arrays of swithches. The major problem with these
arrays at present is the very high power required to switch
each element making large arrays impractical. These op
tical switches are intended either for optical communica
tions or digital optical computing. Therefore most of the
work in the literature deals with using these devices to
implement simple Boolean gates. With these applications
in mind, most of the research effort has been directed to
wards increasing the switching speed and this high speed
operation results in exceedingly high power requirements.
For a neural network simulation, speed is not essential.
The time response of neurons in the brain is in the mil
lisecond range. What is required is ever larger arrays that
switch slower and thus have reduced power requirements.
Therefore, with the thrust of the research in nonlinear op
tical switches being almost orthogonal to what is needed
for the netrwork implementations, we feel that nonlinear
optics will not playa significant role in this area in the
near future, unless some of the research is appropriately
redirected.

We now turn our attention to interconnections, the
second major component of an optical network. A crucial
consideration here is that we must be able to simulate
plasticity, i.e. modify the interconnections. In neural net
models, the strength of the interconnections is used to
store the "program" and the data; it is the memory of
the system. Moreover, a particularly interesting feature
of many of the models is supervised learning (as opposed
to software development) as well as self organization (a
form of unsupervised learning). These features emerge
as a result of continuous dynamic modification of the in
terconnections and thus optical implementations of such
models also require interconnections that can be modified
continuously. The second important considerations in se
lecting such a medium is its storage capacity, i.e. how

many resolvable spots can be recorded in the area or the
volume of the material. This directly determines the num
ber of interconnections that are being simulated which in
turn determines the amount of information that can be
stored in the network. For the networks we envision, we
would like to be able to arbitarily interconnect at least
104 neurons which translates to 108 connections. This
consideration eliminates several candidates, such as spa
tiallight modulators, from being considered as a variable
dynamic interconnection medium for neural network sim
ulations. We will discuss two separate optical technologies
that we believe are the most promising for this purpose:
magnetooptic memory disks and photorefractive crystals.

Write-only optical memories are already being used
for video and audio recording and increasingly in comput
ers. Magnetooptic disks, which can be erased and rere
corded, are not yet commercially available however this
should happen in the immediate future. We can have bil
lions of resolvable spots on a single optical disk and we can
reconfigure the recording magnetically. Presently such op
tical disks are used as mass storage devices in electronic
computers. Information is accessed from these memories
serially by focusing a single laser onto a single bit (out
of several billion that may be recorded on the same sur
face) and measuring the reflected light on a single detec
tor. By mechanically spinning the disk and moving the
laser head we get access to anyone bit. The potential
exists for accessing information stored on the disk much
faster and much more effectively if the same disk is used
to store information such that the connections between
several thousand lasers and detectors are specified. In the
following section we will discuss a specific model of asso
ciative memory and an optical implementation that can
be implemented using optical disks.

Historically, holography is the first link between op
tics and neural network models. Van Heerden [10] and Ga
bor [11] both discussed holography as an associative mem
ory and mentioned the possibility that there are analogies
between holography and the way information is stored in
the brain. In holography a pattern is reconstructed by
illuminating the hologram with the reference beam that
was used during recording. Thus a hologram is a form
of associative memory. It is also known that a recon
stuction can be obtained from only a part of a hologram
a property that is shared by many types of associative
memory. More recently holography is being considered as
a method for providing optical interconnections [3,9] in

an optical or optoelectronic computer. Such connections
can be made programmable by recording the hologram
on photorefractive (PR) crystals [6]. When a PR crystal
is exposed to light, free charges are photogenerated and
eventually retrapped. This process results in the redistri
bution of the charge within this crystal in a pattern simi
lar to the pattern of the illuminating light intensity. The
presence of spatially varying charge density induces inter-

430

nal fields in the crystal which in turn modify the index of
refraction. Thus a phase hologram is recorded which can
be reconstruced by illuminating the crystal with a light
beam. PR crystals represent the second major candidate
for realizing programmable optical interconnects. The ad
vantages of PR crystals over magnetooptic disks are the
optical rather than magnetic recording and the potential
for volume storage. The number of optical connections
that can be specified with a volume hologram is propor
tional to the volume of the crystal divided by the wave
length cubed. The principal advantage of magnetooptic
disks on the other hand is the relatively advanced state of
the art of the technology, which will continue to mature
since there is a well identified commercial application for
this technology.

The device technologies that are needed for the op
tical realization of a neural network that were outlined
above all require further development before they can be
used in practical systems. However the progress being
made in these device technologies breeds sufficient opti
mism for the future outlook and this has led to designs and
laboratory demonstrations of optical architectures [12-18]
to simulate neural network models of associative mem
ory [19]. In the following section we focus on a particular
auto-associative memory model [20-22] and present exper
imental demonstrations of it.

OPTICAL ASSOCIATIVE MEMORIES

Let vIm) i = 1, ... N m = 1, ... M be binary (+1,-1)
valued vectors. Then a matrix Tij is formed by summing
the outer products of all the vectors:

M

Tij = L vIm)v;m) , Tii = 0 (1)
m

Multiplying the matrix Tij with anyone of the stored
vectors results in the reproduction of a noisy estimate of
the same vector:

N M N

LTijvII) = (N - l)vP) + L L vjm)v;m)vjl) (2)
m¥l i¥j

The first term in the above sum is the "correct" term
amplified by N whereas the second term is unwanted in
terference whose value on the average is approximately
J(N - l)(M - 1). Thus if M is sufficiently larger than
N the first term will dominate and the output will look
like the input. If this is the case then with high proba
bility thresholding will eliminate the cross talk term and
reproduce the input vector.

In the biological interpretation of the model the ma
trix Tij represents the strengths of the connections among
neurons and the thresholding describes the action of the
neurons. The final characteristic of this model is feedback.

The output of each neuron (threshold element) becomes
one of the inputs to all the other neurons in a fully con
nected network. We model this by making the binary vec
tor that is produced by the thresholding operation the in
put vector to the matrix Tij for the next iteration thereby
making the correctly stored vectors (i.e. input vectors
that are reproduced at the output) stable states of the
network. A block diagram of this model is shown in Fig
ure 2. The network is initialized by setting the state of
the neurons according to an external input and allowing
the network to reach a stable state. The system usually
chooses the stable state that is most similar to the initial
vector. Thus initial vectors that are distorted or partial
versions of one of the stored vectors result in the stable
state to be reached that is equal to this stored vector.

The most straightforward optical implementation of
the Hopfield memory is by adding nonlinear feedback to
an optical vector-matrix multiplier [23]. The system is
shown in Figure 3. A linear array of detectors/saturating
electronic amplifiers/light emmiting diodes is used to sim
ulate the array threshold units. The strength of the inter
connections between neurons is specified by the tranmit
tance of a two dimensional mask placed between the LEDs
and the detectors. The details of this implementation and
its experimental demonstration can be found in references
[12] and [13]. In this paper we discuss a holographic imple
mentation that is a modification of an architecture that is
presented in reference [12] and was recently demonstrated
experimentally by Paek and Psaltis [24].

Examination of equation (2) reveals that the read-out
process in this associative memory can be decomposed as
a cascade of two steps: An inner product between the in
put and all the stored vectors (the summation over i in
Eq.(2)) followed by a summation of all the stored vectors
each weighted by the corresponding inner product. An op
tical system that implements this associative memory is
shown in Figure 4. An input image illuminates the system
through a beamsplitter. The array of optical thresholding

. elements is placed immediately following the beamsplitter.
The combination of the Fourier transforming lens L I , the
first hologram placed in plane P2 and transforming lens
L2 comprise an optical correlator [25] that is used to form
inner products between the thresholded input image and
a library of stored references. The Fourier trasnsforms of
the reference images are stored in the first hologram each
on a separate spatial frequency carrier such that the inner
products appear spatially separated at plane P3. A pin
hole array is placed at P3 with each pinhole located at the
position where one of the inner products forms. The light
transmitted through each pinhole is collimated by lens L3
and it illuminates a second hologram in plane P4 • The
Fourier transforms of the same set of reference images are
also stored in the second hologram. The arrangement of
the pinholes with respect to the spatial frequency encod
ing that is used in the second hologram results in the re
construction of all the stored images overlapping at plane

431

PI, and each weighted by the appropriate inner product.
After thresholding the image at PI the light is fed back
into the loop until a stable state is reached. This final

state can be probed on the other side of the beam splitter
as shown in Figure 4.

ACKNOWLEDGEMENTS

Acknowledgements are due to Y. Abu-Mostafa, N.
Farhat, J. Hong, E. Paek, C. Park, and S. Venkatesh
who are the authors co-workers in this area. This work is
funded by D ARPA.

REFERENCES
1. I. Sutherland and C. Mead, Scientific American, vol.

237, p. 210, 1977.
2. A. Huang, Proc. IEEE, vol.72, 1984.
3. J. Goodman et.al., Proc. IEEE, vol. 72, 1984.
4. D. Hebb, Organization of Behavior,Wiley, New York,

1941.
5. W. S. McCulloch and W. Pitts, Bull. Math. Bio

physiol., vol. 5, p. 115, 1943.
6. A. Tanguay Jr., "Spatial Light Modulators for Real

Time Optical processing", in Future Directions for
Optical Information Processing, Lubbock, Texas, Texas
Tech. Univ. 1981.

7. J. Neff, this volume.
8. H. Gibbs, S. McCall, T. Venkatesan, SPIE, vol. 269,

p. 75, 1981.
9. A. Sawchuk and T. Strand, Proc. IEEE, vol. 72,

1984.
10. P. van Heerden, Appl. Opt., vol. 2, p. 387, 1963.
11. D. Gabor, IBM J. Res. Dev. ,vol. 13, p. 156, 1969.
12. D. Psaltis and N. Farhat, Opt. Lett., vol. 10, pp.

98-100, Jan. 1985.
13. N. Farhat, D. Psaltis, A. Prata, E.G. Paek, Applied

Optics, vol. 24, p. 1469, 1985.
14. A. Fischer and C. 1. Giles, Proceedings of the IEEE

1985 Com con Conference, IEEE cat. no CH2135-
2/85,342(1985).

15. D. Anderson, Opt. Lett., vol. 11, p. 56, 1986.
16. M. Cohen, Proc. SPIE, vol. 625, 1986 .
17. B. Soffer, G. Dunning, Y. Owechko, and E. Marom,

Opt. Lett., vol. 11, p. 118, 1986.
18. A. Yariv and S. K. Kwong, Opt. Lett., vol. 11, p.

56,1986.
19. ·T. Kohonen, Associative Memory: A System Theo

retic Approach, Springer-Verlag, Berlin, 1977.
20. J. Anderson, IEEE Trans. on Systems, Man, and

Cybernetics, SMC-13, p. 799, 1983.
21. J.J. Hopfield, Proc. Nat. Acad. of Sciences, vol. 79,

p. 2551, 1982.
22. K. Nakano, IEEE Trans. on Systems, Man, and Cy

bernetics, vol. SMC-2, p. 380, 1972.
23. J. Goodman, R. Dias, 1. Woody, Opt. Lett., vol. 2,

p. 1, 1978.
24. E.G. Paek and D. Psaltis, to be published.

25. A. Vander Lugt, IEEE Trans. Info. Theory,IT-10:2,
1964.

EXTERNAL~ ~
INPUT ~

TWO DIMENSIONAL
ARRAY OF OPTICAL
THRESHOLD UNITS

I
I
I
I

--1...
............

...... ,
L

VOLUME HOLOGRAM
(OPTICAL INTERCONNECTION

NETWORK)

Figure 1. Optical Realization of a Neural Net Using a Volume Hologram.

OPTICAL
FEEDBACK

OUTPUT

IN " "-

liJ
\ f)

, \ -
I

I 7 -/ ~
~OUT

...

/
V'-.

i'

/

\ ,,-

Figure 2. Neural Network Model of Associative Memory.

432

LIGHT
SOURCES

2-D OPTICAL
MASK

Figure 3. Optical Realization of.AssociativewMemory using a Planar Transparency.

Output
Threshol.
Device

Input
--~~;---~~~~;r----~----~

~ -..,.--..,.- Second
Hologram Pinhole

Array
I
I
I

....-"'--- First
. Hologram

Figure +. A Holographic Implementation of "Associative Memory.

433

OPTICAL SYMBOLIC COMPUTING

Brian G. Kushner* - John A. Neff**

* The BDM Corporation, 7915 Jones Branch Drive, McLean, VA 22102-3396
** Defense Advanced Research Projects Agency~ 1400 Wilson Boulevard

Arlington, VA 22209-2308

ABSTRACT
The need to drastically increase the
processing rate of artificial intelligence
(AI) systems, coupled with the 1 imitations
of current uniprocessor architectures,
has resulted in a major research impetus
to develop a new generation of parallel
systems. Similar to a number of electronic
symbolic computers being developed, optical
computi ng systems can be vi ewed as a
representative of the class of fine-grained,
tightly-coupled architectures. This paper
addresses potential roles of optical systems
in symbolic computing and suggests future
optical implementations of these
architectures.

INTRODUCTION

The need to drastically increase the processing
rate of artificial intelligence (AI) systems,
coupled with the limitations of current uniproces
sor architectures, has resulted ina major
research impetus to explore parallelism in modern
computing systems. Applications of these AI
systems are placing stringent demands upon the
underlying computer architectures. To meet
these challenges, a new class of parallel computer
architectures are emerging, structures whi ch
seek to optimize the processing and retrievel
of symbolic information.

One promising group of AI-driven architectures
can be described as tightly-coupled, fine-grained
multiprocessor systems, and are characterized
by both a dependence on complex interprocessor
communications and flexibility in the interconnect
topology.1 This means that the architectures
are composed of a large number of similar, rela
tively noncomplex processors,2 which are coupled
in such a manner that given processor can communi
cate with any other. The driving features behind
this new generation of computer architectures

CH2345-7j86jOOOOj0434$Ol.OO© 1986 IEEE
434

are, equally applicable to optical computing
systems, which are also characterized by tightly
coupled, finegrained elements with a high degree
of communications flexibility. Optical systems
also provide a form of two-dimensional parallelism
which appears are attractive for symbolic
processing operations. At the present time,
we believe that optical systems can be adapted
to the types of operations and data structures
encounted in AI, and offer the promise of enhanced
computational throughput to overcome bottlenecks
in existing AI systems.

This paper will first describe some of the aspects
of symbolic computing which drive the need for
these new architectures. As a case in point,
opto-electronic interconnnects are already being
investigated for interprocessor communications
in computer architectures. Potential roles for
optics in multiprocessor systems will then be
addressed. The paper will conclude with a discus
sion of current efforts to utilize optics in
symbolic computing, both at the interconnect
and processor levels, along with proposed optical
implementations which look promising for general
purpose symbolic processing.

MULTIPROCESSOR SYSTEMS AND SYMBOLIC COMPUTING
Symbolic processing is typically refers to on
goi ng resea rch and deve 1 opment in four funct i ona 1
areas: speech recogniti on, vi si on or image under
standing, natural language understanding, and
expert systems. All four disciplines are charac
terized by the following three attributes: symbo
lic representations of knowledge; a high degree
of interaction with a stored grouping of symbolic
knowledge; and some level of reasoning capability,
which draws conclusions by comparing inputs to
the system with elements retrieved from the know-
1 edge base. At the present time, each of these
factors, retrieval of knowledge, representation
of knowl edge and reasoni ng, 1 imi ts the
computational throughput rate of AI systems.
The remainder of this section will use expert
systems as an example of a symbolic processing
domain.

An expert system is a machine with mimics or
emulates the thought and reasoning processes

of human expert. It seeks to utilize the
solution techniques which a human expert in
a given discipline would use to solve particular
prob 1 em in that doma in. Knowl edge appropri ate
to the discipline is placed into the machine,
forming what is known as the knowledge base,
enabling the system to understand the problem.
Besides this knowledge base, the expert system
consists of the IIreasonerll or lIinference engine ll ,
which manipulates the symbolic information
stored in the knowledge base so as to lIinfer ll
new knowl edge on its road to deri vi ng a
conclusion to a particular problem.

Retrieval in expert systems may be considered
at four hierarchical levels: search of
unorganized data, search of organized data,
content addressing, and heuristic searching.
The amount of symbolic information stored in
a practical knowledge base is too large to
even consider an exhaustive search of unorganized
data. Considerable improvement can be realized
by organizing the data to form data bases,
and current expert systems make extensi ve use
of data base management techniques to facilitate
the retrieval process. But this technology
is still based on von Neumann architectures
which greatly hinder both the management and
access to data bases of the size that will
be needed for expert systems of the future.
Thi s problem has 1 ed to cons i derab 1 e interest
in content addressable memory implementations
of artificial neural systems and in
logic-enhanced, or smart, memories for
accomplishing heuristic searches.

Both the artificial neural systems and the
logicenhanced memories fall into the category
of tightly-coupled, fine-grained architectures.
That is, they consist of thousands (or even
mill ions) of switching or processing nodes
(finegrained) which are interconnected to a
high degree (tightly-coupled). The nodes of
the neural network are just memory elements,
but these elements are interconnected in a
global fashion, so that processing associated
with data retrieval may be distributed over
a 11 of the interconnected nodes. A 1 though
such networks will likely see use for symbolic
computing, especially for associative recall
of knowledge base information, neither the
individual nodes nor the networks themselves
have the processi ng power needed for advanced
expert systems. Architectures with actual
processing elements at each node represent
the latest thinking of computer scientists
dea 1 i ng wi th arti fi ci ali nte 11 i gence. These
systems have been labeled with such names as
1 ogi c-enhanced memori es, smart memori es, and
connection machines.

Logic-enhanced memories avoid the von Neumann
bottleneck by intermixing the processing and
the memory funtions. This can be viewed either
as di stri buti ng the memory among a 1 arge number
of ti ghtly-coup1ed processors, or as provi ding
some processing capabi 1 i ty to each element

435

of a memory (hence the name 1 ogi c-enhanced
memory). This permits such powerful functions
as interconnect reconfiguration and internodal
relationship designation (e.g., for semantic
network representations to be discussed).
These memories have such a broad processing
power that they may be categorized as
fine-grained, tightly-coupled multiprocessors.

Both the neural networks and the 1 ogi c-enhanced
memories are parallel processors; that is, any
number of nodes or any of the interconnects
can be active at any given time. It should
also be noted that several optical implementations
of neural networks and logic-enhanced memories
have been developed, including associative
processors3,4 and memories incorporating a feature
known as attention. 5 These systems all take
advantage of the fine-grained nature of the
optical devices and the types of global
communications operations which are possible
in optical computing systems.

A classification of parallel systems has been
developed by Seitz,6 a modified version of which
is shown in figure 1. It provides an interesting
categorization based on the number of processors
and the relative degreee of processor complexity.
Conventional uniprocessor architectures are
plotted as a point of reference representing
high complexity in a single processor. As one
moves up to more than one processor, the trend
is toward reduced complexity within each
processor, a trend that is driven by total system
cos t and re 1 i abi 1 i ty, on the one hand, and by
an escalating overall system complexity on the
other hand.

"""RAM's

()

,\rue,"." N~lIral S"tcms

Q
""" " ~" L"gt,-~nhanccJ Memones

~
(nmplItauon.tl Arrays

\",:
\

~ r\j---"" J.: I\\tCfl)cnmputer Arrays

Y Conventional
/ Computers

10'

10'

o
Nudal ('omplexity Increasing ~

Figure 1
Classification of Parallel Processors by Nodal

Complexity

Microcomputer arrays are basically a set of
computers that send messages to one another
vi a a communi cation network. Such systems are
usually loosely-coupled; that is, the individual
computers do not share main memory and I/O

devices, although one computer can always draw
upon another's resources through the communication
network. The application of such systems in
symbolic computing will likely be in solving
problems that involve interactions between more
than than one knowledge base. Each processor
can work on a gi ven pa rt of the problem in such
a way as to mi nimi ze the need for i nterprocessor
communications.

Computational arrays are systems whose processing
elements have been designed for tasks of
comparable complexity to floating-point
operations. Systolic arrays, for which the
processors are connected in regular patterns
that match the flow of data in the computations,
compromise most of the architectures in this
category.

As mentioned above, the architectures of most
interest to knowledge base retrieval are the
more fine-grained, tightly-coupled systems,
such as 1 ogi c-enhanced memori es and neura 1
networks.

Random access memories are shown
as a point of reference on the
ends just as uniprocessors were
reference for nodal complexity.

in Figure 1
fine-grained
shown as a

To this point the discussion has centered on
the knowl edge base retri eva 1 process so
fundamental to expert system operation. The
second major aspect of expert systems, as
mentioned above,is knowledge representation.
Figure 2 illustrates one popular method for
representi ng knowl edge, known as a semanti c
network. A semantic net may be characterized
as a graphical representation scheme in which
the graph nodes represent objects or concepts
and the links represent inference procedures
that relate the nodes. The importance and
complexity of connectivity in these knowledge
representation schemes has resulted in serious
consideration of the tightly-coupled
multiprocessor architectures for symbolic
computing and expert systems implementations.
The processing power at each node can, for
example, be used to define the internodal
relationships of the semantic network.

The similarity of these highly connected
architectures to neurological systems lends
credence to their importance in symbolic
processing. We are very aware of the power
of the brain in performing intelligent operations
such as reasoning and pattern recognition, yet
the brain consists of relatively slow switching
elements. The biological switch is the neuron,
and it operates in the mi 11 isecond range - about
a milllion times slower than current electronic
switching speeds. The difference lies in the
large degreee of connectivity between biological
switches, leading to a high degree of parallel
processing. Neurons in the brain can have upwards
of 10,000 synapses (biological connectors),
whereas electronic switches in today's computers

436

typically have only a few connections to other
switches. There is strong evidence to suggest
that the processing power of the brain is related
to the hi gh degree of connect i vi ty between the
neurons, permitting parallel processing and
thereby compensating for the slow switching
speeds.

Figure 2
Semantic Networks

The next section will focus on potential roles
for optics in multiprocessor systems. This
will lead to a discussion of current efforts
to couple optical computing with AI, and will
conclude with two proposals for optical archi
tectures which could significantly enhance the
computational throughtput of fine-grained,
tightlycoupled, multiprocessor systems. Such
opticallybased systems, if realized, could open
up a whole new field of opto-electronic computing
directed toward artificial intelligence appli
cations.

OPTICS AND MULTIPROCESSORS

Any approach to optical architectures must give
serious consideration to what can be accomplished
with existing technologies, namely VLSI
electronics.
Optical computing will not seriously threaten
electronic computing unless it can offer several
orders of magnitude improvement in some critical
measurement criterion, such as the
power-speed-cost product, in a given problem
domain. Therefore, a good starting point in
addressing the application of optics to symbolic
computing is to identify problem areas for
electronics.

It is not surprising that the relative weaknesses
and strengths of electronics and optics are
traceable in one way or another to the fundamental
physics of inter-electon and inter-photon inter
actions. Relatively speaking, the interaction
between photons is weak; hence, electrons are
good for the switching operations so fundamental

to computing and photons are good for the inter
switch communications, providing links which
are free from detrimental coupl ing effects that
lead to crosstalk and capacitive loading. Subs-'
cribing to such reasoning, however, is impractical
due to the quantum losses whi ch accompany both
the electron-to-photon and the photon-to electron
conversions. There is research and development
underway to replace some of the longer intercon
nect links within computers with optical channels
because it is the longer interconnects that
create severe gower, speed, and space problems
for electronics7. But such a capability stops
far short of using opti cs to its full advantage
in multiprocessor architectures appropriate
for symbolic computing.

Consider the electronic-switching/optical-commun
ications positions as representing one of the
four corners of the square shown in Figure 3.
The sides of the square represent a continuum
of combinations between the extremes of the
corners. The upper 1 eft corner represents
all-electronic systems while the bottom right
represents all-optical. Since movement toward
the bottom left corner not technically practical,
the focus is along the upper and ri ght si des.
Upon considering computing systems for which
switching is the predominant function, the trade
off between optics and electronics is seen to
fall somewhere along the upper edge; that is,
all electronic switching with some optical links.
However, symbolic processing places a strong
emphasis on connectively as was discussed above.
The de-emphasis on switching (fine-grained
architectures with low nodal complexity) and
the emphasis on communications (tightly-coupled
systems) leads one to consider architectures
for which the communcations is optics and only
some of the switching is done with electronics.
It is this category of electronic/optical hybrid
architectures that can have a significant impact
on symbolic computing.

....c-.. ---
S"ilchin~
Inh'nCiiiu

Figure 3
Electronic Versus Optical Computing

437

The upper ri ght hand corner of fi gure 3 refers
to the set of architectures which utilize optical
switching for interconnect recongifuration and
eletronic switching for logic operations. 7 Optics
proves to be especially valuable in providing
both the longer and the more global interconnects
in processing, due to the combined power-speed-
space-crosstalk penalties associated with
electronic interconnects. Several examples
of the use of opti ca 1 interconnects for these
in advanced architectures are currently under
development, both in coarse and fine-grained
computer structures. The interest in optics
arises from the high bandwidth communications
requirements between the individual nodes and
the number of parallel channels which can
effectively be multiplexed over a single optical
link. The Texas Reconfigurable Array Computer
(TRAC),8 for example,is studying fiber optics
for internodal board to board communications
at bandwidths between 100 and 500 Mbps, and
the WARP system9 is investigating the use of
optical interconnects for intercell communications
at a rate of 0.5 1.0 Gbps and 32:1 multiplexing.
Another example, that of a finegrained electronic
symbolic computer under development, is the
Connection Machine. 2 It is composed of 65,536
individual processing elements (PEs), organized
as a large array of printed circuit boards,
each of which contain 512 PEs equally divided
between 32 chips. Both guided and unguided
optical interconnects are being studied for
overcoming challenges to this architecture,
such as clock skew, 1.0 - 3.0 Gbps communication
rates over 32:1 multiplexed links, and inter
processor broadcast.

Over the longer term, architectures such as
that shown in Figure 4 could be developed to
effectively integrate opto-electronic components
in computer systems. Such a hybrid structure
would use optics for most communications require
ments and electronics for processing element
functions. For th,e sake of simplicity, the
illustration shows only two of the many possible
boards and only four chips/board. If this were
a fine-grained processor, each chip could contain
many PEs .

PROCESSOR
LEVEL

n

PROCESSOR
LEVEL
n+1

_---INTluo,uoIUSSYSTlM

DETECTOR ON CHI~

~.-H-- LASER DlOOE ON CHI~

Figure 4
Hybrid Optical/Electronic

Multiprocessor Architecture

Each board in Figure 4 contrains four
optoelectronic chips and one frequency selective
filter (hologram). In between each board is
a planar array of reconfigurable diffraction
gratings, which perfom the majority of the
switching operations involved in the
interconnection process. This particular
architecture employs wavelength division
multiplexing (WDM) to direct optical bit streams
to the appropriate board. The beam labeled
illustrates this operation. The hologram directly
above of the transmitting chip directs the beam
to the center of the next board, where it is
superimposed on the main beam which travels
to all of the systems boards. Upon reaching
the intended board, the frequency se 1 ecti ve
filter diffracts the beam to a bus-to-board
hologram which directs the beam to its final
destination.

The intra-board and intra-chip interconnects
woul d be handl ed by the plane of holograms above
the board, as illustrated by beam The
logistics of handling a large number of muliplexed
beams will not be discussed here, other than
to say that the optical switching most likely
will be achieved through nonlinear wave mixing.
For example, four wave mixing may be used to
generate holograms 10 which can be rapibly varied
to permit interconnect reconfiguration.
Diffraction grating writing beams would contain
the desired information for changing the
holographic gratings. Note that some of the
switching actions of such an architecture are
bei ng performed opti cally rather than
electronically.

As one moves toward the bottom right corner
of the classification scheme presented in Figure
3, the percentage of optical implementation
increases until an all-optical architecture
is achieved. While a number of efforts are
underway to develop such all-optical structures,
the research is currently directed at defining
the appropriate computational primitives for
optical symbolic processing. Thus the present
focus is constrained to identifying and protoyping
systems whi ch can process the fundamental opera
tions associated with symbolic computing--namely,
the performance of correlation, searching, and
pattern matching operations on symbolic data.

Typical of a class of research apP'lications
are the optical inference machines. 1I ,12 Here,
the emphasis is on developing optoelectronic
archi tectures whi ch can perform the fundamental
matching and logic operations encountered in

·retrieving symbolic data from a database. These
sets of operati ons are both 1 anguage and repre
sentation specific, so that architectures are
being analyzed for several of the major different
AI programming paradigms. Examples of other
representations being investigated by optical
computing researchers include semantic networks,
graph theoretical representations, symbolic
substitution for binary data,13 and shadowcasting
structures. 14

438

Fi gure 5

Addressable 0._ "',a"
(IO'P.,aIeI Channels)

All-Optical Multiprocessor Architecture

An example of a fine-grained, tightly-coupled
opt i ca 1 symbol i c computer of the future is shown
schematically in figure 5. 7 Although no one
has built such a computer, it is technically
believable to achieve such a system consisting
of 1 million parallel channels. This does not
mean that the system woul d be confi gured
necessarily with 1 million nodes, since such
this implies that the planar array of logic
elements (designated as the gate array) would
have just one logic element per channel. Instead,
several logic elements would usually be
interconnected via the interconnect media to
form a processing element. For example a square
array of n x n logic elements (gates) may comprise
an arithmetic logic unit, several registers,
and possibly some cache memory. An example
of this type of structure is shown in figure
6, where individual elements in a 2-D SLM have
been assigned the necessary functions to comprise
a computational processing· element. Taking
an n of 5 (25 logic elements/processor) would
1 ead to a machi ne wi th 40,000 nodes 1 arge enough
to be practical as a symbolic computer.

Figure 6
An All-Optical Processing Element

(Detail of Figure 5)

Input to the optical computer could be via either
an array of independently addressable laser
diodes or a two-dimensional spatial light
modulator (20 SLM). The diode array would be
capable of much higher modulation speeds, but
would involve more complex circuitry, especially
if operation requires uniformity over the complete
array. If the input already exists as a two
dimensional light pattern, such as might be
output from a vi si on processor, an input devi ce
may not be needed (depending on the compatiblility
of the two processors).

The logic element array could be either a 20
SLM exhibiting a nonlinear response or an array
of opti ca 1 bi stab 1 e swi tches. The 1 atter devi ce
will ultimately lead to much higher switching
speeds, but current real i zati ons of opti ca 1
bistable switches require impractical power
levels. Improved nonlinear optical materials
are needed to achieve widely utilized optical
bistable devices.

The interconnect element will likely employ
wave mlxlng in a nonlinear optical medium,
similar in operation to that mentioned previously
fo the hybrid architecture. However, due to
the much larger number of channels that must
be handled, the switching may be done in a
multistage fashion, in which multiple parallel
planes of real-time hologram arrays would be
exercised.

The detector wi 11 be a major techno 1 ogi ca 1 cha 1-
lenge. In the most general case, one would
like a one million channel device, with each
channe 1 operati ng around 1 MHz (projected speed
for 20 SLMs). However, the requirements will
be much less for most practical processor designs.
If the problem domain were to require, say,
100 iterations or more (e.g., semantic network
searches to depths of at least 100), an output
would be required only once every 100
mi croseconds. Thi s reduces the throughput rate
of the detector to 1010, a number more in 1 ine
with projections for GaAs microelectronics.
Another example would be where each processor
consists of a block of n x n channels as discussed
above. Assumi ng an n equal to 4 and that each
processor has just one output channel, the
throughput requirement of the detector would
be 6.25 x lO lD . Some combination of these two
designs should yield a detector requirement
that would be well within near technical
feasibility.

The last major component of this all-optical
architecture is the memory. The practice in
electronics of co-locating some of the memory
with the logic elements cannot necessarily be
transferred to the optical computing domain
because of the greatly reduced communications
delays. Thus, Figure 5 shows the main memory
as the single block, equally shared by all of
the processors.

439

CONCLUSION

The ultimate objective of artificial intelligence
is to expand the power and reasoni ng processes
in computing machines, allowing these machines
to emulate and achieve capabilities typically
associated with intelligent behavior in humans.
However, efforts to achieve these goals have
been severely constrained by today's serial
architectures and by the separation of the proces
sing and memory functions. Fine-grained, tightly
coupled multiprocessors appear to be a viable
cl ass of architectures for symbol i c processi ng.
Optical techniques, in the form of opto-electronic
interconnects and optical computing, are being
investigated as a means of alleviating
computational bottlenecks in these systems.

Opto-electronics may playa major role in making
these systems a reality, either as a supplement
to an existing architecture or as part of an
integrated opto-electronic computer. Research
to date has demonstrated the viability of optical
interconnects, and a number of efforts are under
way to incorporate opto-electronics into existing
architectures. At another level, the potential
exists for developing all-optical symbolic
processors as part of a larger scale computational
environment. This appears particularly promising,
since the 20 SLMs are in fact fine-grained PEs
in a tightly-coupled environment. Such an
a ll-opti ca 1 system coul d serve as a co-processor
in symbolic processing systems, and research
is underway to identify the appropriate
computational primitives and compatible
representations.

Interestingly enough, at the present time, the
numeric "supercomputers" execute AI functions
at a greater rate than dedicated AI machines. 15
This may imply that raw speed is an important
component in overcoming existing AI computational
bottlenecks. It also may indicate that architec
tures designed to improve numeric throughput
may also be useful in symbolic computation,
and vice versa. Regardless of which of these
paths are developed, the utilization of optics
in symbolic processing represents an exciting
new direction for optical computing.

REFERENCES

(1) A; Gupta, C. Forgy, A. Newell, and R.
Wedig, "Parallel Algorithms and Architec~
tures for Rule Based Systems," Proceedings
of the 13th Annual Internati ona 1 Symposi um
on Computer Architecture, (1986)

(2) W. o. Hillis, The Connection Machine,
MIT Press, Cambridge, MA (1985)

(3) A. D. Fisher, C. L. Giles, and J. N.
Lee, "Associ ati ve Processi ng Archi tectures
for Optical Computing," J.Opt.Soc.Am.A.
1 (1984) 133

(4) D. Psaltis and N. Farhat, "0ptical
Information Processing Models of Neural
Networks with Thresholding and Feedback,"
Optics Letters Vol 10 (1985) 98

(5) R. A. Athale, C. B. Friedlander, and B.

(6)

G. Kushner, "Attentive Associative Architec
tures and Their Implications to Optical
Computing," Proceedings of the SPIE, Vol.
625, (1986)

C. L. Sei tz, "Concurrent VLSI
Archi tectures, II IEEE Transacti ons on
Computers, Vol. C-33.12 (1984)

(7) J. A. Neff and B. G. Kushner, "0ptics
and Symbolic Computing," in Optical and

Symbolic Computing, R. Arrathoon, Ed.,
Marcel-Dekker, New York (to be published
January 1987)

(8) G. J. Lipovsky, Texas Reconfigurable Array
Computer, University of Texas Technical
Report, (1984)

(9) E. Anould, T. Gross, H. T. Kung, M. S.
Lam, O. Menzilcioglu, K. Sarocky, and
J. A. Webb, "WARP Archi tecture and
Implementation," Proceedings of the 13th
Annual Interantional Srposium on Computer
Architecture, (May 1986

(10) D. M. Pepper, "Nonlinear Optical Phase
Conjugation," Optical Engineering, 21,
(1982) 156

(11) G. Eichmann and H. J. Caulfield, "0ptical
Learning (Inference) Machines," Applied
Optics, Vol. 24.14 (1985) 2051

(12) C. Warde and J. Kottas, "Hybrid Optical
Inference Machines: Architectural Considera
tions," Applied Optics, Vol. 25.6 (1985)
940

(13) K. Brenneer and A. Huang, "An Optical
Processor Based on Symbolic Subtitution,
II Technical Digest of OSA Topical Meeting
on Optical Computing, (March 1985)

(14) J. Tanida and Y. Ichioka, "0ptical Logic
ArrayProcessor," Proceeding of the 10th
International Optical Computing Conference,
(1983)

(15) R. P. Gabriel, Performance and Evaluation
of LISP Systems, MIT Press, Cambridge,
MA(1985)

440

An extendable optically interconnected parallel computer.

Alastair D. MeA ulay

Texas Instruments, Computer Science Center,
P.O Box 226015, MS 238, Dallas, TX 75266.

ABSTRACT

Desired features for a high performance machine are
listed and include extendability, flexibility, and reliability ..
These features are hard to satisfy simultaneously with al
most all existing and proposed parallel machines. A previ
ously proposed optical crossbar interconnected processor
is reviewed. It has properties that enable extension to
larger systems by the addition of more processors, cross
bar switches and exchange switches. These properties in
clude: fine gr.anularity, high communciation bandwidths,
and reconfigurability. A method of doubling the size of
the system without losing performance is described. It
would appear that doubling may be repeated recursively
until physical or other constraints arise. The performance
of the resulting machine and the degree to which it satis
fies the desired features are discussed.

INTRODUCTION

Desired features for multiprocessor

A high. performance multiprocessor is desired that is
extendable to more processors· with a corresponding in
crease in performance. It must also be flexible and reli
able. Extendability implies that more processors may be
added to the multiprocessor together with corresponding
interconnections without requiring new software and with
performance approaching linear improvements with in
creasing number of processors. This will enable the same.
architecture and associated software to apply to a wide
product range and provide longer life for customers and
products. This implies that high performance versions of
the machine must be built initially and that the machine
must be capable of further extension to satisfy demand
for many decades.

High performance involves considerations of through
put and latency. High throughput is suitable for many
large problems because repetitive computations are often
required. However, minimum latency is also required be
cause of those situations where results are needed before

CH2345-7j86jOOOOj0441$Ol.OO© 1986 IEEE
441

subsequent computations can be performed. Flexibility
implies that a wide range of algorithms must run effi
ciently. Also, new algorithms and as yet undiscovered al
gorithms must be easily entered into the machine and run
efficiently. Reliability is required in any complex system;

Difficulties of achieving desired features

Parallelism is required to meet. the requirements for
future computer performance, even with the fastest tech
nology components17. The number of parallel processors
that may be used efficiently is limited in today's proto
type and proposed systems by the communication delay
and interconnection complexity. These systems are not
generally extendable. I showed earlier, by analysis of a
3-D finite element computation, that attaching. proces
sors to a bus is straightforward but not extendable. Effi.,.
ciency fell to 7% for 32 processors connected to a 37 MHz
bus, where each processor has a computation rate of 10
Mflops16.

Flexibility to efficiently run a wide range of algorithms
may be achieved by reconfigurability3,20. Reconfigurabil
ity also enables software to readily adjust to an extended
system. However, reconfigurability introduces large de
lays and high control overhead in most proposed systems.
This severely restricts the number of processors that may
operate efficiently. Also, the throughput of the system is
reduced and the latency increased.

Systolic configurations use nearest neighbor connec
tions and prearrange dataflow so that input and output
occurs at the edges of the processor array at each cycles.
Latency is increased relative to serial machines and this
causes difficulties for general purpose numeric and sym
bolic computing. Also signal processing often involves sit
uations that are adaptive or require rapid response. The
'number of elements in an array may be increased with
out altering the bandwidth at an input or output con
nection. The nearest neighbor connections also provide
fast communication. This permits large numbers of pro
cessors to be efficiently used in parallel, thus providing
high throughput and extendablity. However, the near
est neighbor connections limits the flexibility or range of
algorithms that may be implemented efficiently. For ex
ample, many fast algorithms use doubling which results in

complex non nearest neighbor communications, e.g. FFT,
recursive doubling.

Extendability to larger high performance systems in
creases the likelihood of interference because of longer
cables. This reduces the reliability. Reliability is often
accomplished by means of redundancy in software, hard
ware, time and/or space. This is detrimental to satisfying
performance for a given cost. It also limits extendability.

REVIEW OF SINGLE CROSSBAR SYSTEM

Prior research

An optically interconnected system was selected af
ter examining a number of different architectures17, in
cluding systems performing optical computationll. I pre
viously showed how to efficiently implement basic sig
nal processing algorithms such as an FFT, systolic fil
ter, and matrix-vector multiplier on the proposed opti
cally interconnected processorl2. The crossbar switch per
mits fast algorithms, such as those involving doubling,
to be implemented more efficiently than on a nearest
neighbor or systolic arrays. The improved performance
justifies the cost of the switch. Previous investigations
illustrated the implementation of Levinson's algorithm
for optimal least square filtering6 , the implementation
of Levinson-Durbin's, Burg's and Schur's algorithms 10,

and texture classification7, and the implementation of
conjugate-gradients9• The crossbar switch makes possible
close coupling between symbolic and numeric processing8

•

System

Figure 1 shows a preliminary organizational structure
for an optical crossbar signal processorl2, 15. Hundreds of

Main
Memory

Banks

processing elements, Pi, i = 1 to N/4, are connected to an'
optical switch of size N /2 by N /2 by means of commer
cially available fiber optic links of bandwidth 160 MHz or
more. The processors perform elementary operations such
as multiply or add and therefore have two input connec
tions for the two operands. This fine granularity permits
the maximum amount of parallelism to be extracted from
algorithms. The processing element output is converted
from parallel to serial in a shift register and used to drive a
laser diode. A 'second output is provided for convenience.
The laser diodes are connected via optical fiber links to
the optical crossbar switch. Fibers returning from the
switch connect to light sensors at the processor inputs.
A second fiber optic loop between processors and main
memory banks provides input/output. The logic permit
ting input/output, marked wand v, may be mounted
alongside the processor.

Optical switch and interconnections

Optics is used for interconnections because photons
are inactive, having non interfering characteristics. Also,
optics provides sufficient bandwidth to support fine gran
ularity parallel processors so that high levels of algorithm
parallelism may be extracted.

Each intersection in a crossbar switch, figure 2a, has
a switch permitting a horizontal input line to be coupled·
with a vertical output one. One output receives infor
mation from one input but one input may broadcast to
several outputs in a generalized crossbar switch. Figure 2b
shows a diagrammatiC crossbar switch implemented with
a spatial light modulator (SLM) and dots indicate trans
parent regions consistent with the closed switch settings
marked by dots in Figure 2a. An optical lens system is

N/2 By N/2
Crossbar
Switch

Figure 1: Single crossbar system

442

used to spread the light from the input sources horizon
tally without spreading the light vertically. Light passing

"through the spatial light modulator is collapsed onto re
ceiving diodes by means of a lens "system which focusses
vertically without spreading horizontally. In addition to
being a directional generalized crossbar switch, the opti
c"a.l switch permits inclusive OR operations by allowing
different inputs to feed an output.

A reflecting membrane covers the surface of an ar
ray of transistors on a silicon chip, figure 3, to form a
deformable mirror device (DMD). Figure 2b showed a
transmissive spati'allight modulator. The DMD is reflec
tive and requires a beam splitter to separate the reflected
light from the incident light. The mirrors are drawn as
though they are transmissive light modulators for clarity.
Activation of a transistor causes the membrane to dip
above the transistor. A collimated beam of light striking
the DMD will result in concentrations of light just above
each of the activated transistors. This array of light and
dark pixels is imaged to another plane for viewing or fur
ther operation. A Schlieren system uses a stop in the
frequency domain to remove low spatial frequency light
arising from reflection from regions between mirror de-

1

2

3

4

(a)
x IN

LIGHT
SOURCES

(b)

1 ,..

2 ,..

3 ,..

4 ,..

y = Ax

() 0 0 0

1 2 3 4 y OUT

y DETECTORS

4

Figure 2: Diagrammatic optical crossbar switch

(a) Switch settings
(b) Spatial light modulator crossbar switch

443

flection pixels. Imaging and performing spectral analysis
with a Texas Instrument's DMD of size 128 by 128 has
been published18• It takes one microsecond per row to
load the DMD while still, using the previous deflections.
A few microseconds are required to switch to the new
settings.

Commercially available fiber optic links are available
at the transmission rates required to keep up with avail
able processing elements. It is anticipated that faster links
will be commercially available as the processing element
speeds increase. Optical links increase the immunity to
interference relative to using cables.

Software and programming approach

The flow of data is prearranged so as to minimize run
time overhead7• A static dataflow approach is used to
minimize run time overhead for signal processing algo
rithms. The use of a high throughput crossbar switch will
make it possible to map algorithm graphs onto the system
more easily and more efficiently than onto constrained
interconnection networks such as hypercube19 and multi
stage networks4• This suggests that automatic mapping
will be feasible for our machine. The throughput for a
wide range of alg~rithms is "also expected to be "higher
than for other architectures, including current prototype
message passing dataflow machines 1.

Figure 4 illustrates an executable flow graph for
the Levinson-Durbin algorithm unrolled for pipelining7•

Nodes marked with subtraction imply the subtraction of
the right hand input from the left hand input. Flow is
down the page. The triangular arrows indicate negation
or unary minus which may be accomplished at the input
to the appropriate node rather than with an extra node.
Identity instructions marked "Ident" support the fanout
of operands so that an input connects to a processing el-

MIRROR
n SURFACE

LAYER

Figure 3: Deformable mirror device

ement before going through the crossbar. Each operator
must forward its results on every clock. Consequently,
unit delays are inserted on any edge of the graph which
"crosses a level" without being used. The number of unit
delays is a number at the input to an instruction indicat
ing the queue at an existing node. Parallelism is evident
in the flow graph by the number of nodes that occur side
by side. A 100% efficiency is achieved once the pipeline
is filled7•

The flow graph is mapped directly to the machine
without coding in a higher level language. However, as
many algorithms exist in coded form, it is desirable to be
able to create flow graphs from the code and display the
graph. The level of parallelism may be observed and algo
rithm changes made to increase the parallelism9 • Nodes
in the flow graph are assigned to processing elements in
the system and links in the flow graph to settings of the
crossbar switch. A compiler is being developed for this
mapping. Data flows into the switch during operation and
is routed to the appropriate processor. A processor will

Figure 4: Flow graph illustration

444

perform the operation for which it is programmed on the
next clock cycle after receiving its operands. The output
is routed via the switCh to the next processor.

EXTENDED CROSSBAR SYSTEM

Illustration of a double-crossbar system

A specific approach is illustrated for extending the sin
gle cross bar system described previously to double the
size. Alternatives are considered in the next section. A
second identical single-crossbar system is placed next to
the first, figure 5. The optical fiber connections into and
out of the crossbar switches are opened and exchange
switches sand u inserted respectively.

The switches that implement the exchange switch at
the input to the crossbar are marked 81 through 8N/2.
The second part of each switch is marked 8~ through 8'rv/2.
Consider the activity between the input to a switch, say
81 and 8~, and the input to the crossbar switches. The
effect is that of a 2 by 2 switch for which the two inputs
are either connected directly to the two outputs or in
an exchanged configuration. An example is provided by
the top output for processor P1 and the top output of
processor PN / 4+l. If P1 is connected to the top input of
the top crossbar switch then PN / H1 is connected to the
top input of the lower crossbar switch. In the exchanged
position (as shown in figure 5) P1 is connected to the top
input of the lower crossbar switch and PN / H1 is connected
to the top input of the upper crossbar switch.

An exchange switch, U1 through UN/2, is similarly in
corporated between the output of the crossbar switches
and the input to the processing elements. An example is
provided when the top output from the upper crossbar
switch is connected to output 1 at the right, then the top
output of the lower crossbar switch is connected to out
put N /2 + 1 at the right side. In the exchange position,
the top output of the upper crossbar switch is connected
to output N/2 + 1 at the right and the top output of
the lower crossbar switch is connected to output 1 at the
right.

An electro-optic switch may be used to implement the
exchange switch s by directing light into one of two fiber
channels. A combining coupler is used at the input to
the crossbar switch to permit light to pass from either
channel. The switches v may be implemented with sim
ilar electro-optic cells. Similarly, the output exchanges
switches u may be implemented using a reverse electro
optic cell. Only one of the input light channels is per
mitted to generate an electronic signal. The electronic
signal is then converted to light for transmission back to
the processor.

Interconnection alternatives for extendablility

Alternative approaches to extendability are consid
ered. Four crossbar switches of size N/2 by N/2 may be
used to construct a double size N by N crossbar switch
system. N /2 inputs are connected in parallel into cross
bar switches one and two and the other N/2 inputs are
connected in parallel into switches three and four. The
outputs of switches one and three are connected in parallel
to produce N /2 outputs and the outputs of switches two
and four are connected in parallel to produce the other
N /2 outputs. OR capability is maintained.

An alternative is to use only two N /2 by N /2 switches
together with two sets of N /2 switches2• This increases
control complexity but uses less switches than the four
crossbar switch system. If two by two optical switches,
such as DMDs, are used, for which OR operations are
possible, all the original features of the optical switch

{:

Main
Hort Memo~

Banks

{:

~
N/2 N/2 2' .,

N/2 N/2 N.' N

~

are maintained for the larger size. Hence, from a soft
ware point of view the system is identical to the previous
single-crossbar system, except for doubling in size. The
resulting system will lack OR capability if generalized two
by two switches are used with no OR capability. Futher,
some broadcast capability is lost if exchange switches are
used permitting only permutations and not broadcasting.
For example, the system now permits inputs to broad
cast to only half the outputs. This case was described in
the last section. Only one control bit rather than two is
required for control of the two by two switches. The cross
bar switch is still complete or nonblocking and provides
N2 well defined mappings from input to output.

If we omit the exchange switches at the crossbar out
put, u, it is still possible to reach any output from any
input. However, blocking may now occur and the total
available mappings are only N! This is illustrated using
Figure 5. Suppose it is desired to connect via the crossbar

2

N/2·'

N/2

N/2 +'

N/2 + 2

N .,

N

Figure 5: Double crossbar system

445

switches the top output of processor P1 to the input of
processor PN / 2 and at the same time the top output of
processor PN /4+1 to the input of processor PN /4+1. The
first connection may by accomplished be setting switch 81

to the downward switch position (as shown in Figure 5)
and 'U~/2 to the downward switch position (opposite to
that shown in Figure 5). Consequently, the other half of
the first switch 8~ is set upward. In order to accomplish
the second connection 'U~ must be set upward. Absence of
this latter switch would result in blocking of this second
connection by the first.

The system may be doubled in size again by placing
a second system like that in figure 5 beside the first. The
inputs to switches s and, outputs from exchange switches
u are now broken and further exchange switches inserted.
Doubling may be applied recursively until physical con
straints arise. Depending on the properties of the two by
two switches some features relative to a single larger DMD
optical switch may be increasingly lost as the amount of
switching in the two by two switches increases relative
to that in the optical DMD switches. The complete or
nonblocking feature is maintained.

Finding, isolating and correcting faults

The use of multiple crossbar switches permits a de
gree of fault tolerance. Diagnostic programs and data
may be run through the system periodically to verify cor
rect operation. Failure to respond correctly to diagnostics
is followed by testing each crossbar separately with the
same diagnostics. Testing with the exchange switches in
terchanged will further determine whether processors or
switches are at fault .. In the former case reconfiguration
will be made with the offending processing element dis
connected. In the latter case, the system performance will
be reduced if the switch is no longer permitted during re
configuration. Repair of offending processors or switches
should be possible without stopping the system.

PERFORMANCE ASSESSMENTS

Did the system meet desired features?

Sections of a computation often involve global commu
nication or are not divisible into sufficiently large paral
lel pieces for efficient computation on a parallel machine.
This becomes more of a problem as the number of pro
cessors is increased because the parallelizable parts are
performed faster and the difficult parts become more of a
bottleneck. Fine granularity and the broadcast capability
of the crossbar switch permit these difficult parts to run
efficiently on the proposed optically interconnected sys
tem. Consequently, the crossbar switch system may be
extended to more processors without this difficulty.

Optical interconnections are needed to provide the
high bandwidth required for fine granularity parallelism.

Photons are inert compared to electrons, therefore the
proposed sysem has a higher immunity to interference
than electronic systems. This assists in extendability

. where distances to new processors and memory are likely
to be further than for a smaller number of initial proces
sors. Greater immunity to interference is important for
enhancing reliability. Packaging is simplified when com
ponents need not be very close.

446

The optical crossbar provides reconfigurability, in fact
N2 well defined links, between processing elements. Re
configurability enables a wide range of algorithms to be
efficiently implemented as is required to meet the flexibil
ity requirement. The large number of alternative paths
assists reliability because failure of a processing element
degrades performance only slightly after reconfiguration.
The processing element or switch may even be repaired
without stopping the system. The system may be ex
tended by adding more crossbar and tow by two switches
to emulate larger crossbar switches. Consequently, the
same software may be used after extension. The optical
switch has a higher throughput than conventional elec
tronic crossbar switches and does not require N2 intercon
nections. It is easier to map algorithms onto a full cross
bar switch than onto a constrained or reduced switch,
thus making automatic mapping of algorithms by means
of a compiler feasible. Otherwise a directed graph for an
algorithm must be mapped onto a directed g~aph for a
processor interconnection system.

Static dataflow permits prior arrangement of data
flows. This significantly reduces run time overhead. Con
ventional architectures require the computation of ad
dresses for the operands for an operation and then the
finding of these addresses and the fetching of the data.
An instruction must then be decoded, the operation per
formed and an address computed for storing the solution.

Comments on computing performance of extended
processor

Previous research showed that some algorithms, such
as conjugate gradients13,14 for solving large sets of linear
equations, may be implemented with over 90% efficiency
even when there is a mismatch between the number of
processing elements and the dimension of the problem9•

This is still true for an extended processor having more
crossbar switches and processing elements because both
communication and computation are increased in the
same proportions. Rapi~ solution is not critical for prob
lems much smaller than the machine unless there are a
large number of them. In this case the processor may
be reconfigured to provided pipelining or parallel compu
tation of the small problems and will achieve very high
efficiencies.

Algorithms, such as Levinson's6,1O, that are iterative
wjth increasing dimension and the number of iterations

are determined during computation, are difficult to im
plement efficiently on parallel machines. The extended
machine will still speed up computation in proportion to
the inc ease in processors, no matter what the efficiency.
Unrolling loops of the iteration provides faster speeds be
cause control for these loops is no longer required at run
time. This may be beneficial even if the occasional prob
lem does not require all the loops. Tags are used in the
architecture to indicate when processing elements should
not operate on data for reasons such as this. Algorithms,
such as Levinson's, may be implemented with 100% effi
ciency by pipelining when there are many cases of known
dimension 7•

CONCLUSIONS

Desirable features for a high performance processor
include extendablility, flexibility and reliability. These
features are difficult to achieve at the same time as indi
cated. An optical crossbar interconnected processor pro
posed earlier was shown to be extendable by recursively
doubling the system. Processing elements, switches and
crossbar switches are added in the same proportions. The
advantages of the system are carried through to the new
system and proportional increases in performance with
increasing number of processors is anticipated. Extend
ablility would not be possible without the specific features
of the machine. Fine granularity enables parallelism to
be extracted where other machines could not. Therefore,
for such cases, the other machines would exhibit severe
degradation in performance with increased numbers of
processors. The high bandwidth optical interconnections
make it possible to have fine granularity. Reconfigurabil
ity of the crossbar permits the extended system to oper-

. ate with the same software. It also provides algorithm

. flexibility for adjusting to the change in the relative di
mensions between problem and machine because of the
changing number of processors. Reconfigurability, high
levels of parallelism, multiple crossbar switches and opti
cal links provide the opportunity for high reliability. This
architecture is considered promising for future computers.

Acknowledgments

Office of Naval Research and DARPA support under
contract N00014-85-C-0755 is gratefully acknowledged. I
wish to thank Jeff Sampsell and Don Oxley of Texas In
struments for valuable discussions.

References

.1 Arvind and R.A. Iannucci, "Two fundamental issues in
multiprocessing: the dataflow solution," MIT Report,
MIT /LCS /TM-241, 1983.

2 Benes V., Mathematical theory of connecting networks

447

and telephone traffic, New York, Academic Press.
1965.

3 Browne J.C., "Parallel architectures for computer sys
tems," Physics Today, Vol. 37, No 5, May 1984.

4 D.Y. Cheng, " A floating point coprocessor for the But
terfly Multiprocessor System," SRC Technical report
No. 059, Univ. Cal. Berkeley, 1984.

5 Kung H.T., "Why systolic architectures?," Computer,.
Vol. 15, pp. 37-46. ·1982.

6 McAulay A.D., "Optimal Least Square Filtering with
a Digital Optically Interconnected Processor," SPIE
Technical Symposium SE, Advances in Optical Infor
mation Processing II, Vol. 639, 1986.

7 - "Image texture classification with an optical cross
bar interconnected processor", Future Directions in
Computer Architecture and Software, Army Research
Office Workshop, 1986.

8 - "Optical Interconnections for Real Time Symbolic.
and Numeric Processing," Invited Chapter in Book
on "Optical Computing: Digital and Symbolic" , Mar
cel Dekker. NY. 1987.

9 - "Conjugate Gradients on Optical Crossbar Intercon
nected Multiprocessor," Submitted, Journal of Par
allel and Distrubuted Processing. 1986.

10 - "Parallel AR Computation with a Reconfigurable
Signal Processor," IEEE Internat. Conf. on Acous
tics, Speech and Signal Processing, 86CH2243-4, Vol.
2,1986.

11 - " Deformable mirror nearest neighbor optical com
puter," Optical Eng., Vol. 25, No.1, 1986.

12 - "Optical Crossbar Interconnected Signal Processor
with Basic Algorithms," Opt. Eng., Vol. 25, pp.
82-90. 1986.

13 - " Plane-Layer Prestack Inversion in the Presence of
Surface Reverberation," Geophysics, Vol. 51, No.9 .
1986.

14 - " Prestack Inversion with Plane Layer Point Source
Modeling," Geophysics, Vol. 50, No.1, pp. 77-89,
1985.

15 - "Optical Crossbar Signal Processor," Proceedings of
SPIE, Real Time Signal Processing VIII, Vol. 564,
pp. 131-138. 1985.

16 - " Finite element computation on nearest neigh
bor connected machines," NASA Symposium on Ad
vances and Trends in Structures and Dynamics,
NASA Publn. 2335, pp. 15-29, 1984.

17 - " The role of parallel computing," IEEE Region 5
Conf., IEEE Publin. 85CH2123-8, 1985.

18 D.R. Pape, and L.J. Hornbeck, "Characteristics of the
deformable mirror device for optical information pro
cessing," Opt. Eng., Vol. 22, pp. 675-681. 1983.

19 C.L. Seitz, " The Cosmic cube," Communications of
the ACM, Vol. 28, No.1, pp. 22-23, 1985.

20 Siegel H.J., "Interconnection networks for large scale
parallel processing, theory and case studies" , Lexing
ton Books, 1984.

OPTICAL .INTERCONNECT TECHNOLOGY DEVELOPMENTS
(Invited Paper)

L. D. Hutcheson

CyberOptics Corporation
2331 University Avenue SE

Minneapolis, MN 55414

Abstract

Conventional interconnect and switching technology is
rapidly becoming a critical issue in the realization of
systems using high speed silicon and GaAs-based
technologies. Optical interconnect technology promises
to enhance performance, provide relief from the pinout
problem, decrease implementation complexity, and
provide improvements to the flexibility of systems by
allowing real time reconfiguration of these systems.
In recent years, rapid progress has been made in
VLSI/VHSIC technology that improves on-chip density and
speed while packaging these high speed chips is
becoming extremely difficult and in some cases limiting
system performance. By releasing the bandwidth
constraints on interconnects and packaging, the full
processing speed capabilities of silicon and GaAs logic
can be exploited to dramatically improve system
throughput A number of University, governmental and
industrial laboratories have been developing technology
for on-chip/on-wafer, chip-to-chip and board-to-board
high speed optical communication. Both guided. wave and
free space communication media are being developed. In
this paper, a review of the technological developments,
current status and future projections for optical
interconnects will be presented.

Introduction

There is a growing demand to increase the throughput of
high-speed processors and computers. To meet this
demand, denser, higher-speed IC's and new computing
architectures are being developed. Electrical
interconnects and switching have been identified as
bottlenecks to the throughput of computing systems;
Two trends brought on by the need for faster computing
systems have pushed the requirements on various levels
of interconnects to the edge of what is possible with
conventional electrical interconnects. The first trend
is the development of higher speed and denser switching·
devices in silicon and GaAs. Switching speeds of logic
devices are now exceeding speeds of 1.0 Gb/s, and high
density integration has resulted in the need for
interconnect technologies to handle hundreds of output
pins. The second trend is the development of new
architectures for increasing the parallelism, and
hence, the throughput of a computing system.

A representation of processor and interconnect
complexity for present and proposed computing
architectures l is shown in Figure 1. The dimension

CH2345-7/86/0000/0448$01.00© 1986 IEEE

along the axis is the number of processors required for
the architecture. On the left end of the axis is the
Von Neumann type architecture which has very few
processors, but the processors tend to be very complex.
Progressing to the right, the number of processors per
system increases until it reaches a neural network
requiring millions of processors but the processors are
much less complex than the Von Neumann case. From
looking at Figure I, it becomes apparent that as the
number of processors increases, the number and
complexity of the interconnects within the system
increases dramatically. In fact, at the far right of
this scale, the interconnects become an integral part
of the computing architecture, and the boundary between
the processors and the interconnects becomes blurred.

Increasing Inlerconnecl Comple)(ltv ~

Coarse Fine

Cosmic Cube DADO Neural Networks

ConventIonal P a 2-4 P a 256 pal 06 Massively
Von Neumann-":"'-:"'::"-=--.L...-~r:;.:'--1-.-';"-"rl ~_-L __ Parallel

448

Cray/CDC • MIMD Machine Connection Machine

• Butterfly

f--- Increasing Processor Complexity

Figure I Granularity of Processing [Ref. I].

Optical interconnects have long provided the
telecommunications industry with a high speed, low
weight, low. volume, long. distance transmission media2.
Optical interconnects can also be applied, at least
conceptually, at many levels within a computing
architecture. On a physically large scale, optical
in terconnect technology has been used in local area
networks to connect computers. At the next level down
in physical size is the interconnection between systems
within a computer such as a memory to processor
connection. This is classified as a board-to-board or
backplane interconnection. Next there are the
interconnections between individual chips on a single
board or between chips in a multi.,.chip package.
Finally, there are the interconnections between de.vices
within a single chip or on-chip clock distribution:

A number of researchers have been developing the
technology for optical routing techniques, packaging of
optical and electronic components, high speed opto
electronic devices and optical clock distribution
leading to optical interconnect demonstrations. A
discussion of these technology developments, as well as
some optical interconnect system demonstrations, will
be the subject for the remainder of this paper.

Ootical Routing Techniaues

There are basically two types of routing techniques
being explored - guided and free space. The guided
interconnect technique could use optical fibers for
distributing the optical signals or optical waveguides
integrated on a substrate. Fibers for optical
input/output (I/O) shows promise because of its well
established technology, low cost and ease of coupling
to the fibers. Since the distances to be travelled by
the optical signals for applications discussed in this
paper are short «1 km), multi-mode fibers can be used
even for data rates of several Gb/s. This will
significantly ease the fiber to chip alignment and
packaging constraints. A general scheme for using
optical fibers3 for I/O is shown in Figure 2. Fibers
are sufficiently flexible and low volume to provide
random routing with little crosstalk for backplane
communications. For chip-to-chip interconnects on a
single board or even intrachip communication, fibers
become cumbersome. In this environment, fibers and
their bending radius become large in comparison with
typical electrical interconnects and the size of the
devices. An alternative is to use integrated
waveguides in the packaging to increase density and
reliability.

The fiber optic routing scheme shown in Figure 2 shows
two possible configurations. The first is a point-to
point communication link with a single optical source
linked to a single receiver having a fanout of one.
The second shows a multiple fanout with one source
communicating to several detectors.

FIBER ARRAY
TO OTHER BOARD

VERTICAL INTERCONNECT

Figure 2 Scheme for using optical fibers for I/O
showing a fanout (bottom) of one and multiple
fanout (top) [Ref. 3].

449

In the area of high-speed communication busses, there
is a practical limit for speed and fanout in
implementing high speed electrical bus structures.
These busses span printed wiring boards, between boards
and between systems. The difficulty arises when an
electrical interconnect is required to fanout to
multiple distributed loads. As the number of fanouts
increase, several parameters effect the electrical
interconnect. The two most notable effects of fanout4

are the lowering of the effective characteristic
impedance and the increase of the propagation delay.
While the increase in characteristic impedance is not
fundamentally limiting since drivers can be designed to
provide the required power, it does increase the
required on chip power and decrease available chip
real-estate, both of which are undesirable. The effect
of the decrease in propagation delay decreases the
critical line length. The critical line length is the
maximum length that an electrical interconnect can be
without termination, so that ringing on the circuit is
minimized.

Using optical fibers as the transmISSIon media, the
effect on fanout is quite different. The number of
fanouts for optical interconnects are limited primarily
by the available power to the detectors. The actual
power available to the. detectors is determined by the
power of the source and losses throughout the
distribution system. Optical fanout is achieved by
power splitting of the optical channel as shown in
Figure 2, which can be achieved by star, tree or tap
networks. The maximum fanout for an optical channel
can be determined from the minimum power required by
the detector (for a given bit error rate), optical
source power and losses throughout the system. Figure
3 shows a comparison of optical and electrical fanouts
versus clock frequency4 for a bussing structure.

..,
:l
o
c
a

u.

500

5

\
\

\

(7) \ - - - - -- -'- - - - -\- -
\

\

(?)
1~~~~~~~~~~~~~
.01 .5 1 5 10

--- Data Rate (Gbs)

Figure 3 Optical and electrical fanout limitations
versus data rate for various conditions (1)
maximum theoretical optical fanout (2)
practical limitation to optical interconnects
assuming a 6dB design margin (3), (4) and (5)
represent 2, 10 and 50 cm unterminated
electrical lines respectively and (6), (7)
and (8) represent 2, 10 and 50 em terminated
electrical lines respectively [Ref. 4].

Using un-guided or free-space techniques for directing
the light to its destination is a method that shows a
lot of promise. The use of free space allows the
density of the interconnects to increase to the
fundamental diffraction limit of optics with minimal
crosstalk. One can use either unfocused or focused
free space interconnects. The unfocused technique
simply broadcasts the optical signals carrying the
information over the entire electronic chip. However,
this type of interconnect is inefficient since only a
small portion of the optical energy falls on the
photodetectors and the rest is wasted. Also, optical
energy incident on portions of the chip where it is not
wanted may induce stray electronic signals that cause
errors and improper operation.

Using holographic techniques as shown in Figure 4, the
optical source can be imaged onto a multitude of
detector sites simultaneously5. This should
significantly increase efficiency and reduce stray
electronic signals, provided the hologram can be made
with large diffraction efficiency. The primary
disadvantage of using focused interconnect techniques
is the high alignment precision that is needed to
assure that the focused spots are striking the
appropriate places on the chip6. A number of
holographic imaging techniques for optical
interconnects has been investigated by Goodman 7 et at.
The configuration that appears to have the most
flexibility is shown in Figure 5, since it can have a
large number of independent channels and spatially
variable fanout 7. In this proposed technique, each
facet is illuminated sequentially with a number of
diverging object beams and a converging reference wave.
The positions of the object beams can be moved
automatically with a computer controlled stepper motor
drive and the beam ratios can be adjusted to provide
optimized diffraction efficiency.

OPTICAL SOURCE

IC CHIP SURFACE

Figure 4 Free space holographic optical element for
distribution of the clock [Ref. 5].

450

CONTROLLED
SOURCE

/POSITION
5,/

1 ~ECOROING MATERIAL
TRANSLATION AXES

Figure 5 Multi-facet hologram formed with selective
object source points. Source points are
encoded in sequential fashion [Ref. 7].

Bergman8 et al have been looking at reflection
holograms fabricated as a surface relief in silicon.
The holographic pattern is recorded in photographic
film and then contact printed onto a layer of
photoresist on a silicon substrate. After developing
the photoresist, the silicon is chemically etched and
then coated with aluminum. To date, they have
achieved 20 percent diffraction efficiency with a
promise of higher efficiency in the future.

Free space optical interconnects provides the potential
of implementing reconfigurable interconnects. Figure 6
shows one possible implementation of a nonblocking
crossbar network9. The input LED's or lasers represent

,the inputs of "n" different channels, while the
detector array is the output to "n" channels. The
spatial light modulator which may be electro-optic,
magneto-optic or acousto-optic, can be programmed to
connect anyone of the inputs to one or any combination
of outputs.

Figure 6 Free space optical interconnect
implementation of a crossbar network [Ref.
9].

Packaging Techniques

For optics to be used in computing systems, packaging
methods must be developed. to allow high-speed silicon
and GaAs digital components to be packaged with opto
electronic components and waveguides9,IO. Unique
packaging problems arise when optical interconnects are
used with high speed electronics. The coupling between
opto-electronic components and waveguides requires
critical alignment tolerances of less than a micron.
In addition, thermal conditions on the chip carriers
must be tightly controlled to keep the opto-electronic
devices from drifting.

A technique has been developed and demonstrated at
Honeywe1l4 to align several fibers to a multiple
detector array. Figure 7 shows the optical coupler
which was developed to align and attach multiple
fibers. V-grooves were etched in silicon 11 to provide
an excellent alignment fixture since the spacing
between the V -grooves can be delineated exactly to
match the detector spacing. As shown in Figure 7, the
exit end of the fiber is polished at an angle such that
the light strikes the end of the fiber and is total
internally reflected through the bottom of the fiber.
Since the fiber used in these experiments was multimode
(50 urn core diameter), the end of the fiber must be
polished at 5So so that all of the modes are total
internally reflected. It is interesting to note that
since the fiber has a cylindrical geometry, the fiber
acts as a lens to focus the light into an elliptical
spot in the detector plane. This allows the detector
size to be smaller than the fiber core diameter which
could be important for very high speed systems.

Silicon alignment
fixture

Figure 7 Fiber to detector alignment
utilizing silicon V -grooves [Ref. 9].

technique

Maximum efficiency is limited to about 70% using this
technique, due to Fresnel reflection from the surface
of GaAs. This could be reduced by introducing an index
matching fluid or depositing an anti-reflection coating
on the surface of the detector. Without using index
matching fluid, anti-reflection coatings or taking any
special precautions, an efficiency of 60% has been
demonstrated9.

A different fiber to chip technique shown in Figure S
has been demonstrated 12 that allows vertical bonding of
the fiber to the chip. A high aspect ratio hole is
etched in the silicon substrate by using a frequency
doubled argon-ion laser at a wavelength of 257 nm for
laser-assisted etching in a 5% aqueous solution of HF.
The diameter of the hole is controlled (to first order)
by the diameter of the laser beam. In this case, the
diameter of the hole was 12 um. Due to the nature of
light guiding during the etching process, the side
walls of the etch are nearly vertical.

451

--. +-- 9 ~m

single-mode
fiber core

cledding

elurninum

n-sil icon

+

hO~ II ~ dHfusion

12 urn

Figure S Schematic cross-section of a vertical mounted
fiber optic coupler [Ref. 12].

Once the hole has been etched, a pn junction detector
is fabricated in the hole using standard semiconductor
device fabrication techniques. A single mode fiber is
chemically etched down to its 9 urn diameter core by
immersion in buffered solution of HF for approximately
2 hours. The etched fiber is then inserted into the
detector well and attached to the chip using epoxy.
This system was tested by coupling a He-Ne laser
emitting at a wavelength of 632Snm into the fiber
using a microscope objective. By measuring the IV
characteristic of the photodiode, the responsivity was
determined to be 0.13 AjW corresponding to a quantum
efficiency of approximately 25%.

The advantage to using this technique is the
flexibility to put the optical detectors at any
position on the chip. This allows the flexibility to
receive information at any position. This technique is
not planar, therefore, an unconventional package needs
to be implemented to use this technique. This
particular development was demonstrated in silicon,
however, it could also be used for GaAs circuits.

A packaging technology based upon multichip integration
is being developed at MIT Lincoln Laboratories.
Individual die or chips are imbedded in a potting
compound and cast13 as shown in Figure 9. By using
standard photolithographic processes, defining
connections between the chips becomes fairly routine.
Choosing the potting compound is crucial to ensure
chemical and thermal compatibility with
photolithographic processing steps. A breadboard
demonstration was built which consisted of a commercial
GaAs shift register (HMD-l1141), a mass-transported
GaInAsP laser diode I4, a 6-dB attenuator, and an outer
conductor DC block. The laser had a threshold current
of IS.5mA and a 3dB frequency of 6GHz at a current of
SOmA. Using a clock rate of 1.4GHz to the input of the
GaAs shift register, a chip risetime of ISO ps and a
falltime of 120 ps was measured.

Figure 9 Multichip packaging
gallium arsenide,
componen ts [Ref 13].

CASTING MATERIAL

METAL STUD
OR SILVER FILLED

EPOXY

technique of silicon,
and opto-electronic

Opto-Electronic Device Development

In addition to optical routing, the effective use of
optical interconnects also requires high performance,
low power opto-electronic transmitters and receivers.
The use of discrete components for the opto-electronic
transmitter and receiver suffers from two
disadvan tages 15; one is the difficulty of con trolling
parasitic reactances and the second is the high cost of
manually fine tuning each module to create reproducible
performance at high frequencies.

It is anticipated that in order to realize the full
performance of an optical interconnect system, there
would be a distinct advantage if the opto-electronic
components were monolithically integrated with the high
speed electronics. The excess capacitance and
inductance with the bonding pads and wires would be
eliminated. This translates to higher speed, less
power and lower noise than its hybrid counterpart.
GaAs provides an attractive material for monolithic
integration since both GaAs digital integrated circuits
and AIGaAs/GaAs opto-electronic devices are being
developed at numerous laboratories. There have been a
number of demonstrations of laser diodes integrated
with either a single or a few GaAs IC components 16-20.
Although these devices demonstrated the feasibility of
the monolithic integration of lasers with a small
number of transistors, these techniques have not been
suitable for integrating a laser with a large GaAs IC.

For the past several years, Honeywell and Rockwell have
been developing the technology to integrate opto
electronic devices with complex GaAs circuits I5,21-24.
One structure that has been demonstrated 15 is shown in
Figure 10. The components in the structure are a
transverse junction stripe (TJS) laser, a field effect
transistor (FET) driver, and a 4:1 multiplexer (MUX).
The mux and driver active regions are formed by
selective ion implantation into the semi-insulating
GaAs substrate while the TJS laser is fabricated by
liquid phase epitaxial growth in a well that is etched
into the substrate. The rear laser mirror facet is
formed by using a microcleave process developed at the
California Institute of Technology25. A cross

452

sectional view of the microclea ve process is shown in
Figure 11. The small horseshoe shaped wing at the end
of the laser is formed by chemically etching under the
AIGaAs. The wing is broken off to form a smooth
cleaved mirror facet. Measurements have shown that
lasers with undercut mirrors have operating
characteristics (laser threshold - 37mA) identical to
similar lasers having two cleaved mirrors. The opto
electronic chip having a size of 1.8 mm x 1.8 mm
operated at speeds up to 150 MHz26.

PROCESSED
LASER MIRROR

SEMI-INSULATING GaAs SUBSTRATE

Figure 10 Block diagram of the monolithic opto
electronic transmi tter consisting of an
integra table TJS laser, laser driver and 4:1
multiplexer [Ref. 15].

On-chip
Mirror

Semi·insulating
GaAs Substrate

Figure 11 Microcleave process to form a smooth cleaved
mirror facet for monolithic integration [Ref.
15].

More recently, a Gbit/sec opto-electronic receiver
chip was demonstrated27. The receiver chip was
designed to digitally multiplex four high speed input
signals. Two of the inputs are electrical and two are
optical. The receiver consisted of two back-to-back
Schottky diode detectors, two amplifiers, a 4:1
multiplexer and a laser driver. All of the components
are fabricated on a semi-insulating GaAs substrate
using direction implantation MESFET technology.

The photodector was fabricated directly on the semi
insulating substrate, thus eliminating the need for
epitaxial growth. A pulse response of the back-to
back Schottky photodiode28 is shown in Figure 12 for a
reverse bias voltage of -15V. The rise and fall times
of the photodetector response observed for a range of
bias voltages between -10V and -15V were under 100 ps,
which is sufficient for a 1 Gbit/sec operation of the
receiver. The responsivity of the detector was
measured to be 0.2 A/W for a wavelength of 0.84 urn.
The output of the detector is fed into a three-stage
amplifier: a preamplifer, a gain stage and a buffer
stage. The preamplifier translates the current into a
voltage and amplifies to the proper GaAs logic levels
by the gain stage and the buffer stage is use~ as a
line driver to drive the input of the 4:1 multIplexer.
The preamplifier had a gain of 20dB with a feedback
around the second stage to improve its frequency
response.

5 mV

50 ps

Figure 12 Pulse response of back-to-back Schottky
photodiode for bias voltage of -15V [Ref.
26].

A similar effort on monolithic integration using a
multiple quantum well (MQW) laser with a ridge
waveguide structure24 in shown in Figure 13. The MQW
laser structure was grown by MOCVD and consisted of
five 100 A GaAs wells separated by four 40 A AIO.2
GaO.8 As barriers. The ridge waveguide was ion milled
having a width of 5 urn. These integrated dev.ices have
shown room temperature operation with 15 rnA threshholds
and differential quantum efficiences of 60%. For this
particular integration scheme, the laser will be
implemented as a surface emitting laser as shown in
Figure 14. The laser light is coupled from the laser
to a passive AIGaAs waveguide. The light in the
waveguide is coupled from surface either with an etched
V-groove or a grating as shown in Figure 14. This
technique allows the user to fabricate lasers at any
position on the chip rather than only at the edge of
the chip. This method is more difficult to implement
if fibers are to be used as the transmission medium.
However, it does provide the flexibility for utilizing
the third dimension and directing the optical signals
via holographic techniques.

453

n+·OaAa

Au-G.

Figure 13 Cross-section and energy band diagram for a
ridge waveguide MQW laser [Ref. 24].

IJ=====~~-------------~~~~
LIGHT
OUTPUT

CLADDING IGAAlAiI

~~~~~j~~~~~~~~~~~~~~~~ ACTlVEIGaAII PASSIVE 
WAVEGUIDE IG~1AaI 

ETCHED MIRROR REfLECTOR 
OUTPUT COUPLER 

ETCHED-MIRROR LASER WITH ETCHED MIRROR REfLECTOR OUTPUT COUI'LER 

LIGHT 
OUTPUT 

GRATING 
OUTPUT COUPLER 

ETCHED-MIRROR LASER WITH GRATING OUTPUT COUPLER 

{ 

WAVEGUIDE 
I$OLA TlON IG.AIA~ 

SEMI-INSULATING 
GoAo IIUBSTIIA TE 

Figure 14 Surface emitting laser using (a) etched V
groove and (b) grating [from Rockwell]. 

The photodetector used in this development is a PIN 
photodector grown by MOCVD. The structure is a 6 layer 
stack consisting of GaAs and AIGaAs layers. Initial 
tests on this device have shown a dark current 24 of 
less than 10pA and a breakdown voltage of 80 V. A 
current gain of 10 was demonstrated at a voltage of 95% 
of breakdown. 



Optical Interconnect Demonstration 

There are a number of university, government and 
industrial laboratories developing analytical tools, 
technology, packaging techniques and system 
demonstrations. One system demonstration nearing 
completion is a hybrid model designed for point-to
point communications between chips and boards. A block 
diagram of the interconnect demonstration is shown in 
Figure 15. The board consists of four ECL Fairchild 
lOOK series shift registers, each of which provides an 
8-bit psuedo-random word at 250Mb/sec. The outputs of 
the four high speed ECL chips are connected to a GaAs 
4:1 multiplexer which has an output of 1 Gbit/sec. Two 
of the ECL chips are packaged with an AIGaAs laser, 
laser drivers and an optical fiber. The other two word 
generators are packaged alone such that the GaAs chip 
has two optical inputs and two electrical inputs. The 
GaAs 4: 1 multiplexer package consists of two optical 
fiber inputs, two electrical inputs, the GaAs chip with 
4:1 multiplexer, detectors, preamplifier, laser driver 
and a separate laser coupled to an optical fiber. The 
optics was designed to have a minimum impact on the 
existing high-speed package, but still provide rigid 
and efficient coupling to the opto-electronic 
componen ts. 

Support Electronics 

4:1 Multiplexer 

V·Groove Coupler 

Figure 15 Layout of chip-to-chip and board-to-board 
Optical Interconnect Demonstrations [Ref. 1]. 

The full system test has not been completed; however, 
key components in the system have been tested. The 
GaAs receiver chip was tested and found to be fully 
functional. An optical fiber was positioned over one 
of the two detectors, and one of the four data channels 
was successfully modulated w~th an optical input. The 
4:1 multiplexer on the GaAs chip was implemented using 
a complementary clocked dual shift register 
architecture. This architecture makes it possible to 
have an output data rate (NRZ) that is twice the clock 
speed. All of the shift registers in the multiplexer 
were designed using a differential current-mode-logic 
structure to minimize the delay and device count in the 
shift registers27. The complete GaAs chip consists of 
807 depletion mode transistors and 325 level shifting 
diodes. 

454 

A test fixture was developed to test the high speed 
GaAs receiver. Tests were performed to determine the 
maximum data rate that the 4:1 multiplexer was capable 
of handling. The bandwidth of the test equipment was 
the limiting factor in determining the maximum data 
rate of the chip. The maximum data rate measured on 
the receiver chip was 2 Gbit/s (NRZ). The size of the 
GaAs chip is 2.82 mm x 2.04 mm and it dissipated 3.5 
watts of electrical power at 1 Gbit/sec. It is 
anticipated that test data for the full optical 
interconnect demonstration will be presented at the 
conf erence. 

Another optical interconnect demonstration is being 
developed at the Naval Ocean Systems Center29. Figure 
16 shows the concept where an optoelectronic switch 
will be used in a time division muliplexing (TOM) 
scheme. This is being investigated as an output from a 
VLSI chip where the timing comes from adjusting the 
length of the fiber. A side view of the optoelectronic 
switch is shown in Figure 17. The metal interconnect 
stripline has a small discontinuity such that the 
signals cannot be transmitted to the edge of the chip. 
The connection is made by shining a high speed laser 
pulse at the position of discontinuity. This increases 
the conductivity of the semiconductor sufficiently to 
short the discontinuity. By adjusting the length of 
the fiber several of these microstrip lines can be 
multiplexed to a high speed serial output. This 
technique has been demonstrated in silicon but could 
also be implemented in GaAs. 

CHIP CARRIER 

'" MICROS TRIP 

Figure 16 Optoelectronic time division multiplexing 
scheme for VLSI chip output [from NOSC]. 

OHMIC 
CONTACT 

OPTICAL 
FIBER 

~ .">C,"",, •• SIOZ t n+ - SEMICONDUCTOR LAYER 
(GoAl, InP, 51) 

-INSULATING SUBSTRATE 
LIGHTlY (C,-GoA., Fe-lnP, Atz 03) 
DOPED OHMIC 
REGION CONTACT 

Figure 17 Side view of optoelectronic switch [from 
NOSC]. 



Conclusions 

As can be seen by the discussion presented in this 
paper, there are numerous researchers developing the 
concepts and technology for advanced optical 
interconnects for high speed computing applications. A 
lot of attention is being given to packaging high speed 
silicon VLSI devices with high speed GaAs integrated 
electronics, opto-electronics and optics. The optimum 
method for routing the optical signals has yet to be 
determined. However, fiber optics for the board-to
board and local area network applications and free
space holographic techniques for the intrachip and 
chip-to-chip communications appears to have the most 
promise. The monolithic integration of opto-electronic 
components with electronics is making rapid progress, 
yet a number of technical hurdles such as ultra-low 
threshold lasers, reliability, yield and low power, 
need to be solved before these devices can be 
implemented in computing applications. 

The results to date are encouraging for optics to 
become an integral part of future high throughput 
computing systems. For the near term, we can expect 
several demonstrations of optical interconnects using 
hybrid components. As the packaging of electrical and 
optical components becomes more common, we will learn 
which applications and which high speed circuits will 
benefit from this technology. 

Acknowledgements 

I would like to acknowledge the help of numerous people 
who provided information for this paper. They include 
John Neff of DARPA, Paul Haugen and Sankar Ray of 
Honeywell, Paul Prucnal of Columbia University, Joe 
Goodman of Stanford University, Dean Tsang of MIT 
Lincoln Labs, Alan Johnston of Jet Propulsion 
Laboratory, Kevin Kilcoyne of Rockwell and Ron Reedy of 
Naval Ocean Systems Center. 

1. 

2. 

3. 

4. 

5: 

6. 

References 

L. D. Hutcheson, P. R. Haugen and A. Husain, 
"Gigabit per Second Optical Chip-to-Chip 
Interconnects," SPIE Proceedings, Cannes, France, 
November, 1985. 

J. E. Midwinter, "Current Status of Optical 
Communications Technology," J. of Light. Tech., 
LT-3. 927 (1985). 

J. Fried, "Optical I/O for High-Speed CMOS 
Systems," to be published in Optical Engineering, 
October, 1986. 

P. R. Haugen, S. Rychnovsky, L. D. Hutcheson and 
A. Husain, "Optical Interconnects for High Speed 
Computers," to be published in Optical 
Engineering, October, 1986. 

B. D. Clymer and J. W. Goodman, "Optical Clock 
Distribution to Silicon Chips," to be published in 
Optical Engineering, OC.to ber, 1986. 

J. W. Goodman, F. J .. Leonberger, S. Y. Kung ~nd R. 
A. Athale, "Optical Interconnections for VLSI 
Systems," Proc. IEEE, Tb 850 (1984). 

455 

7. R. K. Kostuk, J. W. Goodman and L. Hesselink, 
"Optical Imaging Applied to Microelectronic Chip
to-Chip Interconnections," Appl. Opt., 24, 2851 
(1985). 

8. L. Bergman, W. H. Wu, A Johnston, R. Nixon, S. 
Esener, C. Guest, P. Yu, T. Drabik, M. Feldman and 
S. H. Lee, "Holographic Optical Interconnects for 
VLSI," to be published in Optical Engineering, 
October, 1986. 

9. P. R. Haugen, A. Husain and L. D. Hutcheson, 
"Directions and Development in Optical 
Interconnect Technology," SPIE Proceedings Vol. 
625, P. 110, January, 1986. 

10. D. H. Hartman, M. K. Grace and F. V. Richard, "An 
Effective Lateral Fiber-optic Electronic Coupling 
and Packaging Technique Suitable for VHSIC 
Applications," J. Light. Tech., LT-4, 73 (1986). 

11. E. J. Murphy and T. C. Rice, "Low-Loss Coupling of 
Multiple Fiber Arrays to Single-Mode Waveguides," 
J. Light. Tech, LT-l, 470 (1983). 

12. P. R. Prucnal, E. R. Fossum and R. M. Osgood, 
"Integrated Fiber-Optic Coupler for Very Large 
Scale Integration Interconnects," Optics Letters, 
11, 109 (1986). 

13. D. Z. Tsang, D. L. Smythe, A. Chu and J. J. 
Lambert, "A Technology for Optical 
Interconnections Based on Multichip Integration," 
to be published in Optical Engineering, October, 
1986. 

14. Z. L. Liau, J. N. Walpole and D. Z. Tsang, 
"Fabrication, Characterization, and Analysis of 
Mass-Transported GalnAsP/lnP Buried
Heterostructure Lasers," IEEE J. Quant. Elect., 
OE-20. 855 (1984). 

15. J. Carney, M Helix, R. Kolbas, S. Jamison and S. 
Ray, "Integrated Optoelectronic Transmitter," SPIE 
Proceedings, Vol. 408, April, 1983. 

16. I. Ury, S. Margalit, M. M. Yust, and A. Yariv, 
"Monolithic Integration of an Injection Laser and 
a Metal Semiconductor Field Effect Transistor," 
Appl. Phys. Lett., 34, 430 (1979). 

17. T. Fukuzawa, N. Nakamura, M Hirao, T. Kuroda, and 
J. Umeda, "Monolithic Integration of a GaAIAs 
Injection Laser with a Schottky-gate Field Effect 
Transistor," Appl. Phys. Lett., 36, 181 (1979). 

18. J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. 
Ury, D. Wilt, M Yust and A. Yariv, "A Monolithic 
Integration of GaAs/ AIGaAs Bipolar Transistor and 
Heterostructure Laser," Appl. Phys. Lett., ll. 211 
(1980). 

19. I. Ury, K. Lau, N. Bar-Chaim and A. Yariv, "Very 
High Frequency GaAIAs Laser Field-Effect 
Transistor Monolithic Integrated Circuit," Appl. 
Phys. Lett., ti. 126 (1982). 



20. M. Kim, C. Hong, D. Kasemset and R. Milano, 
"GaAIAs/GaAs Integrated Optoelectronic Transmitter 
using selective MOCVD Epitaxy and Planar Ion 
Implantation," Proceedings IEEE GaAs IC Symposium, 
October, 1983. 

21. R. Kolbas, J. Carney, J. Abrokwak, E. Kalweit and 
M. Hitchell, "Planar Optical Sources and Detectors 
for Monolithic Integration with GaAs Metal 
Semiconductor Field-Effect Transistor (MESFET) 
Electronics," Proceedings SPIE, Vol. 321 , January, 
1982. 

22. J. K. Carney, M. J. Helix, R. M. Kolbas, S. A. 
Jamison and S. Ray, "Monolithic 
Optoelectronic/Electronic Circuits," Proceedings 
IEEE GaAs IC Symposium, October, 1982. 

23. M. Kim, C. Hong, D. Kasemset and R. Milano, 
"GaAIAs/GaAs Integrated Optoelectronic Transmitter 
Using Selective MOCVD Epitaxy and Planar Ion 
Implantation," Proceedings IEEE GaAs IC Symposium, 
October, 1983. 

24. M K. Kilcoyne, D. Kasemset, R. Asatourian, S. 
Beccue, "Optical Data Transmission Between High 
Speed Digital Integrated Circuit Chips," SPIE 
Proceedings, Vol. 625, P. 127 (1986). 

25. H. Blauvelt, N. Bar-Chaim, D. Fekete, S. Margalit 
and A. Yariv, "AlGa As Lasers with Micro-Cleaved 
Mirrors Suitable for Monolithic Integration," 
Appl. Phys. Lett., 40, 2891 (1982). 

26. J.Carney, M.Relix and R. M. Kolbas, "Gigabit 
Optoelectronic Transmitter," Proceedings IEEE GaAs 
IC Symposium, October, 1983. 

27. M P. Walton, P. R. Haugen and S. L. Palmquist, "A 
1 Gbit/s Optical/Electrical Input Monolithic GaAs 
Transmitter IC," Proceedings IEEE MTT-S 
International Microwave Symposium, Baltimore, 
Maryland, June, 1986. 

28. S. Ray and M. P. Walton, "Monolithic 
Optoelectronic Receiver for Gbit Operation," 
Proceedings IEEE MTT-S International Microwave 
Symposium, Baltimore, Maryland, June, 1986. 

29. Information on the optoelectronic switch received 
from Ron Reedy of the Naval Ocean Systems Center. 

456 



Optical Interconnection Systems for Digital Parallel Processors 

Alexander A. Sawchuk 
Signal and Image Processing Institute 

University of Southern California 
Mail Code 0272 

Los Angeles, CA 90089 
(213)743-5527 

ABSTRACT 

Optical techniques have great potential for applications in the 
dynamic interconnection of digital parallel processing systems. 
In this paper, we review some of the relevant advantages of 
optics, including high signal bandwidth, inherent parallelism, 
and low mutual interference. Specific optical realizations of 
dynamic generalized crossbars and other types of networks are 
presented. One way to implement crossbar networks is to util
ize optical matrix-vector multiplier architectures; several 
designs are compared. The systems may use acousto-, electro-, 
or magneto-optic spatial light modulators as the active control
ling element. Other optical digital processors that can· realize 
crossbars and multistage networks are also described. 

1.0 Introduction 

This paper is concerned with the application of bulk (3-D) 
optical components and optical architectures to interconnection 
problems in digital systems. Efficient communication among 
the elements of these systems is recognized as the key to faster 
computing through the use of parallel processors and shared 
resources. This. paper concentrates on dynamic, rapidly time
variable interconnections at the spatial scale size of processors 
(10°_103 m) and boards (10-1-10° m). 

Several multiprocessor systems incorporating a large 
number of processors are in various stages of development 
[CaMP 82], [CaMP 85]. A crossbar network is very desirable 
for interconnections among these processors because every pro
cessor can communicate with every other processor with no 
conflicts. However, the. electronic implementation of crossbar 
networks of large size is difficult due to constraints on VLSI 
technology. The parallel nature of optics, its high available sig
nal bandwidth, together with its relative freedom from interfer
ence makes it attractive for' implementing large crossbar and 
other networks that do not suffer from many of the limitations 
of their electronic counterparts. 

1.1 Need for Parallel Interconnection Architectures 

Any multiprocessor system that applies several processors 
to a job must be designed to allow efficient communication 
between processors, and between processors and memories, or 
else the advantage of multiprocessing is offset by the communi
cation bottleneck. A crossbar interconnection network allows 
every processor to communicate with every other processor 
with no conflicts in the network (we use the term "crossbar" 
here to refer to networks which are strictly non-blocking, in 
which a unique path exists from every input to every output; 
the complexity of such networks grows as the square of the net
work size N) - however, the electronic implementation of large 
crossbar networks has been considered impractical due to 

457 
CH2345~7/86/0000/0457$01.00 © 1986 IEEE 

technological constraints. This fact forced researchers to 
proceed in one of two directions: (i) design interconnection net
works with less than 0 (N 2

) complexity, which are feasible. to 
build and easy to control, and, at the same time, provide rea
sonable performance; or (ii) design new algorithms or modify 
existing algorithms to suit the limited interconnection struc- . 
ture, so as to utilize the available interconnection structure 
most efficiently. Due to their inherent 3-dimensional nature 
low mutual interference between channels, and high bandwidth: 
optical switching systems offer great potential for multiplexing 
data from thousands of processing elements over a single opti
cal channel without causing a speed bottleneck. 

1.2 Interconnection Considerations 

Dynamic reconfigurable interconnection networks are 
desirable for interconnecting a large number of processors (or 
PEs) to memories or to other processors. Connecting every PE 
to every other PE (or memory) with a fixed, dedicated line is 
not viable because of the number of lines and connections 
required. Networks range in complexity from a simple bus to a 
crossbar. In this section we define some important interconnec
tion network characteristics and describe how they differ in 
electronic and optical implementations. 

Number of Lines. This parameter, N, defines,the number 
of input and output lines. Implementing moderately large 
crossbars (>100X100) in electronics' is difficult due to 
bandwidth, power and reliability contraints. 

Bandwidth. This refers to the bandwidth of each line in 
the network. In passive optical networks (which do not detect 
and- regenerate optical signals internally), the bandwidth is lim
ited by external sources and detectors, which can easily operate 
at 1 Gb/s rates or higher. Sources (laser diodes) and detectors 
are available at 20 GHz and 40 ps, respectively. 1-D arrays of 
these devices are presently limited to lower values; existing 
detector arrays with parallel outputs operate at approximately 
50 Mb/s. In contrast, electronic systems typically operate at 10 
Mb/s for each line. 

Reconfiguration Time. Reconfiguration of optical' net
works is limited _ to approximately 1 J,lS for moderate or large 
networks, with existing or near-future technology. Optical dev
ice arrays presently have switching times of 1 J,lS for each 
switch at best. For an electronically controlled optical switching 
array, it is a matter of" switching time and addressing schemes 
to control all of the switch states: Practical electronic switches 
can. typically switch in 50-100 ns for each switch. Fast 
reconfiguration of the network is needed in an environment 
where. the switching permutations change rapidly. However, 
slow switching could be tolerated in applications where each 
connection is followed by the transfer of large blocks of data. 



Broadcast Capab£lity. Broadcasting is the ability for one 
processor to simultaneously send information to more than one 
other processor. If the interconnection network is capable of 
achieving broadcasts in one step, the overall time-complexity of 
many parallel algorithms can be reduced. In electronic imple
mentations, the provision of broadcasting involves higher con
trol complexity, a larger number of pins, and/or slower opera
tion. In some optical systems, the addition of broadcast capa
bility involves only very minor increases in complexity. 

Data Format. The switching process as well as the 
transfer of data can be performed either synchronously or asyn
chronously. Synchronous operation requires strobing or cap
ture of data at precise instants of time in the system; data 
buffers are generally required. 

Type of Detector. Three major kinds of multichannel opt
ical detectors, namely real-time, shift/add and time-integrating 
are required to implement these systems. The data bandwidths 
of systems with a vector array of real-time detectors is limited 
by the response time of each. Limitations on shift/add and 
time-integrating detectors are generally due to multiplexing 
electronics needed to provide the electronic output. 

1.3 Electronic Crossbar Networks 

We note very briefly that a few electronic crossbar switch 
units with as many as 512 X512 switches have been designed 
and/or constructed for experimental special-purpose parallel 
processor systems [BURG 83]' [DENN 82]' [BROO 84], [SAWa 
85], [SAWa 86]. These systems are generally physically large, 
dissipate a great amount of heat, and have questionable relia
bility. 

2.0 Crossbar Interconnections with a Matrix-Vector or 
Matrix-Matrix Processor 

Suppose that N serial data input lines (each one-bit wide) 
are to be connected to a set of N serial data output lines (each 
one-bit wide). The data bits on each line can be thought of as 
flowing synchronously, although, for some of the techniques 
described, this synchronism is not necessary. The data on the 
input lines at some instant of time is represented by the 
column vector b of length N. The data on the output line of 
the interconnection network is represented by the column vec
tor c of length N, and both these vectors have only binary ele
ments. The state of the switch is described by the N XN 
matrix A whose elements are also O's and 1 'so Matrix A is a 
generalized permutation matrix; an entry of 1 in row i and 
column j of A means that input j is connected to output line 
i. The overall operation of the in terconnection network is 
represen ted by 

c~Ab (2.0-1) 

which is a matrix-vector multiplication. As an example of this 
we have (for N =4), 

o 
1 

o 
1 

100 0 
001 0 
o 1 0 0 

000 

o 
o 

(2.0-2) 

Note that each row and column of A must have only a 
single" I" en try for the switch to act as an ideal one-to-one 
crossbar permutation network. The system can perform broad
casting (one input connected to two or more outputs) if there 
are two or more l's in a column of A. However, two or more 

458 

l's in any row of A implies contention, as several inputs 
attempt to communicate with one output. Once the physical 
connection described by the matrix A is made, the data 
transfer can be synchronous or asynchronous. 

This idea can be generalized for the interconnection of N 
parallel input lines (each M bits wide) to N parallel output 
lines (each M bits wide). In this case, the input lines are 
represented by an N XM matrix B, the output lines are 
represented by an N XM matrix C, and the interconnection 
matrix A is the same as before. All matrices (A , Band C) 
have binary entries as before, and the switching operation is 

C = AB (2.0-3) 

Thus, systems capable of performing matrix-vector or 
matrix-matrix multiplications with binary entries as given in 
Eq. (2.0-1) or Eq. (2.0-3) are suitable for use as a crossbar inter
connection network. There are many techniques available for 
this purpose in optical signal processing. In some of these sys
tems, the physical switch may be analog and passive (a switch
able reflective or transmissive element); thus bit synchronism is 
not required and the data bandwidth is limited only by the 
optical sources and detectors used. In other systems, the 
matrix-vector multiplication is implemented by active electro
optical or acousto-optical components, implying the detection 
and regeneration of optical signals. In such systems the switch 
itself may limit the data bandwidth. In the remainder of this 
section we discuss some of these systems. 

2.1 N 2-Parallel Inner Product Processor 

Figure 2.1-1 schematically shows a system capable of per
forming optical matrix-vector multiplications of the form of Eq. 
(2.0-1) in an inner product format [ATHA 83]. The N input 
lines drive a I-D array of N light emitting diodes (LEDs) or 
laser diodes with a binary signal, so that a binary 1 is 
represented by light of a fixed intensity, and a binary 0 is 
represen ted by a lower ( or zero) in tensity. An optical system to 

the right of the input vector spreads the light from each input 
source into a vertical column that illuminates the crossbar 
mask shown. The crossbar mask consists of an N XN array of 
windows representing the entries in the N XN permutation 
matrix A. An entry of 0 in A corresponds to zero light 
transmission, or an opaque window in the mask. An entry of 1 
in A corresponds to full light transmission or an open window. 
In the systems we are investigating, the crossbar mask is an 
electrically-controllable shutter array that is time-variable 
through the application of external control signals. Several 
different technologies are available for this purpose, including 
mechanical, electro-optic, and magneto-optic. 

Following the crossbar mask, the next set of optics collects 
the light transmitted by each row of the mask, and sums the 
mask output onto a I-D vertical array of N photodetectors 
corresponding to the N output lines. Thus the system per
forms a parallel matrix-vector multiplication. There are many 
possible ways to actually implement this schematic design, 
some of which use discrete optics or optical waveguides. 

This N 2-parallel inner product architecture has an optical 
light efficiency of 1/ N at most, when used for the usual 
crossbar operation. This occurs because (N -1)/ N of the light 
from each input source does not pass through the crossbar 
mask. A matrix-vector operation is completed in just one clock 
cycle. A matrix-matrix multiply takes N clock cycles. Since it 
is a passive interconnection, once the mask is set, the data can 
flow through synchronously or asynchronously, can be analog 



'-0' _ Q------,/ ~ , ,- -- -----1' 
;npu~!~~~~- - -~:::~UIPut 
vector - . _-

optICS crossbar mask optics vector 

Fig. 2.1-1. N 2-parallel matrix-vector inner product processoJ'. 

or digital, and has a bandwidth limited only by the sources and 
detectors. The inputs and outputs can also be directly coupled 
to optical fibers; in this case the sources and detectors can be 
some distance from the system. Another advantage of this sys
tem is that no input or output buffers are required. Broadcast
ing is possible, providing a generalized crossbar interconnection. 
The control is external and could be optical or electronic; this 
architecture is useful primarily for circuit switching applica
tions. 
2.2 Systolic Architectures 

Systolic architectures have the advantage of providing for 
rapid reconfiguration of the network, i.e. th~y can be 
reconfigured at the bit rate of the data (neglecting any over
head in calculating the needed states of the crossbar matrix ele
ments). In systolic systems, though, the input data must be 
configured appropriately for the matrix multiplication to 
proceed; this will require electronics at the input that can 
buffer the signals and send them into the switch in the 
appropriate sequence and at appropriate times. In some cases, 
only minimal buffering is required, e.g. when the data is origi
nally time-division multiplexed bit by bit. 

An N -parallel systolic matrix-vector multiplier is shown 
in Fig. 2.2-1 and implements the matrix-vector multiplication 
of Eq. (2.0-1) [ATHA 83]. 

shIft and add 
I-D detector 

Fig. 2.2-1. N -parallel systolic matrix-vector multiplier. 
The matrix elements Aij conceptually flow in from the left. 
(Each pair of matrix elements along a line is actually separated 
by a 0.) They can be realized physically by a I-D array of 
LED's. The vector elements b· enter the end of the acousto
optic (AO) cell. (The b j 's are interlaced with O's). The signals 
are synchronized so that A 11 is emitted from the center LED 

459 

when b 1 reaches the center of the AO cell. The system is 
arranged so that the light from each LED passes through the 
corresponding pixel of the AO cell, and results in the product 
A.. b· of these elements at the corresponding element of the 
I-D ietector array. A shift/add detector (e.g., I-D CCD) will 
accumulate the appropriate elements and output the resulting 
vector elements Ci serially. For example, in the first cycle 
A b will appear at the middle detector. In the second cycle 11 1 . 
A b will have been ( electronically) shifted down one detec-
to;~ el!ment A 12 will appear on the corresponding LED and. b 2 

will ha've moved up to the corresponding AO cell locatIOn, 
resulting in A 11 b 1 + A 12 b 2 on this detector. In this manner 
all terms of clare accumulated by the time it reaches the end 
of the detector array. 

Compared to the inner product architectur~ above.' .sys
tolic architectures yield crossbars that are more lIght effiCient, 
have shorter reconfiguration times, but have lower bandwidth. 
A number of these I-D elements in the N -parallel multiplier 
can be placed in parallel however, permitting each line to be M 
bits wide, thereby increasing the effective bandwidth by a fac
tor of M (M ~ 100 with current devices). Because a new 
matrix is essentially read in for each new bit or word, the sys
tem can be reconfigured rapidly. 

An N -parallel systolic matrix multiplier requires 
N (4N -3) clock cycles to complete one ~atrix-matr~x mul~ipli
cation, or one arbitrary switching operation on N mput hn.es, 
each N bits wide. In this time 1 (N -bit) word on each hne 
passes through the network. An N 2-parallel systolic ~rrange
ment can do this in 4N -3 clock cycles. The detector m these 
cases is a shift-and-add detector, instead of the parallel readout 
detector needed in the parallel inner-product multiplier above. 
In most cases, these detectors will limit the system bandwidth. 
Also the bandwidth of each line decreases as the number of 
lines is increased. The potential application for this 
configuration is in switching time-division multip~exe~ sig~als. 
The data is digital in these systems and the operatIOn IS str~ctly 

synchronous. Also, the light efficiency ~an be substantially 
higher than the inner-product processor discussed above: Th.e 
use of these systems is primarily when the number of hnes IS 

not too large, the bandwidth requirements are not extreme, and 
the reconfiguration is rapid. 

2.3 Engagement Architectures 

Engagement architectures such as that shown in Fig. 2.3-1 
use time-integrating (instead of shift/add) detectors, preferably 
with parallel outputs. 

all 

022 

O2 033 

032 

031 

012 

023 

b12 

b
ll 

bn 

b21 b32 

EBrJ3 
tIme Integrctlng 
detector array 

F·ig.2.3-1. Engagement architecture for matrix mult.iplication. 



With sufficiently fast input and output devices, the acousto
optic (AO) cell used as a spatial light modulator (SLM) will 
limit the bandwidth of each individual line to vol N, where 
vo';::::j 1 Gb/s. The matrix elements of A enter into a 2-D 
source array or a multichannel AO cell, skewed and formatted 
as shown. The data, or elements of B , enter a second, crossed 
AO cell from the top. A 2-D stationary integrating detector 
array then accumulates the results and outputs them in paral
lel. 

An N -parallel engagement matrix multiplier requires 
N (3N -2) clock cycles to complete one matrix-matrix operation 
or one arbitrary switching operation on N N -bit wide lines, 
approximately the same as the (N -parallel) systolic case. An 
N 2-parallel engagement arrangement [BOCK 84] takes 3N-2 
clock cycles. The input data formatting requirements are simi
lar to the systolic case, but interleaved O's are not required. 
The N -parallel case uses time multiplexing again. We can 
think of the width of each functional input line as being equal 
to the word length so that an M -bit wide line can transfer one 
word at an instant of time. In the N 2-parallel engagement 
case, there are N physical input lines, and the switch operates 
on word slices: it is word serial and bit parallel except for a 
unit time shift from one physical line to the next. Thus the 
first line has the first bit of each word, sequentially in time, etc. 
As in the systolic case, reconfiguration is rapid but updating of 
the state of the switches is needed even when the state does 
not change from one multiply to the next. 

2.4 N 2-Parallel Outer Product Processor 

An N 2-parallel outer product processor such as that 
shown in Fig. 2.4-1 performs C =AB by taking outer products 
of column i of A and row i of B, and summing the results 
over i . 

- ~~-~~': ,/ 

t 
------ . '" ... / " 

... " ... -... -:.::.~ ~~----~ 
, " -'" ,/..-

. --- .... . --__ _ -- Row-:"_ ; 
Colurm ---- --- f' B ~,,' ' . . ' f A -Optics- 0 TII1)e !'tegrahng 
o Detector Array 

Fig. 2.4-1. N 2-parallel outer product processor. 

It can perform a matrix-matrix operation in N clock cycles. 
However, typical acousto-optic implementations require the 
clock cycle to be equal to the fill time of the AO cell; this is a 
much longer clock cycle than the systolic and engagement 
cases. Thus, an acousto-optic implementation has the same 
speed order of magnitude as an N -parallel systolic or engage
ment architecture. Other implementations using electrooptic 
devices may avoid this difficulty. The data input is a row of B 
at a time, or bit parallel, word-serial. In the acousto-optic 
implementation discussed, the input is actually serial, first the 

first word of the first line (one bit at a time), then the first 
word of the second line, etc. The detector is a 2-D array of sta
tionary, time-integrating detectors. With this system broad
casting can easily be done, to provide a generalized crossbar. 
As in the systolic and engagement cases, the data is completely 
synchronous. Since the A matrix is read in for each matrix 
multiplication, reconfiguration is rapid, although the state of 
the switches needs to be updated for each matrix multiply. 

460 

2.5 N 2-Parallel Inner Product AO Deflector 

The system shown in Fig. 2.5-1 improves overall light 
efficiency by deflecting light instead of absorbing it. 

m~-~~~~~~ 
multichannel 
AO deflector 

------11 [@
-------
----::~ 

_------- outputs 

-optics-

Fig. 2.5-1. N 2-parallel inner p~oduct AO deflector. 

The input data to the crossbar enters through the I-D array of 
sources on the left. Each source is then transferred to the 
corresponding cell of a multichannel AO device, used as a 
deflector. There is a separate channel for input line of data, or 
each column of A. Rather than read in the elements of A into 
the AO device (N elements into each channel), a single 
frequency-modulated signal is input into each channel; the fre
quency determines the amount of y-deflection desired for the 
corresponding input line. Broadcasting cali be achieved, to a 
limited extent, by superimposing multiple frequencies onto the 
same channel of the AO cell, or by time multiplexing the 
different frequencies in the cell. Each channel of the AO cell in 
this system has just one signal on it; it is not divided into mul
tiple (moving) resolution elements as in the previous AO sys
tems. The light in each channel is then focused down in the x
dimension, yielding a I-D output array. 

In this system only the fill time of the AO cell limits the 
reconfiguration time of the switch. The bandwidth of the input 
data lines could be quite high; it is limited by the speed of the 
sources and detectors, and not by the AO cell. The time 
bandwidth product requirements of each cell of the AO device 
are modest. The reconfiguration time of the network is equal 
to the time window used in each cell, which is less than or 
equal to the maximum time window of the d.evice; thus a 
reconfiguration time on the order of 1 Jls can be expected. 

Another advantage of this system is that, as in the N 2_ 

parallel inner product multiplier, there are no special format
ting or buffering requirements on the input or output data. 
The data enters in a word-serial, bit-parallel fashion; each 
different functional input line is a different physical input line. 
Also, there are N control signals instead of N 2

, and they are 
read in in parallel. The number of input and output lines is 
equal to the number of cells in the AO device, which puts a 
limit on the number of lines that can be switched with one 
crossbar. The operation of the switch can be synchronous or 
asynchronous, and the data can be analog or digital. 

2.6 N 2-Parallel Inner Product/EngagemEmt Processor 

Another type of matrix~matrix processor architecture 
usable as an optical crossbar is shown in Fig. 2.6-1. 



time-integrating 
detector array 

",12;:.62/ 

,,' ;::;bl~ M 
~~ It / 
;·N'; 

Fig. 2.6-1. N 2-parallel inner product/engagement processor. 

The system is a combination of an Nt-parallel inner product 
processor and an N 2-parallel engagement architecture. The b 's 
to be multiplied in the system enter a parallel array of AO cells 
as shown, although the data for each row enters simultaneously 
instead of being staggered as in the N 2-parallel engagement 
processor. The input data also arrives in a time-staggered form 
and controls the illumination of LED's or laser diodes as shown. 
A set of optics similar to that in the N 2-parallel inner product 
processor spreads the light across the multichannel AO cell, 
and the final result accumulates on a time-integrating detector 
array. The results emerge in a time-offset fashion from a row 
of the detector array as shown. This system requires 3N-2 
clock cycles to complete a matrix-matrix multiplication and 
requires a digital synchronous data format. Broadcast opera
tion is possible with this system, and the overall light efficiency 
can be as high as 1/ N. 
2.7 Matrix-Vector System Performance Comparison 

The systems described in these previous sections have 
greatly differing ch~racteristics. For example, some ~f the sys
tems provide a bandwidth that is essentially independent of the 
size of the system, while for oth~rs, it. is an inverse function of 
the system size. In Table 2.7-1, we compare the six different 
systems of Sections 2.1-2.6 based on the six parameters of 
interest listed in section 1.2. 

Method of Number of Bandwidth 
implementation lines (BW) 

N 2-parallel 
> 256 

1 GHz 
inner product (passive) 

N 2-parallel 
> 100 10 MHz· 

systolic 

N 2-parallel 
> 100 

10 MHz·-
engagement 100 MHz 

N2-parallel 
>256 

10 MHz· -
outer product 1 GHz 

N 2-parallel 1 GHz 
inner product > 100 

(passive) 
AO deflector 

N 2-parallel 10 MHz· -
inner product/ 

engagement 
>100 

100 MHz 

The engagement and outer-product systems with full N 2 

parallelism require N XN time-integrating detectors which are 
operated synchronously with the data. 2-D N X N detector 
arrays have either N output lines or 1 output line. Thus the 
necessity of multiplexing at least N detector signals onto each 
electronic output line creates a bottleneck and limits the 
bandwidth of the overall system. Using N 2 parallel outputs 
could eliminate this bottleneck; the feasibility of such detectors 
is worthy of investigation. Also, the number of channels N 
may be limited by the time-integration of noise. The systolic 
architectures require a shift/add detector array to perform the 
summation. N X N shift/add arrays necessarily have at most 
N output lines; this and the use of electronics to perform the 
shift add limits the detector speed, in turn lowering the overall 
bandwidth of the system. 

2.8 Other Matrix-Vector Systems 

There are many other systems not described in this paper 
which show promise for interconnection applications. These 
systems include: an N 2-parallel encoded binary inner product 
processor; N 3-parallel matrix-matrix architectures; and an N
parallel strobed 1-D AO deflection system. These systems will 
be described in future papers. 

3.0 Optical Sequential Logic System for Interconnection 
Networks 

Because a computer can be used to implement an inter
connection network, we can consider the use of an optical logic 
system. An optical logic system can be built out of gates and 
interconnections as shown in Fig. 3.0-1. An optical switching 
device can be used to implement a 2-D array of optical gates 
(e.g., NOR gates can be implemented since they can form a 
complete logic set). These gates can be interconnected with an 
optical system consisting of lenses and one or more computer
generated holograms [JENK 84a]. Here the interconnections 
between gates within this computer are fixed, and the system 
as a whole is used to implement a reconfigurable interconnec
tion network. We have experimentally demonstrated a 16-gate 
optical circuit consisting of an oscillator and a synchronous 

Heconfiguration 
Broadcast 

Data Type of 
time format detector 

(N}l JlS 
real time 

yes async 
N Xl element 

N/BW 
NXN 

yes sync 
shift/add 

N/BW 
N XN time-

yes sync 
integrating 

max {N /BW, N XN time-
N·lO ns} 

yes sync 
integrating 

real time 
1 JlS limited async 

N Xl element 

N XN time-
N/BW yes sync 

integrating 

* Limited by output (detector array) electronics. Higher numbers (when given) apply when fibers 
guide light to discrete detectors or other optical components. 

Table 2.7-1. Comparison of optical crossbar capabilities. 

461 



master-slave flip/flop with this system [JENK 84b]. " We esti
mate that with current technology large numbers of gates 

rno;~t'!el ~: "-' -H--====!i 

(dolo or • 
program) 

inlerconneclion unil 
(compuler generoled hologram) 

~-----.,r: parallel 
output 

Fig. 3.0-1. Block diagram of the optical sequential logic system. 

(106 
- 107

) can be interconnected. The primary limitation at 
present is the extremely slow response time of the device (a 
liquid-crystal light valve) used to implement the gate array 
(10-100 ms). Fortunately, however, entirely different technolo
gies can be utilized for optical switching, and current research 
in this area provides hope for realizing respectable speeds: indi
vidual optical (NOR) gates have been demonstrated at 82 MHz 
[JEWE 84a], [JEWE 84b], and research has begun on using this 
switching mechanism in 2-D arrays. We have investigated the 
possible implementation of optical interconnection networks 
with the optical system of Fig. 3.0-1 under the assumption that 
such 2-D switching arrays will become available. 

The number N of input and output nodes of a network 
implemented with this system is limited by the complexity of 
the hologram(s) and the number of gates on the device. If we 
assume an array of 103 X 103 gates on the device and currently 
available plotting devices for writing the hologram, we can esti
mate the maximum N that one device and one hologram 
interconnection unit can implement. Here we will assume cen
tralized control with the control signals generated externally. 
A rearrangeable network consisting of a banyan followed by an 
inverse banyan, with all 2 log N stages implemented in 
hardware, can he implemented with N ~ 12,000 (limited by 
the number of gates). In this case the data can pass through 
the network in a pipelined fashion. Implementing one 
shuffle/exchange stage also permits N ~ 12,000 (limited by 
hologram complexity), but the' data must pass through the 
same hardware stage repeatedly to obtain rearrangeability. A 
non-blocking network can be realized by implementing a Clos 
network [CLOS 53] (N ~ 650) or a crossbar (N ~ 500). It 
should be noted that these values of N are not really limits 
because more than one optical system can ultimately be used in 
conjunction to implement much larger networks. 

The optical system of Fig. 3.0-1 permits a large number of 
parallel input and output lines, allowing multiple optical sys
tems to be connecte~ to implement large interconnection 
networks without having to worry about careful partitioning of 
the network. This system differs from the optical matrix-vector 
inner product implementations discussed earlier: its data rate 
may be lower and its reconfiguration rate is higher, and the sig
nal level of the data is regenerated as it passes through the net-

work. The potential advantages over electronics in this case 
arise from the number and length of gate interconnections 
within each optical interconnection unit, and the number of 
parallel lines that can run from one optical system to another. 

4.0 Conclusions and Acknowledgements 

In this paper, we have reviewed the application of large 
crossbar interconnection networks for parallel computing sys
tems and described several optical realizations for generalized 
crossbar and other networks. Several of the techniques for 
crossbar implementation utilize optical matrix-vector multiplier 
architectures, and moderately large crossbars (64 X 64 to 
512X512) appear possible with current technology. Future 
work must consider additional relevant comparison factors such 
as" light efficiency, input/output data formatting, ease of expan-
~ion, and methods for cascading small networks to make larger 
ones. Other difficulties that must be addressed are the rela
tively slow reconfiguration time of optical networks (primarily 
due to spatial light modulator limitations), techniques for rout
ing and control, and methods for efficient optical-electronic sig
nal conversion (and vice-v~rsa). The author expresses sincere 
thanks to B.K. Jenkins, C.S. Raghavendra and A. Varma for 
their contributions to this work. This research was supported 
by DARPA/ ARO under contract No. DAAG29-84-K-0066. 

5.0 References 

[ATHA 83] R. A. Athale, "Optical Matrix Algebraic Processors: 
A Survey," Proc. 10th Int. Optical Computing Conj., Cam
bridge, MA, April 1983, pp. 24-31. 

[BOCK 84] R. P. Bocker, "Optical Digital RUBIC (Rapid 
Unbiased Bipolar Incoherent Calculator) Cube Processor," Opt. 
Eng. vol. 23, January/February 1984, pp. 26-33. 

[BROO 84] G. Broomell, J. R. Heath, "An Integrated-Circuit 
Crossbar Switching System," Proceedings of the 4th Interna
tional Conference on Distributed Computing Systems," May 
1 984, pp. 278-287. 

[BURG 83] T. Burggraff, A. Love, R. MaIm, A. Rudy, "The 
IBM Los Gatos Logic Simulation Machine Hardware," Proceed
ings of the International Conference on Computer Design, 1983, 
pp. 584-587. 

462 

[CLOS 53] C: CI08, "A Study of Non-blocking Switching Net
works," Bell Systems Technical Journal, Vol. 32, No.2, pp. 
406-424, March 1953. 

[COMP 82] Special Issue on Highly" Parallel Computing, IEEE 
Computer, Vol. 15, No.1, January 1982. 

[COMP 85] Special Issue on Multiprocessing Technology, IEEE 
Computer, Vol. 18, No.6, June 1985. 

[DENN 82] M. M. Denneau, "The. Yorktown . Simulation 
Engine," Proceedings of the 19th Deszgn Automahon Confer
ence, Las Vegas, 1982, pp. 55-59. 

[JENK 84a] B. K. Jenkins, et al., "Architectural Implications of 
a Digital Optical Processor," Appl. Opt., Vol. 23, 1984, p. 3465. 



[JENK 84bJ B. K. Jenkins, et al., "Sequential Optical Logic 
Implementation," Appl. Opt., Vol. 23, 1984, p. 3455. 

[JEWE 84aJ J. L. Jewell, et al., "Use of a Single Nonlinear 
Fabry-Perot Etalon as Optical Logic Gates," Appl. Phys. Lett, 
Vol. 44, 1984, p. 172. 

[JEWE 84bJ J. L. Jewell, et al., "Single-Etalon Optical Logic 
Gates," Technical Digest, Conference on Lasers and Electroop
tics, Optical Society of America, Washington, D.C., paper 
THg2, 1984. 

[SA WC 85J A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, 
A. Varma, "Optical Interconnection Networks", Proc. 1985 
IEEE International Conference on Parallel Processing, St. 
Charles, Illinois, August 20-23 1985, pp 388-392. 

[SA WC 86J A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, 
A. Varma, "Optical Matrix-Vector Implementation of Crossbar 
Interconnection Networks", submitted to 1986 International 
Conference on Parallel Processing, St. Charles, Illinois, August 
1986, 

463 



OPTICAL INTERCONNECTION TECHNOLOGY IN THE 

TELECOMMUNICATIONS NETWORK 

Davis H. Hartman 

Bell Communications Research 
435 South Street 

Morristown, New Jersey 07960-1961 

ABSTRACT 

The use of optics as an alternative method for 
achieving high speed (Io Gb/s ~ B > 500 Mb/s) 
electronic interconnects is the subject of this paper. 
Particular emphasis is placed on application of optical 
interconnects to telecommunications technology. Optical 
interconnects are defined· and delineated according to 
four separate genre. Issues and answers in the optical 
interconnect distribution scenario are discussed. The 
role of integrated optoelectronics for interconnects is 
stressed. Some specific recent results, theoretical and 
experimental, are given. 

1. Introduction 

Over the past fifteen years, photonics has found 
widespread applications in both commercial and military 
environments. Having its beginnings in the 
telecommunications field, photonics offered several clear 
advantages. Ultra-low loss, minimum dispersion fibers 
have opened doors to long-haul high speed 
communications hither-to unheard of. Presently, systems 
boasting greater than 100 km unrepeatered spans at 500 
Mb/s exist. This information capacity has translated to 
lower cost per channel mile, leading to more profitable 
systems. Concurrently, other communications 
applications of fiber optics have emerged. Local 
Distributed Networks (LDN) and Local Area Networks 
(LAN) augment telecommunications, providing means 
for linking and networking remote information systems 
together. In fact, most recently [1] the use of light 
emitting diodes and single mode fibers. in the local loop 
is being demonstrated. This application of fiber optics is 
attributed to new and revolutionary thought regarding 
the local loop architecture [2]. Recently, a fourth type 
of application, spinning off of the original telecom 
thrust, has emerged. This application is called the 
optical interconnect. Figure 1-1 depicts this. As shown 
in the figure, there are various types of optical 
interconnect genre, depending on the length of the 
interconnect (or distribution) and the switching speed 
employed. As one progresses to shorter interconnect 
lengths, higher speeds are implemented. In general, the 
photonic link becomes part of a signal processing (as 

CH2345-7j86jOOOOj0464$Ol.OO© 1986 IEEE 
464 

105 
/ 

/ 
/ 

104 / 
TELECOM / 

I 

103 I 
(f) I a: , 
UJ 
I-

LOCAL AREA NETWORKS UJ 
102 

:::E 
::c 
l-
e!) 

:z 
UJ 10 -I 

ROOM TO ROOM ::><: 
:z OPTICAL -INTERCONNECTS 
:::::i 

RACK TO RACK 
OPTICAL -INTERCONNECTS 

0.1 BOARD TO BOARD 
or 

0.01 
103 1010 

TRANSMISSION RATE Bf S 

Figure 1-1. Plot of unrepeatered link lengths Gn meters) 
versus transmission rate for photonic links; this plot 
shows the distinction between long haul 
telecommunications links, local area networks and the 
optical interconnect genre. 

opposed to telecommunications) structure. 

There is a threefold objective in the presentation of 
this paper. First, optical interconnects are to be clearly 
defined and partitioned. Second, it will be shown that 
optical interconnects are a natural consequence of the 
merging of telecommunications with information 
processing systems. Finally, optical interconnects will be 
presented as a viable tool for achieving high speed 
massively parallel digital processing. 

The paper will be structured as follows; in section 2, 
optical interconnects will be defined. In section 3 some 
of the specific problems and limitations of -high speed or 
massively parallel electronic interconnects . will be 
discussed. Section 4 will be devoted to a discussion of 
various types of optical interconnect applications. 
Specific attention will be given to the problem of I.C.
to-I.C. interconnect. In section 5, a discussion of the use 
of integrated optoelectronics to perform high speed clock 
distribution is given. In this section, results of various 
specific efforts will be discussed. 



2. Defining Optical Interconnects 

With merging of the telecommunications and 
computer industries over the recent years, new technical 
frontiers have been opened. Global information 
processing and transferral systems are emerging in both 
commercial and military scenarios. Fiber Optics, having 
its beginning in long-haul telecommunications, offers 
significant cost per channel-mile advantage over 
conventional coaxial systems. As information systems 
technology expands, other potential solutions are offered 
by photonics and integrated optics. 

Figure 2-1 shows the types of transmission systems in 
which fiber optics offers solutions. Long haul 
telecommunications systems are necessary to transmit 
large blocks of data between remote information centers. 
As shown, transmission lengths are typically greater than 
10 kilometers, and can be thousands of kilometers. One 
can think of these links as analogous to interstate 
highways on a roadmap. Data rates are typically very 
high, and channel capacity is a prime consideration. For 
these reasons, optical wavelengths at or above 1.3 
microns are used exclusively. In this wavelength region, 
group 111-V compound materials, such as InGaAsP-InP 
are required for sources and detectors. 

Figure 2-1. Breakdown of the types of fiber optic systems 
applications relevant to telecommunications. 

Local distributed networks (LDN) imply the 
communications of two or more information centers 
within a 2km to 10km vicinity. Using the roadmap 
analogy discussed earlier, these networks serve the same 
purpose as intercity highways. Again, long wavelength 
devices are required. 

Local Area Networks (LAN's) use even shorter 
links, and involve the networking of many computers, 
terminals and information processing equipment within a 
single information center. Ring systems, star systems, 
and some point to point transmission systems typify the 
LAN scene. On the roadmap analogy, LAN's can be 
thought of as intra-city streets and thoroughways. Both 
sub-system and system considerations are involved in 
LAN design. 

Finally, a fourth type of application of fiber optics in 
information systems is called optical interconnects. Here 
data terminus points are linked over distances less than 
100 feet. Point to point and star configurations are 

465 

visualized. In the roadmap analogy optical interconnects 
compares with sidewalks, alleys and paths 
interconnecting individual structures. 

The present role of optical interconnects in 
telecommunications can be summarized by describing 
the chronology of telecommunications over the recent 
past. Before the advent of fiber optics, 
telecommunications design dealt largely with the 
problems of bandwidth limited channels. The dominant 
source of transmission system degradation was the 
transmission line itself. Both coaxial and twisted pair 
transmission lines suffer from frequency dependent loss 
in addition to significant resistive loss. The introduction 
of the optical fiber radically altered this situation. Even 
when fiber systems were designed at 0.82 micron 
wavelength, significant improvements in unrepeatered 
transmission distance and cost per channel mile were 
accrued [31. Still, systems design often dealt with 
dispersion limited channels [41. The development of low 
loss fibers (I to 2 db/km) and the move to 1.3 micron 
wavelength marked the beginning of distortionless 
channel transmission system design. For the first time 
maximum unrepeatered transmission distances were 
achieved in some systems without the use of 
equalization. 

The next milestone in telecommunications evolution 
was set by the development of ultra-low loss single mode 
fibers operated at 1.55 micron wavelength. Systems 
operating at data rates exceeding lGb/s with 
unrepeatered spans exceeding 100 km were demonstrated 
in the lab [51. With such capability the architecture of 
the entire local loop was rethought. The bandwidth 
available through the fiber made it feasible in principle 
to provide wide band services directly to the customer 
premise [6]. This concept has opened new and 
potentially potent market opportunities for telephone 
operating companies. In envisioning this objective, the 
local loop concept has been altered, as shown in figure 
2-2. Distribution of broadband data to subscriber 
premises is achieved through interface with a remote 
hub. 

At this hub complex signal processing and routing must 
be achieved at very high data rates (multi-Gb/s). 
Additionally, optical techniques such as wavelength 
division multiplexing may be implemented [2]. To 
support the bandwidth capacity of the fiber, it has 
become necessary to develop techniques for performing 
complex digital signal processing functions at multi Gb/s 
rates. Figure 2-3 shows an example of an 
interconnection network required for a high speed non
blocking switch array used in a local telephone 
distribution application. Inevitably, such functions are 
limited not by the fundamental switching capability of 
the I.C.'s themselves. Instead, the ability to interconnect 
the web of data and clock signals within a system poses 
the fundamental limit. 



Figure 2-2. The hub exchange network concept; taken 
from Brackett [8]. 

Figure 2-3. Example of a interconnection network 
required for a high speed non-blocking switch array. 

Ironically, it appears that photonics will be an 
important expedient to the electronic bottleneck created 
by the fiber medium. Instead of offering a means of 
routing broadband serial data over kilometers, photonics 
now offer a way to distribute critical broadband signals 
over inches or less, on printed circuit boards. 

It is possible to divide optical interconnect technology 
into at least four distinct genre. These genre are based 
on interconnection length, speed/bandwidth 

466 

considerations and system application. The five types of 
optical interconnect scenarios cited are: 

• Room-to-room interconnects 

• Rack-to-rack interconnects 

• Board-to-board interconnects 

• I.C.-to-I.C. interconnects 

Each of these genre are typified by their own set of 
applications, problems and solutions. The last 
application (I.C. to I.e. interconnects) is the primary 
subject of this paper. It is pointed out at the outset that 
this application includes various sub-genre, including 
intra-I.e. interconnects. 

2.1 Room-to-Room Interconnects 

As shown in figure 2-1, room-to-room optical 
interconnects are typified by point-to-point links at 
transmission rates as low as 10kb/s. Conceivably, 
transmission rates as high as several gigabits per second 
can exist. Link lengths are typically 100 feet or less. 
Longer links can occur but would then fall under the 
general classification of Local Area Network (LAN) 
links. In fact, some subjective overlap with LAN 
definition exists within the definition of room-to-room 
interconnects. 

A typical application of room-to-room links is the low 
data rate computer link. Here issues such as EMIIEMP 
immunity, signal isolation or even common mode signal 
isolation may be important. Common mode isolation 
refers to situations where power and ground are defined 
differently in the source room and the receiver room. In 
this case the fiber optic link serves as a sophisticated 
opto-isola tor. 

An example of room-to-room optical interconnect 
situations is the remote tie-in link. Here two rooms may 
be isolated from each other electronically, for small 
signal isolation reasons. Or, the source room may be 
environmentally hazardous, causing EMIIEMP 
problems. Finally, the isolation situation may be based 
on security restrictions. In any of these situations, the 
data rates utilized may be as high as several hundred 
megabits per second. 

2.2 Rack-to-Rack Interconnects 

Rack-to-rack optical interconnects are a relatively 
new concept. However, specific system applications of 
rack-to-rack interconnects do exist in the field today. 
For example, AT&T ESS #5 electronic switching 
systems employs fiber optic rack-to-rack interconnects 
[7]. This system was implemented because of the 
reduction in size/weight achieved by replacing copper 
wire with glass fibers. 

The optical rack-to-rack interconnect technology 
concept offers a fresh look at old problems. The fiber 
medium boasts unlimited signal bandwidth. This 
bandwidth is accompanied by a tenfold reduction in size 
and weight. Through- the proper use of signal 



multiplexing techniques, the bandwidth capacity of the 
fiber can translate to overall reduced power 
consumption. In complicated electronic signal processing 
scenarios, the rack-to-rack optical interconnect concept 
allows the designer to treat several networks of on-board 
computers and data processing equipment on a modular 
basis. The issues of signal processing and module 
interconnect/signal transmission can more easily be 
separated. 

For the rack-to-rack interconnect application, the 
optical fiber is the most useful optical channel. Because 
fiber losses are so low at optical wavelengths exceeding 
1.1 microns (particularly at 1.3 microns and at 1.55 
microns), many of the backplane interconnects can be 
passive. That is, sufficient optical power exists to route 
signals entering backplane environments from outside 
without regenerating them. The use of mechano-optical 
switch matrices or even electro-optic switch matrices 
may augment the rack-to-rack optical interconnect 
concept. 

2.3 Board-to-Board Interconnects 

Figure 2-4 shows three examples of board-to-board 
optical interconnects. As shown, on much signal 
processing or generating equipment, there are several 
P.C. boards physically attached to the controller board, 
or backplane. Conventionally, all communication 
between boards is achieved by electrically 
interconnecting from one P.e. board, through the 
controller board, to another P.C. board. This practice 
often leads to limitations on the amount of signal 
isolation achievable, and on the bandwidth achievable. 
As shown in the figure, one method used for avoiding 
the use of the backplane is to communicate from board
to-board via an optical free space link. By attaching an 
optical transmitter and receiver module onto identical 
places on the P.C. board, the data link is automatically 
completed. Using LED's and PIN diodes, data rates up 
to 100 Mb/s are achievable. By replacing the LED with 
laser diodes, 1 Gb/s or higher may be achievable. 

In situations where high speed and signal isolation 
requirements are both very severe, a simple fiber link 
can accomplish the board-to-board interconnect task. 
This is also shown in figure 2-4. In these situations the 
issues of compact design for both the transmitter and 
receiver module become important. Integration of the 
electronic and optical functions on these modules begins 
to take on design relevance. The combined requirements 
of size-weight-power limitations and high 
reliability/survivability dictate integration. 

2.4 I.C. I.C. and Intra-I.e. Interconnects 

I.C. interconnects {inter- and intra-} constitute the 
least mature and most important of the four types 
discussed. Presently, needs for high speed, parallel 
processing equipment constitute the largest technological 
bottleneck in telecommunications and computing 

467 

FREE SPACE 
INTERCONNECT 

Figure 2-4. The backplane interconnect concept, 
showing three potentially viable techniques for achieving 
the interconnect. 

technology. Group III-V materials (particularly GaAs 
and InP) are forming the basis for high speed digital 
I.C.'s and optoelectronics. The entirety of telephony 
architecture is changing to support photonics technology 
[8]. With this change, the much needed commercial 
market for GaAs digital MMIC's is rapidly emerging. 
Meanwhile, supercomputer architecture design is calling 
for advanced digital I.C. technology as well [9], [101-
Several researchers have already realized that once the 
high speed digital I.C. bottleneck is overcome, the 
problems of data distribution and interconnections at 
these speeds is the next bottleneck. 

One of the most illustrative examples of this situation 
is the clock distribution problem. Beyond 200 MHz, 
gate delays, transmission line imperfections and topology 
constraints pose limitations on clock distribution within a 
sub-system of I.C.'s. These limitations often constitute 
the weak link in achieving. a switching speed goal. 
Beyond 1 Gb/s all of these problems are further 
exacerbated. 

Photonics offers new insight into the solutions of 
these very serious problems. The fiber medium is a low 
loss, low dispersion channel. Over the short links 
discussed here {inches or less}, the channel is virtually 
bandwidth unlimited. The transport of baseband 
information over a fiber can be accurately thought of as 
the modulation of a carrier oscillating at approximately 
2 x 1014 Hz. For this type of modulation the carrier 
need not be coherent, since direct detection methods are 



usually employed. With a 2 x 1014 Hz carrier, even 
extremely wideband digital signals (for example 10 
Gb/s) convert to narrowband transmission within the 
fiber. Even over inches of fiber, millions of carrier 
wavelengths are traversed. Therefore, transmission line 
matching becomes analogous to narrowband microwave 
matching. Both data and clock distribution can be 
achieved optically by implementing techniques common 
to narrowband microwave electronics. 

The use of fibers constitutes only a small subset of 
the entire optical interconnect media. For both clock 
and data distribution, integrated optic transmission lines 
or ultimately, free space interconnects using dynamically 
reconfigurable holographic routing [10] may be 
implemented. 

3. The Electrical Interconnect Problem 

As a prelude to discussions on optical interconnects, 
this section discusses methods used in high speed 
broadband electrical interconnects. Also, some 
fundamental limits to the electrical interconnect of 
baseband digital signals are postulated. 

3.1 Interconnects from the Device Viewpoint 

When designing very high speed digital signal 
processing equipment, one finds that physical design and 
electrical design are inseparable. Because of this, high 
speed physical layouts are unique in appearance. First, 
metal flat packages are used exclusively in the design. 
These packages make efficient use of available space, 
and simplify I.e. die bonding and wire bonding. 
Furthermore, wire bond length is kept to a minimum; 
the input leads, when laid down on the printed circuit 
board closely resemble 50 ohm transmission lines. 
Second, circuit layout is planar. Circuit layout planarity 
and the use of ground planes has been found to be 
essential in high speed design. The backplane concept 
finds limited use as target system speeds increase beyond 
1 Gb/s. Finally, the interconnects between I.e.'s are 
accomplished using microstrip transmission lines. Delay 
lines are incorporated onto the p.c. layout. Delays as 
long as one half a bit length (- 1 ns, or 15 cm at 500 
Mb/s) are often required. 

Figure 3-1 depicts high speed layout topology, 
pointing out some of the difficulties one encounters. 
Impedance mismatches at bends and splits tends to 
appear as a capacitive load at the junction's bend, giving 
rise to high frequency reflections. Termination 
mismatches are the cause of several problems. First, it 
is difficult to maintain a 50 ohm transmission line 
impedance from one transmission line to the next. This 
difficulty is attributable to photolithographic variations 
and variations in p.c. board thickness and dielectric 
constant. Resistive mismatches of 10% are common. 
Second, the presence of parasitic capacitance at the 
package and the I.e. (bonding pads and wire bonds) 
can cause reactive impedance mismatches far exceeding 
10%. 

468 

MICRO-STRIP TRANSMISSION LINE 

HEAT DISSIPATION TERMINATION 
MISMATCH 

IC PACKAGE 

REFLECTIONS 
AT BENDS 

Figure 3-1. Schematic of a typical high speed electronic 
interconnect and distribution layout, depicting some of 
the problems associated with such interconnects. 

Figure 3-2 shows plots of calculated loss in db/cm 
for microstrip transmission lines on various dielectric 
materials. In these calculations, both conductor loss 
(skin effect) and dielectric loss (for homogenous 
materials) are included. As shown, materials such as 
alumina ceramic or quartz are conductor loss limited. 
This situation is caused by the relatively low resistivity 
typical of these materials. The higher resistivity 
dielectric materials more commonly used in p.c. board 
interconnects are not as lossy as their silicon 
counterparts. However, the loss mechanism is 
proportional to f1/2 and is most pronounced between 0.1 
and 4 GHz. For a broadband high data rate digital 
pulse stream, the result is pulse distortion in addition to 
attenuation. 

For comparison purposes, the loss characteristics of 
plastic fibers (1000 db/km or 0.01 db/cm) and glass 
fibers (10-5 db/cm) are shown. Also, reported losses for 
thin film plastic channel waveguides [11] are shown. It 
should be evident that consideration of optical 
waveguides for interconnects involves a trade-off between 
transmission loss and ultimate manufacturing simplicity. 
Where one avoids the deleterious effects of transmission 
line imperfections on microstrip lines, one must consider 
the extra losses incurred due to bends and optical 
coupling. 

3.2 Interconnect from the Systems Viewpoint 

A survey of existing digital switching systems and 
subsystems suggests a reciprocal relationship between 
attainable switching speeds and inherent signal 
processing complexity. Most existing systems switching 
at Gb/s rates or higher are considerably simpler in 
design than their lower speed (but perhaps parallel 
processed, high bit rate) counterparts. This concept 
holds at the equipment level, the board level, and even at 
the I.C. level. At the equipment and board level, line 
lengths (i.e., latency) tend to increase, quenching 
attempts at attaining higher complexity. Also, the 
limitations imposed by the interconnect medium pose 
fundamental problems. But, even at the I.C. level, the 
reciprocal relationship still holds. For example, at 



10 

Si (p =200 D.-em) 

Si (p= 103 D.-em) 

~ 
u 

Go As (p= 107 D.-em) ...... 
(D 

16' 0 

I 
(J) 
(J) 

0 
..J 

..J Alumina 

~ 
0 
f-

Quartz 

10-2 Plastic Fibers 

2 3 4 5 6 7 

FRE:.QUENCY-GHZ 

Figure 3-2. Plots of calculated loss (db/cm) for 
microstrip transmission lines on various dielectric 
materials, and for optical waveguide material. 

speeds beyond 2 Gb/s, GaAs materials technology must 
be implemented. Because of processing constraints, most 
GaAs circuits are still relatively simple. Existing GaAs 
I.e. chips are limited in their ability to dissipate power, 
and also in their pinout capability. Heat dissipation in 
turn limits package size reduction, leading to the latency 
problems discussed earlier. 

Using Rent's rule, it is possible to derive a semi
quantitative expression of the bandwidth/complexity 
relationship. This is done by relating average 
interconnect length, derived from Rent's rule, to the 
latency in signal propagation on a printed circuit board. 
The reader is referred to a previously published paper 
[12] for details of the calculations. 

Figures 3-3 and 3-4 give the results of these 
calculations. In figure 3-4 is a plot of system switching 
rate vs. level of parallelism. Depicted is the point at 
which latency restrictions cause electrical 
interconnections to become prohibitively complex. It is 
at that point that optical interconnects can offer 
significant improvement over purely electrical 
approaches. An example of the meaning of the 
parameter M is that of a parallel processed system in 
which 8 140 Mb/s channels are multiplexed to yield a 
data rate, D, of 1120 Mb/s; however the actual 
switching rate is still 140 Mb/s. In this case, B = 140 
Mb/s and M = 8. From the figure it is clear that, from 

469 

a signal latency stand point, system switching rates must 
exceed 1 Gb/s before optical interconnects offer a viable 
alternative to electronic technique. 

en 
...... 
..0 
(!) 

cr; 

10~--------~~----~~~~~--------~~----r-~~~ 

1.0 

0.1 

OPTICAL 
INTERCONNECT 

ELECTRONIC 
INTERCONNECT 

DATA 
DISTRIBUTION 

a =0.67 
€ e = 2.2 

<Ie>= 1cm 
a(a) = 2.2 

0.01 '--_____ '----'-____ L.......J--I....I....JI....L..J ____ i.....---'-__ L.......J--.I.....I....J........, 

1 10 100 

M---. 
Figure 3-3. Plot of fundamental bit rate at which signal 
latency becomes an issue in data distribution as a 
function of M, the circuit level of parallelisms. 

Figure 3-4 shows a similar calculation result for the 
case of clock distribution in synchronous digital systems. 
Here the system clock rate, B, is plotted vs. L, the 
printed circuit board size (a measure of system 
complexity). 

As shown, clock distribution systems appear to be more 
sensitive to latency effects. Systems operating at 500 
Mb/s and up may benefit from optical clock distribution. 
This is why much of the experimental accomplishments 
to date [131, [141, [151, have been in clock distribution. 

4. Optical Interconnect Link Structure 

Having discussed some of the important electronic 
issues in high speed digital interconnects, it is 
appropriate to look at the structure of an optical 
interconnect link. Figure 4-1 shows a functional block 
diagram of a generic optical interconnect link. 
Reference to the figure shows that both receiver and 
transmitter are sub-miniaturized. 



~ 
..c 
S 
CD 

1.0 

0.1 

CLOCK DISTRIBUTI2!! 

OPTICAL INTERCONNECT 

ELECTRONIC 
INTERCONNECT 

Figure 3-4. Plot of clock rate, B, at which latency 
becomes an issue in clock distribution, as a function of 
L, circuits board linear dimension. 

Figure 4-1. Functional block diagram of a generic 
optical interconnect distribution link. 

The sub-miniaturization constraint eliminates standard 
telecommunications links from the domain of link genre. 
The type of optical interconnect medium is not specified 
in the figure (plastic fiber, glass fiber, plastic channel 
waveguides or even free space are possible media). 
Inter-board connectors are shown on the diagram, but 
they need not be present in many of the (intra-board) 
link structures considered in this paper. Other 
assumptions embedded in the figure include (1) the 
assumption of very high speed digital (baseband) links, 

470 

(2) external system clocking (i.e., no timing recovery) 
and (3) liberal use of monolithic opto-electronic 
integration, especially on the receiver end. 

In board-to-board and I.C.-to-I.C. interconnect 
design, high speed and signal isolation are often key 
motivating factors. To render optical interconnects 
useful the electro-optic and opto-electronic interfaces 
must take up very little space. Otherwise circuit pack 
real estate will be dominated by electro-optics. This 
situation will severely limit the space available for signal 
processing. 

In addition to the architecturally based requirements 
for small size, there are also requirements based on the 
high speed nature of the interconnect signal. At speeds 
beyond a few hundred Mb/s, package design cannot be 
separated from electronic circuit design. The parasitic 
capacitances and inductances of the packages become an 
intimate part of the electronic circuit. These points are 
particularly true for broadband digital signals. 

Finally, reliability considerations also drive the 
design of the link. Subminiaturization must be achieved 
with no compromise in reliability. The use of monolithic 
opto-electronics in these packages (particularly the 
receiver) offers the long term potential of enhancing 
system reliability through reduction of the number of 
physical interconnections required. 

Although the optical fiber has many virtues for use 
in telecommunications, its use as an optical channel for 
optical interconnect applications is not as clear. While 
the optical fiber is an ultra-low loss information channel, 
with virtually unlimited bandwidth capacity, there are 
some drawbacks to the use of fibers in optical 
interconnect applications. Because one of the important 
issues in optical interconnects is packaging and sub
miniaturization, the placement of the optical channel on 
an electronic substrate becomes a very desirable goal. 
Also, the optical and mechanical coupling of the channel 
to the opto-electronic or electro-optic interface is a major 
issue. To render a very high speed system utilizing 
optical interconnects useful in real situations, the system 
must be easily and reproducibly manufacturable. If a 
system is largely an electrical one, with perhaps one or 
two point-to-point optical links, then the use of fibers 
constitutes a sensible choice. However, if the system 
requires liberal use of optical interconnects to render it 
tenable, then the utility of the fiber medium diminishes 
rapidly. 

4.1 Receiver Design Considerations 

Unlike a lightwave telecommunications receiver, an 
optical interconnect receiver is basically a high speed 
opto-electronic transducer. For optical interconnect 
applications, the main object is to receive the incoming 
optical data stream, transform it to electronics, amplify 
(and filter) it and re-digitize it. This function must be 
achieved with a minimum expenditure of board area 
with acceptable reliability. Since a fully retiming
reshaping-regenerating (R3) receiver can take up as 



much space as a full printed circuit board or more, and 
makes use of lumped circuit elements, the R3 approach 
is not feasible. Instead, it must be assumed that the 
system clock will be distributed separately (perhaps 
optically), and that pulse shaping to achieve raised 
cosine pulse shapes will not be performed. In spite of 
(and to some degree, because of) these limitations, very 
low bit error ratios (BER required will typically be 
10-17) and high signal-to-noise ratios will be required. 
Therefore, there is a conflict between the requirement 
for relative circuit simplicity and high sensitivity. The 
usual trade-offs between bandwidth, sensitivity, dynamic 
range and power consumption still exist. The monolithic 
opto-electronic integration of front end opto-electronic 
receivers can help to reduce the severity of these 
conflicting requirements. 

The problem of optimized direct detection optical 
receiver design for digital applications has been treated 
quite comprehensively by Smith and Personick [16]. 
Fundamentally, for direct detection of optical binary 
signals, the Gaussian approximation for noise 
distributions constitutes a reasonably accurate 
assumption. Under these circumstances, the probability 
of incurring a detection error is given by 

peE) = _1_100 e-x2 d x . (4.1) 
J2; Q 

The quantity Q is defined as, 

ID -a;l 
Q=--- (4.2) 

Here, D is the decision threshold, ai are the mean signal 
levels for the 0 and I state, and the (Ji are the noise 
terms for the 0 and 1 state. With a binary digital 
system, then, equation 4.2 constitutes two equations, one 
for each state. From equations 4.2, any two of the 4 
variables D, Q, a 0 and a I can be determined once the 
other two are specified. The quantities ao and a I are 
related to each other through the laser diode extinction 
ratio, 

r « I. (4.3) 

These quantities can also_be related to the average 
converted optical power 1JP 0' at the photodetector 
through the relation, 

1JP 0 = +(ao + a I) . (4.4) 

Solving for ao and a I gives, 

ao ~ 2~Po [1 : r] ; a, ~ 2~Po [1 ~ r] . (4.5) 

47) 

Using eq. (4.5) in equations (4.2) expresses the 
decision equations in terms of the two variables, Po, the 
minimum detectable optical signal for a given BER, and 
D, the decision threshold. These equations are, 

D - 21JPo [_r -] = Q ao, (4.6) 
1 + r 

Equations (4.6) and (4.7) provide the fundamental 
starting point toward receiver sensitivity calculations. 
The terms ao and (JI' the variances in the signal levels in 
the zero and one state, are specific to the receiver design. 

In optical interconnect receiver design, there are four 
basic types of noise. These are, 

1. Signal independent receiver noise current sources. 

2. Signal independent receiver noise voltage sources. 

3. Signal dependent quantum noise (Poisson 
Distribution) . 

4. Signal dependent laser diode intensity fluctuation 
(non-Gaussian) . 

Types 1 and 2 contain contributions from various 
elements in the receiver circuit; for the most part they 
are thermal noise sources and shot noise sources. The 
voltage sources are similar, and include flicker noise at 
the receiver front-end, etc. Type 3 refers to the 
quantum limit of signal detection and any intersymbol 
interference terms. Type 4 is commonly disregarded. It 
refers to basic intensity fluctuation in the optical output 
of laser diode. Some contributions to these terms are 
more strongly signal dependent than others. They are 
all lumped together as relative intensity noise (RIN). 
The presence of signal dependent RIN significantly 
alters the form of sensitivity equations, and also the 
fundamental results in the case of high speed optical 
interconnects. 

RIN is defined in terms of square of the optical 
fluctuations at the output of the device. Specifically, 

(~PO)2 
RIN = (4.8) 

Pf; 

where Po is the laser output power. Sato et al [17] have 
measured the RIN of various laser diodes as a function 
of laser bias-to-laser threshold voltage. These 
measurements, redrawn on a log-log plot, are shown on 
figure 4-2. The figure shows that the RIN for various 
structures follows an inverse power function dependence 
on the quantity [J D / IT - 11, with a power index given 
by the quantity 'Y. 

Typically, 'Y lies between 2.5 and 4.5, depending on the 



-100--------~---------.--------._--------~ 

-110 

-120 

~-130 
...... 

.s::l 

~ 
~-140 
a: 

-150 

-160 

INTRINSIC LASER NOISE 

10-3 10-1 

(IB/IT-1)--+ 

Figure 4-2. Plots of measured RIN for various laser 
diode structures, as a function of laser bias. The data 
was obtained from Sato et al [17] and redrawn in log-log 
fashion. 

structure. Through inspection of figure 4-2, two 
conclusions can immediately be drawn; (1) Intrinisic 
RIN is strongly signal pattern dependent; SIN is much 
higher in the "one" state than in the "zero" state. (2) 
Conventional values of r (i.e. r =0.1 to 0.01) yield 
quite low SIN ratios at high data rates; this is 
particularly true for gain-guided devices. Therefore, a 
potential limit on digital signal fidelity at the source-end 
exists. This limit clearly depends on the digital data 
rate and on the system extinction ratio. 

Using the equations discussed above, and a simple 
piecewise linear model for laser diode light output vs. 
bias current input, it is possible to model the mean 
·square fluctuations in laser output as they appear at the 
receiver front-end. From this model one can rewrite 
~quations 4.6 and 4.7 explicitly in terms of the signal 
dependent laser noise term and all of the conventional 
circuit noise terms normally present at the receiver 

,front-end. Because' of the inverse power functional 
dependence of .laser noise on laser optical output, these 
equations represent coupled transcendental equations, 
whose solution must be ,determined numerically. 
Combining equations 4.6 .and 4.7 and eliminating D 
yields a function of the form, 

(4.9) 

The details of this function are presented in_a 
separate publication [12]. Figure 4-3 shows plots of 11 Po 
vs. transmission rate for various values of r. Also shown 
for comparison are plots of 1/ Po vs. B for an optimized 
telecommunications receiver (BER = 10-9) for which 
the front-ends were hybrid (curve number 5) and 
monolithic (curve number 4). 

472 

-'0 

~ -20 

10.' 
I;'" -30 

-40 

TJS LASER/P1N/FET LINK 

CT' 0.2 pI (j), '0 d. 

Om " 7 l 10-] Mho ® r " 0.2 

fc "to Mhz 

In" tDna 

T' 290 0 K 

Q) , ' 0, L D. RIN ' a 
® TELECOM OPTIMIZED RECEiVER 

Q' 6, CD·0.2pl 

® TELECOM OPTIMIZED RECEIVER 

a '6. Co' 2pl 
-20 

-30 

L..:::::::;:.",,:::::::::::....-'--'-~:::-:::--'---"--'-'-'-~'OO~M:;;-;B/;-S -'----'-'--'-'-'-7.~GB~/S--'--'---'--l~WGB7~ 
BIT RATE 

Figure 4-3. Plots of 11 PO' the minimum detectable signal 
for the specified bit error ratio, as a. function of digital 
transmission rate, B, for various transmission scenarios. 

Inspection of this calculated data reveals several 
interesting points. First,' the effects of intrinsic laser 
noise can be dramatic at very high data rates. If r is 
chosen incorrectly, bit-error-ratio saturation can occur 
(c.f. curve number 1). In fact, even if r is chosen for 
optimum conditions, bit-error ratio saturation can still 
occur, but at a higher data rate. Secondly, there 
appears to bean 2Ptimum value of r. This is shown in 
Fig. 4-4. Here 1'/ Po is plotted vs.· r at B = 1.5 Gb/.§. 
There is a clear (but fortunately wide) minimum in 11 P 0 

vs. r. This points to the necessity of designing control 
circuitry that will ensure the stability of the laser 
threshold .current and the, laser modulation current 
relative to each other. 

-10 

-20 

OJ. RECEIVER; T JS LASER 
8=1.5 Gb/s 

0.001 0.01 0.1 1.0 
r-

Figure 4-4. Plot of 11 Po vs r for 1.5 Gb/s transmission, 
showing the existence of an optimum value of r, the 
laser diode extinction ratio. 

Further, the sensitivity that one can expect from a 
receiver designed to optical interconnect constraints 
cannot be as high as that of an optimized 
telecommunications receiver. The differences can be 
accounted for in the higher BER objective, the wider 
signal bandwidths 'required (i.e. larger normalization 
integral values) and the laser noise term. Finally, and 
very importantly, curve number 4 in figure 4-3 shows 



what can be achieved through monolithic front-end 
integration. Clearly, the monolithic front-end design 
embodies the potential of making up a considerable 
portion of receiver sensitivity lost in complying with 
optical interconnect design criteria. Concurrently, the 
monolithic approach actually facilitates the achievement 
of sub-miniaturization; which has influenced the optical 
interconnect design so strongly. Therefore, monolithic 
opto-electronic integration adds an element of synergism 
to optical interconnect design. 

4.2 Optical. Interconnect Link Analysis 

To complete this discussion on optical interconnects, 
a first-cut look at some typical optical interconnect links 
is now made. The instrument for looking at optical 
interconnects is the optical power budget. Table 4-1 
shows a summary of the basic types of systems 
considered. As shown, laser diode and LED based links 
are both considered. Three different data rates are 
studied; these are 565 Mb/s, 2.26 Gb/s and 4.52 Gb/s. 
Short wavelength C\ =,0.82p.m) transmission is 
considered exclusively. This is done because of the 
maturity of laser diode technology, amenability of silicon 
technology at the receiver end and due to the low-loss 
characteristics of plastic channel waveguides at 
A = 0.82p.m. Fanout, or distribution, is considered a 
major system issue, since. point-to-point links can most 
easily be accomplished electronically; even at very high 
data rates. 

Link # Link # Link # Link # Link # Link # 
I 2 3 4 5 6 

Transmission Rate (Gbfs) 0.565 2.62 4.52 0.565 2.62 4.52 

Data Source LD LD LD LED LED LED 

Link Length (cm) 25 25 25 25 25 25 

Optical Wavelength (~m) 0.82 0.82 0.82 0.82 0.82 0.82 

Photodetector 
p-i-n p-i-n p-i-n p-i-n p-i-n p-i-n 

D - 15Ol'm D - 100~m D - IOOl'm D - 150~m D - IOOl'm D - IOOl'm 

GaAs FET GaAs GaAs GaAs FET GaAs GaAS 
Front-End Electronics or or 

Si Bipolar FET FET Si Bipolar FET FET 

Monolithic Front-end? Ves Ves Ves Ves Ves Ves 

Channel Waveguides? Ves Ves Ves Ves Ves Ves 

Table 4-]. Optical Interconnect Link Types. 

Laser based optical interconnects represent the most 
obvious choice of links. With direct drive, the laser 
diode can be on full on/off modulated at multi-Gb/s 
rates. Peak output power of + 10 dbm is comon for laser 
diodes; The. potential for even higher peak output exists, 
although thermal dissipation problems become more 
severe. 

Table 4-2 shows optical power budgets for laser 
based links at 565 Mb/s, 2.26 Gb/s and 4.52 Gb/s. 
Source power and link loss elements are tabulated in the 
upper portion of the table. All optical power terms are 
given as average quantities (with a 50% duty cycle, these 
values are 3 db below peak quantities). Using the 

473 

receiver sensitivity calculations lrom the previous section, 
minimum detectable signals (1] Po) are then given. 

SYSTEM PARAMETER B - 565 Mb/s B - 2.26 Gb/s B - 4.52 Gb/s 

Laser Output Power (Avg) +7 dbm +7 dbm +7 dbm 

Laser-to-waveguide coupling loss (db) -2 -2 -2 

Distribution loss (db) TBD TBD TBD 

Waveguide loss (db. @ 0.2 db/cm) -5 -5 -5 

Waveguide bend loss (db) -2 -2 -2 

Waveguide-to-detector coupling loss (db) -2 -3 -3 

Total power incident at detector 
(not including distribution loss). -4 dbm. -5 dbm -5 dbm 

0.1. Receiver Minimum detectable 
signal (~Po. in dbm) -28 dbm -22 dbm -18 dbm 

Net Optical Gain Available (db) 24 db 17 db \3 db 

Margins and Degradation Factors: 

Detector d.c. Quantum Efficiency (db) -I -I -I 

Detector a.c. Q.E. [monolithic receiver 
assumed) (db) -I -I -I 

Power Rail Degradation (db) -2 -3 -3 

Laser diode EOL Margin (db) -2 -2 -2 

Useful Optical Gain Available (db) 18 \0 3 

Maximum distribution possible 64 10 4 

Table 4-2. Optical Interconnect Link Budget - Laser 
based system. 

The difference is the net optical gain, available Gn dbs). 
Next, system margins and degradation factors are 
subtracted from the net optical gain. The result is the 
useful optical gain. As presented in the table, no 
distribution (or fanout> is assumed. Instead, after the 
useful optical gain is determined, the maximum possible 
fanout is determined from that number. Clearly, the 
distribution loss must include. power splitter insertion 
loss as well as the simple power division term. 
Therefore, the number derived in the calculation 
represents an upper bound on distribution. 

Link loss terms included are source-to-waveguide 
coupling loss, waveguide intrinsic loss, waveguide bend 
loss and waveguide-to-detector coupling loss. The reader 
is referred to [I 5] for a more detailed explanation of the 
values assumed. From these numbers and receiver 
sensitivity values (c.f. figure 4-3) the net optical gain 
available at the receiver input is 24 db, 17 db and 13 db 
for 565 Mb/s, 2.26 Gb/s and 4.52 Gb/s operation, 
respectively. 

Next, an attempt is made to include other systems 
margins and degradation factors. The first term 
allocates 1 db to photodetector d.c. quantum efficiency. 
An additional 1 db is allocated to account for the 
difficulty in producing OEle's with sufficient 
photodetector photon collection depth to prevent 
substrate photo current production. The power rail 
degradation term is discussed in [12]. Finally, to 
account for the slow degradation of laser diodes over 
their lifetime, a 2 db end-of-life margin is included. 



After these margin and degradation terms are 
included, useful optical gain at the three data rates is 18 
db (565 Mb/s), 10 db (2.26 Gb/s) and 6 db (4.52 
Gb/s). If all this available margin is allocated to 
distribution of signals to various nodes, then the 
maximum distribution possible is 64 (565 Mb/s), 10 
(2.26 Gb/s) and 4 (4.52 Gb/s). 

As already discussed, laser diodes will most likely 
represent the element of choice in future optical 
interconnect links. However because of the fact that 
laser diode reliability is not yet firmly established at the 
107 hr mark or higher, (and variances are still high), 
alternative sources such as LED's may be attractive in 
some instances. Therefore we present link budgets for 
LED based systems as well as laser diode based links. 
Table 4-3 summarizes the budget for LED based links. 
The first, and most significant difference between LED 
and laser diode based links is in the output power 
available from an LED. Currently, edge-emitting LED's 
have been fabricated capable of emitting -4 dbm of 
optical power into free space at 565 Mb/s. 

SYSTEM PARAMETER B - 565 Mb/s B - 2.26 Gb/s B - 4.52 Gb/s 

Laser Output Power (Avg) ·4 dbm ·11 dbm -14 dbm 

Laser-to-waveguide coupling loss (db) -3 -3 -3 

Distribution loss (db) TBD TBD TBD 

Waveguide loss (db. @ 0.2 db/cm) -5 -5 -5 

Waveguide bend loss (db) -2 -2 -2 

Waveguide-to-detector coupling loss (db) -2 -3 -3 

Total power incident at detector 
(not including distribution loss). -16 dbm -24 dbm -27 dbm 

0.1. Receiver Minimum detectable 
signal (~p() in dbm) -31 dbm -24 dbm -21 dbm 

Net Optical Gain Available (db) 15 0 0 

Margins and Degradation Factors 

Detector d.c. Quantum Efficiency (db) -I -I -I 

Detector a.c. Q.E. [monolithic receiver 
assumed] (db) -I -I -I 

Power Rail Degradation (db) -2 -3 -3 

Laser diode EOL Margin (db) -I -I -I 

Useful Optical Gain Available (db) 10 0 0 

Maximum distribution possible 10 0 0 

Table 4-3. Optical Interconnect Link Budget - LED 
based system. 

Suzuki et al [18] have reported the fabrication of LED's 
operating at 2 Gb/s with an average output power of -11 
dbm. To date no other devices have been reported with 
modulation capabilities beyond this. Because of the 
wider angular power distribution of LED's, coupling to 
waveguides is not as efficient as with laser diodes. 
However, when using large feature size channel 
waveguides (typically l50j.lm x 75j.lm), coupling losses 
of 3 db should be achievable. All other loss terms are 
expected to be similar to those for laser based links. 
Therefore, the total power incident at the photodetector 
will be approximately -16 dbm (565 Mb/s), -24 dbm 

474 

(2.26 Gb/s) and -27 dbm (4.52 Gb/s). Next, it is noted 
that receiver sensitivity values are slightly better for the 
LED based system. This reflects the absence of source 
noise effects (c.f. curve no. 3 in figure 4-3). Combining 
these sensitivity values with the incident power reveals 
that the only data rate at which power margin exists is 
565 Mb/s. Then, subtracting the same degradation 
factors and a 1 db end-of-life margin for the LED yields 
10 db useful optical gain available at 565 Mb/s. This 
translates to a maximum distribution of 10. 

Inspection of tables 4-2 and 4-3 reveals several 
interesting points. Most obvious is that as higher bit 
rates are approached, the available optical gain for 
distributing signals vanishes rapidly. This occurs 
because the minImum detectable signal increases 
monotonically with bit rate, and because the available 
power from optical sources is limited. Systems 
degradations and necessary margins cut deeply into this 
diminishing gain. One of the key motivations for device 
design in optical· interconnects, then, is to find ways to 
remedy this situation. There are several ways to do this. 
The first and most obvious one is to provide more optical 
power at the source. In spite of the fact that high power 
lasers are being designed [19], they must be 
accompanied with low threshold currents, low noise 
properties and agile modulation characteristics. Even 
when this is accomplished, the obstacles to providing 
acceptable broadband performance at multi gigabit per 
second rates, while dissipating heat acceptably in an 
sub-miniaturized package, are formidable. 

At the receiver end, monolithic design is clearly a 
necessary ingredient for optical interconnects. 
Monolithic OEIC receivers are the only practical means 
for reducing input parasitics, thereby achieving 
acceptable sensitivity and speed in a sub-miniaturized 
package design. Figure 4-5 summarizes the results of 
this section. Here receiver sensitivity (rJP 0) and 
transmitter output power are both plotted vs. data rate, 
B. Curves for both LED's and laser diodes are shown. 
Clearly the optical margin stays open longer for laser 
diode-based systems. 

The dotted lines for laser diode transmitters beyond 5 
Gb/s reflect the level of understanding regarding full 
on/off modulation at these data rates and at high optical 
powers. Clearly, at very high data rates, external 
modulation of laser diodes may become a necessity, in 
spite of the serious packaging issues. Furthermore, to 
achieve high power output, a shift to the longer optical 
wavelengths, where optically induced damage in LiNb03 
is not as serious a problem, may be in order. Methods 
for reducing some of the systems degradations terms are 
also desirable. 

If any of these measures are successful, the optical 
interconnect concept can carry viability with it beyond 
several Gb/s, where it will be most needed. As data 
rates move toward double digit gigabit rates, circuit 
subminiaturization will continue, and the free space 



30 

20 

10 

o 

- -10 
E 

..0 
"0 -20 
-0 
a. 

-30 

-50 

-60 

-70 

1------

1.0 10 20 

B(Gb/S)-' 

Figure 4-5. Receiver sensitivity for 0.1. applications, 
transmitter power, both plotted as a function of B, the 
transmission rate. The figure depicts the closing of the 
optical power margin with increasing transmission rate. 

implementation of optical interconnects will become 
more important. However, it is asserted here that many 
of the same constraints (e.g. receiver sensitivity, fanout 
limitations, thermal dissipation) will still set· 
fundamental engineering limits to what can and cannot 
be done in high speed signal processing at these rates. 

5. Integrated Opto-Electronics for Optical Interconnects 

In board-to-board and I.e.-to-I.C. interconnect 
situations, high speed and signal isolation are often key 
motivating factors. The issues of compact design for 
both transmitter and receiver modules become very 
important. Integration of optics with electronics offers 
not only size/weight reduction advantage, but 
performance enhancement as well. Monolithic 
integration of optics and electronics (known as 
integrated opto-electronics or integrated electro-optics) 
represents the ultimate in device integration. Monolithic 
receivers offer the potential of enhanced bandwidth and 
sensitivity (due to reduced input parasitics). Monolithic 
transmitters offer fanout and signal mUltiplexing 
advantages. Used together, the two offer a means by 
which wire bonds and bonding pads can be eliminated at 
critical high speed modes. Through the reduction of 
interconnection nodes, packaging constraints are 
alleviated and reliability of the overall system benefits. 

This section discusses progress made in one of these 
areas. In particular, monolithic integration of optical 
detectors with associated high speed receiver electronics 
is addressed. The reader is referred to previous 
publications ([13], [14]) for more details of the 
discussion to follow. 

475 

The I.C. described here was developed to 
demonstrate the viability of optical interconnects in the 
clock distribution problem. The system concept is shown 
in figure 5-1. An optical clock signal, generated from a 
laser diode, is split into many parts using a fiber optic 
power splitter. A number of synchronously operated 
I.C.'s are then clocked optically from the same source. 
The technique used to achieve planar optic-electronic 
coupling was called the lateral fiber-I.C. coupler [14]. 

SIGNAL 
GENERATOR 

I 
I 
I 
I 

TRANSM ITTER 
DRIVE CIRCUITRY 

OPTICAL CLOCK RECEIVERS 

INPUT OPTICAL 
COUPLING AND POWER SPLITTER 

o 
FIBER BUNDLE 

"' \ 

I DIGITAL lC.'s 

\ '-- - - - - - - - - - ---_/ 

Figure 5-1. Block diagram of an optical clock 
distribution system that operated at 500 Mb/s and used 
fibers as the interconnect medium [12], [141. 

The concept is shown in figure 5-2. The end surface of 
a fiber is lapped and polished at approximately 45 0

• 

Then a thin layer of aluminum is deposited on the 
surface. The result is a 45 0 mirror integrated onto the 
fiber. The fiber is then coupled laterally to the 
detector/amplifier I.C. The I.e. is then packaged in a 
miniature metal flat pack for incorporation onto the p.c. 
board. 

Figure 5-2. Schematic representation of the lateral fiber 
coupling technique. 



Design of the I.e. was predicated on the requirement 
that an existing ECL process would be used in 
fabrication. An absolute minimum of modification of 
this process was to take place in the photodetector 
fabrication. The mainline process used is a very high 
density monolithic integrated circuit process designed 
specifically for high speed ECL circuits operating at 
sub nanosecond speed. In this design, the active region of 
the bipolar transistors in high frequency amplifier 
circuits is about 1.1 f.,tm. 

Since the deepest diffusion performed in the 
integrated circuit process is the buried layer, at 
approximately 3 f.,tm, and since the light penetration 
depth of silicon at A = 0.82f.,tm is approximately 10f.,tm, 
it is clear that some modification or addition to the I.e. 
process was required to achieve acceptable photodetector 
performance. The solution involved a compromise 
between the two competing objectives of optimizing 
optical response and leaving the I.e. process unaffected. 
At the beginning of the I.e. process flow, the 
photodetector area was defined by a mask and a deep 
phosphorus implant was made into the p -type substrate. 
The phosphorus was then in-diffused to widen the 
compensated intrinsic region as much as possible. 
Implant was made to a depth of approximately 5 Jim. 
The resultant diffusion profile for the integrated 
photodetector indicated an intrinsic region width 
(defined here at FWHM) at zero bias of approximately 
4.5f.,tm. 

Figure 5-3 shows a block diagram of the 
detector/amplifier circuit design. Functionally, it is 
composed of five sections. These are 1) the 
photodetector, 2) the front end transimpedance 
amplifier, 3) an intermediate stage amplifier, 4) an EeL 
limiting amplifier and 5) a D.e. bias control feedback 
network. Transimpedence gain was 3000 ohms. In the 
design, the primary goal was to obtain the highest gain
bandwidth product (at 500 Mhz) possible, with receiver 
sensitivity a secondary issue. 

PHOTO 
DETECTOR 

TRANSIMPEDANCE 
AMPLIFIER 

OUTPUT 

Figure 5-3. Block diagram of the 500 Mhz 
detector/amplifier circuit design. 

5.1 Detector/Amplifier Measured Performance 

The detector/amplifier I.e.s were characterized 
during a test and evaluation phase of the development 
effort. Parameters measured in these tests included 
optical sensitivity, frequency response, waveform 

476 

reproduction, and De stabilization. The highlights of 
this test effort are presented here. Data presented here 
is typical, not best case. Furthermore, data from several 
different devices is shown in the scope traces and plots. 
Reference [13] gives a more complete description of the 
device performance. 

For the purposes of evaluation of the photodiode and 
the amplifier circuits separately,- a family of I.e.s were 
fabricated in which the photodiode contact was 
separated from the amplifier input. On these I.e.s, 
bonding pads were placed at the photodiode output and 
amplifier input. The photodiode responsivity to 
un modulated optical signals was measured with a test 
configuration involving a 0.82f.,tm laser diode source 
coupled to a communications grade 50f.,tm core graded 
index fiber. Cladding modes were eliminated with the 
addition of coupling gel over a 3 cm length of stripped 
fiber near the laser-fiber interface. The average dc 
responslvlty for the 80f.,tm detector was .5A/W. 
Excellent linearity prevailed over the usable input power 
region. 

Transient response of the detectors was measured by 
illuminating them with pulses from a laser diode excited 
by a HP33004 comb generator. These pulses occurred 
at a 500 MHz repetition rate and exhibited sharp rise 
and fall times, approximating a delta-function pulse. 
When measured using a high speed photodetector, they 
showed non deconvolved pulse widths (FWHM) of 40 ps. 
Figure 5-4 shows a sampling scope trace of the response 
'of our 60 f.,tm diameter integrated silicon photodetectors 
to these pulses. Rise times of 60 ps and FWHM of 150 
ps are measured, indicating a high frequency response 
Onto 50 ohms) of approximately 4 to 5 GHz. The tail 
in the response reflects the trade-offs involved in the 
integrated opto-electronic design. 

.1 On: V 

Figure 5-4. Measured impulse response of the integrated 
n-i-p photodiode (load impedence 50 ohms). 



Many devices were tested with the optical input 
provided by the lateral coupling technique described 
!arlier. Figure 5-5 shows a micro-photograph of the 
packaged detector/amplifier. Tests revealed that 
additional optical losses occurring from the use of the 
lateral coupler compared to direct coupling are typically 
1.5 dB. 

Figure 5-5. Micro-photograph of the packaged 
detector-amplifier I.C. 

Swept frequency response of the packaged devices was 
measured for a detector/amplifier having a modulated 
optical signal input through a lateral coupler. The 
results are presented in figure 5-6. This figure shows 
the combined frequency response of the photodiode 
driving the amplification stages. 

-30 

-50 

500 
t(MHl} 

Figure 5-6. Swept frequency response of the packaged 
detector-amplifier I.C.'s. 

The photodiode characteristic response is evident at the 
low frequency end of the spectrum with peaking evident 
at the high end (small signal region). The top trace 
shows the detector/amplifier output response when the 
input was driven by nearly 1 m W optical power. This is 
the maximum amount of optical power the I.C. can 

477 

handle before DC bias problems occur. Also, it is more 
than 10 times the power required to drive the output sine 
wave across its full transfer curve. This is referred to in 
the figure as a "hard limit condition." In the lower 
traces the average input optical power begins at 
approximately 100 u Wand decreases in 5 dB steps. The 
packaged devices were also tested for response to binary 
data sequences. This was done by modulating the laser 
diode transmitter circuit with a pseudo-random binary 
sequence generator output. The results are presented in 
figure 5-7. It is evident that the waveforms are 
accurately reproduced and that the risetimes are 
sufficient for transfer of wideband binary information. 
Measured output pulse jitter was less than 50 ps. 

Figure 5-7. Response of the packaged detector/amplifier 
I.C.'s to a 500 Mb/s NRZ data input. 

6. Summary 

This paper has addressed the concept of high speed 
digital interconnects, with an eye on the use of photonics 
as an alternative to conventional methods. An attempt 
has been made to point out some of the fundamental 
engineering limits (as opposed to fundamental physical 
limits) to high speed interconnects. 

The primary theme of the paper is the assertion that 
as target system data rates are pushed into the multi
Gb/s domain, packaging and interconnections become 
more and more important. This is because the 
interconnect media becomes transmlSSIOn line-like. 
Under these circumstances wideband transmission forces 
the designer to consider the device package as part of 
the electronic circuit. Mechanical and electronic design 
are merged into one. No longer is one more important, 
or more simple than the other. 

To illustrate this theme, the problem of receiver 
design for optical interconnects has been addressed. 
Link budgets for laser diode based and LED based 
optical interconnect links have been presented. Finally, 
a specific example of the utility of integrated 
optoelectronics in optical interconnects has been given. 



REFERENCES 

[11 Gimlett, J. L., et aI, "Transmission experiments at 
560 Mb/S and 140 Mb/s using single-mode fiber and 
1300 nm LED's", Electr. Lett., 21, pp. 1198-1200 
(I 985). 

[2] Brackett, C. A., "A view of the emerging photonic 
network", ISSC '86, to be published. 

[3] Jacobs, I., "Atlanta Fiber System Experiment: 
Overview", B.S.T.J., 57, pp. 1717-1721 (July-August 
1978). 

[4] Muska, W. M., T. Li, T. P. Lee, A. G. Dentai, 
"Material-Dispersion-Limited Operation of High-Bit
Rate Optical-Fiber Data Links Using LED's", Electr. 
Lett., 13, pp. 605-607 (I 977). 

[5] Blank, L. C., L. Bickers, S. D. Walker, "120-Gbit . 
km lightwave system experiments using 1.478-J,Lm and 
1.52-J,Lm distributed feedback lasers", #WB4; OFC '85 
Technical Digest. 

[6] Personick, S. D., "Fiber optics; technology and 
applications", Plenum Press, 1985, Ch. 11. 

[7] Hackett, W. H., R. H. Saul, P. W. Shumate, 
"Optical links brighten office opportunities", Bell 
Laboratories Record, pp. 5-9 (March 1983). 

[8] Personick, S. D., "An engineering perspective on the 
applications of photonic switching technology", 
Conference record, IEEE Global Telecommunications 
Conference, Nov. 1984. 

[9] Caulfield, H. J., J. A. Neff, W. T. Rhodes, "Optical 
Computing: the coming revolution in optical 
processing", Laser Focus, 19 (1 1), pp. 100-11 0 (Nov. 
1983). 

[10] Goodman, J. W., F. J. Leonberger, S. Y. Kung, R. 
A. Athale, "Optical Interconnects for VLSI Systems", 
Proc. IEEE, 72 (7), pp. 850-866 (July 1984). 

[11] Kurokawa, T., N. Takato, Y. Katayama, "Polymer 
Optical Circuits for M ultimode Optical Fiber Systems", 
Applied Optics, 19 (I 8), pp. 3124-3129 (Sept. 1980). 

[12] Hartman, D. H., "Digital High Speed Interconnects 
- a study of the optical alternative", to be published in 
Optical Engineering, 25 (10), (October 1986). 

[13] Hartman, D. H., M. K. Grace, C. R. Ryan, "A 
Monolithic Silicon Photodetectorl Amplifier I.C. for 
Fiber and Integrated Optics Applications", IEEE 
Journal of Lightwave Technology, LT-3 (4), pp. 729-
738 (August 1985). 

[14] Hartman, D. H., M. K. Grace, F. V. Richard, "An 
Efficient Lateral Fiber-Optic Electronic Coupling and 
Packaging Technique Suitable for VHSIC 
Applications", IEEE Journal of Lightwave Technology, 
LT-4 (1), pp. 73-82 (Jan. 1986). 

478 

[15] Clymer, B. D., J. W. Goodman, "Optical clock 
distribution to silicon chips", to be published in Optical 
Engineering, 25 (10), (October 1986). 

[16] Smith, R. G., S. D. Personick, "Receiver Design for 
optical fiber communication systems", Topics in 
Applied Physics, 39, Chapter 4, Springer-Verlag, 1982. 

[17] Sata, K., "Intensity Noise of Semiconductor Laser 
Diodes in Fiber Optic Analog Video Transmission", 
IEEE Journal of Quantum Electronics, QE-19 (9), pp. 
1380-1391 (Sept. 1983). 

[18] Suzuki, A., T. Uji, Y. Inomoto, J. Hayashi, Y. 
Isoda, H. Nomura, "InGaAsPlInP 1.3 J,Lm wavelength 
surface-emitting LED's for high-speed short-haul 
Optical Communications", IEEE J. Lightwave Tech., 
LT-3 (6), pp. 1217-1222 (Dec. 1985). 

[19] Goldstein, B., M. Ettenberg, N. A. Dinkel, J. K. 
Butler, "A high-power channelled-substrate-planar 
AIGaAs Laser", Appl. Phys. Lett., 47 (7), pp. 665-657 
(Oct. 1985). 



STANDARDS AND ARCHITECTURE FOR TOKEN-RING 
LOCAL AREA NETWORKS 

Jacalyn Winkler 
Jane Munn 

IBM Corporation 
Research Triangle Park, North Carolina 

ABSTRACT 

Local area network standards have been developed 
by the Institute of Electrical and Electronics 
Engineers (IEEE) and are becoming international 
standards through the International Organization 
for Standardization (ISO). The token-ring is an 
approved IEEE standard and an ISO draft interna
tional standard (DIS). This paper presents the 
architecture for token-ring local area networks as 
described in the IEEE 802.5 Standard and ISO DIS 
8802/5. Also :included is a discussion of the 
logical link control sublayer as described in the 
IEEE 802.2 Standard and ISO DIS 8802/2. 

INTRODUCTION 

The IEEE Project 802 Committee has developed a 
family of standards for local area networks 
(LANs). These standards encompass the data link 
and physical layers of the Open Systems Intercon
nection (OSI) Reference Model [1] developed by the 
International Organization for Standardization 
(OSI). The data link layer for LANs is divided 
into two sublayers: medium access control and 
logical link control. The IEEE 802.5 Standard [2] 
defines the specifications, formats, and protocols 
of the physical layer and the medium access 
control sub layer for the token-ring local area 
network. The IEEE 802.2 Standard [3] defines the 
services and procedures of the logical link 
control sublayer. 

The physical layer of a token-ring LAN provides 
data synchronization, data symbol encoding and 
decoding, and physical attachment to the ring. 
The medium access control (MAC) sublayer controls 
access to the ring, so that individual stations 
have the opportunity to transmit without interfer-. 
ence from other stations. The logical link 
control (LLC) sub layer provides two distinct types 
of service that provide for the transfer of infor
mation between network layer entities on a LAN. 
(Network layer entities are entities above the 
data link layer that interface directly to the LLC 
sublayer.) One type of service, unacknowledged 
connectionless, provides a datagram approach to 
information exchange where information is simply 
sent and received without correlation to previous 
or subsequent information and with no form of 

CH2345-7j86jOOOOj04 79$01.00 © 1986 IEEE 
479 

acknowledgment to ensure delivery. Another type 
of service, connection-oriented, provides error
free, in-sequence delivery of information without 
duplication. 

A token-ring LAN is comprised of stations 
connected sequentially by a series of point-to
point links. Each station acts as an active 
repeater and regenerator of signals on the ring. 
Due to the physical configuration and protocol 
operation of the token-ring, problem detection, 
isolation, and bypass are possible. The token
ring architecture also provides eight levels of 
priority for access to the shared transmission 
medium, allowing fair access to the medium within 
each priority level. 

On a token-ring LAN, a station obtains the right 
to transmit data by capturing a token (a special 
bit pattern circulating the ring between data 
transmissions). The transmitting station changes 
the token to a frame and appends addressing infor
mation and data. Each station on the ring exam
ines the addressing information and repeats the 
frame. A station recogn1z1ng the destination 
address as its own also copies the frame. When 
the frame returns to the sender, the sender 
removes the frame from the ring and generates a 
new token. 

One station on the ring - called the active moni
tor - provides token-monitoring and other protocol 
monitoring functions to ensure that the ring is 
operating normally. The other stations called 
standby monitors monitor the health of the 
active monitor, and are ready to take over if the 
current active monitor fails. Although only one 
station on the ring is designated as the active 
monitor at anyone time, the active monitor func
tion is part of the architecture of every station 
on the ring. 

Stations on the token-ring detect and report error 
conditions allowing for the isolation of errors. 
The errors detected by a station are divided into 
two categories: soft and hard errors. Soft errors 
are those that temporarily degrade the ring 
performance. Examples of soft errors detected by 
a station are line hits, possible duplicate 
addresses, and invalid symbols between starting 
and ending delimiters. Hard errors prevent the 
token-ring protocols from functioning properly. 
Examples of hard errors are a streaming station, 
and a broken wire. 



The specifications, formats, and protocols of the 
physical layer and the medium access control and 
logical link control sublayers for the token-ring 
LAN are discussed in more detail in the following 
sections. 

PHYSICAL LAYER 

The physical layer of the token-ring LAN synchro
nizes its clock with the signal received from the 
ring so that it can interpret received data. The 
data signalling rates as defined by the IEEE 802.5 
Standard f21 are one and four million bits per 
second. Station attachment is via shielded twist
ed pair cable. Unshielded twisted pair attachment 
is under study by the IEEE 802.5 committee. 

Differential Manchester Encoding 

The token-ring LAN uses the differential Manches
ter code to convert binary data (bits) into signal 
elements. These signal elements: 

• 

Contain no direct-current (DC) components, sa 
they avoid. plating or other deterioration at 
attachment contacts 
Allow the receiver to derive clocking pulses 
from the encoded signal. 

For each bit of data, the code consists of two 
signal elements of opposite polarity. This main
tains the DC balance in each bit and guarantees a 
transition for clocking. The value of each bit (0 
or 1) is determined by comparing the first. signal 
element of the bit with the last signal element of 
the previous bit. If the signal elements have the 
opposite polarity, the bit has a value of OJ 
otherwise it has a value. of 1. The polarity 
(positive or negative) of the signal element does 
not affect the decoding of the 0' s' and l' s j only 
the transition, or lack of such transition, 
affects the decoding. 

Bit 
boundaries 
Half-bit. 
boundaries 

Binary l's 

Binary O's 

or 

-> 

--> 
+ 

+ 

+ 

rI .---, .---, .---, 

I I I I I I I I 
I I I I I I I I 

J L-...J L....J L....J L-

I 
1 rI .---, .---, r-
I I I I I I I I 
I I I I I I I I 
L-...J L....J L-...J L....J 

Figure 1. Differential Manchester Code 

480 

A code violation is said to occur if there is no 
transition (from -plus to minus or minus to plus) 
at the bit midpoint. Frames and tokens are delim
ited by starting and ending delimiters that use 
four code violations (two positive and two nega
tive to maintain DC balance) to guarantee unique
ness from the data stream. 

MEDIUM ACCESS CONTROL SUBLAYER 

The medium access control sublayer supports medi
um-dependent functions and uses the services of 
the physical layer to provide services to the 
logical link control sublayer. It allows a 
station to gain access to the ring for trans
mission, to detect and report error conditions, 
and to report configuration changes in the ring. 
The token-ring- frame and token formats used by the 
MAC sub-layer are provided in an appendix.. The 
following sections describe the various functions 
of the MAC .. sub layer and the use of MAC management 
frames to control the operation of the token-ring 
LAN. 

Access Priority. 

The access priority indicates the priority of a 
frame or token. The priority is contained in the 
first three bits of the access control field (see 
Appendix), alloWing for eight levels of priority. 
Reservations for a priority token are placed in 
the last three bits (the reservation bits) of the 
same field. A station can. transmit a· frame using 
a token with a priority less than or equal to the 
priority of the frame. If an appropriate token is 
not received, the station may request a token at 
the required priority by placing a reservation in 
the access control field of a repeated frame or 
token. 

When a station removes one of its transmitted 
frames from the ring and finds a non-zero value in 
the reservation bits, it must originate a non-zero 
priority token. The station determines the prior~ 
ity of the token based on the priority used by the 
station for the recent ly transmitted frame, the 
reservation. bits received in the returning frame, 
and any stored priority (due to a previous trans
mission of a priority token). The priority token 
circles the entire ring giving every station the 
chance to transmit frames of a priority greater 
than or equal to the priority of the token. This 
allows for fair access at each priority level. 

When the priority token returns to the originator, 
the station removes the token from the ring and 
issues a token at a priority determined by the 
reservation bits and the previous priority. 

Active Monitor 

The active monitor detects lost tokens, and frames 



and priority tokens that circle the ring more than 
once. The following .sections describe the mech
anisms used by the active monitor to detect and 
correct these error conditions. 

Neighbor-Notification Process: The neighbor-noti
fication process is initiated by the activemoni
tor. It is used to inform stations that an active 
monitor is present on the ring, and of the address 
of their nearest active upstream neighbor (NAUN). 
The NAUN address is used for error isolation. 

The neighbor notification process begins when the 
active monitor transmits an Active Monitor Present 
MAC frame to all stations on the ring. The first 
station to receive the Active Monitor Present MAC 
frame sees the address recognized and frame copied 
bits in the frame status field (see Appendix) set 
to zero indicating the frame was sent by its NAUN. 
It then sets these bits to one, saves the source 
address of the received frame as its NAUN address, 
and. transmits a Standby Monitor Present MAC frame 
to all stations on the ring. 

The next station immediately downstream copies the 
Active Monitor Present MAC frame, sees the address 
recognized and frame copied bits set to one, and 
disregards the frame. The station then copies its 
NAUN address from the Standby Monitor Present MAC 
frame that was transmitted by its upstream neigh
bor, sets the .address recognized and frame copied 
bits in that frame to one, and transmits its own 
Standby Monitor Present MAC frame to all stations 
on the ring. 

In this way neighbor-notification proceeds around 
the ring, with other stations transmitting their 
Standby Monitor Present MAC frames, until the 
active monitor copies the last Standby Monitor 
Present MAC frame, in which the address recognized 
and frame copied bits are set to zero. Neighbor 
notification thus enables a station to learn its 
NAUN address, and to provide its address to its 
downstream neighbor. 

Frame and Token Control: The active monitor 
uses the monitor bit in the access control field 
to detect circulating frames or tokens with prior
ity greater than zero. The monitor bit is set to 
zero in tokens and transmitted frames. When the 
active monitor repeats a frame or priority token 
with the monitor bit set to zero, it sets the 
monitor bit to one. If the bit has already been 
set to one, the active monitor assumes that the 
token or frame has already circulated the ring 
once (the station that originated the token or 
frame did not remove it). The active monitor 
purges the ring (see "Purge Process") and origi
nates a new token. 

The active monitor ensures that a token is always 
available on the ring by using a timer with a 
relatively short time-out that exceeds the time 
required for the longest possible frame to circle 
the ring. The active monitor restarts this timer 
each time it repeats a token or frame. If this 

481 

timer expires, the active monitor assumes that the 
token was lost on the ring. The active monitor 
purges the ring (see "Purge Process ") and origi
nates a new token. 

Purge Process: The active monitor purges the 
ring by transmitting a Ring Purge.MAC frame to all 
stations on the' ring. Receipt of the returned 
frame indicates to the active monitor the ring is 
viable. Other stations recelv1ng a Purge MAC 
frame reset to repeat mode and cancel or restart 
appropriate timers. 

Standby Monitor 

The function of a standby monitor is to detect 
failures in the active monitor and other 
disruptions of the ring protocol. Each standby 
monitor maintains two timers to perform this func
tion. 

One timer, which has a longer duration than the 
active monitor I s token monitoring timer, ensures 
that the active monitor I s token monitoring func
tion is operative. This timer is restarted when a 
token is repeated. If this timer expires, the 
standby monitor initiates token-claiming (see 
"Token-Claiming Process") to elect a new active 
monitor. 

A second timer used to detect the absence or fail
ure .of the active monitor is restarted each time 
the standby monitor receives an Active Monitor 
Present MAC frame. If this timer expires, the 
standby monitor assumes that an active monitor is 
not present on the ring, or that the active moni
tor has malfunctioned. The standby monitor then 
initiates token-claiming. 

Token-Claiming Process 

Token-claiming is the process used to elect an 
active monitor. A standby monitor detecting an 
error, or the absence of the active monitor, 
initiates the token-claiming process by broadcast
ing Claim Token MAC frames to all stations on the 
ring. A station copying a Claim Token MAC frame 
compares its individual address to the source 
address of the received frame. If the source 
address is less than the station's .individual 
address, the station transmits its own Claim Token 
MAC frames; otherwise, the station repeats 
received frames. If a station transmitting Claim 
Token MAC frames receives a frame with a source 
address 'higher than its individual address, the 
station stops transmitting its own Claim Token MAC 
frames and begins repeating received frames. 

Receipt of its own Claim Token MAC frames indi
cates that the station has been elected as the 
active monitor. This station then purges the ring 
and originates a new token. 



Beaconing Process 

A station detecting a hard error broadcasts Beacon 
MAC frames to all stations on the ring to inform 
them of the detected error. The Beacon MAC frame 
includes the address of the nearest active 
upstream neighbor for use in error isolation and 
recovery. Upon receipt of Beacon MAC frames, the 
NAUN of the Beaconer removes from the ring and 
tests the continuity of the wire connecting it to 
the ring. If an error is detected, the station 
remains· off the ring and the ring recovers. If 
the NAUN does not find an error when testing its 
lobe, the station reattaches to the ring. 

After a period of time, if the ring has not recov
ered, the beaconing station removes and tests the 
continuity of the wire connecting it to the ring. 
Again, if an error is detected, the station 
remains bypassed allowing the ring to recover. If 
no error is detected, the station reattaches to 
the ring. If the error persists, manual inter
vention is necessary to recover the ring. 

Attaching to the Ring 

In order to communicate on the ring, a station 
must successfully go through a sequence of events 
during the ring insertion process. Before phys
ically inserting in the ring, a station performs 
self tests to ensure the continuity of the wiring 
connecting it to the ring and that the station 
itself is functioning properly. After successful
ly completing these tests, the station physically 
attaches to the ring. The station then checks to 
be sure there is an active monitor on the ring by 
detecting a frame sent by the active monitor. If 
there is not an active monitor on the ring, the 
station initiates token-claiming. 

After either detecting or establishing an active 
monitor, the station checks for the presence of 
another station on the ring with the same address 
by issuing a Duplicate Address Test MAC frame to 
its individual address. If the frame returns with
out being copied by another station, the station's 
address is assumed to be unique. The station then 
waits to participate in neighbor notification to 
learn its NAUN's address, and to provide its 
address to its downstream neighbor. 

Lastly, the station requests parameter values from 
a management server on the ring. This request 
contains registration information for the station 
attaching to the network. If a management server 
is present on the ring, the station completes the 
insertion process after receiving a response from 
the server. If a server is not active on the 
ring, the station completes the insertion process 
and uses the default values for the ring parame
ters. 

Soft Error Detecting and Reporting 

Soft errors are intermittent faults that temporar-

482 

ily disrupt normal operation of the token-ring; 
they are normally tolerated by error recovery 
procedures. Soft errors are indicated by archi
tectural inconsistencies (such as cyclic redundan
cy checks or timeouts) in received or repeated 
frames, and by a ring station's inability to proc
ess received frames. If soft errors result in 
degraded ring performance, the ring can be recon
figured to bypass the faulty node. 

Each ring station maintains a set of counters to 
measure the frequency of occurrence of the most 
critical soft errors. At specified intervals, 
these errors are reported to a management server 
using a Report Soft Error MAC frame. The Report 
Soft Error MAC frame reports the number of errors 
detected since the last report was made. This 
report identifies the transmitting station's NAUN 
for use in error isolation and recovery. 

Configuration Control 

A management server may collect configuration 
information from stations on the ring. Configura
tion reports are generated when the insertion or 
removal of a station is detected during the neigh
bor notification process. A configuration report 
is also generated when a new active monitor is 
elected. 

A management server may change the 
by forcing a station off the ring. 
server may also query a station for 
information unique to that station. 

lOG ICAl LINK CONTROL 

configuration 
A management 

various status 

The IEEE 802.2 Standard [3] for logical link 
control defines peer-to-peer protocol procedures 

for the transfer of information between any pair 
of network layer entities on a local area network. 
Logical link control is not unique to the token
ring; it is intended to be used in conjunction 
with all the medium access control and physical 
layer standards defined in IEEE 802. 

The formats and protocols of logical link control 
were derived from HDLC standards [4]. The format 
of the LLC protocol data unit (LPDU), the unit of 
information delivered from or to the MAC sublayer, 
differs from HDLC in that it does not include a 
frame check sequence or frame delimiters, and it 
contains two address fields. The functions of 
frame delimiting and frame check sequence gener
ation and verification are provided by the medium 
access control sublayer; therefore, they are not 
necessary in the logical link control sublayer. 

The two address fields contain the destination and 
source link service access point addresses. Link 
service access points (LSAPs) are the logical 
points at which network layer entities acquire the 
services of the data link layer (see Figure 2). 
To support the coexistence of mUltiple network 



layer entities, the LLC sublayer supports up to 
127 service access points. The destination link 
service access point address in the LPDU is used 
by the receiving LLC to identify the network layer 
entity for which information is received. Within 
a network layer entity, the source link service 
access point address in conjunction with the MAC 
source address is used to determine the logical 
"connection" for which information is received. A 
network layer entity may have multiple logical 
"connections" active simultaneously. 

APPLICATION 

PRESENTATION 

SESSION 

TRANSPORT 

NETWORK 

DATA LINK 

PHYSICAL 

LSAPs 
I I I 
V V V 

~ 

LOGICAL LINK 1 

------1 
MEDIUM ACCESS 1 

Figure 2. Link Service Access Points in the 
OSI Reference Model 

The logical link control protocols closely resem
ble those defined in HDLC [4]. While basically a 
connection-oriented protocol, HDLC does define an 
optional facility for unacknowledged information 
transfer. LLC differs from HDLC in that it 
requires the support of unacknowledged information 
transfer and defines as optional a connection-or
iented protocol. 

Logical Link Control Services 

Logical link control provides two types of service 
to the network layer: unacknowledged connection
less (type 1) and connection-oriented (type 2). 
The requirements of the higher layers determine 
which service type is applicable in a given situ
ation. To provide a common set of minimal 
services, all stations are required to provide 
unacknowledged connectionless service. 

Unacknowledged connectionless service is a data
gram approach to information exchange where infor
mation is simply sent and received without 
correlation to previous or subsequent information 
and with no form of acknowledgment to ensure 
delivery. The LLC sublayer requires the network 
layer to explicitly specify the source and desti
nation addresses in all requests for unacknowl
edged connectionless data transfer service. When 
information is received, the LLC sublayer routes 
the information as well as the addresses to the 

appropriate network layer entity as specified by 
the destination link service access point address. 
No state information is maintained by the LLC 
sub layer for unacknowledged connection less data 

483 

transfers. Unacknowledged connectionless service 
is useful when higher layers provide adequate 
error recovery and sequencing, or when it is not 
essential to guarantee the delivery of informa
tion. 

Connection-oriented service proVides a reliable 
communications path between any two network layer 
entities (identified by LSAP addresses) on a local 
area network. This service provides flow control, 
sequencing, and error recovery procedures. A 
"data link connection" is established, at the 
request of a network layer entity, between two 
LSAPs prior to any exchange of information. The 
connection may be reset to its initial state or 
terminated at any time by either network layer 
entity involved in the connection. Connection-or
iented service is applicable when higher layer 
protocols require error free service. 

The performance tradeoffs between using connec
tion-oriented service and performing error recov
ery in the LLC sublayer, and using unacknowledged 
connectionless service and performing error recov
ery at a higher layer, is a subject of continual 
controversy. For an analys is, see "Performance 
Analysis of Error Control Alternatives in Local 
Area Networks" by Syed and Field [5]. 

Logical Link Control Protocols 

The protocols defined for both unacknowledged 
connectionless and connection-oriented data trans
fer were derived from HDLC protocols. As in HDLC, 
the concept of "command" and "response" protocol 
data units is used. In the following sections, 
descriptions of the protocols for each type of 
service are provided. 

Unacknowledged Connectionless Service: Unac
knowledged connectionless service provides data 
transfer between two network layer or management 
entities with minimum protocol complexity. Figure 
3 lists the LLC commands and responses that 
provide unacknowledged connectionless service. 

LPDU Name Abbr. Command Response 

Unnumbered UI X 
Information 

Exchange XID X X 
Identification 

Test TEST X X 

Figure 3. LLC Commands and Responses for 
Connectionless Service 

The UI command LPDU is used to transport data from 
one network layer entity to another. UI command 
LPDUs may be sent or received at any time. 
Received UI LPDUs. are neither acknowledged nor 
verified for correct sequence. The receiver of an 
UI command LPDU simply passes the contents of the 
information field to the network layer entity 
designated by the destination link service access 



point address. UI command LPDUs can be lost if an 
exception (for example, a transmission error or a 
receiver-busy condition) occurs during trans
mission. Higher layer protocols are responsible 
for detection of lost or duplicate LPDUs, and for 
any required retransmissions. 

The XID command LPDU is used to convey identifica
tion and characteristics of the sending station, 
and to cause the receiving station to respond with 
the XID response LPDU. The IEEE 802.2 Standard 
[3] defines the format for the information field 
of an XID LPDU. The field contains information 
related to the types of service provided by the 
station or by a specific LSAP, and for connec
tion-oriented service, it specifies the receive 
window size. All stations must support the infor
mation field defined by IEEE 802.2 and must be 
capable of returning an XID response when an XID 
command is received. The logical link control 
standard does not exclude the exchange of user-de
fined XID information formats, such as, those 
defined by Systems Network Architecture (SNA). 

The TEST LPDU is used to perform a basic test of 
the transmission path between two stations. The 
information field is supplied by the user or a 
management facility. All stations must have the 
ability to return a TEST response when a TEST 
command is received. 

Although XID and TEST are considered part of the 
unacknowledged connection1ess service, they 
provide facilities that are more likely to be 
invoked by management entities rather than by 
network layer entities. An implementation may 
choose to provide error recovery procedures for 
XID and TEST within the logical link control 
sub layer as long as the flow sequences remain 
independent from that of the connection-oriented 
service. 

Connection-Oriented Service: The protocol proce
dures for connection-oriented service are similar 
to the HDLC asynchronous balanced mode of opera
tion (see [4] for details). Figure 4 lists the 
LLC commands and responses that are used in 
connection-oriented service. Unlike HDLC, which 
allows the choice of 8 or 128 as the modulus for 
sequence numbering, logical link control defines 
the modulus to be 128. 

Before information can be exchanged between two 
network layer entities, a data link connection 
must be established between two LSAPs. Connection 
establishment is requested by a network layer 
entity. Upon receiving such a request, the LLC 
sub1ayer sends a SABME command LPDU to the desti
nation specified in the request. The receiver of 
the command accepts the connection by returning an 
UA response LPDU, or rejects the connection by 
returning a DM response LPDU. If the connection 
request is rejected, the initiating network layer 
entity is notified and must retry its connection 
request at a later time if it sti11 desires the 
connection. If the connection request is 
accepted, the data link connection is successfully 
established and the two network layer entities may 

484 

exchange information. The LLC sublayer 
in-sequence information transfer without 
duplication of data. 

provides 
loss or 

LPDU Name Abbr. Command Response 

Information 
Receive Ready 
Receive Not 

Ready 
Reject 
Set Asynchronous 

Balanced Mode 
Extended 

Disconnect 
Unnumbered 

Acknowledgment 
Disconnected 

Mode 
Frame Reject 

I 
RR 
RNR 

REJ 
SABME 

DISC 
UA 

DM 

FRMR 

x 
X 
X 

X 
X 

X 

X 
X 
X 

X 

X 

X 

X 

Figure 4. LLC Commands and Responses 
Connection-Oriented Service 

for 

Information is transferred from one network layer 
entity to another using I command or response 
LPDUs. (The concept of a command or a response in 
a peer-to-peer environment is not meaningful in 
many cases; a station may use either in many situ
ations.) Each I LPDU contains a send sequence 
number that a110ws the receiver to verify proper 
ordering. The sender of an I LPDU runs an 
acknowledgment timer and maintains a copy of the 
entire LPDU until an acknowledgment is received. 
To maximize throughput, a number of I LPDUs may be 
outstanding, i.e. sent but not yet acknowledged, 
in each direction of a data link connection before 
the transmitter must stop and wait for an acknowl
edgment. This transmit window has a maximum value 
of 127. 

If a received I LPDU contains the next sequence 
number expected, the information is delivered to 
the network layer entity and an acknowledgment is 
returned to the sender. Acknowledgments are indi
cated by the value of the receive sequence number 
in I, RR, RNR, and REJ LPDUs. All I LPDUs 
numbered up through the receive sequence number 
minus one are acknowledged; hence, a single LPDU 
may acknowledge mUltiple I LPDUs. The IEEE 802.2 
standard does not require an acknowledgment to an 
I LPDU be returned at the earliest opportunity 
unless the I LPDU was a command with the P bit set 
to "1" (see [3] for details). If an I LPDU is not 
available for sending, a station may delay the 
sending of an acknowledgment for some period of 
time bounded by the probability of the expiration 
of the remote acknowledgment timer, for either an 
I LPDU to become available for transmission, or to 
accumulate additional I LPDUs to be acknowledged 
in a single RR LPDU, subject to window size 
constraints. One method that may be used to 
control acknowledgment sending involves the use of 
a timer and a counter such that an explicit 
acknowledgment will be sent whenever the timer 
expires or the count limit is reached (see [6] for 
details) . 

If an I LPDU is received out of sequence, the 
information field is discarded and a REJ LPDU 



containing a receive sequence number equal to the 
expected sequence number is returned. The 
receiver of the REJ LPDU will retransmit the I 
LPDU containing the expected sequence number and 
any other unacknowledged I LPDUs that had been 
previous ly sent following the one that was 
rejected. 

Lost frames that cannot be discovered by sequence 
number validation are detected when the 
acknowledgment timer expires. Upon expiration, a 
"checkpointing" operation is initiated. 
"Checkpointing" consists of sending a RR command 
LPDU with the P bit set to "1." The receiver of 
the command is obligated to respond with its 
expected sequence number. By interrogating this 
number, the initiator of the "checkpointing" 
operation can determine if retransmission of any I 
LPDUs is necessary. 

If a station becomes temporarily unable to receive 
information frames due to resource constraints 
such as buffering limitations, it can notify the 
remote LLC by sending a RNR LPDU. The receiver of 
a RNR LPDU should stop sending I LPDUs until it 
receives further notification. A RR LPDU may be 
sent to notify the remote LLC that it may resume 
sending I LPDUs. 

Either network layer entity involved in the 
connection may request that the connection be 
terminated. A DISC LPDU is sent to notify the 
remote LLC of the disconnection. The receiver of 
the DISC LPDU responds with an UA LPDU. The 
disconnection is not negotiable; the receiver of a 
DISC LPDU may not reject the disconnection 
request. 

If a protocol error is detected, the station 
detecting the error sends a FRMR LPDU containing a 

I I I I 
Is I Control I Destination I Source 
ID IFields I Address I Address 
I I I I 
I I I I 

1< Physical Header 

SD starting delimiter 
ED ending delimiter 
FS frame status field 

Figure 5. Frame Format 

Starting Delimiter: The starting delimiter is a 
single byte with the following format: 

J K 0 J K 0 0 0 

J = Code Violation 
K = Code Violation 

Figure 6. Starting Delimiter 

All valid. frames and tokens start with this byte. 

I 

summary of the detected error to the originating 
station. When a station receives a FRMR LPDU, it 
may attempt to reset the connection or treat the 
connection as being disconnected. 

CONCLUSIONS 

The IEEE 802.5 and 802.2 Standards have progressed 
to Draft International Standards within ISO. The 
architecture for token-ring LANs as defined in the 
standards provid"es superior faul t isolation, 
problem determination, and recovery capabilities. 
The protocols allow excellent operational 
characteristics at high speeds and under heavy 
loads. 

The architecture for token-ring LANs can easily be 
extended to include the interconnection of rings 
via bridges. This extension would provide 
improved connectivity, performance, and 
availability. Source routing provides a method of 
routing frames through a bridged network, where 
the source of a frame explicitly identifies the 
route that a frame is to follow. The appendix 
contains a proposed addition to the token-ring 
frame format to include the routing information 
field used in source routing. 

APPENDIX: TOKEN-RING FRAME AND TOKEN 
FORMATS 

The basic transmission unit on the token-ring LAN 
is the frame. Frames are composed of a number of 
fields of one or more bytes, as shown below: 

II II I I I 
I Routing I Informa- I Frame IE IF I 
I Information I tion I Check ID Is I 
I 
I 

485 

I I Sequence I I I 
II I II I I I I 

>1 1<- Physical ->1 
Trailer 

The J and K indicate code violations, which iden
tify the byte as a delimiter. Use of code 
violations avoids using special bit patterns of 
normal codes for delimiters; therefore, bit 
insertion, as used in HDLC, is not required. 

Control Fields: The control fields are each one 
byte in length and are used to determine access to 
the ring. The control fields have the following 
format: 



P P P T M R R R F F Z Z Z Z Z Z 

Access Control Frame Control 

P = Priority Bit F Frame Type Bit 
T = Token Bit Z Control Bit 
M = Monitor Bit 
R = Reservation Bit 

Figure 7. Control Fields 

The priority bits indicate the priority of a token 
or frame. There are eight priority levels, from 
zero to seven. 

The token bit is used to distinguish between 
frames and tokens. A token is the signal used to 
give a station permission to transmit. The figure 
below shows the format of the token: 

I I 
IStarting I Access 
IDelimiter IControl 
1 I 

Figure 8. Token Format 

I 
lEnding 
I Delimiter 
I 

The monitor bit is used by the active monitor to 
prevent a token whose priority is greater than 
zero, or any frame, from continuously circling the 
ring. 

The reservation bits allow stations with high 
access priorities to request, in repeated frames 
or tokens, the priority of the next token. There 
are eight reservation levels, from zero to seven. 

The frame type bits indicate the type of informa
tion contained in the frame as either MAC manage
ment, or user data. 

The control bits are used in the MAC management 
frames to determine the method for copying a 
frame. If the control bits equal zero, the 
station copies the frame using normal receive 
buffers and does not copy the frame if no buffers 
are available. If the control bits are greater 
than or equal to one and the normal receive buff
ers are full, the station copies the frame into 
buffers reserved for MAC protocol management to 
insure appropriate action is taken by the station .. 

Destination Address: The destination address 
identifies the ring stations that are to copy the 
frame. Destination addresses are always six bytes 
in length with the following format: 

486 

bytes 
1 2 3 I 4 5 6 

I I L- Functional Address bit 
I L- Universal/Local Administration bit 
L-- Individual/Group Address bit 

Figure 9. Destination Address 

The individual/group address bit indicates whether 
the frame is addressed to a specific station or a 
group of stations on the ring. The 
universal/local administration bit indicates 
whether the address is administered by IEEE there
by, guaranteed to be unique across all types of 
LANs, or administered such that the responsibility 
for unique addresses is placed on the local admin
istration. All addresses must be unique in a 
given network. The functional address bit indi
cates whether a locally administered group address 
is a bit mapped address (functional address) iden
tifying a management function, or a flat six byte 
group address. 

These indicators are an integral part of each 
station's address, and considered during address
recognition. 

Source Address: 
the ring station 
Source address is 
following format: 

1 2 

The source address identifies 
that originated the frame. 

six bytes in length with the 

bytes 
3 I 4 5 6 

I L- Universal/Local Administration bit 
L-- Routing Information Indicator 

Figure 10. Source Address 

A source address is always an individual address, 
so the individual/group address bit distinction 
defined in the destination address field is not 
needed. Instead, this bit may be used as a rout
ing information indicator specifying whether or 
not a routing information field is present in the 
frame. 

As in the destination addresses, bit 1 of byte 0 
indicates whether the address is administered by 
IEEE or a local authority. 

Routing Information Field: Following the source 
address is a routing information field present 
only in frames leaving the source ring. The 



field, when present, consists of a two-byte rout
ing control field and up to fourteen two-byte 
segment numbers. 

bytes 
2 I 4 I 6 I m I 

rl -------r�-------r�------~I---//--~I------~I 
I Routing I Segment I Segment I I Segment I 
IControllNumber INumber I INumber I 
I I I I / / I I 

Figure 11. Routing Information Field 

Routing Control Field: The routing control field 
is two octets in length with the following format: 

I I 
B r I LTH D I r 

I I 

bits 1 2 5 1 7 

B Broadcast 
r reserved 
LTH Length 
D Direction 

Figure 12. Routing Control Field 

The Broadcast bit indicates if the frame is 
destined for all segments in a network. This bit 
does not imply that the frame is destined for all 
stations on all rings. The Length bits indicate 
the length of the routing information field 
including the routing control field. The Direc
tion bit indicates if the frame is traveling from 
the originating station to the target station or 
visa versa. 

I nformation Field: The variable-length information 
field contains an integral number of bytes of MAC 
management or user information. 

While there is no explicit restriction on the size 
of the data field, the values of various MAC 
timers limit the practical maximum frame size. In 
an environment where there are several rings, 
connected by bridges '. the bridges may also be the 
limiting factor in determining the practical maxi
mum frame size. 

Frame Check Sequence: The frame check sequence 
is a four-byte cyclic redundancy check (CRC) 
covering the frame control field, the addresses, 
the routing information field, the information 
field, and the frame check sequence itself. 

Ending Delimiter: The ending delimiter is a 
single byte with the following format: 

487 

Figure 13. 

J K 1 J K 1 o 

J Code Violation 
K Code Violation 

E 

E Error Detected Bit 

Ending Delimiter 

As in the case with the starting delimiter, code 
violations (J, K) are used to denote the ending 
delimiter. The ending delimiter is different from 
the starting delimiter in that bits 2 and 5 are 
set to 1. Using different patterns for the start
ing and ending delimiters simplifies the detection 
of each. 

The error-detected bit is used to indicate that an 
error was detected in the frame by a station on 
the ring. It also indicates to a station detect
ing an error in a frame or token, whether the 
error has been logged by another station on the 
ring. 

Frame Status: The frame status field is a single 
byte with the following format: 

I 
A C r r A C r r I 

I 

A Address Recognized Bits 
C Frame Copied Bits 
r = reserved 

Figure 14. Frame Status Field 

The address recognized and frame copied bits indi
cate the following conditions to the sending 
station: no station recognized the destination 
address and the frame was not copied, a station 
recognized the destination address and copied the 
frame, or a station recognized the destination 
address but did not copy the frame. 

REFERENCES 

1. International Organization for Standardi
zation, "Information Processing Systems, Open 
Systems Interconnection, Basic Reference 
Model," ISO 7498-1984, 1984. 

2. IEEE Computer Society, Token Ring Access Meth
od and Physical Layer Specifications, 
ANSI/IEEE Standard 802.5 1985 (ISO/DP 
8802/5), IEEE, 1985. 

3. IEEE Computer Society, Logical Link Control, 
ANSI/IEEE Standard 802.2 1985 (ISO/DIS 
8802/2), IEEE, 1984. 



4. 

5. 

International Organization for 
Standardization, "Information processing 
systems, Data communications, High-level data 
link control procedures, Consolidation of 
classes of procedures," ISO 7809-1984, 1984. 

A. Syed, and J. A. Field, "Performance 

6. 

488 

Analysis of Error Control Alternatives in 
Local Area Networks," Proceedings of Infocom 
1986, Miami, April, 1986, pp.S03-S09. 

I BM Co rpor at ion , .:::I.::::B~M~----=T:..:o::.;k:.::e::::n:.:.....;-R=i::.:n~g,-----=-N.:...:e::...ct::...:w.:...:o::...cr:::..k:.: 
Architecture Reference, Publication Number 
6165877, 1986. 



THE IBM TOKEN-RING NETWORK - A FUNCTIONAL PERSPECTIVE 

MICHAEL WILLETT 

IBM CORPORATION 
NETWORK SYSTEMS DESIGN 

RESEARCH TRIANGLE PARK, NORTH CAROLINA 27709 

ABSTRACT 

The acceptance of the personal computer as 
an intelligent workstation, coupled with 
the increasing demand for shared access to 
common fi les and for electronic office 
communication, has created a need for a 
reliable, high-speed, local communication 
network. This paper is an overview of an 
implementation of the IEEE 802.5 
token-ring network recently released by 
IBM. The paper covers the generaL 
archi tecture of the network and focuses on 
how this implementation achieves high 
reliability and the flexibility of an open 
system, which are essential to meet 
present and growing data. communication 
needs. 

1.1 INTRODUCTION 

A LOCAL AREA NETWORK (or LAN) is a 
geographically confined communication 
system, generally inhabi ting a shared 
transmission medium. The. main ingredients 
of a LAN are: 

the transmiss'ion medium 
the access protocols, which govern 
the way that access to the shared 
medi urn is achi eved 
the adapter, for controlling the 
connection of a device to the medium 
the communication protocols, once 
access is achieved. 

A gathering of people in a room has all the 
ingredients of a local area network. The 
transmission medium is the air filling the 
room (a bus topology!). The access 
protocols may vary from meeting to 
meeting. In a social gathering. and wi thin 
the confines of social amenities, we 
contend wi th others for the right to 
speak. At the next lull in the discussion, 
we begin to speak. If someone else begins 
at the same time, we both poli tely back 
off for a brief moment and then 

CH2345-7j86jOOOOj0489$01:00 © 1986 IEEE .'. 
489 

re-initiate our conversation. Eventually, 
someone wins the contention and gains 
control of the transmission medium. In a 
Ii vely gathering, a high percentage of the 
time could be spent on the access 
protocols. In a more structured business 
meeting~ access may proceed in an orderly 
fashion around the table. In thi s case and 
even with everyone having something to 
contribute, very little time is spent on 
the access protocols. I f each person's 
time to speak is limited, then each will 
have access to the medium again within a 
guaranteed amount of time. The adapter is 
our set of vocal cords and the 
communicati,on protocols. are the ordinary 
rules of language, specialized to the 
occasion. 

In the late sixties, the ALOHA Network at 
the University of Hawaii was developed to 
apply packet radio techniques for 
communication between a central computer 

and terminals scattered about the 
Hawaiian Islands. This network used a 
contention-based access method for 
gaining control of the central processor. 
Contention methodology was enhanced. in 
the Ethernet communication system, 
developed by Xerox in the early seventies. 
Ethernet utilizes Carrier Sense Multiple 
Access with Collision Detect (CSMA/CD) to 
control access of mul tiple processors to a 
shared bus. A station initiates 
transmission only if the bus is quiet. 
Because this access method requires 
backoff and retransmis'sion whenever 
multiple transmissions collide on the 
bus, the throughput is adversely affected 
when high utilization of the 
communication bandwidth is attempted. 
Also, since the transmission must travel 
the length of the bus and return before 
potential collisions are detected by the 
transmitting station, the access method 
does not provide a proportional increase 
in throughput as the transmission rate is 
increased, unless the bus is shortened. 



The token-ring access scheme (10) offers 
an al ternati ve method for sharing a common 
transmission medium. Transmission is 
point-to-point serially around a ring, 
with the transmitter of one station 
attached to the receiver of another 
station. A special bit sequence called a 
TOKEN is passed from each station to the 
next downstream station. If a station 
wishes to transmi t, then that station will 
capture the token (ie, not forward it) and 
instead transmit a frame, addressed to 
another individual station or a group of 
stations ·in the network. All stations 
monitor the destination address of frames 
being forwarded. The intended recipient 
copies the frame while forwarding it. The 
transmitting station has the 
responsibi Ii ty of removing a frame when it 
has completed the 'round' trip. As soon as 
this 'stripping' process begins, the 
station can release the token to the next 
downstream station. 

The ring topology would seem to be 
vulnerable to a break in the transmission 
path, but the sequential ordering of 
stations is the basis for effective 
on-ring error isolation and recovery (see 
below) . In addition, the baseband, 
digital technology involved is mature and 
can be implemented inexpensively. The 
point-to-point nature of the transmission 
lends itself to the use of optical fiber 
cable. The controlled nature of the access 
method remains stable at very high speeds, 
so that token-ring access control was 
selected as the basis for the 100 
megabit/sec Fiber Distributed Data 
Interface (FDDI), a local area network 
standard being drafted by the ANSI X3T9.5 
Committee (see (13». 

Early work on IBM's token-ring 
architecture was carried out at the 
IBM/Zurich Research Laboratory. Members 
of the LAN Architecture and System Design 
Departments of 'IBM at the Research 
Triangle Park in North Carolina evolved 
the details of the architecture and made 
significant contributions to the LAN 
standards acti vi ties. 

Wi th the formal introduction of the IBM 
Token-Ring Network in 1985, software and 
hardware developers applied considerable 
energy to producing software written to 
the published specifications for 
interfaces and hardware that could 
co-exist on the transmission subsystem. 
Token-ring technology can' support the 
local data communication needs of an 
establi shment of almost any size. The 
widespread adoption of the personal 
computer as an intelligent workstation in 
the business environment, coupled with 
the increasing need for peer-to-peer and 
host-interactive connectivity, emphasize 
the requirement for an establishment-wide 
local area network. 

490 

In the following sections, IBM's 
implementation of a token-ring LAN is 
highlighted, with attention focused on 
the openness, reliability/availability, 
and standardization of the network 
beginning with the transmissio~ 
subsystem. Successively higher-level 
layers of the implementation are also 
discussed. 

1.2 IBM CABLING SYSTEM AND COMPONENTS 

A major part of any communication system 
is the transmission subsystem. 
Standardization of communication 
protocols will do little to promote the 
acceptance of LAN technology without an 
equal effort to standardize the medium. 
Look in the ceiling or under the floors of 
any building that has hosted a computer 
and/or telephone communication system for 
a few years, and you will find a maze of 
wire, much of which has been abandoned. 
In 1984, IBM introduced components and 
specifications for a cabling system which 
are designed to accommodate the local 
communication needs of an establishment 
for the foreseeable future. 

The IBM Cabling System has the following 
attributes: 

, STANDARD' The component and 
cabling specifications have been made 
available. Independent 
vendors/suppliers provide the 
components and the installation 
expertise, in addi tion to IBM. 

OPEN Universal connectors and 
faceplates allow for easy access to 
the medium of a variety of 
communication products. IBM has 
announced its intention to make 
future devices compatible with the 
cabling system. Many communication 
products compatible with the cabling 
system are already available from 
multiple sources. A variety of 
communication products are 
accommodated by using the appropriate 
connector cable (or balun) in the 
office, without rewiring to the 
wiring closets. 

STRUCTURED - Instead of being a maze 
of point-to-point wires, the cabling 
is installed with a structured 
topology. Cable drops in offices are 
routed through raceways to wiring 



Type 1 

Type 2 

Type 3 
Specified Cable 

Type 1 -' Data communication 

Type 5 

Type 6 

Type 8 

Type 9 
Specified Cable 

• Type 2 - Data and voice communication (Both 
Type 1 & 2 can be plenum/non-plenum) 

• Type 3 - data and voice 
communication (telephone twisted-pair) 

• Type 5 - Fiber optic (Between wiring 
closets/network backbone) 

• Type 6 - Data communication (Patch cables) 

Type 8 - Undercarpet cable (Data only) 

Type 9 -
communication 

FIGl:RE I: CABLE TYPES 

data 

closets, which are strategically 
located throughout a bui Iding. T-~e 
section of cable from the office to 
the wiring closet is called a LOBE. 

The cabling terminates in wiring 
racks or telephone punch-down blocks. 
The cabling can then be connected 
together at a patch panel to provide 
the endpoint connectivity desired. 
Rearrangement of the physical 
connectivity is easily accomplished 
by changing the patch-panel 
connections. This star-shaped wiring 
topology allows for a 'vi rtual 
rewiring' of the building without any 
of the traditional expense. Wiring 
closets are themselves connected 
together to provide structured, 
systematic connectivity throughout 
the establishment. 

A new outlet in an office or a new type of 
cable can be difficult and expensive to 
provide. Ideally, a building is prewired 
wi th the cabling system during 
construction, with sufficient office 
drops and overall accessibility provided 
to handle future expansion. 

491 

Type 2 Cable 
for Data and Voice 

or Type 1. 6. 9 
for Data 

Lobe 

Multistation 
Access 

Unit 

Telephone 
Riser 
Cable 

FIGURE 2: OFFICE TO WIRING CLOSET LOBE 

1.2.1 NETWORK CABLING COMPONENTS 

Wiring 
Closet, 

The Token-Ring Network can be 
superimposed on the cabling system by 
adding the appropriate components in the 
wiring closets and in the offices. 

A Multistation Access Unit allows up to 8 
lobes to be combined serially in the 
wiring closet or (if convenient) locally 
within an office. The access unit is not 
powered. Instead, a 'phantom' current 
from the attaching device activates a 
swi tch in the access uni t to insert the 
lobe into the active ring of the network 
or to bypass an inactive or inoperative 
device. 

Copper repeaters can be used to extend the 
length of the main ring path between 
wiring closets beyond the specified 
limits. The repeater reshapes and 
retransmits the signal, just as does the 
adapter. 

Optical fiber repeaters can be used in 
pairs to extend the length of the main 
ring path up to 2 kilometers by using 
optical fiber cable. Fiber is being 
increasingly used in point-to-point 
communication because of its high 
transmission rate characteristics and its 
immuni ty to electromagnetic interference. 



1.3 MAC/LLC IMPLEMENTATION 

The Data Link Control (DLC) layer of the 
communication architecture is specified 
in the standards that have been developed 
by the Institute for Electrical and 
Electronic Engineers (IEEE) Project 802 
Committee. 

802.1 
HIGHER LAYERS 

NETWORK MANAGEMENT IlNTERNE'lWORKlNG 

I 
80'2.2 

I LOGICAL UNl< CONTROL DATA 
UNl< 
CONTROL 

....---- r--- r---- r--- LAYER 

802.3 802.4 802.5 802.6 

CSMAlCC TOKEN TOKEN METRO. 
BUS RING NET 

MAC MAC MAC MAC 

!PHYSICAl PHYSICA t::j PHYSICAl PHYSICAL 
LAYER 

L-- L--. -----
FIGURE 3: IEEE PROJECT 802 STRUCTURE 

The 802.5: Medium Access Control (MAC) 
sublayer standard specifies the 
token-ring access method. The 802.2: 
Logical Link Control (LLC) sublayer 
standard specifies the remainder of the 
Data Link Control, independent of the 
particular access method. All 802 LANs 
have the same LLC. 

The MAC sublayer handles the token 
protocols and the ring recovery 
procedures. Each ring station monitors 
the traffic on the network to determine if 
errors or interruption in the MAC layer 
protocols have occurred. Under normal 
operation, one station on the ring has 
special functions activated, wi th this 
active monitor capability on standby in 
all other stations. 

The active monitor has an incremental 
24-bi t latency buffer to insure that a 
(24-bit) token will fit on the ring. The 
active moni tor can also sense lost tokens, 
circulating frames, or circulating 
priority tokens. Additional active 
monitor duties include token generation 
in case the network has no token and 
activation of a 'neighbor notification' 
process whereby each station learns the 

492 

address of its nearest active upstream 
neighbor (NAUN). The active monitor also 
provides a master timing clock for the 
rest of the ring, which is imbedded in the 
data stream through the use of Manchester 
encoding. The other stations are in 
standby mode, checking the health of the 
active moni tor. Any station can assume the 
role of the active moni tor, if needed. The 
process for 'electing' an active monitor 
is called' claim token' . 

The ring topology with its unidirectional 
flow provides a robust environment for 
error isolation and recovery. Since each 
station knows its upstream neighbor, the 
first station (in order around the ring) 
to note an error will then know the fault 
domain (two stations and the connecting 
cable) for that error. This information 
is reported to network management and used 
in automatic error recovery techniques. 
Error types include soft errors such as 
bit errors in a frame or hard errors such 
as loss of signal. 

In the case of hard errors, a 'beaconing' 
protocol is used to notify all stations 
that error recovery is taking place and to 
share the fault domain information. For 
example, the station immedi~tely 

downstream from a wire fault will 
repeatedly transmit a 'beacon' frame 
containing its own address and that of its 
NAUN. The other stations on the ring 
repeat the beacon frame. When (and if) 
the NAUN station sees its own address in a 
beacon frame, it removes itself from the 
ring and performs a self-test. If this 
test indicates normal operation, the 
station will re-insert into the ring. If 
normal ring operation has not returned in 
a brief period of time, the 'downstream' 
member of the fault domain (the beaconing 
station) will also go through removal and 
self-test. Automatic recovery and the 
other MAC-layer functions are handled by 
the processor on the adapter. 

Any station that wishes to join the 
network goes through a five-step process 
to insert itself into the ring: 

1. Lobe check, whereby test frames are 
transmi tted to the bypass circui try 
in the multistation access unit and 
wrapped back to the station for 
validation, 

2 . Active moni tor present check, 
3. duplicate address check, 
4. participation in 'neighbor 

notification' protocol, 
5. report to network management. 

If the insertion process fails, 
notification is given to the attaching 
device. 



The services of the Logical Link Control 
sublayer are accessed through logical, 
addressable points wi thin the sublayer 
called Service Access Points (SAPs). 
Multiple logical link endpoints can exist 
in a single station, using SAP addressing. 
The services of this sublayer are of two 
types. TYPE 1: CONNECTIONLESS service 
provides for transmission (and receipt) 
of information without implementing link 
error recovery or frame acknowledgment. 
This type of service is also called 
datagram service. TYPE 2: 
CONNECTION-ORIENTED service requires that 
SAPs be extended by connection 
components, which serve as connection 
endpoints for DLC links. A DLC link 
consists of the two MAC/SAP address pairs, 
one pair in each communicating station. 
The connection component is responsible 
for processing the events which affect the 
particular DLC link. Frames transmitted 
on such links are numbered in sequence and 
acknowledged upon receipt. Any errors 
detected cause link recovery protocols to 
be executed. For further details, see 
(14) . 

1.4 ADAPTER DESIGN 

Devices requiring attachment to the 
token-ring LAN must interface to an 
adapter that implements MAC-level 
protocols, regardless of the higher-layer 
protocols. For example, these functions 
are incorporated into the Front End, 
Protocol Handler, and Message Processor 
of the adapter developed to attach IBM 
personal computers to the ring. 

Inlernal Bus .---------------, 

User"s Syslem Interlace LAN Inlerlace 

Flgure4. Functional Partitioning 01 the Adapter 

1.4.1 FRONT END 

The receive/transmit functions of the 
adapter are implemented in the Front End. 
Analog circuits reshape and redrive the 
received signal. The 'clock' is also 
extracted from the received signal by 
means of a phase-locked loop. The Front 
End also supports lobe and adapter testing 
in addition to error monitoring of the 
physical attachment. 

493 

1.4.2 PROTOCOL HANDLER 

Two data paths are incorporated in the 
Protocol Handler, which is under the 
control of microcode stored in the memory 
of the Message Handler. The serial path is 
used to forward received frames on the 
ring. The parallel path converts the 
serial data stream into two-byte 
segments, checking address fields to 
determine if a frame is destined for that 
adapter. Copied frames are stored in the 
random-access memory of the adapter. 

1.4.3 MESSAGE PROCESSOR 

Included in this segment of the adapter 
are a microprocessor, read-only memory 
for storing the operating program of the 
adapter, and random-access memory used to 
buffer messages. The Message Processor 
determines if a received frame requires 
action at the MAC layer or must be passed 
to the LLC layer. 

1.4.4 USER INTERFACE CONTROL 

The Interface Controller handles the 
transfer of data between the 
random-access memories of the adapter and 
the attaching device. This shared memory 
approach, using a memory map common to 
both the adapter and personal computer 
memories, enhances the performance of the 
adapter by eliminating the overhead of 
parameter passing, since memory address 
and data segment length definitions are 
identical between the two processors. A 
bidirectional interrupt capability and 
programmable timing facility are also 
provided. A permanent, adapter address 
(if provided) is contained in 
programmable, read-only memory. The 
standard adapter contains 8K of 
random-access memory. A memory-enhanced 
adapter with 16K of memory is also 
available for high-performance devices 
such as bridges and servers in which more 
data buffers are needed. 

The user interface can be customized to 
the internal structure of the attaching 
device. For example, the adapter was 
modified to mate to the IBM 3725 
Communication Controller, which then 
attaches high-end host machines to the 
network. 

A joint development effort between IBM and 
Texas Instruments led to the TMS380 chip 
set (12), which implements the MAC layer 
protocols necessary for attachment to a 
token-ring LAN. This chip set is 



func~ionally equivalent to the MAC layer 
port10n of the IBM adapters and is 
available for attachment of equipment 
from other manufacturers. Of course, LLC 
and higher layer protocols and a 
customized, device interface need to be 
provided as well. 

1.5 BRIDGES AND SOURCE ROUTING 

A bridge is a routing mechanism between 
two or more segments (eg, rings) of a 
local area network. The bridging fUnction 
takes place within the Data Link Control 
layer, either at the MAC or LLC sublayers. 
The bridge is transparent to higher layer 
pr?to~ols. Such a relay function, 
eX1st1ng at low levels in the 
communication protocols, will usually 
provide high throughput between the 
connecting segments. Contrast this with a 
gateway, which connects networks at 
levels higher than the data-link control 
level and therefore is involved to some 
extent with protocol cpnversion and 
address mapping. 

The current bridge between token-ring 
segments uses two adapters installed in an 
IBM Personal Computer or Industrial 
Computer, and performs a relay function at 
the MAC sublayer. The processor of the 
personal computer executes a bridge 
program to achieve the bridging function. 
It is important to realize that each ring 
maintains its own token and MAC-level 
protocols. Tokens do not cross bridges. 
The automatic recovery techniques (if 
needed) are isolated to the single 
affected ring. Therefore the aggregate 
data capacity of the bridge-connected 
network is increased. The bridge 
selectively copies frames on one ring that 
are marked for routing and determines if 
the frame should be transmitted on the 
connecting ring. 

A route through a network consi sts of a 
sequence of ringjbridge numbers, starting 
at the source ring and endinq at the 
destination ring. No specific routing 
protocols have been recommended by the 
IEEE 802 Committees. The routing scheme 
utilized by the IBM Token-Ring Network is 
called SOURCE ROUTING, which means that 
the source station must provide the route 
and insert it in the frame as extended 
addressing. Each bridge first notes the 
existence of a routing information field 
in a frame and then scans that field to 
determine if its own ring/bridge/ring 
combination appears. I f so, then the frame 
is forwarded. Routes can either be 
predefined, which is static, difficult to 
manage, and subj ect to aging, or 
determined dynamically. when needed. In 

494 

dynamic source routing, a source station 
wishing to determine a route to a 
particular adapter address, which may 
reside on another ring in the network, 
first broadcasts a special 
route-selection frame, which is forwarded 
by all bridges (subject to certain 
restrictions) . Each bridge appends its 
own bridge/ring numbers to the route, 
thereby 'growing' the route as the frame 
traverses the network. The receiving 
adapter returns each such frame received, 
using the stored route in the frame in 
reverse order. The first such response 
received by the initiating station 
contains the 'shortest' route 
effectively. This route is used in further 
dialogue wi th the destination station. 

Source routing does not require ei ther the 
bridges or network management to have a 
current, global view of the network 
configuration. This property enhances 
the dynamics and robustness of network 
connectivity. Also, these protocols 
support multiple routes between source 
and destination rings. 

1.6 PROGRAMMING INTERFACES 

In order to promote the development of 
network software and the attachment of IBM 
and non-IBM equipment, documented 
interfaces and protocols exist at all 
communication levels. The Texas 
Instruments chip set and chip sets 
available from other vendors provide a 
MAC-level interface that can be 
incorporated into a custom adapter for a 
variety of communicatinq devices. 

IlANl 
~ 

SNA 
LUB.2 
APPLS 

~ ! 
I NETBIOS I B 

~ L 
802.2 DLe I DIRECT 

ADAPTER HANDLER 

• PC . . ..................... ..... _----_ ......... --- -- ------_.----------------_._._. 

• TOKEN-RING ADAPTER 

IEEE 802.2 LLC I 
IEEE 802.5 MAC 

PHYSICAL 

fIGURE 5: ADAPTER/SOFTWARE INTeRFACES 



The IBM personal computer adapters 
(standard and Adapter II) also provide a 
MAC-level interface for those users who 
want to write software to that interface. 
The DLC interface provides access to the 
LLC fUnctions on the adapter. The Adapter 
Handler code supplied with the adapters 
provides a more user-friendly interface 
for the adapter interfaces just 
described. 

The Network Basic Input/Output System 
(NETBIOS) interface is rapidly becoming a 
defacto-standard, programming interface 

-for local area networks. The NETBIOS 
interface is provided by a program that 
runs in an IBM PC containing an adapter. 
Other networks provide the same 
interface, regardless of the underlying 
access and transmission protocols. This 
wide use of NETBIOS promotes the 
development of extensive network software 
that is portable across a variety of 
networks. Both the NETBIOS interface and 
the underlying protocols used to 
implement NETBIOS on the Token-Ring 
Network are documented in IBM 
publications. 

The Advanced Program-to-Program 
Communication for the IBM Personal 
Computer (APPC/PC) program product 
provides a Systems Network Architecture 
(SNA) LU6.2 interface. This interface has 
also been developed for a number of other 
communication products, which means that 
software written to that interface should 
be directly compatible with the 
Token-Ring Network. Both the interface 
and protocols of APPC have been 
documented. 

Other programs written to the NETBIOS 
interface, such as the PC LAN Program and 

the Asynchronous Communications Server, 
provide server interfaces to the network 
and access to the public switched network. 

In contrast to the early development of 
communication systems in which interfaces 
and protocols were proprietary, the 
communication systems of today, 
integrating hardware and software from 
many different vendors, require an 
unprecedented level of openness and 
standardization. The IBM Token-Ring 
Network exemplifies these requirements. 

495 

1.7 NETWORK MANAGEMENT 

The MAC-level protocols contain a number 
of procedures for automatic erro.r 
moni toring and recovery. In the event of a 
network hard error, the fault domain is 
generated by the detecting station and 
transmitted on the network. A report is 
also generated by the first station 
detecting a soft error. The Ring 
Diagnostic provided with the adapters, 
when executed in an IBM Personal Computer, 
will retrieve these reports from the 
network and display them for the user. 
This information is a useful ingredient in 
the problem determination procedures 
provided. An extension of the Ring 
Diagnostic functions is also available, 
called the Network Manager program, which 
executes further ring monitoring and 
station control functions. 

A network of bridged rings has a 
three-tiered management hierarchy. 

Figure 6 Management H(erarchy for Token-Ring 
Local Area Networks 

Each separate ring has its own token 
protocols and ring monitoring functions, 
distributed across the adapters on the 
ring. MAC-level bridges add a second 
level and provide a convenient station on 
each attaching ring in which to house 
other network management functions. For 
example, the monitoring and reporting 
functions of the Ring Diagnostic are 
integrated into the bridge code. These 
server functions, residing in a bridge 
station or some other specially 
designated station on each ring, could be 
designed to report selective information 
to a network manager function residing 
elsewhere in the network or to perform 
specialized management functions. 



Examples ef petential management servers 
include: 

RING ERROR MONITOR cellects and 
analyzes hard- and seft-errer reperts 
frem the lecal statiens. Selected 
resul ts can be reperted to. the netwerk 
manager. These server functiens are 
incerperated into. the Ring Diagnestic 
and the Netwerk Man~ger pre gram 
preduct. 

CONFIGURATION MONITOR cellects 
cenfiguratien change reperts frem 
statiens. 

RING PARAMETER SERVER - initializes 
and maintains a censistent set ef 
values fer eperational parameters in 
ring statiens. 

RING LAYER MANAGER requests the 
status ef stations, changes the 
values' of operatienal parameters, and 
ferces cenfigura'l:ien -changes. 

The netwerk manager enti ty en the 
Teken-Ring Netwerk ceuld in turn repert 
selected informatien to. a higher 
management function whese domain is the 
whele establishment cemmuhicatien 
cemplex. 

1.8 CONCLUSIONS 

The IBM Teken-Ring Netwerk is an epen 
netwerk, utilizing the latest technelegy, 
and adhering to. internatienally-accepted 
standards fer lecal area netwerks. The 
reliabili ty ef the cempenents and the' 
autematic errer isolatien and recevery 

designed into. the lew-level pretecels 
previde fer high availability ef the 
netwerk. The star-wired, ring tepelegy 
premetes a systematic layeut ef the 
transmissien medium in a building. The 
teken-access pretocels effer erderly, 
predictable access to. the netwerk, even 
under high utilizatien. Bridges and 
repeaters previde for netwerk expansien, 
beth in physical size and number ef 
statiens. 

Tegether with the IBM Cabling System, the 
netwerk effers a strategic solutien to. an 
establishment's data cemmunicatien and 
cennecti vi ty needs fer the future. 

496 

1.9 

1. 

2. 

3. 

4. 

5. 

REFERENCES 

W. Bux, F. Cless, K. Kummerle, H. 
Keller, H. R. Mueller, "Architecture 
and Design ef a Reliable Teken-Ring 
Netwerk", IEEE JOURNAL ON SELECTED 
AREAS IN COMMUNICATIONS, Vel SAC-l, 
No. 5 (Nevember 1983) . 

W. Bux, F. Cless, P. A. Jansen, K. 
Kummerle, H. R. Mueller, E. H. 
Rethauser, "A Lecal-Area 
Cemmunic.atien Netwerk Based Upen a 
Reliable Teken-Ring System", 
PROCEEDINGS ef the IFIP TC-6 
Internatienal In-Depth Symposium en 
Lecal Cemputer Netwerks, Flerence, 
Italy (Apri 1 1982), pp. 69-82 .. 

W. Bux, "Lecal-Area Subnetwerks: A 
Perfermance Cemparisen", IEEE 
TRANSACTIONS ON COMMUNICATIONS, Vel 
29 (1981), pp.1465-1473. 

R. C. Dixen, 
fer Lecal 
PROCEEDINGS 
Washingten, 
pp.591-605. 

"Ring Netwerk Tepelegy 
Data Cemmunicatiens, 

ef COMPCON Fall 1982, 
DC, September, 1982, 

R. C. Dixen, N. C. Strele, J. 
Markev, "A Teken-Ring Netwerk 
Lecal Data Cemmunicatiens" , 

D. 
fer 
IBM 

SYSTEMS JOURNAL, Ve 1 22; No. 1/2 (June, 
1983), pp. 47-62. 

6. R. M. Metcalfe, D. R. Beggs, 
"Ethernet: Distributed Packet .. 
Switching fer Lecal Cemmunicatien 
Netwerks", COMMUNICATIONS OF THE ACM, 
Vel 19, No. 7 (1976), pp. 395-404. 

7. J. H. Saltzer, K. T. Pegran, "A 
Star-Shaped Ring Netwerk wi th High 
Maintainability", PROCEEDINGS ef the 
Lecal Area Cemmunicatiens Netwerk 
Sympesium, Besten, May 1979, 
pp.179-190 .. 

8. J. H. Saltzer, D. D. Clark, K. T. 
Pegran, "Why A Ring?", PROCEEDINGS ef 
the Seventh Data Cemmunicatiens 
Sympesium, 1981, pp. 211-217. 

9. N. C. Strele, "A Lecal Cemmunicatien 
Netwerk Based en Intercennected 
Teken-Access Rings: A Tuterial", IBM 
JOURNAL OF RESEARCH AND DEVELOPMENT, 
Vel 27, 1983. 

10. IEEE Cemputer Seciety, "Teken Ring 
Access Method and. Physical Layer 
Specificatiens", ANSI/IEEE Standard 
802.5 - 1985 (I SO/DP 8802/5), IEEE, 
1985. 



11. IEEE Computer Society, "Logical Link 
Control", ANSI/IEEE Standard 802.2 -
1985 (ISO/DIS 8802/2), IEEE, 1984. 

12. J. Carlo, C. Hamner I "Implementing 
the IEEE 802.5 Token-Ring Standard", 
in these PROCEEDINGS. 

13. S. Joshi I "The Fiber Distributed Data 
Interface: A Bright Future Ahead", in 
these PROCEEDINGS. 

14. J. Munn, J. Winkler, "Standards and 
Architecture for Token-Ring Local 
Area Networks" I in these PROCEEDINGS. 

497 



I"PLE"ENTING THE IEEE 802.5 TOKEN-RING STANDARD 

M.C. Hamner and J.T. Carlo 

Texas Instruments Incorporated 
Houston, Texas 77001 

ABSTRACT 

This paper will describe the methodology 
For implementing the 802.5 Token Ring 
standard with the TMS380 VLSI chipset. 
Critical decisions were made For the 
Physical and Medium Access Control (MAC) 
speciFications to determine which 
Functions were designed into hardware, 
allowed to vary using external components 
or controlled by soFtware. The separation 
of hardware and soFtware Functions is 
guided by the placement of token-related 
processes in hardware and MAC-layer Frame 
processing in soFtware. Particular 
attention is paid to thorough testing and 
veriFication of the hardware and soFtware 
to guarantee ring integrity, isolate 
possible Failures and assure complete 
802.5 compatibility. 

SECTION 1 INTRODUCTION 

The TMS380 token ring 
illustrated in Figure 1. 

TMSl8OJO 
SYSTEM 

WI'EIlfACt I '"~--

Figure 1 

chipset.l!l is 

TMS380 
LAN ADAPTER 
OUPSET 

IlINC 
INnRfACt: 

TMSlIOSJ 

TRANSMIT 

UCElVE 

TMS380 Implementation of IEEE 802.5 

The chipset consists of 
integrated circuits and two 

three VLSI 
bipolar ring 

CH2345-7j86jOOOOj0498$Ol.OO © 1986 IEEE 
498 

interFace devices. Sixteen Kbytes of ROM 
code, containing both MAC Frame 
processing, diagnostics, and a high level 
user interFace is provided in the Protocol 
Handler(PH). The Communication 
Processor(CP) contains 2.75K Bytes of RAM 
For data buFFering and soFtware tables. 
Both of these memory areas are expandable 
using external ROM, EPROM or RAM. The two 
ring interFace circuits provide the data 
conditioning and recovered-clock Function 
For attaching to the twisted pair medium 
of the token ring. The PH perForms the 
real-time token ring protocols, such as 
token capture and priority control. The 
CP executes code which contains the Medium 
Access Control1Zl and management protocol 
processes of the IEEE 802.5 and test 
soFtware which ensures integrity of the 
station and cable attaching the station to 
the ring. The code also provides a command 
interFace into the adapter For higher 
layer soFtware. This interFace Frees the 
user From all MAC-level processing and 
isolates MAC processes from the user, 
protecting the integrity of the ring. The 
System InterFace Chip (SIF) is a Direct 
Memory Access (DMA) controller For moving 
data between the host system memory to and 
From adapter memory. 

The remaining sections of this paper 
describe the partitioning of the IEEE 
802.5 Functions in the TMS380 chipset. 
Section 2 describes the ring interface 
implementation which interFaces to the 
Physical Layer cabling system. Section 3 
describes the Medium Access Control 
processes implemented in hardware and 
soFtware. Finally, Section 4 describes 
those options which are provided to allow 
adapter station selF-test procedures, 
bridges, and other products to be 
implemented. 



SECTION 2 PHYSICAL LAYER 

2.1)HARDWARE PARAMETERS 

The physical layer controls the electrical 
connection to the medium. signal 
conditioning and clock regeneration. The 
physical layer Functions are in hardware. 
However. diFFerent cabling considerations 
and network optimization are accomplished 
by allowing some Function parameters to be 
control led by variable "glue" components. 
Figure 2 illustrates the block diagram of 
the TMS380 Ring InterFace. 

I 
I 
I 

: 
I L___ __ _______________________ _J 

RCVR WRAP 

Figure 2 
Ring InterFace Functional Diagram 

To maintain maximum Flexibility during 
design. tradeoFFs between hardware 
circuits on-chip and parameter setting by 
external glue components were considered. 
These parameters were varied during 
program development to allow optimization 
of system error budgets and veriFication 
of analytical models. 

ReFerring to Figure 2, the ring interFace 
Functions are split into two separate 
chips to minimize electrical coupling 
between the Voltage Controlled 
Oscillator(VCO) and other clocking 
signals. The transmitter. receiver, and 
other blocks which contain data 
transitions are separated From the VCO to 
minimize clock jitter caused by crosstalk 
between the VCO and data. 

An externally controlled adaptive 
EQUALIZER compensates For cable distortion 
and attenuation. Equalization is eFFective 
at low amplitude signals and transparent 
at high amplitude signals. thus matching 
the eFFects of increased Frequency 
distortion with increased cable 
attenuation. This equalization can be 
externally modiFied to match the 
attenuation characteristics of the 
transmission medium by changing the 
external RIC circuit. This is particularly 
useFul when changing From wire to Fiber 
media. 

499 

A hysteresis resistor is externally 
connected to the HYSTERESIS block shown in 
Figure 2 to allow the ring interFace 
circuit to set the noise threshold From 
10mv to 30mv. IEEE 802.5 deFines the 
minimum received signal must be no less 
than 50mv. Proper setting of tne 
hysteresis resistor prevents noise From 
being interpreted as data. This external 
setting will depend on particular 
crosstalk characteristics of the cable and 
can be optimized For wire or Fiber 
operation. Typically. a value of 10mv 
noise rejection threshold is recommended. 

In the token ring. a single station. the 
monitor. provides the master clock which 
all other stations on the ring regenerate 
using a PLL. The PLL Filter circuit and 
gain are also controlled by external 
components. The recommended bandwidth and 
damping Factor of 100kHz and 25.7 
respectively were determined For the IBM 
Token-Ring Network11l. These values 
determine the jitter build-up. and were 
set experimentally and proved analytically 
in order to take into account the entire 
system error rate budget. 

2.1)RELIABILITY INDICATORS 

A major Feature of the TMS380 is the use 
of speciFic hardware Fault indicators to 
monitor network availability at the 
physical layer. These indicators serve to 
isolate problems between the cabling 
wiring coupler and other stations on the 
ring. The major indicators are: wire 
Fault. which veriFies cable continuity to 
the trunk coupling unit; energy detection. 
which senses the loss of incoming signal; 
and Frequency error which detects a 
diFFerence between the regenerated 
Phase-Locked Loop (PLL) clock and the 
station's Crystal Clock. 

Because cabling problems are one of the 
major sources of network problems, the 
TMS380 chipset incorporates a wire Fault 
detection circuit to measure DC continuity 
of the cable to the Trunk Coupling 
Unit(TCU). The phantom drive current. as 
illustrated in Figure 3, provides For the 
relay switching and physical insertion 
into the ring. 

In addition, each wire in the twisted 
pair, as shown by the paths (A) and (B) in 
Figure 3, carries a separate DC current. 
IF the resistivity seen at the outputs 
PHOUTA or PHOUTB is less than 100 
ohms(shorted cable) or iF the resistivity 
is greater than 9900 ohms(open circuit), 
then a wire Fault bit is set and indicated 
to the user. 

An energy detection circuit is provided to 
monitor transitions on the received data 



PHOUTA 
..... ADAPTER CABLE TRUNK COUPLING UNIT 

IAI ....... 
.w 

IBI 
PHOUTB 

IBI 

IE I i 

* 
I 

* - 5 V I 
I 

I~ I 
IAI 3 I 

""'Mn 3 
I 
I . I 

~ I . 
I 
I r -- -------
I I 

I INSERTION I I 
I I CONTROL 

I I RELAY 
I I 
I - - -------
I IAI 

~ I I i I I - I I 

* ~ 
I I 

0 
I I I IBI I 3 I 

RECEIVE 

I 

Figure 3 
Phantom Drive Signal Path 

signal. Under normal circumstances, the 
REDY- signal shown in Figure 2 is asserted 
and the PH deasserts FRAQ so that the VCO 
Frequency is set by the received data 
transitions. IF transitions are absent, 
then the PLL will driFt oFF Frequency, 
causing the PH to assert FRAQ, and the VCO 
Frequency is synchronized to the station's 
own crystal oscillator clock(XTAL). Thus, 
in the event of loss of input signal 
transitions, the PLL is restored to the 
correct Frequency range by rapid hardware 
intervention. In addition, a bit is set in 
the PH to inForm the station soFtware that 
a "signal loss" has occurred. 

These hardware Fault detectors at the 
Physical Layer provide indication of 
wiring integrity. A Final key Feature of 
the ring interFace circuit is the wrap 
mode, which allows the capability to run 
diagnostics completely within a single 
station. In this mode the adapter is a 
single ring station with the Full protocol 
set. This allows selF-test diagnostics to 
be executed prior to insertion into the 
ring and can be combined with the external 
wrap mode (lobe test) to provide an 
excellent method For localizing problems 
at the station level. 

SECTION 3 HAC LAYER 

The implementation of the Medium Access 
Control (MAC) layer is separated between 
those processes which must be implemented 
in hardware, due to ease or speed 
requirements, and those which could be 
implemented in soFtware. This separation 
is illustrated in Figure 4. 

While the hardware controls access to the 
medium, the soFtware controls the contents 
of Frames. Hardware is used to implement 
bit-level Functions in order to achieve a 

500 

TOKEN RING MEDIUM ACCESS CONTROL FRAME 

Wr D 5 L M ~T -t I ~ I F 

). 

EL II· C 1 c ! A A ~ II A C Ii SUBVECTDRS... C i E i S 

L Jj S i L! 

I -~ L It~-~~·, _L.L~,,'--. 

/L HARDWARE _ / \ \ L-- HARDWARE "-,,-
CONTROLLED \ \ CONTROLLED--

I SOFTWARE ~ 
--CONTROLLED 

Figure 4 
MAC Process Separation 

minimum two bit delay For the repeat path 
through the PH. Token processing, 
priority control, address recognition and 
Frame Check Sequence(FCS) generation and 
checking are implemented in hardware. MAC 
Frame processing and the MAC processes 
which require extensive decision tree 
evaluation are implemented in soFtware. 
Throughout the design process, attention 
was paid to implementing with Flexibility. 
Thus, hardware Features and hardware 
operating modes can be selected by 
soFtware. 

3.1) HARDWARE PROCESSES 

Those processes requiring real-time bit 
manipulation are implemented in hardware 
in the PH chip. These include processes 
which capture and modiFy tokens, modiFy 
Frame contents, and monitor data on the 
ring. 

The First of these is address recognition. 
The address recognition Feature was 
designed to be Fast enough to recognize an 
address on a Frame entering the station, 
and correctly set the Address Recognized 
Indicators (A) in that same Frame. The PH 
must meet the shortest possible timing 
window. In the case of the A-bit setting, 
the shortest possible time is calculated 
by summing the bytes between the end of 
the Destination Address and the First 
A-bit in the Frame Status Field as shown 
in Figure 5. 

This time is equivalent to a minimum of 98 
bits For a single byte inFormation Field, 
which is equivalent to 24.5 microseconds 
For a ring speed of 4 Mbps. 

In addition, the PH is required to be 
capable of copying back-to-back Frames 
addressed to it. The PH is capable of 
setting the AIC bits, recognizing a 
Starting Delimiter(SDEL) immediately 
Following the FS Field, and entering the 
address match process. At 4Mbps this is 
accomplished with an inter-Frame spacing 



of eight bits. For the Flexibility, the 
inter-Frame gap size is determined by a 
soFtware controlled register in the PH. 

RECOGNIZE ADDRESS TIME EQUALS: 

48 BITS - SA 
8 BITS - INFORMATION 

32 BITS - FCS 
8 BITS - EDEL 
2 BITS - PH DELAY 

98 BITS ==» 24.5 MICROSECONDS 

Figure 5 

INCOMING 

OUTGOI NG 

Address Recognition Bit-Setting Time 

For transmission, the hardware of the PH 
is responsible For token recognition and 
capture, and the digital transmission to 
the ring interFace. The hardware 
synchronizes to the SDEL of a token, and 
then monitors the Access Control (AC) Field 
to determine iF the incoming data is a 
Frame or a token. If it is a token, then 
the PH sets the token bit in the AC, 
inserts the user's data following the AC, 
and attaches the Ending Delimiter(EDEL) 
and Frame Status(FS) fields at the end of 
transmission. The PH must convert 
paral leI data From the Adapter Bus into a 
serial bit stream for transmission. This 
process is perFormed entirely in hardware 
for speed reasons. It is, however, the 
responsibility of adapter software to 
initiate the transmission. 

The transmit process of the IEEE B02.5 
-standard is also responsible for proper 
handling of priority on the ring~. In 
the PH, the priority handling functions 
are implemented in the "fairness" process. 
If the priority level is increased by a 
station, that station must ensure that it 
eventually returns to the level from which 
it increased priority. To ensure that the 
"stacking" station receives a Fair chance 
of transmitting at a given priority level, 
the hardware which performs the fairness 
process is separated from the transmit 
process hardware. The PH's Fairness 
process logic is logically downstream From 
the transmit process hardware in the same 
node. IF active, the fairness hardware 
modiFies the token that was released by 
the transmit process to create a token of 
proper priority. 

The IEEE 802.5 standard states that the 

501 

active monitor station on the ring must 
periodically check for the presence of 
valid tokens or frames on the ring. The 
active monitor station uses this 
inFormation to determine when a Ring Purge 
is necessary. To do this, a combination 
of hardware and soFtware detection 
mechanisms are used. The PH recognizes a 
valid SDEL-AC sequence as "Any Token", and 
sets a bit readable by software. At the 
expiration of a 10ms timer, software 
checks that the bit has been set, and 
clears the bit. SoFtware in the monitor 
station uses this Feature to detect the 
absence of tokens, and initiate Ring 
Purge. 

Stand-by monitors must monitor the ring 
for "good" tokens, every 2.6 seconds. A 
"good" token is deFined as a priority zero 
token or a token of priority greater than 
zero Followed by a Frame of priority 
greater than zero. This process is 
perFormed in a manner similar to the "any" 
token check. The hardware sets a bit 
whenever it detects a good token, and the 
soFtware checks For the bit and resets it 
at the expiration of a 2.6 second timer. 

To implement protocol processing timers, 
two timers were placed in hardware. All 
protocol timers are based on these timers. 
The Return to Repeat timer indicates a 
lost Frame to the transmit process in the 
PH. This timer guarantees ring integrity 
by automatically returning the PH to 
repeat mode aFter a Frame has exceeded a 
certain length, independent of other 
hardware. The General Purpose Timer is the 
hardware basis For all other protocol 
timers. This timer is located in the 
Communications Processor and its duration 
is controlled by soFtware through a 
register. A period of 10 milliseconds was 
chosen. This increment is small enough to 
handle all the timers speciFied by the 
IEEE 802.5 standard. 

3.2) SOFTWARE PROCESSES 

The remainder of the Medium Access Control 
(MAC) processes of the token ring are 
implemented in the TMS380 adapter 
soFtware. These include neighbor 
notiFication, monitor contention, monitor 
Functions, and MAC management support. 
These processes were implemented in 
soFtware to keep them flexible and provide 
the ability to change parameters For 
different speed rings. 

When the PH completes reception of a 
frame, adapter soFtware is notified. If 
the received frame is a MAC frame (FC=Ox), 
then control is passed to an adapter 
software task known as the "Ring Task". 

The Ring Task parses the frame to first 



determine if it is a ring station class 
MAC frame or if it is destined for the 
user system. If it is a ring station 
class frame, further parsing determines 
which MAC major vector has been received, 
and what parameters accompany the command. 
Depending on the value o~ the.major vec~or 
and whether this stat10n 1S the act1ve 
monitor, appropriate software routines are 
initiated. 

When the software needs to transmit a MAC 
frame, it queues that frame to the PH, 
just like any other data frame. MAC f~ame 
transmission may be caused by a t1mer 
expiration or may be in response to a 
received frame. To ensure that vital MAC 
frames are transmitted in a timely manner, 
the TMS380 software reserves one internal 
buffer for the transmission of certain MAC 
frames. Those MAC frames which are 
transmitted from this buffer are: 

Report Error 
Report Monitor Error 
Report Neighbor Notification Incomplete 
Report New Monitor 
Active Monitor Present 
Duplicate Address Test 
Report SUA Change 
Standby Monitor Present 
Request Initialization 
MAC frames which use a token are 
transmitted at priority 3, and are always 
queued ahead of user frames that are 
pending transmission. 

SECTION 4 FEATURES FOR FLEXIBILITY 

Though many of the Medium Access Control 
processes were built into hardware, the 
ability to override these was deemed 
necessary for both flexibility and for 
testing. In this light, various options 
were built into the TMS38020 Protocol 
Handler to allow control of hardware 
functions by software. 

One option is that the FCS may be 
generated by PH hardware or transmitted 
directly from buffer RAM. This allows 
adapter software to retransmit an FCS 
which it received from the ring, instead 
of regenerating it. This feature could be 
used in a bridge adapter. The Transmit 
FCS mode is also very useful for testing 
the adapter. The PH's FCS detection 
mechanism can be tested by sending an 
invalid FCS with frame data. The Transmit 
FCS mode is selected by writing a bit in a 
control register so that the mode of 
operation can change dynamically from 
frame to frame. 

Another option of the PH transmit process 
is termed "Baud Data Mode". In this mode, 
the PH transmitter interprets data in the 
adapter buffer RAM in the format shown in 

502 

Figure 6. 

BIT 0 1 2 3 4 10 11 12 13 14 15 

DATA: V lOLA T ION MASK: 

VALUE OF EIGHT BITS 
TO BE TRANSMITTED 

o = NORMAL TRANSMISSION 
1 = TRANSMIT BIT ~ITH 

VIOLATION 

Figure 6 
Baud Data Mode Format 

This format allows the user to indicate, 
by bit, if the bit is to be sent as a 
valid Manchester encoded value or a 
violation pattern. In this way, software 
can simulate the starting and ending 
delimiters of a frame. Also, for testing 
the PH error recovery mechanisms, code can 
induce code violations in a transmitted 
frame. 

To support transmit operations that do not 
wait for a free token, the transmit 
process of the PH will operate in the 
Transmit Immediate mode. This mode, set 
by software, causes the PH to transmit as 
soon as it is told the location of frame 
data in adapter memory. Monitor 
Contention, Beacon Process, and Ring Purge 
use this mode. 

For debug, or for software priority 
control, the PH contains a Fire Token 
register. When this register is written 
to, the PH will release a token onto the 
ring, using the contents of this register 
as the AC field. This allows adapter 
software to release tokens at any given 
time onto the ring. This register is used 
in the diagnostic code to test adapter 
response to various types of tokens. It is 
also used in the monitor station to 
release a token following the Ring Purge 
process. 

The Transmit Idle mode of the transmit 
process causes the PH to transmit a 
continuous stream of zero bits without 
regard to what is being received. This 
mode can be used for various testing 
modes. Transmit idles state is entered 
upon the detection of a BURST5 error in 
order to prevent downstream adapters from 
also detecting a BURST5 error, thus 
isolating the fault. 

In order to 
the ring 
congestion, 

maintain proper operation on 
in case of data buffer 
the PH receive process 



provides a mode or operation known as 
"copy express bUrrer only". In this mode, 
the PH will only copy rrames addressed to 
itselr, ir the value or the Physical 
Control Field (PCF) bits in the Frame 
Control rield is greater than zero. MAC 
rrames which are essential to ring 
operation are derined to have PCF bits 
greater than zero. The adapter reserves an 
internal burrer, known as the "express 
burrer", ror use whenever it has no other 
burrers remaining. The IEEE 802.5 standard 
states that ir the adapter is unable to 
copy a MAC rrame destined ror the station, 
it should take action based on the value 
or the PCF bits. In order to support this 
requirement, whenever the PH recognizes 
the address on a MAC rrame with PCF bits 
greater than one, it issues an "attention" 
interrupt. With this interrupt, the value 
or the PCF bits is stored in a register, 
readable by adapter sortware. 

The PH receive process also orrers the 
option or copying all trarric on the ring, 
regardless or the destination address. 
The Address Recognized and Frame Copied 
bits onrrames copied in this mode are not 
arrected, unless the rrame is addressed to 
the station. This reature orrers the user 
the ability to observe all trarric on the 
ring. This can be useru1 ror protocol 
analysis and debug, or ror perrormance 
analyzers on the ring. 

The PH provides the ability, with its 
"No-Strip" mode, to transmit rrames onto 
the ring and immediately return to repeat 
mode. This capability can be used any 
time the adapter wants to place rrames on 
the ring that it does not remove. For 
example, the TMS380 Bring-up diagnostics 
use this mode to test the operation or the 
PH rairness process. 

SECTION 5 CONCLUSION 

This paper has described the 
implementation decisions that were made in 
the design or the TMS380 token ring 
adapter. We have described the division 
between Physical and Medium Access Control 
runctions. The TMS380 Ring Interrace 
devices control most or the physical layer 
protocols, including insertion into the 
ring, transmission or valid signal, and 
reception or signal rrom the ring. The PH 
chip perrorms the remainder or the 
physical layer protocols, including jitter 
compensation and monitor clocking. The MAC 
layer is implemented in both the PH and in 
sortware executed by the CPo The PH 
handles token manipulation while the 
sortware controls the interpretation or 
received MAC rrames and the transmission 
or new MAC rrames. 

503 

Throughout the design process, carerul 
attention was paid to providing 
rlexibility in those reatures which were 
designed into hardware. In this manner, 
the ability to use dirrerent media types, 
or to rine tune MAC protocols, was 
maintained. Allor these reatures ror 
rlexibility are used by today's chipset in 
selr-test, and can be used in the 
laboratory environment ror system test. 

REFERENCES 

1)"TMS380 User's 
Instruments, September 
describes the TMS380 
application to an 
Token-Ring Network. 

Guide", 
1985. Th is 

Texas 
book 

chipset and its 
IBM-compatible 

2)"IEEE 802.5 Token Ring Access Method", 
March 1985, IEEE Standards Board. This is 
the IEEE specirication ror the token ring. 
Signal characteristics are described on 
page 80. 

3)"IBM Token-Ring Network Architecture 
Rererence", February 1986. This document 
describes the detailed Medium Access 
Control runctions that are used to 
maintain and control the attaching ring 
stations. 

4) Szczepanek, A. , Shore, B. , "A VLS I 
Implementation or a Protocol Controller 
ror Use with IEEE 802.5 Compatible 
Networks", ISSCC 1984. This paper provides 
additional details or the design or the 
TMS380 Protocol Handler. 



THE FIBER DISTRIBUTED DATA INTERFACE: A BRIGHT FUTURE AHEAD 

sunil P. Joshi 
Advanced Micro Devices 

901 Thompson Place 
Sunnyvale, CA 94088 

ABSTRACT 

This paper provides an introductory 
overview of an emerging local area network 
(LAN) standard called the Fiber 
Distributed Data Interface (FDDI). The 
FDDI standard is being defined by the 
American National Standards Insti tute in 
its technical committee ANSC X3T9.5. FDDI 
is a 100 Megabits/sec optical fiber based 
token ~ing and uses a dual-ring topology 
for lmproved faul t-tolerance. Some 
environments where FDDI may be applicable 
are described along with the FDDI features 
that make it suitable for these 
environments. 

INTRODUCTION 

The Fiber Distributed Data Interface 
(FDDI) is an emerging LAN standard which 
provides a high performance LAN solution 
for high-end applications such as 
interconnecting mainframes and their 
peripherals, and CAD/CAM applications. 

The FDDI standard is being defined by the 
American National Standards .committee, 
ANSC X3T9.5, which is responsible for 
high-speed local area networks. The ANSC 
technical committee is a part of the 
American National Standards Institute 
(ANSI) which is the standards organization 
that represents the u.S. in the 
International Standards Organization 
(ISO). FDDI is a fiber-optic token-ring 
network which operates at a 100 
megabit~/sec data rate. The FDDI protocol 
has used the IEEE 802.5 token-ring 
protocol as a starting point and has made 
several enhancements to enable a cost
effective high-speed implementation. 

There is a close working relationship 
between IEEE and ANSC to prevent overlaps 
in their activities. IEEE is defining 
standards at data rates below 50Mbps while 
ANSC is looking at speeds above 50 Mbps. 

C H2345-7/86/0000/0504 $0 1. 00 © 1986 lEE E 
504 

The initial FDDI specifications .are better 
suited for data traffic as opposed to 
voice, and are referred to as the FDDI-l 
standard .. Aspects of FDDI-1 which affect 
hardware implementation are already frozen 
as a draft standard. As an ·enhancement to 
FOOl-I, the committee has begun work .on a 
new definition called FOOI-2, which 
provides a better interface for both data 
and voice traffic. 

The FOOI-l specification consists of four 
documents specifying the data link .layer 
and physical layer of the seven-layer Open 
Systems Interconnect model (see fig. 1). 
The Physical Media Dependent (PMO) 
document deals with the fiber optic cable, 
connectors and jitter specifications at 
the electro-optic interface. The Physical 
Layer (PHY) document specifies the clock 
recovery and encoding mechanisms. The 
Media Access Control (MAC) document 
specifies the token-passing protocol and 
the station Management (SMT) document 
deals with network management issues. 

FOOl Relationships to OSI Model 

DATA LINK 
LAYER 

r------, 
I 802.2 I 
I (LCC) I L- ______ ..l 

MAC 
(Media Access 

Control) 

-------------------
SMT 

PHYSICAL PHY (Station 
LAYER (Physical Protocol) Manage-

PMD 
(Physical Medium 

Dependent) 

ment) 

Figure 1: Scope of FOOl Specifications 



Why Optical Fiber 

FOOl decided to use optical 
transmission medium for a 
reasons, including: 

fiber as a 
variety of 

a. Bandwidth: Fiber cable provides a 
very high capacity for carrying 
information. The data rate can be in the 
range of several hundred megabits per 
second. 

b. Attenuation: Fiber provides low 
attenuation, resulting in efficient 
communication over several kilometers 
without repeaters. 

c. Noise Immunity: Fiber cables 
transmit information as light and neither 
generate nor are affected by 
electromagnetic interference. 

d. Security: since it is not easy to 
tap an optical fiber cable wi thout 
interrupting communication, fiber is more 
secure then copper cable from malicious 
interception. 

e. cost: The cost of optical fiber 
cable has fallen considerably over the 
last two years and fiber is projected to 
become cheaper than co-axial cable in a 
year or so. since fiber is lightweight 
and thinner, it is often easier to pull 
through overcrowded ducts, resulting in 
lower installation costs. In fact, the 
additional cost of putting a second fiber 
in the same cable is negligible; hence, 
FOOl has opted for a duplex fiber cable 
and provided a high-level of faul t
tolerance through this added redundancy. 

In the past, the cost of the laser diodes 
or avalanche photo diodes to interface 
wi th the fiber has been high. However, 
technological advances have provided low
cost LEOs and pin-diodes that can operate 
at the lOOMbps rate specified by FOOl. 

The physical ring topology is ideally 
suited for use with fiber because it 
provides a point-to-point connection 
between nodes and therefore, does not 
require taps which are harder to build 
with fiber. 

MAJOR ENVIRONMENTS 

FOOl is targeted towards four maj or 
environments: office floor, computer 
room, factory floor, and campus 
interconnections. Fig. 2 illustrates how 
a variety of applications could co-exist 
in a typical company environment. 

505 

Office Floor 

A typical office environment consists of 
word processors, desk-top personal 
computers, facsimile machines, terminals, 
and printers. Most of these are low-cost, 
medium performance devices which feature 
direct user interfaces and require 
relatively slow networks for 
interconnection. 

In addition to these applications, offices 
in the engineering environment will have 
Engineering Workstations, Computer Aided 
Design (CAD) equipment, graphics or 
imaging machines, and multi-user micro or 
mini-computers. The need to handle 
computation-intensive operations or moving 
large blocks of data, sets this, equipment 
apart from PC-type devices. The 
performance of the network is crucial when 
hundreds of millions of bytes of graphics 
data are being moved, and as such these 
devices have acceptable, but higher 
network interface costs than terminals or 
PCs. Some applications will benefit from 
the higher data rate offered by FOOl. 

Computer Room 

The computer room can be visualized as a 
collection of very high performance 
mainframes or mini-computers connected 
over a backend network to peripheral 
controllers, communications controllers, 
file servers, and data-base machines. The 
peripheral controllers in turn can attach 
to individual disk drives or tape drives. 
In addition, there may be high speed laser 
printers on the backend network. 

Usually the backend networks in a computer 
room do not cover a large span, but they 
must operate at a very high data rate and 
be extremely reliable and fault tolerant. 
In the past, proprietary networks have 
been used for computer room connections. 
Also, parallel interconnect schemes such 
as the Intelligent Peripheral Interface 
(IPI) have been used since the distance 
limitations are not a concern. Now FOOl 
is emerging as an alternative backend 
network offering increased performance. 

Factory Floor 

Networking is an essential element of the 
automated factory. A factory floor will 
typically include many kinds of 
controllers (for numerical, robotic and 
process control) as well as data 
acquisition and display devices and 
imaging and computing equipment. 



Deterministic or time-bounded access to 
the network is a key requirement of a 
factory network. Process control 
applications, such as nuclear reactors, 
need periodic updating of control 
information within a guaranteed access 
time. 

The first-generation factory network will 
be the IEEE 802.4 token-bus network, which 
forms a subset of the large Manufacturing 
Automation Protocol (MAP) being defined by 
several companies in the u.s. MAP networks 
will use a combination of baseband and 
broadband transmission on the cable. 

FDDI would be useful in the factory 
environment when either higher-speed or 
greater noise immunity is needed. 

G: Gateway 
P: Printer 
T: Terminal 
WP: Word Processor 
WC: Wiring Concentrator 
DC: Disk Controller 
TC: Tape Controller 
EWS: Engg. Work Station 

FOOl 
(BACKBONE) 

Campus LANs 

The backbone LAN can connect the different 
networks in various buildings on a campus 
spanning several miles. 

The connections to the backbone network 
can be gateways which provide the 
necessary protocol conversion and 
buffering between two LAN IS. A backbone 
network, however, does not have to merely 
connect smaller networks. It could very 
well have a' direct interface to the 
mainframe computers in each building. 
Also, it is desirable to interconnect 
distributed PBXs carrying both voice and 
data using the same backbone. If the 
transmission of real-time voice is needed 
then the network has to be able to provide 

Fig. 2: A View of a company-Wide Network 

506 



some circuit-switched capability in 
addition to packet-switching. Once this 
is possible, transmission of real-time 
video also is easy to provide. 

since a campus network is a backbone 
network, it should have a high data rate 
and operate over extended distances. 

FDDI TOPOLOGY AND PROTOCOL 

FOOl provide~ a considerable amount of 
flexibility 1n configuring its topology 
and also provides a protocol suitable for 
a variet~ of applications. 
Configuration Limits 

The FOOl specification places no lower 
limits on the number of stations and the 
distance between the stations. There are 
also no absolute upper limits. For 
example, for the sake of calculation of 
default timer values, and to keep the ring 
latency down to a few milliseconds, a 
system is assumed to include up to 1000 
stations on the ring, with up to two 
kilometers between adj acent stations and 
up to 200 kilometers of total fiber cable. 
However, these parameters can be mutually 
adjusted to produce the optimum 
configuration for the chosen application, 
(for instance more stations can be allowed 
over shorter distances). 

STATION I 

1 " 

CLASS B 

STATION .' 
2 \ 

CLASS B 

CLASS B 

CLASS A 

WIRING 
CONCENTRATOR 

A Dual-Ring Approach 

The FOOl ring is a combination of two 
independent counter-rotating rings, each 
running at a 100 Mbps data rate. If both 
rings operate simultaneously, the 
effective transmission rate is 200 Mbps. 
It is also possible to have configurations 
in which one ring connects all the 
stations, with the second counter-rotating 
ring connecting only a few select 
stations. 

Figure 3 shows a possible FDDI 
configuration with optical fiber cables 
interconnecting to form the rings; the 
paths through which the data circulates 
around the ring are also depicted. The 
ring which reaches all the stations is 
termed "primary" . The secondary ring 
carries data in the opposite direction, 
which is useful during ring 
reconfiguration. The advantage of two 
rings is that if one ring fails, the 
network can reconfigure using the other 
ring and still keep operating. 

Class A and Class B stations 

The stations which connect to the FOOl 
rings are divided into two categories: 
Class A and Class B. A Class A station is 
one which connects to both rings 
simul taneously, and a Class B station is 

STATION 

/--, 
I ..... , \ 

CLASS A 

CLASS A 

" \. 
\ \ STATION 
I J 

/ 
./ 

Fig. 3: FDOI Dual Ring 

507 



one which connects to only one of the 
rings. 

The two classes help tailor the complexity 
of systems to meet cost objectives. Since 
Class B stations need to connect to only 
one ring, they can be implemented at lower 
cost. The disadvantage is that the Class 
B station is isolated if its connection to 
the wiring concentrator fails. Class A 
stations, on the other hand, require 
additional hardware to connect to dual 
rings, but are protected against failure. 
If there is a link failure they can keep 
operating in a reconfigured ring. 

Typically those stations that need more 
fault tolerance will be configured as 
Class A. Less critical stations can be 
Class B. Another kind of Class A 
interconnect is a wiring concentrator 
(WC) . 

wiring Concentrator 

A wiring concentra tor, as the name 
implies, is a hub node through which 
several other stations can be connected. 
A WC allows a physical ring to be easily 
maintained like star networks. The WC can 
be a service point, and several WCs can be 
established at various distributed 
locations from which shorter connections 
can be taken out to individual stations. 
A WC is always a Class A station and other 
Class A and B stations can connect to it. 

STATION' 
3 " 

CLASS B 

WIRING 
CONCENTRATOR 

The way the fiber cable is packaged makes 
the concept of WCs very attractive. The 
fiber cable in FOOl contains two physical 
fibers packaged in one jacket with a 
bulkhead connector on either end. The 
same cable is used for all class A and 
class B connections. For example, for the 
dual ring connecting the Class A stations 
each jacketed cable would contain one 
fiber for the primary and one for the 
secondary; for the the Class B stations 
the identical cable would carry the 
incoming and outgoing signals on the same 
ring for a station. Hence, when a Class B 
station has to be connected to a WC, only 
one physical cable has to be routed 
between the station and the WC. Because 
it carries two fibers, a ring path is 
physically established. 

Fault Tolerance In FOOl 

Several levels of fault tolerance are 
possible in FOOl. Some types of cable 
faults may cause the ring to reconfigure. 
Loss of power on certain stations may 
switch an optical relay in place. 

Ring Configuration 

Some of the faults in a network are caused 
by either failed components or broken 
cables. Even if a connection is not fully 
broken, there may be a sUbstantial 
degradation which shows up as an increase 
in the bit-error rate. Figure 4 shows how 

Fig. 4: Ring Reconfiguration 

508 



a ring would reconfigure its data paths if 
a link (or a pair of links in a cable) in 
the dual ring becomes inoperative. The 
stations would sense the breakage and use 
the appropriate paths on the secondary 
ring to keep the network running. In FOOl 
this reconfiguration happens 
automatically, within a few milliseconds. 
A station management interface is being 
defined in FOOl to facilitate this. When 
a broken ring is restored, the station 
management handshake will allow the ring 
to go back to its original state. 

The effect of a second failure in the dual 
ring is interesting too. Figure 5 shows 
how a network can split into two smaller 
independent networks with both remaining 
operative internally. 

If there is a cable fault in the cable 
going to a Class B station, this station 
is cut off from the network, and the WC 
can provide a bypass for the node. 

optical Bypass 

situations in which stations connected to 
the ring lose electrical power or are 
turned off can be taken care of by 
providing optical bypasses. A bypass 
provides a path for the light to bypass a 
station, using an electrically operated 
relay, such that when power is lost in the 

STATION 

CLASS A 

STATION 

,-
I 

I I 
\ \ 
\ 

...... 

CLASS A 

\..,1 

CLASS A 

STATION 

station a mirror directs the light through 
an alternative path. 

A bypass can be provided in either Class A 
or Class B stations. ·Most Class A 
stations that include WCS will probably 
implement bypasses to get this additional 
level of fault tolerance. A Class A 
station without an optical bypass will 
appear as if all of its connections to 
adjacent stations are broken when powered 
off. optical bypasses (or even electrical 
bypasses) may be used in WCs at their 
interface to Class B stations to take care 
of situations where the Class B stations 
may fail. 

Encoding Scheme 

Several of the low-speed standards, 
including the IEEE standards, use 
Manchester encoding for baseband 
transmissions. Unfortunately, Manchester 
encoding is only 50% efficient, and its 
use in FOOl's 100 Mbps data rate would 
have required 200 megabauds on the medium, 
with the LEDs and PIN receivers operating 
at 200 MHz. 

FOOl uses a more efficient encoding 
scheme, called 4B/5B, to keep the baud 
rate down. In 4B/5B, the encoding is done 
on four bits at a time to create a five 
cell "symbol" on the medium. The 

STATION 

CLASS A 

1"',,\ 

STATION 

.... 
\ 

\ \ 
I I 

I 
;' 

CLASS A 

CLASS A 

STATION 

Fig. 5: A Ring with Two Cable Faults 

509 



efficiency is 80%, and at 100 Mbps the 
baud rate becomes 125 megabauds. The 
advantage is that inexpensive LEOs and PIN 
diode receivers, which only have to 
operate at 125 MHz, can be used. 

TOKEN-PASSING RING 

FOOl uses a token-passing ring consisting 
of stations serially connected by a 
transmission medium to form a closed loop. 
The packets are transmi tted sequentially 
from one station to the next, where they 
are retimed and regenerated before they 
are passed on to the following (or 
"downstream") station. The idle stations 
can either be bypassed or function as 
active repeaters. The addressed station 
copies the packet as it passes by. 
Finally, the station that transmitted the 
packet strips the packet off the ring. 

A station gains the right to transmit when 
it has the token, which is a special 
packet that circulates on the ring behind 
the last transmitted packet. A station 
wanting to transmit captures the token, 
puts its packet(s) on the ring, and then 
issues a new token, which the next station 
can capture for its transmission. 

Access Scheme 

Using an access scheme called timed-token 
access, FOOl allows each station a fair 
share of access to the network, and at the 
same time maintains an upper bound on the 
token rotation time. The token rotation 
time determines how often the stations get 
an opportunity to transmit. 

In order to satisfy the requirements of 
various applications a station needs to 
know two things. One is the maximum 
latency before the token returns again to 
the given station. The other is the 
amount of traffic that the station can 
send once the token returns. The FOOl 
protocol allows the stati~:m to determine 
both these parameters through negotiation. 
The FOOl MAC document contains the 
necessary services for implementing these 
features. The SMT document, presently in 
definition, intends to formalize the 
precise protocol. 

The total bandwidth available on the ring 
can be dynamically partitioned off as 
either synchronous or asynchronous 
bandwidth. Here synchronous refers to 
bandwidth that is guaranteed to a station 
for its use, every time it gets the token. 
The leftover bandwidth is the asynchronous 
bandwidth and is shared by all the 

510 

stations. 

Two kinds of packets can be transmitted on 
FOOl. Synchronous packets can be sent by 
the stations that have negotiated the 
synchronous bandwidth, every time the 
token is received. However, asynchronous 
packets can be sent only if the token is 
received early ( i. e., wi thin the upper 
bound agreed to). The asynchronous 
packets can be of one of eight priorities. 
Which priority to send is determined by a 
threshold time value. 

FODI also supports a special token class 
called restricted tokens. This is 
provided mainly for backend networks which 
have devices that need to control the 
network for data streaming. 

BENEFITS TO VARIOUS APPLICATIONS 

As shown in Figure 1, FDOI can be used as 
a backend, backbone, and frontend network. 
Different features of FDDI make it 
attractive for each environment. 

Backend Network: For a backend network in 
a computer room, reliability and 
performance are particularly important 
considerations. In this environment, it 
is desirable for two stations to maintain 
unimpared operation, even if up to six 
intervening stations are powered-down 
(causing their optical bypass relays to be 
in the active connection path between the 
communication stations). FDOI is 
projected to meet this constraint when the 
total fiber length between communication 
stations is less than 300 meters. 

The dual-ring, by reconfiguring, provides 
additional fault-tolerance. In a backend 
network most stations will be Class A 
nodes talking to both rings. If the 100 
Mbps data rate is not sufficient in this 
application, an additional 100 Mbps is 
also available on the secondary ring as 
long as the ring is not reconfigured. 

FDDI also supports a class of service 
called restricted token. This sets up a 
master/slave connection between the host 
computer and a peripheral controller, 
allowing the two to hog the network and 
stream data between them. Although the 
restricted token violates the 
deterministic access of a token ring , it 
is acceptable in a backend environment. 

Backbone Network: A backbone network 
stretching over a campus may span several 
kilometers. The backbone can be viewed as 



a collection of trunk lines connecting 
several c,omputer rooms or individual 
networks 1n the office environment or 
distributed PBXs. A high bandwidth on the 
backbone ensures that it is not a 
bottleneck during internetworking. FOOI 
is designed to allow links at least two 
kilometers in length between adjacent 
stations with no optical bypasses on 
either end. The total allowable fiber 
path length to satisfy the default timer 
values and ring latency constraints is 200 
kilometers. Since duplex cable is used, 
the actual length of cable in the entire 
ring is 100 kilometers. The 100 Mbps data 
rate provides ample bandwidth for this 
application. 

Another concern during internetworking is 
station addressing. Since FOOI permits 
both 16-bit and 48-bit addresses with 
physical and logical addressing support 
for both, as well as broadcast capability, 
the addressing translation across gateways 
and bridges is simplified. 

For supporting distributed PBXs, a 
circuit-switched or time-slotted access 
method is desirable. The ANSC X3T9.5 
committee is starting preliminary work on 
the FOOI-2 Specification which will 
implement a combination of circuit-and 
packet-switched traffic. This will make 
it easy to provide a gateway to the 
telephone network or ISON. 

Frontend Network: In the office floor 
situation, FOOI is suitable as a front end 
network. The cost of connection can be 
minimized by having a preponderance of 
Class B stations. These Class B stations 
can be attached to wiring concentrators, 
which in turn will provide Class A 
connections to the backbone FOOI network. 

Wiring concentrators in FOOI are required 
to be powered and as a result can be made 
intelligent enough so that optical 
bypassing will not be ,needed for Class B 
stations. Class B connections lower the 
cost of the connection since the duplicate 
physical layer logic is not needed. At 
the same time, they still form a part of 
the main ring and can transfer data at the 
100 Mbps data rate. 

FDDI provides for a separation of up to 
500 meters between a Class B station and a 
w1r1ng concentrator. When any of the 
Class B stations is powered down or its 
link is broken, the wiring concentrator 
can electrically bypass it very easily. 
The wiring concentrator also provides a 
convenient maintenance point. 

511 

FDDI VS IEEE 802.5 - A COMPARISON 

The FDDI specification is an outgrowth of 
the 802.5 token-ring standard and includes 
the changes necessary to permit a cost
effective implementation at higher data 
rates. In addition it als'o includes new 
features not present in 802.5, that are 
necessary at the higher speeds. 

Figure 6 shows the differences between the 
two standards. The point-to-point 
clocking in FODI avoids the compounding of 
jitter from node to node and allows larger 
ring implementations. Also the 4B/5B 
encoding is more efficient and allows the 
use of 125 MHz LEDs at the 100 Mbs data 
rate. The restricted token feature in 
FDDI allows backend network nodes to "hog" 
the network for doing streaming 
operations. 

The FDDI attempts to simplify hardware 
implementation in two ways. By allowing a 
half-duplex implementation only one set of 
FIFO buffers and CRC logic is needed. 
Also the protocol requires manipulation 
only at the byte boundaries instead of 
bit-boundaries, which makes it possible to 
put the logic in CMOS technology instead 
of ECL. 

SUMMARY 

The FDDI committee has made reasonable 
trade-offs to ensure that the technology 
needed for implementing FODI is presently 
available, and that the standard will not 
be obsolete in the next several years. 
The standard has kept in mind the 
upgradability to higher speeds and 
additional services that will be necessary 
in the future. 

The emergence of FDDI as a popular 
standard is spurring integrated circuits 
development from semiconductor vendors. 
The use of dedicated VLSI to support FDDI 
will dramatically lower the cost of an 
FDDI interface. 

Advanced Micro Devices has a chip-set 
called Supernet in development which will 
provide the hardware required for 
implementing FDDI. Supernet consists of 
four chips: the Ram Buffer Controller 
(RBC), the Data Path Controller (DPC), the 
Fiber Optic Ring Media Access Controller 
(FORMAC) and the Encoder/Decoder (ENDEC). 
The RBC and DPC chips perform the buffer 
management functions, the FORMAC 
implements the token passing protocol and 
the ENDEC does the encoding, decoding and 
clock recovery. 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

FEATURE 

Data Rate 

Medium 

Configuration 

Management 

Clocking 

Encoding 

Addressing 

Access Protocol 

Miscellaneous 

Implementation 

IEEE 802.5 

4 Mbs or 16 Mbs 

Twisted Pair, Fiber 

single Ring 

Centralized: Requires ring 

monitor 

Synchronous: Transmit clock is 

derived from recovered clock. 

Differential Manchester: 50% 

efficient. 

48 bit individual and group 

Token Passing 

Requires full-duplex hardware 

100 Mbs 

Fiber 

Dual Ring 

FDDI 

Distributed: No ring monitor needed 

Point-to-Point: each node transmits 

using its own crystal. 

4B/5B Group Code: 80% efficient. 

16 or 48 bit individual and group. 

Timed-Token Access: stations can 

negotiate token rotation time. 

- Synchronous & asynchronous 

packets. 

- Restricted token for DASD devices. 

Half-duplex hardware adequate. 

Fig. 6: A comparison of IEEE 802.5 and FOOl Rings 

512 



Artificial Intelligence Algorithms 

TRACK CHAIR: Prof. Tony Marsland 
University of Alberta 

Numerical·Methods 

TRACK CHAIR: Dr. David R. Kincaid 
University of Texas at Austin 

ALGORITHMS ARENA 

General Algorithms 

TRACK CHAIR: Prof. Paul Purdom 
Indiana University 



PHASED STATE SPACE SEARCH 

T.A. MARSLAND and N. SRIMANI 

Computing Science Department, University of Alberta, Edmonton, Canada T6G 2H1. 

ABSTRACT 

PS·, a new sequential· tree searching algorithm based on the 
State Space Search (SSS·), is presented. PS·(k) divides each 
MAX node of a game tree into k partitions, which are then 
searched in sequence. By this means two major disadvantages 
of SSS· , storage demand and maintenance overhead, are 
significantly reduced, and yet the corresponding increase in 
nodes visited is not so great even in the random tree case. The 
performance and requirements of PS· are compared on both 
theoretical and experimental grounds to the well known a{3 and 
SSS· algorithms. The basis of the comparison is the storage 
needs and the average count of the bottom positions visited. 

INTRODUCTION 

Phased search is a new variation on a method for 
traversing minimax game trees. Although based on SSS·[9], 
phased search has a range of performance which represents a 
continuum of algorithms from SSS· to afJ[2]. The afJ algorithm 
was the first minimax search method to incorporate pruning into 
game-playing programs, and modifie~ versions of it still 
predominate, even though more efficient pruning methods exist. 
For example, SSS· never visits more terminal nodes than afJ, 
achieving better pruning at the expense of a larger storage 
requirement. Here better pruning implies fewer terminal node 
(bottom position) visits, although other measures of 
performance,. such as execution time and storage needs, may be 
more important. Even so. the number of bottom positions 
(NBP) visited is particularly relevant, because in any game
playing program the evaluation function spends significant time 
in assessing these nodes. For this reason, SSS· has the potential 
to reduce the search time significantly by the virtue of its better 
pruning. However, for uniform trees with a constant width of w 
branches and a fixed depth of d ply, SSS· must maintain an 
ordered list (called OPEN) of O(wd/ 2) entries. Because of this 
abnormally high memory demand and the considerable time 
spent in maintaining the OPEN list. SSS· is not widely used, 
despite its known pruning dominance over afJ. 

In its general form, the phased search algorithm, denoted 
here by PS·, has lower storage requirements than SSS·, but at 
the same time consistently outperforms a{3 for trees of practical 
importance[8]. The Phased Search algorithm with k phases, 
PS·(k), partitions the set of all immediate successors of MAX 
nodes into k groups (each of maximum size r w/ k 1 ) and limits 
its search to one partition per phase. It does not generate all 
the solution trees simultaneously as does SSS·, generating 
instead only a subset of them. The algorithm searches the 
partitions from left to right one at a time. Like SSS·, the search 
strategy within each phase of PS· is non-directional, but with a 
recursively sequential partitioning of the MAX nodes. Note that 

the storage requirement of PS·(k) is O«T)d/2), because 

PS·(k) searches only w/k successors at alternate levels of the 
game tree (i.e., at the MAX nodes). 

CH2345-7/86/0000/0514$01.00 © 1986 IEEE 
514 

GAME TREES 

To provide a formal footing the following definitions are 
introduced. In a uniform tree, T( w ,d), every interior node has 
exactly w immediate successors and all terminal nodes are at the 
same distance d from the root. The term random tree will be 
applied to those uniform trees whose terminal nodes are 
assigned random values from a uniform distribution. Such trees 
are commonly used for simulation as well as asymptotic studies 
of search algorithm performance, because they are regular in 
structure and are simple to analyze. In ordered trees the best 
branch at any node is one of the first w/R successors. Such a 
tree is said to be of order R. The higher the value of R the 
stronger the order. For random trees R = I, while R = w 
corresponds to a minimal tree, that is, a tree in which the first 
successor is everywhere best. More useful are probabilistically 
ordered trees with parameter (p,R). Here it is only with 
probability p that the best subtree is among the first w/R 
successors. These definitions are useful since game tree 
searching algorithms have been compared on a basis of their 
effectiveness on random uniform trees[5.7] and on 
probabilistically ordered trees[3,6]. 

After generating the list of moves (a set of successor 
positions), most game playing programs use some knowledge of 
desirable features to sort the moves in order of merit. Often, 
the knowledge is quite accurate so the best successor will be 
found among the first few considered. Thus real game trees are 
not random, but have been approximated by strongly ordered 
trees[3]. These in turn are similar to probabilistically ordered 
trees with p=O.7 and R=w. The experimental results reported 
here have been obtained from searches of both ordered and 
random trees, so that the effectiveness of search algorithms can 
be observed under different conditions. More detailed results 
are to be found in Srimani's thesis[8]. 

PHASED SEARCH (PS*) ALGORITHM 

Let PS· with k partitions be denoted by PS·(k). For 
simplicity. it is assumed that the partitions are of equal size. 
That is, the width w of the uniform search tree is a multiple of 
the number of partitions. This is not a restriction, since PS·(k) 
generalizes easily to encompass arbitrary partition sizes. 

Let P(n) be the Dewey-decimal identifier of the parent of 
a node n, let PSIZE be the size of each partition and let V(n) 
be the static evaluation at a terminal node, n. We will show 
that PS·(I) has identical performance to SSS·, and PS·(w) is 
equivalent to afJ. PS· is based on SSS·, but maintains two lists: 
one is like the OPEN list in SSS·, and the other is a BACKUP 
list to keep track of partially expanded MAX nodes. OPEN 
consists of triples (n,s,hi), where n is the node identifier, s is 
the status (an element in the set {LIVE, SOLVED}), and hi is a 
bound on the merit of that state (a real number in [-00.+00)). 
As in SSS·, the OPEN list is maintained as an ordered list of 
triples with non-increasing value of hi. The BACKUP list 
consists of vectors of the form (n,last,low ,high), where n is the 
identifier of a MAX node, last is the node identifier of the l,ast 



son of n included in OPEN, and low and high are the current 
lower and upper bounds on the value of node n. Whenever a 
MAX node in the OPEN list is solved or pruned, the 
corresponding vector is deleted from BACKUP. 

I 
I 

I 
I 

I 

I 
I 

I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

I ' 
I 

I 
I 

I ",'" 
I ",'" 

' .... ' 

Figure 1: How PS*(2) Partitions a Tree. 

6 

9 

26 

20 

10 

41 

37 

42 

34 

44 

36 

64 

The operation of phased search is seen most easily by an 
example. Figure 1 shows the search of a tree T(4,3) by PS·(2). 
Note that the successors of MAX nodes are divided into two 
partitions of equal size, as shown by broken lines in Figure 1. 
This partitioning is done recursively at each MAX node in the 
tree, so that the successors of a MAX node in two different 
partitions are never added to the OPEN list in the same phase 
of the PS· algorithm. Note also that, as with SSS·, at every 
MIN node only one successor at a time is included in the search 
tree. Thus for the example in Figure I, at any instant no more 
than four terminal nodes are present in the OPEN list for 
PS·(2), while in contrast SSS· would have sixteen nodes present 
in OPEN simultaneously at some points in the search. Finally, 
note that PS·(2) will always work well if the best successor 
occurs in the first half of the subtrees at nodes which must be 
fully expanded (Le., to use Knuth and Moore's terminology[2], 
at the type 1 and type 3 nodes). 

Description of the Algorithm 

Following the lines of Stockman's SSS· algorithm, and 
using his GAMMA operator terminology[9], PS·(k) is formed as 
follows: 

515 

(1) For simplicity, assume that w is a multiple of k and set 
PSIZE = w/k. 

(2) Place the initial state (n=root, s=LIVE, hi= +00) on the 
OPEN list. 
(3) Repeatedly retrieve the next state (n,s,hi) from OPEN 
(this node has the currently highest m~rit, hi) and invoke the 
GAMMA operator, described in Table I, until the termination 
condition is reached. 
In Table I, case 1 corresponds to the retrieval of a LIVE interior 
MAX or MIN node. If a MAX node is found the first partition 
is added to OPEN, otherwise (for a MIN node) only the first 
successor is taken. In the case of a MAX node, an entry is also 
added to the BACKUP list. For a LIVE terminal node, GAMMA 

either inserts n into OPEN with SOLVED status, or inserts the 
parent of n, P(n), into OPEN with SOLVED status. The choice 
is made in alternatives 2a & 2b and depends on how V(n), the 
evaluation of node n, compares to the low bound. For a 
SOLVED MAX node, n, GAMMA purges the successors of Pen) 
from the BACKUP list, and either adds the next successor of 
Pen) onto OPEN or prunes by pushing the solved parent node 
onto the OPEN list, cases 3b & 3c respectively. Similarly for 
SOLVED MIN nodes, GAMMA either adds another partition to 
OPEN or purges the pruned successor partitions. Here case 4(b) 
is esoeciallv comolex. since it must deal with the situation when 
the parent MAX node has another partition to process. More 
than any other, it is the actions in case 4 which distinguish PS· 
from SSS·. 

Correctness of PS* 
To make it clear that the PS· algorithm always returns the 

minimax value, the following theorem is provided. 

Theorem. 
PS·(k), with its state operator GAMMA, computes the 
minimax value of the root for all trees. 

Proof: It is necessary to show that 

(1) PS· always terminates, and 

(2) PS· does not terminate with an inferior solution. 

The aim of a game tree search is to find the best solution 
tree. Each solution tree is a unique subtree of the game tree and 
is made up of all successors of each MIN no~e, but only one 
successor of each MAX node it contains. The minimax value of 
a game tree is the value of the best solution tree. Hence 
following the notation of Stockman[9], g(root) ~ f(Troot )' where 
f(Troot ) is the value of a solution tree and g(root) is the 
minimax value. Also, if Toroot is the best solution tree then 
g(root) = f(TO root )' It follows that the algorithm always 
terminates after a finite number of steps, since there are only a 
finite number of solution trees, and any subtree once solved or 
discarded is not searched again.' 

PS· manipulates its search among different solution trees, 
in order to find the best one as easily as possible. Within a 
solution tree it carries out a minimax search, and uses the upper 
bound stored in the BACKUP list to help prune the search of 
redundant subtrees. For any solution tree, Troot' f(Troot ) also 
represents the minimax value returned by PS·, provided PS· has 
searched that solution tree completely. All that remains is to 
show that PS· finds the best solution tree TO root ' By 
contradiction, suppose that, for some k ~ 1. PS·(k) terminates 
with a solution tree T1 which is inferior to TO, that is, fen root) 

< f(TO root )' This cannot happen if TO and n occur in the same 
partition, since PS· will select the best for the same reason that 
SSS· does. If 1il is in a previous partition, then TO would be 
SOLVED before n is encountered, and there would be a triple 
(n,s,hio) for the solution tree TO such that, hiO = f(TO root ) ~ 



f(Tl,oot). The value hio is held as a lower bound in the 
BACKUP list, and so prevents Tl from being fully expanded and 
selected. Otherwise, if 11 is SOLVED and TO occurs in one of 
the later partitions, the corresponding state (n,s,hio) would 

space than the single OPEN list used by SSS·. Consequently, if 
SeA) denotes the space needed by an algorithm A, then 
S(PS·(k» -s: S(SSS·) for any k > 1 and for any depth and 
width of the search tree. 

appear at the front of OPEN before the root node can be 
declared SOLVED. When TO appears, the corresponding solution 
tree would be evaluated fully and found to be better than 11. 
since as the best solution tree, TO, cannot be pruned. 

Comparison with other Methods 
Let R be the order of the tree being searched, and let PS·(k) 
denote the Phased Search algorithm with k phases. Using the 
notation of Roizen and Pearl[7], let I(A) represent the number 
of bottom positions visited by algorithm A. From the theorem it follows naturally that if the number 

of phases in PS· is k, then 
(1) For minimal trees (optimally ordered game trees), I(SSS·) 
= I(PS·(k» = l(af3) , because all algorithms traverse the best 
branch first and so achieve maximal cut-offs. 

for k=l, PS·(k) is equivalent to SSS· and 
for k=w, PS·(k) is equivalent to a{3, 

as far as nodes visited is concerned, since PS·(w) reduces to a (2) For ordered trees, when p = 1 and R ~ k, I(PS·(k» -s: 
depth-first left to right (directional) search. Also, for k > 1. I(SSS.) -s: I(AB), since the best solution is always among the 
the space requirement for OPEN is less than the wd/

2 needed first w/R branches at every node in the solution tree. Although 
for SSS·, since there may not be many cases where strict inequality holds, 

the maximum size of OPEN for PS· with k partitions is at PS·(k) is at least as good as SSS· as long as R ~ k, because the 
most (~)d/2 entries. best solution is always found in the first partition. Figure 2 

k provides an example where I(PS·(2» < I(SSS·), for a tree of 
Finally the BACKUP list, for partially expanded MAX nodes, depth 5 and width 4. Only that part of the tree which is enough 
reqUirrS I to demonstrate the point has been presented. Assume that node 

~I I d-l I 2.1 is solved with value 64, so the value of node 2.2 has an 
L 2 J l-- upper bound of 64. Consequently, 2.2.1.1.1 and 2.2.1.1.2 are 

I: (~)j entries, which is about (~) 2 J entries. solved with values 18 and 21 respectively. Then 2.2.2.1, 2.2.2.2, 
j=o k k 2.2.2.3 and 2.2.2.4 are included in OPEN and solved with values 

Thus for PS·(k) the size of BACKUP is about k/w of the size ~ 64, hence node 2.2.2 is solved. Note that nodes crossed in 
of OPEN, and the two lists together occupy significantly less Figure 2 are visited by SSS· but not by PS·(2). 

Table 1: State Space Operator (GAMMA) for PS*(k). 

k is the partition count, and PSIZE = w Ik is the partition size. 
Let n be the m-th successor of its parent node i, where i = PCn). 

Thus n = i.m orovided n is not a root node. 
Case Condition of the Action of GAMMA 

input state (n s hi) 
1. s=LIVE, n is interior 

1a Type(n) = MAX Push states (n.j ,s,hO for all j = 1, ... ,PSIZE onto the OPEN stack in reverse 
order. Push (n,PSIZE,low,hi) onto BACKUP, where low is the lower bound 
of n and hi is the upper bound. Note that, if n = root, then low=-oo else 

1b Type(n) = MIN. 

2. s = LIVE, n is terminal 

2a Type(n) = MIN, 
Score> low of P(O. 

2b Type(n) = MAX, 
Score "S: low of P(i) 

3. s = SOLVED, 
Type(n) = MAX. 

3a m = w, n = root 
3b hi > low of P(O, 

m<w. 
3c Otherwise 

4. s = SOLVED, 
Type(n) = MIN, 

4a If low(i) ~ high(i) 

4b If low(i) < high(i) 

or 

low = low of P(O stored in BACKUP. 
Push (n.1,s,hi) onto the front of the OPEN list. 

Set Score = Min(V(n).hO, where yen) is the value returned by the 
evaluation function. 
Insert (n ,SOLVED ,Score ) into OPEN in front of all states of lesser merit. 
Ties are resolved in favor of nodes which are leftmost in the tree. 
If i is the last node in the current partition at P(O, then Score is changed to 
low of P(i). 
Insert (i,SOL VED ,Score) into OPEN, maintaining the order of the list. 

Purge all 'successors of i = Pen) from BACKUP. 

Terminate: hi is the minimax value of the tree. 
Expand: push (i.m+1,LIVE,hi) onto the front of OPEN. 

Prune: push (i,SOLVED,hi) onto the front of OPEN. 

Obtain values of 10w(O and high(O from BACKUP. 
Set low(i) = Max{low(i),hi) and update low for all descendants of i on 
BACKUP. 
Purge all successors of i from OPEN and BACKUP. 
Push (i,sOLVED,high(i» onto the front of OPEN. 
If there are incompletely searched MAX successors (non-immediate) of node 
i present in BACKUP, then add the next partition of the first such node 
found in BACKUP to the front of OPEN; 
Else Purge all successors of i from OPEN and BACKUP, 
and either push the next partition of successors of i onto OPEN or, if there 
are no more partitions, 
Push (i SOLVED lown)) onto the front of OPEN. 

516 



2.2.1.1. 

18 21 ~~ 70 70 70 70 

Figure 2: Tree T(4,5) in which PS*(2) 
is better than SSS*. 

(3) For ordered trees, if p = 1 and R < k, I(PS*) can be 
greater than I(SSS*). Similarly, if the tree is random, then 
PS*(k) will occasionally evaluate some extra nodes. However, 
our experimental results show that even when R < k, in most 
of the cases (including random trees) PS*(k) is still better than 
the a.(3 algorithm[8]. 

(4) There are trees which are unfavorable for PS*, so that 
I(PS*(k» > I( a.(3). Such trees are statistically insignificant, and 
are uncommon in typical applications, because they represent a 
worst first ordering within every partition. 

PERFORMANCE COMPARISON 

The search algorithms PS*(k), SSS*, and a.(3 have been 
implemented on a V AX 111780 using the C language. 
Experimental investigations were carried out with both ordered 
and random trees, using different combinations of depth, width 
and tree ordering. Some of the results on minimal, random, and 
ordered versions of the uniform trees T(8,4), T(16,4), T(24,4), 
T(32,4) and T(8,6) are presented. For the trees of width 8, 16 
and 24, orders R = 2 and 4 were searched and for trees of 
width 32, order 8 was also studied. For each combination, 100 
different trees were generated using a modified version of the 
scheme developed by Campbell[l], and the average NBP visited 
by each algorithm are presented in the tables. The maximum 
amount of space needed is also given in terms of list entries. 

Based on the search of 100 different trees, the following 
observations about the average performance of PS*(k) are 
possible: 

(1) Data in Tables 2 through 6 show that on random trees (R 
= 1), the average NBP for PS*(2) is much less than for a.(3, but 
more than for SSS*. For trees of order R = 2 and higher, 
PS*(2) and SSS* have the same performance, but it is clear that 
PS*(2) needs much less space. 

(2) SSS* is always better than a.(3 and is statistically better than 

517 

PS* for both random and probabilistically ordered trees, Table 4. 
For perfectly ordered trees, each algorithm visits minimum 
bottom positions. 

(3) Table 4 shows the results on both ordered and probabilistic 
trees of depth=4, width=24 and of orders R=2 and 4. In the 
probabilistic case, the average NBP are slightly greater, as we 
would expect, because at every MAX node there is some 
nonzero probability that the best branch is not found in the first 
partition searched by PS*. 

(4) For most of the trees, I(PS*(i» < I(PS*(j», for 1 ~ i < 
j ~ w. That is, PS*(k) visits terminal nodes in increasing 
number with increasing k. There are some trees for which this 
is not true[8]. It is also known that the above relation marginally 
fails to hold for ordered trees (probability p=l), see for 
example Tables 5 and 6 where PS*(2) and PS*( 4) often have 
statistically insignificant better performance than SSS* (i.e., 
PS*(1» on order R = 4 trees. 

Table 2: Average NBP on Trees 
with depth = 4 and width = 8. 

Search R = 1 R = 2 R = 4 R = 8 Space 
method (random) (minimal) needs 
SSS* 439 287 190 127 64 
PS*(2) 571 286 190 127 21 
PS*(4) 634 375 190 127 7 
a.(3 689 415 248 127 4 

Table 3: Average NBP on Trees 
with depth=4 and width=16. 

Search R = 1 R = 2 R = 4 R = 16 Space 
method (random) ( minimal) needs 
SSS* 2250 1637 1146 511 256 
PS*(2) 2829 1637 1146 511 73 
PS*( 4) 3363 2114 1146 511 21 
PS*(8) 3743 2388 1496 511 7 
a.(3 3952 2981 1664 511 4 

Table 4: Average NBP on Trees 
with depth=4 and width=24. 

For minimal trees of depth 4 and width 24 NBP= 1151. 
prob=1.00 prob=0.90 

Search R = 1 R = 2 R = 4 R = 2 R = 4 Space 
method (random) needs 
SSS* 
PS*(2) 
PS*(4) 
PS*(6) 
PS*(8) 
a.(3 

Search 
method 
SSS* 
PS*(2) 
PS*(4) 
PS*(8) 
PS*(16) 
a.(3 

5805 4423 3206 4702 3513 
7345 4423 3203 4956 3690 
8650 5718 3201 6460 3940 
9207 6222 3950 7126 4649 
9753 6652 4300 7517 

10602 7437 5031 8364 

Table 5: Average NBP on Trees 
with depth=4 and width=32. 

4938 
5660 

576 
157 
43 
21 
13 
4 

R = 1 R = 2 R = 4 R = 8 R = 32 Space 
(random) ( minimal) needs 

10816 8493 6424 4633 2047 1024 
13989 8478 6422 4632 2047 273 
16464 11089 6420 4632 2047 73 
18512 12782 8313 4631 2047 21 
20145 13966 9330 6209 2047 7 
20836 14665 10046 6974 2047 4 



Table 6: Average NBP on Trees 
with depth=6 and width=8. 

Search R = 1 R = 2 R = 4 R = 8 Space 
method (random) (minimal) needs 
SSS· 6044 3475 1932 1023 512 
PS*(2) 9984 3437 1921 1023 85 
PS*(4) 11283 5213 1915 1023 15 
a(3 11565 5555 2659 1023 6 

Choice of Partition Count 

From the previous discussions, it is clear that selection of 
the partition count, k, is important if PS·(k) is to achieve its 
maximum benefit. If from some previous knowledge we know 
that the tree is of order R, we can choose k = R. Then 
I(PS·(k» would be the same as I(SSS*), but the storage 
requirement of PS*(k) would be about l/(kd/ 2) of that of SSS·. 
Clearly, there is a trade-off between space and bottom positions 
visited. If k=w, minimum space is required, but NBP will 
increase to that of an a(3 search. On the other hand, if k=1 the 
NBP would be low but space needed would be as much as for 
SSS·. Thus PS· forms a continuum of alternatives between SSS· 
and a(3. PS· can be made effective by using information about 
the ordering properties of game trees, since one can choose the 
parameter k both on the basis of the tree ordering and on the 
memory space available. Different ordering schemes must be 
considered, since ordered trees often are more typical of those 
appearing in applications than are random trees. 

Storage needs are also significant. For example, SSS· 
needs 1024 entries in the OPEN list to search a tree of depth = 4 
and width=32, whereas PS·(4) requires 64+9 = 73, and PS·(8) 
needs only 16+5 = 21 for both the OPEN and BACKUP lists. 
Note that although PS· maintains two ordered lists, the total size 
of the two lists is much less than that of the single list of SSS·. 
Also, an ordered list of size 64 or 16 is much cheaper to 
maintain than a list of 1024 elements. Hence, the time spent by 
PS· manipulating these overhead lists may be less than that 
needed by SSS·. 

CONCLUSION 

The new algorithm PS·(k) can be viewed as a continuum 
between SSS· and af3, as it attempts to make use of the best 
characteristics of both. The a(3 algorithm processes nodes in a 
game tree much faster than SSS·, but SSS·, making more use of 
the knowledge gained at earlier steps, prunes better than a(3 and 
as a result visits fewer bottom positions. SSS· achieves this 
better pruning at the expense of extra bookkeeping which needs 
more storage and considerable time for the update process. The 
phased search algorithm PS· also does some bookkeeping and 
achieves much better pruning than a(3 in a statistical sense. Since 
PS· concentrates only on a subset of the solution trees in each 
phase, it consequently needs smaller storage and may even 
require less execution time than SSS·. Thus PS·(k) can be 
comparable to SSS· in performance, especially on bushy trees 
(Le., trees with w > 20), and yet at the same time has 
significantly lower storage overhead than SSS·. Because of the 
built-in flexibility provided by phasing and the possibility for 
choosing the partition size parameter (PSIZE), PS· is expected 
to be useful in practice. PS* becomes most efficient if 
parameter selection can be done using some ~ priori knowledge 
of the expected location of the solution. 

Experimental results reported here are based on a game 
tree model, and the algorithm remains to be tested with a typical 
game-playing program. However. experience with other 
alternatives to af3[6] shows that performance on probabilistic 
uniform trees is a good indicator of performance in a typical 
application[4]. In the work reported here. the successors of a 

518 

MAX node in the PS*(k) algorithm are divided into partitions of 
equal sizes. This is not a restriction, but further work is 
necessary to determine if unequal partition sizes offer a 
performance advantage in practice. Certainly for probabilistically 
ordered trees increasing partition sizes could be useful. 

Acknowledgements 

Financial support in the form of Canadian Natural Sciences 
and Engineering Research Council Grant A 7902 made the 
experimental work possible. Discussions with Liwu Li on 
theoretical points and the independent implementation of PS· by 
Erik Altmann helped and were appreciated. 

References 

1. M.S. Campbell and T.A. Marsland. A comparison of 
minimax tree search algorithms. Artificial Intelligence 
20(4), (1983),347-367. 

2. D. Knuth and R. Moore. An analysis of alpha-beta 
pruning, Artificial Intelligence 6(4), (1975), 293-326. 

3. T.A. Marsland and M. Campbell. Parallel search of 
strongly ordered game trees. Computing Surveys /4(4). 
(1982), 533-551. 

4. T .A. Marsland. Relative efficiency of alpha-beta 
implementations, Procs. 8th Int. Joint Con! on Art. 
Intell.. (Los Altos: Kaufmann), Karlsruhe, West 

. Germany. Aug. 1983. 763-766. 

5. A. Musczycka and R. Shinghal. An empirical comparison 
of 'pruning strategies in game trees, IEEE Trans. on 
Systems, Man and Cybernetics SMC-15, 3 (1985), 389-
399. 

6. A. Reinefeld. J. Schaeffer and T.A. Marsland, 
Information acquisition in minimal window search, Procs. 
9th Int. Joint Con! on Art. Intell., Los Angeles. 1985. 
1040-1043. 

7. I. Roizen and J. Pearl, A minimax algorithm better than 
alpha-beta? Yes and No .• Artificial Intelligence 21(2), 
(1983), 199-220. 

8. 

9. 

N. Srimani, A new algorithm (PS·) for searching game 
trees, M.Sc. thesis, Computing Science Dept., University 
of Alberta. Edmonton, July 1985. 

G .C. Stockman. A minimax algorithm better than alpha
beta?, Artificial Intelligence 12(2), (1979),179-196. 



IMPROVED PARALLEL ALPHA-BETA SEARCH 

Jonathan Schaeffer 

Computing Science Department, 
University of Alberta, 

Edmonton, 
Canada T6G 2H1 

ABSTRACT 

Conventional parallelizations of the alpha-beta 
algorithm have met with limited success. This 
paper describes a parallel alpha-beta searching pro
gram that achieves a high degree of parallelism 
through the use of four different types of processes: 
Controllers, Searchers, Table Managers, and 
Scouts. Improved performance is achieved through 
decreased synchronization overhead, increased dis
tribution of information, and increased awareness 
by "scouting" ahead in the tree looking for interest
ing features. Experimental data is presented show
ing a 5.7-fold speedup with 9 processors. 

1. Introduction 
Attempts to parallelize the alpha -beta 

tree search algorithm have been less than 
successful. Simulation results have been 
published for several inventive parallel 
approaches showing tremendous speedups 
([1,2] for example). However, there exists a 
large gulf between theory and practice; 
actual implementations have shown only 
modest speedups [3-5]. Parallel programs 
suffer from efficiency losses for a variety of 
reasons~ For the alpha-beta algorithm, 
synchronization overhead, the cost incurred 
by processors becoming idle, and search 
overhead, the consequence of building a 
larger tree, appear to be the biggest obsta
cles to improved performance. 

This paper introduces some new ideas 
for enhancing the performance of a parallel 

,alpha-beta searcher. The ideas are dis
cussed in the context of a computer chess 
program operating in an environment of a 
network of loosely coupled processors. 

CH2345-7/86/0000/0519$01.00© 1986 IEEE 
519 

One way of reducing the synchroniza
tion cost is to re-assign idle processors to 
help out busy ones. This paper gives some 
experimental results of such a scheme and 
shows that synchronization is reduced at 
the cost of increasing search overhead. 
With the aim of reducing the search 
overhead, increased flow of information 
between processes is experimented with. 
Two different means 6f sharing information 
were tried: a table manager process to 
share results among processors (used for 
the transposition table [6]), and periodic 
merging of local tables and distributing the 
combined result (used for the history tables 
[7]). Search overhead is decreased but at 
the cost of increased synchronization and 
communication. The result is a 5.7 -fold 
speedup with 9 processors. 

Despite these improvements, beyond a 
handful of processors, parallel alpha-beta 
performance rapidly degrades. Fishburn 



has shown that forN processors, under cer
tai~ /!:Dnditions, the possible speedups .are 
o (V N) [8]. The speedup achievable with 
100 processors may not be much greater 
than that attained by 10, and may even be 
less! Accordingly, a different means is 
required to use profitably additional com
puting resources. The idea of a Scout pro
cess is introduced; a process that searches 
ahead of the main program in the tree 
"scouting" for interesting lines. The Scouts 

. are small, fast, stripped-down chess alpha
beta' searchers. They look for wins and 
losses of material and communicate this 
information back to the main program. 
Thus while a chess program may only see 7 
half-moves (or 7 -ply) deep in the tree, the 
Scouts can often search an extra 2-3 ply 
deeper. This helps increase the tactical 
awareness of the program and reduce the 
horizon effect [g] by allowing a chess pro
granl to find wins (and avoid losses) not 
normally possible within its search horizon. 

These ideas hav~ been implemented in 
the computer chess program Phoenix t. 
Experimental data is presented on the 
effectiveness of the schemes. 

2. Parallel Alpha-Beta 
Many different approaches have been 

discussed in the'literature for parallelizing 
the ,alpha-beta algorithm. They include 
parallel aspiration search (limited to a 5-6-
fold speedup) [10], tree-splitting (too sim
ple, limited performance) [11], mandatory 
work first (too much overhead) [2] and 
principle variation splitting (PVSplit) [12]. 

The PVSplit algorithm applies a recur
sive form of tree - splitting [8] to achieve 
parallelism. The w sub-trees originating at 
the root of the tree are in turn assigned to a 
process to search. However, the searching 
of the first sub~tree from the root is usually 
TIIOre expensive than the others, perhaps 
comprising 50% of the work. Accordingly, 
PVSpiit applies tree-splitting recursively at 
in terior nodes along the first path from the 

t A competitor in the 1986 World Computer 
Chess Championships. 

root to terminal node (I.e. along the 
principal variation). At each point where 
tree-splitting occurs, the processes must 
synchronize before continuing. The search 
is conducted in iterations, searching all 
moves from the root 2-plydeep, then 3-ply, 
then 4-ply etc. After each iteration, further 
synchronization is necessary. The com
munication structure of the N processes 
used can be viewed as a process tree of 
depth 1 and width N. The process distri
buting the work is called the Controller, 
while the N processes actually doing the 
work are known as Searchers. 

'The losses in performance of this algo
rithm 'are 'primarily two-fold. First, syn
chronization is required at sever.al places in 
the algorithm. At these points, processors 
become idle waiting for others to complete 
their work. Experiments have shown that 
as the number of computers increases, this 
overhead quickly becomes dominant [3]. 
The second loss is extra searching as a 
result of incomplete information. On a 
loosely coupled network of processors, 
results computed on one processor are not 
globally available to others and hence may 
be re-computed. The search overhead 
increases steadily but appears to level off 
eventually [3]. 

To help reduce the sy.nchronization 
costs, the PVSplit, algorithm was modified 

,to allow idle processes to help other 
processes complete their tasks. This is 
done by changing each Searcher to main
tain a list of its sub-trees that have yet to 
be searched. When a process becomes 
available to help out,work can be taken 

'from the top of the list and off-loaded to 
that process. Thus at any time, any 
Searcher could be working for any other. 
The initial process communication struc
ture is a tree of depth 1 and width N (Fig
ure 1a). The Controller process at the root 
assigns sub-trees for evaluation to the N 
Searchers. When the Controller has no 
more work for a Searcher to do, that pro
cess is re-assigned to work for another that 
is still busy. In this way, the tree':'like 
configuration of processes is retained; the 
tree just changes its shape dynamically. 
Figure 1 illustrates a sample scenario with 

520 



slave 3 becomes idle slave 2 becomes idle 

c) 

slave 1 becomes idle slave 1 becomes idle 

e) g) 

slave 3 becomes idle slave 1 becomes idle 

Figure 1. Re-Assigning Idle Processes 

a Controller and 4 Searcher processes; suc
cessive diagrams illustrate the effect as a 
process becomes idle. 

Note that synchronization is not elim
inated by this approach; it is only reduced. 
At points where work becomes divided, the 
process distributing the work ("employer") 
must wait until all the work handed out 
has been completed before moving onto 
other tasks. In such cases, it is usually only 
one process, the elnployer, that must 
remain idle. For example, in Figure Ic, 
when process 1 finishes its work, it cannot 
be re-assigned until process 3 is done. The 
worst case scenario occurs on the last piece 
of work. As in' Figure 19, only one process 

521 

may be busy with the others waiting for its 
completion. In PVSplit, at all synchroniza
tion points, N - 1 processes remain idle 
waiting for the return of the last result. 

This attempt to reduce synchronization 
is not without problems. First, the amount 
of communication is increased. Second, the. 
search overhead would be· expected to 
increase. Whereas fornlerly a subtree 
would be entirely searched by one processor 
with all the relevant information locally 
available, by splitting it up over several 
processors, not all of this information is 
available and extra work is performed. 
Third, the complexity of the program is 
increased. Although this effect is difficult 



to quantify, it not only affects the imple
mentation and debugging time, but the 
execution time of the program as well. 

Nodes in a chess tree are not necessarily 
unique. Transpositions occur, whereby two 
different sequences of moves can result in 
the saIne position. Transposition tables are 
used by chess programs to remember sub
trees that have been searched [6]. On 
reaching a new position, the program can 
interrogate the table before doing the 
search in the hope that the sub-tree has 
been seen before. Unfortunately, in a 
multi-processor environment the transposi
tion table information is distributed over 
all the processors. To facilitate sharing of 
this infonnation, a Table Manager process 
has been added that reduces the searching 
each process does by making the results of 
other Searchers available. The Table 
Manager receives table entries from the 
Searchers and responds to their queries for 
information from the table. 

This attempt to reduce search overhead 
is not without problems. First, it is 
achieved at the cost of increased communi
cation in the program. Second, synchroni
zation overhead is increased because table 
queries are performed synchronously; a pro
cess must wait until it gets the result before 
it can continue. Allowing a process to 
proceed and eventually be interrupted 
when the result is available would compli
cate the implementation and has not yet 
been tried. 

The history heuristic is a simple means 
of accunlulating information about a search 
tree that can be used for deciding the order 
in which sub-trees should be examined at 
interior nodes. For sequential chess pro
grams, the algorithm has been successful 
[7]. In a parallel environment, some of its 
effectiveness is lost because each processor 
has only part of the history information. 
This suggests that processors should share 
this information. After each iteration, all 
processors could communicate their history 
tables to the Control1er who accumulates 
thenl and then replies to each with the 
updated global table. In this way search 
overhead may be reduced at a cost of 
increased communication. 

522 

The above three ideas (re-using idle 
processors, table managers, and shared his
tory heuristic information) individually can 
improve the performance of a parallel 
alpha-beta searcher. However, as the 
preceding d iScllssion has shown. these 
enhancements can run counter to each 
other. 

3. Scouts 
Whatever depth an alpha-beta search is 

performed to, there is always the possibility 
that by searching deeper, a better result 
may be found. In chess programs this is 
particularly acute; a program may make a 
move that, for example, within a 5-ply 
search looks good, but a 6-ply search may 
reveal its deficiencies. Considerations such 
as this have motivated chess programmers 
to acquire the fastest possible hardware. It 
is not a coincidence that the best chess pro
graIns today can also search the deepest. 

To overcome this problem, the idea of a 
Scout is introduced. Scouts are stripped 
down versions of Searchers. They are 
designed to be as fast as possible, scouting 
ahead in the tree looking for wins and 
losses of material at a depth beyond what 
Phoenix could usually search. All the chess 
expertise that allows Phoenix to play a 
good game of chess has been removed. It 
evaluates positions solely on the net 
material balance of the position. 

Because of its simplicity a Scout can 
execute at twice the speed of a Searcher 
process. This is not enough; on average, a 
factor of 3-8 is required to search an extra 
ply. Since Scouts are only interested in 
finding tactically interesting lines, some 
heuristics are added to the search algo
rithm to eliminate uninteresting lines of 
play. For example, a line in which a series 
of lnoves are made without any threat is 
classified as uninteresting and ignored. 
These heuristics introduce error into the 
search in that some tactically interesting 
lines may be overlooked. It turns out that 
these type of positions occur infrequently in 
practice, whereas the reduction in tree size 
and resulting deeper searches are 
significant. 



Scouts can be easily implemented in 
parallel by using the same routines used to 
parallelize Phoenix. They have their own 
Controller process to distribute the work 
and accumulate the results. A set of Scouts 
with a Con troller process is called Minix 
(Mini-Phoenix). 

Phoenix and Minix communicate 
through their Controller processes. Minix 
searches all the moves to find out which 
ones are in the set of tactically best moves, 
those moves that result in the best material 
advantage for the program. When Phoenix 
has decided on its move, it tells Minix who 
checks to see if the choice is tactically 
good. If so, it gives permission to Phoenix 
to make the move. Otherwise, Minix will 
veto Phoenix and order it to make a move 
that, from Minix's point-of-view, is tacti
cally better. 

4. Environment 
A collection of workstations, with its 

network and communications software, 
may be viewed as a multi-computer capable 
of running distributed and parallel algo
rithms. The software facility used to 
implement Phoenix is a multi-computer 
called the Virtual Tree Machine (VTM) 
[13]. It is implemented on a network of 
autonomous VAX-ll/780s, SUN-2, and 

Phoenix 

Interface Searcher Searcher 

o· O· 0 
: 

Scout Scout Scout 

: 

SUN-3 processors each running the 4.2BSD 
Unix operating system [14]. The user's 
view of the facility is a collection of pro
cessing elements - each with its own local 
memory and peripherals. The VTM name 
is a misnomer in that arbitrary 
interconnects are possible, not just trees. 
In reality, the VTM consists of ordinary 
Unix processes with communication paths 
implemented as virtual connections 
between processes over a local area net
work. The user's interface to the machine 
is a set of procedures, callable from applica
tion programs, and a collection of servers 
that create the nodes in the virtual 
machine according to a description pro
vided by the user. This description 
specifies the mapping between virtual pro
cessing elemen ts (nodes) and physical pro
cessors as well as the interconnections 
between nodes. 

Figure, 2 illustrates the 
process/processor structure on a sample 
network. Each box represents a machine 
and each circle, a process running on that 
machine. Note that for illustrative pur
poses, both the Controller and User Inter
face processes reside on separate processors. 
In fact, they consume few resources and so 
can share the same processor as the Table 
Manager. 

Minix 

Searcher Searcher 

(j 0 
Scout Scout -Ta.ble 

Figure 2. Phoenix and Minix 

523 



5. Results 
Phoenix's PVSplit algorithm has been 

enhanced to reduce processor idle time and 
share history and transposition informa
tion. Figure 3 presents some experimental 
results showing speedups using 1 to 9 pro
cessors. The data was obtained by search
ing a standard set of 24 positions [15] to 7-
ply. The B line is for PVSplit enhanced by 
the re-assigning of idle processors, BH is B 
with the addition of shared history infor
mation, and BHT, BH with a transposition 
table manager. BHT is able to achieve a 
speedup of 5.7 using 9 processors. 

Previous implementations of PVSplit 
show the performance of the algorithm 
tapering off as the number of processors are 
increased, to a point where additional pro
cessors actually degrade performance. In 
[3], their experiments suggested perfor
mance stopped improving at 8 processors 
with a speedup of 4.4. Newborn's results 

[4] are slightly higher, but also appear to 
tail off quickly. 

The data in Figure 3 shows that 
through 9 processors, performance is still 
increasing. The effect of sharing history 
and transposition information increases the 
perfonnance of the algorithm without, 
however, eliminating the decreasing returns 
for additional computing power. Transpo
sition table managers clearly provide a 
significant ilnprovement in performance. 

Figure 4 shows the total, search, and 
synchronization overheads for both the B 
and BHT variants. Communication over
head was experimentally small enough to 
be considered negligible. The addition of 
shared history and transposition table 
information has reduced the search over
head by more than 50%. Experiments have 
shown that the re-assigning of idle proces
sors to help out busy ones does reduce syn
chronization overhead, but increases search 

·7,---------------------------------__________ __ 

6 

5 

Speedup 4 

3 

2 

# of Processors 

Figure 3. 7-Ply Speedups 

524 

.... 

... BHT 
...... 

.... BH 
B 

10 



overhead almost to the point where it 
offsets all the gains. Using a Table 
Manager at the cost of an additional 
Searcher helps offset this. 

An anomaly appears on the graph for 
the BHT overheads with 2-4 processors. 
For few processors, devoting resources for a 
Table Manager instead of a Searcher does 
not pay-off in performance. Instead, with 
2-4 processors one does better to use as 
many Searchers as _possible, and for 5 or 
more, add a Table Manager. 

Limited data is available for more than 
9 processors. Experiments with 1 9 proces
sors show a 7.7-fold speedup, with addi
tional processors still providing some 
benefits. Overhead analysis shows that 
search overhead levels off, while synchroni
zation increases dramatically. This sug
gests that the Table Manager process is 
becoming over-loaded and processors wait 
increasing amounts of time for response. A 
possible solution is the addition of a second 

Table Manager. 
Scout processes are new and there is not 

a lot of experience using them. In quiet 
positions with few tactical. possibilities, 
Minix can easily out-search Phoenix by 10-
ply or more. In more complicated posi
tions, it is usually 1-2-ply ahead. Unfor
tunately, Minix's performance is difficult to 
quan tify. Many standard sets of chess 
problems contain a large number of tactical 
positions and on these Minix performs 
exceptionally well, finding a many winning 
moves not found by Phoenix. However, in 
real tournament games, the number of 
times that an extra one or two ply of tacti
cal searching makes a difference in the 
move selected is infrequent. Since these 
situations do not occur often, one might 
argue that the computing resources are not 
well used. On the other hand, these win
ning and losing moves can be the decisive 
difference in a tournalnent game. Given 
that the use of Scouts results in improving 
even one move in a game, then they have 

l201-r--------------------------------------------~ 

% 

100 

80 

60 

40 

20 
.-... .-

.,," 0
0

-

", 

..-

... 

.-.-'
", 

Total-B 

~Total-BHT 

...... Search-B 
......... ~ ..... Synch-B 

".~.";. ~."., _ r. C ~~.~. ~.~.:.:. ,::::::" .••.•• S YDC h-BHT 

... ----
... ... -_ ... 

...... - Search-BHT 

----... ----------_ ... ..".--.,.. 

-20-~--._---.----r---.----.----.---.---~----~~ 
11 

# of Processors 

Figure 4. 7-Ply Overheads 

525 



made a significant improvement in the 
program's play. 

At the time of this writing, Phoenix has 
competed in four tournament games with 
Minix. In only one game did Minix make a 
difference, and that on a move that did not 
alter the course of the game. In one prac
tice game played, Minix prevented Phoenix 
from making a losing move. However, this 
data is insufficient to draw any conclusions. 

6. Conclusions 
Parallelizing tree search algorithms for 

a small number of processors is just a 
prelude to tackling the problems posed by 
having 100's or even 1000's of processors. 
Although no claims can yet be made on the 
suitability of re-assigning idle processors 
for reducing synchronization overhead, and 
globally accessible tables . for decreasing 
search overhead, they both clearly 
addresses major problems posed by such a 
hardware configuration. Unfortunately the 
reduction of one overhead (synchronization 
for example) can result in the increase of 
others (communication and search). 
Improving on this remains an open research 
question. Given that existing paralleliza
tions of alpha-beta are limited to a few pro
cessors, Scouts may provide an alternate 
means of using available resources 
profitably. 

Acknow ledgements 
Many of the ideas used in the Scout 

processes evolved from discussions with 
Don Beal. The suggestions and help of 
Marius Olafsson is greatly appreciated. 

References 

1. G. Lindstrom, The Key Node Method: 
A Highly-Parallel Alpha-Beta 
Algorithm, UUCS 83-101, Department 
of Computer Science, University of 
Utah, 1983. 

2. S.G. Akl, D.T. Barnard and R.J. 
Doran, The Design, Analysis, and 
Implementation of a Parallel Tree 
Search Algorithm, IEEE Transactions 
on Pattern Analysis and Machine 
Intelligence 4, 2 (1982), 192-203. 

526 

3. T.A. Marsland, M. Olafsson and J. 
Schaeff~r, J\tI ultiprocessor Tree-Search 
Experiments, in Advances in Computer 
Chess 4, D. Beal (ed.), Pergamon 
Press, 1985,37-51. 

4. M. Newborn, A Parallel Search Chess 
Program, A CM A nnual Conference, 
1985, 272-277. 

5. T .. A.. Marsland and F. Popowich, 
Parallel Game-Tree Search, IEEE 
Transactions on Pattern Analysis and 
Machine Intelligence 7, 4 (1985), 442-
452. 

6. D.J. Slate and L.R. Atkin, Chess 4.5 -
The Northwestern University Chess 
Program, in Chess Skill in Man and 
Machine, P.W. Frey (ed.), Springer
Verlag, New York, 1977, 82-118. 

7. J. Schaeffer, Experiments in Search 
and Knowledge, Ph.D. thesis, 
Department of Computer Science, 
University of Waterloo, 1986. 

8. R.A. Finkel and J.P. Fishburn, 
Parallelism in Alpha-Beta Search, 
Artificial Intelligence 19, (1982), 89-
106. 

9. H.J. Berliner, Chess as Problem 
Solving: The Development of a Tactics 
Analyzer, Ph.D. thesis, Computer 
Science Department, Carnegie-Mellon 
University, 1974. 

10. G. Baudet, The Design and Analysis of 
Algorithms for Asynchronous 
Multiprocessors, Ph.D. thesis, 
Department of Computer Science, 
Carnegie-Mellon University, 1978. 

11. J. Fishburn, Analysis of Speedup in 
Distributed Algorithms, Ph.D. thesis, 
Computer Sciences Department, 
University of Wisconsin-Madison, 
1981. 

12. T .A. Marsland and M.S. Campbell, 
Parallel Search of Strongly Ordered 
Galne Trees, Computing Surveys 14, 
(1982), 533-551. 

13. M. Olafsson and T.A. Marsland, A 
Unix Based Virtual Tree Machine, 
CIPS Congress 85, Montreal, June 
1985,176-181. 



14. K. Thompson and D.M. Ritchie, The 
UNIX Timesharing System, 
Communications of the A CM 17, 7 
(1974),365-375. 

15. D. I(opec and 1. Bratko, The Bratko
I(opec Experiment: A Comparison of 
Human and Computer Performance in 
Chess, in Advances in Computer Chess 
3, M.R.B. Clarke (ed.), Pergamon 
Press, 1982, 57-72. 

527 



NEW ADI MODEL PROBLEM APPLICATIONS 

Nancy S. Ellner and Eugene L. Wachspress 

Department of Mathematics 
University of Tennessee 

Knoxville,ITN '37996-1300 

Abstract 

Peaceman and Rachford introduced ADI iter
ation to solve parabolic and elliptic linear 
systems. Recent generalizations. enhance use of 
the model ADI problem as a precondit1oner for 
solving nonseparable systems discretized by 
either five-polnt difference or.nine.,.point finite 
element techniques. The theory also yields para
meters for a.new iterative,procedure for solving. 
the Lyapunov matrix equation. This application 
is well suited for parallel computation. Classical 
Chebyshev minimax theory is restricted to real 
approximation. Rc)uche' s theorem provides a basis 
for generalization· to the complex field. This.is 
essential for application to systems involving 
matrices with complex eigenvalues. The particular 
application which motivated this generalization 
was computation of impedance boundary conditions 
for finite element computations by the method of 
"Infinitesimal Scaling" introduced by H. Hurwitz. 

2. INTRODUCTION : THE ADI MODEL PROBLEM' 

Alternating-Direction-Implicit (ADI) model 
problem theory arises in diverse areas. It was 
developed by Zolotareff (1877) and applied by 
Cauer (1934) to an electrial filter desir 
prDblem. In 1955 Peaceman and Rachford intro
duced an alternating-direction-implicit (ADI) 
iteration for solving elliptic systems arising 
from five-point discretization of boundary-value 
problems governed by the differential equation 
-div[D(x,y)gradu(x,y)] = f(x,y). The. real, SPD 
(symmetric, positive-definite) coefficient matrix 
A is split into H and V where H is the dis
cretizationof the x-derivatives and V of the 
y-derivatives. The two-step iteration 

• This work was partially supported by General 
Electric Corporate Research and Development, 
Electromechanics Branch, Contract IP.O. G0076000. 

CH2345-7/86/0000/0528$01.00@1986 IEEE 
528 

(H+Wj I)u j _1/2 = ~(V-WjI)Uj_l + b 

(V+w.I)u = -(H-w I)u + b 
J j j j-1/2 

for j = 1,2, ••• ,t and Uo prescribed 

is now known'as Peaceman-Rachford iteration. 

(1 ) 

A rigorous theoretical analysis of conver
gence and methods for computing optimum Wj are 
known for the "model-problem" where H. anO V 
commute. In a,series of papers pubiished in the 
sixties, Chebyshev- minimax theory was applied to 
establish existence and uniqueness of optimu~ para
meters as a function of the eigenvalue spectra of 
H and V 14-1 tj... A convenient algorithm. was de-
vised for computing optimum parameters'for the 
special case of' t = 2n. This algorithm is based 
ona folding technique havingcerta~features not 
dissimilar to the FFT. W.B. Jordan demon-
strated how optimum parameters could be found for' 
any t in terms of eilipticfunctions and gave 
simple formulas which yield values quite close to . 
optimum. This solution in terms of elliptic 

functions had been discovered for the'same minimax 
problem by Zolotareff'and used by Cauer to design 
electrical filters. 

Two significant generalizations, of the 
Peaceman-Rachford iteration were introduced 
during the sixties. First, it was noted that one 
could replace 'wjI by wjF in Eqs. 1, where F 
is a diagonal matrix. The model-problem con
dition is then that HF-1V - VF-lH = O. This is 
equivalent to a renormalization of H ~nd V in 
Eq 1. A model-problem is obtained with variable 
mesh increments and D(x,y) = 1 when the dif
ference equations are derived by the box-inter
gration method and matrix F has as its ele
ments the mesh-box areas. This is tr~% in both 
Cartesian and cylindrical coordinates . 

The second significant generalization was 
choice of a different value for the iteration 
parameter in the two sweeps. In the seminal work 
by Peaceman, Rachford and Douglas, it was noted 
that this can lead to divergence while convergence· 
is assured with Eqs 1. The crucial. point is that 
the two parameters for each double-sweep are re
l_ated in a special way. This generalization 



yields optimum parameters as a function of the 
di~rinct spec~,al intervals of H and V (or of 
HF and VF when the parameters are multi-
plied by F.) This is sometimes a great improve
ment over parameters' based on a single interval 
encompassing both spectra. Indeed, H or V may 
be singular or even have negative eigenvalues as 
long.as A is positive definite. The analy~is 
and examples were first given by Wachspress 15 
and may now be found in many texts. Let the para
meter w. in Eqs. 1 be replaced by p. in the 
first sw~ep and qj in the·second swe~p. Let the 
spectral bounds be a < s(H) < band c < t(V) < 
d with a + c > o. The ADI-minimax problem is 
then to find the parameters p. and q. to mini-
mize J J 

R(J) = maximum 
a < s < b 
c < t < d 

Model problems are not often encountered in 
practice. Nevertheless, model-problem ADI serves 
an important function as a preconditioner for com
pound iteration. 

Two recent generalizat.ions of ADI model-p,§
blem application were described by Wachspress. 
First, one notes that the eigenfunctions of 
the diffusion equation are separable when the dif
fusion coefficient is a separable function of x 
and y. This generalization of the ADI model 
problem was described by Young 19. The five
point difference equations derived by the box-
integration method for.such separable problems 
yield a model problem for ADI iteration. Theory 
relating to approximation of a nonseparable 
function by a sep,rable one 2 is described by 
Light and Cheney • Applying this to a non
separable diffusion coefficient leads to an ADI 
model problem as a preconditioner for a 'conjugate 
gradient or Chebyshev iteration which is often a 
great improvement over a Laplacianpreconditioner. 
Schatz (in prep.) has used such generalized model 
problems with FPS and FFT preconditioners. Second, 
in solving finite element problems over rectangu
lar grids one encounters nine-point rather than 
five-point equations, and no ADI model problem 
had been known for these nine-point equations. A 
transformation of variables was discovered that 
provided a nine-point ADI model problem. A third 
new application for ADI model-problem theory 
arises in an entire;Ly different situation which 
will now be described. 

3. THE LYAPUNOV MATRIX PROBLEM 

3.1. The Problem and Some Solution Techniques 

A recurring problem in linear algebra is the 
Lyapunov matrix problem where one is given the 
mxm matrix A , the nxn'matrix B , the mxn matrix 
C and seeks the mxn matrix X for which 

529 

AX + XB = C . (3) 

A unique solution is easily demonstrated for the 
case where s + q = 0 is not satisfied for any 
eigenvalue s of A and q of B. The ADI appli
cation arises when A and Bare N-stable (i.e., 
the real parts of their eigenvalues are positive) 
and in the slightly more general case where the 
real part of s + q is positive for any eigen
values s and'q of A and B ,respectively. A good 
su:vey of alte:nat~ves for solving Eq. 3 in Pre 
prlor to_ 1972 ~s glven by Rothschild_~ame$on . 
Let N be the larger of m and n. Then the 
numbe: of.arithmetic ~perations for the fgur 
technlques they descrlbe varies from O~) for 
the4Geiss "brute-force" direct solution to 
o (N) for Jameson's i ter~ti ve method 11. For 
m = n , a more recent O(N ) direct method of 
Bartels and Stewart 1 with modifications intro
duced by Golub, Nash and vanLoan 4 appears more 
efficient and robust than the methods considered 
by Rothschild and JamesolJ. The bulk of the com
putation occurs in simultaneous reduction of A 
to triangular and B to upper Hessenberg form. 

~he new iterative method for solving the 
Lyagunov equatio'1 described in this' paper requires 
J (N ) operations and 1's partuclarly well 'sui ted 
for array computation. It is a generalized forf2 
of a procedure introduced by R.A. Smith in 1968 . 
,Smi th considered the case where A and B 
are N-stable. A cOncise summary of pertinent 
parts of Smith's analysis follows. Let E be 
the unit mxm matrix and I the unit nxn matrix. 
For any positive scalar q, the identity 

(qE+A)X(qI+B) - (qE-A)X(qI-B) = 2qC (4) 

is_1asily verified. 'Premultiply E~~ 4 by (qE + 
A) and postmultiply by (qI + B) to get 

X - UXV = W 

where U = (qE+A)-l (qE-A), V = ~qI+B)-1 (qI-B) , 

and W = 2q(qE+A)-1 C(qI+B)-1 • By inspection, 

X = L Uk- 1WVk- 1 (6) 
k=1 

is a formal solution to Eq. 5. The spectral radii 
of U and V are less than unity. It follows 
that the series in Eq. 6 is convergent. Define 
the matrix sequence Yr by 

It'is-seen.that Y approaches X rapidly. 
2r r r 

'MoreDver, U and v2 are obtained by squaring 
r-l r-T 

U2 and V2 ,respectively. Each step thus 
requires four matrix multiplications and one 
matrix-addition. This is a quadratically con
vergent iteration. Computation arithmetiC is 

O(N3 ) • 



3.2. A Generalization of R.A. Smith's Iteration 

The generalization of Smith's iterative so
lution to be developed here has several advantages. 
The number of arithmetic operations remains of 

O(N3 ) but a parallelism not shared by Smith's 
algorithm is introduced for efficient use of an 
array computer. The restriction that both A and 
B be N-stable is relaxed to the condition that 
the sum of the real parts of eigenvalue p. of A 

. ~nd. eige~value qj ,?f B. be positive for Jall 
1, J pa1rs. Fewer Jterat10ns are required with 
the generalization. 

A crucial observation is that the identity in 
Eq.4 may be generalized to 

(pE+A)X(qI+B) - (qE-A)X(pI-B) = ·(p+q)C. (8) 

Multiply Eq. 8 on the left by 

the right by (qI+B)-1 to get 

x - U(p,q)XV(p,q) = W(p,q) 

where 

V(p,q) = (B-pI)(B+qI)-l 

-1 (pE+A) 

Then the Smith iteration in Eq. 7 yields 

Yo(p,q) = W(p,q) , 

and on 

(9) 

(10) 

(11 ) 

(12 ) 

2r r (11) 
Yr+l (p,q) =U( p,q) Yr ( p,q)V (p,q)2 

Now note that Yr is related to the solution X 
by 

(14 ) 

The procedure is convergent if the spectral radii 
of U and V are less than unity. It is obvious 
that one should choose p and q to minimize 
the spectral radii of U(p,q) and V(p,q). This 
is precisely the ADI minimax problem for t = 1 . 

The ADI model-problem was encountered in 
solving the linear system Au = b when it was 
possible to split A into a sum of commuting 
matrices H and V. The case for which exten
sive theory was developed "was for real spectra of 
H arid V. The analysis is valid for any com
muting linear operators H and V which sum to A. 
Prof. G.J. Habetler (R.P.I.) observed that one may 
define H(X) = AX and V(X) = XB to obtain HV = 
VH = AXB. It is no coincidence, therefore, that 
AX + XB = C is a "model problem" for ADI iteration. 

530 

It is seen that the ADI model-problem theory 
applies to this iterative solution of the Lyapunov 
matrix equation even when A and B do not com
mute! Moreover, the condition that a + c > 0 
guarantees a unique solution. This is more 
general than the requirement that A and B both 
be N-stable • 

3.3. An Algorithm for Parallel Computation 

Smith's quadratic convergence is obtainable 
only with a constant p, q doublet. Moreover, 
two matrix inversions are required to obtain 
U(p,q) and V(p,q) for each doublet. For com
putation on a serial computer, it is questionable 
that one can improve efficiency with variable p 
and q. The situation is somewhat different in 
application to ?arallel processing. It will nnw 

be shown that one can iterate simultaneously with 
a different p,q couplet on each of several 
arithmetic units and then combine the results to 
derive some of the benefits of variable parameters. 

Let Y(r,j) = Y (Pj, qj) as defined by Eq. 
13. Parallel comput~tion may be performed on J 
arithmetic units. The results may then be com
bined to yield the same eStimate to X as would 
have been obtained by 2r - applications with 
optimum parameters for a cycle of length J. The 
combining algorithm is as follows: 

X(r,1) = Y(r,i) and for j > 1 (15 ) 

r r 
x1r,j) = Y(r,j) + U(j)2 X(r,j-l )V(j)2 

Each step in Eq. 15 reouires four matrix multi
plications and one addition. Although this is 
the same work as each step of the base Smith 
algorithm, this part of the calculation cannot be 
done in full parallel mode. One may replace Eq. 
15 by a folding al.Q:orithm to retain some 
parallelism at this stage of the computation. 
The iterates in Eq. 15 satisfy 

X(r,j) = X -
j 
1T 

j '=1 
• (16) 

This may be demonstrated ind~ctively with the aid 
of Eq. 13. The value of R(J) is an upper bound 
on the relative error IX(r,J) - xl /ixi , where 
I I denotes the usual spectral norm. 

3.4. Application To "Infinitesimal Scaling" 

The Lyapunov matrix equation arises in a 
scheme devised by H. Hurwitz to compute an im
pedance bogndary condition for finite element 
problems • Hurwitz calls his method "infini
tesimal scaling." An SPD matrix C is found as 
an impedance boundary condition by solving the 
nonlinear matrix equation 



(17) 

when given the real SPD matrices M and N and 
the real antisymmetric matrix Q. 

( 18) 

Then a quadratically convergent Newton-type iter
ation to solve this equation for C is 

This is the Lyapunov equation with B = A 
T 

Moreover, A is N-stable since its symmetric part 
is SPD. 

Another property of the system is that Q is 
very small in norm compared to C. This yields a 
spectrum restricted to lie in a rectangle in the 
positive-real half-plane centered on the real axis 
and of height much smaller than its width. This 
is preCisely the kind of spectra where ADI iter
ation can be expected to be very efficient. It 
was this problem which motivated generalization of 
the ADI model-problem theory to the complex domain. 

4. ADI MODEL-PROBLEM THEORY FOR COMPLEX 
SPECTRA 

4.1. Polynomial Approximation and Backward 
Spectrum Analysis 

Chebyshev minimax theory for polynomial ap
prOXimation over the reals has been extended to 
the ~omplex domain. The alternating extremes 
property in the real case is replaced by constant 
absolute value of the error function on the 
spectrum boundary in the complex domain. Rouche's 
Theorem relating to the number of zeros and poles 
inside the boundary 9s then used to establish 
the minimax property. 

Analysis of the minimax problem for the 
eigenvalue domain z = 1 + vi with v varying 
between -1 and 1 reveals some of the sub
tleties of the problem in the complex domain5• 
The transformation w = i(l - z) yields an 
interval of [-1, 1] for w. One may examine 
the Chebyshev polynomial appropriate for this 
domain with normalization to unity at z 9 0 or 
w = i. As observed by Opfer and Schober , this 
does not yeild the optimum polynomial in z. 
The Chebyshev theory establishing the de la Vallee 
property of alternating extremes of equal magni
tude does not hold for complex-valued functions. 
However, as the degree of the approximation is 
increased, the Chebyshev polynomial attains its 
maximum absolute value on a curve that includes 

531 

the eigenvalue spectrum and collapses in o~~his 
spectrum rapidly. As observed by Trefethen , 
this is an essential property of the optimum 
polynomial. Determining the optimum polynomial 
is not a simple task. Fortunately, in practice 
a prescribed error reduction is achieved only 
after the polynomial degree is sufficiently large 
that the Chebyshev polynomial is close to optimum. 
This theory also applies to the ADI rational ap
proximation in which elliptic functions replace 
trigonometric functions in the analysis. 

One of the more prevalent spectrum domains 
considered for Chebyshev polynomial approximation 
is an ellipse with major diameter along the real 
axis. The zeros of the Chebyshev polynomial are 
spread out along the real axis when the minor 
diameter is small compared to the major diameter. 
As the relative magnitude of the minor axis in-
creases, the zeros coallesce toward the center. 
When the domain is a circle, the optimum poly
nomial has a single root at the center of multi
plicity equal to the degree of the polynomial. 

Rather than seeking optimum functions for a 
gi ven spectrum, we choose a class of approximating 
functions and investigate the regions on which 
these functions are optimal. We consider th§ 
"lemniscates" described by Opfer and Schober : 

Definition: The G-lemniscate of F(z) 
ous on region W .in the complex plane 

L= {zE.w:IF(z)l~ G} 

continu
C is 

(20) 

Consider first polynomial approximation to· zero 
over a complex region. Let u be a fixed value 
greater than unity at which a polynomial approxi
mation to zero over the real interval [-1, 1] 
of maximal degree t is normalized. The poly
nomial which has the least maximum absolute value 
over [-1, 1] is the Chebyshev polynomial 

Pt(z) = cosEt arccos(z)]/cos[t arccos{u)]. 

Let P t (1) = H. The H-lemniscate of P in the 
complex plane identifies an extended spec~um 
for which this polynomial is optimal. Theap
plication of Rouche's Theorem to the minimax pro
blem over the lemnisc;:ate is as follows.L..L..has 
absolute value of H on the H-lemniscate and 
t roots within the lemniscate. Let R be a 
"better" polynomial for apJ;>roximation over this 
region in the sense that IRI < H over the 
closed region bounded by the lemniscate. It is 
easily demonstrated that the winding number of 
P - R is the same as that of P as one traces 
a path around the lemniscate. Hence, P and 
P-R have the same number of roots in this 
region. P is known to have t roots within 
the lemniscate. Both P and R are normalized 
to unity at u outside this'region. Therefore, 
P - R , a polynomial of degree at most t, has 
at least t + 1 roots. This is impossible. 
Hence, P is optimal. 



The lemniscate oscillates between the de
generate ellipse which is the line segment 
-1 ~ z ~ 1 and the ellipse centered at the 
origin with semi- major axis endpoints + cosh v 
and semi-minor axis endpoints +i sinh v , where 
v = arcsinh( 1 ) / t. Now consider-the G-lemnisca te 
for any G in the interval (H, 1) . As G 
increases toward unity, the lemniscate expands 
to become a circle of radius u. The Chebyshev 
polynomial is optimal for this entire set of 
lemniscate spectra. Let v* = arccosh(G)/t and 
let v' = arcsinh(G)/t . The G-lemniscate oscil
lates between the ellipses 

[Re(z)/coShv*J2 + [Im(z)/sinhv*J2 = (21) 

and 

[Re(z)/coShv'J2 + [Im(z)/sinhv'J2 = 1. (22) 

Let the ellipse of 'Eq. 21 be denoted by E(G) • 
This ellipse is contained in the G-Iemniscate. 
The Chebyshev polynomial has been used for many 
years to approximate zero over this elliptic 

spectral region 1~ ManteuffelS has shown that 
it is optimal. As t increases for a fixed 
eigenvalue spectrum, v* and v' approach a 
common value. The G-Iemniscate approaches the 
E(G)-ellipse. This is related to fundamental 

, ' 13 
theorems developed by Trefethen in a more 
general approximation theory setting. 

This theory is applied to polynomial extra
polation in iterative solution of large systems 
of equations. Let,the spectrum z of a base 
iteration be within the ellipse with major axis 
between a and b on the real axis (where 
b < 1) and semi-minor axis of length c. One 
then defines v* = arctanh[2c/ (b-a) J and z' (z) = 
(cosh v*)(2z - a - b)/(b - a) . The optimal 
polynomial is then Pt(z') with u = z'(1) • 
Let cos B = tanh v*. Then the maximum absolute 
value of P over the ellipse is: 

G 
(23) 

-1 
tan (B/2)J/cosh[t arccosh(u/sinB)J . 

One of the problems arising in polynomial ap
proximation is to find the ellipse containing a 
given spectrum and normalization point which 
minimizes G. ThisSproblem has been investi
gated by Manteuffel and others. 

4.2. The ADI Minimax Problem With Complex Spectra. 

ADI theory has been generalized to complex 
spectra. Now, the appropriate domain for analysis 
is still an ellipse but for the logarithm of the 
spectrum rather than the spectrum itself. The 
spectrum is first normalized so that the ellipse 
is centered at the origin. (If the real part of 
the spectrum varies from a to b, the spectrum 
is divided by the square root of ab to yield 

532 

this ellipse. The parameters determined for this 
problem are then multiplied by the square root of 
ab. Minimax analysis is invariant to multi
plicative but not additive normalization.) Just 
as for polynomial approximation, as the ratio of 
the minor to major axis of the ellipse increases, 
the optimum parameters coallesce toward the 
origin which corresponds to a normalized eigen
value of unity. When the spectra of H and V 
are real, ADI convergence 1s grp 8tly enhanced 
by use of variable p and q. This is especially 
true when H and V have very large condition 
numbers (more precisely, when the eigenvalue 
bounds band d are much greater than a + c.) 
Just as in polynomial approximation, this en
hancement through use of variable parameters 
diminishes as the imaginary components of the 
spectrum increase. 

W.B. Jordan's bilinear transformation'~ re
duces the two-variable ADI minimax problem of 
Eq. 2 to a problem in one variable (say x) over 
the real interval [k', 1J with k' determined 
from the eigenvalues a, b, c and d. When 
a + c > 0, k' is in (0, 1). The variable u 
is defined by x = dn(Ku, k) , where dn is the 
elliptic function which varies from 1 to k' 
as u varies from 0 to 1 . The optimum 
rational function for this problem is 

0t(x) = k
2

1/ 2sn[(2tu+1 )K2 ,k2 J (24) 

where k is a function of t and k'. In 
most appfications, k' is close to zero. 
Choice of t sufficiently large to attain a 
significant error reduction yields a value of k2 
close to zero also. The error reduction after 
t ADI iterations is equal to k2 (the square of 
maximum absolute value of 0t ln the interval 
[k', 1].) 

Just as for the polynomial approximation 
previously discussed, one may generalize to the 
co~lex plane by considering the family of 
Glk~lemniscates for the function 0t(z) = 
~~sn[(2t(u+iV)+1)K2,k2J. A value of G = 
Yleldsa lemniscate which cuts the real axis at 
the extremes which are the alternating points 
for the real problem. A G~ - lemniscate for 
1 < G < 1/ ~ and 0 < u < 1 identifies an 
extended spec€rum for which-the 0t(z) function 
is the optimal rational polynomial of that form 
by an application of Rouche's theorem. The 

function ° (z) has absolute value ~ on its 
~ - lem~iscate and is a rational function of 

2 
the form qt(-z)/qt(z) • Suppose there exists a 
better approximatlon of this form to zero over 
the lemniscate region. The difference between 
these two functions is a ratio of polynomials of 
maximal degree 2t-l which has t roots be
tween k' and 1 , and (by symmetry) t roots 
which are the negatives of these as well. This 
difference function also vanishes at the origin, 
which is a contradiction since this function of 
maximal degree 2t-l then has 2t+l roots. 



As in the case of Chebyshev extrapolation, 
as the degree of approximation increases for a 
fixed eigenvalue spectrum, the G~-lemniscate 
of Qt(z} collapses rapidly on its -largest in
terior convex region, which contains the spectrum. 
However, the largest convex region here is not 
elliptical. It becomes approximately elliptical 
under the 'log-symmetric' transformation z, = 
In(zllk'}. The approximating ellipse has semi
minor axis endpoints + bi = iv*ln(4/k'} and semi
major axis endpoints -+ a = In[/k7 cos bJ. Then 
for efficient application of ADI iteration, the 
log-symmetric transformed spectrum must be em
bedded in an ellipse with th2 least value of 
effective spectral radius G k2 of the iteration. 
The effective spectral rad2us of the ADI iter
ation is bounded gy exp(n Iln(k'/4}} when the 
spectrum is rea1 1 and by exp(n2/ln(k'/4} + 2nv*} 
when the spectrum is complex. 

4.3. Numerical Results 

Suppose the spectrum lies in a rectangle 
such that the real part of the spectrum lies 
between a and b , and the ima~inarv part lies 

between -c and c ,where 0 < a < < 1 and 
c < a < < b - a. Then optimum ADI iteration 
parameters will be obtained from the approximating 
ellipse (section 4.2) with maximum possible value 
of (n/ln(4/k'}}-2v* of all those ellipses con
taining the log-symmetric transformed spectrum. 
This will occur for some ellipse with boundary 
containing at least one of the left or right sets 
of corners of the log-symmetric transformed rect
angle. This is a constrained maximization problem 
in the one variable w = In(4/k'}v* which can be 
shown to have a solution for spectra with a, b, 
and c as described above. Numerical trials 
suggest that the solution is unique. 

The Lyapunov problem 

ATX+XA = W (25) 

was solved according to the complex-spectrum ADI 
method outlined above, and by the ADI method as
suming a real spectrum between a and b for com
parison. The matrix A was chosen to be a 
20X20 block diagonal matrix with eigenvalues 
equally spaced along the upper and lower sides of 

Table 1: Numerical results for two test matrices A using complex-spectrum 
method parameters and real-spectrum method parameters. Errors measured are 
::X -X: :/::X:: with the Euc1iden norm, where X is the nth iterate. 

n n 

number of 
iterations 

2 

4 

6 

8 

10 

12 

14 

16 

Spectrum Bounds 

a = .01 b = 100 c = .0010 

Complex-spectrum Real-spectrum 
Method Method 

k' .000045 k' = .0001 

vi' = .02155 ~~ = 0 
(radians) 

.7073 Theor. error bound .6210 

.2410 Actual error .2349 

• 1251 Theor • 
-1 

.9640 x 10 
-1 -1 

.1519 x 10 Actual. .3150 x 10 

-1 -1 
• 2212 x 10 Theor. .1496 x 10 

-2 -2 
.3946 x 10 Actual .4749 x 10 

-2 -2 
• 3911 x 10 Theor • .2323 x 10 

-2 -3 
.1430 x 10 Actual .8843 x 10 

.6915 x 10 

.1294 x 10 

-3 
-3 ~~~1 

-3 
:iggg ~ i8-3 

-3 -4 
• 1223 x 10 Theor • .5599 x 10 

-4 -4 
.2417 x 10 Actual .3403 x 10 

-4 -5 
• 2162 x 10 Theor • .8691 x 10 

-5 -5 
.5017 x 10 Actual. .7723 x 10 

-5 -5 
• 3824 x 10 Theor. .1393 x 10 

-5 -5 
.1683 x 10 Actual .1739 x 10 

533 

Spectrum Bounds 

a = .01 b = 100 c = .0019 

Complex-Spectrum Real-spectrum 
Method Method 

k' .00003 k' = .0001 

v"c = .03207 vi' = 0 
(radians) 

• 7515 Theor • error bound .6210 
.2544 Actual error .2350 

.1412 Theor. 
-1 

.9640 x 10 
.1992 x 10-1 

Actual. 
-1 

.3208 x 10 

-1 -1 
.2653 x 10 Theor • .1497 x 10 

-2 -2 
.8628 x 10 Actual .5370 x 10 

-2 -2 
.4982 x 10 Theor. .2323 x 10 

-2 -2 
.1223 x 10 Actual. .1207 x 10 

-3 -3 
.9360 c 10 Theor. .3606 x 10 

-3 -3 
.1363 x 10 Actual. .2962 x 10 

-3 x 10-4 
.1758 x 10 Theor. .5599 

-4 -4 
.8174 x 10 Actual .7872 x 10 

-4 -5 
.3304 x 10 Theor. .8691 x 10 

-4 -4 
.1109 x 10 Actual. .2120 x 10 

-5 -5 
.6206 x 10 Theor • .1349 x 10 

-5 -5 
.2213 x 10 Actual. .5652 x 10 



the rectangular spectrum boundary. The results 
for two different matrices with the same real 
spectral ranges are given in Table 1. The re
sults of the iterations for the real-spectrum and 
complex-spectrum ADI parameters were very com
parable. However, there is generally a slight 
improvement when using the complex-spectrum method 
parameters. Also, the associated theoretical error 
bounds are more accurate at higher numbers of 
iterations and larger imaginary eigenvalue com
ponents. Errors nearly identical to those in 
Table 1 were obtained from matrices with four 
eigenvalues defining a rectangular spectral bound 
and the remaining eigenvalues distributed randomly 
within the rectangle. This suggests that, as ex
pected, the corner eigenv'alues are determining 
the actual convergence rate. 

An analagous method can be used if the 
spectrum is known to lie in a convex polygonal 
region within a rectangle, defined by the real 
and complex spectral ranges, which satisfies the 
conditions on a, b, and c stated above. In this 
case, the tighter bounds on the spectrum should 
give more rapid convergence. Numerical studies of 
this case are in progress. 

REFERENCES 

[1] R.H. Bartels and G.W. Stewart, "A Solution 
of the Matrix Equation AX+XB = C ," Comm. 
ACM 15, pp. 820-826, 1972. 

[2] S.P. Diliberto and E.G. Straus, "On the Ap
proximation of a Function of Several Vari
ables by the Sum of Functions of Fewer 
Variables," Pacific J. Math. 1, pp. 195-210, 
1951. 

[3] G.R. Geiss, V. Cohen, and D. Rothschild, 
Grumman Res. Dept. Report E-307, 1967. 

[4] G.H. Golub, S. Nash, and C. Van Loan, "A 
Hessenberg-Shur method for solution of the 
problem AX+XB = C," IEEE Trans. Automat. 
Control AC24, pp. 909-913, 1979. 

[5] L.A. Hageman and D.M. Young, Applied Iten
ative Method6~ Academic Press, 1981. 

[6] H. Hurwitz, "In finitesimal Scaling - A New 
Procedure for Modeling Exterior Field Pro
blems," IEEE Trans. Magn. 20, No.5, pp. 
1918-1923, 1984. 

[7] W.A. Light and W. Cheney, "Approximation 
Theory in Tensor Product Spaces," Springer 
Lecture Notes in Mathematics 1169, 1985. 

[8] T.A. Manteuffel, "The Tschebychev iteration 
for nonsymmetric linear systems," Numer. 
Math. 28, pp. 307-327, 1977. 

[9] G. Opfer and G. Schober, "Richardson's 
Iteration for Nonsymmetric Matrices," Linear 
Algebra and its Applications 58, pp. 343-
361, 1984. 

534 

[11 ] 

[13] 

D.W. Peaceman and H.H. Rachford, Jr., "The 
Numerical Solution of Parabolic and Elliptic 
Differential Equations," J. Soc. Indust. 
Appl. Math. 3, pp. 28-41, 1955. 

D. Rothschild and A. Jameson, "Comparison 
of four numerical algorithms for solving 
the Liapunov matrix equation," Int. J. 
Control 11, No.2, pp. 181-198, 1970. 

R.A. Smith, "Matrix equation XA+BX = C," 
SIAM J. Appl. Math. 16, No.1, pp. 198-201, 
1968. 

L.S. Trefethen, "Near-Circularity of the 
Error Curve in Complex Chebyshev Approxi
mation," J. Approx. Theory 31, pp. 344-367, 
1981. 

E.L. Wachspress, "Optimum ADI Iteration 
Parameters for a Model Problem," J. Soc. 
Indust. Appl. Math. 10, pp. 339-350, 1962. 

, "Extended Application of Alternating 
Direction-Implicit Iteration Model-Problem 
Theory," J. Soc. Indust. Appl. Math. 11, 
No.4, pp. 994-1016, 1963. 

, It~ve Solu:Uon 06 Elliptic. 
Sy~t~, Prentice Hall, 1966. 

[11] , "Two-Variable ADI Minimax Problem", 
Ph.D. dissertation, Rensselaer Polytechnic 
Institute, 1968. 

[18] , "Generalized AD! Preconditioning," 
CAMWA 10, No.6, pp. 451-461, 1984. 

[19] D.M. Young, It~ve Solution 06 Lange 
L~ean Sy~tem6, Academic Press, 1911. 



FINITE ELEMENT ANALYSIS USING ADVANCED PROCESSORS 

Graham F. Carey and E. Barragy 

The University of Texas at Austin 
Austin, Texas 78712 

Abstract 

The evolution of advanced scientific proces
sors is briefly summarized and the impact of the 
microelectronics revolution on vector and parallel 
scientific computation is examined. These radical 
changes in computer architectures are having a 
profound influence on numerical algorithm develop
ment and the implementation of numerical approxi
mation techniques. We consider specifically the 
finite element method for solution of boundary
value and initial-value problems in engineering 
and science. The main steps of mesh generation, 
solution, and post-processing in a finite element 
analysis are outlined for implementation in a con
current processing environment. We also give a 
specific example for parallel processing with a 
residual-based iterative method on a partition of 
subdomains. 

Advanced Processors 

Since the earliest attempt by Babbage in 1822 
to develop a mechanical 'analytical engine,' the 
need to solve scientific and engineering problems 
has naturally been a dominant factor in the evolu
tion of computers and calculating methods. How
ever, modern scientific computation dates from the 
introduction of electronic computers, such as the 
ENIAC in 1946. Phenomenal advances in electronics 
since that time have led to the emergence of suc
ceeding generations of advanced computers such as 
the IBM 7090, ILLIAC, CDC 6600 and CRAY 2. Al
though the term 'supercomputer' has been 'applied 
only recently to the current generation vector 
computers, the term generally describes the lead
ing scientific computers of a given generation. 
Thus, today's supercomputer will, in due course, 
be superceded by the advanced processors of the 
next generation. The revolution in microelectron~ 
ics has been at the center of technological ad
vances in computing. Large-scale integrated cir
cuits on a tiny chip now have more computing power 
than the mainframe computers of the 1960's. These 
advances are all the more impressive when we con
sider the short period over which they have oc
curred. One is tempted to imagine that this de
velopment can continue unabated at the same rate 
and in the same manner through miniaturization. 
However, at the present sub-micron level at which 
chip research is being conducted, the distances 

CH2345-7j86jOOOOj0535$Ol.OO © 1986 IEEE 
535 

are so small that fabrication difficulties are 
formidable. Moreover, the speed of light becomes 
a very real constraint at this scale. The pre
vailing wisdom is that a major scientific break
through using, perhaps, ideas related to "quantum 
tunneling" will be necessary for the current rate 
of progress in chip design to be maintained. 

There is another aspect of the microelectron
ics industry that has a very direct bearing on 
current trends in advanced computers. This is the 
fact that computer chips can be manufactured in 
large quantities at very low cost. As a result, 
the familiar desk-top personal computer has more 
computing power than an IBM 7090 at a minute frac
tion of the cost. In fact, a processor for the 
recently announced ETA 10 supercomputer would fit 
on a desk top. The mass production of chips has 
led not only to processors for desk-top computers 
but also to the development of systems in which 
processors may be used concurrently in parallel, 
either independently or jointly on a given task. 
The ideas of exploiting parallelism are not new, 
and various forms of parallelism exist to differ
ing degrees in all computers at the arithmetic and 
storage levels. Historically, parallelism at the 
processor level was an integral part of the early 
ILLIAC design but was obviated by progress in 
microelectronics. The difficulties confronting 
smaller chip design and the economy of mass pro
duction of chips has led to a renaissance in par
allel processing. 

Current generation supercomputers are config
ured with a few vector processors in parallel. 
Examples are the CRAY XMP (2 or 4 processors), 
CRAY 2 (8 processors) and ETA 10 (8 processors). 
Much of the scientific calculation performed using 
these computers is still in serial mode with the 
processors used independently on different prob
lems to increase throughput. Opportunities to 
multitask (or micro task) a single large-scale 
problem exist, and this is a topic of current 
study. Rather than use a few very sophisticated 

. processors, one can also consider linking many 
simpler processors into a highly parallel distrib
uted network. Each individual processor costs 
little but is far slower than the parallel super
computers mentioned above. The essential idea is 
to partition the calculation among many processors 
uniformly to achieve high computation speeds. 
The hypercube design has been developed as an 



effective means of linking processors in a paral
lel computing system. For example, the INTEL IPSC 
Hypercube became available in 1985, and is pres
ently configured in 32, 64 and 128 processor ver
sions. In April 1986, the FPS-T series appeared, 
also configured using the hypercube concept, but 
involving more advanced vector processing units. 
Other parallel computers, such as the Balance 
8000, are also in research use. 

The introduction of vector processors and now 
of parallel processing has led us to re-examine 
numerical, methods and algorithms that were previ
ously developed and refined for csequential scalar 
calculations. Features of a numerical method and 
the associated algorithm, that proved inefficient 
for sequential scalar calculations, may now be 
quite attractive (and vice versa; see, e.g., Fox 
and Otto [1984J, Voigt [1985]). In the next sec
tion, we examine this issue further in the context 
of finite element methods and algorithms. 

Finite Elements 

The finite element method grew out of the 
need to solve accurately structural analysis prob
lems in the aerospace industry during the late 
1950's. Although the mathematical ideas had been 
outlined earlier in the appendix of a paper by 
Courant [1943], it was not until advanced elec
tronic computers were widely available that the 
method could be effectively applied for routine 
engineering computations. Since this period, 
_finite element techniques have evolved rapidly and 
are now established as a ,basic method for solving 
boundary and evolution problems in science and 
engineering. In a finite element analysis, the 
problem is formulated in a weighted integral sense 
and a piecewise-polynomial approximation sought on 
a discretization of the domain composed of 'ele
ments' of simple shapes. Contributions of each 
element to the associated discrete system are com
puted independently and the resulting numerical 
linear algebraic problem solved using sparse 
matrix methods. 

Point iterative methods' were used initially 
for finite element system solution due to the 
limited ,fast memory available. Since engineering 
design problems in structural analysis frequently 
involve many- right-hand side vectors, factoriza
tion of the system matrix followed by repeated 
substitution sweeps was preferable. This has 
become the prevalent approach for system solution 
and is used widely with such sparse solution 
schemes as simple banded solvers, envelope (or 
profile) solvers and frontal solvers. For prob
lems with few right-hand si-des, iterative tech
niques may be a viable alternative, particularly 
when very large-scale problems are considered and 
memory limitations again become a significant con
straint. On the other hand, iterative methods are 
most effective when the 'matrix is symmetric posi
tive definite. While iterative methods may also 
be successful for other matrices, special precon
ditioning - strateg,ies are frequently required; in 
certain important classes of problems including, 

536 

for instance, convection-dominated transport the 
methods fail or may not be practical. 

In finite element analysis of time-dependent 
problems using implicit integration or of nonlin
ear problems, sparse linear system solution is 
still required, and the above considerations again 
apply. The availability of very large fast memory 
on the CRAY 2 permits sparse elimination solution 
of very large three-dimensional problems, but this 
is generally not feasible with other existing 
single or parallel systems. 

There are several levels at which one can 
identify parallelism, ranging from concurrent 
physical pro_cesses through the choice of mathemat
ical model to the selected algorithms for numeri
cal solution. These ideas and several strategies 
for concurrent processing are discussed in a pre
vious study (Carey [1986]) and detailed studies 
presented by several contributors to the same spe
cial journal issue on "PDE's and Algorithms on Ad
vanced Processors." (See, for instance, the arti
cles by Seager [1986J on conjugate gradient multi
tasking, Rodrigue r 1986] on subdomain splitting, 
Adams [:1986] on multicolor iterative methods, 
Kincaid et al. [1986] on vectorized iterative 
methods and McBryan and Van de Velde [1985] on 
elliptic methods, among others. The earlier ASME 
monograph, edited by Noor [1983J, gives a broad 
overview of other developments in this area. 

In the present study, we will focus specifi
cally on the inherent structure of the finite ele
ment method as derived from the integral statement 
of the problem and the independence of element 
calculations. This philosophy can also be suc
cessfully incorporated in the solution procedure, 
by re-designing the solution algorithms appropri
ately. 

Let us consider the three main steps in a 
finite element ,scheme: 

(i) Preprocessor - Here, we define the domain, 
problem data, control variables and then 
generate the mesh. The significant compu
tation is the mesh generation, and various 
strategies may be used to this end. These 
range from interpolatory mapping using the 
element basis to solution of Laplace-type 
problems for th~ nodal coordinates. Since 
the latter procedure can itself be posed as 
a finite element problem on a rectangular 
domain, the arguments in (ii) for vector 
and parallel calculations also apply to 
this subsidiary problem. 

An effective procedure that lends itself to 
concurrent computing is the block method of 
generating a mesh: The global domain is 
partitioned to a number of major subdomains 
1, 2, ••• , NS where NS is related to the 
number of processors NP available (e.g., 
NS = m NP , integer m). The partition 
topology of the mesh is resident in each 
processor (or in a control processor). 
Subdomain meshes are generated by each 
respective processor to yield the desired 



nodal coordinate data and element data. 
Across the interface between adjacent 
blocks, shared nodal point information and 
element' connectivity information is "ex
changed. " Hence, communication is propor
tional to the number of interfaces in the 
partition and processing time to the densi
ty of the mesh in each subdomain, as well 
as the number of subdomains NS and number 
of processors available NP. 

(ii) Processor - In the processor, the main ele
ment computations and system solution are 
carried out. Recall that in standard prac
tice the element matrix and vector contri
butions are calculated sequentially for 
each element and "assembled" to the global 
finite element algebraic system. Since the 
element calculations are independent, they 
may be made concurrently in parallel. 
There are two main choices. First, ele
ments can be processed NP at a time until 
the element list is exhausted. (The ele
ments are dealt out to the processors in 
any order.) Alternatively, we can retain 
the subdomain format and again assign pro
cessora to specific subdomains: Processor 
1 computes all element contributions 
associated with subdomain 1, and so on. 

The assembly step must also be considered. 
If each processor has sufficient local mem
ory, then the element contributions can-be 
assembled locally, independently and con
currently. Following this, global communi
cation across the interfaces between sub
domains can be introduced to complete the 
assembly of the interface equations. This 
yields a global sparse matrix problem which 
can be partitioned in various ways for 
efficient parallel elimination or iterative 
solution. 

Rather than assemble to the global system 
and solve as indicated, one can instead re~ 
tain the original subdomain-processor for
mat. Using, for instance, the idea of sub
structure analysis, we can pre-eleminate 
the interior unknowns in each subdomain to 
construct, in essence, subdomain "super
elements." These super-elements can be 
assembled in the standard way to give a re
duced system corresponding to the unknowns 
on the interface. Assembly again requires 
exchange of information at the common in
terfaces and accumulation of nodal equa
tions, with some overlap of communication 
and computation. 

Iterative methods can also be combined with 
the above strategy as, for instance, in 
block iteration for each of the subdomain 
blocks. Here, all the internal degrees of 
freedom are retained in each block matrix. 
For a residual-based iterative method, the 
block matrix operations can be made concur
rently, with exchange of information con
cerning residual vectors at the interfaces 

537 

only. We discuss this scheme in more de
tail later. 

(iii) Post-Processing - The finite element vector 
of nodal unknowns (displacements, poten
tials, temperature, etc.) may be used to 
determine subsidiary results (stresses, 
velocities, fluxes, respectively) of engi
neering interest. Furthermore, in adaptive 
refinement procedures, the finite element 
solution on a given mesh is post-processed 
to compute the error indicator· of each ele
ment for the refinement algorithm (see, 
e.g., Carey and Oden [19841). Both the in
dicator calculation and the refinement pro
cedure can be carried out by different pro
cessors on separate' subdomains. However, 
some caution must be exercised again at the 
interfaces to ensure compatible refinementS" 
here between adj acent subdomains and the 
problem complexity is significantly in
creased. Energy integrals on the entire 
domain and similar global scalar quantities 
must be accumulated and, hence, requires 
communication among processors. 

Summarizing, one variant of the parallel finite 
element scheme proceeds as follows: 

(1) The domain is partitioned to major blocks; 
(2) Mesh generation is carried out concurrently 

on blocks (subdomains); 
(3) Element matrix calculations are carried out 

sequentially within blocks but in parallel 
between blocks; 

(4) (a) Pre-eliminate internally within' blocks, 
concurrently, or 

(b) Block matrix-vector products for iter
ation concurrently; 

(5) (a) Solve reduced system by parallel-vector 
elimination, or 

(b) Update residuals at interfaces du~ing 
iteration; 

(6) Post-process within blocks for element deriv
atives, integrals, error-indicators, etc. 

Remarks: (1) For "massively parallel" architec
tures, the subdomain size will be relatively small 
and, hence, the amount of computation on each pro
cessor proportionally less. For some of the. steps 
above, e.g., (3), (4) and (6), little or no pro
cessor communication .. is, involved. Step (5), how
ever, requires exchange of data between processors 
at the block interface and communication consider
ations become more significant (see also Gannon 
and von Rosendale [1984). 

(2) As indicated previously, the scheme 
above can be extended to treat nonlinear problems 
and time-dependent problems. For instance, in a 
successive approximation or Newton scheme, the co
efficient matrix and right-side vector of a linear 
algebraic system are recomputed element by ele
ment within subdomains in each step of the nonlin
ear iteration. Hence, steps (3)-(5) ~bover are 
then simply embedded within the outer nonlinear 
iteration. In the time-dependent case, if an 



implicit scheme (e.g., Crank-Nicolson) is used, we 
again have a linear (or nonlinear) system to solve 
at each time step, so steps (3)-(5) are carried 
out in each time step. Adaptive stepsize control 
based on, say, truncation error estimates will 
require minimal communication between processors. 
Explicit time integration is, of course, simpler 
to implement and vectorize within subdomains. 
Using differing time steps in different sub domains 
increases the complexity and communication an 
order of magnitude. 

Example: Subdomain Block Iteration. As an 
illustrative example, we consider the use of a 
block iterative solution scheme 4(b) and 5(b) for 
system solution. Let the domain be partitioned 
into NS = NP sub domains where NP is the number 
of processors. The subdomain and processor inter
connection topology are common. Let e 1, e 2, ••• , 

eNS be the number of elements generated in each 

subdomain. 

The main calculation in a residual-based it
erative solution (e. g., conjugate gradient solu
tion) of the linear system 

Au = b (1) 

is the matrix vector product in the residual cal
culation for iterate k 

Let 
with our 

Au - b 
-~ -

us consider the product 
block partition. We can 

Av for 
wrIte 

(NS ~ ) 
NS 

(~ ;s) Av = L ~ '!. = L 
s=l s=l 

(2) 

v = ~ 

(3) 

where A is the "expanded" matrix obtained by 
-s 

accumulating all element contributions to subdo-

main s with all other entries of A (corre-
s 

sponding to the other blocks) zero. Similarly, 

v -s 
is an "expanded" vector of nodal values asso-

ciated with the nodes of block s and with all 
other components zero. Clearly, the product in 
(3) can be obtained by computing only the block 

matrix product A v where A ,v are the re-
-s -s -s -s 

strictions of ~,~ to block s 

Hence, the main steps in the algorithm 
involve: 

(1) the sequential calculation of the element 
contributions ~, ~ for element e = 1, 2, 

••• , e
s 

with accumulation to 

each block s 

A , b 
-s -s 

in 

538 

(2) 

(3) 

the sparse vectorized block matrix products 

A v =w in each block s to obtain the -s -s -s 
block residual r b - A v ; -s -s -s -s 

accumulation of the residual component r is 
for nodes i on the interface of subdomain 
s , requiring communication between "adja
cent" processors. (Fetch and add r is from 

subregions s adjacent to node i, r i = L 
r is ' then send r i back to r is for adja

cent subregions); 

(4) update solution vector ~s on each sub domain 

s , accumulate solution components uis for 

nodes i on the interface of subdomain s 
and send the revised interface values back to 
the subdomains; 

(5) Repeat steps (2)-(4). 

Remark: Several variants of this scheme are pos
sible, including, in particular J element-by-ele
ment accumulation of residuals within each subdo
main using the strategy of Carey and Jiang [1986). 
This necessitates slightly more computation on 
each processor, but storage is now negligible so 
the approach is suitable for architectures with 
small, fast local memory. 

Acknowledgements 

We express our appreciation to M. Seager and 
B. N. Jiang for related discussions. 

References 

1. Adams, L., "Reordering Computations for 
Parallel Execution," J. Comm. App!. Num. 
Meth., pp. 26~-272, 2, 3, 1986. 

2. Carey, G. F., "Parallelism in Finite Element 
Modelling," J. Comm. App!. Num. Meth., pp. 
281-288, 2, 3, 1986. 

3. Carey, G. F. and B. N. Jiang, "Element-by
Element Linear and Nonlinear Solution 
Schemes," J. Comm. App!. Num. Meth., pp. 
145-153, 2, 2, 1986. 

4. Carey, G. F. and J. T. Oden, Finite Elements: 
Computational Aspects. New York: Prentice
Hall, 1984. 

5. Courant, R., "Variational Methods for the 
Solution of Problems of Equilibrium and 
Vibrations, Bul!. Am. Math. Soc., pp. 1-23, 
49, 1943. 



6. Fox, G. C. and S. W. Otto, "Algorithms for 
Concurrent Processors," Phys. Today, pp. 
50-59, 37, 5, 1984. 

7. Gannon, D. B. and J. von Rosendale, "On the 
Impact of Communication Complexity in the 
Design of Parallel Numerical Algorithms, IEEE 
Trans. Comp, pp. 1180-1194, C-33, 1984. 

8. Hageman, L. and D. Young, Applied Iterative 
Methods. New York: Academic Press, 1981. 

9. Kincaid, D. R., T. C. Oppe and D. M. Young, 
"Vectorized Iterative Methods for Partial 
Differential Equations," J. Comm. App!. Num. 
Meth., pp. 289-296, 2, 3, 1986. 

10. McBryan, O. and E. Van de Velde, "Parallel 
Algorithms for Elliptic Equations," Comm. 
Pure App!. Math., pp. 769-795, 28, 1985.--

11. Rodrigue, G., "Some Ideas for Decomposing the 
Domain of Elliptic Partial Differential 
Equations in the Schwarz Process," J. Comm. 
Appl. Num. Meth., pp. 245-250, 3, 4, 1986. 

12. Noor, A. K. (Ed.), "Impact of New Computing 
Systems on Computational Mechanics," ASME 
Monograph, 1983. 

13. Seager, M. , "Overhead Considerations for 
Parallelizing Conjugate Gradient," J. Comm. 
Appl. Num. Meth., pp. 273-280, 2, 3, 1986. 

14. Voigt, R. G., "Where Are the Parallel Algo
rithms," ICASE Rept., 85-2, NASA Langley, 
1985. 

539 



PARALLELISM IN SOLVING PDES 

John R. Rice * 

Department of Computer Science, Purdue University 
West Lafayette, IN, 47907 

ABSTRACT 

This paper examines the potential of parallel compu
tation methods for partial differential equations (PDEs). 
We first observe that linear algebra does not give the best 
data structures for exploiting parallelism in solving PDEs, 
the data structures should be based on the physical 
geometry. There is a naturally high level of parallelism in 
the physical world to be exploited and we show there is a 
natural level of granularity or degree of parallelism which 
depends on the accuracy needed and the complexity of the 
PDE problem. We discuss the inherent complexity of paral
lel methods and parallel machines and conclude that 
dramatically increased software support is needed for the 
general scientific and engineering community to exploit the 
power of highly parallel machines. 

1. INTRODUCTION AND SUMMARY 

This paper examines the potential for the use of paral
lelism in the solution of partial differential equations 
(PDEs). There are six principal points made as follows: 

1. Linear algebra is not the right model for developing 
methods for PDEs and it is particularly inappropriate 
for parallel methods. 

2. The best data structures for PDE methods are based 
on the physical geometry of the problem. 

3. Physical phenomena have large components that 
inherently parallel, local and asynchronous. Parallel 
methods can be found to reflect and exploit this fact. 

4. There is a natural granualarity associated with parallel 
methods for PDEs. The best number of "pieces" and 
processors depends on the complexity of the physical 
problem, the accuracy desired and properties of the 
iteration used. 

5. Parallel machines are very messy and it is essential 
for most users that one have very high level PDE sys
tems to hide this mess. 

* This work supported in part by Air Force Office of Scientific Research grant AFOSR-84-0385. 

CH2345-7/86/0000/0540$Ol.OO© 1986 IEEE 
540 

6. There is much to be gained to using regularity in 
parallel methods, but one should not carry this to 
extremes. 

II. LINEAR ALGEBRA DOES NOT GIVE 
THE BEST DATA STRUCTURES 

In recent years there have been numerous papers writ
ten about linear algebra on parallel/vector machines (see 
Hwang2

, Sameh5 and Ortega and Voight3 for surveys and 
further references). Many machines have been designed to 
~rovide very high performance for linear algebra computa
tlOns (see Hwang and Briggs! and Hwang2 for surveys and 
further references). Most of this work is motivated or 
justified in some part by applications to solving PDEs. 
Solving large linear problems is an inherent step in solving 
PDEs and it is usually the most expensive step, yet the 
thesis of this section is that most linear algebra approaches 
can be misleading for exploiting parallelism in solving 
PDEs. 

A case in point is nested dissection. This was a break
through in solving PDEs, one that many people (including 
myself) had searched for over a period of decades. The ori
ginal presentation by Alan George of nested dissection was 
inscrutable. If one starts (as everyone did) with the linear 
algebra problem Ax = b, then to discover nested dissec
tion, one had to see that a matrix rearrangement such as 
shown in Figure 1 was the "right" way to eliminate the 
unknowns. However, if one expresses the reordering in 
terms of the underlying geometry of the PDE, one sees that 
nested discretion is a natural divide and conquer algorithm. 
It is then easy to understand why the method works so well, 
to see how to extend it to nonrectangular domains or to 3 
dimensions or to finite element methods. 

If one starts with a conventional matrix/vector 
representation of a PDE computation it is much harder to 
find efficient methods because the inherent structure of the 
PDE problem is so distorted by conventional matrix/vector 
representations. This is further illustrated in Figure 3 which 
shows the conventional matrix structure obtained by discre
tizing a second order PDE with derivative boundary condi
tions on the domain shown there. It is a computational 
tour-de-force to recover from Figure 3 the information that 
is superficially apparent in the domain picture. 



The shortcomming of the conventional linear algebra 
approach is that the right data structure is not used, instead 
one should base the data structure on the underlying physi
cal geometry. Figure 4 shows a domain which has been 
"exploded" to group "like-kinds" of elements together in 
a PDE problem. A method that is really successful in 
exploiting parallelism in this problem must "know" this 
structure, the most practical way to know i~ is to have it 
given explicitly in the data structure. More complex prob
lems have other structure (interfaces, singular points, etc.) 
that can be incorporated in a similar way. It is not just 
parallelism in the computation that needs information such 
as seen in Figure 4, the control of numerical methods also 
need it. Numerical models need to be more accurate (e.g., 
grids need refining) near special locations. The partitioning 
of the computations for rapid convergence in iterative 
methods is strongly influenced by this information. 

x x x 
xx 

xxx 
x xx 

x 
x 

xx x 
xxx X 

x x xx 
x xxxx 

x x xx 

x 

x x 

x 

x 
xx 

x 

xx x 
xxx x 

x x x x 
xxx 

xxx x 
x x xx 
x xxxx 

x x xx x 
x xx 

x xxxx 
x x 

x 

x 
x 

xx 
x x x 
xx 

xxx 
x xx 

x 
x 

xx x 
xxx x 

x x xx 
x xxxx 

x x xx 

x 
x 

x 

x 
x 

x 
x x 

x 
x 

x 
x 
x 

x 
x 

x 

x 

x 

x 

x 
x x x x x 

x xx x 
xxx x 

x x xx 
x 

xxx 
xxx x 

x x xx 
x xxxx 

x 
x 

x 

x x xx x 

x 

x 

x 
x 

x xx 
xxxx 

xx x 
xx 
xxx 
xxx 

x xxx 
xxx 
xxx 
xx 

Figure 1. The pattern of non-zeros that occurs in solving 
Laplace's equation using the nested dissection ordering of 
the conventional matrix formulation using finite 
differences. 

541 

• 0. .0 • • 0. .0 • 
000 000 000 000 
• 0. .0. • 0 • .0 • 

• 0. .,0. • 0 • .0 • 
000 000 000 000 
• 0. .0. • 0 • .0 • • 0. • 0 • • 0 • .0 • 
000 000 000 000 
• 0. • 0 • • 0 • .0 • 

• 0. • 0 • .0 • 
000 000 000 
• 0. • 0 • .0 • 
Figure 2. A visualization of the nested dissection ordering 
shown on a two dimension grid. Points are grouped in 
isolated blocks, one point per block at the first level, then 9, 
then 49, then 225 and so on. 

xx xxx 
xxx xxx 
xx xxx 

xx xx 
x xxx xxx 
xx xxx xxx 
xxx xxx xxx 
xx xxx xxx 
x xx xx 
xx xx xx 
xxx xxx xxx 
xxx xxx xxx 
xxx xxx xxx 
xxx xxx xxx 
xx xx xxx 

xx xx xx 
xxx xxx xxx 
xxx xxx xxx 
xxx xxx xxx 
xxx xxx xxx 
xx xxx xxx 
x xx xx 
xx xx xx 
xxx xxx xxx 
xxx xxx xxx 
xxx xxx xxx 
xxx xxx xxx 
xxx xxx xxx 
xx xx xx 

xx xx xx 
xxx xxx xxx 
xxx xxx xxx 
xxx xxx xxx 
xxx xxx xxx 
xxx xxx xx 
xx xx x 

xx xx 
xxx xxx 
xxx xxx 

xxx xxx 
xxx xxx 
xxx xx 

Figure 3. The conventional matrix structure obtained from 
a 9-point finite difference discretization on the domain of 
Figure 4. 



Q 

f-

o D· 
---

Figure 4. An exploded view of a physical domain which 
shows the elements of a "like" nature grouped together. 
The groupings are the first step in determining an 
appropriate structure in the problem of an efficient parallel 
method. 

III. PARALLELISM IS (ALMOST) UNLIMITED 
IN SOLVING PDEs 

We claim that the physical phenomena that PDEs 
model are inherently local in space and asynchronous. 
Locality means that the phenomena are inherently amen
able to parallel methods, the computation done at point A 
does not depend 'on anything being done at the physically 
distant point B. There are logical limits to the potential 
parallelism, we do not foresee much parallelism in time (as 
opposed to space) except for very special situations. There 
is also some sequentiality in local computations, one must 
compute values of coefficient functions in an equation 
before one can use the equation. For specific applications 
one can often reduce the sequential work dramatically by 
preprocessing computations (i.e., computing everything 
possible as soon as possible). 

The preceding observations are based on asymptotic 
considerations, i.e., if the physical domain is big enough 
and the accuracy required is high enough then any fixed 
number N of processors can be used profitably. We argue, 
however, that there is natural optimal or appropriate granu
larity and number N of processors associated with any par
ticular PDE computations. We measure granularity in 
terms the number N of elements of the computation or 
model of the physical object. For simplicity we ignore any 
cases where computational elements do not correspond 
naturally with physical elements. The two extremes are: 

(i) N = 1 processor gives 1 element which gives a 
sequential computation which gives very limited 
speed. 

542 

(ii) N very large (one Cray 2 per atom in a river?) 
gives a huge number of elements which gives 
very high parallelism which gives almost unlim
ited speed. 

There are four considerations (at least) besides cost 
which lead to the existence of an optimal granularity, they 
are 

1. Every problem has an acceptable solve time 
beyond which solving it faster does not matter. 

2. Every problem has an acceptable accuracy 
beyond which more accuracy does not matter. 

3. For a fixed physical problem, the number of 
interfaces between elements grows with the 
number of elements, thereby increasing the com
plexity and communication requirements of the 
computation. This growth might be very slow. 

4. For a fixed problem and method, the total work 
might eventually grow faster with N than paral
lelism reduces it because of slower convergence 
of iterative methods, etc. 

Having identified granularity with N, we see that the 
independent variables in an application design are N, the 
desired elapsed time T and the required accuracy E. 

Assume now that E behaves in a known way, that it is fixed 
and we only consider choosing N to achieve a specified T 
value. Figure 5 shows an idealized plot of cost versus time 
to solve a particular problem using a fixed number N of 
processors. The key points are that there is a lower limit on 
time (because processors can go only so fast) and that cost 
quickly reaches a plateau as the time increases. Figure 6 
shows a different view of the situation, cost versus N for a 
fixed time to solve a particular problem. Again there is a 
lower limit because processors can go only so fast, but 
there is also an optimum. As N increases the cost starts to 
increase because of idle processors andlor increased com
munication (overhead) costs. 

Cost 

plateau ----1-----------------------------

1 

Lower 
limit Elapsed time 

Figure 5. Cost versus elapsed time to solve a particular 
problem using N processors. 



Cost 

minimum 

Lower 
limit 

N = Number 
of processors 

Figure 6. Cost versus the number of processors N used to 
solve a particular problem in a fixed elapsed time. The 
point A gives the minimum cost using an optimal number 
of processors. 

We can replot the information of Figures 5 and 6 in 
the (N, T) plane and show two curves: the limiting curve 
of what is possible and the curve of optimal combinations 
of T and N. This is shown in Figure 7, the shapes are 
purely conjectural, one does not know what they are. It is 
true that cost decreases monotonically from point C to D. 

D (low cost) 

curve 

limit 
A 

Fastest possible time 

N = Number of processors 

Figure 7. The (N, T) plane showing the limiting curve (A 
to B) of what is possible and the locus (C to D) of optimal 
cost combinations of N and T. 

543 

Thus we see that while in principle there might be no 
limit on the amount of parallelism that can- be used in solv
ing PDEs, there is definitely such a limit for any fixed 
application. Very little is known about actual values for 
real problems. I believe we are very f~ from the methods 
that give optimal time or cost in solving PDEs. On the 
other hand, I find it very convincing to argue that many real 
problems are very complex and that to achieve "engineer
ing" accuracy and "reasonable" elapsed time with even a 
low cost method (never mind optimal cost) will use 
thousands of processors. 

N. PARALLEL METHODS REQUIRE 
NEW SOFTW ARE SYSTEMS 

Parallel machines are already rather complex, much 
more so than previous computers. They will become even 
more complex as it is discovered that a mixed set of capa
bilities provides more efficient computing. There will be 
variety is everything: processors (integer, floating point, 
graphics, vector, FFT, ... ), memory (local, global, cache, 
archival, read only, ... ), I/O (keyed, text, graphics, movies, 
acoustical, analog, ... ), communication (message passing, 
packets, buses, synchronous/asynchronous, hypercubes, 
high/low speed, long haul, ... ). The difficulty in managing 
(programming) this complexity is easily an order of magni
tude higher than for present machines. The difficulty is 
compounded by the fact that changes in the capabilities 
available will become much more frequent. 

The current programming methodology for solving 
PDEs is that of Fortran. One has a fairly intelligible 
language where one can exert fairly direct control of the 
machines resources. Each Fortran statement is typically 
implemental by 5-10 machines instructions. There must, I 
believe, always be such a language and I believe that For
tran will be expanded to handle the greater complexity of 
the machines. It might also be replaced by another 
moderate level language with such capabilities, e.g. Ada or 
C suitably enhanced. However, it will no longer be reason
able to expect the end-user scientists and engineers, the 
people who solve PDEs, to learn how to manage this com
plex computational environment. They will generally not 
do a very good job of it and, even if they did a good job, it 
would be a great waste of talent and duplication of effort. 
The potential benefits of parallel computation will not be 
achieved if every user has to master (even partially) how to 
manage such complex machines. 

The solution to this problem is to substantially raise 
the level of the user's "programming" language. He must 
be able to say in a natural and succinct way what is to be 
done. In the PDE context they should be able to say things 
like: 

1. Solve 
(1 + x 2)uxx + Uyy - sin (ay)u = Force 2(x, y) 
on the Domain # 12 
with u = 1 on the boundary. 

2. Use finite differences with a 40 by 40 grid 
plus SOR iteration 



3. Show me plots of u , Ux and uy 

In fact, we must aim eventually for the situation where 
statement 2. is replaced by 

2a. Obtain an accuracy of about 0.5 percent 

Then, between such a program and the-Fortran level is 
a layer of software which has two components. The first is 
a set of problem solving modules written by people who are 
relatively expert in solving the problems -at -hand and 
experienced in how parallelism (or other special capabili
ties available) can be exploited. There will be different 
methods (or, at least, different implementations) in the 
modules suitable for important subclasses of machines. 

The second component of this layer is a set of compu
tation management facilities written by people who are 
relatively expert in memory management, network schedul
ing, program transformations, etc. They have spent the 
time to learn how to provide such facilities well and have 
embedded much of their expertise into their software. 
These two components are then integrated to provide a 
bridge between the high level user input and a Fortran-like 
program -targeted for the particular machine (or machines) 
to be used to solve the problem. 

The obvious advantage of this methodology is that, if 
it works, there is a dramatic reduction in programming 
effort. This is, of course, the' goal of introducing the 
methodology. Note that this nOLbeing done just to reduce 
software costs, the "mass-market" viability of parallel 
computation depends on introducing a methodology which 
hides the underlying complexity from most users. 

The obvious disadvantage of this methodology is that 
the intermediate layer might introduce so much in 
efficiency that the power of parallelism is seriously weak
ened or even lost. It is clear that no foreseeable software 
for managing a computation can be as clever, resourceful 
and effective as clever, experienced people. This fact is a 
smokescreen that obscures a much more relevant "fact": 
people, even clever and experienced ones, almost never get 
close to "optimal" computations because they do not take 
the time to do it, it is inordinately expensive to do so. The 
result is that a good software system, one with many flaws 
which does many obviously stupid things, consistently can 
produce moderately good implementations which are 
significantly better than the ones people consistently pro
duce. Scientific evidence to support this fact is scarce, but 
there is one solid data point. 

Figure 8 shows a program written in DEQSOL, a high 
level PDE problem solving language under development at 
Hitachi. No attempt is made here to explain DEQSOL. 
Hitachi has two PDE application programs that were writ
ten in FORTRAN prior to their vector supercomputer and 
DEQSOL efforts. These programs were brought into their 
vectorizing Fortran compiler environment and hand tuned 
to run well on their machines. The problems being solved 
were later reprogrammed in DEQSOL which produces a 
Fortran program which then use the vectorizing Fortran 
compiler but no hand tuning. The results of this experi
ment are shown below. 

544 

dom x = [0:1] , 1* 3D DIFFUSION PROBLEM *1 
y=[O:I] , 
z = [0:2] ; 

tdom t = [0:5] ; 
mesh x = [0:1:0.1] , 

y = [0:1:0.1] , 
z = [0:2:0.1] , 
t = [0:5:0.001] 

var T ; 1* Temperature *1 
const 

rho = 1 , 1* Density *1 
c = 1 , 1* Constant *1 
k = 1 , 1* Diffusion Constant *1 
u = 0 , 1* x-axis Velocity *1 
v = 0 , 1* y-axis Velocity *1 
w = 5*(1.0-x**2)*(1.0-y**2) , 1* z-axis Velocity *1 
S = exp(-x**2-x**2-(1.0-z)**2) ; 

1* Source Distribution *1 

cvect V = (u, v, w) ; 1* Velocity Vector *1 
region 

In=(*,*,O) , 1* In *1 
0=(*,*,2), 1* Out *1 
XO=(O,*,*), 1* Left *1 
Xl = (1, *, *) , 1* Right *1 
YO = (*, 0, *) , 1* Bottom *1 
Yl = (*, 1, *) , 1* Top *1 
R = ([0:1], [0:1], [0:2]) ; 1* Whole Region *1 

equ rho*c*(dt(T)+V .. grad(T)) = k*lapl(T)+S ; 

bound T = 0 at In+Xl+Yl, 
dz(T) = 0 at 0 , 
dx(T) = 0 at XO , 
dy(T) = 0 at YO ; 

init T = 0 at R ; 

ctr NT; 1* Iteration Counter *1 

scheme; 
iter NT until NT gt 200; 

T<+l> = T+dlt*«k*lapl(T)+S)/(rho*c)~V.~grad(T)) ; 
print T at YO ; 
disp T at YO every 100 times 

end iter; 
end scheme; 
end; 

Figure 8. A DEQSOL program for solving a partial. 
differential equation. This is a three -dimensional, time 
dependent diffusion equation. 

A B 
FORTRAN: 

lines of code 1361 1567 
execution time (sec.) 2.3 5.8 

DEQSOL: 
lines of code 127 132 
execution time - 0.6 1.8 
speed up factor 3.8 3.2 



We see that not only was the programming effort reduced 
by the least an order of magnitude. but there was also a 
very worthwhile gain in execution speed. Keep in mind 

·that a-speedup of 3 or 4 is the typical total benefit achieved 
from using vector hardware on Cray and Cyber 205 
machines. 

We illustrate the power that can be .achieved using 
such high level languages by 'considering the Plateau prob
lem: 

(l+ux
2)uxx -2ux uyuxy +(1 +uy

2)Uyy =0 

U (x, y) given on the boundary of a region R (1) 

This is classical' difficult PDE problem, its solution is the 
surface that a soap film takes on for a wire frame bent 
according to the value specified on the boundary of R. We 
solve this problem for the domain R (shaped like .a 'piano 
top) explicitly defined in Figure 9. The high level language 
used is that of ELLP ACK4 one that provides modules and 
facilities for solving linear PDEs. 

Figure 9 shows an ELLP ACK program to implement 
Newton's method for (1). We do not explain the 
ELLP ACK language here. A simple initial guess is made 
and the convergence is quite rapid in spite of the fact that 
the solution has a singUlarity (the wire has a sharp bend) 
along one side. The maximum differences between iterates 

are: 1.24, .30, 9.6 x 10-3, 2.4 X 10-5 and 5 x 10-7• The 
round off level (on a VAX 111780) is reached at five itera
tions. 

Our final point in the software and programming area 
concerns the role regularity in data structures, in algo
rithms and in programs. Clever programmers and 
hardware designers can do a lot of special things to exploit 
special situations. This exploitation is usually achieved at 
the cost of more complex software and hardware. Thus 
there must bea balance between the execution time costs 
and the design costs of software and hardware. While it is 
hard to defend general statements on the matter, we believe 
that the optimum lies nearer to regularity and its attendant 
simplicity than it does to irregularity and its attendant com
plexity. However,. we. feel extreme simplicity is not the 
best approach either. 

This view.is illustrated by an example in discretizing 
a domain. Figure 10 shows a physical domain that has 
been partitioned in six ways for a problem with difficulties 
near the right boundary: 

(A) A fine triangulation of a common type 

(B) A fine, uniform, rectangular overlay grid 

(C) Mapping the domain to,a rectangle and inducing 
a logically rectangular partition 

(D) Triangulation adapted to the difficulty 

(E) Rectangular overlay grid adapted to difficulty 

(F) Logically rectangular partition adapted to 
difficulty 

545 

EQUATION. 
(1.+uy(x,y)**2) uxx + (1.+ux(x,y)**2) uyy & 

- 2.*ux(x,y)*uy(x,y) uxy & 
+ 2. *(ux(x,y)*uyy(x,y) - uy(x,y)*uxy(x,y» ux & 
+ 2. *(uy(x,y)*uxx(x,y) - ux(x,y)*uxy(x,y» uy & 

2. *(ux(x,y)*uyy(x,y) - uy(x,y)*uxy(x,y»*ux(x,y) & 
+ 2. *(uy(x,y)*uxx(x,y) - ux(x,y)*uxy(x,y»*uy(x,y) 

BOUNDARY. 
u = bound(x,y) on x = 1.0, & 

y = 0.5 + p for p = 0.0 to 3.5 
u = bound(x,y) on x = 1.0 + p, & 

y = 4.0 for p = 0.0 to 3.0 
u = bound(x,y) on x = 4.0 + .1 *p*(p-4.5)**2, & 

y = 4.0 - P for p = 0.0 to 4.5 
u = bound(x,y) on x = 4.0 - p, & 

y = -0.5 + p/3. for p = 0.0 to 3.0 

GRID. 
9 x points 1.0 to 5.5 $ 9 y points -0.5 to 4.0 

TRIPLE. set ( u = gessu ) 

FORTRAN. 
do 100 it = 1,5 

call save(rlunkn,ilneqn) 
discretization. collocation 
solution. band ge 
output. max(diffu) 

FORTRAN. 
100 continue 

OUTPUT. table(u) $ plot(u) 

Figure 9. An ELLPACK program for applying Newton's 
method to solve the Plateau problem. The procedures 
bound, diffu, gessu = xy 14 and save are defined by 22 lines 
of Fortran not shown here. 

We believe that the irregular triangulations do not provide 
any execution time advantage over the more regular parti
tions (one can do a regular triangulation if one wants). On 
the other hand, we also believe that the uniformly spaced 
partitions are too simple and have too large an execution 
time penalty. We believe the adaption will payoff. The 
logically rectangular discretization is the simplest to pro
gram but the relative execution efficiencies resulting from 
(E) and (F) are not clear. Thus we believe that the. search 
for the "best" method should be concentrated on partitions 
like (E) and (F) but there are still many undetermined 
degrees of freedom. 



A D 

r---. r---. 
" " \ 

I 
\ 

/ 
f--I 

/ '--1 
/ 

.............. / 
....... ........ 

"" ........ "::1 ....... I 
B E 

c F 

Figure 10. Six ways to partition a domain showing ways to 
achieve regularity and to adapt to a difficulty. The letters 
A through F refer to the discussion in the text. 

546 

V. REFERENCES 

[1] K. Hwang and F. Briggs, Computer Architecture and 
Parallel Processing, New York, McGraw-Hill, 1984. 

[2] K. Hwang, Supercomputers: Design and Applica
tions, Silver Spring, IEEE Publication EH0219-6, 
1984. 

[3] J. Ortega and R. Voight, "Solution of Partial differen
tial equations on vector and parallel computers," 
SIAM Review, pp. 149-240, 1985. 

[4] J. Rice and R. Boisvert, Solving Elliptic Problems 
Using ELLPACK, New York, Springer-Verlag, 1985. 

[5] A. Sameh, "An overview of parallel algorithms for 
numerical linear algebra," First Int. Colloquium on 
Vector and Parallel Computing in Scientific Applica
tions, Paris, 1983. 



GEOPHYSICAL MODELING - MIGRATION VIEWED 
AS A SPECTRUM OF SUPERCOMPUTER APPLICATIONS 

Olin G. Johnson 
Oliver Lhemann 

Houston Area Research Center and University of Houston 
Cray Research Inc., Minneapolis, Minnesota 

ABSTRACT 

This paper develops the thesis that no single 
algorithm is appropriate for all modeling
migration problems. Restricting attention to a 
single 3D problem size of 2003 space points and 
2,000 time points, the amount of computing 
required for migration can vary by two orders of 
magnitude depending on the complexity of the 
problem. 

A review of reported timing results over the past 
four years leads to the identification of three 
classes of algorithms appropriate for three 
corresponding migration problem complexity 
levels. Both the computational and I/O 
requirements of these algorithm classes are 
discussed. Trade-off techniques for swapping I/O 
for computing are discussed and examples are 
given for the resulting CPU times. Graphical 
results from a variety of 3D problems are given. 

INTRODUCTION 

The successful replication of the methods of 
reflection seismology in scaled modeling tanks 
over the past few years has at last turned 
exploration geophysics into a laboratory 
discipline. Pioneering organizations such as the 
Seismic Acoustics Laboratory (SAL) at the 
University of Houston now have extensive 
catalogues of seismic sections in both 2D and 3D 
corresponding .to layered structures of known 
dimensions and acoustic properties. 

These data sets are invaluable in research 
efforts directed to duplicating these techniques 
with computerized models and in testing seismic 
codes. The Keck Research Computation Laboratory 
(RCL) , a sister laboratory to SAL, primarily 
pursues research in the use of supercomputers, 
array processors and parallel computer ensembles 
in the 3D exploration geophysics area. 

Several modeling and migration algorithms have 
been studied, programmed and tested for accuracy 
of results using the SAL data. 

Two models and their respective data sections are 
used here. The Wedge Model, pictured in Figure 
1, is a simple three layer model with a silicon 
rubber wedge setting on a plexiglass plate, all 

CH2345-7j86jOOOOj0547$Ol.OO© 1986 IEEE 
547 

submerged in water. Figure 2 exhibits a 3D 
seismic section of the SALNOR7 model that 
illustrates a typical complicated North Sea 
geological structural sequence. The model 
consists of seven horizons that represent the top 
Paleocene, top Cretaceous, J -Unconformity, top 
Brent, base Brent, top Statfjord and base 
Statfj ord. A 3D data set consisting of 240 
traces on 240 lines has been collected. Each 
trace contains 3000 samples at 1 ms. A complete 
description of this model is given in (Nelson et 
al., 1982). 

51 101 151 201 251 

800 

1600 

2800 

3800 

Figure 1. Structure of the Buried Wedge Model. 

Figure 2. The SALNOR7 Model Time Section. 



The computational methods reported here fall into 
two categories: phase shift techniques which 
allow no lateral variation in velocity and phase 
shift plus some type of correction which allow 
"mild" lateral variations. Methods which allow 
arbitrary lateral variations are available7 . In 
the 3D case of size 2003 space points and 2000 
time points, such techniques require several 
hours of computation on present generation 
supercomputers. 

As will be shown, the computational requirements 
for these three algorithms can vary by two orders 
of magnitude. 

A primary objective of the RCL program has been 
to construct the fastest 3D migration program 
possible. This is accomplished by limiting the 
data to a single velocity function and optimizing 
and parallelizing the data handling sections of 
the code. 

HYPERSPEED MIGRATION 

In Lhemann8 a code for 3D migration based on the 
Phase Shift and PSPI algorithms is described 
which took less than three minutes of 
supercomputer wall-clock time to migrate the 
North Sea data cube of size 256x256x2048. 

The Phase Shift migration method is based upon 
the scalar wave equation 

(1) 

where p = p(x,y,z,t) is the pressure field, x and 
yare the midpoint variables, Z is the depth, t 
is the two-way travel time, and V is the half 
velocity. Assuming the V does not depend on x or 
y, the Fourier transform with respect to x, y and 
t leads to the following equation 

(2) 

with. P(kx,ky'z,w) = FFTx,y,dp(x,y,z,t)]. 
Group~ng all terms depending on P on one side, 
one gets 

02p w2 

oz2 (V2 _ k 2 _ k 2)P 
x x 

Let k z = ± -/<w
2 k 2 k

2
) x y 

V2 

then o2p (3) 

oz2 = _ k 2P. 
z 

The non-negative (complex) value of k z is taken 
reflecting the downward extrapolation of the 
recorded seismic data in the migration process. 

This last equation (3) has an analytical solution 

548 

In practice, a phase shift migration first reads 
the seismic data p(x,y,z=O,t) and performs a 
triple Fourier transform to get P(kx,ky,z=O,w). 
The Phase Shift Factor (PSF) exp(ikz~z) is then 
calculated, and downward extrapolation is applied 
as given by equation (4). The migrated result 
(in the space domain) is obtained after 
P (kx , ky, z, w) has been calculated for all w by 
summing over all w7 . 

P(kx,ky,z,t=O) = ~ P(kx,ky'z,w). 
w 

(5) 

The final section p(x,y,z,t=O) is obtained by 
performing a double inverse Fourier transform in 
the space domain. 

The Phase Shift algorithm has a lot of practical 
advantages, it is unconditionally stable, 
accurate and the amount of computation involved 
is limited. Gazdag' s8 generalization of this 
algorithm, Phase Shift Plus Interpolation (PSPI), 
treats laterally varying velocity fields and 
consists of two steps. In the first step, the 
wave field is extrapolated as described above, 
using n different laterally uniform velocity 
fields. In the second step the actual wave field 
is computed by interpolation from the n reference 
wave fields. In the usual case where n is equal 
to 3 (minimum, maximum and average velocities) 
one obtains three fields P1, P2 and P3 at depth 
z+~z. To get the actual field P (kx , ky, z+~z, w) 
one must perform an interpolation between the 3 
previous fields. Since this interpolation 
depends on the velocity structure, a double 
inverse Fourier transform must be performed for 
each of the fields (P1(kx ,k ,z+~z,w), 
P2(kx,ky'z+~z,w) and P3(kx,ky,z+~Z,wr to get 
p1(x,y,z+~z,w), p2(x,y,z+~z,w) and 
p3(x,y,z+~z,w) . 

This is then followed by a three-point Lagrangian 
interpolation. 

1 1 1 1 

V V3 
(- -

V V2 
p(x,y,z,t 

1 1 1 1 
p1(x,y,z,t) 

V1 V3 
) ( 

V1 V2 

1 1 1 1 
(- -

V V1 V V3 
+ 

1 1 1 1 
p2(x,y,z,t) 

V2 V1 
) ( 

V2 V3 
) 

1 1 1 1 
(- -

V V1 V V2 
+ 

1 1 1 1 
p3(x,y,z,t) 

V3 V1 
) ( 

V3 V2 

The velocities V1, V2 and V3 are the reference 
velocities defined previously. V = V(x,y,z) is 
the actual 3D velocity field. The migrated 
result at depth z+~z is obtained by summing over 



wall the planes p(x,y,z+~z,w). To go deeper one 
must take the double Fourier transform of the 
previous plane and repeat the process just 
described. 

The PSPI program requires a complete 3D velocity 
model and is much slower than simple phase shift. 
However, phase shift is quite adequate for 
sedimentary sections and can serve as the basis 
of a hyperspeed code. 

A first estimate of the amount of I/O required by 
the Phase Shift algorithm to migrate the SALNOR7 
model gives (4*10 6 sectors) and so, assuming the 
average transfer time of a sector to be 0.7 ms, 
results in a time of 2800 s for the I/O. This 
number is much bigger than the estimated CPU time 
(around 140 s) required by present 
supercomputers. 

A second look at the algorithm indicates that the 
minimization of disk transfers is equivalent to 
keeping in memory, as long as possible, each 
plane P(kx , ky , z, w) . An obvious solution simply 
consists in switching the frequency and the depth 
loops. P(kx,ky'z=O,w) is loaded only once for a 
fixed w, and all extrapolation steps can be 
performed in core to get P(kx,ky'z=z+~z,w), 

P(kx,ky,z=z+2~z,w) up to the maximum depth 
P(kx,ky,z-z+NZ~z,w). 

If there is not enough space in main memory, the 
previous planes will have to overwrite each other 
during the execution of the program. But before 
doing this each of them must be added as 
described in equation (5). Since present 
supercomputers do not have sufficient memory to 
treat large 3D problems in core, the trick is to 
work with several frequencies at the same time to 
reduce the I/O transfers in proportion. 

If 16 frequencies are grouped together, a new 
estimation of the amount of I/O required by the 
modified algorithm is now around 175 s, instead 
of 2800 s. This can be reduced further by 
simultaneous I/O transfers. Hence, the resulting 
3D migration code is compute bound. 

The SALNOR7 model was padded with null traces to 
get 256 lines of 256 traces each for use with the 
FFTs. For the same reason all traces were 
truncated to keep only 2048 samples at 1 ms since 
all relevant information is at less than 2 s. 

The size of the data cube is now equal to 
256x256x2048, which represents a volume of 64 M 
words. 

The maximum depth of the migrated section is 
equal to NZSTEP*~Z, where NZSTEP is the number of 
iterations of the depth loop. To get a good 
resolution, ~Z = 10 meters and NZSTEP = 128 were 
used to reach the bottom of the model at Z = 1280 
meters. 

As seen previously, 
algorithm uses a 

the Phase Shift migration 
one-dimensional velocity 

549 

structure. Rather than choosing average values 
as one would usually do, we have selected a 
particular section (line 120) and taken for the 
velocity function the actual values at a position 
corresponding to the middle trace. This was done 
in order to compare the output with previously 
migrated results for this particular section. 

The frequency spectrum of seismic data is very 
limited, usually under 70 Hz. In the case of the 
SALNOR7 model the data were filtered by a 6 - 60 
Hz band-pass filter. Since ~t is 1 ms and the 
number of samples is 2048, it follows that ~Hz = 
1/2.048. So it is necessary to sum the computed 
results for the first 128 frequencies only. 

To migrate the entire SALNOR7 model on presently 
available supercomputers, it only takes 131 s of 
CPU and 11 s of I/O, which gives a total run-time 
of 142 s. The amount of memory required by this 
migration program is 3.2 M words. 

WAVE EXTRAPOLATION EQUATIONS 

In the presence of lateral inhomogeneities in the 
velocity field, the extrapolation equations 
obtained from the Phase Shift algorithm are 
usually approximated and solved using finite 
difference extrapolators. A review of some of 
these approximations is given below. To simplify 
notation, equations are developed only for the 
two dimensional (2D) case. The extension to the 
3D case is straight forward. 

The theory of wave extrapolation is based on the 
assumption that the zero offset pressure data, 
defined in the (x,z) domain, satisfy the wave 
equation 

(6) 

with p = p(x,z,t) where x is the distance along 
the surface, z the depth, t the two -way 
traveltime, and v the half velocity. 

In the case where the velocity v does not vary 
laterally, a double Fourier transform with 
respect to x and t is performed on the previous 
equation. We obtain 

w2 a2p 

V2 P = K2xP + az 2 

(7) 

with P(Kx,z,w) FFTx dp(x,z,t)]. From this 
equation, an analytical' solution to the downward 
extrapolation problem can be deduced6 . 

P(Kx,z + ~z,w) = P(Kx,z,w) * EXP(iKz~z) 

w2 

with Kz = ± SQRT(V2 - K2x). 

(8) 

Among the two possible solutions, only the one 
with the positive sign in the exponential (or 
phase shift) factor is relevant. This comes from 
the fact that in the migration process we are 



only interested in waves moving in the reverse 
time direction. 

In the case where the velocity v is a function of 
both x and z, the analytic solution given in (8) 
is no longer valid. This comes from the fact 
that in taking a double Fourier transform of (6), 
with respect to t and x, we do not get equation 
(7) anymore but the following 

(9) 

where 9 is defined as the convolution product. 

The product of· the inverse of the velocity by the 
pressure field P is now replaced by a product of 
convolution which rules out all chances of 
finding a simple analytical solution. A common 
method employed to circumvent this problem is to 
use the analytical solution derived in the 
constant velocity case and modify it in such a 
way that it can accommodate lateral velocity 
variations. 

For this purpose, one uses the following equation 

8P w Kxv (10) 
8z (Kx,z,w) = i(~) [1_(~)2]1/2 P(Kx,z,w) 

which has as solution equation (8) and is thus 
the exact extrapolation equation for the constant 
velocity case. Lateral variations of the 
velocity are possible if we inverse transform 
over x by letting iKx - /lx. Regrettably, this 
transform can only be performed if the square 
root is regarded as some kind of truncated series 
expansion. The square root can be developed into 
a Taylor series expansionS, or as it was first 
suggested by Francis Muir4 , into continued 
fractions. In this second method, the square 
root 

(11) 

is expanded according to the following recurrence 
relation 

K2 (12) 

Rn+l - 1 - 1 + Rn 

in which Rn is the nth order approximation. 
Starting from Ro = 1, we obtain 

K2 (13) 

Rl = 1 2 

and 
(14) 

R2 = 1 - 2 _ K2/2 

Francis Muir showed that the original 15 degree 
and 45 degree methods developed by J. Claerbout3 

correspond to the expansion defined by Rl and R2 
respectively. 

550 

The substitutions K - Kxv/w and Rn - Kzv/w give 
us the dispersion relations corresponding to 
these expansions. For example, the dispersion 
relation of the 45° method is 

w 
Kz - V 1 - (Kxv/2x)2. 

(14a) 

This expression can be used to replace the square 
root term in (10) to give us an approximated 
extrapolation equation 

8 2P w (v/2w)K2x (14b) 

8z2 - i [~ - 1 _ (Kxv/2w)2] * P. 

Such an equation can be solved using a finite
difference scheme in the (x,w) domain. A method 
of resolution is discussed in Gazdag and 
Sguazzero6. 

These are several problems associated with 
finite-difference migration methods, including 
numerical errors resulting from the finite
different approximation used and predisposition 
to instability. Numerical erros can be reduced 
by using a small integration step /lZ and the 
stability problem, is kept under control by using 
implicit methods. Unfortunately, such 
improvements appear to be quite costly in CPU 
time, especially for 3D problems. 

THE PHASE SHIFT PLUS CORRECTION ALGORITHM 

In this section, a migration algorithm suitable 
for variable velocity fields is introduced. 
Basically, the idea is first to perform a 
downward extrapolation of the pressure field 
using the phase shift algorithm and a constant 
reference velocity v. A correction term is then 
introduced, to take into account the lateral 
velocity changes in the velocity field. 

If v is the actual velocity field, it is known 
from the previous section that the exact 
dispersion relation in the two dimensional case 
can be written in the form 

w Kxv 
Kz(v) - (~) * SQRT [1 _ (~)2] 

(15) 

which, if we use the relation 

Kz(v) - Kz(v) + (Kz(v) - KZ(v)] (16) 

is also equivalent to 

w Kxv 
Kz(v) = (=) *SQRT [1 _ (-)2]+ 

v w 

w Kxv w Kxv (17) 
[(-) *SQRT[1-(-)2] - (=) *SQRT[1-(-)2]]. 

v w v w 



.s in the previous section, velocity variations 
will be introduced after inverse transforming 
over x by Kx - /::"x. This transformation is 
possible if the second term is developed as some 
kind of truncated series. Using a Taylor 
development and keeping only the first three 
terms of the development, equation (17) becomes 

w Kxv 1 1 (18) 
Kz(v) = (=) *SQRT[l- (-)2] + (~ - ~)w v w 

K2x K4x 

- (v - v) 
2w - (v3 _ v3 ) 

8w3 · 

To see how this expression can be used 
practically, let us first consider the case where 
only the firt term of the expansion is kept 
(first order PSPC). 

Kz(v) 
w Kwv 1 

(=) *SQRT[l - (-)2] + (v-
v w 

(19) 

After substituting this dispersion relation into 
equation (8), we obtain the following expression 

P(Kx,z + /::,.Z,w) = 

w 
P(Kx,z,w) *EXP {i(=)[l -

v 

Kxv 1 1 
(-) 2] 1/2 /::,.Z} *EXP {i C - =)w/::,.Z}. 

w v v 

So, by defining 

P*(Kx,z + /::,.Z,w) 

w Kxv 
P(Kx,z,w) *EXP {i(~)[l _(~)2]l/2 /::"z) 

(20) becomes 

P(Kx,z + /::,.Z,w) 

1 1 
P*(Kx,z + /::,.Z,w) *EXP {i(~ - ~)w/::"Z} 

(20) 

(21) 

(22) 

After inverse transforming this expression into 
the real domain, one obtains an expression in 
which we can vary the velocity, 

1 1 (23) 
p(x,z + /::,.Z,w) = p*(x,z + /::,.Z,w) *EXP{i(- - =)w/::,.Z}. 

v v 

As it is seen from this equation, the 
extrapolation is performed in two steps. The 
Phase Shift algorithm is first applied in the 
wave-number domain with a constant reference 
velocity ~ in order to obtain p*. A correction 
term is then applied in the real domain to take 
into account lateral variations in the velocity 
field. In the first order scheme, the correction 
term is merely equivalent to a time-shift, no 
correction is performed on the diffraction term. 

551 

Let us now concentrate on the second order 
approximation (the development of the third order 
expression is similar and it will not be 
treated), where the dispersion relation reads 

Kz(v) 
w Kxv 

(=) *SQRT [1 _ (-)2] + 
v w 

(24) 

1 1 Kx2/::,.Z 
(~ - ~)w/::"Z - (v - v) 2w 

Using the same notation as in the previous case, 
the downward extrapolation equation is now of the 
form 

P(Kx,z + /::,.Z,w) p* (Kx,z + /::,.Z,w) 

1 1 
*EXP{i(- - =) w/::,.Z} *EXP{-i(v - v) 

v v 

Kx2/::,.Z 

2w } 

(25) 

Because of the Kx2 term in the last exponential, 
we cannot perform an inverse transform as 
previously to go back in the x-domain. The 
solution is to replace the exponential by its 
first order Taylor development. In other words, 
we replace 

(26) 
EXP { - i (v - v) 

by 

(27) 
1 - i(v - v) 

This is valid only if the value of the expression 
inside the exponential is small enough. In order 
to evaluate it, let us write it in the following 
form 

v Kxv Kx/::"Z 
(v - v) (~ - 1) (~) (-2-). (28) 

If the following condition for the velocities is 
assumed 

v 
0.5 < ~ 1.5 (29) -v 

we have 
v 

1= -v ll~ 1/2. (30) 

The inequality assumed in (29) puts some 
restrictions on the velocity field. More 
specifically, the method is applicable only if 
the velocity field is such that, for each depth 
step, the ratio of the largest over the smallest 
velocity is less or equal to 3. Let us now 
concentrate on the second term of (28). We show 
that we have the following inequality 

Kxv (31) 

(~) ~ 1. 



This inequality is related to the problem of the 
elimination of the evanescent energy. For a 
laterally uniform medium V, the evanescent 
solutions are defined by the relation7 

w 
Kx < -v (32) 

.Thus, when p* is computed with the constant 
velocity V, we keep only the waves such that 

w 
Kx ~ v. (33) 

When the velocity field varies laterally, the 
identification of the evanescent field becomes 
less clear cut. However, in our case, we choose 
to apply inequality (33) everywhere, and so (31) 
is verified. It has thus been shown that 

Kx211Z Kxl1Z (34) 
I(v - v) 

2w I~ 4 
or 

Kx211Z 1rl1Z (35) 
I(v - v) 

2w I~ 8llX 

1r 

because of the inequality Kx ~ 211x. So finally, 

if l1Z is small enough compared to llX, the first 
order development of the exponential term will be 
accurate. In practice, one can choose l1Z such 
that 

llX 
l1Z ~ 3 . 

(36) 

Now our extrapolation relation defined in (25) 
can be written in the form 

P(Kx,z + l1Z,w) = P*(Kx,z + l1Z,W) * (37) 

Kx211Z 1 1 
[1 - i(v - V) 2w ] *EXP {i (~ - v) wl1Z} 

An inverse transform to go back in the x-domain 
gives us our £inal extrapolation expression for 
_the second order PSPC method. 

p(x,z + l1Z,w) [p* (x,z + l1Z,w) + (38) 

l1Z a2p* 1 1 
i(v - v) 2wax2 (x,z + l1Z,w)] *EXP (i v - ~) w Z} 

The partial derivative term is computed by the 
Fourier method. 

ACCURACY OF THE MIGRATION ALGORITHM 

In this section we study the PSPC algorithm both 
from a theoretical and a practical point of view. 

552 

From what was shown -in the previous section, we 
know that the accuracy of the PSPC _method mainly 
-depends on two factors. The first of these 
factors is the order of the Taylor development 
used to approximate the dispersion relation 
defined by (Equation 17). The second important 
factor is the ratio R = v/v. 

If we refer to the wave extrapolation equations 
section, we see that in 'term of complexity, the 
first order PSPC approximation is comparable to 
the 5 degree method, the second order 
approximation to the 15 degree method, and the 
third order approximation to the 45 degree 
method. Figure 3 compares the dispersion curve 
of the 5 degree ,method and of the first order 
PSPC approximation for different values of R, to 
the exact dispersion relation. 

~ 
N 
:.:: 
> 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 

r-~ ~ 
~ l;:-< R: 1.4 

~ ~ ~ 
R: 1.2 '\ ~ "" R: 1.1 ~ l\ 

0.5 

VKx/W 

\\, 
R: 1.0 .-\ 

\ 
\ 

1.0 

Figure 3. Dispersion Curve of the First Order 
PSPC Method. 

Compared to the 5 degree method, dispersion 
curves of the first order PSPC method follow much 
better the exact dispersion curve. Figure 4 
plots, for di-fferent values of R, the angle where 
the curve departs from the exact -dispersion 
relation. For the values of R between 0.8 and 
1.5 the first order PSPC method approaches the 
exact curve up to 9 degree dips or better. 

80 

60 
(II 

~ « 
a. o 40 

20 

o 
0.5 

-
) '" :--V 

1.0 1.5 

Ratio R: v/v 

Figure 4. Theoretical Accuracy of the First 
Order PSPC Method. 



J.~igure 5 compares the dispersion curve of the 15 
degree method and of the second order PSPC 
approximation for different values of R, to the 
exact dispersion relation. Again, the behavior 
of the dispersion curves is quite good. Figure 6 
plots, for different values of R, the angle where 
the curve departs from the exact dispersion 
relation. For the values of R between 0.8 and 
1.5, the second order PSPC method approaches the 
exact curve up to 15 degree dips' or better. 

~ 
N 
~ 
> 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 

-I-
r--...... 

..... , 

0.5 

VKx/W 

"'~ -R: 1.4 

~~ 
R: 1.2 ~~ 
R: 1.1-

.-Jo; ~ 
\\ 

R: 1.0 -\ 
I \ 

1.0 

Figure 5. Dispersion Curve of the Second Order 
PSPC Method. 

--

80 

60 
CD 

g 
< 

is 40 

20 

:--
o 
0.5 

f---

I 

/ \ 
V 'r------r-. /'" 

1.0 

Ratio R: v/v 

1.5 

Figure 6. Theoretical Accuracy of the Second 
Order PSPC Method. 

In order' to test our algorithm, we have chosen to 
migrate a section that was collected in the 
acoustic modeling tank at the Seismic Acoustic 
Laboratory at the University of Houston. The 
same model was used by Kos10ff and Baysa1 to test 
their migration algorithm with the full acoustic 
wave equation7 . The model is a buried wedge 
structure, which is represented in Figure 1. The 
wedge was made of low-velocity rubber, whereas 
the base was made of high-velocity plexiglas. 
The whole model was immersed in water. 

The dimensions of this model were chosen so that 
the data would represent field data. The scale 
factors used in the experiment are as follows: 

553 

Parameter 

Time 
Length 
Velocity 

0.2JLs 
2.5 cm 
V 

1 msec 
300 m 
2.4 V 

In the following all parameters will be discussed 
in terms of field units. The zero offset line 
that was collected in the tank is made of 512 
traces, with a shot spacing of 15 m. The first 
sample of each trace starts at T = 400 ms. This 
section is shown in Figure 7, for clarity reasons 
only every other trace (256 of the 512 traces) 
has been plotted . 

20 60 100 140 180 220 
0.4 

1.4 

Figure 7. Time Section from a Zero-Offset Line 
Shot in the Physical Modeling Tank. 

In a first test, this section has been migrated 
using the Phase Shift algorithm and a uniform 
velocity. The value used was 3600 mis, which 
corresponds to the scale water velocity in the 
tank. The result of this migration is shown in 
Figure 8. The program was designed so that it is 
possible to skip the water in one single step, 
which explains why the depth section starts at Z 
= 600 m. Events A and B are correctly migrated, 
but event C, the plexiglas base underlying the 
wedge is undermigrated. The scale velocity for 
the rubber is equal to 2400 mis, which is much 
slower than the velocity of 3600 mls that was 
used in this first migration test. 

50 100 150 200 
600 

1600 

2600 

3600 

Figure 8. Migrated Section with a Uniform 
Velocity of 3600 m/s. 

250 



3 velocity model to test our variable velocity 
migration programs is shown in Figure 1. The 
scale velocity for plexiglas was. taken equal to 
6000 m/s. Figure 9 shows the result of the 
migration using the first order PSPC method. The 
plexiglas base under the wedge is now in its 
proper position, although one portion is missing. 
According to Kos10ff and Baysa1 7 this comes from 
the fact that the energy propagating upward from 
this portion of the base encounters the steeply 
dipping side of the wedge at an angle beyond the 
cri tical angle for the wedge rubber and water. 
This type of migration is not accounted for by 
the exploding reflector model on which the 
migration is based. In this example the water 
velocity was used as the reference velocity, 
which means that although we used only the first 
order method, the 30 and 60 degrees dips of the 
wedge are correctly migrated because we are in a 
situation where R is equal to 1. On the other 
hand, if one chooses to use for the reference the 
wedge velocity, R is now equal to 1.5, which is 
the worst situation. The migrated section for 
this case is shown in Figure 10. Reflectors A 
and B are not properly positioned. The shape is 
preserved, but the dip angles are not recovered 
correctly. 

600 

1600 

2600 

Figure 9. 

600 

1600 

2600 

Migrated Section with a Variable 
Ve10c"ity. First Order PSPC with a 
Reference Velocity Equal to 3600 m/s. 

50 100 150 200 250 

Figure 10. Migrated Section with a Variable 
Velocity. First Order PSPC with a 
Reference Velocity Equal to 2400 m/s. 

554 

Another interesting remark is that, contrarily to 
what reported Kos10ff and Baysa1 for their 
migration algorithm with the full acoustic wave 
equation, our migration method is relatively 
insensitive to small changes in the values of the 
velocities. For example, a slight perturbation 
in the wedge velocity does not significantly 
modify the alignment of the p1exig1ass base under 
the wedge. 

A 3D EXAMPLE: THE SALNOR7 MODEL 

One of the main motivation for developing our 
Phase Shift Plus Correction migration method was 
to come up with an algorithm suitable for 3D 
processing. The purpose of this section is to 
report on 3D migration tests performed with this 
algorithm. 

The SALNOR7 model, Figure 2, is used for the 3D 
test. As previously, all parameters will be 
discussed in terms of scaled units. A 3D zero
offset data set consisting of 240 traces on 240 
lines has been collected in the tank. Each trace 
contains 3000 samples at 1 ms, the shot spacing 
in both directions is equal to 30 m. As our 
program works in the Fourier domain, it is more 
convenient to have dimensions that are power of 2 
and so the model was padded with null traces to 
get 256 lines of 256 traces each. For the same 
reason data were truncated to keep only 2048 
samples at 1 ms (all relevant information is at 
less than 2 s). 

The size of the model for the migration is now 
equal to 256*256*2048, which represents a volume 
of 64 Mwords. Figure 11 shows a section (line 
120) of this model. This section was first 
migrated using the Phase Shift algorithm, and a 
uniform velocity for each of the 128 depth steps. 
This first migration was completed in 142 s wa11-
clock time on a dedicated Cray X-MP 48 (using 
only one CPU). Figure 12 shows the result of 
this migration on line 120. 

Figure 11. Line 120 of the SALNOR7 Model. 
Zero-Offset Time Section. 



Figure 12. Line 120 of the SALNOR7 Model. 
3D Migrated Depth Section Using 
The Phase Shift Method. 

For our second test we ran the first order PSPC 
algorithm, with a laterally variable velocity 
field. Due to the fact that the SALNOR7 is a 
very complex model and that our tools are not 
appropriate, we used only a simplified 3D 
velocity structure. The migrated results thus do 
not show much difference over the previous case, 
however, this does not affect our benchmark 
results. Using the same parameters than in the 
previous case, plus the 3D velocity structure, 
the first order PSPC migration program requires 
28 minutes wall-clock time on the Cray X-MP 48, 
using only one CPU. Table 1 gives a summary of 
these results, including some estimates on the 
performance that we can expect for the 
multi tasked versions. All the results include 
both cPU and Input/Output waiting time. 

~ s.I.u. ~ Main Memory Wall-Clock Time 

Phase Shift l·CPU 256 X 256 X 2048 128 1.8 Mwords 142 s 

PSWCl l-CPU 256 X 256 X 2048 128 2.1 Mwords 1719 s 

PSWCl 4-CPU 256 X 256 X 2048 128 3_7 Mwords 470 s 
(estimated) 

PSWC2 l·CPU 256 X 256 X 2048 128 2_3 Mwords 2300 s 
(estimated) 

Table 1. 3D Migration Benchmark Results on a 
Dedicated Cray X-MP 48. 

555 

REFERENCES 

(1) A.J. Berkhout, Wave field 
techniques in seismic migration, 
Geophysics, 46, 1638-1656, 1981. 

extrapolation 
a tutorial: 

(2) A.J. Berkhout, Seismic migration imaging of 
acoustic energy by wave field extrapolation: A. 
Theoretical Aspects: Elsevier Science 
Publishers, B.V., 1985. 

(3) J.F. Claerbout, Fundamentals of geophysical 
data processing, McGraw Hill, New York, 1976. 

(4) J . F. Claerbout, Dispersion-related 
derivation of wave extrapolators: Stanford 
Exploration Project, 24, 278-286, 1980. 

(5) J. Gazdag, Wave equation migration with the 
accurate space derivative method: Geophys. 
Prosp., 28, 60-70, 1980. 

(6) J. Gazdag and P. Sguazzero, Migration of 
seismic data by phase shift plus interpolation: 
Geophysics, 49, 124-131, 1984. 

(7) D. Kosloff and E. Baysal, Migration with the 
full acoustic wave equation: Geophysics, 48, 
677-687, 1983. 

(8) o. Lhemann, A 3D PSPI migration: Research 
Computation Laboratory, Annual Progress Review, 
University of Houston, 1, 86-108, 1985. 



A TUTORIAL ON FINITE DIFFERENCE METHODS AND ORDERING OF MESH POINTS 

David M. Young* - David R. Kincaid* 

* The University of Texas at Austin, U. S. A. 

ABSTRACT 

This paper contains introductory material related 
to a tutorial on finite difference methods and 
ordering of mesh points. 

We wish to illustrate a central mathematical 
idea which has grown in importance with the 
advent of the modern computer, namely, that one 
can approximate a differential equation by a 
system of linear algebraic equations and solve 
the resulting linear system on the computer to 
obtain an approximate solution to the original 
problem. The derivatives in the differential 
equation are approximated by difference quotients 
which are obtained from truncated Taylor series 
in many cases. This entire procedure goes by 
the name "finite difference methods." 

In this discussion we will be primarily 
concerned with linear second-order partial 
differential equations of the form 

Au +ZBu +Cu +Du +Eu +Fu=G (1) xx xy yy x y 

where A, B, C, D, E, F, and G are given functions 
of x and y which are continuous in some region R 
in the (x,y) plane. A typical problem is the 
following: given a region R with boundary S, find 
a function u(x,y) which is twice differentiable 
and satisfies (1) in R, which is continuous in 
R + S and which satisfies prescribed conditions 
on S. 

Let us consider the generalized Dirichlet 
problem involving a bounded and connected region 
R and a continuous function g(x,y) prescribed on 
S. The function u(x,y) is required to be 
continuous in R + s, to satisfy (1) in R and to 
satisfy u(x,y) = g(x,y) for (x,y) E S. If (1) is 
an "elliptic equation" (B2 - AC < 0 in R) and if 
F ~ 0 in R, then the generalized Dirichlet problem 
has a unique solution under fairly general 
conditions. A special case of the generalized 
Dirichlet problem is a classical problem in 
applied mathematics--the Dirichlet problem 
involving Poisson's 

u +u =G. xx yy 

This problem is used as a "model problem" in both 
theory and applications. 

CH2345-7/86/0000/0556$01.00 © 1986 IEEE 
556 

In principle, we can make a change of 
independent variables so that the coefficient B 
of the mixed derivative u in (1) vanishes xy 
identically in R + S. (See Young and Gregory 
[1973].) 

The method of finite differences involves 
superimposing a mesh over the region R and replac
ing the differential equation (1) by a difference 
equation at each mesh point. In this discussion 
we assume that a square mesh of horizontal and 
vertical lines with mesh spacing h in both the 
horizontal and vertical directions is used. At 
a mesh point (x,y) we replace the partial deriv
atives appearing in (1) by standard three-point 
central difference quotients 

u - [u(x+h,y) -u(x-h,y)]/(Zh) x 

u - [u(x,y+h) - u(x,y-h)] / (Zh) 
y 

u - [u(x+h,y) +u(x-h,y) - Zu(x,y)]/h2 
xx 

U - [u(x,y+h) +u(x,y-h) - Zu(x,y)]/h2 
yy 

Substituting in (1) with B = 0 and multiplying by 

_h2, we obtain the difference equation 

(Z) 

- a
3
u(x-h,y) - a

4
u(x,y-h) = t(x,y) 

where 

h h 

h h 
az = C(x,y) +Z-E(x,y) a 4 = C(x,y) -Z-E(x,y) 

1 
al = A(x,y) +Z-D(x,y) , a3 = A(x,y) -Z-D(x,y) 

ao = a
l 

+ az + a
3 
+ a

4 
- h 2F(x,y), t(x,y) = -h2G(x,y) 

The difference equation (Z) is valid if the point 
(x,y) and the four adjacent points (x ± h,y), 
(x, y ± h) are in R + S. Special formulas are 
available for more general situations including 
cases involving curved boundaries. (See, e.g., 
Forsythe and Wasow [1960], Young and Gregory 
[1973], or Birkhoff and Lynch [1984].) 



In the case where B = 0 and (1) is "self
adjoint", Le., D = A , E = C , we can write (1) 
in the form x y 

(3) 

For this equation, we can derive a difference 
equation which has the same accuracy as (2) and 
such that the resulting linear system is 
symmetric. This is done by replacing (Au) 
and (Cu) by the difference quotients x x 

y y 

h 
- {A(x+2"' y) [u(x+h,y) - u(x,y)] 

- A(x -~, y)[u(x,y) - u(x-h,y) ]}/h2 

and 

(Cu ) 
y y 

h 
- {C(x,y+2")[u(x,y+h) - u(x,y)] 

h 
- C(x,y -2") [u(x,y) - u(x,y-h)] }/h2 

Substituting in (3) and mUltiplying by _h2 

(4) 

- a3u(x-h,y) - a
4
u(x,y-h) = t(x,y) 

where 

If (1) is not self-adjoint and B = 0, it may 
be possible to obtain a self-adjoint equation by 
multiplying (1) by an "integrating factor" l1(x,y). 
In this case, (1) is "essentially self-adjoint" 
and the following condition must hold 

.l... (D -Ax) 
ay A 

_ a (E - C ) __ --L 
ax C 

-1 
Thus for example the equation u - x u + u = 0 

xx x yy 
is essentially self-adjoint and can be made self
adjoint by multiplying by the integrating factor 

-1 -1 -1 
l1(x,y) = x obtaining (x u) + (x u) = o. 

x x y Y 
As an example, we consider the difference 

equation corresponding to the Poisson equation 

u + u = G(x,y) 
xx yy 

(5) 

where G(x,y) is a given function. Evidently, we 
have A = C = 1, B = D = E = F = 0, and 

557 

t(x,y) = -h2 G(x,y) 

If we wish to solve this problem on the unit 
square 0 ~ x ~ 1, 0 ~ y ~ 1 where the values on 
the boundary are given by u(x,y) = g(x,y), then 
a uniform square mesh with spacing h can be 
established over the region. With this mesh 
subdivision, the finite difference approximation 
to Poisson's equation at each interior grid point 
(xi'Yi) is an equation of the form 

4u, , - u '+1 ,- u, 1 ,- u, '+1 - u, , 1 1.J 1., J 1. - ,J 1., J 1., J - (6) 

using either (2) or (4). Here uij u(xi'Yj) and 

xi = Xo + ih, Yi = Yo + jh for 0 ~ i ~ m+l, 

o ~ j ~ m+l and h = l/(m+l). 
Let us now consider the case where h = ~ 

which leads to nine linear equations--one for each 
interior grid point. We label the mesh points as 
indicated in Figure 1. 

21 22 23 24 25 
x--x--x--x--x 

19 1+18 19 ! 20 

17! t 15 ~!18 
I I I I I 

15j jl rri l6 

__ x--x--x 

10 II 12 13 14 

Figure 1. Natural ordering for point partitioning. 

The interior points are numbered first in the 
"natural" order and then the boundary points are 
numbered. From (6) we obtain, after transferring 
known values to the right-hand side 

4 -1 0 -1 UI gIl + gls - h2GI 

-1 4 -1 0 -1 0 U2 gl2 - h 2G 2 

0 -1 4 0 0 -1 UJ g\J + gl6 - h
2

G J 

-1 0 0 4 -1 0 -1 U<l gl7 - h2G<l 

-1 0 -1 4 -1 0 -1 Us - h 2GS (7) 
-1 0 -1 4 0 0 -1 U6 gls - h

2G6 

-1 0 0 4 -1 0 U7 gl9 + gu - h
2G7 

0 -1 0 -1 4 -1 Us gn - h
2GS 

-1 0 -1 4 U9 g20 + g2<l - h
2G9 

Here we have let the kth component uk be the 

unknown corresponding to the mesh point marked k. 
Similarly, gk and Gk are the values of these 

functions at the labelled mesh points in Figure 1. 



This system can be written in matrix fo~ as 

Au = b (S) 

the Notice the simple pattern of O's in 
coefficient matrix (7) with this natural 
We can write the system as 

ordering. 

where 

A .. 
1,1 

and 

[
-1 0 0 J o -1 0 
o 0-1 

Using Figure 2, the unknowns for line k are 
denoted Uk and we have a grouping according to 
lines. 

( '\ 

LINE 3 
'.A 7 8 9/ 

-/ 

{ '\ 
~ 4 :I 6./ 

-/ LINE 2 
r \ 

~ I 2 3./ 
-" LINE I 

(9) 

Figure 2. Natural ordering for line partitioning. 

The submatrix A .. gives the coupling of the 
1J 

unknowns from line i to those on line j. Since 
the coefficient matrix ,is symmetric, we have 

T 
Aij = Aji • 

Another ordering of the interior mesh points 
is the "red/black ordering" in which every other 
point is given either a red or black label as on 
a checkerboard. (See Figure 3.) 

10 " 12 13 14 

Figure 3. Red/Black ordering for point partitioning. 

558 

For this ordering of the unknowns, the difference 
equations (6) for each interior grid point can be 
expressed in the matrix form 

4 -1 -1 0 0 "I gil + gl5 - hZG I 

4 0 -1 o -1 0 "z g13 + gl6 - hZGz 
4 -1 -1 -1 -1 "] - hZG] 

0 4 o -1 o -1 "4 g'9 + gzz - hl G4 
4 0 o -1 -1 ", gzo + g14 - hZG, . (10) 

-1 -1 -1 0 0 4 
0 "6 gil - hl G6 

-1 o -1 -1 0 4 ", g" - hZG, 

0-1 -1 o -1 0 4 "s g18 - hZGs 
0 o -1 -1 -1 4 "9 g2] - hl G9 

The red unknowns ul ' u2 ' u3 ' u4 ' Us can be 

grouped in a vector ~ and the black unknowns u6 ' 

u7' uS' u9 in a vector uB• We can write such a 

system in a red/black partitioned form 

(11) 

where DR and DB are diagonal matrices and K = HT • 

A red/black ordering for the line partition
ing corresponding to the numbering given in 
Figure 4 would have the red lines of unknowns in 

r '\ 

LINE 2 "- 4 :I 6./ 
-/ 

( "\ 

'/'- 7 8 'v 
--- r '\ 

LINE 3 

'.A I 2 3./ 
-/ LINE I 

Figure 4. Red/Black ordering for line partitioning. 

variables Ul and U2 while the black lines unknowns 

are in U
3

• The resulting partitioned system is of 

the form 

o 
(12) 

Now if we partition by red and black lines by 

letting uR = [Ul ,U2]T and ~ = U3 then we obtain 

the red/black partitioned system (11) where 



K 

In the point red/black ordering, D and Dare 
R B 

diagonal matrices whereas in the line red/black 
ordering they are block diagonal. 

The solution of a difference equation 
involves the solution of the system (8). To 
obtain an accurate solution of the differential 
equation it is often necessary to use a very 
small mesh size h. This results in a large 
system of equations. These can be solved 
numerically using direct methods or using 
iterative methods (see, e.g., Varga [1962], 
Wachspress [1966], Young [1971], Hageman and 
Young [1981], and Birkhoff and Lynch [1984]). 
In each case special procedures should be used 
to take advantage of the fact that the coeffi
cient matrix of the linear system is "sparse", 
i.e., that most of the elements are zero. 
Frequently-used iterative methods include the 
successive overrelaxation method, the Jacobi 
method and the incomplete Cholesky method. The 
latter two methods are often combined with an 
acceleration procedure such as Chebyshev 
acceleration or conjugate gradient acceleration 
to speed up the convergence. 

Iterative methods are ideal for such systems 
since they produce no "fill-in". Partitioning 
such as (9) and (11) can be used to advantage 
in special iterative methods for solving the 
linear system. Iterative methods which utilize 
the unique structure of these partitioning 
require that the subsystems 

A .. U.=F. , 
~~ ~ ~ 

(13) 

can be "easily" solved since this must be done 
repeatedly for every iteration-the "inner
iteration" step. 

If the coefficients appearing in the 
differential equation are sufficiently well
behaved and if the region R is sufficiently 
"regular" then the accuracy of the solution of 
the difference equations (2) or (4) is of order 
h 2 • Greater accuracy can be achieved in some 
cases by the use of higher order difference 
equations. The use of a 9-point stencil 
(x + ah, y + Th) where a, T = -I, 0, 1 can 
sometimes be used. It has the advantage that for 
many problems the same stencil can be used 
throughout the region. Other stencils can be 
used such as the 9-point stencil (x + ah, y + Th) 
where a = -2, -I, 0, I, 2 and T = 0 or a = 0 and 
T = -2, -I, 0, 1, 2. 

Finite difference methods may be used to 
solve problems involving more general boundary 
conditions such as 

au 
a(x,y)u + S(x,y) an = y(x,y) 

where a, S, and yare given functions defined 

559 

on R. In the case of curved boundaries the 
procedure for representing the boundary condi
tions can be difficult. For points on a 
horizontal or vertical boundary, simpler 
procedures are available. A procedure for 
deriving difference equations at boundary points 
and at interior points, even when some of the 
coefficients of the differential equation are 
discontinuous, is given in Varga [1962]. 

We wish to thank Thomas C. Oppe and John 
R. Respess for reading this paper and making 
suggestions. 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

REFERENCES 

G. Birkhoff and R. E. Lynch, Numerical 
Solution of Elliptic Problems, SIAM, 
Philadelphia, PA., 1984. 
G. E. Forsythe and W. R. Wasow, Finite 
Difference Methods for Partial Differential 
Equations, Wiley, New York, N.Y., 1960. 
L. A. Hageman and D. M. Young, Applied 
Iterative Methods, Academic Press, New York, 
N.Y., 1981. 
R. S. Varga, Matrix Iterative Analysis, 
Prentice Hall, Englewood Cliffs, N.J., 1962. 
E. L. Wachspress, Iterative Solution of 
Elliptic Systems, Prentice Hall, Englewood 
Cliffs, N.J., 1966. 
D. M. Young, Iterative Solution of Large 
Linear Systems, Academic Press, New York, 
N.Y., 1971. 
D. M. Young and R. T. Gregory, A Survey of 
Numerical Mathematics, Volume II, Addison
Wesley, Reading, MA., 1973. 



FINITE ELEMENT METHODS 

J. Tinsley Oden 

Texas Institute for Computational Mechanics 

The University of Texas at Austin, Austin, TX 78712 

Abstract. This note summarizes the features of fi
nite element methods that are responsible for its 
great success as a tool for the numerical· solution 
of partial differential· equations. Arguments are 
also given as to why the method will continue to 
be dominant in the future development of numerical 
schemes for solutions of complex boundary and ini
tial value problems. 

Finite elements; perhaps no other family of 
approximation methods has had a greater impact on 
the theory and practice of numerical methods during 
the twentieth century. Finite element methods have 
now been used in virtually every conceivable area 
of engineering that can make use of models of nature 
characterized by partial differential equations. 

A natural question that one may<ask is: why 
have finite element methods been so popular in 
both the engineering and mathematical community? 
There is also the question, do finite element me
thods possess properties that will continue to make 
them attractive choices of methods to solve diffi
cult problems in physics and engineering? 

In answering these questions, one must first 
point to the fact that finite element methods are 
based on the weak· or variational formulation of 
boundary and initial value problems. This is a 
critical property, not only because it provides a 
proper setting for the existence of very irregular 
solutions to differenti"al equations (e.g. distri
butions), but also because the solution appears in 
the integral of a quantity of a domain. The simple 
fact that the integral of a bounded measurable 
function over an arbitrary domain can be broken up 
into the sum of integrals over an arbitrary collec
tion of almost disjoint subdomains whose union is 
the original domain, is in fact a vital observation 
in finite element theory. Because of it, the analy
sis of a problem can literally be made locally, 
over a typical subdomain, and by making the subdo
main sufficiently small one can argue that poly
nomial functions of various degrees are adequate 
for representing the local behavior of the solution. 
This summability of integrals is exploited in every 
finite element program. It allows the analyst to 
focus his attention on a typical finite element 
domain and to develop an approximation independent 

CH2345-7/86/0000/0560$01.00 © 1986 IEEE 
560 

of the ultimate location of that element in the 
final mesh. 

This simple property hasimpor.tant impli
cations in physics and in most problems in continuum 
mechanics. Indeed, the classical balance laws of 
mechanics are global, in the sense that they are 
integral laws applying to a given mass of material, 
a fluid or solid. From the onset, only regularity 
of the primitive variables sufficient for these 
global conservation laws to make sense is needed. 
Moreover, since these laws are supposed to be funda
mental axioms_of physics, they must hold over every 
finite portion of the material: every finite element 
of the continuum. Thus once again, one is encouraged·. 
to think of approximate methods defined by integral 
formulations over typical pieces of a continuum to 
be studied. 

These rather primitive properties of finite 
elements lead to some of their most important fea
tures: 

1) Arbitrary geometries. The method is essen
tially geometry-free. In principle, finite 
element methods can be applied to domains 
of arbitrary shape and with quite arbitrary 
boundary conditions. 

2) Unstructured meshes. While there is still 
much prejudice in the numerical analysis li
terature toward the use of coordination-de
pendent algorithms and mesh generators, there 
is nothing intrinsic in finite element metho
dology that requires such devices. Indeed, 
finite element methods by their nature lead 
to unstructured meshes. This means that, in 
principle, the analyst can place finite ele
ments anywhere he pleases. He may thus model 
the most complex types of geometries in na
ture and physics, ranging from the complex 
cross sections of biological tissues to the 
exterior of aircraft to internal flows in 
turbo machinery, without strong use of a 
global fixed coordinate frame. 

3) Robustness. It is well known that in finite 
element methods the contributions of local 
approximations over individual elements are 
assembled together in a systematic way to 
arrive at a global approximation of a solu-



4) 

tion to a partial differential equation. Ge
nerally this leads to schemes which are sta
ble in appropriate norms and, moreover, in
sensitive to singularities or distortions 
of the mesh .. There are notable exceptions 
to this, of course, and these exceptions 
have been the .subject. of some of the most 
important works in finite element theory. 
But, by and large, the direct use of Galerkin 
or Petrov-Galerkin methods to derive finite 
element methods leads to conservative and 
stable algorithms for most classes of prob
lems in mechanics and mathematical physics. 

Mathematical foundation. Because the exten
sive work on the mathematical foundations 
done during the seventies and eighties, fi
nite element methods now enjoy a rich and 
solid mathematical basis. The availability 
of methods to.determine a-priori and a-poste
riori estimates provide a vital part of the 
.theory of finite elements, and make it possi
ble to lift the analysis of important engi-

<neering and physical problems above the tra
ditional empiricism prev.:alent in many numeri
cal and experimental studies. 

Fig. 1. 

561 

When one attempts to project into the future 
trends in numerical methods for partial differential 
equations, it makes sense to pose some fundamental 
questions in this subject. We feel that the issue 
of optimality of numerical methods is central and 
this issue is embodied in two questions: how'good 
are the answers one obtains from a numerical analy
sis of a model of a physical phenomenon?; how can 
one obtain the best possible answers for a fixed 
level of computational cost or effort? -

The answer to the first is mathematical in 
essence: determine a-posteriori error estimates. 
The answer to the second question is computational: 
knowing an estimate of the error, change the struc
ture of the approximation to reduce it in an effi
cient way. The implementation of such an optimal 
numerical strategy thus requires several basic pro
perties of the methods in use: a rich mathematical 
basis .since sharp error estimates must be obtained 
a structure independent of geometry and coordinates' 
since the mesh and mesh properties must be dynami~ 
cally changed to reduce. er.ror; robustness, since 
the method must be stable under changes in struc
ture; and it must admit to supercomputing strate
gies. We feel that finite element methods represent 
one of the very few - and perhaps the only - class 
of approaches that can fulfill these requirements. 

Fig. 2. 



An example of the great adaptability of fi
nite element methods is shown in Figs. 1 and 
2. There one observes a calculation of supersonic 
flow of a compressible gas flowing through a 
set of spinning'turbine blades. The finite element 
algorithm tests local errors and automatically 
refines the mesh to attempt to produce the best 
possible accuracy using the least number of 
elements; this being done dynamically as the 
phenomenon evolves in time. Larger elements 
are used where the error is small. Also shown 
are computed pressure contours which exhibit 
the evolution of shock and shock interaction. 

For the above reasons, it is certain 
that finite element concepts will continue to 
occupy a dominant role in applications and in 
research on the numerical solution of partial 
differential equations. 

562 



BOUNDARY ELEMENT METIIODS 

S. R. KENNON* 

* Graduate Research Assistant, Dept. of Aerospace Engineering and Engineering 
Mechanics, University of Texas at Austin, Austin, TX. 

Abstract 

The boundary element method (BEM) is surveyed and 
shown to be a powerful tool for the accurate and efficient 
solution of a certain class of field problems. We discuss the 
application of the method to an important model problem, 
discuss some computational aspects of the technique, and 
point out some advantages and disadvantages of the method. 
Finally, some applications of the BEM are discussed, with 
particular reference to inverse design problems. A short 
bibliography of relevant literature is included. 

Introduction 

The boundary element method (BEM)1.2 is a powerful 
sub-class of finite element techniques for the accurate and 
efficient solution of a wide class of problems poses sing a 
special structure. The method, where applicable, can give 
more accurate solutions to certain problems than finite 
difference or finite element methods. Moreover, the method 
can in most cases provide an order of magnitude increase in 
efficiency over finite difference or finite element methods. 
The gain in efficiency and ease of use is due to the fact that 
solution of the partial differential equation in the entire 
domain is reduced to the solution of an integral equation on 
the boundary of the domain. Therefore, only the boundary of 
the domain being studied need be discretized (this is 
especially important in complex, multiply connected 
domains). Thus in two-dimensional problems, only a 
one-dimensional domain (e.g. the boundary) need be 
discretized. In addition, since exact, analytic solutions of the 
governing partial differential equation are used in the 
approximate solution, the BEM is inherently more accurate. 
For these reasons, the method is particularly appealing in 
either time-dependent or inverse design problems since a 
field problem needs to be solved at either every time-step or 
every design iteration. 

This paper gives the basic concepts underlying the 
method and shows how it is applied to an important model 
problem. Next we show some standard applications of the· 
method, discuss the BEM for non-linear problems, and 
finally show how the BEM can be used for very efficient 
inverse design. 

A ModeJ ProbJeml 

To present the power and ease of application of the 
BEM we will consider the solution of the DirichletlNeumann 
problem in a two-dimensional domain n (Fig. 1). The 
problem can be stated mathematically as 

CH2345-7j86jOOOO/0563$01.00© 1986 IEEE 
563 

P1: Find the function u(x,y) such that 

Au=O inn 

u =11 on r l 

q = au/an = .Q. on r 2 (1) 

where 11 and .Q. are given functions, r = r 1 + r 2 = an the 

boundary of n and A is the Laplacian operator ( Au = 
a2u/ax2 + a2U/dy2). This is the standard potential problem 
and is the governing equation for such physical problems as 
heat and/or electrical conduction in homogeneous media and 
ideal fluid flow. 

The Weighted Residual Statement 

In the BEM, we use a weighted residual statement of 
the problem. The weighted residual statement is achieved by 
multiplying the governing partial differential equation with a 
sufficiently smooth weighting function u*(x,y) and 
integrating the product over the domain. In addition, we 
weight the boundary conditions giving the following integral 
statement of the problem: 

P2: Find u(x,y) such that 

In (Au)u* dn = Ir (q - g,) u* dr - Ir (u - .u)q* dr 
2 1 

(2) 

for all admissible u* and q*. Problem P2 is equivalent to 
problem PI. Now we can integrate the left-hand-side of 
eq. 2 by parts to obtain the following equivalent equation 

- In ~ (dU/aXk au*/axk ) dn = - Ir !1 u* dr 
2 

- Ir qu* dr - Ir uq* dr + Ir l!q* dr (3) 
211 

We can integrate by parts once more and obtain the 
fundamental equation of the BEM applied to the potential 
problem 

- In (Au*)u dn = - Ir !1 u* dr - Ir qu* dr 
2 2 

- Ir uq* dr + Ir l!q* dr (4) 
1 1 

In the above, we have made use of the Gauss divergence 

theorem to relate integrals over the domain n to equivalent 

integrals over the boundary an, which is the key to the BEM 
(the Gauss Divergence formula states that for sufficiently 



smooth functions u(x,y), In 6u = Ian au/an dr where n is 

the direction normal to the boundary an). 

The next step is to introduce the fundamental solution 
to the Laplace equation. Assume that a point charge (or 

source) is acting at point xi = (Xi' Yi) in n. Then the 
fundamental solution u* is required to be a solution of the 
problem 

P3: 6u* + o(x-xi ) = 0 in 0. (5) 

where o(x) is the Dirac delta distribution. For two 
dimensions, the fundamental solution is 

u* = (l/21t) In I x-xi I (6) 

This solution has the property that 

In ( 6u* + O(x-Xi ) )u dO. = In (6u*)u dO. + u(xi) 

(7) 

If u* satisfies eq. 5 then 

In (6u*)u dO. = - u(xi) (8) 

and the fundamental equation 4 becomes 

u(Xi) + Ir uq* dr + Ir l!q* dr = Ir ~u* dr 
1 1 2 

+ Ir qu* dr (9) 
2 

. Next, we let xi approach the boundary and through a limiting 
procedure obtain the final boundary integral statement of P2: 

ci u(xi) + Ir uq* dr = Ir qu* dr (xi is on an) 

(10) 

where r = r 1 + r 2 = an and we assumed that u = 11 on r 1 

and au/an = q = ~ on r 2• Here ci is a constant that depends 

on the smoothness of the boundary (if r is smooth then 
ci = 112). Equation 10 is the basic equation to be 
approximated by the BEM. 

Discretization 

Notice that eq. 10 only involves quantities on the 
boundary of the domain in question. Thus we can introduce 
a discretization of the boundary as shown in figure 2. Here 
we show several possibilities in which the solution is 
assumed to be piecewise constant (2a) piecewise linear (2b) 

564 

and piecewise quadratic (2c) on the boundary. The unknown 
solution u(s) and q(s) will be approximated at the nodal 

points Sj where s is a point on the boundary r. One can 

introduce linearly independent basis functions cp.(s) on the 
J 

boundary r that are piecewise constant, linear, quadratic or 
higher order. Then the approximate solution u and the 
weighting functions u* and q* can be represented as 

u = L j Uj CPj' u* = L j ut CPj' and q* = L j qj* CPj' 

respectively where uj = u(Sj). The interpolants CPj have the 

property that cp.(sJ') = 0 .. , where 0 .. is the Kronecker delta. 
1 IJ IJ 

Introducing these approximations into eq. 10 yields (for 
piecewise constant elements) 

c· u(x·) + L' u· Ir q* dr = L' q. Ir u* dr 
11 JJj JJ j (11) 

The integrals appearing in eq. 11 can be approximated using 
numerical integration formulas (numerical quadrature). 
Now, this equation can be written as a system of linear 
equations 

Hu = Gq (12) 

where H and G are n x n matrices (n is the number of nodal 

points discretizing r) and u and q are n-vectors. Assuming 

that r 1 is discretized by n1 elements and r 2 is discretized by 

n2 elements where n = n1+ n2 we therefore know n1 values 

of uj and n2 values of qj from the specified boundary 
conditions. Thus, eq. 11 can be re-written in terms of the 
vector y containing the unknowns Uj and qj as 

Ay = b (13) 

where A is an n x n matrix and b is an n-vector. Once y is 
solved for, the value of u and its derivatives can be calculated 

at any point in the domain 0. using eq. 11. The power of the 
boundary element method is now clear. We began with a 
second order partial differetial equation with fairly 
complicated boundary conditions, and reduced it to the 
problem of solving a linear system of equations in a few 
unknowns that represent the solution values on the boundary 
of the domain. We must now note some disadvantages of 
the method. The matrix of the system eq. 13is full and can 
become ill-conditioned. For problems with many unknowns 
(e.g. for three-dimensional or complex two-dimensional 
problems) eq. 13 becomes difficult to solve using direct 
methods and thus it might be necessary to use iterative 
techniques to solve it. When solving a non-homogeneous 
problem (e.g. a Poisson equation), the entire domain needs 
to be discretized with sub-regions akin to finite elements to 
integrate the non-homogeneous term. This does not 
introduce any new unknowns into the problem but does 
make the computational complexity of the problem higher 



since the entire domain n needs to be discretized. Finally, 
the BEM is only applicable to linear problems in which an 
appropriate Green's identity can be used to reduce the 
problem to a boundary integral statement. Non-linear 
problems can be treated with special techniques discussed 
below. Nevertheless, the method can be claimed to be 
among the best methods for the class of problems that it is 
applicable. 

Examples of Problems Solvable by the BEM 

For reference, we list some other types of problems 
and their associated partial differential equations that can be 
solved by the BEM2: 

1) Linear elasticity (Navier's equation) 
2) Helmholtz equation 
3) Darcy flow equation (flow through a porous 

medium) 
4) Wave equation 

Non-Linear Problems 

In cases where the problem to be solved can be written 
in the fonn 

Lu = Nu in n (plus boundary conditions) (14) 

where L is a linear operator that can be treated with the B~M 
and N is a non-linear operator, then the BEM can be applIed 
in an iterative fashion. Essentially, the linear part of the 
equation is discretized as usual (a weighted integ:al statement 
is derived basis functions are introduced and a lmear system 
of equati~ns is fonned). The non-linear part of the equation 
is treated as a non-homogeneous tenn that must be evaluated 
and integrated in the interior of the domain. The procedure 
results in a discrete system of the following form 

Ay = b + N(y) (15) 

where N(y) is the non-linear analog of the non-linear part of 
eq. 14. This equation can be solved, for example, by the 
following algorithm 

Algorithm: 

y := yO an initial guess for the solution 

k:=O 

while II ~ II > E do 
begin 

k :=k+ 1 
Solve A~k = - Ayk + b + N (yk) for ~k 
yk+l := yk + ~k 

end (16) 

An example of this type of problem is the full potential 

565 

equation3 governing isentropic irrotational flow of a perfect 
gas: 

~<I> = N(<I» (plus appropriate boundary conditions) 
(17) 

where N(<I» is given by 

and c1 and c2 are constants. Fig. 3 shows a plot of the 
surface pressure distribution on an airfoil calculated using the 
non-linear BEM3. The results compare well with other 
methods. 

Inverse Design Awlications 

As mentioned above, the BEM provides a very 
efficient method for accurately solving heat conduction 
problems. We now consider a special application of the 
BEM for analysis and design of turbine blade coolant flow 
passage shapes. Turbine blades in gas turbine engines are 
subjected to extremely high temperatures from the combustor 
portion of the engine. Jet fuel is burned in the combustor 
and then the by-products are allowed to expand and 
accelerate through the turbine section. To keep the blades 
from melting, cooler air from the compressor portion of the 
engine is passed through holes in the interior of the blade. 
The turbine blade designer faces the problem of how many 
holes to drill in the blade and where to place them. 

Ref. 4 presents an application of the BEM to the 
analysis of heat conduction in turbine blades with holes. 
Special attention is paid to mixed type boundary conditions 
and the use of the BEM to detennine interior solutions given 
experimentally determined data on the exterior of the blade. 

The problem of blade design can be attacked with the 
use of the BEM in conjunction with an optimization 
procedure to iteratively adjust the position and size of the 
holes so that an optimal design is achieved. In Refs. 5 and 6 
this method was developed and tested on some practical 
turbine design problems. Fig. 4 shows a result of an 
optimization sequence. This figure shows the initial and 
subsequent evolution of the position and size and of the holes 
in a turbine blade. The BEM is used at each iteration to solve 
the heat conduction problem in the solid portions of the 
hollow blade. The BEM solution is coupled with an 
optimization routine to iteratively adjust both the size and 
position of the holes. The function being minimized in this 
example is the difference between a specified and calculated 
heat flux on the exterior surface of the blade. This procedure 
allows the designer to specify a low enough temperature on 
the surface of each hole, so that the blade retains its structural 
integrity and does not melt when subject to hot combustor 
gases. 



Conclusions 

We have discussed the BEM and its applications to a 
model problem. In addition, special applications of the 
method were detailed. The BEM was shown to be a 
powerful alternative to finite element or finite difference 
methods for the solution of boundary value problems in 
engineering science. 

References 

[1] Brebbia, C. A. The Boundary Element Method for 
Engineers. John Wiley & Sons, New York, 
1978. 

[2] Carey, G. F. and J. T. Oden. Finite Elements: A 
Second Course. Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey, 1983. 

[3] Ravichandran, K. S., N. L. Arora, and R. Singh, 
"Transonic Full Potenetial Solutions by an Integral 
Equation Method," AIAA J., 22, No.7, July, 1984, 
pp. 882-888. 

[4] Nakata, Y. and T. Araki, "Application of Boundary 
Element Method to Heat Transfer Coefficient 
Measurements Around a Gas Turbine Blade," 
presented at ASME Winter Annual Meeting, New 
Orleans, December 8-13, 1984. 

[5] Kennon, S. R. and G. S. Dulikravich, "The Inverse 
Design of Coolant Flow Passage Shapes with Partially 
Fixed Internal Geometries," ASME paper no. 
85-GT-lI8, March, 1985. 

[6] Chiang, T. L., and G. S. Dulikravich, "Inverse 
Design of Composite Turbine Blade Circular Coolant 
Flow Passages," ASME paper no. 86-GT-190, June, 
1986. 

Fig. 1 A two-dimensional domain n 

566 

Fig 2a Constant boundary elements showing 
mid-node locations 

Fig. 2b Linear boundary elements showing 
end-point locations 

Fig. 2c Quadratic boundary elements showing 
mid-side nodes 



-0.4 

0.4 

0.8 

NACA 0012 M." 0.75 a" 2° A-l.5 grid: 5h 5 
N = 21 iters = 139 CPUS _ 230 a l _1.5 

Ref (IS) c;. -0.580 

0.. Present c;. - 0.571 

Fig. 3 Coefficient of pressure distribution around a NACA 
0012 airfoil calculated using the non-linear BEM. 

45 ITERATIONS, NORM ERROR= 0.950 7. 

1.3 

1. 0 

0.8 

0.5 

0.3 

0.0 

THERIIA1. CONDUCTIVITY: 1. 0000 10. 0000 
-0. 3 NSTRAINTS: REQUIRED CAlCULATED 

BQUNDARY410lE 0.001 0.021 
HOlE41OlE O. 100 O. 181 
PENALTY ADJUSTI.IENT COEFFICIENT 1.500 

0.8 1. 0 

Fig. 4 Example of application of BEM to inverse design: 
evolution of the design of turbine blade coolant flow passage 
shapes. 

567 



A COMPARISON OF GRID GENERATION TECHNIQUES 

S. R. KENNON* - G. S. DULIKRA VICH** 

* Graduate Research Assistant, Dept. of Aerospace Engineering and Engineering 
"Mechanics, University of Texas at Austin, Austin, TX. 

** Associate Professor, Dept. of Aerospace Engineering, Pennsylvania State University, 
University Park, PA. 

A survey of techniques for the numerical generation 
of computational grids is presented. These methods are 
shown to be a powerful addition to the numerical analyst's 
tools for simulation of complex physical processes. 
Computational grids are classified into their various forms 
and methods for generating each type of grid are discussed. 
In addition to the mathematical and numerical details of each 
method, examples of the application of each method are 
shown. A short bibliography of these methods is also given 
to assist the interested reader in finding more information 
about this important part of computational mechanics. 

Introduction 

This paper presents a survey of methods for the 
numerical generation of computational grids used in the 
simulation of physical problems governed by partial 
differential equations. Computational grids are required to 
represent a given region of space as a discrete collection of 
·sub-regions. Within these sub-regions, the solution of the 
governing partial differential equation is assumed to be of a 
certain form representable on a computer. The discrete 
system can then be solved on a computer and the results 
analyzed. The problem of generating good quality grids is 
very difficult for complex regions and has been a pacing item 
in computational mechanics. As grid generation techniques 
have become more powerful, they have allowed analysts to 
simulate more and more complex and realistic physical 
problems. Moreover, with the advent of supercomputers, 
grid generation methods are now required for discretizing 
arbitrary three-dimensional regions such as the region 
surrounding an aircraft in flight, prior to solution of 
three-dimensional field equations in these domains. 
Researchers in a wide range of fields have developed some 
very sophisticated methods for computational grid 
generation. We begin this survey by first classifying 
different types of grids as either structured, quasi-structured 
or unstructured and discuss the different topologies of each. 
Next we discuss various popular methods for generating 
grids and give some discussion of their relative merits. 
Finally we note some special topics including grid 
improvement methods and adaptive grid generation. 

Classification of Computational Grids 

We defme a computational grid in a domain ° (subset 

of Rn) as a collection of M sub-domains 0i such that the 

intersection of 0i and OJ is empty for all i and j, i;tj, ij = 

1,2, ... M and the union of the 0i is "close" to 0. Therefore, 

CH2345-7/86/0000/0568$Ol.OO © 1986 IEEE 
568 

we exclude the possibility that any of the 0i overlap each 

other and we ensure that there are no 'gaps' in the grid 
(except possibly right at the boundary of 0). Moreover, we 
do not allow the volume (area in 2-d or length in I-d) of any 
of the 0i to vanish (see fig. 1). We will be primarily 

concerned with 0i that have boundaries ani that are 

representable by polynomials. For example, in a 
two..,dimensional domain we can have straight sided 
quadrilaterals representable by linear functions of the nodal 
points. We define nodal points as special points on the 

boundary of 0i that are used to construct the polynomial 

representing the boundary of 0i (fig. 1 b) and are normally 
the points at which the approximate numerical solution is 
evaluated. 

Computational grids can be classified into three main 
groups: 1) structured, 2) quasi-structured, and 3) 
unstructured. Structured grids are those that can be logically 
associated with (mapped, or transformed to) another base 
grid that has a regular repeatable structure. The base (also 
called the canonical or computational) domain is constructed 
entirely of a repetition of the same sub-domain througout the 

domain. Thus if 0* is the base domain, then the base grid is 

the collection of 0t where each 0t has the same size and 
shape. Examples of different types of base grids are shown 
in figures 2 a) and b). One can see that a base grid can be 
defined very easily as a array of the nodal points and a simple 
rule that determines which nodal points belong to which 
sub-domains and which elements are connected to each 
other. Moreover, the discretization of a partial differential 
equation on the base grid assumes a very simple (essentially 
canonical) form. For this reason, structured grids have been 
the most popular grids to date, especially in the finite 
difference literature. One important aspect of quadrilateral 
structured grids is that the sides of the elements can be 
associated with generalized coordinate directions. Thus to 
generate a quadrilateral structured grid is tantamount to 
specifying a transformation function that maps the 

computational space with coordinates ~ = (~I'~2""'~n) into 

the physical domain ° with coordinates x = (x 1 ,x2""'xn). 

This transformation can be stated as ~ = ~(x). This fact is 
extensively used in finite difference methods where the 
governing equation in the physical coordinates x is 
transformed into the computational coordinates using the map 

~(x) and then the equation is solved in the regular base 

domain 0*. This has the advantage that the finite difference 
equations are essentially the same at each nodal point and 



therefore are easy to code in a computer program. Finite 
element methods generalize this concept with the idea of a 
master element. The master element is the computational 
domain and consists of only one sub-domain that can be 
mapped to every element in the physical domain. The. 
discretized governing equation assumes a canonical form on 
the master element and therefore, the solution procedure 
becomes e,asy to program on a computer. 

We define a quasi-structured grid as a grid consisting 
of a union of structured grids. The union is required to 
discretize the domain as we require for sub-domains. These 
grids are used in cases where there does not exist a simple 
transformation that defines a structured grid (for example in 
multiply connected domains). Thus the domain to be 
discretized is broken into a few sub-domains that each form a 
structured grid. These grids are sometimes termed composite 
or zonal grids and are used extensively in finite difference" 
methods. 

Finally, we define unstructured grids as those that are 
neither structured nor quasi-structured. These types of grids 
have been used extensively in finite element methods, 
although the grids were mostly generated by hand. Only 
fairly recently have automatic unstructured grid generation 
methods become common. 

Transformations and Computational Coordinates 

Structured grid generation methods are based on the 

existence of a transformation from the physical domain Q to 

the computational domain Q*. We now show how 
derivatives of quantities in the physical space transform into 
their respective derivatives in the computational space (we 
show this for a two-dimensional domain only). Assume we 
want to determine the derivatives d/dX and d/dy of some 

function u(x,y) in terms of derivatives d/d~ and d/dll in the 

computational coordinates (~,ll). Using the chain rule of 
partial differentiation we find 

dU/dX = d~/dX dU/d~ + dll/dX dU/dll 

dU/dy = d~/dy dU/d~ + dll/dY du/dll (I) 

This can be written as a matrix equation 

(2) 

We can similarly use the chain rule on the derivatives dU/d~ 

569 

and dU/'dT\ to obtain the relations 

dYld~.1 -du/dxj 

dy /'dT\ dU/dy 

(3) 

The matrix can be inverted to obtain the relation~" 

[ ] l dU/dX 1 dy /dll 

du/dY =.-;- -aXldll :~::J [::::] (4) 

where J is the Jacobian and is given by J(~,ll) = dxld~ dyldll 

- dy/d~ dX/dll. Equating coefficients of the two matrices in 
eq. 2 and 4 gives the following relationships: 

d~/dX = (dy/dll )/J 

d~/dy = (-dX/dll)!J 

dll/dX = (-dy/d~)!J 

dll/dy = (dX/d~)/J (5) 

These are the required relations that determine how 
derivatives of a function in physical space transform into 
derivatives in the computational space. We now discuss 
some techniques for the generation of structured grids. 

Conformal Mappin~ Methods 

Conformal mapping methods are based on the use of 
complex analytic conformal transformations. That is, the 
map from computational to physical space is accomplished 
with the use of complex valued analytic functions. If we let z 

= x + iy (i = --J -1) be the physical complex-valued 

coordinate and S = ~+ ill be the computational 
complex-valued coordinate then grids are determined by 

specifying analytic transformations from S to z: 

z = F(~) (6) 

Since all analytic transformations are conformal (except at 
singular points) then these transformations will produce 
conformal maps. A conformal transformation is one that 
preserves both the magnitude and the sense of angles. Thus, 
if the base grid consists of mutually orthogonal lines, then 
the physical grid will also be orthogonal. This fact is an 
advantage for conformal mapping techniques because if the 
physical grid is orthogonal, the resulting discretization of the 
partial differential equation becomes greatly simplified, and 
truncation errors are reduced. However, it is most usual to 
use conformal mappings to map the physical space to a 
simpler non-orthogonal domain and then use simple algebraic 
transformations to map the intermediate domain to the 
computational grid. This makes the resulting physical grid 
non-orthogonal. An example of a nearly orthogonal grid 
generated using a conformal mapping is shown in fig. 3. 



Conformal mapping methods (like the algebraic methods 
discussed below) are extremely efficient and thus were 
widely used in the pastl •2•3. 

Algebraic Methods l 

The algebraic grid generation method is based on 
interpolation of known values of the nodal values of the 

physical grid on the boundary an throughout the domain. 
We begin with a short discussion of one-dimensional 

interpolation. Assume that we have a function res) that we 

know the values of at some points Si' We wish to interpolate 

this function with a simple interpolant that posesses certain 

desirable properties. We construct interpolants <PieS) that 

have the property that <p.(S.) = 0 .. (where 0 .. is the Kronecker 
1 J IJ 1J 

delta). Thus, we can write 

(7) 

where we assume that S varies from 0 to 1. The functions 

<PieS) can take many forms, but it is most usual to use 
polynomial interpol ants such as the Lagrange or Hermite 
polynomials. It is also possible to use cubic splines, 
B-splines or other types of spline functions for the 
uni-directional interpolation. Now assuming that we know 
the values of the grid point coordinates on the boundary of 
the transformed space, that is we know 

r(s;r» for 11 = 0 or 1 

r(S,l1) for S = 0 or 1 (8) 

then we can construct two interpol ants based on interpolating 

r in the sand 11 directions separately: 

r(S,l1) = Li=l,2 r(Si,l1) <PieS) 

r(S,l1) = L'_ l 2 r(S,l1·) \jf·(11) 
J- , J J 

(9) 

These two functions exactly interpolate the values of r on the 

boundaries S = 0 or 1 and 11 = 0 or 1 respectively. We 
can add the two interpolants together, but the resulting 
function does not interpolate r on the boundaries. However, 
we can interpolate the discrepancies on the boundaries, and 
subtract off this error from the total interpolant. This results 
in the transfinite interpolant: 

r(S,l1) = L'- l2 r(Sl',l1) <p·(S) + L'- l2 r(S,l1·) '1'·(11) 1- , 1 J- , J J 

L'- l2 L'- l2 <p·(S) '1'·(11) r(Sl·,l1·) (10) 1-, J-, 1 J J 

570 

This function exactly interpolates the values of r on all four 
boundaries of the rectangular computational space. By 
uniformly dividing the computational space, and applying the 
interpolating function we can generate the grid in the physical 
space, a very efficient process. The algebraic method can be 
easily generalized to three-dimensional grids, and to generate 
grids poses sing any desired order of smoothness by an 
appropriate choice of the basis functions. However, the user 
of this method does not have complete control over such grid 
quantities as orthogonality and clustering. 

The Maximum Principle 

Solutions of the Dirichlet problem 

Au = 0 in n 
u =l! on an 
( A = a2/ax2 + 'iP/ay2) (11) 

exhibit a very special and useful property known as the 
maximum principle. This principle states that the solution 
achieves its maximum and minimum values on the boundary 
of the domain. This fact can be used to generate grids that 
are guaranteed not to be overlapped and in addition are very 
smooth. The smoothness of the grid results from th~ 
inherent smoothness of solutions to the Dirichlet problem. 
Methods that are based on the maximum principle are popular 
and include the elliptic grid generation methods of Winslow 
(ref) and Thompson et. al. l and the variational method of 
Brackbill and Saltzman4• 

Elliptic Grid Generation 

The elliptic grid generation method 1 is based on the 
numerical solution of the following equations 

(12) 

Solutions to these equations will satisfy the maximum 

principle. Thus, the maximum and minimum values of S and 

11 will be reached on the boundary of the physical space and 
thus there is no possibility that grid overlap can occur in the 
domain. To generate the grid, these equations are 
transformed using relations (5) above to relate the derivatives 
in the computational space to derivatives in physical space. 
The result is the following non-linear elliptic system of partial 
differential equations to be solved for the physical grid 

a x~~ - 2 P x~l1 + "f xllll = 0 

a y~1; - 2 P y~l1 + "fYllll = 0 (13) 



where 
a=x2+y2 

11 " 
~ = xl; x" + yl; y" 

y= xl;2 + yl;2 

These equations are discretized using finite differences and 
then solved using iterative techniques. The method can be 
modified so that interior grid point clustering can be 
controlled by the addition of non-homogeneous terms to the 
right-hand-side of eq. 12. This results in a coupled system 
of non-linear Poisson equations to be solved. An Example 
of the type of grid generated by this method is shown in 
fig. 4. 

The Variational Grid Generation Method 

The variational grid generation method4 is based on 
some heuristic principles concerning what a good quality grid 
consists of. These principles are 1) the grid should be as 
smooth as possible, 2) orthogonal as possible, and 3) should 
cluster in specified regions of the ph'ysical doma~n.. ~h~se 
principles can be stated mathematIcally by mmu:mzmg 
appropriate measures of the smoothness, orthogonah~ an.d 
clustering functions. The smoothness of the gnd IS 
measured by the following functional 

(14) 

The orthogonality of the grid is measured by the functional 

(15) 

Finally, the grid clustering is measured by the functional 

(16) 

Now we can form one functional that is a weighted average 
of all three quantities we wish to minimize: 

(17) 

where As' Ao ' and Aware scalars that give different 

weighting to each functional. Minimizing 1(~,T1) w~ll 
produce an optimal grid with respect to the chosen gnd 

quality measures. The ~ coordinates are transformed to the 
physical x coordinates using eq. 5 and then the 
Euler-Lagrange equations are formed .. The resulti~g sy~t:m 
is similar to the system of eq. 13 and IS solved usmg flmte 
difference discretization and iteration. One can see that 
where the weighting function is large, the grid cell size will 
be small, achieving the required clust~ring. Ther~fore, .the 
method is particularly suited to generanon. of adapti~e gnds. 
The usual procedure is to choose the weIght functIOn as a 

571 

measure of the rate of change of the solution to the equation 
we are trying to solve on the grid. One example of this 
adaption is shown in fig. 5. Note how the grid adapts to 
the steep gradients in the vicinity of the shock waves in the 
solution. 

It is possible to directly discretize and minimize 1(~,T1) 
before applying the Euler-Lagrange equations. This method 
was used in refs. 5 and 6 to generate structured and 
quasi-structured grids. Functionals analogous to Is' 10 and 
Iw were developed to measure the grid quality. The grid 
points are solved for by minimizing the grid quality measures 
using a conjugate gradient optimization algorithm. An 
example grid generated by this procedure is shown in fig. 6. 
This method is also applicable to unstructured grids and is 
further discussed below. 

Quasi-Structured Grids 

Quasi-structured (zonal, composite or patched) grids 
have been used by manyl.2 to take advantage of the 
simplicity of finite difference methods while allowing the 
discretization of more general domains. The physical domain 
is first subdivided into a small number of regions, each of 
which can be separately associated with a rectangular 
computational domain. The grids are generated in each 
sub-domain and then patched together along common 
boundaries. These interfaces between the domains can be 
fixed or allowed to float along with the nodal points in the 
grid generation procedure. A method for generating 
composite grids based on the method of ref. 5 was 
developed in ref. 6. An example of using this procedure is 
shown in fig. 7. This is a composite grid consisting of two 
structured grids, one an O-type grid about a gas turbine 
engine blade and the second a C-type grid surrounding the 
O-type grid. The quasi-structured grid approach is a 
powerful tool; however, it is not as general as the 
unstructured grid methods. 

Unstructured Grids 

Unstructured grids afford the most geometric 
generality. In fact, one can discretize an arbitrary domain 
using an appropriate unstructured grid. For this reason, 
these types of grids have been receiving much attention 
recently, as solutions of field equations are required on more 
and more complex geometries. Unstructured grids can be 
generated by hand (or with the use of a digitizing tablet), but 
this method is tedious, time-consuming and has a large 
human error factor. Thus, we are led to automatic methods 
for unstructured grid generation. The most general automatic 
unstructured grid generation methods are those based on the 
n-simplex (triangle in 2-d and tetrahedra in 3-d). The 
procedure is to first specify the positions of the N nodal 
points which in this case are just the vertices of the triangles 
or tetrahedra. (The positions of the nodal points can, for 
example, be generated pseudo-randomly). Next, a scheme is 
used to connect the N points to form the triangular elements 
forming the grid. The points Xj' j = 1,2, ... N, can be joined 

using purely heuristic or semi-optimal rules 7. The optimality 



of the grid can be measured by how similar each element is to 
an equilateral triangle (similarly in 3-d). It is striking that 
there exists a very simple rule for joining the vertices that 
ensures that the grid is optimal--the Delaunay criterion8,9. 
First we define the Voronoi polygon surrounding a point Xi 
as the set of points closer to Xi than any other point 

V(Xi) = { x I d(x,xi) ~ d(x,xj) for all j=I,2, ... ,N} 

where d(';) is the Euclidean metric (d(x,y) = distanc~ 
between x and y). Two points Xi and Xj are termed VoronOl 
neighbors if their respecive Voronoi polygons share a 
common edge. Thus, the Delaunay criterion states that node 
Xi is to be connected to node Xj if they are Voronoi 
neighbors. This procedure produces grids such as the one 
shown in fig. 8 for two airfoils in a wind tunnel. Note that 
the procedure has to be modified .for non-convex domai~s 
such as this. In effect, the connectIOns are checked to see tf 
they cross any of the required boundary edges, and if so, on~ 
of the nodes is deleted from the search for Voronot 
neighbors. This triangulation procedure can be made to take 
on the order of NlogN operations, and thus is very efficient. 

Grid Improvement and Adaption Methods 

In general, a given computational grid is not the 
optimal one for solving a problem. For example, it is usually 
required to have the grid clustered in some regions of the 
domain in which the solution to the problem is varying 
rapidly. Since the solution is not known a priori, we are led 
to methods that dynamically adapt the grid to the solution. 
This adaption can take either of two forms: 1) the main grid 
is held fixed while individual sub-domains are refined into 
smaller sub-domains (this is called adaptive refinement) or 
2) the basic logical structure of the grid is held fixed and the 
grid points are allowed to move such that they become 
clustered in required regions (this is just called an adaptive 
grid). The effect of either of these types of adaptions is to 
make the grid spacing smaller in the required .regions, ~nd 
therefore increasing the accuracy of the numencal solutIOn. 
An example of adaptive grid refinement lO is shown in fig. 9. 
Note how the grid is refined in certain regions requiring 
resolution. An example of an adaptive grid is shown in 
fig 5. The grid points have moved and Clustered. i.n the 
required regions. The method of ref. 5 can be modtfted so 
that it is applicable to unstructured grids. Thus, unstructured 
adaptive grids could be generated analogously to structured 
adaptive grids. In conclusion, adaptive methods are one of 
the most promising techniques for improving the accuracy of 
numerical solutions to partial differential equations. 

Conclusions 

Numerical methods for the generation of 
computational grids have been presented. These methods 
have been shown to be very powerful tools for use in the 
simulation of complex physical processes governed by partial 
differential equations. 

572 

References 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

Thompson, J. F., Z. U. A. Warsi, and C. W. 
Mastin. Numerical Grid Generation. Elsevier Science 
Publishing Co. New York. 1985. 
Ghia, U. and K. Ghia, eds. Advances in Grid 
Generation. American Society of Mechanical 
Engineers. 1983. 
Dulikravich, G. S., "CAS22-FORTRAN Program 
for Fast Design and Analysis of Shock-Free Airfoil 
Cascades Using Fictitious-Gas Concept," NASA 
CP-3507, January, 1982. 
Brackbill, J. U. and J. S. Saltzman, "Adaptive 
Zoning for Singular Problems in Two Dimensions," 
Journal of Computational Physics, 46, 1982, pp. 
342-368. 
Kennon, S. R. and G. S. Dulikravich, "A Posteriori 
Optimization of Computational Grids," AlA A paper 
no. 85-0483, Reno, Nevada, January, 1985. 
Kennon, S. R. and G. S. Dulikravich, "Composite 
Computational Grid Generation Using Optimization," 
First International Conference on Numerical Grid 
Generation in Computational Fluid Dynamics, 
Landshut, W. Germany, July 14-17, 1986. 
Nguyen, V. Ph., "Review of Techniques for Efficient 
Network Generation for Finite Element Analysis," 
VDI-Forschungsheft No.2, 1982. 
Watson, D. F., "Computing the n-dimensional 
Delaunay Tessellation with Application to Voronoi 
Polytopes," The Computer Journal, 24, no. 2, 
1981,pp 167-172. 
Bowyer, A., "Computing Dirichlet Tessellations," 
The Computer Journal, 24, no. 2, 1981, pp. 
162-166. 
LOhner, R., K. Morgan and O. C. Zienkiewicz, "An 
Adaptive Finite Element Procedure for Compressible 
High Speed Flows," CMAME, 51, 1985, pp. 
441-465. 

Fig. 1 a A two-dimensional domain 0 

Fig. 1 b The domain 0 showing. its 
discretization into sub-domams 0i 



Fig. 2a A typical base domain showing 
discretization using a repetition of squares 

Fig. 3 Grid about a two-dimensional cascade generated 
using conformal mapping3. 

573 

Fig.2b A base domain consisting of a 
repetition of regular triangular sub-domains 

Fig. 4 Airfoil grid generated using the elliptic method 1. 



Fig, 5 Adaptive grid for a two-dimensional compressible 
flow problem generated using the variational method4, 

Fig, 6 Optimized grid for a space shuttle cross-section5, 

Fig, 7 Composite grid for a turbine blade6, 

574 



Fig. 8 Delaunay triangulation for two airfoils in a wind 
tunnel. 

Fig. 9a Initial un-refined grid Fig. 9b Adaptively refined grid 

575 



Intelligent Backtracking Using Symmetry 

Cynthia A. Brown and Larry Finkelstein Paul Walton Purdom, Jr. 

College of Computer Science 
Northeastern University 
360 Huntington Ave. 
Boston, Mass. 02115 

Abstract. Symmetries occur naturally in many types of problems. 
(An example is the eight queens problem under rotation or flip of 
the chessboard). The performance of search algorithms in solving 
such problems can be improved by recognizing as early as possible 
that two partial solutions are equivalent under symmetry. However, 
most uses of symmetry in searching are problem specific and may 
not take full advantage of the potential improvements. In this paper 
we describe a general method for incorporating symmetries in search 
methods. The input to our procedure is a problem~ together with 
an abstract representation of its underlying symmetries (known as 
a group). The method automatically calculates the symmetry tests 
to be performed at each stage in searching, making use of efficient 
algorithms for computing with groups. In this way the full benefit of 
the symmetries is obtained without the need for ad hoc techniques. 

1. Introduction 

Searching is an important method for solving difficult 
problems .. A great deal of effort has been directed into 
making search methods more "intelligent", in order to im
prove their efficiency. There are two common approaches. 
One method is to guide the search by using known prop
erties of the problem under investigation. A second ap
proach is to develop general methods which do not depend 
on the nature of the problem. A common characteristic of 
such general methods is the ability to reject large numbers 
of possible solutions simultaneously, rather than having to 
consider each one individually. The most popular intelli
gent search method of this type is known as backtracking. 
The basic idea of backtracking is to build a solution to a 
problem one piece at a time. If it is possible to identify 
a partial solution as one that cannot be extended to a 
full solution, then we eliminate from the search space all 
possible extensions of this partial solution. 

To do well with backtracking, it is necessary to de
velop tests that can eliminate partial solutions as early as 
p,ossible. Most efforts to improve backtracking programs 
for individual problems concentrate on developing better 
criteria for eliminating partial solutions. While impor
tant, such improvements tend to be problem-specific so 
there is little or no carry-over to other problems. There 

CH2345-7/86/0000/057'6$01.00 © 1986 IEEE 
576 

Computer Science Dept. 
Indiana University 
101 Lindley Hall 
Bloomington, In. 47405 

are also general methods, such as search rearrangement 
[4,18], that allow the criteria to be applied earlier in the 
search process. Search rearrangement can lead to a very 
significant improvement in the behavior of a backtrack 
program. For some problems there is another possibility: 
the existence of symmetry in the potential solutions to the 
problem may allow certain sections of the search space to 
be omitted altogether. 

Symmetries occur naturally in many ~ types of back
track problems. For example, consider the problem of 
embedding a graph 91 in another graph 92. If the auto
morphism group G of 92 (the group of one-to-one edge
preserving maps of 92 onto itself) is known, then a partial 
embedding can be tested by seeing if it is equivalent un
der some automorphism to a partial embedding that has 
already been examined. If such an equivalence is found, 
then the current partial solution can be discarded. 

In many problems, there are variables that play inter
changable roles. This is another manifestation of symme
try. As a simple example, consider the missionaries and 
cannibals problem. Three missionaries and three canni
bals must cross a river using a two-man boat. Either one 
or two people can take the boat across the river. The 
problem is to devise a plan for crossing in which the can
nibals never outnumber the missionaries on either side 
of the river. This problem is typically given to begin
ning classes in artificial intelligence to be solved using 
backtracking. The missionaries are clearly interchangable 
amongst themselves, as are the cannibals. Thus, it is 
only necessary to consider solutions where the missionar
ies cross the river in some particular order, and the same 
for the cannibals. Any other solution can be obtained 
from such a solution by permuting the names of the mis
sionaries, and of the cannibals, amongst themselves. 

In general, it is not necessary to try all combinations of 
values for interchangable variables. For example, if there 
are n interchangable Boolean variables, then we need only 
test n + 1 sets of values (no variables equal to zero, one 
variable equal to zero, ... , n variables equal to zero) in
stead of the 2n different combinations that would other
wise be needed. 



Symmetry can also arise from the underlying structure 
of the problem. As an example, consider the eight queens 
problem: place eight queens on a chessboard so that none 
of them is attacking any of the others. Any solution to the 
problem can be converted to another (possibly different) 
solution by rotating the board through 90, 180, or 270 
degrees, or by flipping it to a mirror image position. How 
can this fact be used to reduce the search space? Let us 
refer to the queens as Ql, ... , Qs. Since no two queens 
can be in the same row, we assume that Qi goes in row i. 
Then we need only consider placing Ql in columns 1 to 4, 
since any solution with Ql in column 4+i can be obtained 
from a symmetrical one with QI. in column 5-i by flipping 
to the mirror image. This observation eliminates half of 
the search space. 

It is less obvious how to apply the rotational symme
tries. A little thought shows, for example, that if we can 
rule out any solution with Ql in column 1, we do not 
need to try putting a queen in any corner of the board. 
But what we really need is a systematic way of applying 
knowledge about symmetries. to reducing the search space. 

The systematic study of symmetries is the province 
of- group theory. The obvious symmetries of the eight 
queens problem form a well-known group: the dihedral 
group of order eight. In recent years there has been a 
great deal of activity in the field of computational group 
theory, inspired in part by the classification of all finite 
simple groups [3]. Several systems for performing basic 
group theory operations are currently available [8]. 

It is very common for a problem to display one or more 
of the types of symmetry described above. By taking ad
vantage of such symmetries to reduce the search space, 
knowledge about the problem that is not explicit in the 
predicates can be exploited. We are developing a system
atic proceduI'~ for applYing group-theoretic methods to 
exploit the existence of symmetries, in backtracking prob
lems. This procedure "includes methods for representing 
the symmetries and for automatically calculating the tests 
to be applied at each stage in :the backtracking process in 
order to take maximum advantage of them. We are also 
working on developing and improving the group-theoretic 
algorithms required for these calculations. 

Some care is needed if the symmetry testing is to speed 
up a search program, not just reduce the number of nodes. 
A naive approach would use time proportional to the size 
of the symmetry group at each node. Since the maximum 
reduction in the number of nodes is also proportional to 
the size of the symmetry group, little or no savings would 
'result. There are two strategiesJor improving on the naive 
approach. The first is to use efficient algorithms for the 
symmetry testing. We make use of algorithms from com
putational group theory to carry out the symmetry tests 
[3,6,15,16,19]. The general test we apply at each node in 
the search space is essentially equivalent to computing a 

577 

certain color automorphism group. We have two fairly 
distinct methodologies for computing this test. The first 
one is based on a general algorithmic method for comput
ing with permutation groups developed by Sinis [19] and 
refined by Leon [15] and Butler [6]. This method usually 
does the symmetry testing rapidly, but it can take expo
nential time. The second only applies where the group is 
a p-group [11], but it is fast because it uses Luks' color 
automorphism algorithm [16]. 

A second approach to reducing the time spent on sym
metry testing is to discontinue the testing on portions of 
the search space where it can have no effect. We have a 
criterion which establishes certain conditions under which 
symmetry testing cannot yield any further savings. Since 
symmetry testing usually has most of its effect near the 
root of the search tree, this often permits us to save a 
significant amount of time. 

The methods for intelligent searching described in this 
paper have characteristics similar to other such methods. 
In practice they may speed up searching greatly, but there 
is no guarantee of a speed-up on any particular problem, 
and there is no indication that the method improves the 
worst-case time for searching. 

2. Backtracking and Symmetry 

Backtracking is a widely used method for reducing the 
size of a search space. To apply backtracking to a problem 
it must be expressed in a suitable form. Many problems 
may be expressed as predicates on a set of variables. A 
solution to such a problem is an assignment of values to 
the variables that makes the predicate true. To do back
tracking, we must have a set of intermediate predicates 
available. An intermediate predicate is a predicate over 
a subset of the variables which is false for a given assign
ment of values to its variables (which we call a partial 
solution) only if that assignment cannot be extended to a 
solution to the full problem. In other words, an interme
diate predicate is able to identify some partial solutions as 
dead ends, and therefore cause the program to back up. 
In the eight queens problem, for example, the intermedi
ate predicate is the check that the queens placed on the 
board so far do not attack each other. 

We call the problem predicate P, and the problem 
variables Xl, ••• , X n ., Let Pi be the intermediate predicate 
for Xl, ••• , Xi. We simplify the discussion by assuming 
that each variable has values in the range 0, ... , v. In 
addition, we use a special value, u, to represent an unset 
variable. 

Each partial solution X may be thought of as a se
quence X = Xl ••• xn of n values. . A partial solution is 
said to be complete if all of its variables are set, and in
complete otherwise. We will assume that the variables of 
X are set from left to right. If X is an incomplete partial 



solution and Xk is the first unset variable of X, then all 
variables Xi of X with J' ~ k would normally be unset. 
However, as we shall see, our use of symmetry will often 
allow us to set certain variables xi,i ~ k, to v. Accord
ingly, we assume that all variables xi,i ~ k, are either 
unset or set to v. We need a partial order -< on the set of 
all partial solutions with the property that if. X ~ Y and 
if X and Yare incomplete, then all. possible extensions 
of X to a complete solution will be examined before any 
attempt to extend Y. The partial order we use is defined 
by X ~ Y if there is a prefix Yl .•. Yk of Y consisting of 
set variables which satisfy the following properties: 

1. For i < k, either Yi = Xi, or Yi = v and Xi = tL. 

2. Xk is set and Yk > Xk. 

In the case where X and Yare complete, ~ is the usual 
lexicographic ordering. 

Let Sn be the symmetric group of degree n. The group 
Sn may be described as the set of all permutations of the 
set n = {I, 2, ... , n}, with the group action being or
dinary composition of functions. We denote an applica
tion of g E Sn to i E n by the exponential notation i g

• 

The group Sn acts naturally on the set of all sequences of 
length n by permuting the sequence values according to 
the permutation of their indices. To describe the action 
formally, let g be an element of Sn and X = XIX2 ••• Xn be 
a sequence of values. Then Y = xg is the sequence de
fined by setting Yi = Xi, where i = i g• Equivalently, one 
may write Y as the sequence .X1,,-1 X 2 ,,-1 ••• Xn,,-l. It is easy 
to check that according to this definition xgh = (Xg)h for 
all sequences X and all elements g, h E G. In many in
stances it is more convenient to consider xg-1 

instead of 
xg because xg-

1 = Xl"X2" ••. Xn'" 

We are particularly interested in the set G of elements 
of Sn which leave invariant the set of solution sequences to 
P. (That is, the elements of G carry solutions into solu
tions.) It is easy to show that the product of two elements 
of G preserves all solutions, and so G is a subgroup of Sn' 

As a consequence, G also preserves the set of sequences 
which are not solutions to Pj either property defines G. 
For example, the dihedral group of order eight may be 
used for G in the eight queens problem. 

We now describe our method for exploiting the ex
istence of symmetries. Let X be a partial solution for 
which the values X!, ••• , Xk-l, k > 1, have already been 
set, and assume that Xk is the variable under considera
tion. (The current value of Xk must either be tL or some 
number less than v.) If Xk = tL, then we initialize the 
value of Xk to O. Otherwise, Xk is incremented by 1. As
sume that Pk(XI, ... , xn) is true so that, in the normal 
course of events, the backtracking procedure will continue 
by attempting to extend the partial solution X. 

At this point we call the function Sym Test, which con-

578 

tains the heart of our application of symmetry to back
tracking. SymTest has an argument list of the form 
(g,X,k,JI,g), where 9 is a list of generators for G, X 
is the current partial solution, and k is the index of the 
last variable of concern. SymTest returns a Boolean value 
which is true if there is an element g E G (such that 
xg-1 

~ X) and false otherwise. If such an element g 

exists, it is returned in the last parameter of Symtestj 
otherwise, variable JI will contain generators for a sub
group H of G which will be defined shortly. In addition, 
SymTest has the side effect of possibly setting certain vari
ables xi, i > k, to the value v and of restricting the pos
sible values of other variables. 

If SymTest returns false, then JI will contain a list 
of generators for the subgroup H of G which preserves a 
certain coloring C of the elements n induced by X. The 
colors in C are drawn from the set {O, ... , v} U {tL}. El
ements i, i E n are said to have the same color, denoted 
i "" i, if and only if either Xi = Xi or one has value v 
and the other tL. (For reasons which will become clear 
later, we consider tL and v to be the same color.) We then 
define H = Co(G) to be the set of all elements g E G 
which preserve the coloring Cj i.e. g E H iff i g "" i for 
all i E n. It is straightforward to show that H is closed 
under composition, and hence forms a subgroup of G. 

In our implementation of SymTest, we essentially at
tempt to compute the color automorphism group H with 
modifications made to suit our backtracking environment. 
At this time, it is not known if there is a polynomial time 
algorithm to solve the color automorphism problem. How
ever, there do exist special cases (which depend on the 
structure of G) for which polynomial time algorithms are 
known [16]. We have two different methodologies for com
puting H. The first method is based on a general approach 
for computing with permutation groups develped by Sims 
[19] and the second method utilizes an especially effici~nt 
algorithm [11] based on methods of Luks [16] for comput
ing H in the case where G is a p-group, i.e. G has order a 
power of a prime p. It seems likely that the computations 
needed for our application will be relatively inexpensive in 
either case. We sketch the Sims' type method in Section 
5; see [5] for a complete description of both methods. 

Although our two methodologies for implementing 
SymTest are rather different, we present a somewhat sim
plified view of what both are attempting to accomplish. 
The basic idea is to incrementally compute permutations 
g that preserve C. As g is extended to the next variable, 
we check whether it gives us a reason to back up. Thus, 
SymTest is designed to successively examine the values of 
Xi'" 1 ::; i ::; k, and to take appropriate action according 
to which of the the following cases occurs. Initially, JI is 
the empty list, and at any given time H = (JI) is the group 
generated by H (the empty list generates the identity sub
group). ·We start by choosing an arbitrary element g of 



G and setting j to 1. The more realistic versions of the 
algorithm differ from this naive version by not actually 
examining each 9 separately. 

1. j = k+ 1. If we eventually arive at this case, then we 
know that XiII = Xi for 1 :::; i :::; k. Since Xi, j > k, is 
either set to v or is unset, it follows that 9 preserves 
C. We then add 9 to )/ and choose an element not 
yet considered in G - H. If no such element exists, 
then we return false and )/ will then contain a set of 
generators for Co (G). 

2. Xi = XiII. In this case, we 'increment j and c?ntinue to 
examine g. 

-1 

3. XiII < Xi' In this case, xg -< X and SymTest returns 
true with its last parameter set to g. At this point 
in the backtracking procedure we need not consider 
X further, since X is equivalent under symmetry to a 
smaller partial solution. 

4. Xi < XiII, or Xi < v and XiII = U. Two sub cases arise 
in this case. If XiII is set, then it is unnecessary to 

consider 9 further, since xg-1 >- X. If Xi < v and 
Xi' = u, then if XiII were later set to a value less than 
Xi while we were in the current branch, then we would 

-1 
have xg -< X. Thus we should keep track of this 
information and not set XiII to any value less than Xi' 

This information represents a constraint on the future 
values of XiII, so this part of the method is reminiscent 
of constraint satisfaction methods. In either case, we 
choose a new element to consider from G - H. 

5. Xi = v and XiII = U. In this case, Xi = v and XiII = U. 

If, at some later time, we were to set XiII = r with 
r < v, then we would have xg-1 -< X. Therefore, we 
may avoid additional work by setting XiII = v now and 
continuing to extend the definition of g. 

In cases 1 and 4, if we have exhausted all elements of 
G - H, then we return false with )/ a set of generators 
for Co ( G). It should be noted that each time we add a 
generator to )/ we at least double the size of H. 

Much of the useful work done by SymTest occurs dur
ing the attempt to extend an element 9 E G to all indices 
{I, ... ,k}. Each time a variable is set or its domain of 
definition is restricted, as in case 4, we remove a large 
portion of the search space. 

SymTest returns either an element 9 E G with the 
property that xg- 1 -< X, if one exists, or else return a set 
of O(n) generators for the subgroup H. In the latter case, 
it may still be possible to set some additional variables. 
To see how this is done, suppose 9 E H. This leads to the 
partial solution given by the sequence xg-1 = XIII • •• Xnfl 

(it is more convenient to consider the image of X under 
9-1 than g). By definition of H, for i :::; k, we must have 
Xi = XiII whenever Xi < Vj however, we may have Xi = V 

579 

and Xi' = u. As noted before, if at some later time, we 
were to set Xi' = r with r < v, then the symmetry g-l 

would have the property that xg- 1 -< X. Therefore, we 
may set all variables XiII currently set to u to have value 
v. Applying g to xg-1 

then results in the original par
tial solution X with possibly one or more unset variables 
now set to v. Each such setting represents a decrease by 
one in the number of unset variables of X, and thus effec
tively decreases by one variable the size of the remaining 
backtrack problem on the branch being investigated. 

A more efficient method for accomplishing the above 
procedure is to simply compute the orbit jH for each po
sition j :::; k that contains a v, and to make sure that the 
variables corresponding to the positions in each of these 
orbits is set to v. In other words, for each such j compute 

jH = { r : r = jg, 9 E H} 

and set Xr = v for each r in the orbit. The advantage in 
using this method is that the cost of computing an orbit 

of H is proportional to the product of n and the number 
of generators of H. In general, H can be compactly de
scribed by a set of at most n-l strong generators [19] (the 
notion of a strong generator will be discussed in Section 
4). Thus the cost of applying the symmetry information 
is linear in the number of generators times n, whereas a 
naive method would take time proportional to the size of 
H times n. 

We now formulate a backtracking algorithm to incor
porate these ideas. There are many possible data stuc
tures which may be used for representing groups. For our 
purposes, we will represent a group by a list of generating 
elements. 

Backtracking with Symmetry Test. Input: Variables 
{x!, ... ,xn } and intermediate predicates Pi. In addition, 
a set 9 of generators for a group G of symmetries for the 
problem. Output: all sets of values for the variables such 
that P is true. Variables used: a stack Sx to store the 
partial solution X. The primitive stack operations are 
Push, Pop and TopOl. The algorithm calls the procedure 
SymTest with argument list (9, X, k,)/, g). SymTest re
turns a Boolean variable which is true if an element 9 E G 
is found such that xg- 1 -< X. In this case 9 is returned 
in the last parameter. Otherwise, SymTest returns false 
and a list of generators for Co (G) is returned in )/. 

1. [Initialize] 
k .-- OJ Sx .-- A; 
for i .-- 1 to n do Xi .-- u endfor 

2. [Solution?] 
if k =/:. n then goto Step 3 
else print(X); goto Step 4 endif 

3. [Search deeper] 
k .-- k + 1; 
if Xk = v then goto Step 6 {Xk previously set} 



4. [Try next value] 
if Xk = v then goto Step 7 
else if Xk = u then 

Sx +- Push (Sx, X); Xk +- 0 

elseif Xk < v-I then 
X+- TopOI(Sx); xk +- Xk + 1 

else {Xk = v - I}; 
X+- Pop(Sx); Xk +- v endif; 

if Pk (X) is false then goto Step 4 endif 

5. [Apply Symmetry Check] 
if SymTest(9,X,H,k,g) then goto Step 4; 
o +- {i En: i = ig,Xj = v,g E H,i ~ i}; 
foreach i E 0 do Xi +- v 

6. [Check predicate] 
if Pk (X) then goto Step 2 endif 

7. [Backtrack] 
k +- k - 1; 

if k = 0 then stop 
elseif Xk = 0 then goto Step 4 
else goto Step 7 endif. 

In Step 4, Xk is initally set to u. Once we set Xk = 0 
and call SymTest, we may well alter some of the variables 
xj,i > k. Therefore, it is necessary to stack the previous 
values of X. If we backtrack to variable Xk, then we have 
to restore the previous environment. In the case where we 
enter Step 4 with Xk set to v-I, it is unnecessary to save 
the environment stored on the stack, since it will never 
be used again. Consequently, we may pop the stack and 
store the result in variable X, before setting Xk = v. 

3. The Four Queens 

Let us consider the effect of applying symmetry con
siderations to the problem of placing queens on a chess
board, as described in the introduction. In order to make 
the size of the problem tractable for illustrations, we con
sider placing four queens on a four by four board. The 
four queens problem is normally formulated in terms of 
four variables, Ql, ... ,Q4, where the value of Qi is the 
number of the column that the queen in row i has been 
placed in. This formulation takes advantage of the fact 
that no two queens can be in the same row to reduce the 
number ofyariables from sixteen binary variables (repre
senting the sixteen squares on the board) to four variables, 
each of which can take on four possible values. 

The four queens problem has two (symmetrical) solu
tions; the ordinary backtrack tree, which has 61 nodes, is 
shown in Fig. 1. (The black squares are those occupied 
by queens.) Most programmers notice and take advan
tage of the obvious column symmetry, which means that 
QI need be tested only for values 1 and 2; any solution 
with QI equal to 3 or 4 can be obtained by rotating the 
board on its vertical axis. This observation gives a tree 
with 31 nodes. 

580 

Formulating the problem in terms of row variables, the 
only symmetry that we can express as a subgroup of the 
permutation group of the variables is the row symmetry 
which interchanges rows 1 and 4 and rows 2 and 3: in 
cycle notation, (14)(23). In order to make any use of 
the symmetry, we must set the two variables in one orbit 
before the two variables in the other, giving search order 
Ql, Q4, Q2, Q3 or Q2, Q3, QI, Q4. In this problem, 
variables in adjacent rows are more likely to eliminate each 
other than more widely-separated variables, so the second 
order is preferable. The search tree for the second search 
order is shown in Figure 2. It has 35 nodes altogether. 
Eliminating the right side of the tree gives a tree with 30 
nodes, one less than before. (The tree for the first search 
order has 55 nodes; 42 remain when the right subtree is 
removed.) 

We would like to retain the convenience and efficiency 
of the row-variable formulation of the problem, while tak
ing advantage of the rotational symmetries as well as the 
row and column symmetries. This can be done by find
ing a mapping of the row variables onto the variables of 
the underlying problem (square variables) which preserves 
the search order in the row-variable problem. A partial 
solution in the row-variable problem is also a partial solu
tion in the square-variable problem. Any partial solution 
in the row-variable problem which survives the predicate 
has only one queen per column; hence, it maps onto an
other partial solution to the row-variable problem under 
rotational and column symmetry, as well as under row 
symmetry. 

We number the squares of the board with their row 
and column indices; this gives a set of variables ~,j, 1 ~ 
i,i ~ 4. A search order consistent with the normal order 
for the row variables is RI,4, R I,3, RI,2, RI,I, R2,4, R 2,3, 
R 2,2, R 2,1, R3,4, R3,3, R 3,2 ,R3,1, R 4,4, R 4,3, R 4,2, R 4,1. Us
ing this search order, the partial solutions for the square
variables problem !!tat are also partial solutions for the 
row-variables problem occur in the same order as in the 
row-variables problem. The existence of this ordering jus
tifies the use of the symmetries for the square-variables 
problem on partial solutions for the row-variables prob
lem. Similar orderings exist for other search orders on the 
row variables. 

This justifies the use of the rotational symmetries to 
prune the search tree for the row-variables problem. Using 
the normal search order, we obtain a tree with 35 nodes. 
The results are again better if we choose the search order 
Q2, Q3, Q}, Q4. This gives a tree of 28 nodes; if we count 
in the same way as for the other cases, eliminating the 
right subtree altogether, then we have 26 nodes. This 
tree is shown in Figure 3. 

On such a small problem, it is very difficult to obtain 
much improvement, since the predicates are quite effective 
by themselves and the search tree is already small. The 



column symmetries (removing the right half of the tree) 
are usually recognized and used by experienced program
mers. We were able to remove one additional node from 
the left side of the search tree by using row symmetries 
alone; using both row and rotational symmetries, we elim
inated five additional nodes. These results indicate that 
the application of symmetries, combined with an intelli
gent search order, will yield very significant improvements 
on large backtrack problems where symmetry is found. 

4. Group Theory Algorithms 

We briefly review some fundamental concepts which 
underlie both the computer implementation and theoret
ical analyses of algorithms for permutation groups. Let 
Sym(n) be the group consisting of all permutations of 
some arbitrary finite set n with n elements. A subgroup 
G of Sym(n), denoted G :::; Sym(n), will always be iden
tified with a list of generators. 

A base r for G is a subset of n with the property that 
only the identity of G fixes each element of r pointwise. 
The notion of a base was invented by Sims [19] as a means 
of testing equality of two elements of G. If g, h E G and 
9 and h agree on r, then 9 = h. This idea is useful 
because many subgroups of Sym(n) have bases which are 
substantially smaller than n. 

Let r = {bl, b2," ., bm }. Define the chain of sub
groups 

where Gi is the subgroup of G which fixes all the points 
of {bb b2, ... , bi-l}' A strong generating set for G is a set 
S of generators for G such that if 

Si = {s E S : 8 E Gi, i ~ I} 

then Si is a set of generators of Gi. 

A base and strong generating set is the basic data 
structure used to encode information about permutation 
groups. Perhaps the most fundamental result in computa
tional group theory is that if G is specified by a small set 
of generators then a base and strong generating set can 
be computed in polynomial time. The original algorithm 
was given by Sims [19] and will be referred to as Sims' 
algorithm. An alternative version together with a proof 
that the algorithm runs in polynomial time was later given 
by Furst, Hopcroft and Luks [10). Sims' algorithm can be 
used to show that the following problems have polynomial 
time solutions ([10),[19)): 

1. (Order) Compute the order of G. 

2. (Membership) Given x E Sym(n), determine if x E 

G. 

3. (Pointwise stabilizer) Generators for the subgroup 

581 

Ga1,a'J, ... ,ar of G which fixes pointwise the subset 
{a1, a2, ... ,ar } of n. 

5. SymTest Using Sims' Method 

In describing our implementations of SymTest, we 
shall assume that n = {I, 2, ... ,n} and denote Sym(n) by 
Sn. Recall that SymTest has argument list (9, x, k,)I, g) 
where 9 is a list of generators for G, X is the partial 
solution, Xk is the variable under consideration and )I and 
9 are the output parameters. SymTest returns true if there 
is an element 9 E G such that xg- 1 -< X; otherwise, 
SymTest returns false and )I contains a set of generators 
for the color automorphism group H = Co(G). 

The version of SymTest described in this paper is 
based on a general method for computing with permu
tation groups developed by Sims [19) and later refined by 
Butler [6] and Leon [15). Our goal is to simply sketch 
the highlights of this method and refer the reader to our 
forthcoming paper [5] for full details. Sims' method has a 
wide range of applications and forms the basis of many of 
the group theory algorithms implemented in the CAYLEY 
system [8]. 

We will assume that the first m elements {I, ... , m} 
of n form a base r for G. A sequence T = (tI, ... , tj) of 
distinct points of n is called a partial image. If j = m, 
then T is called a complete image. For any partial image 
T and subgroup H ~ G, 

H(T) = {g E H : (1, ... ,j)g = T} 

and if T is incomplete then 

XH(T) = {y En: H(T U y) =f 0}. 

Think of XH(T) as the possible ways of extending a valid 
partial image (Le. XH(T) =f 0) to another valid partial 
image. 

The following result describes XG(T) precisely (see (6), 
Proposition 1). 

Proposition 1 

Let T = (h, ... , tj-d be a partial image and let 9 E 
G(T). Then 

Suppose now that P is a certain property defined on 
G and we are trying to find an element of G, or possibly 
all elements of G, which have this property. Let 

P(T) = {g E G(T) : 9 has property P} 

and let 
Xp(T) = {y En: P(T U y) =f 0}. 

For our purposes, 9 has property P if 9 preserves the 



coloring C. Equivalently, 9 has property P if Xi = Xi' 

for all i,1 :::; i :::; k. In general, it is difficult to compute 
Xp(T). Instead, we use an easily computed approxima
tion Xp(T). Given T = (th ... ,tj-l), with 1 :::; i :::; k, 
and 9 E G(T), if Xj < 11, define 

IT Xj = 11, let 

Note that by Proposition 1, 

Xp(T) ~ Xp(T) ~ XG(T). 

Let us briefly describe how some of these notions will 
be utilized in SymTest. Suppose we are attempting to 
extend T in such a way that 9 E G(T) will lead to a 
partial solution xu-1 

which is smaller than X. This will 
happen, for example, if we can find a tin Xp(T) such that 
Xt is set and Xt < Xj. For then, by Proposition 1, there 
exists an element hE Gr such that hg E G(T u t) and so 
X(hU)-l -< X. Otherwise, assuming that Xp(T) 1= 0, we 
choose the smallest element t E Xp(T). Either Xj < v and 
Xt = Xj, or Xj = v and Xt E {v, u}. Aga~, by Proposition 
1, there exists an h E Gr such that r = t. IT Xj = v 
and Xt = u, we set Xt = 11. We then make the assignments 
9 +- hg, T +- (TUt), in which case 9 E G(T), and continue 
the process of extending T. Eventually, we arrive at an 
image T such that one of the following occurs: 

(i) Xp(T) = 0. We then set T +- (tit ... , tr-l) and at
tempt a further extension of the new T, or 

(ii) There exists agE G(T) such that xu-1 
~ X, or 

(iii) T is a complete image and Xi = Xi' for 1 :::; i :::; m. 

In case(iii), there exists a unique element 9 E G(T) (by 
the definition of a base) and 9 has the property that Xi = 
xi' for each i E f. IT k :::; m, then 9 E Cn(G); otherwise 
we need to check 9 on the remaining values {m + 1, ... , k} 
to see if 9 E C[}(G). The net effect is that either we find 
a smaller partial solution than X, we find an element of 
C [} (G) or we backtrack on T. 

As might be expected from this discussion, SymTest 
is it~elf constucted as a backtracking algorithm and sys
tematically searches through all possible partial images 
T. Furthermore the algorithm is organized in such a way 
that not only do we output a set of strong generators for 
H but we also use the subgroups of H that are built up 
e;route in order to prune the sets Xp(T). A careful anal
ysis is required, however, to ensure that we don't at the 
same time throw out any partial image which corresponds 
to an element 9 E G such that xu- 1 

-< X. 

582 

Section 6. A Criterion for Turning SymTest Off 

In Section 2 we described the useful work performed 
by SymTest as we successively examine the values Xj', 1 :::; 
i :::; k, for 9 E G. As variables are set, it becomes more 
difficult to find an element 9 E G which sets new variables 
or has the property that. xu-1 -< X. We present a simple 
criterion for deciding when further use of SymTest will 
yield no further productive work until we backup past 
this point. Once this criterion has been met, we may 
then switch from symmetry checking to another intelligent 
search method such as search rearrangement. 

Suppose that we have set the variables Xl, ••• ,X/t; and 
that C is the current coloring of O. We say that Condition 
U is true at k if for each i :::; k and 9 E G such that Xi 

and Xi' have the same color for 1 :::; i :::; i-I, Xj, 1= u. In 
the case where Xj = v and Xj" = u, we immediately set 
Xj" = v in our backtracking algorithm, so that this case 
won't invalidate Condition U. 

Turnoff 811m Test Criterion: Condition U is true and 
Cn( G) is the identity subgroup. 

IT this criterion is true, then no further information 
will be gained by applying SymTest until the next time we 
examine variable X/t;. To see why this criterion works, sup
pose that in the course of searching deeper in this branch, 
and after setting Xj for some i > k, we find an element 

9 E G such that xu-1 
-< X. This means there exists an 

r :::; i, such that Xi = Xi' for 1 :::; i :::; r - 1 and Xr < X r'. 

We present a proof by contradiction, that no such 9 
exists. This proof depends on the following observations. 

Observation I. IT any variable Xi is set to v in C. for 
i > k, then Xi is set to v for the coloring C' which arises 
from setting the additional variables x/t;+lt ••• , Xj. 

Observation II. IT i satisfies 1 :::; i :::; minCk, r -1) then 
i and iU have the same color in C. 

Proof. By the definition of g, i and ig have the same 
color in C' for 1 :::; i :::; r - 1. Furthermore C and C' agree 
on {1, ... ,k}. Let 1:::; i:::; min(k,r-l). Ifiu :::; k, then 
both i and iU have the same color in C. Otherwise, choose 
i to be minimal such that i g > k. Then i g is colored U 

or v in C. If i U is colored U in C, then we can use 9 to 
obtain a contradiction to our assumption that Condition 
U is true. Thus iU is colored v in C. But then iU is colored 
v in C' by Observation I and so i is colored 11 in C', and 
therefore in C as well. The observation then follows by an 
easy induction argument. 

We now derive a contradiction to the existence of g. 

IT r > k, then 9 preserves C by Observation II. But then 
9 must be the identity element by our Criterion. Thus we 
may assume that r :::; k.. By Observation II, we know that 
i U has the same color as i in C for 1 :::; i :::; r - 1. IT r U :::; k, 
then rU has the same color in C as in C'. Since, Xr' < Xr , it 
then follows that xu-1 -< X in C. The existence of such a 9 



would have caused our backtracking program to abandon 
the present branch rather than attempting to extend C. 

Thus we may assume that rg > k. This implies that 
rg is colored tL or v in C. The case where x" = tL is a 
contradiction to our Criterion that Condition U holds at 
k. On the other hand, if r g is colored v in C, then by Ob
servation II, r g is colored v in C' as well. This contradicts 
x" < x, in C' and completes the proof. 

Acknowledgement. Our thanks to Hugh Brown for 
making the diagrams. 

References 

[1] A. Aho,J. Hopcroft and J. Ullman, The design and 
analysis of algorithms, Addison Wesley, Reading, 1974 

[2] M. D. Atkinson (editor), Computational Group Theory, 
Academic Press, New York, 1984. 

[3] L. Babai, W. M. Kantor, E. M. Luks, Computational 
complexity and the classification of finite simple groups , 
Proc. 24th IEEE FOCS, (1984), 162-171. 

[4] J. Bitner and E. Reingold, Backtrack programming 
techniques, CACM 18 (1975), 121-136. 

[5] C. Brown, L. Finkelstein, and P. Purdom, Symmetry 
and Searching, Northeastern University Technical Report 
(to appear). 

[6] G. Butler, Computing in permutation and matrix 
groups II: backtrack algorithm Math. Comp., 39 (1982), 
671-680. 

[7] G. Butler and J. J. Cannon, Computing in permuta
tion and matrix groups I: normal closure, commutator sub
groups, series Math. Comp., 39 (1982), 663-670. 

[8] J. J. Cannon, An introduction to the group theory lan
guage, Cayley, in Computational Group Theory, edited by 
M.D. Atkinson, Academic Press, 1984, 145-184. 

[9] E. Freuder, Utilizing Subgraph Isomorphism in Con
straint Graphs, University of New Hampshire Technical 
Report 84-13. 

[10] M. Furst, J. E. Hopcroft, E. M. Luks, Polynomial
time algorithms for permutation groups, Proc. 21th IEEE 
FOCS, (1980),36-41. 

[11] Z. Galil, C. M. Hoffman, E. M. Luks, C. P. Schnorr, A. 
Weber, An O(n310gn) deterministic and an O(n3 ) proba
bilistic isomorphism test for trivalent graphs, Proc. 23rd 
IEEE FOeS, (1982), 118-125. 

[12] M. R. Garey and D. S. Johnson, Computers and In
tractability, W.H. Freeman, San Franciso (1979). 

583 

[13] C. M. Hoffman, On the complexity of intersecting 
permutation groups and its relationship to graph isomor
phism, manuscript. 

[14] C. M. Hoffman, Group-theoretic algorithms and graph 
isomorphism, Lecture Notes in Computer Science,136, 
Springer-Verlag, Berlin, 1982. 

[15] J. Leon, Computing automorphism groups of combi
natorial objects, in Computational Group Theory, edited 
by M.D. Atkinson, Academic Press, 1984, 321-337. 

[16] E. M. Luks, Isomorphisms of graphs of bounded va
lence can be tested in polynomial time, J. Compo Sys. Sci. 
25 (1982), 42-65. 

[18] P. W. Purdom, E. L. Robertson, and C. A. Brown, 
Backtracking with multiple level search rearrangement, 
Acta Informatica (1981). 

[19] C. C. Sims, Computation with permutation groups in 
Proc. Second Symposium on Symbolic and Algebraic Ma
nipulation, edited by S. R. Petrick, ACM, New York, 1971. 



Fig. 1. The ordinary backtrack tree for the. four queens problem. Solutions are marked 
with an asterisk. 

Fig. 2. The backtrack tree for the four queens problem using row symmetries and an 
alternate search order. 

Fig. 3. The backtrack tree for the four queens problem using the full symmetry group and 
the alternate search order. 

584 



TIME-SPACE TRADEOFFS FOR TREE SEARCH AND TRAVERSAL 

David A. Carlson 

Department of Electrical and Computer. Engineering 
University of Massachusetts 

Amherst, MA 01003 

Abstract 

Tree search is a fundamental computation that 
is performed frequently in the application areas of 
combinatorial optimization and artificial 
intelligence. There, algorithms that search the 
state-space tree representation of a problem 
ins tance for a sol ut i on of minimum cos t often use 
prohi bi ti vel y 1 ar ge amounts of spa ce. In t hi s 
paper, we develop new algori thms for tree search 
that use reduced amounts of space. The algorithms 
are modifications of depth-first, breadth-first, 
and heuristic tree search algorithms. They achieve 
their space reductions by recomputing certain nodes 
in the tree from scratch. Thus, they require more 
time than the algorithms they are derived from. 
However, the time-space tradeoff is a favorable 
one, since we are able to show that significant 
savi ngs in space can be achi eved at the e xpens e of 
only a small (constant factor) increase in run 
time. 

1. Introduction 

Searching for an item in a set of items is a 
problem that arises often in computer applications. 
Since it is a fundamental problem that mus t be 
solved frequently, researchers have attempted in 
the past to develop algorithms with good 
performance, either in terms of time or space. 
These are the major resources consumed by a 
computer algorithm, and developing algorithms 
having better performance with respect to them 
leads to a reduction in the overall cost of 
computing. 

Here, we will consider the problem of tree 
search, which occurs when the set of i terns to be 
searched is organized as a tree, as shown in Figure 
1. We assume that each item in the tree has 
associated with it a nonnegative integer cost, and 
that the problem is to determine the minimum cost 
i tern in the tree. Little or no information about 
the minimum is known in advance, so that it may be 
necessary to search the entire tree structure in 
order to guarantee that the minimum has been found. 
In this si tuation, tree search can be accomplished 
by an orderly traversal technique that visits all 
nodes in the tree. 

The problem of sear chi ng f or a ml m mum ina 
tree arises often in a number of important 
application areas including combinatorial 

CH2345-7j86jOOOOj0585$Ol.OO© 1986 IEEE 
585 

optimization and artificial intelligence. In 
combinatorial optimization, problems often have 
associated with them a solution space that is 
organized as a tree, and the tree must be searched 
in order to find a solution that optimizes a given 
cri teria. Artificial intelligence problems often 
take on the same flavor, where a tree structure 
must be searched in order to find a goal state that 
minimizes a given objective function. An important 
property of the tree structures arising in the 
above applications is that the costs of nodes along 
a path from the root to a leaf are nondecreasing. 
Heur i sti c search algori thms take advantage of thi s 
property by maintaining a current minimum and 
eliminating from the search process subtrees whose 
nodes exceed in cos t the val ue of the curr en t 
mlmmum. Even though a fairly large subset of the 
tree may not be searched, heuristic search 
terminates having found a node of guaranteed 
minimum cost. It shares this property wi th other 
al gori thms that do a full sear ch of the tree. 

Figure 1: A complete binary tree 



In this paper, we will explore the possi ble 
tradeoffs between time and space that exist for 
different algorithmic implementations of full and 
heur i sti c tree search. We will develop algori thms 
that use reduced amounts of space to search a tree 
for its node of minimum cost, and analyze their 
time performance. While an increase in time is 
required in order to achieve a decrease in space, 
we are able to show that the trade.off is a 
favorable one. That is, only a small, constant 
factor increase in time is associated with 
algori thms that achi eve significant reductions in 
space. Our results for heuristic search are 
particularly interesting, since standard heuristic 
search algori thms often use prohi bi ti vely large 
amounts of space to find a minimum cost item in the 
tree. 

The algorithms that we propose here are 
variations of full search (ei ther depth-first or 
breadth-first) and heuri sti c search appl ied to tree 
structures. For depth-first search, instead of 
saving pOinters into the tree on a stack, we 
recompute them from scratch when required. We 
further show that breadth-first and heuristic 
search can be realized using multiple depth-first 
searches. Thus, the results we obtain for reduced 
space depth-first search also hold true for reduced 
space breadth-first and heuristic search. 

Previ ous res ear ch on tree sear ch has be en 
f ai rl y 1 imi ted due to the wi despread acceptance of 
the standard depth-first and breadth-first 
algori thms. These methods and the potential they 
offer in solving combinatorial optimization 
problems are surveyed in most intermediate level 
textbooks on computer algorithms, including 
[1,2,4,8]. Knuth [4] goes further to explain 
methods that eliminate the need for the separate 
stack used by depth-first search. These methods 
usually are employed when the tree has grown to 
exhaust all available space, as often happens in 
list processing systems that employ garbage 
collection. Instead of a stack, they use a small 
amount of extra space in each node of the tree. 

Recentl y, Korf [3], in the context of AI 
applications, has considered multiple depth-first 
search to successive levels in a tree and its 
viability as an alternative to breadth-first 
sear ch . Heal so gener al i zes thes e ideas to obt ai n 
reduced space heuristic search algori thms that can 
be applied to a wide variety of AI problems. On 
tree structures whose number of nodes is an 
exponential function of their depth, Korf argues 
that a multiple depth-first search strategy is much 
better in terms of space performance than breadth
first and heuristic search and only increases the 
number of node expansi9ns slightly. 

Another reference where work appears that is 
reI at ed to the resul ts presented here is Pippenger 
[6]. There, a tradeoff between time and space is 
proven for a particular problem using a theoretical 
framework referred to as pebbling. The problem 
considered by Pippenger is a special case of full 
tree search where the leaves of the tree must be 
computed in a certain order. 

586 

Here, we will generalize the results of 
Pippenger to tree structures where the leaves can 
be computed in any desired order. We will use the 
t heor eti cal framework of pebbl ing as a tool to 
explain our methods in an abstract setting, and to 
anal yze t hei r performance wi th respect to time and 
space. The end result will be algori thms similar 
to those presented in Korf [3] for both full and 
heuristic tree search that combine significant 
reductions in the usage of space with small 
increases in running time. 

This paper is organized as follows. Section 2 
explains the concept of pebbling and other 
preliminaries needed in the remai.nder of the paper. 
In Section 3, we present reduced space tree sear ch 
methods based on combi ni ng depth-first search on 
subtrees with the recomputation of certain nodes in 
the tree. Sections 4 and 5 show how these ideas 
can be extended to obtain reduced space emulations 
of breadth-first and heuristic search. Conclusions 
and directions for further research are given in 
Section 6. 

2. Preliminaries 

This section explains the basic notion of a 
tree and the concept of pebbl ing, whi ch we will use 
to" com put e" the nodes of a tree in an algori thmic 
manner to be described later in the paper. 

Throughout thi s paper, we will restrict our 
attention to complete binary trees that have edges 
directed out from a distinguished root node into 
the roots of two complete subtrees. In general, 
such a tree has a branching factor of 2 at each 

node, and if it has depth d, then it contains 2d 
leaf (terminal) nodes. Depth refers to the length, 
i.e. number of edges, of the longest path from an 
input (the root) to an output (a leaf). Figure 1 
illustrates a complete binary tree of depth 3 (8 
leaves) . 

Our reason for concentrating only on complet e 
binary trees is based on the following 
observations. First of all, such trees preserve an 
exponential relationship between the depth of "the 
tree and the number of leaves in the tree, i.e., 
#leaves=exp{depth}. Other tree structures, such as 
a serial, chain-like tree (shown ·in Figure 2), do 
not have this property. Search trees having this 
exponential relationship often arise in the 
modeling of combinatorial optimization problems and 
AI problems. Usually, the depth of the tree 
structure corresponds to the· number of inputs to 
the problem (one level for each input), and the 
di ff i cuI ty in sol vi ng t he problem stems from the 
fact that an exponential number of solutions 
(settings of the inputs) must be checked in order 
to find the one which optimizes a gi ven obj ecti ve 
function. In the search tree, a node represents a 
partial setting of values to inputs, and each node 
has a branching factor b)1; i.e. there are a 
multitude of values that can be assigned to the 
next input to obtain a new, more complete 'partial 
setting. 



Figure 2: A serial, chain-like binary tree 

While there are many tree structures that are 
not complete, but for which #leaves=exp{depth}, 
such trees are reasonably "close" to a eomplete 
binary tree, so that significant information 
regarding them can be obtained by analyzing only 
the special case of a complete tree. Thi s will be 
our approach in this paper: to consider in detail 
the case of a complete binary tree, which leads to 
meaningful insights concerning other similar tree 
structures. The same can be said regarding the 
branching fa.ctor of the tree. Here, we consider 
only the branching factor b=2, but the resul ts we 
derive can also be shown to hold true for other 
branching factors b>1. 

At this point, we outline the concept of 
pebbling, which forms a useful abstraction of how 
the search of a tree is performed. The "pebble 
game" has been used mainly in theoretical computer 
science as a paradigm for analyzing the 
simultaneous time and space requirements of a 
computation. First, a graph representation of a 
computation is formed that models the data 
dependenci es inherent in the computation. On this 
graph representation, pebbles are then moved from 
inputs to outputs according to certain rules (hence 
the term "pebble game"). These rules reflect how a 
uniprocessor would perform a straight-line 
computation, the main one being that a non-input 
node can be pebbled only when all its predecessors 
hold pebbles. In other words, the uniprocessor can 
only compute an intermediate result when all the 
values it depends on are held in temporary storage 
locations. 

An algori thmi c sol ution tot he probl em bei ng 
model ed ina pebble game analysi s corresponds to a 
pebbling strategy that places pebbles on each 
output node at certain points in time. The space 
requirement of the algori thm is simply the maximum 
number of pebbles used during this process, and 
time is measured by the number of movements of 
pebbles made on nodes of the graph. When the 
number of pebbles available is reduced, certain 
nodes in the graph may have to be repebbled in 
order to pebble all the outputs. This often leads 
to tradeoffs between time and space for a given 
computational problem. A good survey of the vast 
amount of theoreti cal work that has been done on 
this subject appears in Pippenger [7J. Here, we 
will apply the pebble game analysis technique to 
the problem of searching for the minimum cost item 
in a complete tree. 

587 

As a final point in this section, we will use 
the big-O notation for expressing the asymptotic 
behavior of a function. The relevant symbols are: 

o f(n)=O(g(n) iff there are constants c and 
N such that for all n~N, f(n)~g(n) 

n f(n)=n(g(n)) iff there are constants c 
and N such that for all n~N, f(n)~g(n) 

e f(n)=e(g(n)) iff f(n)=O(g(n)) and 
f(n)=n(g(n)) 

3. Depth-First Search with Reduced Space 

Depth-first search is a well known t echni que 
for vi si ti ng all the nodes ina graph. When the 
graph is a tree, it operates by expanding the most 
recently encountered node until a leaf is reached, 
and then backtracking to nodes previously 
encountered having descendants not already 
expanded. In practice, a stack is used to guide 
the backtracking process, with a node being placed 
on the stack when the search procedure moves to one 
of its des cendants . A node is taken off the stack 
once a leaf is reached. For a complete binary tree 
of depth d, a stack of size d is required, and the 
search procedure uses time proportional to the 
number of nodes in the tree. 

Standard depth-first search can easily be 
viewed as a pebbling strategy for a complete binary 
tree. We now outline such a strategy to give the 
reader a feel for the concept of pebbling. The 
strategy- works by placing pebbles on nodes of the 
tree starting at the root and working towards the 
leaves. A pebble is held on a node until the point 
in t:i.me when all leaves in the subtree rooted at 
that node have been pebbled. Further placements of 
pebbles on the tree are made from the node deepest 
in the tree that holds a pebble. If its left child 
has not been pebbled, then a pebble is placed 
there, otherwise a pebble is placed on its right 
child. Figure 3 illustrates a configuration of 
pebbles in this strategy on a binary tree wi th 16 
leaves. 

Figure 3: A configuration of pebbles in the depth
first strategy 



The pebbling strategy described above emulates 
depth-first search by making further advances into 
the tree from the deepest of the nodes that 
currently hold pebbles. The nodes holding pebbles 
can be thought of as the contents of the stack in 
depth-first search, with the node most recently 
pebbled (i.e. most recently placed in the stack) 
being selected as the one to be further expanded. 

The time and space requi rements of our dept h
first pebbling strategy are easily analyzed. If a 

complete bi nary tree of de pt h d and 2d 1 ea ves is 
pebbled using this strategy, the at most d+1 
pebbles are used at any point in the strategy, 
which is the number of nodes in a path from the 
root to any leaf in the tree. The number of pebble 
pI acements or moves made is simply the number of 
nodes in the tree (each is pebbled exactly once), 
which can be expressed by the formula 

T=1 +2+22+ ... +2d =2d +1_1 =O(2d) 
We note that the strategy is optimal in terms of 
its time performance, since any strategy must make 
at 1 eas tone pe bbl e placement on each node of the 
tree. 

Complementary to the notion of a pebbling 
strategy that runs in optimal time is one that uses 
an optimal amount of space. We now outline such a 
strategy. First, we claim that any leaf in the 
tree can be pebbled using only one pebble, by 
simply advancing a single pebble down the unique 
path that connects the root to the leaf (we are 
all owi ng "sl i di ng" in the pe b bl e gam e, i. e. the 
movement of a pebble on a predecessor directly onto 
the node being pebbled). Once the single pebble 
being used is placed on a leaf, it is not of use in 
the pebbling of any other leaf, so that to pebble 
the next leaf the same process must be repeated in 

its entirety. Doing this for 2d leaves in the 

tree, it is easily seen that T=(d+1)2 d pebble 
placements are made by this strategy. 

In comparing the two pebbling strategies 
outlined above, an intuitive tradeoff between time 
and space can be observed. A decrease in space 
from S=d+1 to S=1 requires an increase in time from 

T=O(2 d) to T=Q(d2 d). If we normalize time and 
space to be functions of the number of nodes in the 

tree N=2 d , then the standard depth-first strategy 
has T=O(N), S=0(logN) and the minimum space 
strategy has T=Q(NlogN), S=1. 

At this point, we note that if the mInImum 
spa ce s trat egy is to be i mpl emented in practice, 
then a means for "guiding" a single pebble down the 
tree multiple times must be provided. This is 

easily done using d bits to encode the 2d unique 
paths from the root to the leaves. A specific 
setting of these bits determines a path to move a 
pebble down, so that once the pebble reaches a 
leaf, the setting of the d bits must" be updated to 
give a new path to a leaf that has not yet been 
pebbled. This additional d bit field needed to 
guide the search is not a lot of overhead, 
especi ally when one cons i ders that a pe bbl emus t 
consist of at least d bits in order to properly 

588 

distinguish between all the different nodes in the 
tree. Taking this into account, the minimum space 
strategy requires Oed) bits to implement, whereas 

standard dept.h-first search requires O(d
2

) bits 
(O(d) pebbles each requiring Oed) bits). 

From a theoretical standpoint, the mInImum 
space strategy outlined above is interesting since 
it provi des an al ternati ve to standard depth-first 

search. However, in practice, if time O(2
d

) can be 
afforded, then d is relatively small, and the 
achievable space savings are not that large. For 
now, the strategy should be viewed more as the 
exposi tion of a methodology that reduces space by 
allowing recomputation. Applying the methodology 
to other well-known search algorithms has the 
potential of yielding more significant space 
savings, as will be seen later in this paper. 

We cont i nue our di scussi on of reduced space 
depth-first search algori thms by descri bing methods 
that fall in between the standard and the minimum 
space strategies outlined above. As with the 
minimum space strategy, they are interesting mainly 
from a theoretical perspective, so the more 
practically oriented reader may wish to skip ahead 
to Section 4. 

While the minimum space strategy requires time 
that is non;linear in the size of the tree, it may 
be that there are other strategies which reduce 

space yet maintain time T=O(2 d). We claim that 
such strategies exist, and they use significantly 
less space than the standard depth-first strategy. 
We are able to construct them by combining the 
minimum space ~trategy with the standard depth
first strategy on appropriate subtrees in the tree 
structure. 

To aid in viewing these new pebbling 
strategies, we decompose a tree of depth d into a 
top subtree of depth k, O~k~d, whose leaves are the 

roots of 2k disjoint subtrees of depth d-k, as 
shown in Figure 4. On the top subtree, we will 
employ the minimum space strat egy. Upon r eachi ng 
one of the top subtree's leaves, we will hold a 
pebble there while employing the standard depth
first strategy on the bottom subtree. This is 

repeated for each of the 2k bottom subtrees rooted 
at a leaf of the top subtree. 

The time and space requirements of this new 
pebbling strategy can be analyzed as follows. 
First, d-k+1 pebbles are used, a single one on the 
top subtree and d-k additional ones on each bottom 
subtree. Second, the number of pebble placements 
made can be expressed as follows 

T=(k+1 )2k .(total for top subtree) 

+2k (2d- k_1) (2d- k_1 for each bottom subtree) 

=O(k2k +2d ) 

The extremes of this new pebbling strategy are 
k=O, whi ch is the s tandar d de.pt h- firs t s trat egy, 
and k=d, which is the minimum space strategy. 



Figure 4: The decomposi tion of a tree into a top 
subtree and bottom subtrees 

/ 
/ 

./ 
/ 

/ 

/, 
/ 

/ 

\ 
______ .....l 

However, it is interesting to observe the time 
r equi rements of the strategy for different values 
of k between 0 and d. For example, if k=d/2 then 
half the space of standard depth-first search is 

used, and time remains O(2
d
). We can further 

reduce space to S=logd and still maintain "linear" 
time. Thi s follows by choosi ng k =d-Iogd, i. e. we 
pebble bottom subtrees of depth logd using the 
standard depth-first strategy. Time remains 

proportional to 2d, since 

T=0(k2k+2d)=0«d-lOgd)2d-IOgd+2d)=0(2d) 

If space is reduced slightly below S=logd in 
the above strategy, say to S=(logd)/2, then we 

obtain T=0(d
1/2

2d ) , which is non-linear in the size 
of the tree. Thus, we can concl ude t hat fur ther 
reductions in space below S=logd cannot be made in 

this pebbling strategy if time T=0(2
d

) is to be 
achieved. 

In order to achieve further reductions in 
space, we modify the way that bottom subtrees are 
pebbled in our new pebbl ing s trat egy. Ins tead of 
using a standard depth-first strategy, we apply our 
new pebbling strategy to each bottom subtree. This 
decomposes each bottom subtree in a manner similar 
to the way the entire tree was initially 
decomposed. For a bottom subtree of depth logd, we 
break it into a top subsubtree of depth logd
loglogd, below which are multiple bottom 
subsubtrees each of depth loglogd. We employ a 
minimum space strategy on the top subsubtree and a 
standard depth-first strategy on each bottom 
subsubtree to pebble the entire subtree in time 

T=0(2
10gd

). It easily follows that the strategy 
for the entire tree uses space S=loglogd+2 and runs 

589 

in time T=0(2 d). Further reductions in space to 

S=logloglogd, etc. for which time remains T=0(2
d

) 
are straightforward and are left to the reader. 

The existence of the pebbling strategies 
outlined above allows us to state the following 
theorem. 

Theorem 1: A complete binary tree of depth d can 

be pebbled (traversed) in time T=0(2
d

) using space 
S=d, S=logd, S=loglogd, etc. 

Theorem 1 shows that significant reductions in 
space can be made ·to the standard depth-first 
pebbling strategy. From it, the question can be 
asked regarding whether a pebbling strategy exists 
that is asymptotically optimal wi th respect to both 
time and space. In other words, can constant space 

(8=0(1)) and linear time (T=0(2 d)) be achieved 
simultaneously. In an attempt to answer this 
question, we now investigate pebbling strategies 
that use a fixed, constant number of pebbles. 

We have already considered the case when S=1, 

and have shown that T=0(d2d). The case S=2 can be 
handled in a manner similar to that of the new 
pebbling strategy presented earlier. We separate 
the entire tree structure of depth d into a top 
subtree of depth d-logd and multiple bottom 
subtrees of depth logd. Our pebbling strategy uses 
one pebbl e on the top subtree, whi ch is hel d on a 
leaf of the top subtree while the bottom subtree is 
pebbled using the second available pebble. 
Analyzing the time requirements of this strategy, 
we obtain 

T=(d-Iogd) 2d-Iogd+2d-logd[(logd)210gdJ 

=O( (logd )2d) 
While this is ·an asymptotic improvement over the 
time required when S=1 pebbles are used, it still 
is not linear in the size of the tree. 

It is straightforward to extend the above 
strategy to S=3, S=4, ... For S=3, two cutoff 
points are defined so t'hat the tree is separated 
into a top subtree and bottom subtrees. Each 
bottom subtree is separated into atop subs ubt ree 
and bottom subsubtrees. Time performance 

T=O( (IOgIOgd)2d) is obtained when the cutoff points 
are chosen correctly. For S=4, we obtain 

T=O( (logloglogd) 2d), and so forth for hi gher values 
of space. 

Thus, for constant values of space, we can 
exhibit pebbling strategies that come close to 

achieving "linear" time T=0(2 d). The higher the 
constant, i.e. the more space available, the closer 
we can come to I inear time. However, we can al so 
prove that we cannot truly achieve linear time 
using constant space by showing that the pebbling 
strategies presented above cannot be improved upon. 



Theorem 2: A complete binary tree of depth d 

requires pebbling time T=e«(lOg(c)d)2d) when S=c+1 
pebbles are used to pebble its leaves, where c~O is 
a cons tant val ue wi th respe ct to the si ze of the 

(c) th . tree. Here, log d stands for the c Iterate of 

th I ·thrn f t· 1· .e. IOg(c)d=IOg(IOg(C-1)d) e ogarl unc lon, 
( 0) 

and log d=d. 

(c) d 
Proof: The upper bound T=O«log d)2) when S=c+1 
pebbles are used follows from the above di scussi on 
on pebbling strategies that use a: fixed, constant 
number of pebbles. We must prove a matching lower 

bound of the form T=n«IOg(c)d)2d) to obtain the 
resul t of the theorem .• 

At this point, we derive a lower bound for the 
case S=2; arguments for other constant values of 
space are similar. Consider a subtree of depth k 
in a tree of depth d and the unique path from the 
root of the tree to the root of the subtree, as 
shown in Figure 5. If we choose k=logd-Ioglogd-1, 
then we can make the following statement about an 
optimal pebbling strategy for the tree. While the 
leaves of the subtree are being pebbled, an optimal 
strategy holds a pebble at or above the root of the 
subtree. To verify the claim, Gonsider the 
opposite, i.e. a pebble is not held at or above the 
root of the subtree. Then, the path from the root 
of the tree to the root of the subtree must be 
pebbled at least twice, for a total of 2(d
logd+loglogd+1) moves. However by holding a pebble 
at or above the root, a number of moves ~ 

(d-Iogd+loglogd+1) +(logd-loglogd-1) 210gd-Iogl ogd-1 
~<3/2)d can be achieved. Thus, the strategy that 
does not hold a pebble at or above the root of the 
subtree clearly is not optimal. 

depth d-k 

depth k 

Figure 5: A subtree and its unique path to the root 

590 

From the statement above, it follows that each 
subtree of depth logd-Ioglogd-1 must be pebbled 
with S=1 in an optimal strategy. Totalling the 
number of moves made on these subtrees, we obtain 

T=n«IOgd)2d), the desired lower bound. Q.E.D. 

The pebbling strategies outlined above, one 

leading to time 0(2d) and the other leading to 
space 0(1), can both be viewed in a common light as 
follows. First, c cutoff points are established at 

(c) 
levels logd, loglogd, log d from t}1e bottom of 
the tree. Both strategies dedicate one pebble to 
use between each pair of different levels, and 
differ only how the bottom set of subtrees (below 
the last level) are pebbled. Using standard depth-

first search on the bottom subtrees gives T=O(2 d), 

S=O(IOg(c)d) while using minimum space search gives 

T=0«IOg(c)d)-2d), S=O(1). Another strategy of note 
operates by establishing the first level at height 
logd from the bottom, dedicating one pebble for 
between the root and the first level, and pebbling 
subtrees below the first level recursively. 
Analysis similar to that conducted above reveals 
that this pebbling strategy requires time 

d * * * T=0(2 log d) and space S=O(log d), where log d is 
the number of applications of the logarithm 
function required to produce a value ~2. The 

* function log d increases at a very slow rate, so 
that for all practical purposes this strategy can 
be thought of as achieving linear time and constant 
space simultaneously. 

To summarize this section, we have identified 
time-space tradeoffs for tree search and traversal 
using the pebble game technique. Our methods show 
that reductions in space, almost down to a constant 
value, can be made while still preserving time that 
is asymptotically optimal, i.e. proportional to the 
size of the tree. However, there is indeed a time
space tradeoff inherent in the tree search problem, 
as our results also show that optimal time and 
optimal space (a constant with respect to ~ree 
size) cannot be achieved simultaneously. 

4. Breadth-First Search with Reduced Space 

In this section, we generalize the ideas 
developed in Section 3 to breadth-first search of a 
complete binary tree. We are able to show that 
si gni f i cant reduct ions in space can be made while 
maintaining time proportional to the size of the 
tree. 

Breadth-first search complements the notion of 
depth-first search in that it operates by expanding 
the least recently encountered node in the tree 
instead of the most recently encountered one. This 
is done until all children of the node being 
expanded are encountered, at which point control 
moves to the next least recently encountered node. 
In pr act ice, nodes _are put on a queue as t-hey are 
encountered (during the expansion of their parent), 
and are taken off the queue when they are later 
chosen for expansion. 



Figure 6: A configuration of pebbles in the 
breadth-first strategy 

Breadth-first s~arch can be viewed as a 
pebbling strategy for a complete binary tree as 
follows. Starting at the root of the tree, each 
succeisive level is pebbled in its entirety before 
any pebbles are placed on the next level. The 
expansion of a node corresponds to placing pebbles 
on both of its two children. Once a node is 
expanded, it no longer hoI ds a pe bbl e. Figur e 6 
shows a "snapshot" in the middle of such a strategy 
where pebbles have been moved from one intermedi ate 
level to another~ 

The time and space requirements of a breadth
first pebbling strategy for a complete tree of 

d d 
depth d are easily seen to be T=0(2 ) and S=0(2 ). 
Time equal to the number of nodes in the tree is 
used, which cannot be improved upon, however an 
enormous amount of space is also used by this 
strategy. It would be desirable to design a new 
search strategy that expands the nodes in the tree 
in the same order as the breadth-first strategy, 
but which uses significantly less space. 

Korf [3J discusses. a method for emulating 
breadth-first search which he refers to as depth
first iterative deepening. The basic idea is to 
perform multiple depth-first searches to each 
successive level in the tree. Each depth-first 
search starts fresh in the sense that it begins at 
the root and proceeds to visit all the nodes at a 
particular level in the tree. Thus, a certain 
amount of recomputation is required, but the 
strategy does perform a valid emulation of breadth
firs t sear ch . 

It is straightforward to view the multiple 
depth-first search technique described above as a 
pebbling strategy, and we now analyze its time and 
space requirements. For a tree of depth d, it has 
a space requirement the same as the deepest depth-

591 

first search performed, which is a depth-first 
search of the entire tree. Thus, space can be 
expressed as S=O(d). The time'used by the strategy 
is simply the sum of the time used in each depth
first search. For k=O, 1, ••• ,d a depth-first search 

. h . T<2 k +1 to level k is performed, WhlC requIres = 

moves. Thus, the total time can' be upper bounded 
by 

T~ L 2k+l~2d+2=0(2d) 
O~k:;;d 

It follows that the pebbling strategy emulates 
breadth-first search in an amount of time 
proportional to the size of the tree, while 
achieving a very significant reduction in space 
(from linear in the size of the tree to logarithmic 
in the size of the tree). Korf [3J concludes that 
the strategy is optimal with respect to space 
(along with time), since it uses space proportional 
to the logarithm of the size of the tree. However, 
this conclusion is incorrect, because he counts 
only the number of storage locations used by the 
strategy and ignores the bi t 1 evel compl exi ty of 
each storage location. In fact, we now discuss how 
further reductions in space can be made in pebbling 
strategi es that emulate breadth-firs t search. 

Since the pebbl ing strategy above is compos ed 
of multiple depth-first pebbling strategies, we can 
apply the ideas of Section 3 to even further reduce 
the space consumption of an emulation of breadth
first search. For example, we can replace a 
standard depth-first search to level k in the tree 

wi th a pebbling strategy that uses time T=0(2k) and 
,space O(logk). Doing this for each successive 
depth-first search, we obt ai n a new emul at i on of 

breadth-first search that uses time T= L 0(2
k

) 
O~k~d 

=0(2d) and space S=O(logd). Generalizing this, we 
can state analogies to Theorems 1 and 2 for 
breadth-first search. 

Theorem 3: The breadth-first pebbling strategy on 
a complete bi nary tree of dept h d can be emul at ed 

in time T=0(2 d ) ~nd space S=d, S=logd, S=loglogd, 
etc. using multiple space-efficient depth-first 
searches. 

Theorem 4: The breadth-first pebbl ing s trat egy on 
a complete binary tree of depth d cannot be 

emulated in time T=0(2d) using space S=O( 1), i.e. 
space that is a constant with respect to the size 
of the tree. 

Theorems 3 and 4 show that essentially the 
same results hold true for both breadth-first and 
depth-first search of a complete binary tree. 
Significant reductions in the space consumption of 
these methods can be made, but linear time and 
constant space cannot be achieved simultaneously. 



5. Heuristic Search with Reduced Space 

The space used by standard breadth-first 
search when it is applied to a complete binary tree 
makes it an illogical choice for actual 
implementation. Standard depth-first seal'"Ch uses 
much less space and does not increase the time 
required to search the entire tree structure. 
However, breadth-first search can be general ized to 
yield heuristic search, which has been applied to 
many problems having a solution space organized as 
a tree. Heuristic search has the potential of 
decreasing the time required to search the tree by 
eliminating parts of it from consideration. The 
gains in time that it offers make it desirable for 
use despite the space inefficiency that it shares 
wi th breadth-first search. Pearl [5J di scusses and 
analyzes heuristic search and its application to a 
variety of different AI problems. 

In heuristic search, it is assumed that the 
cost of nodes along any path from the root to a 
leaf are nondecreasing. The search procedure 
operates by assigning a cost to each node in the 
tree, and choosing as the next node to expand the 
node with the minimum cost among all those 
encountered so far. The nodes that have been 
encountered are maintained in a priority queue, 
from which the next node to be expanded is selected 
based on its cost. Expansion of a node causes its 
children to be inserted into the priori ty queue. 

Heuristic search will always find the leaf in 
the tree (an entire solution) of minimum cost, and 
has the ability to eliminate the expansion of large 
numbers of high cost nodes in the tree. For, when 
heuristic search terminates, no effort will have 
been expended in searching subtrees whose roots,· 
and thus all contai ned nodes, have a hi gher cos t 
than the minimum found (this is an invariant 
throughout the search; no expansions are made in 
subtrees whose roots have a cost higher than the 
current minimum). This is the maj or advantage of 
heuristic search; that it has the potential to 
significantly reduce the time required to find a 
minimal cost solution. The amount of time that is 
saved is very dependent on the function used to 
determine the cost of an internal node, and the 
actual instance of the problem bein.g sol ved. 

As with the other tree search methods 
discussed earlier, heuristic search can be viewed 
as a pebbling strategy on a complete tree (a tree 
whose number of leaves is exponential as a function 
of its depth). At any point in time, the set of 
nodes holding pebbles forms a cut (possibly ragged) 
across the entire width of the tree, i.e. the tree 
is separated into a top subtree that has been 
completely explored and bottom subtrees that have 
not been explored at all except for their roots. 
The pe bbl ing s trat egy operat es by s el ect ing the 
node in the cut of minimum cost and moving pebbles 
onto its two children. We can associ ate wi th a cut 
the val ue of the current minimum, so that nodes in 
the top subtree all have a cost less than or equal 
to the val ue of the cut and the roots of the bottom 
subtrees (nodes along the cut) are all candidates 
for selection as the value of the next cut (the 
next current minimum). When the heuristic search 

592 

Figure 7: A cut in heuristic search 

procedur e s el ects a new curr ent minimum, it is 
easily seen that the number of nodes. in the new cut 
and in the new top s ubt ree bot h i ncreas e by one, 
since one node is moved from the cut into the top 
subtree and its two children are added to the cut. 
Figure 7 illustrates an example of a cut arising in 
heuristiC search. A cut like thi salso appears in 
breadth-first search, except there it is confined 
to at most two successive levels of the tree (see 
Figure 6). 

While heuristic search can decrease the time 
required to find a mini'mal cost solution, its space 
consumption can be 1 ar ge, si nce it us es s epar at e. 
storage locations organized as a priori ty queue to 
keep track of the current cut. In general, a cut 
across a complete tree can require a number of 
nodes proportional to the size of the tree, which 
explains the likelihood of requiring a large amount 
of space. Thus, we are moti vated to reduce the 
space consumption of heuristic search without 
significantly increasing the number of nodes 
expanded. To achieve this, we propose techniques 
similar to those given earlier for breadth-first 
search that are based on performing mul tiple depth
first searches into the tree structure. 

We start by considering the top subtree that 
lies above the current cut in a standard heuristic 
search procedure. Instead of maintaining the cut 
with separate storage locations for each node it 
contains, the top subtree can easily be searched in 
its entirety using a depth-first procedure that 
does not expand be yond nodes whose values exceed 
the current minimum. By keeping track of the 
lowest cost node whose value exceeds the current 
minimum (i.e. it is on the "fringe" of the top 
subtree) while performing such a depth-first 
search, the value of the next minimum that standard 
heuri sti c search would find is obtained. Executing 
multiple depth-first searches in this manner yields 



a valid emulation of heuristic search. In essence, 
what we are dOing is a depth-first search of the 
top subtree associated wi th each cut that arises in 
standard heuristic search. 

The strategy explained just above for 
emulating heuristic search is also presented in 
Korf [3J. There, it is claimed that the multiple 
depth-first emulation is optimal in time 
performance, i.e. it is within a constant factor of 
the runtime of standar.d heuristic search. This 
claim is incorrect, as we will now demonstrate. 
Assume that standard heuristic search makes 1 node 
expans ions ins ear chi ng a t-ree s truct ur e. Each 
time a node expansion is made, both the top subtree 
and t he cut associ at ed wi th a new current minimum 
grow by one node. Thus, multiple depth-first 
sear ches ar e performed on top s'ubt rees of si ze 
(number of nodes) 1,2, ... ,1. Each depth-first 
search requires time proportional to the size of 
the current top subtree, resulting in total time 

2 . T=1 +2+·· ·+1=O(Q. ). Other strategIes must be 
devised if time O(l) is to be achieved. 

The emUlations of breadth-first search 
presented in Section 4 were based on moving from 
one level to the next in the tree structure. Time 
was increased by just a constant factor due to the 
fact that an entire top subtree located above a 
certain level only has twice as many nodes as its 
bottom level. Rather than maintain the bottom 
level using a large amount of space, the entire top 
subtree could be depth-first searched in 
proportionately the same amount of time. 

With the above observations in mind, we 
propose the following strategy for emulating 
standard heuristic search that operates by moving 
from level to level in the tree structure. For 
each successive level, the node of minimum cost at 
that level is found. This is done by first 
estimating the minimum cost of the nodes at a 
particular level. Such an estimate is easily 
determined by examining children of the minimum 
cost node found at the previous level in the tree. 
Then, a depth-first search to the desired level is 
performed. During the depth-first search, a 
current minimum for the level is maintained (it 
initially is the estimate), and nodes of cost 
greater than the current minimum are not expanded. 

Algorithm for Heuristic Search with Reduced Space 

** initialize current minimum ** 
currentmin:=root; 
** perform multiple depth-first searches to each 

level ** 
for k:=2 to d do 

** calculate initial estimate of minimum cost 
node for level k ** 

if cos t (1 ef t (currentmin) )< cos t (r i ght (currentmin) ) 
then currentmin:=left(currentmin) 
else cur~entmin:=right(currentmin); 

** depth-first search to level k ** 
call depthfirst(root,k); 

593 

** Recursive procedure for depth-first search 
called above. Cuts off the search when at 
bottom level (j=O) and when the cost of a node 
encountered is greater than current minimum ** 

procedure depthfirst(node,j) 
if j=O and cost(node)<cost(currentmin) 

then currentmin:=node; 
if j)O then 

if left(node) not visited and 
cos tel ef t (node) )< cos t (currentmin) 
then depthf irs t (1 ef t (node) ,j -1 ) 
else if right(node) not visited and 

cost(right(node»<cost(currentmin) 
then depthfirst(right(node),j-1) 

In standard heuristic search, when the minimum 
cost node at a certain level is first found, a cut 
exists whose associated top subtree contains that 
node but no nodes at any deeper level. Our new 
strategy for performing heuri stic search is most 
easily understood as trying to use depth-first 
search with a current minimum to efficiently 
explore this top subtree. The true minimum for the 
level cannot be known in advance and thus an 
initial estimate must be generated from the 
previous iteration of the algori thm. 

We now discuss the time performance of our new 
emulation of heuristic search. First, we note that 
because the algori thm is based on moving from level 
to level, it has the potential for achi~ving run 
time only a constant factor above that of standard 
heuristic search. There are two factors that 
affect the run time of the new algori thm and make 
it difficult to analyze exactly. One is the fact 
that an estimate of the true minimum at a level 
must be used; the other is that the shape of the 
top subtree can vary away from being complete. 

Since we are using estimates of the true 
minimum during a depth-first search to define 
something close to the actual cut generated in 
standard heuristic search, the boundaries of the 
subtree corresponding to the actual cut may be 
exceeded when it is explored. But if the estimates 
converge quickly to a good estimate (i.e. one close 
to the actual lowest cost),' then only a small 
amount of extra expansions will be made. Also, if 
the top subtree remains roughly exponential in size 
as a function of its'depth, then space is reduced 
from being proportional to the size of the subtree 
to the logarithm of its size, and the total time 
required is only a constant factor increase over 
that used by standard heuristic search. Thus, our 
new heuristic search.method holds the promise of 
exhi bi ti ng a very fa vorabl e tradeoff of time for 
space, i.e. significant reductions in space 
consumption are possible at the expense of only a 
small increase in time. 

Extensions to our new algorithm for heuristic 
search can be made in an effort to address the two 
factors mentioned above. To decrease the· effect of 
estimating the true minimum, addi tional expansi ons 
can be made' from nodes of cost close to the minimum 
found at the previous level. The possible 
noncompleteness of the top subtree can be addressed 
by performing fewer depth-first searches wi th each 
depth-first.search extending out to a level more 



than one unit away from the previous level •. 
Descriptions of these extensions similar to the 
algorithm presented above ar.e left to the 
interested reader. 

We conclude our discussion of heuristic search 
by noting again that it is difficult to obtain 
exact expressions for the time and space 
requirements of our new algorithm .. Empirical 
studies should be done to quantify the time-space 
tradeoffs that exist in it, and probabalistic 
methods offer a possible way of analyzing the 
variety of different tree structures that can arise 
when the algorithm is executed. 

6. Concl usi ons 

In this paper, we have analyzed the time and 
spa ce r equi rements of tree search, a fundamental 
computational problem. We found that significant 
reductions in the space used by standard depth
first, breadth-first, and heuristic search can be 
made wi th the expense being only a small constant 
factor increase in the time required by the search 
strategy. However, there is a time-space tradeoff 
inherent in this problem, since we were able to 
show that strategies using minimum space require 
time greater than linear in the size of the tree. 

The methods we have proposed seem to hold the 
most promise for heuristic search, since standard 
implementations of heuristic search reduce the time 
required by exhaustive search but are often 
hampered by large space requirements. Future 
research should be directed towards implementing 
these reduced space heuristic search methods in 
practice, so as to judge their actual time 
performance in comparison to that of standard 
heuristic search. 

References 

1. A. Aho, J. Hopcroft, and J. Ullman, Data 
Structures and Algorithms, Addison-Wesley: 
Reading, MA, 1983. 

2. E. Horowitz and S. Sahni, Fundamentals of 
Computer Algori thms, Com put er Sci ence Press, 
Rockville, MD, 1978. 

3. R.E. Korf, "Depth-First Iterative Deepening: 
An Optimal Admissible Tree Search, Artificial 
Intelligence, Vol. 27, pp. 97-109, 1985. 

4. D. E. Knuth, The Art of Computer Programming, 
Volume 1: Fundamental Algorithms, Addison
Wesley, Reading~ MA, 1973. 

5. J. Pearl, HeuristiCS, Addison-Wesley, Reading, 
MA, 1984. 

6. N. Pippenger, "A Time-Space Tradeoff," J. 
Assoc. Compo Mach., Vol. 25, pp. 509-515, 1978~ 

7. N. Pippenger, "Pebbl ing," IBM-Japan Symp. Math. 
Found.Comp. Sci., 5, 1980. 

8. R. Sedgewick, Algorithms, Addison-Wesley, 
Reading, MA, 1983. 

594 



A FAST PROBABILISTIC ALGORITHM: FOR 
FOUR-COLORING LARGE PLANAR GRAPHS 

Raymond A. Archuleta 
Henry D. Shapiro 

Department of Computer Science 
University of New Mexico 

Albuquerque, New Mexico 87131 

The problem of four-coloring planar graphs - assigning 
colors to vertices so that no two adjacent vertices have 
the same color - is widely known. Backtracking algo
rithms guaranteed to four-color a graph, even those 
using sophisticated ordering heuristics, have very large 
running times on graphs of even moderate size (300-400 
vertices). Numerous approximation algorithms have 
appeared in the literature, though they invariably fail 
to four-color large planar graphs8• In recent work, Mor
genstern and Shapir05, give an approximation algorithm 
that experimentally exhibits no failures on graphs of up 
to 5000 vertices, but which is observed to have non
linear running time. In this paper we present a proba
bilistic algorithm for rapidly four-coloring large planar 
graphs. Extensive experimental tests indicate no 
failures on graphs of up to 15,000 vertices and a 
roughly linear running time over a wide range of sizes. 
For graphs of comparable size the algorithm is 100 
times faster than any reported in the literature. 

INTRODUCTION 

Though the long standing four-color conjecture was 
proved by Appel and Haken in Ig76, their proof does 
not provide a computationally feasible approach to 
four-coloring large planar graphs. Because of the large 
running times of exact algorithms based on backtrack
ing, most of the attention of researchers has been 
focused on algorithms that are rapid, but do not neces
sarily produce a four-coloring. To put our new 
approach in perspective and because we use some of the 
terminology and ideas, we briefly review the strategies 
of others. One class of approximation algorithms is 
based on the "greedy" method - the vertices are pro
cessed in order, with each vertex assigned to the lowest 
numbered color class that does not place it in conflict 
with its previously colored neighbors. Because the 
vertices adjacent to the current vertex might use all 
four colors, a fifth, or even sixth, seventh, etc. color 
may be necessary. When the greedy method needs to 
create a new color class the vertex is said to be at 
impasse. In an attempt to minimize the total number 
of color classes required, different algorithms within the 
general class order the vertices using various heuristics. 

CH2345-7j86jOOOOj0595$Ol.OO© 1986 IEEE 
595 

Some well known ordering schemes are: 

Largest-First: The vertices are pre-ordered from highest 
degree to lowest degree. Because of the large 
number of ties inherent in the degrees of vertices in 
planar graphs, which must have an average degree 
of less than six, a secondary ordering is used to 
break ties. The size of the second neighborhood, 
Le., the number of vertices two steps away, is a 
natural choice. More sophisticated tie breaking 
strategies based on the dominant eigenvector of the 
adjacency matrix have been considered9• 

Smallest-Last: This approach is motivated by the fol
lowing observation: a vertex of degree three is 
trivial to color, since its three neighbors can only 
have used at most three of the four colors. The 
vertex of lowest degree is placed last in the order
ing list, it is then removed from the graph (reduc;.. 
ing the degrees of its neighbors), and the procedure 
is applied recursively to the graph that remains. 
There are two ways of handling a vertex, v, of 
degree four so that a conflict cannot arise. One is 
to perform a contraction. Two non-adjacent ver
tices connected to v (there is always such a pair) 
are contracted into a single vertex after v is 
removed. That is, their adjacency lists are merged. 
The resulting graph is then colored, the contracted 
pair split apart and v reinserted. Since the two 
vertices that were contracted have the same color 
when split apart, the neighborhood of v uses at 
most three colors. Contraction preserves maximal 
planarity. A planar graph always has a vertex of 
degree five; if contraction is not performed, using 
this ordering scheme guarantees that the greedy 
algorithm never uses more than six colors. If we 
use contraction a five-coloring is guaranteed. The 
other method of handling vertices of degree four is 
based on Kempe chains and will be taken up 
shortly. 

Saturation: Unlike the previous two schemes that stati
cally order the vertices, saturation dynamically 
orders the vertices as the algorithm proceeds. The 
saturation degree of a vertex, v, is defined by 
Bre lez2 as the number of different colors used by 
vertices adjacent to v. The algorithm always 



chooses the vertex of highest saturation degree to 
color next, following the intuition that it has the 
fewest degrees of freedom. Ties are broken using a 
secondary ordering scheme, usually largest first. 

The greedy method can be refined as follows: when a 
vertex is at impasse, before enlarging the number of 
color classes, apply a transformation to the current 
coloration. If the vertex is not at impasse in the 
transformed coloration a new color class is not needed. 
Such transformations are usually based on Kempe chain 
interchanges, first described in Kempe's false proof of 
the four-color theorem7. The i- j Kempe chain contain
ing vertex tl, of color i, is the connected component of 
the graph consisting of all vertices reachable from tl by 
traversing edges that connect vertices of colors i and j. 
If the colors of the vertices on an i- j Kempe chain are 
interchanged no conflicts are created. This can be used 
to resolve an impasse at a vertex of degree four. Figure 
1 shows how this is done. If the a-b Kempe chain con
taining vertex tll does not contain vertex tl3 then an a
b interchange frees color a for use at v. If the a-b 
Kempe chain contains both tll and tl3 then the c-d 
Kempe chain containing tl2 cannot reach tl4. When a 
vertex of degree five is at impasse, application of 
Kempe's method often succeeds in resolving the 
difficulty, though it is not guaranteed to do so. This 
technique was coupled with smallest last ordering by 
Matula4• 

Morgenstern6 has determined experimentally that 
when using saturation ordering on maximally planar 
graphs containing no vertex of degree less than five 
(MPG5 graphs), both the number of vertices at impasse 
and the size of the Kempe chains searched during 
impasse resolution grow linearly with the size of the 
graph, though the data on the sizes of the Kempe 
chains is quite erratic, as the large standard deviation 
indicates. The Kempe chains are sometimes very short, 
one or two vertices, and at other times they include half 

b a 

d~ __ ..... __ 

a - b . . 
u4 c - d 

the vertices of the graph. We have observed similar 
behavior (Table 1). This makes the overall average 
running time of the approximation algorithm using 
interchange O(.N2), while the simpler, but less effective, 
methods are O(N) (because distribution sort can be 
used). The method in Morgenstern5 is an enhanced ver
sion of this Kempe interchange strategy based on the 
work of I. Kitte1l3• They consider sequences of Kempe 
interchanges should a single interchange fail to resolve 
the impasse. A number of heuristics to guide the search 
and detect repeated colorations are employed to keep 
down the running time. They report no failures to 
four-color MPG5 graphs with up to 5000 vertices. 
Their running times on a VAX 11/780 for problems of 
this size is roughly 15 minutes. For smaller graphs, 
with 500-1000 vertices, their running times are about 
one minute. 

IMPASSE RESOLUTION WITH 
"WANDERING FIFTH COLOR" 

The probabilistic coloring algorithm, which we have 
named wandering fifth color, is a compromise between 
the simple greedy strategies and the complex inter
change methods. Like the greedy algorithms, the algo
rithm attempts to color the next vertex, which can be 
selected using any of the above ordering schemes. The 
idea behind impasse resolution can be seen in Figure 2. 
It may be the case that the color assigned to a neigh
bor, tl, of v, the vertex at impasse, could be assigned to 
v if the color were not already being used to color tl. 

The pigeonhole principle guarantees this possibility 
always exists if the vertex has degree seven or less. We 
assign to v the color of tl, uncolor tl and see if tl can 
now be recolored without resorting to a fifth color. If tl 
can be colored we have resolved the impasse. If it can
not be colored, then tl is now at impasse. We have 
"wandered" the problem to a new location, where we 
repeat the process. 

Kempe chain containing u 
(contains u3) 1 

Kempe chain containing 
(cannot contain u4) 

u2 

, . 
• path from u to u that c - d Kempe 

chain containing c cannot cross 

b 

Figure 1. Impasse Resolution with Kempe Chain Interchange 

596 



Several things can go wrong during this process. 
First we can wander into a vertex of degree eight or 
higher in which every color is used twice in the first 
neighborhood, and so reach a dead end. Even if we 
prohibit the vertex at impasse from immediately return
ing to its previous location, there is the possibility of 
getting stuck in an infinite cycle. We therefore ter
minate the wandering process if the vertex at impasse 
attempts to cross the path it has taken during th-e 
wandering process. This does eliminate some possibili
ties, since returning to a vertex does not imply return
ing to an isomorphic coloration. Nonetheless, this is a 
reasonable compromise. Of course, it is quite likely _ 
that for one of these two reasons the wandering process 

will fail. We therefore wander the vertex at impasse 
through all possibilities in a recursive (depth first) 
search rooted at the original impasse location. The 
exact algorithm, in high level pseudo-code, is given in 
Figure 3. 

The wandering process can fail to resolve an 
impasse. When this occurs we abandon the entire 
coloring process and start over again. We include an 
element of randomness so that when we restart the 
algorithm we do not wind up in the same failed 
configuration. There are several places for randomness 
to be inserted into the algorithm: 

Table 1. Experimentally Determined Properties of MPG5 Graphs 

Approximate Number of Average Std. Dev. Average 
Size Impasse a b b c 

Vertices 
15000 388.50 0.0257 5.99 
12500 326.40 0.0256 6.15 
10000 255.90 0.0249 6.20 
7500 196.00 0.0254 6.10 
5000 132.34 0.0260 0.09 0.14 6.24 
2500 67.69 0.0261 0.18 0.16 6.26 
JOOO 25.94 0.0255 OJA 01R 6.38 

a = Number of Impasse Vertices / Number of Vertices 
b = Size of Kempe Chain / Number of Colored Vertices at the Time Kempe Chain 

was Explored. Note: Average b is an average of ratios 
c = Number of calls to recursivewander to resolve impasse or admit failure 

3 

2 

2 

vertex at 
impasse 

3 

color 2 to u 

2 

Figure 2. The Idea Behind Wandering Fifth Color 

597 

color 3 



procedure wander(w: verter, var 8ucceS8: boolean); 
procedure recurs;vewander( v: vertex); 

begin 
(* Try to resolve the impasse in the first neighborhood of v *) 
for each neighbor, u, of v whose color occurs only once in the first 

neighborhood of v do 
it coloring v the color of u and uncoloring u allows u to be recolored 

without creating a conflict 
then color v the color of u, recolor u, set 8uccess to true and 

return from wander; 

for each neighbor, u, of v whose color occurs only once in the first 
neighborhood .and which has not been involved in the wandering 
process in the current call to wander do 

begin 
color v the color of u and uncolor u; 
recursivewander( u ) 

end 

(* Weare either trapped in a vertex of degree eight or higher in which 
every color is used twice in the first neighborhood, or have reached 
dead ends by attempting to cross the wandering path, or we have 
explored all the children and failed to resolve the impasse. In 
any event we backtrack. 

*) 
end; (* recursivewander *) 

begin 
recursivewander( w ); 
(* If we return to this point we have failed to resolve the impasse *) 
success := false 

end; (* wander *) 

Figure 3. Impasse Resolution by Wandering 

• The vertices can be ordered randomly, or within an 
ordering scheme, randomness can be used to break 
ties, instead of relying on a secondary ordering stra
tegy. 

• Instead of assigning to a vertex the first available 
color of lowest index, we can assign it a random 
color from the colors that do not cause conflicts. 

An exact analysis of the running time of the algorithm 
is impossible, because there are too many secondary 
interactions in the coloring process. It is possible to 
provide some experimental data and to make some sim
plifying assumptions that allow us to predict the run
ning time. The results presented in Table 1 allow us to 
conclude, at least for graphs of size less than 15,000, 
that 

• The number of vertices at impasse during a success
ful coloring is a linear function of the graph size. 
Phrased another way, the inter-impasse distance is 
constant and not a function of the size of the graph. 
This is not surprising since (for non-pathological 
cases) being at impasse is essentially a localized 
phenomenon. 

598 

• The nu~ber of steps in the wandering operation, 
whether it succeeds or fails, is constant on av'erage. 
This was measured experimentally over a wide 
variety of graph sizes, ordering heuristics and color 
assignment strategies. The average is consistently in 
the 6-7 range. This differs significantly from the 
Kempe chain approach where the size of the Kempe 
chains searched increase as the graphs get larger. 

• The probability that the wandering process fails to 
resolve the impasse is a local phenomenon. This is 
roughly equivalent to assuming that each call to 
wander is independent of previous actions taken in 
coloring the graph. 

With these assumptions we see that the probability of 
coloring a graph without need to restart the coloring 
process is given by 

(l-p )4N = eN 

where p is the probability that the impasse wilt' not be 
resolved and a is the constant of proportionality for the 
number of impasses. Since processing a non-impasse 
vertex and an impasse vertex both appear to take con-



stant time, we get an expected running time propor
tional to 

NCN + 2NCN (1- CN) + 3NCN (1- CN)2 + ... 
= N{I/C)N 

Though exponential, since II C > 1.0, the value of 
{II C)N is inconsequential over a wide range of N 
because we estimate II C to be in the vicinity of 
1.00016. This would predict a ratio of running times 
between graphs of 15,000 vertices and graphs of 5000 
vertices of about 15. The observed ratio is closer to 10. 

EXPERIMENTAL RESULTS 

In this section we give results for various combinations 
of parameters to the algorithm. We experimented with 
three static ordering strategies, the classical largest first 
and smallest last (randomly ordering the vertices within 
each grouping so as to have randomness in the event of 
restarts) and "rose petal" ordering. This last is a static 
ordering created by selecting a vertex for the center and 
then doing a breadth first search of the graph. The 
central vertex is chosen randomly (without repeats) so 
that a different ordering results on each restart, at least 
until all choices have been exhausted. Largest first did 
very poorly, actually being unable to four-color some 
graphs of size N in N restarts for N less than 1000. 
Rose petal ordering produced the best results and sug
gested to us that the dynamic saturation ordering might 
be an appropriate choice. We modified the program to 
allow the static orderings to be overlaid with saturation 
ordering, with saturation coming into play at different 
levels. For example, a level of zero is equivalent to 
turning our attention immediately to vertices at 
impasse, i~stead of. waiting for them to be processed 
according to the order dictated by the static ordering. 
Notice that when a vertex is first brought to impasse 
there is necessarily at least one escape route, but if we 
delay no escape routes might exist when it becomes 
time to process the vertex and a restart will be neces
sary. Table 2 presents the results for a number of 
different combinations and graph sizes for MPG5 
graphs. For the smaller sizes fifty trials were run. For 

the larger sizes only ten trials were made. The com
plete code can be found in Archuletal . The number of 
restarts is the main factor affecting running time, 
though how early within a linear pass through the 
graph the algorithm fails to resolve an impasse is also 
important. Largest first consistently performed the 
worst by a significant margin and is an inappropriate 
ordering for this algorithm. Smallest last performs best 
with a level of saturation of one (there is only one possi
bility left for a vertex, so color it that color), whereas 
rose petal ordering did better when the saturation level 
was two. A saturation level of three is equivalent to 
the saturation ordering without any secondary ordering 
heuristic. This ordering was observed to perform some
what erratically, though the small sample size for the 
larger graph sizes makes drawing firm conclusions 
unjustified. Because the algorithm is so fast the time to 
maintain a precise ordering based on secondary ordering 
heuristics negates any advantage that might be gained. 

We also experimented with different strategies for 
assigning an available color when more than one choice 
existed. We tried three approaches to assigning colors: 

• Skewing the assignment to favor the lowest num
bered color classes. This is the classical method of 
assigning the colors in the greedy method. 

• Always giving out the color so as to equalize the 
number of colors in each color class. 

• Assigning a color at random from the available 
colors. This method has the advantage that it 
inserts additional randomness into the algorithm. 

We found that skewing the colors according to the clas
sical scheme gave the best results. This is the color 
assignment method used in the tabular results 
presented in Table 2. We have not explored the reason 
why a skewed distribution outperforms a balan.ced one; 
it may be that the smaller size of color class four makes 

impasse resolution ,:~ight1y more likely. 

Table 2. Running Times {Seconds)/Restarts for the Wandering Fifth Color Algorithm 

Method 

Approximate Rose Petal Smallest Last Pure Saturation Largest First 
Size Saturation = 2 Saturation = 1 (No secondarY orderinl!) Saturation = 1 

15000 73.31/6.80 125.16/6.00 177.93/19.CO 
12500 84.43/9.50 84.83/4.90 35.19/2.60 

10000 33.65/3.20 44.86/2.50 38.59/4.30 

7500 21.70/2.30 37.19/2.70 19.17[2.00 

5000 12.90/1.60 13.61/0.84 15.36/2.14 66.82/16.70 
2500 4.42/0.44 5.95/0.46 4.01/0.46 10.11/2.94 
1000 1 52/0.20 2.14/0.12 1.52/0.1~ 9..9.1/0.70 

599 



FURTHER RESEARCH 

We close with some remarks regarding future"research. 
The primary reason that the running time of the algo
rithm is not linear is that when we cannot resolve an 
impasse we completely discard the current coloration. 
For sizes that we have considered this does not occur 
often enough for it to be of serious concern. One 
approach to preventing restarts is to switch to a more 
sophisticated impasse resolution algorithm when 
wandering fails, for example the one used by Morgen-

stern. Because of the long running times he reports, 
using sequences of Kempe interchanges will be 
profitable only if the expected number of restarts 
becomes very high. Another approach, based on the 
intuition that an impasse is a local phenomenon, is to 
excise a small portion of graph centered around the 
impasse vertex, say all vertices within distance three or 
four and to consider all possible four-colorations, look
ing for one that agrees with the remainder of the graph 
on the boundary of the excised region. Because the 
subproblem we will create in this manner is small, an 
exhaustive backtracking algorithm can be used. 

Table 3. Sizes of Color Classes Using Rose Petal Ordering with Saturation Level = 2 

Color Assi ment Method 
Approx. Skewed 

Size 
15000 

References 

[I] Archuleta, R.A. and H.D. Shapiro, A Fast Proba
bilistic Algorithm lor Four-Coloring Large Planar 
Graphs, Department of Computer Science, The 
University of New Mexico, Tech Report No. 
CS86-2. 

[2] Brelez, D., New Methods to Color the Vertices 0/ 
a Graph, CACM, Vol. 22, pp. 251-256, (lg7g). 

[a] Kittell, I., A Group 0/ Operations on a Partially 
Colored Map, Bull. Amer. Math. Soc., Vol. 
41, pp. 407-413, (lg35). 

[4] Matula, D., G. Marble and J. Isaacson, Graph 
Coloring Algorithms, in Graph Theory and 
Computing, Academic Press, New York, pp. 
IOg-122, (lg72). 

Balanced Random 

600 

[5J Morgenstern, C.A. and H.D. Shapiro, Per/or
mance 0/ Approximation Coloring Algon·thms on 
Maximally Planar Graphs, Department of Com
puter Science, The University of New Mexico, 
Tech Report No. CS84-7. 

[6] Morgenstern, C.A., Private Communication. 

[7J Saaty, T.L. and P.C. Kainen, The Four-Color 
Problem, McGraw-Hill, New York, (lg77). 

[8J Williams, M.H. and K.T. Milne, The Per/or
mance 0/ Algorithms lor Colouring Planar 
Graphs, The Computer Journal, Vol. 27, pp. 
165-170, (lg84). 

[gJ Williams, M.R., Heuristic Procedures (1/ .They 
Work - Leave Them Alone), Software -
Practice and Experience, Vol. 4, pp. 237-240, 
(lg74). 



Techniques for Collision Resolution in Hash Tables 

with Open Addressing* 

J. Ian Munro 

Pedro Celis 

Data Structuring Group, Department· of Computer Science, 

University of Waterloo, Waterloo, Ontario, N2L 3G1 

Abstract 

In this paper we focus on the problem of resolving col

lision in hash tables through open addressing. A num

ber of techniques, both old and new, are surveyed. The 

results of analyses and extensive simulations are pre

sented. 

1 Introduction 

Hashing was one of the first techniques proposed for 

implementing the operations of insert, delete and find 

in a data structure. Knuth· [20] gives credit to Luhn 

for originating the idea of hashing in an internal IBM 

memorandum of January 1953. 

Ideally, we would like a hashing scheme to determine 

solely from the identification of a record, called the 

record key, the exact location in which the record is 

stored. Given a record to be insetted or located, a key 

to address transformation is performed using a hash 

function h(k) : K 1-+ {o, ... , m - I} which takes as 

an argument a key k in the specified universe K and 

returns an integer h(k) between 0 and m - 1, where 

m is the size of the table. The record is then inserted 

in the table entry specified by h(k). This causes no 

*This work was supported by the Natural Science and Engi

neering Research Council of Canada under Grant A8237 

CH2345-7j86jOOOOj0601$Ol.OO© 1986 IEEE 601 

pro blems until a record with key k' has to be inserted 

and location h(k') is already occupied. In this case we 

say a collision has occurred. 

If, as is usually the case, the hash function essentially 

maps keys to locations at random, then collisions are 

almost certain to occur even if the table is sparsely 

populated. The famous "birthday paradox" (see for 

example [10]) asserts that among 23 or more people 

the probability that at least 2 of them share the same 

birthday exceeds 1/2. In other words, if we select a 

random function that maps 23 records into a table of 

size 365, the probability that no two keys map into the 

same location is only 0.4927. In general, a hash table 

of size m is likely (probability > ~) to have at least one 

collision by the time it contains about V7rm elements. 

In order to use a hashing scheme, two almost in

dependent decisions must be made; a hash function 

must be selected as well as method for handling col

lisions. There are two popular ways of handling colli

sions, chaining and open addressing. The idea of chain

ing is to keep, for each location, a linked list of the 

records that hash to that location. This implies that 

each entry in the table must have enough space to con

tain a record and a link field. There are a number of 

interesting tradeoffs and techniques in connection with 

chaining. Our interest, however, lies in an approach 



which calls for no additional storage, namely open ad

dressing. 

2 Open Addressing 

Peterson seems to have introduced the notion of col

lision resolution by open addressing in his seminal 

paper of 1957 [27]. The idea is to do away with 

the links entirely, and to insert by probing the table 

in a systematic way. When a collision occurs, one 

of the colliding records is selected to keep the table 

location, while the other one continues probing un

til inserted. The sequence of table entries to be in

spected when inserting or searching for a record is 

called the probe sequence. We can augment the hash 

function with another parameter, the probe position 

or try number, and use it to generate the probe se

quence for a record. Thus the hash function becomes 

h(k,i):Kx {1, ... ,oo}I-4{O, ... ,m-1}. 

Schemes for inserting into a hash table with open 

addressing can vary in two ways: in how the probe 

sequence is generated, and in how to decide which of 

the colliding recor4s is to be rehashed. We call the 

latter portion of the insertion algorithm the reordering 

scheme. This decision could be based on any knowl

edge of the record key values, their current probe po

sitions, their future probe sequences and/or the order 

in which the records were inserted. 

In discussing the various hashing schemes we will 

be interested in comparing the following three perfor-

mance measures: 

- I average number of probes required to insert 

a record; 

- S average number of probes required to find 

a record in the table; 

- U average number of probes required to de

termine that no record in the table has a 

given key value. 

602 

To determine the value of these performance measures 

we will often find convenient to study the following 

random variables: 

- the probe sequence length for a key (psI), 

- the longest probe sequence length (lpsI), 

which is the largest value of psI among all 

the records in the table; 

We will compare the expected value (denoted by E[-]), 

and sometimes the variance (denoted by V[-]), of these 

random variables for both the case of full and nonfull 

tables. For large nonfull tables such expressions may 

be functions of a, the load factor, defined as a = n/m, 

where n is the number of records in the table and m is 

its size. Several analyses of hashing schemes have been 

performed for infinite nonfull tables with load factor 

Q, where a ~ 1- €, € > O. Throughout the paper we 

refer to these tables as a-full tables. 

A very useful but often neglected performance mea

sure· of a hash table is the longest probe sequence 

length (Ipsl). This metric provides a bound on the 

cost of both successful and unsuccessful searches. IT 

all records in the table are stored in probe positions· 

between 1 and lpsl, then Ipsl probes into the table 

will be sufficient to find any record, or to determine 

that no record with such key exists. This elegant, but 

sadly underutilized, idea is due to Lyon [23]. 

The simplest open addressing hashing scheme is 

known as linear probing. It uses the hash function 

h(k, i) = (hl (k) + (i - 1) * c) mod m, where hl (k) 

is the initial hash function and c is a constant rela

tively prime to m. This method was discovered inde

pendently by Ershov [8] and Peterson [27]. Experience 

with linear probing shows that the algorithm works 

quite well until the table is relatively full. The prob

lem with linear probing is that it uses only one circular 

path to resolve collisions and suffers from a piling-up 

phenomenon called primary clustering. IT r consecutive 

( mod c) locations are occupied and a new value hashes 



into any of these spots (or the one before or after this 

segment) then at least r + 1 consecutive locations will 

be occupied. Furthermore, to find this additional key 

will take about r /2 probes on average. This unfortu

nate event occurs with probability proportional to r, 

exacerbating the situation. 

The performance of linear probing improves signif

icantly if we allow c to be a function of k instead 

of a constant [ll. This gives rise to a new scheme, 

called double hashing, that uses two independent aux

iliary hash functions hl(k) and h2 (k) to compute 

h(k, i) = (hl (k) + (i - 1) * h2(k)) mod m. The val

ues h(k, i), i = 1, ... , m will yield a permutation of the 

table locations provided h2 (k) is prime relative to m. 

A simple, and indeed standard, way to guarantee this 

is to insist that the table size, m, be a prime. Following 

this simple requirement it is found that double hashing 

performs much better than linear probing for high load 

factors as it essentially eliminates the possibility of two 

colliding records having the same remaining probe se-

quence. 

Two idealizations of open addressing schemes are 

frequently mentioned in the literature and used as 

models for analysis. These are uniform hashing, un

der which the hash function provides a random per

mutation of the numbers {O, ... , m - l}j and random 

probing, in which h(k, i) is simply a number chosen at 

random from {O, ... , m - 1}. The difference between 

these two schemes is that random probing is memory

less, meaning that a location may be probed several 

times before some other location is probed for the first 

time. Random probing is simpler to analyze and has 

essentially the same performance as uniform hashing 

for a-full tables under most reordering schemes. Ran

dom probing and uniform hashing are not usually im

plemented, since empirical evidence shows that their 

performance is close to that of double hashing which is 

much more reasonable to implement. Guibas [17] has 

603 

proven that the behavior of double hashing is asymp

totically equivalent to uniform hashing for load factors 

a not exceeding a certain constant ao = .31. ... The 

difficulty of the proof and the bound on the load fac

tor are indications of the difficulty in other analyses of 

double hashing. The interest of random probing and 

uniform hashing lies in the fact that they are simpler 

to analyze and appear to approximate closely the per

formance of double hashing. 

3 Reordering Schemes 

The standard insertion algorithm is to inspect the 

probe sequence corresponding to the record to be in

serted until an empty table location is found, and place 

the new record there. Hence the reordering scheme 

consists of giving preference to the record that was in

serted first. 

The standard search algorithm is to inspect loca

tions in the order of the probe sequence of the key 

value. Under this scheme, a search can be stopped 

as unsuccessful when either an empty table location is 

probed· or IpsI probes have been made. Furthermore, 

S = E[psl] and U ~ E[IpsI], regardless of the reorder

ing scheme. 

For linear probing and a nonfull tables it can be 

shown that [20,31] 

Elpsll = ~ (1 + 1 ~ a) - 2(1_la)"m 

+0 (m- 2 ) 

a(a2 -3a+6) 3a+1 
V[psI] = 12(1 _ a)3 - 2(1 - a)5 m 

+0 (m- 2 ) 

and for full tables 

E[psI] = V1rn/ 8 + ~ + 0 (n-l/2) . 
No closed form results for IpsI have been presented 

for this method, but Larson [21] gives some numerical 

results for an approximate analysis. According to his 



computations, for m = 103 and a = 0.6, E[lpsl] = 

23.6. IT the load factor is increased to 0.9 this number 

goes to 288, and if instead of increasing the load factor 

we increase the table size to 106 , the number goes up 

to 67.1. 

Peterson proves that, for linear probing with the 

standard insertion algorithm, the average probe posi

tion in a given table in which a record is stored is inde

pendent of the order in which the records are inserted. 

Basically the same proof can be used to show that the 

average probe position is independent of the reorder

ing scheme used. Hence, regardless of the reordering 

scheme used, I = E[psl]. Since the standard search 

algorithm is used, S = E[psI] for 'the value of E[psI] 

presented above. Since no analysis for lpsi has been 

presented, the value of U has not been determined. 

However, ignoring Lyon's modification, we have that 

for nonfull tables 

U 1 ( 1) 3a 
= 2 1 + (1 - a)2 - 2(1 - a)4 m 

+0 (m- 2
) 

and if the table is full, U = n. 

For the standard insertion algorithm with uniform 

hashing the following equations can be established 

[27,13,14): for a nonfull table 

m+1 
E[psl) = -- [Hm +1 - Hm - n +1 ) 

n 

~ -a- 1 ln(1- a) 

2 
V[psl) ~ -- + a- 1 ln(1- a) 

I-a 

-a-2 In2 (1- a) 

E[IpsI) = -loga m - loga (-loga m) 

+0(1) 

and for a full table 

E[psI) = In n + ')' - 1 + 0(1) 

E[IpsI) = 0.6315 ... X n + 0(1) 

where ')' = 0.5772156649 ... is Euler's constant. IT 

604 

we also use the standard search algorithm then psI 

represents the cost of both insertions and successful 

searches, and Ipsl represents a bound on the cost of 

unsuccessful searches. Hence I = S = E[psl) and 

U ~ E[lpsl). We see that uniform hashing, and so pre

sumably double hashing, becomes substantially better 

than linear probing for relatively full tables. The re

mainder of this paper will focus on the fact that, unlike 

linear probing, reordering schemes can be used to ad

vantage under these probing methods. 

3.1 Brent's Method 

Brent [3) was the first to propose moving stored records 

to reduce the expected value of the probe sequence 

length. During an insertion, a sequence of occupied ta

ble entries is probed until an empty location is found. 

Brent's scheme checks to see whether any of the records 

in these occupied locations can be displaced so that 

the cost of searching for the new value plus the extra 

cost of searching for the displaced element is smaller. 

More formally, let di be the number of locations the key 

in the i-th location probed by the new record has to 

move before finding an empty location. Then Brent's 

method selects the value of i that minimizes i + di, 

places the new record on its i-th choice and moves the 

record previously in that location di steps ahead. Fig

ure 1 shows graphically how one such insertion of a 

record R might occur. In the example, instead of in

serting the record R in its fifth choice and increasing 

the total table cost by 5, record R3 is displaced to its 

next choice, and then R is placed in its third choice, 

the place formerly occupied by R3 • The increase in the 

sum of the probe sequences is thus reduced from 5 to 

4. 

No analysis of the cost of loading a table has been 

presented for this method, but simulations presented 

in [4) support the conjecture that I = 9(1) for a-full 

tables and I = 9(ln n) for full tables. Since the stan-



1st R 2nd R 3rd R 4th R 5th R 

® ·0 
1 1 

0 0 
1 1 

0 0 
1 

0 
Figure 1: Sample insertion in Brent's method 

dard search algorithm is used then S = E[psl] and 

U ~ E[lpsI]. 

The tables produced by Brent's scheme have a very 

good E[psI)", even when completely filled. For random 

probing and a-full tables the expected values are 

a a 3 a 4 a 5 2aG 

E[psI] = 1 + 2" + ""4 + 15 - 18 + 15 

9a7 293a8 319a9 

+ 80 - 5670 - 5600 + ... 
taking the limit numerically as a --+ 1 indicates that 

for full tables 

E[psl] ~ 2.4941. .. 

This agrees with simulations using double hashing. So, 

if the standard search algorithm is used, a record can 

be retrieved in less than 2.5 probes, on average, re

gardless of the table size. There has been no success

ful analysis of the expected value for IpsI but, based 

on simulations and an intuitive argument, it is conjec

tured [16] to be e (vIn) for full tables, and e (In n) for 

nonfull tables [4]. 

Brent's method does not require any extra memory 

to perform an insertion. If the search for an empty 10-

605 

cation is done on a depth first basis, as suggested in [3], 

the expected number of times the h2 ( e) hash function 

will be computed is a 2 + a 5 + a 6 /3 + ... eventually 

approaching e(fo) for full tables [20]. The disadvan

tage of searching in this manner is that a number of 

locations below the breakeven line will be probed. For 

example the fifth probe position of the record R to be 

inserted would be probed unnecessarily. The number 

of additional table positions probed during an insertion 

is approximately a 2 + a 4 + ~a5 + a 6 + ... [20]. 

Another way of searching for the closest empty lo

cation is to do a level search as recommended in [14]. 

This causes an essentially minimal number of locations 

to be inspected. However, for double hashing, this 

implies h2(e) be called up to e(n) times instead of 

e(Vn). A further disadvantage of this insertion ap

proach is that duplicate keys are not detected by the 

insertion algorithm, so if duplicate insertion requests 

may occur, an unsuccessful search should precede each 

insertion. 

If we are to use Lyon's trick to truncate unsuccessful 

searches, we must of course update the IpsI when in-



sertions are made. This requires a minor twist that is 

easily incorporated into either of the insertion schemes. 

lpsl may be updated either because the new element is 

in a position late in its probe sequence, or because the 

element displaced is moved to a late spot. The former 

is detected as part of the insertion, the latter requires 

an extra search. 

3.2 Binary Tree Hashing 

Binary tree hashing is the natural generalization of 

Brent's method. Not only is the record being inserted 

allowed to displace other records in its probe sequence, 

but these displaced records may further displace other 

records in their probe sequences. This is illustrated 

graphically by Figure 2. In the figure, R's first choice is 

occupied by R 1 , hence the next probe position of both 

Rand Rl are checked. These two locations are also 

occupied by R2 and R3 respectively, hence the next 

probe position of all four records is inspected (note 

that the four records are not necessarily distinct). At 

that point it is found that the next probe position for 

Rl is empty, then Rl 'will be advanced two positions 

in its probe sequence and R will be placed in its first 

choice, the location previously occupied by RI . This 

method was discovered independently by Mallach [25] 

and by Gonnet and Munro [16]. 

Since this method is a generalization of Brent's, it 

is expected to produce better tables at a somewhat 

higher cost. An approximate model [16] yields the fol

lowing for random probing and a-full tables l : 

a 'a3 a 4 a 5 2a6 

E[psl] = 1 + "2 + 4" + 15 - 18 + 105 

83a 7 613a8 69a9 

+ 720 + 5760 - 1120 + ... 
taking the limit numerically as a -+ 1 indicates that 

for full tables 

IThe formula for E[psl] for a-full tables is taken from [14] 

and differs slightly from the one in [16]. 

606 

E[psl] ~ 2.13414 .... 

This agrees with simulations using double hashing. 

There is no analysis for the expected value for lpsl 

but Gonnet and Munro, based on simulation results, 

conjectured them to be about 19 n + 1 ~ 1.44 In n + 1 

for full tables. 

Again the cost of searching is given by the formu

las S = E[psl] and U ~ E[lpsl], since the standard 

search algorithm is used. As with Brent's scheme, the 

expected cost of inserting a r~cord has not been suc

cessfully analyzed for either of the insertion algorithms 

described below. 

The natural order for inspecting the table when 

searching for an empty location is by levels, as sug

gested in [25] and [24]2. However, the amount of mem

ory required to store the tree of locations probed is 

large, as Mallach noted. Simulations [6] give credence 

to the hypothesis that the expected value of I for a full 

t~ble is about .5nl / 2 In n and the amount of memory 

required to store the tree about .15n3 / 2 In n. What is 

worse, the variance of these two measures is very high, 

so the probability of requiring, say, n2 extra memory 

locations is not insignificant. 

Gonnet and Munro [16] show how to use an algo

rithm for the transportation problem by Edmonds and 

Karp [9], to insert keys into the table. An enhance

ment of the algorithm has a worst c~e runtime of 

e(n2 ln n) [11] which suggests that I could be as high 

as e(n In n). However, simulations [6] suggest that the 

expected value for I for a full table is e(n l / 2 ln n), and 

the amount of extra memory required is e (n), each 

with a small variance. While this is a great improve

ment over the natural algorithm, it is still expensive 

both in time and memory. 

As with Brent's method, a small number of addi

tional probes are required to avoid duplicate keys and 

2The reader is warned that the analysis presented in [24] is 

not entirely accurate. 



1st R 

Figure 2: Sample insertion using Binary Tree Hashing 

to keep track of the value of Ips!. 

3.3 Optimal and Min-Max Hashing 

Both Brent's method and binary tree hashing move 

stored keys forward in their probe sequences. Further 

reductions in the value for E[psI] could be obtained 

if records could also be moved back in their probe se

quences. Lyon [23] presents simulations results on a 

different generalization of Brent's method which allows 

records to be moved back a limited number of steps. 

Poblete [28] has simulated a generalization of binary 

tree hashing where records are allowed to move back a 

limited number of steps. All of these methods present 

tradeoff's between the cost of insertion (I) and the cost 

of searching (S and U). 

It is natural to ask what reordering scheme mini

mizes the value of E[psl], or, in other words, minimizes 

S for the standard search algorithm. Such a scheme is 

called optimal hashing [29,30,16]. Poonan [29] was the 

first to note that the optimal placement of keys in a 

hash table is a special case of the assignment problem 

[19], which can be solved in O(n2 1og n) time in the 

worst case [11]. Neither the expected cost of finding 

the optimal hash table nor the expected values of psI 

607 

and Ipsl have been determined. For E[psI] and full 

tables the following bounds exist [7,16]: 

1. 7 < E[psI] < 2.135 

Simulations [16,6] indicate that for full tables E[psl] ~ 

1.82 ... , E[Ipsl] = 8(ln n), and 1= 8( yin). 

Instead of determining the reordering scheme in the 

insertion algorithm that will minimize S for the stan

dard search algorithm, we might be interested in min

imizing U. This min-max approach has the feature 

that in addition to minimizing Ipsl for the specific ta

ble (and hence its expected value), simulations indicate 

the average psI can be kept to about 1.83 ... , that is, 

very close to the cost of the optimal table. The ex

pected value of IpsI is bounded by [13,4] 

1 
In n + 1 + 2" + P(ln n) + 0(1) < E[lpsl] 

< 31n n + fig (n - 2) 1 + 31 + 0 (1) 

where P(x) is a periodic function with period 1 and 

magnitude IP(x) I ~ .0001035 for full tables, and by 

-a- 1 1n(1 - a) < E[IpsI] 

< -3a- 1 In(1 - a) + rlg(m - 2)1 

for a-full tables. 

Unfortunately, the approaches used in creating both 



optimal and min-max hash tables are time consuming 

and can require e(n) extra memory to process an in

sertion. 

In summary, we can say that binary tree, optimal 

and min-max hashing reduce the expected values of 

psI and IpsI dramatically, but at a high cost for ta

ble creation. The expected number of operations to 

construct a table using one of these algorithms is high 

compared to the standard hashing scheme. They also 

require a nontrivial amount of extra memory during 

the creation phase. These. methods are best suited for 

applications in which the set of keys is static and known 

in advance. In such cases, the cost of constructing the 

table can be amortized over a large number of search 

operations, and the additional memory space required 

can be released as soon as the table has been created. 

3.4 Robin Hood Hashing 

Robin Hood hashing [5,4] is a reordering scheme for 

the insertion algorithm that differs from the previous 

methods in that it does not attempt to reduce the ex

pected value of psI. Instead it tries to reduce the vari

ance of psI, and as a consequence the expected value 

of lpsl, without significantly increasing the cost of in

sertions. 

The idea is very simple: resolve a collision by giving 

the location to the record that is further along its probe 

sequence. The name of the scheme comes from the fact 

that we take from the rich to give to the poor. For 

random probing and.full tables we have the following 

E[psl] = In n +, + 0(1) 

E[lpsl] < 3ln n + rlg(n - 2)1 + 3, + 0(1) 

and taking a limit numerically as a -+ 1 indicates that 

for full tables 

V[psl] ~ 1.883 

Hence if the standard search algorithm is used, both 

608 

Sand U will be e (In n) for full tables. The cost of 

inserting will be affected by the cost of determining the 

probe position of a stored record. IT this is determined 

by doing a "search" for the stored record then I =. 

e(ln2 n). 

However, better search algorithms have been pro

posed. These algorithms exploit the fact that the vari

ance of psI is so small, meaning that most records are 

stored in ,a probe position very close· to the average. 

The idea is to change the order in which the candidate 

probe positions are inspected during a search, start

ing near the average probe position and moving away 

from the average in both directions. In other words, 

we start by inspecting first those positions that have 

a high probability of success. The unsuccessful search 

(U) will remain at Ipsl since all candidate probe posi

tions must be inspected (in any order) before the search 

can be stopped. The average cost of searching, how

ever, is reduced to S < 2.6. We can use the same 

idea when "searching" for a stored record to deter

mine its probe position to reduce the cost of insertion 

to 1= e(ln n). 

4 Updates 

Deletion of unused items is troublesome in open ad

dressing, because unoccupied table positions that had 

a collision must be marked as "deleted" so as to pre

vent fallacious, unsuccessful searching. There will then 

be three kinds of table entries: empty, occupied and 

deleted. When inserting, deleted table entries are 

treated as if they were empty, but they are treated 

as if they were occupied during searches. 

For linear probing, deleted entries can be easily 

avoided by moving back a record that was rejected 

from the location. However, as we have noted, the 

performance of linear probing is inferior to the other 

methods and therefore performs poorly even if no up-



dates have been made. 

For random probing and the standard insertion 

and search algorithms (modified to handle deleted en

tries correctly), after a sufficiently large n~mber of 

delete/insert pairs, the cost of searching will be given 

by S = (1 - a:) -1. Since all locations in the table 

are now either occupied or deleted, and the value of 

the longest probe, IpsI, can only increase, unsuccessful 

searches take m probes. Hence the performance dete

riorates to something worse than the performance of 

linear probing. 

Gunjin and Goto [18] present a partial analysis for 

an algorithm that retraces the probe sequence of ev

ery record in the table and marks as empty all those 

deleted entries that are no longer jumped over by some 

other record. Their algorithm will improve the process

ing oLunsuccessful· searches only. If one is willing to 

use·m additional bits of storage it is better to rehash 

the table in situ [2]. This will require less time, reduce 

even further U and reduce greatly S. 

We feel the most encouraging result in the area of 

deletions in open in addressing is a modification to the 

Robin Hood algorithms [5,4]. The following modifica

tion has been studied: to delete a record, mark the 

table entry as deleted but keep the key value; when 

inserting, a deleted element is discarded "if and only if 

it would be displaced if it were not flagged as deleted. 

This modification causes the expected value of psI to 

increase without bound, but simulations indicate that 

the variance remains"bounded by a small constant, and 

is never greater .than that of a full table in which no 

deletions have occurred (i.e. < 1.88 ... ). The expected 

value will increase without bound because once a loca

tion contains a record at probe position i, then in the 

future it can only contain records that are at or past 

probe position i. 

Employing the Robin Hood search schemes noted 

above, the cost of a successful search after an arbitrary 

609 

number of insertions and deletions remains bounded by 

the cost of a successful search in a full table with no 

deletions. Unsuccessful searches are similarly bounded 

by those of a full table with no deletions. 

Since the average probe position grows without 

bound, it would appear that the cost of doing an in

sertion also grows without bound, because each key 

has probed positions 1 to about the average probe po

sition. This pitfall can be avoided by keeping track 

of the value of the smallest probe position among the 

records (deleted or otherwise) in the table. The inser

tion procedure then starts at a probe position equal to 

this value, since a placement before that position is not 

possible. Empty locations are treated as containing a 

deleted record in probe position o. 
The most efficient way of keeping track of the small

est probe position is to have counters of how many 

records are at each probe position. We expect only 

e (In n) counters to be needed as simulations indicate 

that about 1.15 In n + 2.5 different probe positions will 

contain all the records in the table. 

5 Conclusions 

Hashing with open addressing does lead to very good 

tables particularly in the static case, even when the 

load factor approaches or reaches 1. Brent's scheme 

and Robin Hood hashing are reasonably fast insertion 

techniques. As we have noted Robin Hood seems to 

lead to good dynamic tables even when deletions are 

permitted. This may be surprising to many who, like 

us, felt that open addressing was inherently poor when 

a significant number of deletions were to be made. The 

analysis of Robin Hood with deletions is the most ob

vious open problem. We note, however, that a number 

of results we have quoted are experimental and some 

analyses are based on simplifying models. More com

plete analyses of many of the methods are yet undone. 



Finally, there is the search for even better approaches 

to conflict resolution by open addressing. 

References 

[1] de Balbine, G. Computational Analysis of the Random 
Components Induced by a Binary Equivalence Relation, 
Ph. D. Thesis, Calif. Inst. of Technology, 1969 

[2] Bays, C., " The Relocation of Hash-Coded Tables" 
Communications of the ACM, Vol. 16, No.1, May 197~ 

[3] Brent, R.P., "Reducing the Retrieval Time of Scatter 
Storage Techniques", Communications of the ACM, Vol. 
16, No.2, pp.l05-109, February 1973 

[4] Celis, P. "Robin Hood Hashing", Ph. D. Thesis, Uni
versity of Waterloo, January 1986. 

[5] Celis, P., p.-A Larson and .1.1. Munro, "Robin 
Hood Hashing" , Proc. f?6th Annual IEEE Symposium on 
Foundations of Computer Science, pp.281-288, October 
1985 

[6] Celis, P. and .1. I. Munro, "A Simulation Study of 
Several Hash Schemes", In preparation 

[7] Celis, P. and .1. I. Munro, "An Improved Lower 
Bound for Optimal Hashing", In preparation 

[8] Ershov, A.P., Doklady Akad. Nauk. SSSR, Vol. 118, 
pp.427-430, 1958 

[9] Edmonds, .1. and R.M. Karp, "Theoretical Im
provements in Algorithmic Efficiency for Network Flow 
Problems", Journal of the ACM, Vol. 19, No.2, pp.248-
264, April 1972 

[10] Feller, W., An Introduction to Probability Theory and 
its Applications, Vol. I, John Wiley & Sons, New York, 
1968 

[11] Fredman, M.L. and R.E. Tarjan, "Fibonacci 
Heaps and Their Use in Improved Network Optimiza
tion Algorithms", Proc. f5th Annual IEEE Symposium 
on Foundations of Computer Science, pp.338-346, Oc
tober 1984 

[12] Gonnet, G.B., "Average Lower Bounds for Open
Addressing Hash Coding", A Conference on Theoretical 
Computer Science, pp.159-162, University of Waterloo 
Waterloo, Ontario, August 1977 

[13] Gonnet, G.B., "Ex.pected Length of the Longest 
Probe Sequence in Hash Code Searching", Journal of 
the ACM, Vol. 28, No.2, pp.289-304, April 1981 

[14] Gonnet, G.B., Handbook of Algorithms and Data 
Structures, Addison-Wesley, Reading Massachusetts 
1984 

[15] Gonnet, G.B. and p.-A. Larson, "External Hash
ing with Limited Internal Storage", Technical report 
CS-8f?-98, Computer Science Dept., Univ. of Water
loo, October 1982 

610 

[16] Gonnet, G.B. and .1.1. Munro, "Efficient Order
ing of Hash Tables", SIAM Journal on Computing, Vol. 
8, No.3, pp.463-478, August 1979 (a preliminary ver
sion was presented at the 9th ACM STOC May 1977) 

[17] Guibas, L . .1., "The Analysis of Hashing Techniques 
that Exhibit K-ary Clustering", Journal of the ACM, 
Vol. 25, No.4, pp.544-555, October 1978 

[18] Gunji, T and E. Goto, "Studies on Hashing PART-
1: A Comparison of Hashing Algorithms with Key 
Deletion", Journal of Information Processing, Vol. 3, 
No.1, 1980 

[19] Konig, D, "Graphok es Matrixok", Matematikai es 
Fizikai Lapok, Vol. 38, pp.116-119, 1931 

[20] Knuth, D.~., The Art of Computer Programming, 
Vol. III: Sortmg and Searching, Addison-Wesley, Read
ing Massachusetts, 1973 

[21] Larson, p.-A., "Expected Worst-case Performance 
of Hash Files", The Computer Journal. Vol. 25, No.3, 
1982 

[22] Larson, p.-A., "Analysis of Uniform Hashing", 
Journal of the ACM, Vol. 30, No.4, pp.805-819, Octo
ber 1983 

[23] Lyon, G.E., "Packed Scatter Tables", Communica
tions of the ACM, Vol. 21, No. 10, pp.857-865, October 
1978 

[24] Madison, .1.A.T., "Fast Lookup in Hash Tables with 
Direct Rehashing", The Computer Journal, Vol. 23, 
No.2, pp.188-189, May 1980 

[25] Mallach, E.G., "Scatter Storage Techniques: A Uni
fying Viewpoint and a Method for Reducing Retrieval 
Times", The Computer Journal, Vol. 20, No.2, pp.137..; 
140, May 1977 

[26] Maurer, W.D. and T.E. Lewis, "Hash Table 
Methods", ACM Computing Surveys, Vol. 7, No.1, 
pp.5-19, March 1975 

[27] Peterson, W. W ., "Addressing for Random-Access 
Storage", IBM Journal of Research and Development 
Vol. 1, No.2, pp.130-146, April 1957 

[28] Poblete, P. V., Studies on Hash Coding with Open 
Addressing, M. Math Essay, University of Waterloo, 
Aug. 1977 

[29] Poonan, G., "Optimal Placement of Entries in Hash 
Tables", ACM Computer Science Conference {Abstract 
only}, Vol. 25, 1976, (Also DEC Internal Tech. Rept. 
LRD-l, Digital Equipment Corp., Maynard Mass) 

[30] Rivest, R.L., "Optimal Arrangements of Keys in 
a Hash Table", Journal of the ACM, Vol. 25, No.2, 
pp.200-209, April 1978 

[31] Schay, G. and W. G. Spruth "Analysis of a file 
addressing method" Communications of the ACM Vol. 
5, No.8, pp.459-462 August 1962 



IEUORII&IUZ AllALYSIS OF OOBWUIIIIY Ii&DDIIAIICZ POLICIES 
1011. SEIlYIIKS D A DIS'IIlDUDm EllYD.CIDaY 

by 

Farokh Bastani, ~ael Hilal, and lng-Ray Chen 

Department of Computer Science 
University of Houston - University Park 

Houston, Texas 77004 

ABSDAcr 

One way of nnproving the performance of a 
server in a local area network environment is to 
assign the task of maintaining its data structures 
to separate maintenance processes. It is 
frequently suggested that the maintenance processes 
can be treated as low priority processes. However, 
our performance analysis shows that this policy can 
result in unstable systems. That is, eventually 
the response time for client requests becomes 
infinite. We propose and analyze several 
deterministic and stochastic scheduling strategies 
which ensure that the system is always stable. We 
also discuss the design of a directory server which 
incorporates a concurrent maintenance process. We 
present the experimental measurement of its 
performance and compare it with an alternative 
technique using a self-reorganizing data structure. 

Iadex r~: Degradable systems, maintenance 
processes, performance analysis, process scheduling 
strategies, self-reorganization. 

I. DID.Owcrmw 

Many computing environments can be modeled as 
a set of servers and a set of clients. A typical 
example of this structure is local area network 
servers in which each server accepts requests for 
some operations from the clients and sends back 
responses. The server can be designed using two 
communicating processes, namely, a foreground 
process that interfaces with clients and serves 
their requests, and a background process that 
maintains the data-structures. The response time 
of the foreground process, and hence the response 
time for serving requests, is improvea by shifting 
the time-consuming task of maintaining the data 
structures to the background process. For 
efficiency purposes, the background process updates 
the data-structure after a group of requests have 
been served and not after every request. If the 
primary data-structure is a binary tree, for 
example, the foreground process can simply mark a 
tree node as ,hdeleted,h in response to a delete 
request without actually deleting the node leaving 

This research was supported in part by the National 
Science Foundation under Grant MCS-83-01745. The 
experiment was performed using equipment donated to 
the department by AT&T. 

CH2345-7j86jOOOOj0611$01.00 © 1986 IEEE 
611 

the job of the actual deletion to the background 
process. For a request to add a new node, the 
foreground process can add this node on a simple 
auxiliary data-structure leaving the actual 
insertion of the new node to the background 
process. As more and more requests are served, the 
performance of the foreground process deteriorates 
gradually until the background job performs an 
,"upgrade," to the prnnary data-structure. Systems 
whose response tilli~ c~teriorates as additional 
requests are served are said to be hdegradable:'. 
Their response time improves after the upgrade is 
performed. It is often suggested that the 
foreground process should be given a higher 
priority than the background process(es). However, 
our performance analysis shows that such a policy 
would result in unstable systems (i.e., systems 
with infinite queues and waiting times in their 
steady states). 

The approach with foreground/background 
processes was originally suggested by Dijkstra et 
al [DIJ 7b] in the specific context of concurrent 
garbage collection. Lampson [LAM 84] and Manber 
[~~N 84] have proposed this approach for more 
general applications. An example of an operational 
system is the concurrent garbage collector for the 
file server in the Cambridge Ring Network [NEE 82] • 

1wo nnportant issues are of interest in 
studying programs used in such systems. The first 
issue is a framework for systematically developing 
these programs [DlJ 7b, BEN 84, JONES 83, BAS 
85(A)] • The second nnportant issue is the 
evaluation of the performance of such systems which 
is the subject of this paper. One method of 
performance analysis of such systems is to model 
the client, foreground and background processes 
with their average rates of generating requests, 
deteriorating the data structure (e.g., by creating 
garbage), and upgrading the data structure (e.g., 
by removing garbage), respectively [HlC 84]. 
However, the assumption of uniform flows can mask 
the effect of the variance of the actual 
distributions on the behavior of degradable 
systems. This is evident to some extent in the 
example of the ranaom activity of termites given by 
Courtois [COU 85] in which a random process 
develops pockets of concentrated activities over 
time. Methods used in analyzing hardware 
performability problems [FUR 84] (e.g., the loss of 
a processor in a multiprocessor system) can also be 



used for analyzing software systems. The 
difference is that in degradable software systems 
the reliability (correctness) of the data structure 
is not affected. 

In this paper, we present queueing models and 
performance results for a multiple client 
degradable server as opposed to'the single client 
model analyzed in [BAS 85(B), MOl 85, YEN 85]. 
Section II describes an abstract model for multiple 
client degradable servers. It also contains 
performance studies ot degradable servers using 
both queueing theory and simulation. Several 
strategies for scheduling the background process 
are also discussed. The average waiting time was 
taken as our performance measure. Section III 
includes an operational example of a directory 
server incorporating concurrent foreground and 
background processes as an example of such systems. 
It also discusses the experimental evaluation of 
the directory server as implemented in a 3BNET 
network [AT&T 84(A)] of 3B2 computers [AT&T 84(B)]. 
Its performance was compared with that of an 
implementation incorporating a self-reorganizing 
data structure without having any background 
processes. The experimental results indicate that 
there are cases where self-reorganization has 
better performance than implementations using 
separate maintenance processes. Additional 
experiments have been carried out, though we were 
not be able to report them in this paper. These 
indicate that concurrent maintenance has better 
worst case performance while self-reorganization 
has better average case performance. Finally, 
section IV summarizes the paper and discusses some 
research directions. 

II. II))ELDG AIID PKDOllIWICZ AIIAL~IS 

The server is modeled by two processes, 
namely, a foreground process that interfaces with 
clients and serves their requests, and a background 
process that maintains the data-structures. The 
average waiting time for the foreground requests is 
an important performance measure and is used in our 
study to evaluate different maintenance policies. 
In this section, we show that the background 
process should not be restricted to run only during 
idle periods. Instead, it needs to have a 
well-defined scheduling policy that is tested for 
stability. This policy can be either deterministic 
or stochastic. An example of a deterministic 
policy is maintaining the data-structures after 
satisfying a predetermined number of requests. An 
example of a stochastic policy is one that 
probabilistically adjusts the relative priorities 
of the foreground and background processes. 

As more and more housekeeping tasks 
accumulate, the performance of the foreground 
process deteriorates. Let the degradation level, 
d, represent the amount of accumulated housekeeping 
tasks. Then, the mean service time of the 
foreground process increases as d increases. This 
varying service distribution complicates the 
analysis of the performance of such systems. In 
this section, we first discuss an approximate 
queueing model analysis and demonstrate that such 

612 

systems are basicaliy unstable, i.e., the mean 
service time approaches infinity with probability 
1. Then we investigate the performance of several 
deterministic and stochastic policies for 
scheduling the background process using queueing 
theory and simulation. 

2.1. Q1JIlIJBIIIG II))EL: In order to 
analysis technique, we 
simplifying assumptions: 

make 
illustrate the 
the following 

(1) The data structure is a binary search tree. 
The permissible operations are to create a new 
nOde, to delete an existing node, and to 
inspect or update an existing node. 

(2) The arrival ot requests from the clients is a 
Poisson process with average arrival rate of A. 
Consequently, the client population is assumed' 
to be large. 

(3) The distribution of the service time of the 
foreground process is exponential with mean 
1/Mf (d) = {1+log(N+d)}/Pf' where Pf is a constant, 
N represents the number of nondeleted nodes in 
the tree (assume that N > 0), and d represents 
the number of deleted nodes in the tree. This 
expression for Mf(d) is justified since the 
average search time for a binary tree is 
proportional to the logarithm of the number of 
nodes in the tree. 

(4) The distribution of the service time of the 
background process is exponential with mean 
1/Pb' This is optimistic to some extent since 
the background process also slows down as d 
increases. 

Consider the state transition diagram shown in 
Figure 1. So represents the state in which the 
data structure is in the ideal state, namely, 
immediately after an upgrade. In state s .. , j ~ i, 
j-1 requests have been serviced, the jth r~~uest is 
being serviced and there are i-j pending requests. 
In state si i+1' the fo~egrou~d process is idle and 
the backg~find process ~s act~ve. 

Figure 1. State Transition Diagram for a Simplified 
Model of ForegroundlBackground Processes. 



Even with these assumptions, the analysis is 
very complex because Mf(d) is not constant. A 
simple mooel which has a smaller average service 
time than the above is shown in Figure 2. The 
average service time is smaller {or two reasons (l) 
in Figure 2 it is assumeO that the background 
process instantaneously upgrades the data 
structure, and (~) during a period with N requests, 
t~e first model has average service time equal to 

~I/Mf(i)/N, while this model has this value as its 
~=1 
maximum possible service time. 

Figure 2. A System haviOO a Smaller Average Service 
Time than the System in Figure 1. 

For the trans~t~on diagram shown in Figure 2, 
the steady state equations are: 

state sO: ~ Po = Mf (l) PI 

state si: [A + Mf(i)] Pi 
00 

also: D. = 1. 
i=O ~ 

From the recurrence equation, we have: 
i 

Pi = ~~[A I Mf(j)]} PO· 

0<) 0c:I i 
Now, ~. = {I +.~ T![[A I Mf(j)]} Po = 1 

~=O~ ~~ J-1 

i.e., Po = 1/{1 +. ~ ~(A[1 + 10g(~+j)]/pt)} 
~.:r J=1 

()O • i 
1/{1 + ~(A I Pt)~ ]r(1 + log(~+j»} 

i=1 j=1 
o for any A > O. 

Hence, with probability 1, eventually the system is 
in soo' that is, the average response time is 
infin~te. This conclusion is true no matter how 
fast the foreground process is. 

This instability can be qualitatively 
attributed to the fact that if the system degrades 
a little then the probability that it will degrade 
even more increases. 

In the following two subsections we propose 
two methods of avoiding such unstable behavior. 
Both techniques involve dynamically changing the 
priority of the background process relative to the 
foreground process. The first approach, called 
deterministic control, makes the background process 
a higher priority process whenever some 
parameter of the system exceeds a preset value. In 
the second approach, called stochastic control, at 
any given time the background process will preempt 
the foreground process with some probability. 

2.2. DElERHIMISTIC OORrROL: In this section, two 
deterministic policies for scheduling the 
background process are investigated along with 
their analytical models and performance results. 

613 

The two analytical models yield results that agree 
very well with the predictions of the simulation 
experiments. The service time for the background' 
process is assumed to be a constant while the 
service time of the kth request since the last 
upgrade is assumed to be equal to: 

x(k) = {l + log(~+k)} I Pf 

POLICY I: In the first policy, the background 
process is started whenever M requests are served 
by the foreground process since the last upgrade of 
the data-structure. Hence, assuming constant 
service time for the background process is 
justified. 

The system in this case can be modeled by an 
M/G/l system. The effect of the delay caused by 
the background. process is' t8'keIJ, into consideration 

by extending the service of the Mth customer since 
the last upgrade to include the time for upgrading 
the data structure and is equal to: 

X(M) = [{I + 10g(N+M-l)} I Pf] + 1 I Pb 

The arrival rate ot the M/G/l queue is ~, the 
average arrival rate ot requests as before, but the 
queue utilization combines the foreground and the 
background utilizations and is equal to: 

M-1 
b = (A I M) * [{~[1 + 10g(N+k)] I Pf + (1 I Pb)}] 
1 k=O 

The average foreground waiting time is 
approximately equal to: 

where E[·] denotes the expectation and 
M-2 

(lIM) * (I:( [l 
k=O 

2 2 
+ 10g(N+k)] I Pf) 

+ [(1 + 10g(N+M-l» 
1. 

Pf + 1 I Pb1 } 
The analysis can be used to determine the 

value of M that minimizes the average waiting time 
and the value of M after which the system becomes 
unstable. It is found by simulation that these 
values are quite accurate. The latter value could 
be obtained by finding the smallest value of M such 
that: 

~2.1 

i. e. , 

Figure 3 shows an example of how the average 
waiting time of the client's request is affected by 
the number of requests M that are processed before 
an update can be performed. For small values of M, 
the average waiting time decreases as M increases 
because of the large overhead in running the 
background process frequently and the accumulation 
of client requests during this data-structure 
update. The average waiting time reaches a minimum 
when M equal to 3 in this example and then 
inareases as M· increases as a result of the 
increase in system ut.ilization and increase in the 
second ~ome,nt qt the tiervicc tiTI'e. 



36 

30 

A - 0.2 

1-1.,- 0.3 

11,- 0.8 

N - 1 

Figure 3. Performance of Polley I 

POLlCY II: In the second policy, the background 
process is run and is completed approximately every 
T seconds to update the data-structure. No 
preempt~on is permitted since it is costly in 
practical systems. The period T represents the 
time between the start of two consecutive updates 
performed by the background process. However, the 
actual period can be either equal to T if the cpu 
is idle (no foreground requests) or slightly 
different from T if the cpu is busy when it is time 
to run the background process. A decision is made 
whether to switch to the background process or 
handle one more client request depending on the 
arrival time of the request, on its service time 
which is known before hand, and on the time 
rema~n~ng in the current period of length T. In 
the period (T-1.0/Pb) devoted to foreground 
requests, the system can serve a maximum of n 
customers such that 

n-l 
i~[l + 10g2(N+i))/flf S. T_ - l/flb 

Consider p(i) to be the probability that i requests 
will arrive and will be served in period T that 
starts when the background process is run (ignoring 
any old requests). Assuming poisson arrivals, the 
values of p(i) can be approximated by the following 
equations: 

p(i) = [(AT)i/il)e-AT , for i < n; 

p{i) = r[(AT)i/i!)e- AT , for i L. n. 
i=n 

·The last equation assumes that that if more than n 
customers have arrivea, the number of customers 
that are served is n. It should be clear that 
deciding if a request has been processed by the 
foreground process does not depend only on the 

614 

number of arrivals and total time allotted for 
service in one period, but also on the detailed 
pattern of previous arrival times and service times 
in the underlying period and its predecessor 
periods as well. Hence, the above equations are an 
approximation of the complex real model. The mean 
number of customers ~ that are served every period 
T can be computed by the formula: 

n 

~ = k~P(k) 
The average utilization of the cpu is equal to: 

n i-I 
~ = D/~] .LP(iHl) 1.0+10g2(k+N) 1/flf} + 1.0/ (fIbT). 

1.=1 k=O 
The first term of the above equatio~ rep:esents the 
fraction of time in which the foreground requests 
are served and the second term represents the 
fraction of the time in which the background 
process is run. The above system can be mode1ea by 
ap M/G/l queue with adjusted rates. The average 
waiting time for the foreground requests are equal 
to the following: 

The average waiting time formula for the. 
second scheduling policy is computed for Pf = 0.8, ~ 
= 0.3, and A = 0.2 and several values of ~ and the 
results are shown in Figure 4. If T is very small, 
the system is unstable. Then, as T increases the 
average waiting time decreases because client 
requests have a larger probability of being served. 
This decrease continues until a minimum is reached 
(at T = 10.0 in this example). After this point, 
any increase in T will increase the average wa~t~ng 
time because of increasing system utilization and 
average service times. 

The results of the analyses of the two 
policies agree quite well with the simulation 
predictions. The analytical models are found to be 
useful in providing the parameters for designing 
successful foreground/background operations. 

2.3. SIOQIASTIC OOIlDOL: In the following, we 
cons~der three policies reported in order of their 
effectiveness. We present some approximate 
analytical results along with some simulation 
results. 

Case 1: Here, after every departure, the 
background process is invoked with probability 
(l-p). An approximate expression for the average 
service time is: 

l/p = {1 + E[log(d+N»)}/Pf + (l-p)* avg 
{(A / P )/Pb +(1 - A / P )[A / (A+Pb»)/Pb} avg avg 

The first term is the average service time and the 
second term is the delay due to the background 
process. There are two possibilities when the 
background process is invokea: If the system is 
not in the idle state (the probability of this 
event being A / P in Figure 2 with Mf(d) = Pavg ) , 
then the delay is thgvpu11 background serVLce time. 
If the system is in the idle state (probability 
equal to 1 - A / P ), then the delay is only the avg 



120 

110 

100 

90 

80 

AVfIW3E. 
WArrtlG 

TIME 70 

(SECS.)i
60 

50 

40 

30 

20 

10 

A - 0.2 

lib - 0.3 

II, - 0.8 

N - 1 

Figure 4. Performance of. Policy II 

residual time seen by the next arrival, i.e., [~ / (A 
+ Pb)] /~b' 

Table I shows the computed value of p which 
minimizes the average service time and the 
corresponding value found using simulation for some 
~rbitrarily selected values of A, Pf' and ~b' N = 1 
~n all the cases. The approximation ranges from 
medium to goOd. 

Case 2: As in case 1, the background process is 
invoked to do a complete clean-up operation with 
probability (l-p') after every departure. In 
addition, the background process is allowed to 
perform a partial clean-up during idle periods of 
the foreground process, i.e., it will upgrade the 
dat~ ~tructure as much as possible during the idle 
per~od. The value of p' which minimizes the 
average service time should be greater than that in 
Case 1. An approximate result can be obtained by 
computing the value of p' from the value of p for 
Case 1. 

p = effective prob{do not clean up after 
a departure} 

prob{do not clean up in Case 1 I 
decide to clean up in Case 2} 

~ prob{decide to clean up in Case 2} 

+ prob{do not clean up in Case 1 
decide not to clean up in Case 2} 

* prob{decide not to clean up in Case 2} 

where Po prob{foreground process is idle} 

::l-A/p. . avg 

Hence, p' ~ p/{1 - (1 - A / Pavg ) Pb/(A + Pb)}' 

615 

TABLE I 

CASE I CASE \I CASE III 

predicted obseIved Wmin predicted observed Wmi1 observed Wmi1 

P' P' P' 

02 0.3 0.8 0.5 0.49 13.41 0.61 0.6 10.98 0.83 8.3 

02 0.5 1.1 0.17 025 3.75 0.3 0.7 2.80 0.75 2.46 

7.0 8.0 26.0 0.62 0.60 0.92 0.67 0.62 0.85 0.88 0.52 

02 0.5 0.5 0.03 0.00 13.94 0.04 0.03 13.93 0.05 13.61 

0.2 025 1.6 0.73 o.n 4.80 1.0 0.97 1.75 0.995 1.59 

P, P, PO: Probabilities whicfl minimize the average service ~me 

Wmin : Waiting ~me corresponding 10 the tabulated values of P, P', PO, respectively 

, . :able I shows the computed value of p' which 
m~~~m~z~s l/favg and the corresponding value found 
us~ng s~mulatlon for the same set of values of A 11 
11 'C' ' rb' I'f as, ~n ase 1., Aga~n, N = 1. This is a very 
approx~mate calculat~on, and hence the agreement is 
worse than that in Case 1. 

Case 3: In Cases 1 and 2, the decision to perform 
a complete clean-up is independen~ of the 
degradation level. Here, after every departure,
the background process is invokad to do a complete 
clean-up with probability (l-p" ), where d is the 
value of the degradation level. As in case 2, the 
background process is allowed to perform partial 
clean-ups during idle periods of the foreground 
process. The analysis of this case is complicated 
by the dependence of 1/~ on p" as well as on d. 
One possibility is to n~@ an estimate of the 
average value of d. However, this double 
approximation renders a poor estimate. 
Nevertheless, we intuitively expect that the value 
of p" which minimizes l/p should be more than 
the corresponding ones g¥g p and p' for the same 
~alues of A, Pb' Pf' and N. As shown in Table I, this 
~s confirmed by simulation for the case where a 
complete clean-up is done with probability 
(l-p" d) • 

A simulation study of these three cases 
appears in Figure 5. As can be seen, Case 3 yields 
the best results, i.e., the minimum average waiting 
time. Hence, we have adopted this strategy in the 
control of the relative priorities of the 
toreground and background processes in the 
experimental evaluation discussed in Section III. 

llI. Ali' DPU11Il!lIrAL INAWA'IIOII 
OF COBC01HlEIIIT Ml1ID!IWIIICE 

In Section 3.1, a directory server for a 
hierarchical file system is presented to illustrate 
the foreground/background methodology in practice. 
The performance of an actual implementation of this 
system is presented in Section 3.2. 

3.1 A DIRE~YSERYER:' The 
directory server can do are 
a new file, and to lookup, 
entry for existing files. 
UNIX-like path names, e.g., 

operations that the 
to create an entry for 

update or delete the 
Files are identified by 
/usr/xyz/filel. There 



4B A. - 0.2 
• CASE I 

~b - 0.3 
o CASE II 

~, - O.B 
x CASElli 

N - 1 

42 

36 

A~30 
TIME 

(SEC.) 

1 
24 

lB 

12 

0.0 0.1 0.2 0.3 0.4 0.5 .0.6 1.0 

P. p'. p. - PROBABIUTY 

Figure 5. Comparison of Case I, " and .111 Using Simulation. 

are two types of files, namely, directory and 
nondirectory files. 

.-·The data structure is a multiway tree in which 
the parent 'points to .the first child and each child 
points to the next child. S1nce it is stored on 
secondary storage, performance can be improved by 
clustering the children of a node into as few pages 
as possible. In our case, the size of each entry 
is about ~O bytes, while each disk page consists of 
512 bytes. Hence, six entries can reside in one 
page. The data structure diagram is shown in 
Figure 6 and the PASCAL declaration for the data 
structure is as follows: 

const MaxEntriesPerPage 6; 

type address ~page; 

entry = remrd 
status: (empty,occupied,deleted); 
info: • 
case type: 

end; 

(directory,nondirectory) of 
directory: (FirstChild: address); 
nondirectory: () 

page remrd 
PreviousSibling,NextSibling: address; 
table: array [1 •. MaxEntriesPer~age] 

of entry 
end; 

616 

ROOT 

e - empty . 0 - occupied d - deleted 

i-information 

d - directory nd - nondirectory 

Figure 6. Data Structure Diagram for the Directory Server 

Y&r root: page; 

The task of the, foreground 'process is to carry 
out the client's request 'as fast as possible. It 
achieves this as follows: 

(a) For create(a/b/ ••• /j/k;type of file): If the 
file does not ·exist in the tree, and a/b/ •.• /j 
exists and is of type directory, then k is 
added to an empty. slot in the list of children 
of a/b/ ••• /j. The status of the slot is 
changed to /"occupied,". 

(b) For delete(a/b/ •.. /j/k): If the file exists in 
the tree ~nd it is a nondirectory file or there 
are no occupied slots in the list of children 
for the file, then the status of the slot 
containing :the entry for k of children is 
changed to '~eleted" in the list of children 
a/b/ •• • I j. 

(c) For LookUp(a/b/ •.• 1 j/k) or update{a/b/ ••• 1 j/k), 
the information corresponding to k in the list 
of children of a/b/ ••• /j is either checked or 
modified depending on the operation. Pointers 
and status fields are not affected. 

The background process removes slots which are 
marked deleted. In particular, it tries to bring 
the data structure into a state satisfying the 
following assertions: 

(a) No page contains a slot marked :'delete~~'; 

(b) All slots marked :'occupiedl" appear at the left 
most end of the table in each page; 

(c) If a page contains a slot marked empty then it 
is th~l~st page in this ~ist. 



The key procedure used by the foreground 
process is the following search function. It 
accepts a pathname and tries to locate it in the 
tree structure. 

fuoction sear ch (root.: page; s: pa th name) 
returns found: boolean X depth: integer X.p: page; 

Precondition: 

root <> nil; 

Postcon<l.ition: 

1) p is lockeu; all other pages locked by 
the procedure are unlocked; 

2) if the path specified by sexists 
in the tree. then. 

a) found = true 
b) depth = length(s) 
c) p <> nil; the path named by s 

leads to p 

else 

a) found = false 
b) 1 <= depth <= length(s) 
c) the path corresponding' to' the first 

,"depth-1:" names in s leads to the 
parent of p 

d) the path corresponding to the first 
,"depth," names in s does not exist 
in the. tree 

e) p <> nil; p is the last page 
in this list; 

An example of its use is the following pseudocode' 
for "create,": 

create(s,type) => 

found X depth X p:= searches); 
if found thea. 

error - file already exists 
elsif depth < length(s) thea. . 

error - parent does not exist 
else 

{if there is no empty slot 
in p,". table then 

{q:= allocate and initialize a new page; 
lock q; 
add q to the list; 
unlock p; 
p: '" q} 

add entry for the last name in s 
into an empty slot in p," .table, 
say p,;:' .• table [i] ; 

p~.table[i].status:= occupied; 
if type = directory thea. 

{r:= allocate and initialize a new page; 
p;.table[i] .FirstChild:= r} 

} 
unlock p 

The. background process does a 
traversal of the tree structure. 
slot which is marked "deleted;", 

breadth first 
If it· finds a 

it shifts:. 

617 

everything in that chain of siblings to the left, 

deal locating all pages· after the last page which 
contains an empty slot. 

During the scanning phase, the background 
process does not lock any pages. In fact, it even 
ignores the locks of the foreground process. Once 
it finds an empty slot, it enters the cleanup 
phase. It then locks either 2 or 3 pages at a time 
in order to perform the cleanup operation. A 
detailed uescription of the. impl~entatior- cf these 
two processes appears in [CRE 85] • 

Noninterference of the foreground' and the 
background processes is ensured by the following 
rely conditions: 

(a) The foreground process relies on the condition 
that the tree structure formed by considering 
only occupied slots is left unchanged by the 
background process. 

(b) The background process relies on the condition 
that the only actions of the foreground process 
with regard to the status of a slot is to 
change an ,"empty," slot to an ,"occupied:' slot, 
or an :'occupied," slot to a :'deletedr" slot. 

(c) 

(d) 

Absence of deadlocks can be guaranteed provided 
that each process locks pages in' the 
left-to-right order along sibling·chains. 

In order to ensure that some progress is made, 
each process relies on. the other process to 
release a locked page withiu2 fiuite time. l~ 

fact, ~ximum concurrency is possible provided 
that only the absolutely necessary pages are 
locked. 

3.2 IaplEllemation aud IleasurElleDI:s: 

The directory server discussed in Section III was 
implemented in C using UNIX interprocess 
communication pr1m1t1ves. It runs on a dedicated 
3B2 computer [AT&T 84(A)] in a 3Bl-lET local area 
network environment [AT&T 84( B)] • The server 
consists of five processes as shown in Figure 7. 

(a) The ,"request receiver," accepts packets. from the 
ethernet using UNIX 3Bl-lET system calls. The 
packets are forwarded to the ,"foreground 
process," • 

(b) The ,"foreground process," executes the client's 
request by using UNIX file access and· lock. 
control tacilities in order to search/update 
the tree strucL~rc. ![ it needs to &llccate a 
page then it sends. a request to the :'file space 
manager," which, in turn, sends back the record 
number of a free page in the file containing 
the tree structure. The foreground process 
enqueues a response for the :'request 
transmitter," . 

(c) The ,"response transmitter," sends a packet to 
the client via the ethernet. 

(d) The ,"background. process," removes slots which 
are marked ,"deleted,". If any page becomes free 
then it informs the ,"f ile space manager,"·. 



LNIX 
38NET 
Interface 

+ 

L.ockControl 

Figure 7. Structure of the Directory Server 

l.ocaI 
Copy of 
Directory 

Figure 8. Structure of Clients 

(e) The I"file space manager:' keeps a list 
file pages. It extends the size of 
only when the free list is empty and a 
must be allocated. 

of free 
the file 
new page 

The experiment was 
number of clients on 
computers. Each client 
as shown in ~"igure 8. 

conducted using a varyiFg 
a varying number of 3B2 

consists of three processes 

(a) The "request trnnssitter," is similar to the 
"response transmitter." in Figure 7. 

(b) The :'response recei verI" accept s pa cket s from 
the server. When the client generates a 
request it timestamps it. This timestamp is 
sent back with the response by the server. The 
tresponse recei vert can then compute the total 
time it has taken to process the request. This 
approach eliminates the need for a global 
clock. 

(c) The ,"request generator," repeatedly executes the 
following code: 

repeat 

generate a request 

update the local copy of the directory 

sleep for a period generated randomly using 
exponential distribution with mean (~) 

forever; 

618 

:rypeofR~ 

(1-~_q)/21 ~ 
Create Delete I..ookt¢Jpdale ______ 1 _______ 

Fie Exists? 

/~ 
GeneraIion of Path Name 
for 8trJ Randomly 
Selected ExIsting FDe 

GeneraIion of Path Name 
for a Nonexisting FUe In 
"a Randomly Selected Olrectory 

FIgUre 9. Request Generator Program 

It generates a request in two steps (see Figure 
9). At first it determines the type of the 
request. It is :.'LookUp/update;' with 
probability q, ~create~ with prcbability 
(l-q)/2, and ."delete," with probability (l-q)/2. 
(If the probability .that a request is ,"create ... " 
is not the same as the probability that it is 
,:'delete~~', then in the steady state either the 
directory will be empty or infinite. The 
steady state size of the directory, when the 
two probabilities are the same, is fixed by 
generating N ,"create;' requests initially.) 

Once the type of the request has been 
determined, the next step is to generate the 
full path name for either an existing file or a 
nonexisting file. This is done by consulting" 
the local copy of the directory. 

Thus, the parameters of the experiment are: 

~ --> arrival rate 

q --> LookUp/update probability 

N --> steady state size of the directory 

Figure 10 shows the results of the experiment. It 
also shows the wtasured response time fer a server 
having no maintenance processes, but incorporating 
self-reorganizing data structures. Specifically, 
(a) during a search operation for the ,"create," 
request it keeps track or the first page containing 
an available slot, and (b) during a delete 
operation, it marks the slot as I"deleted:' and 
deallocates the page if it does not contain any 
"occupied," slots. 

From Figure 10, we observe that 
self-reorganization has a significantly better 
performance than the implementation using a 
separate maintenance process. This is partly due 
to the system overhead in locking/unlocking pages 
and partly d~e to the contention with the 
background process. Since the code for the 
concurrent foreground/background processes is 
usually more complex than that tor 
self-reorganizati0n, caref~l &t&dy is required to 
determine situations where separate maintenance 
processes would be useful. 

We have performed a series of experiments in 



N-SOO 

q-O.8 

2 

0.1 0.2 

Separate 
Maintenance 
Process 

0.3 0.4 

t 
Se 1f -reorganiza t ion 

0.5 0.6 

----~. A (1/sec) 

Agure 10. Experimental Results 

order to compare the performance of stochastic 
control (a variant of case 2), deterministic 
control (policy I), and self-reorganization 
maintenance strategies. Because of time 
constraints, we were not able to include these 
experiments in this paper but they will reported in 
a forthcoming paper. The new results indicate that 
deterministic control has the best average case 
performance while stochastic control has the best 
worst case performance and the least variance among 
these three strategies. The performance of 
stochastic control can be improved significantly by 
using efficient synchronization primitives or 
coarser grained atomic actions. In general, 
concurrent foreground/background maintenance 
processes are competitive for real-time 
applications. 

D. SDlIIU.Y 

In this paper we have shown that the use of 
low priority maintenance processes for maintaining 
degradable data structures can result in unstable 
systems. This can be avoided by dynamically 
altering the relative priorities of the foreground 
and background processes. We have analyzed two 
control strategies for this purpose, namely. 
stochastic and deterministic policies. We have 
also presented the experimental evaluation of the 
performance of a concurrent directory server for a 
UNIX local area network enviromnent and compared it 
with a server utilizing ;"on-the-tly~ maintenance. 

Some possible research areas include (1) 
refining the performance analysis of degradable 
systems, and extending it to cases where several 
foreground processes are active simultaneously, and 
(2) performing a comparative analysis of concurrent 
maintenance processes as opposed to the use of 
self-reorganizing data structures. 

[AT&T 84(A)] AT&T 3B2/300 Computer Owner/Operator 
Manual, AT&T Technologies, Inc., Oct. 1984. 

[AT&T 84(B)] AT&T 3B2/300 Computer AT&T 3BNET 
Manual, AT&T Technologies, Inc., Oct. 1~84. 

619 

['hAS 85(A)] F.B. Bastani, S.S. Iyengar, and 1.L. 
Yen, 1"Concurrent maintenance of multilevel data 
structures n " Tech. ~ UH-CS-b5-3, Dept. 
Compo Sc., univ. houston - univ. i'ark, Jan. 
1 ~85. 

[BAS e5(B)] F.B. Bastani, I.L. Yen, A. Moitra, 
and S. S. Iyengar, :'Impact of parallel 
processing on software quality,." Tech. Rep. 
UH-CS-b5-5, Dept. Compo Sc., Univ. Houston
Univ. Park, Apr. 1~85. 

[BEN 84] M. Ben-Ari, ,"Algorithms for on-the-fly 
garbage collection,,~' ACM Trans. Prog. Langs. 
and~, Vol. 6, No.3, pp. 333-344, Jul. 
1 !:I84. 

[CH~ 85] I.R. Chen, A Distributed Directory 
Server in .!!. UNIX Network Enviromnent, M. S. 
Thesis, Dept. Compo Sc., Univ. Houston 
Univ. Park, July 1985. 

[COU 85] P.-J. Courtois, ,"On the time and space 
decomposition of complex structures,," Comm. 
ACM, Vol. 28, No.6. June l!:1b5. pp. ~~0-6v3. 

{lJlJ I' b] E.w. lJijkstra, n .!!h, ~'On-the-fly 

garbage collection: An exercise in 
cooperation,," Comm. ACM, Vol. 21, No. 11, pp. 
!:I66-n~, Nov. 1 ~7b. 

[FUR 84] D. G. Furchtgott, and J. F. Meyer, tA, 
performability solution method for degradable 
nonrepairable systems, tOo IEEE Trans. Comput., 
Vol. C-33 , No.6, June 1984, pp. )50-554. 

[HIC 84] T. Hickey and J. 
analysis of on-the-fly 
Comm. ACM, Vol. 27, No. 
Nov. 1 !:I84. 

Cohen, 
garbage 
11, pp. 

."Performance 
co llection,," 

1143-1154. 

[JON 83] C.B. Jones, ;"Tentative steps towards a 

development method for interfering programs,," 
ACM Trans, Prog. Langs. and ~, Vol. 5, 
No.4, pp. 596-619, Oct. 1~b3. 

L LAM b4j B. W. Lampson, .':Hints tor 
system cesign,:- IEEE Softw., Vol, 
pp. 11-28, Jan. 1 !:I84 • 

COlUputer 
l, No. l, 

[MAN 84] U. Manber, :'Concurrent maintenance of 
binary search trees,," IEEE Trans. Softw. ~, 
Vol. SE-IO, No.6, pp. 777-7b4, Nov. 1984. 

[MOl 85] A. Moitra, S. Iyengar, F. Bastani, 
and 1. Yen, t'.'Multilevel data structures: 
Models and performance,:' Tech. ~ 85-67 !:I, 
Dept. Compo Sc., Cornell Univ., May 1985. 

[NEE 82] R.M. Needham, and A.J. Herbert, The 
Cambridge Distributed Computing System. 
Addison-wesley Pub. Co., 1982. 

[Y~N 85] I-L. Yen, The Role of Parallel 
Processing in Appl~tion Programs, M.S. 
Thesis, Dept. Compo Sc., Univ. Houston 
Univ. Park, May 1~b5. 



Construction Through Decomposition: 
A Divide-And-Conquer Algorithm for the N-Queens Problem 

(Extended Abstract) 

Bruce Abramson 1 and Mordechai M. Yung2 

Department of Computer Science 
Columbia University 

New York, N.Y. 10027 

Abstract 
Configuring N mutually non-attacking queens on an N-bX

N chessboard is a classical problem that was first posed 
over a century ago. Over the past few. decades, this 
problem has become important to computer scientists by 
serving as the standard example of a globally constrainted 
problem which is solvable using backtracking search 
methods. A related problem, placing the N queens on a 
toroidal board, has been discussed in detail by Polya and 
Chandra. Their work focused on characterizing the solvable 
cases and finding solutions which arrange the queens in a 
regular pattern. 

This paper describes a new divide-and-conquer algorithm 
that solves both problems, investigates the relationship 
between them, and develops a partial ordering for the 
related enumeration problem. The connection between the 
solutions of the two problems illustrates an important, but 
frequently overlooked, method of algorithm design: detailed 
combinatorial analysis of an overconstrained variation can 
reveal solutions to the corresponding original problem. 

1 Current address: Computer Science Department, University of 
California at Los Angeles. Supported in part by NSF grant 
IST-8418879 

2supported in part by NSF grant MCS-8303139 and an I.B.M. 
fellowship 

CH2345-7/86/0000/0620$01.00 © 1986 IEEE 
620 

The problem of the eight queens is a well known 
example of the use of trial-and-error methods and 
of backtracking algorithms. It was investigated by 
C.F. Gauss in 1850, but he did not completely 
solve it. This should not surprise anyone. After 
all, the characteristic property of these problems is 
that they defy analytic solution. Instead, they 
require large amounts of exacting labor, patience 
and accuracy. Such algorithms have therefore 
gained relevance almost exclusively through the 
automatic computer, which possesses these 
properties to a much higher degree than people, 
even geniuses, do. 

-Nicklaus Wirth, Algorithms + Data Structures = Programs. 
p.143. 

1. Introduction 
The preceding quote typifies the prevalent view of the N

queens problem. First posed by Max Bezzel in 1848, the 
problem of placing eight queens on an eight-by-eight 
chessboard in mutually nonattacking positions was solved in 
1850 by Franz Nauck, who used trial-and-error methods to 
find 12 solutions. In 1874, S. Gunther proved Nauck's list 
exhaustive and J.W.L. Glaisher generalized the problem to 
placing N queens on an N-by-N board. Gunther and 
Glaisher proposed the following solution: Represent the 
board as a symbolic N-by-N matrix. Certain· easily 
recognizable terms in this matrix' determinant indicate 
solutions to the N-queens problem. This approach, although 
helpful in the 8-by-8 case, is actually a brute force search on 
the N! terms in the determinant which looks for all solutions. 
In the early 1950's, A.M. Yaglom and I.M. Yaglom [25] found 
a pair of patterns which yield one solution for each N. A 
sketch of their solution, which remains relatively unknown, 
can be found in the appendix. Their suggestion cannot be 
generalized to give more than a unique solution, and is not 
based on a general algorithmic technique. For more details 
of the problem's early history see [2] [8] [17]. 

The N-queens problem has three variants: finding one 
solution, finding a family of solutions, and finding all 
solutions. Yaglom and Yaglom's patterns solve the first 
problem while Gunther and Glaisher's exhaustive search 
solves the third. The inherent difficulty of the N-queens 



variants is generally accepted; recent work has followed one 

of two basic approaches. The first accepts the problem as 
intractable and uses it as an example of trial-and-error 

methods like backtracking, while the second modifies the 
problem to one that does not defy combinatorial analysis. 

Examples of the former approach abound. Various fields, 
including algorithm design [12] [24] [6], program 

development [5] [23], and artificial intelligence 

[19] [10] [11] have relied on the N-queens problem to 

illustrate issues related to systematic heuristic search. In 

Artificial Intelligence the problem is one of the classic 

constraint satisfaction problems. Another such A.1. problem, 
the labeling of polyhedral scenes [22], has recently been 

proven to be NP-Complete [14]. As for the latter approach, 
analytically solvable variations of the N-queens problem can 

be grouped into two broad categories: those that reduce 
constraints [21] and those that increase them [20] [4]. 

This paper addresses the "family of solutions" variant. 
The method used in constructing this family involves the 

divide-and-conquer technique which suggests splitting the 
input into distinct subsets. This splitting property generally 

appears to be inapplicable when global constraints are 
involved. The basis of the solution is a combinatorially 

analyzable related problem, placing N queens on a toroidal 
board. Previous work on this variation focused on 

classifying the solvable cases [20] and finding regular 

solutions, setups that are obtained by placing queens on the 
board in a regular pattern [4]. The family of regular solutions 
solves the planar problem for a large class of N, but leaves 

almost as many board sizes unsolved. A non-regular family 
of solutions to the toroidal problem is developed here. This 

non-regular family is then modified to yield a general family 
of solutions to the N-queens problem for almost all N. This 

solution clarifies the relation between the toroidal and planar 
cases. 

Sections 2 and 3 consist mainly of background material: 

section 2 discusses the N-queens problem as an example of 
backtracking techniques and constraint satisfaction 

problems, while section 3 introduces and outlines previous 
work done on the combinatorialy solvable toroidal problem. 

Section 4 then introduces the non-regular family of solutions 

to the toroidal problem, which leads to the general solution to 
the planar problem in section 5. Some conclusions and 
directions for future work are discussed in section 6. Along 
the way, some light is shed on the enumeration problem: a 
lower bound and a partial ordering on the number of toroidal 
solutions are shown. 

621 

2. Solutions Based on Search Techniques 
The N-queens problem is an example of constraint 

satisfaction, a family of problems that involves assigning 
values to variables subject to a set of binary constraints 

[7] [19]. The standard solution method applied to these 

problems is backtracking search [12], a worst case 

exponential method which is usually supported by heuristics 

[10] [19] [15]. For a recent complexity analysis of 

backtracking search and general heuristic techniques see 
[3]. The popularity of the N-queens and other chessboard 

puzzles can be attributed to two factors: the long history of 
the chessboard and the relative simplicity with which 

problems related to it can be stated. In the N-queens 
problem, rows can be regarded as variables and columns as 

values. Given the board size, N,' as input, the 

<variable,value> pairs can be expressed as a permutation P 
of 0 to N-1, where P(i) is the column of the queen in the ith 
row. This representation alone is enough to guarantee that 

no two queens will be in the same row or column, leaving 
only the diagonal constraints to be verified. Since the 

diagonals going from top left to bottom right can be 

characterized by (i-P(i))=constant, and those from top right to 

bottom left by (i+P(i))=constant, P is a solution if and only if 
for i :;t: j, (i-P(i)):;t: (j-PG)), and (i+P(i)):;t: (j+P(j)). 

The general constraint satisfaction problem has been 

discussed in detail in [10] [19]. We have shown that the 
general problem (over the integers) is NP-complete [1]. 
Most problems of interest, however, are not random 
instances of general constraint satisfaction, but special, 

structured cases of it, in which the constraints follow specific 

patterns. Many of them are rather difficult, including 
relatives of several NP-complete problems [9] and various 
hard problems in computer vision and artificial intelligence 

[11] [10] [14]. The N-queens, for example, can be viewed 

as finding an independent set of a special graph. Simply 

view the board as a graph with a vertex for each square and 

an edge between any two vertices representing squares in 

the same row, column or diagonal. A solution to the N

queens problem is a set of N squares sharing neither row, 

column, nor diagonal, or a set of N independent vertices. 

3. The Toroidal Problem and Regular Solutions 
Several interesting variations to the N-queens problem 

have been proposed. One that has attracted a good deal of 
attention is the N-superqueens problem. A superqueen, 
introduced in [20], is a queen which upon reaching an edge 
of the board can wrap around to the opposite edge, in effect 

treating the board as a torus. The superqueen places 

additional constraints on the board by connecting previously 
separate diagonals. The resulting (toroidal) board has N 



rows, N columns, and two sets of N diagonals (characterized 
by {(row-column)=constant mod N} and 
{(row+column)=constant mod N}), each containing N 
squares. This symmetry makes the N-superqueens problem 
easier to analyze combinatorially than the N-queens. Polya 
[20] showed that an N-superqueens solution exists if and 

only if N is not divisible by 2 or 3. Since the N-superqueens 
is an overconstrained variation, any N-superqueens solution 
solves the N-queens as well. 

Chandra [4] developed the theory of independent 
permutations which he used to characterize a family of 
solutions to the N-superqueens problem, the regular 

solutions. A regular solution is one in which the permutation 
P can be characterized by P(i)=Ai+B (mod N). The 
permutation P(i)=2i, for example, starts with a superqueen in 
the upper left hand corner and proceeds around the board 
placing queens one row down and two columns across. This 
solution is called the knight-walk. Chandra also built on the 
result of [20] by showing that for any N, if the N-superqueens 
problem is solvable and M is the smallest factor of N (M > 1), 
a family of regular solutions exists, and is characterized by 
P(i)=Ai, A=2,4, ... 2k, where k= [log2M] -1. Since P(O)=O, each 
member of this family has a superqueen in the upper left 
hand corner. Only regular solutions exist for N < 13. For 
N=13, however, the non-regular permutation P=(O 3 8 11 5 1 
10 4 7 12 2 9 6) is a solution as well. Some regular 
extensions of the toroidal problem are discussed in [4] [13]. 

As an immediate extension of their existence for any 
solvable N-superqueens problem, the family of regular 
solutions described above solves the N-queens problem for 
2/3 of the odd numbers. Furthermore, removing the top row 
and leftmost column from the N-by-N board deletes only the 
queen in the top left hand corner square. This leaves an 
(N-1)-by-(N-1) board with (N-1) mutually nonattacking 
queens, solving the (N-1)-queens problem, and thereby 
constructing solutions for 2/3 of the even numbers. No other 
simple board modifications are possible, since removal of 
any other row and column would either delete two queens, 
shift the diagonals, or both. Regular solutions and upper left 
hand corner-removal, then, constitute a solution scheme for 
2/3 of all N. 

4. The Decomposition Solution to the 
Superqueens Problem 
This section shows how to construct a family of non

regular solutions to the N-superqueens problem, the 
decomposition solutions. The main idea is to use the 
factorization of N to apply a divide-and-conquer approach to 
the problem. Basically, if N can be factored as AB where 
both A and B are solvable, the N-superqueens problem can 
be reduced to solving A appropriately chosen copies of the 
B-superqueens problem. 

622 

Definition: Let N=AB, where there are solutions to the A
superqueens and B-superqueens problems. A 
decomposition solution breaks the N-by-N board into an A
by-A grid of B-by-B tiles. Tiles corresponding to an A
superqueens solution are filled with a B-superqueens 
solution; the same B-superqueens solution is used 
throughout. 

In order to simplify further discussions, some additional 
definitions are necessary. 

Definition: Let LR(N) refer to the set of diagonals running 
from top left to bottom right on an N-by-N board. Let OLR(N) 
refer to those members of LR(N) which are occupied by a 
queen. Similarly, let WLR(N) refer to the set of N wrapped 
diagonals on a planar representation of an N-by-N toroidal 
board running from top left to bottom right. Let OWLR(N) 
refer to those members of WLR(N) which are occupied by a 
superqueen. Let the diagonals from top right to bottom left 
be named correspondingly (that is, RL(N), ORL(N), WRL(N), 
and OWRL(N) ). 

As an illustration of the manner in which a decomposition 
solution solves the problem, look at the example in figure 1, 
where N=35, A=7, and B=5. The knight-walk is used as both 
the 5 and 7 -superqueens solutions. A board set up 
according to the definition of decomposition clearly contains 
35 superqueens, with no two in anyone row or column. 
That no diagonal contains two superqueens, however, is a 
bit less obvious. The trick here is to realize that the 
diagonals that result from tiling a plane with 5-by-5 boards 
are equivalent to those resulting from placing a 5-by-5 board 
on a torus. As shown in the diagram, a diagonal in WLR(35) 
passes alternately through members of LR(5) of lengths 2 
and 3. These are exactly the LR(5) diagonals which 
combine to form a single element of WLR(5). The use of a 
5-superqueens solution guarantees that only one of these 
LR(5) diagonals contains a superqueen. This reduces the 
realm of possible conflicts to superqueens in the same 
position on different boards. Examination of the figure 
reveals that if a member of WLR(35) passes through 
corresponding LR(5) diagonals on two 5-by-5 tiles, the tiles 
lie along the same LR(7) diagonal. The use of a 7-
superqueens solution precludes the possibility of two such 
boards being chosen, and thus no two superqueens can be 
in the same member of WLR(35). Thanks to the symmetry 
of the board, an identical argument can be used for 
WRL(35). 

Theorem 1: A decomposition solution solves the N
superqueens problem. 

In order to discuss the general case, some machinery 
must be developed for referring to individual squares on a 
decomposed board. Each square's location can be specified 



01234 ... . .. 34 
o I@ , 

.~ 
ml'\: 

111 ** 
3 r'\e 

'" 4 " 1'8 

** 

~ 
e 

I@ 
m 

I'\: Ie 
I'\. Ie 

~ 
111 

,11 
[I 

" 
lB 

rB 

~ 
ill 

lB 
I@ 

'" 
Ie 

I@ 
Itt 

~ "Ie 
111 

" '" IS 
I 

~ I@ 
I@ 

113 

'" I@ 
Ie .~ 

'\ 
Ie 

Ie * 
~ Ie ~ 34 Ie 

* 

Figure 1: An example ota Decomposition Solution. N=35, A=7 and 8=5. A diagonal is drawn, 
along with its continuations in both WLR(8) .. and WLR(N) *. 

in two coordinate systems: the N-by-N system and the 8-by-
8 system within the A-by-A grid. In converting between the 
systems, let <iN,jN>= tile <iA,jA> square <is,js>' where 
iN,jN=O to N-1, iA,jA=O to A-1, is,js=O to 8-1. Since 
superqueens solutions are used throughout, all boards must 
be treated as tori, and therefore, all arithmetic is done 
modulo the subscripted number. The relationship between 
the· systems· is simple. Each tile contains 8 rows and 8 
columns. Thus, iN=8iA+is and jN=8jA+jS. In other words, to 
determine the location of a square on the N-by-N board, find 
out which tile it is in, multiply each tile index by 8 to 
determine how many rows or columns preceded it, and add 
the number of rows or columns preceding it in its tile. 
Furthermore, since rows and columns within a tile are 
counted modulo 8, the row following the (8-1)st in any tile is 
the oth row of the following tile. The same is true of columns. 
In the example of figure 1, where N=35, A=7, and 8=5, if 
<iN,jN>=<14,23>, the square in question is tile <2,4> square 
<4,3>. Moving one square to the right, <15,23> is tile <3,4> 
square <0,3>. Two squares correspond if they have the 
same 8 coordinates. In the example of figure 1, <7,4>= tile 
<2,1> square <2,4> and <12,14>= tile <3,3> square <2,4> 

623 

correspond with each other. Using this notation, the proof of 
the theorem becomes a straightforward generalization of the 
case shown in figure 1. 

One implication of theorem 1 is that every ordered split of 
N into its (not necessarily prime) factors corresponds to at 
least one decomposition solution. Given such a split, 
N=f1f2 .• .fk, the first factor plays the role of A, breaking the 
N-by-N board into a grid of (N/f1)-by-(N/f1) tiles. Any solution 
to the f1-superqueens problem can be used to choose tiles. 
The rest of the factors are used recursively to fill the tiles 
specified by the chosen f1-superqueens solution. Ergo, if M 
is a proper divisor ofN, any M-superqueens solution gives 
rise to at least one N-superqueens solution. Since there is 
at least one N-superqueen solution that is not built up from 
any M-superqueen solution, namely the knight-walk, there 
are fewer M-superqueens solutions than N-superqueens 
solutions. This induces a partial order on the number of N
superqueens solutions. 

Corollary 1: If there is a solution to the N-superqueens 
problem, and M is a proper divisor of N, there are fewer M
superqueens solutions than N-superqueens solutions. 



The solution family introduced in this section also reveals 
a lower bound on the number of solutions for a given N. By 
the corrolary, each ordered split of N corresponds to at least 
one decomposition solution. Consider the sequence N={5i}, 

where (i ~ 1). There are 2i-1 different ordered splits of 5i, 

corresponding to the· number of ways to distribute' i 
indistinguishable objects (the 5's) into j distinguishable cells 
(the positions in the ordered split) for j=1 to i, with at least 
one' object in each cell. These ordered splits indicate that 
there are at least2i-1 different solutions. In other words, this 
shows a lower bound of O(Nlogs2). Further exploitation of 
properties of integer sequences and techniques of 
combinatorial enumeration may be .helpful in finding a better 
lower bound for this problem. 

5. A General Solution to the Que.ens Problem 
This section develops a general solution scheme which 

connects the toroidal and planar problems. A simple 
modification of toroidal decomposition yields a family of 
solutions to the previously unsolved planar boards. The key 
to this modification lies in the major difference between the 
knight-walk and decomposition. The knight-walk uses 
individual superqueens as basic blocks. The interplay 
between these blocks severely limits the ways in which the 
solution can be modified. Thus, the knight-walk is of limited 
use in the construction of a general solution. 
Decomposition, on the other hand, relies on pre-solved 
boards as blocks. The size of these· blocks offers a great 
deal of flexibility in terms of modifications to the solution; 
allowing decomposition to serve as the infrastructure of a 
general solution. 

Consider a specific type of decomposition, a D-solution, in 
which the A-superqueens solution contains a superqueen in 
the upper left hand, corner and the B-knight-walk is used. 
The scheme for, constructing a general. N-queens.>solution 
consists of appropriately modifying a D-solution. This 
section can be divided into two parts. The first part shows 
that replacing the· top. leftmost tile ·of a D-solution with a 
smaller tile does not violate any of the problem's constraints. 
The second part proves that such modifications provide 
decomposable N-queens solutions for nearly all remaining 
cases. 

Lemma 1: If there is a solution to N~superqueens and 
N=AB, there is a solution to the B(A-1Fqueens problem. 

Consider a D-solution. A simple removal of the· top row 
and leftmost column from the A-superqueens board 
corresponds to. removing the top B rows and B leftmost· 
columns, from the N-superqueens board: Just as, a solution 
exists for (A-1 )-queens, one exists for (N~B)=B(A-1 )-queens. 

624 

This modification alone is not enough. In order to proceed 
with the discussion, one more definition is needed: 

Definition: For all P S N, call the bottom P rows of the P 
rightmost columns of. an N-by-N board the lower right sub:. 
board of order P. 

The notion of a lower right sub-board is important in' 
showing that replacing the top leftmost tile of aD-solution 
with a smaller tile does not violate any of the· problem's 
constraints. Consider the example of figure 2, which shows 
a 7-by-7 board and its lower right sub-board of order 5. The 
numbers drawn represent the 5 and 7 knight-walks, 
respectively. Note that the first thre'e superqueens placed on 
the 5-by-5 sub-board fall in members of OlR(7). The 
remainder of the 5-superqueens fall in squares containing 7-
superqueens. Thus, OLR(5) is a subset, of OLR(7). A 
similar argument holds in the general case, as well. 

Lemma 2: Given the knight-walk solutions to the B-queens 
and C-queens problems (B-knight-walk and C-knight-walk, 
respectively), C S B, replacingB's lower right sub-board of 
order C with the C-queens solution does not add new 
diagonals to OLR(B). 

Lemma 3: If there are solutions to N-superqueens and C
superqueens, N=AB, and C' S B, then there is a solution to 
the B(A-1 )+C-queensproblem. 

These lemmas enlarge the class of board sizes solved by 
the methods discussed here' to all N=B(A-1 )+C . for some 
A,B,C not divisible by 2 or 3, and C' S B.Clearly, knight-walk . 
and decomposition. are. subsumed by this scheme: For a 
decomposition set C=B, and for a knight-walk· set C=B=1. 
As an informal prootof the validity of the lemmas, note that 
lemma 2 is simply a general extension of the case discussed 
above (figure 2). For lemma 3, consider a D-so'lution. 
Rather than removing the top Brows andJeftmost B columns 
(as was done in lemma 1), remove only, the top'(B.:C) rows 
and leftmost (B-C) columns, and. replace the remainder of 
the top left corner tile with the C-knight-walk. By Lemma 2, 
no diagonal constraints are violated, leaving a solution'to the 
B(A-1 )+C queens problem. This is a general solution. 

Definition: Let N=(A-1 )B+C, where there are solutions to 
the A, B, and C-superqueens problems, and· CS B .. A 
general solution starts with a· D-solution to the AB:. 
superqueens· problem. The top B rows and B· leftmost 
columns of the decomposition are replaced with C rows and 
C columns. The C-knight-walk' is then placed in the newly 
created C-by-C tile in the upper left 'handcorner of the 
board. 



Figure 2: A 7-by-7 board and its lower right subboard of order 5. The knight-walk solutions 
have been drawn in. 

The question remains, for which of the remaining board 
sizes does this general solution work? The following two 
lemmas provide the answer: (almost) all N. In order to find a 
general solution there must first be a D-solution that can be 

··modified:"appropriately. The need .for aD-'soiution, in turn, 
. pOints to"the importance of determining the conditions under 
which A and B exist such that B(A...:1) -< N < BA, and then 

finding an appropriate A and B. 

Lemma 4: Let N be an odd number divisible by 3. If there 
exist odd numbers A and B, A=2 mod 3 and B "# 0 mod 3, 
such that B(A-1) < N < BA, then there exists a solution to the 

N-queensproblem. 

Let N=B(A-1)+C. Then: 
• {B(A-1 )<N<8A} implies {O<C<B}. 

• {A=B=1 mod 2} and {N=1 mod 2} imply 
{8(A-1)=0 mod 2}, and thus {C=1 mod 2}. 

• {A=2 mod 3} and {B "#0 mod 3} imply {B(A-1)"# 
o mod 3}. 

• {8(A-1) "# 0 mod 3} and {N=O mod 3} imply {C "# 
o mod 3}. 

625 

.Inc.other words, if an appropriate D-solutioncan be found, a 
C that meets the requirements of lemma 3 can be found as 
well: odd, not divisible by 3, and no larger than B. 

Lemma 4 characterizes the family of general solutions for 
. a given N. ·In lemma 5, one member of the family is shown to 
be applied to almost all N. This .solution is computable in 
linear time. 

Lemma 5: For oddN divisible by 3; N "# 3,9,15,27,39, 
setting A=5 guarantees the existence of··a B tbat meets the 
specifications of lemma 4. 

The . proof of lemma 5 follows directly from the 
requirements of lemma 4. Acc.ording to these specifications, 
B must be an odd number not divisible by 3, or a member of 
one of two equivalence classes, (i) B=1 mod 6 and (ii) B=5 
mod 6. Let N' be an odd number divisible by 3. Let B1 be 
the largest B such that 4B1 <'N.Since B1 is well defined only 
for N > 3, the case of N=3 is ruled out of consideration. (In 
fact, ,there is' no solution to the 3-queens problem). If N < 
5B1 then B1 is as required by lemma 4 (set C=N-481, and 
A,B, and C are all defined as explained above), so assume 



N > 581• Let 82 be the smallest 8 larger than 8 1, or the 
smallest 8 such that 482 > N. If 81 is in equivalence class (i), 
82=81+4. Otherwise, 81 is in equivalence class (ii), and 
82=81+2. In the first case, 581 < N < 482=4(81+4}, which 
implies 81 S 14. The only numbers which satisfy these 
conditions for 8 1 are 1, 7, and 13. In the second case, 581 < 
N < 482=4(81+2}, which implies 81 S 6. The only number 
which satisfies these conditions for 8 1 is 5. The intervals of 
candidates for N, then, are 581 < N < 482, where 81 is one 
of the aforementioned four numbers. In other words, one of 
the following is true: {5 < N < 20}, {25 < N < 28}, {35 < N < 
44}, or {65 < N < 68}. The only odd numbers divisible by 3 in 
these intervals are 9, 15,27, and 39. 

Although a family of solutions is given by any triple 
(A-1,8,C) meeting the specifications of lemma 3, assigning A 
a value other than 5 does not solve any of the remaining 
cases. Since lemma 4 required that A=2 mod 3, the next 
value that A could be assigned is 11. The minimal non-trivial 
value for 8, however, is 5, (recall 8=1 yields the knight-walk), 
so the smallest board size that A=11 could solve is 50. This 
is larger than the largest unsolved board. As for the hitherto 
unsolved even numbers, the construction described in the 
general solution guarantees the existence of a queen in the 
upper left hand corner. Removing the top row and leftmost 
column gives solutions to all even numbers but 2,8,14,26 
and 38. As far as these few cases are concerned, the N
queens problem is unsolvable if N=2 or 3. Lemmas 1 
through 5 can be summarized as: 

Algorithm Nqueens; 
Begin 
Input (N) ; {The board size} 
Case N of: 

2,3 : Output (No Solution); 

Theorem 2: The general scheme yields a non-empty 
family of solutions to the N-queens problem for all N, N :t: 
2,3,8,9,14,15,26,27,38,39. 

The algorithm in figure 3 gives one member of the general 
solution family for each N. In this algorithm, the number of 
arithmetic operations is constant. If bit operations are 
counted instead, when the input length is n (n=log2N ), the 
arithmetic calculations cost n. In either model, the dominant 
cost is the length of the output. When computing families of 
solutions, notice that decomposition relies on number 
factorization and arranging of ordered factorizations. The 
best well-known algorithm for factorization has an expected 
running time of (exp(~nlogn)} [16], although a recent result 
has reduced the complexity to (exp(plogp)}, where p is the 
length of the largest prime factor of N [18]. The family of 

general solutions for a given N can be found by conSidering 
all O(N2} potential triples <A,8,C>. Thus, any family can be 
computed in time bounded by (N2 n 1+£). 

8,9,14,15,26,27,38,39: Output (Special-solution(N)); {Table lookup} 
Otherwise: Begin {Apply general solution scheme} 

End. 

Even <- false; {Solve for an odd number.} 
If (N is even) then Begin {Add one, solve, then drop the extra corner} 

N <- N+l; 
Even <- true; 

End; 
If (N mod 3 :t: 0) then Board <-Regular-solution(N) 

Or Board<-Decomposition-solution(N); 
Else Begin 

Find B, C s. t. 4B+C=N; {Set A =5, find Band C} 
Board <- general-solution(N,5,B,C); 

End; 
If (Even) Then Board <- Board-minus-corner-queen; (Drop the cornery 
Output(Board); 

End; 

Figure 3: An algorithm that finds one solution to any instance of the N-queens problem. 

626 



6. Conclusions 
This paper investigated and presented new families of 

solutions to two related problems. the N-queens and the N
superqueens. Both are examples of constraint satisfaction 
and both have been extensively studied in the past. The 
exact nature of the relationship between the two problems 
has not been well understood. and the belief that N-queens 
is in fact an intractable problem. best solved by backtracking. 
persists. This paper tries to provide possible resolutions to 
each of these difficulties by using the divide-and-conquer 
approach. A family of non-regular solutions to the N
superqueens problem is shown. These superqueen
decomposition solutions are then combined to form queens 
solutions. This is an example of lifting a result found for a 
special case (toroidal board) to a general case (planar 
board). and raises the question of whether other well 
understood algebraic or combinatorial problems can be used 
to solve their less well understood relatives. 

Some open questions are raised by this work. 
Specifically. can other methods produce different N-queens 
solution families. or give more information about the 
enumeration problem? More generally. can the approach 
used here help solve other problems? We believe that many 
special cases of interesting intractable problems should be 
studied in the same fashion: take a new approach and. 
investigate carefully the special properties of the structure of 
the problem in question. 

Figure 4a: An example of Yagloms' solution for N of the 
form N=6m or N=6m+4. Here N=12. 

627 

Acknowledgements 
We would like to thank Zvi Galil and Richard Korf for their 

interest in our work and for their encouragement. Special 
thanks to Ashok Chandra and Martin Gardner who pointed 
out previous work done on the problem. 

Appendix: The Yagloms' Solution 
Yaglom and Yaglom described a solution to the N-queens 

problem for all N in [25]. They concentrated on giving one 
solution for even board sizes without placing queens in the 
main diagonal. That vacancy allowed the addition of a row. 
column. and queen to solve odd sized boards. For even N 
of the form N=6m or N=6m+4. the setup they describe is 
shown in figure 4a. It is basically the knight-walk of this 
paper (more accurately. the knight-walk minus the queen in 
the upper left hand corner). For board sizes of the form 
N=6m+2. however, a totally different setup is needed. They 
exhibited a pattern which works for these boards. 
Proceeding rightward from the leftmost column. placing 
successive queens in the diagonals specified by the 
following pattern (using the diagonal numbering scheme 
shown in figure 4b). solves the problem: 
2n-4.n+ 1.n+2.n+3 •...• 3n/2-3.n/2+2.3n/2-1.n/2+ 1.3n/2-2. 
n/2+3.n/2+4.n/2+5 •...• n-1,4 
The example of N=14 is shown in figure 4b. 

/ ~ 'i' 
2n-1 ./ 7 'i' 

,./ 2n-2 'i' 
'i' 

'i' 
'i' 

'ij' 

fi' 
"i' 

'i' 

'i' / 
/ V 'i' 

n+ 1./ V V 'i' [7 
n -(.1. 2./ 1./ 

'i' 

V 
V 

Figure 4b: An example of Yagloms' solution for N of the 
form N=6m+2. Here N=14. The diagonal numbers have 
been drawn in. 



References 

1. Abramson, B. and Yung, M.M. Construction Through 
Decomposition: A Linear Time Algorithm for the N-queens 
Problem. Columbia University, . 

2. Ball, W.W.R. Mathematical Recreations and Essays. 
Macmillan, New York, 1973. 

3. Carter, l., l. Stockmeyer and M. Wegman. The 
Complexity of Backtrack Searches. Symposium on Theory 
of Computing, ACM, May, 1985, pp. 449-457. 

4. Chandra, A. K. "Independent Permutations, as Related 
to a Problem of Moser and a Theorem of Polya". Journal of 
Combinatorial Theory 16,1 (January 1974), 111-120. 

5. Dijkstra, E.W. Notes on Structured Programming. In 
Structured Programming, Dahl, O.J., Dijkstra, E.W., Hoare, 
C.A.A., Ed., Academic Press, New York, 1972, pp. 1-82. 

6. Floyd, R.W. "Nondeterministic Algorithms". JACM 14,14 
( 1967), 636-644. 

7. Freuder, E.C. "A Sufficient Condition for Backtrack
Bounded Search". Journal of the Association for Computing 
Machinery 32,4 (October 1985), 755-761. 

8. Gardner, M.. The Unexpected Hanging and Other 
Mathematical Diversions. Simon and Schuster, New York, 
1969. 

9. Garey, M.R. and Johnson, D.S .. Computers and 
Intractability. W.H. Freeman, New York, 1979. 

10. Gaschnig, J. Performance Measurement and Analysis 
of Certain Search Algorithms. Ph.D. Th., Carnegie-Mellon 
University, May 1979. 

11. Haralick, Robert M. and Elliot, Gordon l. "Increasing 
Tree Search Efficiency for Constraint Satisfaction Problems". 
Artificial Intelligence 14,3 (October 1980), 263-313. 

12. Horowitz, E. and Sahni, S.. Fundamentals of Computer 
Algorithms. Computer Science Press, Rockville, Md., 1978. 

13. Hwang, F.K. and Lih, Ko-Wei. "Latin Squares and 
Superqueens". Journal of Combinatorial Theory, Series A 
34, 1 (January 1983), 110-114. 

14. Kirousis, l.M. and Papadimitriou C.H, The Complexity 
of Recognizing Polyhedral Scenes. Symposium on 
Foundation of Computer Science, IEEE, October, 1985, pp. 
175-185. 

628 

15. Knuth, D.E. "Estimating the Efficiency of Backtrack 
Programs". Mathematics of Computation 29, 129 (January 
1975),121-136. 

16. Knuth, D.E. The Art of Computer Programming. 
Volume 2: Seminumerical Algorithms. Addison-Wesley, 
Reading, Massachusetts, 1981. 

17. Kraitchik, M .. Mathematical Recreation. W.W. Norton, 
New York, 1942. 

18. H.W. Lenstra, Jr. Factoring Integers with Elliptic 
Curves. Mathematisch Institut, University of Amsterdam, 
1986. 

19. Pearl, J .. Heuristics. Addison-Wesley, Reading, 
Massachusetts, 1984. 

20. Polya, G. Uber die 'doppelt-periodischen' Losungen des 
n-Damen-Problems. In Mathematische Unterhaltungen und 
Spiele, Ahrens, W., Ed., Teubner, Leipzig, 1918, pp. 
364-374. 

21. Robert Wagner and Robert Geist. The Crippled Queen 
Placement Problem. Duke University, January, 1984. 

22. Waltz, D. Understanding Line Drawings in Scenes With 
Shadows. In The Psychology of Computer Vision, Winston, 
P., Ed., McGraw-Hili, New York, 1975, pp. 19-91. 

23. Wirth, N. "Program Development by Stepwise 
Refinement". CACM 14, 4 (April 1971), 221-227. 

24. Wirth, N .. Algorithms + Data Structures = Programs. 
Prentice-Hall, Englewood Cliffs, NJ, 1976. 

25. Yaglom, A.M. and Yaglom I,M .. Challenging 
Mathematical Problems With Elementary Solutions. Holden 
Day, San Francisco, California, 1964. 



TWO FLat ROOTIHG ALGORITHMS 
FOR THE 

MAnHJM CORaJRRmlT FLat PRWLE2! 

Jit Biswas. - David W. Matula •• 

• Department of Computer Science, University of Texas at Austin 
•• Department of Computer Science, Southern Methodist University 

ABSTRACT 

We describe two heuristic flow routing algorithms 
and analyse their conver~nce to the solution of 
the Maximum Concurrent Flow Problem (MCFP) [Ma83], 
[Ma85]. Implementation results demonstrate the 
algorithms to be robust. Both algorithms provide a 
feasible concurrent flow along wi th a bound on the 
maximum concurrent flow. The greedy flow augmen
tation procedure is most efficient but can yield 
suboptimal results. The flow rerouting procedure 
can be shown to produce results within an arbi
trary tolerance of optimality. These flow routing 
algorithms make feasible the solution of a larger 
MCFP than can be handled by linear programming 
techniques [Pa84]. The algorithms may be inter
preted as state space search algorithms regarding 
artificial intelligence models and therefore 
generalize to allow non-linear constraints. 
Applications are in packet switching networks 
[At81] and cluster analysis [Ma83]. 

1. Introduction and SUmmary 

Informally the Maximum Concurrent Flow Problem 
(MCFP) can be stated as follows: Let there be a 
network of entities (cities, neighborhoods, 
computers, etc.) in which there exists traffic or 
flow (passengers, messages, etc.) between all 
pairs of entities. The flow is sustained through 
channels (air links, roads, communication lines 
etc.) which are capacitated. We seek to assign 
flows in a manner such that the flow relative to 
demand between any pair of entities (throughput) 
is equal to the flow relative to demand between 
any other pair of entities. We then ask for the 
maximum throughput of such concurrent flow that 
can be attained in the network, respecting 
capaci ty constraints. 

For example, consider the interconnection network 
with sixteen processors shown in Figure 1, which 

.Supported in part by the Army Research Office 
contract number DAAG 29-84-K-0060. 

CH2345-7j86jOOOOj0629$01.00© 1986 IEEE 
629 

is representative of the structure of the ILLIAC 
IV. In this case it can be shown [MD82] that 
there exists a set of paths including at most two 
paths between any pair of processors (vertices) 
such that concurrently a total of two units of 
flow (concurrent flow throughput) can be trans
mitted between each of the one-hundred and twenty 
vertex pairs over the respective paths subject to 
a capaci ty limitation of sixteen units of total 
flow over each of the thirty-two linkages (edges) 
between processors. Our methods here provide 
routing solutions for concurrent flow throughput 
for non regular topologies as well as the regular 
topology of Figure 1.· 

Section 2 provides a brief background to the 
maximum concurrent flow problem, giving two linear 
programming (LP) formulations and their 
complexities. Section 3 considers algorithmic 
characteristics for the MCFP from the artificial 
intelligence point of view. Section 4 develops 
criteria that are used to simplify the problem 
formulation and provide convergence bounds. 
Sections 5 and 6 analyse, successively, a greedy 
flow augmentation algorithm, and a more sophis
ticated flow rerouting algorithm, for determining 
a concurrent flow. Both algorithms are illus
trated by application to a set of test graphs. 

Figure 1: An interconnection network for sixteen 
processors with thirty-two direct linkages. 



2. Linear Prom" DC ForwuJ,atloM of the Hax'." 
CoDcurrent Flov Problem 

There are two main formulations of the MCFP, the 
Node-Arc formulation and the Edge-Path formulation 
[Ma83], [Ma85], [Pa84]. In our formulation the 
terms edge and arc are synonymous as are the terms 
node and vertex. Notationally, we assume through
out this paper that the graph G = (V,E) has vertex 
set V = {1,2, ••• ,n} and edge set E. 

Rode-Arc Formulation of the MeFP. Let the ordered 
pair (i, j) for i<j denote the commodity flOWing 
from vertex i to node j. In a graph on n vertices 

there are (:) commodi ties. We impose conservation 

eq ua tions which set the sum of the incoming flow 
on edges equal to the outgoing flow on edges for 
each vertex. In addition there are demands for 
flow between each vertex pair and capacity 
constraints on each edge. Thus the MCFP can be 
formula ted as: 

Maximize the concurrent flow throughput z subject 
to the follOWing constraints: 

I 
ij 

where 
edge 

if 9, = i 
if 9, = j 

otherwise 
(1) 

for 1 ~ 9, ,{ n, 1 ~ i < j ~ n, 

f(ij) ~ 
e ce for all e e: E (2) 

E is the set of edges, ce the capacity of 
e, and Dij the demand for flow between 

(ij ) 
vertices i and j. f kR. is the flow of commodi ty 
ij flOWing on edge kR. from vertex k to vertex R. • 
If there is no such edge the corresponding flow 

is always zero. Also, f(ij) = f(ij) + f(ij) for e 
the edge betWeen k and R. ~ We as~~e herekthat the 
constraints for non-negativity of individual flows 
always hold for a general LP formulation and do 
not state them explicitly. 

Ooaplex1ty. There are n~) constraints of the 

type (1) and IE I constraints of the type (2). The 

number of variables is 21E I G) + 1. The ellipsoid 

algorithm of Khachiyan [PS82] then assures us that 
the MCFP is solvable by a polynomially bounded 
algori thm, but the size of this LP formulation 
renders standard LP techniques practically 
ineffective on all but relatively small problems. 

630 

Even if we reformulate this multiple commodity 
flow interpretation into n "single-source, 
multiple-destination" type fl~s [He84], we still 
have the formidable size of O(n ) constraints and 
O(n IE I) variables. 

Edge Path FonaulaUon of the HCFP. Let P denote 
the set of all paths between vertices i j 

and j. 
For p e: P ij let f denote the amount of flow being 
hosted al~ng thi path p, and Di" the demand 
between vertices i and j. A maxi~um concurrent 

. + 
flow function f: ~ P ij ~ Reals of throughput z 

must satisfy 
\' f' _" '7-_n 
l.. - P -ij- -

pe:Pij 

for all !. i < j .{ n. 

Let P e denote the set of all paths containing the 
edge e with ce the capacity of e. Then any 
feasible concurrent flow must satisfy the follow
ing capacity con~traints: 

I f - c ~ 0 for all e e: E. 
pe:P p e 

e 

(4) 

The objective as before is to maximize the 
concurrent flow throughput z. 

Although this formulation is implicitly 
exponential in the number of variables, an LP 
solution exists for this edge-path formulation 

where an appropriate choice of (:) + IE I - 1 of 

the I I P ij I pa ths is sufficent to achieve opti-
ij 

mality. Note that this implies that some optimal 
solution employs flow on an average of less than 
two paths from each Pij • 

Our iterative algori thms approximate a solution 
through the use of heuristics which reduce the gap 
between the current solution and the optimal 
solution employing flows on paths as in this 
formulation. They do so in a manner such that 
only a reasonable number of paths are required to 
be explored. The concept of deviating flow [FG73] 
for telecommunication routing in store-and
forward packet-switched networks is one similar 
instance of such an approach. In the LP network 
literature generally, the edge path formulation 
has not been pursued to a great extent. 

3. Heving the MClP as a RearM problg. 

According to Rich [Ri83], a search problem can be 
analyzed along several key dimensions that dictate 
the choice of an appropriate efficiency criteria 
or heuristic. In this section, we categorize the 
MCFP along some of the dimensions considered by 



Rich. This discussion, we hope, acts as a 
motivation for the algorithms to follow in 
Sections 4 and 5. 

It is clear that we are dealing with a predictable 
universe in the sense used by Rich. States of the 
system are completely specified in terms of the 
node and arc capacities and their utilizations at 
a given instant of execution. Constraints are 
therefore static and the LP formulation completely 
specifies all possible constraints. 

The problem is not decomposable. However, 
decompositions into minimally interacting 
components is possible. This is evident from the 
fact that each node must receive (and send) flow 
from (Ito) every other node. Even if we decompose 
the problem into several instances of a 
"single-source, multiple-destination" type 
problem, we still have a decomposition where the 
components interact quite heavily. In particular, 
addi tion of flow of some commodity along an edge 
reduces the capacity of that-edge for other 
commodities by a certain amount, thereby affecting 
all other paths that contend for use of that edge. 
In spi te of this interaction our approach will be 
to decompose the graph with heuristic labelling. 
We attempt by suitable heuristics to keep the 
effects of interaction appropriately controlled. 
The net effect will be to improve time and space 
requirements for solving the problem as compared 
with alternative LP techniques. 

If decomposition is our strategy then it follows 
that optimization. is restricted to being local and 
we must be prepared to undo solution steps. This 
does not necessarily imply backtracking. The 
first of the two algorithms utilizes greedy flow 
augmentation and does not have a flow rerouting 
feature. Though it works very well in many of the 
cases, its performance can be greatly affected by 
certain aspects of the network topology. We show 
(in our second algorithm) how ~ flow· allocations 
in·previous steps.of the algorithm may be undone 
by appropriate flow rerouting in future steps. 

Is a good solution obvious? If ~ is 
interpreted only as an exact optimal solution then
the answer is no. If tolerances are acceptable, 
solutions can be efficiently developed with an 
indication of their maximum deviation from a 
provable bound on the maximum concurrent flow 
throughput. In practice, it turns out for our 
first algorithm that sometimes the upper bound is 
much higher than the maximum throughput value, but 
for our second algorithm the achieved throughputs 
and'derived upper bounds on maximum throughput are 
convergent. 

What is the role of knowledge? Not a great deal 
of explicit knowledge (in the sense used by Rich) 

631 

is required to solve the problem. Demands between 
the vertex pairs, capacities of arcs, and the 
configuration of the graph are all that is needed 
for the solution. However, there is a lot of 
implicit knowledge that depends upon the structure 
of the graph. If this knowledge can be used to 
formulate heuristics, the algorithm can be guided 
much more effectively. A very simple heuristic is 
the degree of each vertex.. If a vertex is of low 
degree we would not like to have many pa ths carry 
flow into and out of it because this will saturate 
the corresponding edges too rapidly. Our first 
algorithm (which does not undo) suffers from not 
necessarily recognizing this constraint. Before 
presenting the algorithms, we shall develop 
results concerning problem simplification and 
concurrent flow bounds. 

4. Preble. S1mplitication and Convergence Bounds 

We shall henceforth investigate the MCFP only for 
the case where all demands and capacities are 
unity, as the extension to variable demands and 
capacities is then reasonably straightforward. 
The following lemma shows we can further simpl ify 
the problem to consider only demands and paths 
between non-adjacent vertices of the graph •. 

Lemma 1; For any graph G = (V,E), if z' is the 
maximum throughput of concurrent flow between all 
non-adjacent vertex pairs and z is the maximum 
throughput of concurrent flow between all pairs of 

z' 
vertices, then z = ;;;t . 

Proof'. Let e be an edge between two vertices vi 
and v.. If some particular optimal solution to 
the a'll pairs MCFP has any flow from vito v j not 
passing through the edge e, we can always swap 
this flow with an equivalent amount of flow 
passing through e and thereby restrict all flow 
between end vertices v. and v . to e alone. Since 
the optimal solution in~the alt pairs case is z, 
this- will bring down the available capacity for 
non-adjacent flow along e to (1-z). The solution 
in the non-adjacent pairs case with all capacities 
(1-z) is then z'(1-z). But this is the same .as z, 
since we. have already allocated z units of flow 
between adjacent pairs. Thus z = z'(1-z), from 
which the resul t follows. 0 

Our algorithms shall each identify a feasi ble 
concurrent flow, where the throughput is then 
implicitly a lower bound on the maximum throughput 
of concurrent flow. To provide a performance 
guarantee for an approximate solution, or perhaps 
confirm an optimal solution, we shall also compute 
certain upper bounds on the maximum concurrent 



flow [Ma85]. Noting that each of IA IIA I vertex 
pairs must have z units of flow crossing the cut 
(A,A) of capacity I(A,A)I for any cut (A,i), we 
obtain the following. 

Lemma 2: The maximum concurrent flow throughput z 
for any graph a satisfies 

(5) 

Equality of a feasible z with the ratio 
I(A,iOl/lAllil for some cut (A,!) is sufficient to 
confirm optimality of the derived throughput, but 
not all graphs yield equality for (5) [Ma85]. 
Ide nti fica tion of a cut (A, A) for which the ratio 
I(A,A)I/IAII!I is anticipated to be relatively 
small is incorporated in our greedy flow 
augmentation algorithm and will be seen to confirm 
an optimal solution for a number of test graphs. 

A more general bound based on the principle 
underlying our flow rerouting algorithm is first 
motivated 'by",a dual problem. Let us say that the 
graph a is actually a network of thoroughfares and 
that there is some authority placing ~ on each 
edge of a.The objective of this authority is to 
increase total revenue, however, regulations 
require a specified average toll on the edges. 
Obviously, if there is above averag.e flow on a 
given edge with above average toll, it means 
increased toll collections for the authority. From 
the.users' po~nt of view, the objective is to 
minimize the toll paid. The user will therefore 
attempt to take the' minimum cost (shortest) path 
to the destination given any set of toll 
specifications. These two objectives need to be 

'reconciled by altering tolls until equilibrium is 
. achieved. Our flow rerouting algorithm determines 
the tolls dynamically by a specified function 
associating larger edge tolls with larger existing 
,flows through a given edge. This serves the dual 
purpose of making certain paths less attractive to 
the user and ithe total revenue more attractive to 
the authority. Minimum cost paths are determined 
and flows rerouted away from 'more expensive paths, 
followed.by toll revisions, until a balance within 
tolerance is achieved. 

Let Tij denote the toll on the minimum cost path 
between vertices i and j given specified edge 
tolls Te for all e E E. For z units of flow 
between each vertex pair, the toll' paid is at 
least z T ij for each pair ij. Thus the total toll 
paid 'for z units of traffic throughput is at least 
zIT. j' Note that T is the total revenue 

i,j ~ e 

from edge e if it is . saturated to unit capacity. 
So the maximum revenue received is at most e~E Te' 

632 

Thus zIT. j ~ I T which gives us an upper 
i,j ~ eEE e 

bound for any concurrent flow throughput, 

(6) 

More formally, for the graph a let d:E(G) ~ R+ 

denote a non-negative valued distance function on 
the edges of G with d(i,j) the shortest distance 
between vertices i,j. We further assume the 
distance function satisfies the triangle 
inequality, so . that d(i,j). = dee) for e ~an edge 
betweeni and j, and also that ,d .is, not zero on 
all edges. 

TheOrem 3: Any concurrent flow throughput for the 
non trivial connected graph a satisfies 

I dee) 
eEE 

z ~min ----
d I dei, j) 

i<j 

(7) 

where the minimum is over all distance functions d. 

It has been ,noted that Theorem 3 extends to yield 
an equal i ty .for . the maximum concurrent flow 
throughput [Ma85], providing the basis for our 
flow rerouting algorithm to obtain an arbitrarily 
good approximation, but we do not prove tha t 
resul t here. Two corollaries are of immediate 
interest. 

Corollary 3.1; Let {d } be the distance matrix ij 
for the connected graph a (corresponding to 
dee) = 1 for all eEE). Then the maximum 
concurrent flow throughput z satisfies 

z ~ IEII I dij • 
i<j 

(8) 

Corollary 3,2' The maximum'concurrent flow 
throughput z for any connected n 2. 2 vertex graph 
G satisfies 

z ~ IEI/[2 (~) - lEI] • (9) 

Our preceding Lemma 2 is also noted to follow as a 
corollary of Theorem ,3 Simply 'by taking d (e) = 1 
for e E (A, i), and dee) = 0 for e not--in the cut 
(A, i), providing great utility to theresul t of 
Theorem 3. 



5. The Floy Augmentation Ugoritbm 

The flow augmentation procedure is a greedy 
heuristic yielding a feasible concurrent flow and 
a saturated cut whose density provides an upper 
bound on the maximum concurrent flow throughput. 
The central idea for each cycle is to determine a 
set of shortest paths, one between each vertex 
pair, and to augment the concurrent flow equally 
on all these paths until, at least one more edge is 
saturated. All additionaL, saturated' edges are 
removed and if the resulting graph is still 
connected, the residual capacities in the 
remaining edges are determined and the cycle 
repeated. When the graph becomes disconnected, a 
cut is determined and its density computed as an 
upper bound on concurrent flow throughput 
according to Lemma,~2. 

llgorithm AuS'¥nt; Concurrent FloM Augmentation 

Given a graph G = (V,E), this algorithm determines 
a feasible concurrent flow and a cut saturated by 
the concurrent flow whose density is an upper 
bound on the maximum concurrent flow. When the 
throughput of concurrent flow equals the cut 
density, a maximum concurrent flow has· been found. 
When unequal,_ the concurrent flow throughput may 
or may not be maximum. 

1. Set G r = G and set residual capacities in all 
edges of Gr to unity. 

2. Generate a shortest distance tree from vertex 
i spann~ng all vertices j ) i for each 
1 ~.i ~ IV(Gr ) I. From these trees.identifya 
shortest path between each pair of 
non-adjacent vertices forming an augmenting 
set,·A of shortest paths' of Gr' 

3. Augment the concurr.ent flow by t.z on all paths 
of A, where t::.z is determined by the minimum 
ratio over all edges, of the residual. capacity 
divided by the number of paths of A through 
the edge. 

4. Determine, the residual capacity of each edge 
by r(e). ~ r(e) - 1Ae1t.z, where Aec A includes 
those paths of A through e •. Then delete edges 
with residual capacity zero, determining a new 

Gr' 

5. If Gr is connected, return to step 2. 

6. Determine the vertex parti tion A1, A2 , ••• ,Ak 
for the components of Gr and determine the 

I (Ai' V-Ai) I 
upper bound u = min 

1~ IA! IIV~Ai I 

633 

7. Rescale the concurrent flow to the all pairs 
case as per Lemma 1. 0 

Step 2 is critical in determining the complexity 
of Algorithm Augment. utilizing breath first 
search the shortest distance trees of step 2 can 
be found in time O(JV IIEI). As we are only 
guaranteed saturation of a single edge' in each 
cycle, an overall time bound of O(IVIIEI 2 ) is 
obtained. Note that the vertex parti tio n. of s te p 
6 can generally be expected to yield just two 
components. When k)2, all cuts between the k 
components could be investigated to determine 
which has minimum density to tighten the upper 
bound. However, such a computation would require' 

k-1 testing up to 2 cuts and still could resul t in 
an upper bound much greater than the achieved 
concurrent flow, so our algorithm suggests 
checking only the partitions Ai, V-Ai to p~eserve 
the polynomial boundedness of the procedure. 
Clearly, considerable savings could be obtained by 
generating and saving (in step 2) spanning trees 
that are only a slight vaFiation of preceding 
trees, or by initially computing and saving a 
directed acyclic graph (DAG) from each vertex. We 
have chosen to implement only a si~ple 

straightforward version of Algorithm Augment for 
comparison purposes, and as a suggested first 
phase for more sophisticated algorithms whose 
convergence, at least within tolerance, is 
guaranteed. 

<{0
: 3 

1 • . . 

: 2 

Graph 1 

7 

Graph.T 

Graph 2 Graph 3 

llraph 6 

Figure 2: Eight graphs with spar.sest cuts illustrated 
for each graph. 



Eight example graphs are illustrated in Figure 2. 
The graphs have cuts illustrated whose density 
corresponds to the actual maximum concurrent flow 
throughput for the corresponding graph. The 
results of applying Algorithm Augment to these 
graphs are summarized in Table 1. 

Concurrent Flew Computed 
Number Number Througbtput Cut DenaitJ 

Crapb JV! JEI Algorithm Saturated Upper Bound 
Cycles Edges Fil'1!t Cycle Final on Througbput 

1 5 7 3 7 0.3333 0.5 
2 _ K .5 

2 8 111 II II 0.11128 0.2 3 ;S K .2 

3 8 15 5 7 0.25 0.3125 
5 

;6 ... 3125 

II 15 26 6 6 0.05 0.0761 
II 50 I: .08 

5 
0.0666 

II 
(1eolllorphic 15 26 7 7 0.0793 50 I: .08 

o grapb II) 

6 12 31 3 10 0.1666 0.2121 
II 

'IT" .3636 

7 15 119 211 25 0.125 0.21132 -

8 20 311 II 5 0.0222 0.0293 3 96 • .03125 

Algorithm Augment finds a concurrent flow 
throughput which is confirmed to be maximum by the 
derived sparse cut bound for Graphs 1, 2 and 3. 
For Graphs 4, 5 and 8 the derived throughput of 
concurrent flow is only slightly less than the 
sparse cut bound determined, where in both cases 
the cut is the actual constraint on the maximum 
concurrent flow as verified by other methods. 
Note that a shortest path, such as 8, 3, 6 in 
Graph 4, can zigzag across the constraining sparse 
cut, and if chosen, an irreconcilable difference 
between the throughput achieved and the sparse cut 
bound will be obtained. The algorithm was applied 
to Graph 4 a second time after relabeling the 
vertices to obtain the isomorphic Graph 5. The 
results confirm, as expected, that selecting a 
different set of shortest paths in some cycle of 
Algorithm Augment can yield a different achieved 
concurrent flow throughput. 

Graph 6 illustrates a wide disparity between 
throughput and the sparse cut bound. In this case 
the algorithm terminated by isolating vertex 3 

4 
yielding a bound of 11 = .3636 rather than by sep-

634 

arating the vertex set A = {1,3,5} for an 

achievable sparser cut upper bound 
7 

of - = .2592. 
27 

The derived throughput is then actually 82% of the 
best possible throughput and considerably better 
than the obtained upper bound would indicate. For 
Graph 7 the bound of Corollary 3.2 indicates no 

49 
more than 161 = 0.3043 throughput is achievable. 

Further inspection of Graph 7 revealed the sparse 
cut illustrated in Figure 2, which was not round 
by Algorithm Augment. The cut illustrated yields 

15 
an .upper bound of 54 = 0.2777 on throughput, so 

computed throughput was over 87% of optimum. It 
can be anticipated that the relatively slow 
convergence of Algorithm Augment illustrated for 
Graph 7 will prevail on such "near random" graphs, 
and other methods should be utilized ror this 
class of graphs. Certainly the fact that all 
shortest paths have le.ngth one or two can be 
exploited by an alternative algorithm for the 
class of graphs of diameter two. 

In summary, Algorithm Augment can be expected to 
~nerally determine the maximum concurrent flow 
when there exists a sufficiently sparse 
constraining cut with no shortest paths zigzaging 
across the cut. The main criticism of Augment is 
that the achieved throughput and.derived bound can 
differ widely. The greedy method illustrated by 
Algori thm Augment is available to provide a quick 
and efficiently determined initial concurrent flow 
for input to other methods. The effectiveness is 
indicated, in particular, as the initial cycles 
alone determined a flow of between 45% and 85% of 
the optimum for the cases tested. 

6. the Flow Rerouting Algorithm 

The methodology of this algorithm is to first 
establish a unit of flow on some path between each 
vertex pair without regard to capacity constraints 
on edges. A "toll" is assigned to each edge by a 
specified function ascribing relatively large 
tolls to edges with relatively greater total flow. 
Iteratively, .minimum cost paths are found and 
flows rescheduled off more costly paths with edge 
tolls dynamically updated. We prescribe a toll 
function that assigns considerably higher cost to 
an edge having only slightly higher flow than any 
other edge. As equilibrium is approached, the 
flow in those "critical" ed~s that must in theory 
be saturated by any maximum concurrent flow [Ma85] 
approach approximately the same flow (to avoid 
highly unbalanced costs). Normalization by 



di viding by the maximum flow observed in any edge 
yields a feasible concurrent flow where the 
critical edges should then each be nearly 
saturated. By appropriate parameter choice for 
our toll function and employing Theorem 3, it can 
be shown that a solution with throughput in any 
ar bi tr ary t 01 er ance of optimality can be 
determined. 

Alsoritbm Reroute: Concurrent Flov Rerouting 

Given a graph G, tolerance E, and parameter c, 
this algorithm determines a concurrent flow and a 
set of edge tariffs such that (for sufficiently 
1 arge c) the throughput of concurrent flow is 
within the specified tolerance of an upper bound 
on the maximum concurrent flow throughput, 
utilizing the tariff bound of Theorem 3. 

1. Assuming edge tolls of unity, allocate a flow 
of 1 unit on one shortest path pEP ij between 
every pair of vertices in the graph, 
disregarding capacity constraints. Set the 
flow through each edge, f(e), equal to the 
number of paths using that edge. 

2. Determine the toll placed on each edge e E E(G) 
by the follOWing non-linear function: 

3. 

4. 

T e 
c(f(e)-f*) 

= 2 where f* = max fee) • 
e 

Proceeding in turn through each pair of 
vertices 1 ~ i < j ~ IV(G) I determine a 
minimum co st path p' £ P ij. If a highest cost 
path p currently carrying now from i to j has 
cost larger than that of p', reroute 0 units 
of flow from p to p', dynamically updating the 
tolls on the edges affected as per the func
tion of step 2. Determine 0 so that the 
resulting costs as per the adjusted tolls for 
paths p and p' are identical where p has 
residual flow greater than zero, or otherwise 
set 0 so as to reroute all flow off p and 
onto p'. 

Calculate the concurrent flow throughput 
realized by this solution: z = 1/max fee) 

e 

gives the proper normalization. Calculate the 
upper bound z = I Tel I Tij , and if the u 

e i<j 
difference between z and z satisfies the 
tol erance specified 

u 
by E , terminate. 

Otherwise return to step 3. 

635 

The choice of the toll function in step 2 is 
critical to the success of this procedure. Note 
that when an amount of flow 0 is rerouted from p 
to an edge disjoint path p', the cost of path p is 

co decreased by the factor 2 and p' increased by 
the factor 2co • Thus the sum of the tolls on all 
edges, IT strictly decreases and no cycling is e 

e 
possible. However, if the maximum amount of flow 
rerouted in any pass through all pairs in step 3 
falls below some stipulated minimum, convergence 
should be considered too slow and the process 
terminated, or reinitiated with a larger value of 
the parameter c (e.g. c ~ 2c). 

The choice of c clearly effects the speed of 
convergence, but caution is necessary. In theory, 
for any desired tolerance E, the algorithm can be 
shown to terminate with convergence for any 
sufficiently large c, but large values of c can 
cause erroneous behavior in finite precision 
computation. Our approach in the results 
follOWing applying Algorithm Reroute is to utilize 
several convenient values of c. Further algorithm 
refinement incorporating internal determination of 
c with possible updating in a major cycle is under 
investigation, as is the application of. the 
algorithm to larger graphs and networks of varying 
capacities with non uniform pairwise flow demands. 

The following table summarizes the results of 
application of Algorithm Reroute to the test 
graphs of Figure 2. The data of Table 2 is from an 
implementation of a version of Algorithm Reroute 
developed by B. Thompson [TMB6]. The version 
differs only slightly in that in step 3, paths p 
and p' are determined as indicated for each pair 
i, j, and the pair with largest difference in cost 
is chosen for flow rerouting in each iteration. 
In the table the bound z from inequality (6) is 
termed the elongation,~elong.) upper bound, and 
the cut upper bound is also given for reference 
corresponding to the cuts illustrated in Figure 2. 
Note that convergence within 1% of maximum 
throughput is confirmed for Graphs 1-6, and within 
2-1/2% for Graphs 7 and 8. 

Acknovledgllent: We would like to thank Vipin Kumar 
and R. V. Helgason for numerous discussions during 
the preparation of this paper, and Byron Thompson 
for the version and results of Algorithm Reroute 
given as Table 2. 



, Gow paths ~loDI· cut 
CODSlaDt reroutiDI per fusjble apptr lIpptr 

Grapb IVI lEI C i~ratioDII pair I bond bouDd 
1 5 7 4 1 1 .5000 .5384 .600' 

Hi 1 1 .SOOO .S384 .SOO 
256 1 1 .SOOO .5384 .500 

2 8 14 16 2 1 .2000 .2006 .200 
256 2 1 .2000 .2000 .200 

3 8 15 16 20 1.32 .3117 .3424 .3125 
256 25 1.42 .3112 .3417 .3125 

16536 21 1.39 .3101 .3240 .3125 

4 15 26 16 32 1.10 .0708 .0844 .080 
256 30 1.14 .07og .0811 .080 

5 15 26 16 20 1.00 .07P6 .0815 .080 
256 40 1.17 .0700 .0807 .080 

6 J2 31 J6 101 1.53 .2571 .2823 .2502 
256 07 1.48 .2582 .2826 .2502 

16536 4J 1.42 .2586 .2826 .2502 

7 J5 40 16 85 1.42 .2710 .3103 .2777 
256 152 1.72 .2695 .3231 .2777 

8 20 34 2 24 1.02 .0307 .03 US .03125 
4 30 1.04 .0300 .0312 .03125 

Table 2: Results of application of Algorithm 
Reroute to the graphs of Figure 1. 

References 

[A t81] At tar, R., A Distributive Adaptive 
Multi-path Routing -- Consistent and 
Conflicting Decision Making, '80/'81 
Aiken Computation Laboratory, Harvard 
Univ., Cambridge, MA 02138. 

[FG73] Fratta, L., Gerla, M., and Kleinrock, L., 
The Flow Deviation Method: An Approach to 
Store-and-Forward Communication Network 
Design, Networks 1, 1973, 97-113. 

[He84] Helgason, R. V., private communication. 

[Ma83] Matula, D. W., Cluster Validity by 
Concurrent Chaining, in Numerical 
Taxonomy. Felsenstein, J., ed., NATO ASI 
Series G No.1, Springer-Verlag, New 
York, 1983. 

[Ma85] Matula, D. W., Concurrent Flow and Con
current Connectivity in Graphs, in ~ 
Theory and its Applications to Algorithms 
and Computer Science, Alavi, Y., et al., 
ed., John Wiley, New York, 1985, 543-559. 

[MD82] Matula, D. W. and Dolev, D., Path-Regular 
Graphs, Tech. Report 82-CSE-3, Computer 
Science Dept., Southern Methodist 
University, May 1982. 

636 

[Pa84] Patty, B. W., The Basis Suppression 
Method for Linear Programs with Special 
Structure Excluded by an Objective Side 
Column, Ph.D. Thesis, Dept. of Operations 
Research and Engineering Management, 
Southern Methodist University, 1984. 

[PS82] Papadimitriou, H., and Stieglitz, K., 
Combinatorial Optimization' Algorithms 
and Complexity, Prentice Hall, Englewood 
Cliffs, New Jersey, 1982. 

[Ri83] Rich, E., Artificial Intelligence, McGraw 
Hill, New York, 1983, Chapter 2. 

[TM86] Thompson, B. J. and Matula, D. W., A Flow 
Rerouting Algorithm for the Maximum 
Concurrent Flow Problem with Variable 
Capacities and Demands, and its Applica
tion to Cluster Analysis, Tech. Report. 
86-CSE-12, Computer Science Dept., 
Southern Methodist University, March 
1986. 



A LEAST COST PARTITION ALGORITHM 

Thomas J. Marlowe, Jr. 

Department of Mathematics and Computer Science 

Seton Hall University 

The least-cost/greatest-profit integer partition problem 
have a natural formulations by recursive definition, closely 
related to the knapsacf.,. problem. Beginning with the 

obvious 0 (n
2

) dynamic programming algorithm for least
cost partition, we present modifications illustrating themes 
in algorithm and data St~ucture design. One results in a 

lower average-case complexity of order 0 (n
3

/
2

) , a 
second in an efficient print algorithm for the resultant 
partition, and a third is a prepass particularly effective 
when unit costs are close to monotone. We show worst
case and average-case complexity for the revised 
algorithm, and argue that the 'real-world complexity' may be 
even less. We show each of these as a modification of 
the underlying system of equations or its data-structure 
representation. Finally, we show that no algorithm with 
similar primitives can have better worst-case performance. 

The breadth of design and analysis concepts illustrated, their 
direct connection to data structure modification, and the 
variety of mathematical tools employed, render this problem 
an excellent example fo' demonstrating these principles in 
instruction or other cont~xts. 

1. THE LEAST-COST PARTITION PROBLEM 

1.1 Definitions 

Combinatorial objects such as permutations, selections, and 
partitions give rise to natural formulations in recursive 
definitions [15, 21]. Attaching cost functions, such as to 
edges in a graph, and looking for minima over sets of 
these objects, leads to interesting problems with significant 
applications [9, 15]. Such problems frequently have a 
recursive, dynamic programming formulation [2, 13] as an 
nXn equation set. 

A partition of an integer n is a multi set of integers whose 
elements sum to n. Partitions have significant mathematical 
interest [7, 2 1], and can be enumerated in a natural way 

[17]. The least-cost partition problem, closely related 
to the integer knapsack problem, is clearly susceptible to 
recursive and/or dynamic programming formulation. 
(Compare [13, 14].) 

We modify the definition of partition slightly, to insist on a 
particular ordering of its elements: 

Definition 1.1.1: A partition P of an integer n is a 
non-decreas i ng fin i te sequence of pas i t i ve 

CH2345-7/86/0000/0637$01.00 © 1986 IEEE 
637 

integers whose sum is n. 

Definition 1.1.2: The set of summands of Pis the 
multiset of integers appearing in P; the set of 
partisands of Pis the under i y i ng set of distinct 
integers. The height of P, h (p), is the number of 
its summands; the reduced height, r (P), is the 
number of its partisands. 

Definition 1.1.3: Let C be a cost function (a 
funct i on from the non-negat i ve integers to the 
non-negative reals, for which C(O) = 0). For a 
partition P, let the cost of P, S(p), be 
E.~p C (j) , and let 

S(~J = min {S(P) Ip a partition of k} = S(LCP(k)), 
where LCP(k) is the least-cost partition of k. (Note 
that this partition is not necessarily unique. We 
will, however, give a deterministic algorithm for 
both S (n) and LCP (n) .) 

1.2 A Dynamic Programming Formulation 

An obvious worst-case e (n2
) algorithm exists for finding 

S(n). by building S(k) from the S's of smaller integers: 

Definition 1.2.1: 
partitions: 

S (k) = C (1) 

Initial Algorithm for least-cost 

, k=1 
k-l 

=min {C(k),min {CU) +SCk-i}}I=l} ,k> 1. 

For such an integer-programming equation-set, the principal 
solution techniques are dynamic programming and branch
and-bound. Branch-and-bound is usually faster (Chvatal 

[3] claims it to be 50% faster for integer knapsack 
problems), requires less storage space, and proceeds from 
a reasonable initial approximate solution via heuristically 
directed search. For knapsack -type problems these 
heuristics frequently employ the list of candidates sorted in 
unit-cost order. Although the integer knapsack problem is 
known to be NP-complete (but pseudo-polynomial) [6], 
there do exist polynomial-time algorithms for various 
special cases (compare [4]). 

For the least-cost partition problem, however, there are 
several factors which suggest consideration of dynamic 
programming: First, the greedy algorithm does not 
necessarily reach a good approximate solution, and early 
exact solutions found by branch-and-bound may be 
arbitrarily bad, so that less pruning will occur; second, the 
corresponding search space may be exponentially large; and 



third, dynamic programming lends itself to incremental and 
parallel application, in particular, the return of least-cost 
partitions of several distinct integers at essentially no 
additional cost This algorithm provides a solution to one 
special case of the integer knapsack problem for which no 
good approximate algorithm exists, and can be modified to 

give an 0 (p3) algorithm (polynomial in the 0 (2p) length 

of the input) 1 for the problem of least-cost (greatest
profit) partition of n using only the integers {1 ,2,3, ... ,p}. 

[11, 10). 

We will, however, use certain features common to branch
and-bound algorithms: We sort the integers in unit-cost 
order, and use a pruning technique to reduce average 
complexity. 

Definition 1.2.2: The unit cost of an integer k, 
relative to a cost function C, is given by 

C(k) 

U (k) = -. 
k 

We show that the solution for Sin), including the print of 
the' resulting partition, is possible in average time 

substantially less than 0 (n
2

) , in fact, in 0 (n3/2
). This 

improvement depends on the elimination (dynamically) of 
terms from the individual equations. We will show that, on 

average, fewer than k 1/2 terms are considered in the 
equation for S(k). These considerations motivate the 
following definition: 

Definition 1.2.3: Ca II an integer j simple with 
respect to the given cost function C if its only 
least-cost partition is itself. 

Proposition 1.2.1: 1 is always simple, and if is 
not si mpl e, then 

1. every integer in LCP(j) is si mpl e, and 

2. for some integer i in LCP(j), i'5. L2J, 
3. for some i in LCP(jl. U (i) '5. U (j) . 

Since 1 is always simple, we have the algorithm: 

Definition 1.2.4: 
using simplicity. 

Least-cost partition algorithm 

S (k) = C (1) ,k=1 

L21 = min {C (k) ,min {C (i) + S (k- i) I i simple} J} 
i=1 

,k> 1. 

The restriction to i '5. L 2 J is immediate; the restriction to i 

simple justifies elimination of cm + SO) whenever cm is 
not itself the best choice for expressing i. 

It is however clear that every integer could be simple for 

a particular C [consider C(k) = k 1/2], so that the worst

case cost of the modified algorithm will still be 0 (n2 ). 

1 
Counting bit lengths. input has length 0 (2p log p + log n); running 

time and output is 0 (p 3 10g P + log n). 

On the other hand, introducing a prepass 'PREMARK', we 
can show that, for U a monotone (non-increasing or non
decreasing) function of n, worst-case performance also 
improves significantly. PREMARK also leads to improved 
worst-case performance under reasonable assumptions 
related, but not equivalent, to monotonicity. PREMARK may 
be viewed as the application of an inexpensive prepass to 
eliminate a number of equations from' the equation set; this 
idea is discussed more fully' in section 3.3. 

638 

1.3 Description of the algorithm 

OVERVIEW OF THE LCP ALGORITHM 

O. Input is n and costs for integers 1 to n. 

1. Compute unit costs. Sort the integers to n 
in unit-cost order. 

2. Apply PREMARK to eliminate some equations. 

3. Apply modified definition; condense results. 

4. Print resulting least cost and partition. 

1.3.1 The LCP Data Structure 

We now give an overall description of the basic LCP 
partition algorithm to compute S(n)., We discuss the 
algorithm as modifying the entries of an array A [1 .. n] of 
the following data structure: 

I NO I CST I MRK I SET I NXM I FRS I NUM I NXT I ' 

Figure 1-1: DATA STRUCTURE FOR PARTITION ALGS 

where for 1 '5.k'5.n: 

• IND = INDEX is simply k itself, 

• A [k] .CST (COST) = S [k] when generated, 

• MRK = MARK is a flag; 1 = {k is simple}, 
• SET is a flag; 1 = {S [k] has been found}, 

• NXM = NEXTMARK pOints to the next largest 
(simple) integer MARKed, or to 0, 

• FRS = FIRST is the smallest integer in LCPU<l, 
• NUM = multiplicity of FIRST in LCP(k), 

• and NXT = NEXT = k - FIRST*NUM. 

We also need the costs C [k] and unit costs U [k]; we 
keep the former in A [k] .CST until needed. 

1.3.2 Statement of the algorithm 

Algorithm 1.3.1: The LCP a Igor i thm: 

The algorithm consists of five phases: 

1. a SORT of U into an array USORT of records 
(INDEX, UNIT _COST)' which SORT is stable and 

(1) worst-case 0 (n log n), and 

(2) 0 (n) if U is monotone; 

2. an INITIALIZE of the data structure; 
3. the PREMARK phase discussed below; 
4. the PART phase, to invoke dynamic 



programming on the recursive definition; 
5. and a phase PRINT, to print the resulting 

least-cost partition in sorted increasing order. 

Figure 1-2: OUTLINE OF THE LCP ALGORITHM 

1.3.2.1 The algorithm PREMARK 

Given the array USORT, we consider the permutation of 
[1 .. nJ induced by USORT.INDEX. It is clear that the 
integer jo = USORT [ 1 J .INDEX - the integer with the least 

unit cost - must· be si mpl e, and that none of its multiples 
can be. (The LCP of each of those multiples must be 
precisely a set of jo's.) In fact. if we proceed through the 

listUSORT maintaining an integer LEAST = the least integer 
found to be simple so far (initialized at n+ 1), then 

• the first smaller integer, S. encountered in 
USORT must be simple (so MARK it), 

• each of its multiples less than LEAST has a 
known least-cost partition (by S's), so can be 

SET, and finally 

• LEAST now has the value S. 

The algorithm continues until LEAST = 1. 

Ex. 1.3.1: Use of the PREMARK a Igor i thm: 
For instance. if the permutation of [1 •. 23J 
induced by USORT were 

17 21 18 5 9 19 13 15 22 7 6 2 
10 19 11 4 14 23 20 1 8 12 3. 

then j = 17 wou I d be simple (i ndependent of other 
va lues 0 of C) • and 17 wou I d be MARKed. 
Continuing. neither 21 nor 18 are less than 17. 
but 5 is. so 5 must be simple. (since no other 
partition could have lower average unit cost). and 
neither 10 nor 15 could be (further. their least
cost partitions are({S.5} and {5.5.5}. Note that 
we know that 20 cannot be simple. but cannot know 

whether its least-cost partition is {5.5,5.5} or 
perhaps {3.17}. Thus 5 would be MARKed, 10 and 15 
(but not 20) SET, and LEAST set equal to 5. 
Continuing. neither 9.16.13.15. 22. nor 7 is 
I ess than LEAST = 5, but 2 < 5, so 2 is simple, 
and 4 is not - 2 is MARKed and 4 is SET. Finally, 
1 is encountered and MARKed as simple, but th i s 
time' no other integer is SET. 

PREMARK uses specific knowledge to solve certain 
equations before invocation of the recursive procedure (see 
section 3.3). We note that our average-case complexity 
results do not depend on the use of PRE MARK; it has 
been introduced to guarantee that a unit-cost function 
close to monotone (more likely in real-world problem 
contexts) will produce close-to-optimum (linear-complexity) 
algorithm behavior. 

1.3.2.2 PART, the dynamic programming phase of the 
LCP algorithm 

PART proceeds as for definition 1.2.4 with the following 
modifications: (1) WE; dO not expand integers already 
partitioned in PREMARK, (2) if i can be partitioned non
simply. we do so, (e.g., if C(8) = C(2) + S(6) = S(81. then 8 
has two least-cost partitions: {8} and {2} ULCP(6); we use 
the partition containing 2)' (3) we use the smallest possible 

639 

new partisand (these two conditions specify a tie-breaking 
mechanism. always selecting the leftmost expression of 
minimal cost in each row of the equations set), (4) if an 
integer i is simple (whether found in PREMARK or not). we 
link i into a linked list of simple integers. (Insuring that the 
scan for si mpl e integers at level i depends only on the 
number of simple integers.)' (5) we. modify the listed 
solution (for use by PRINT) in the manner indicated below. 

1.3.2.3 Condensation of equations and the PRINT phase 

Ordinarily. to print the solution to a set of equations, we 
would maintain the solution chosen at each level i. e.g., 

S(ll) 

S(10) 

S(8) 

C(l) -r S(10) 

C(2) + 5(8) 

C(2) + S(6) 

S(6) = C(6)' 

etc.; from which we could expand 
S(ll) C(l) + S(10) = C(1) + C(2) + S(8) 

= C(1) + C(2) + C(2) + S(6) = C(1) + 2C(2) + C(6). 

However, repetition of partisands is characteristic of the 
partition problem. and the list of these in order a feature 
of the algorithm. This allows us to reduce the number of 
calls to other equations: if the j in 

S(i) = C(j) + S(i- j) 

is the same as that in the expansion of S(i- jl. we condense 
this information (in the FIRST. NUM, and NEXT fields of the 
data structure). If 

S(i- j) = aC(j) + SIr). 

(where r (i - j) - a' jl. then we store at i the equation 

S(i) (a + 1 )C(j) + SIr); 

if the j's are different. we will. of course. not attempt 
condensation. 

Descent through this 'condensed' set of equations will make 
the PRINT routine function efficiently - its complexity is 
now determined by the reduced height. rather than the full 
height. of the partition We will see in section 2.3 that 
PRINT actually does return the partition in sorted increasing 
order. 

The next three sections discuss the complexity and 
effectiveness of the several phases of this algorithm. 
Section 2.1 covers the initial phases of the algorithm. 
through invocation of PREMARK. Section 2.2 shows that 
the average-case complexity of the LCP algorithm is 

lowered to 0 (n
3/2

) from 0 (n 2
) by use of simplicity. 

Finally, section 2.3 shows that the resulting least-cost 
partitions can be printed efficiently. and that the least-cost 
partitions of all integers less than n can be generated and 
printed with essentially no cost beyond that needed for n 
alone. 

1.3.2.4 Assumptions for average-case analysis 

Our average-case analysis assumes that all n! permutations 
of {1.2 .•.•. n}. induced by sorting unit costs into increasing 
order, are equally likely. Although this is not entirely 



satisfactory, it almost certainly underestimates the actual 
savings by comparison to other reasonable and feasible 
models. Further, as we shall see, our analysis very likely 
further overestimates the number of remaining terms in the 

k th equation, and we can show that the same average 
complexity would result from a stoch;-<;tic process in which 
each term considered in equation k. ;qually likely to be 
chosen. Therefore, average-case savings demonstrated will 
almost certainly remain valid in most other models, or in 
likely real-world situations. 

2. ELEMENTARY ANALYSIS OF THE LCP 
ALGORITHM 

We assume all arithmetic operations are constant-cost, 
rather than depending on bit length. (We may also assume 
all oper.ations are" additions and multiplications if costs are 
integral and· we substitute comparison of iC(j) with" jC(i) for 
determination and comparison of unit costs.) 

2.1 Analysis of PREMARK 

The cost of determining the array of unit costs, 
elk] 

U [k] = --. is clearly 0 (n); the subsequent sorting cost 
k 

in creating USORT is 0 (n log n) (by assumption!. and 
remaining initialization cost is 0 (n). PREMARK now scans 
USORT:INDEX. MARKing each subsequent LEAST integer as 
si mpl e, and SETting certain of its multiples; PREMARK will 
see each integer at most twice (once if SET, and once on 
the scan). so its complexity is also 0 (nl. and the issue of 
interest is: 

How effective is PREMARK? How many integers have 
LCP's determined during PREMARK, and how many of those 
will be simple? The probability that a particular integer is 
SET as non-simple in PREMARK is strongly influenced by 
the number of its divisors; elementary number theory and, 
the divisibility lattice of the integers play a major role in 
the, analysis of this phase, . 

If k = jo =U~ORT [1] .INDEX, then k itself will be MARKed 

and SET, and l kj integers in total will be SET at that point 

With respect to the number, of integers· ;MARKed or SET; 
further application of PREMARK is in effect equivalent to 
the application of- PRE MARK to the induced permutation of 
{ 1,2,3, •.. ,k -1} . This leads' directly to recursive definitions 
for the average.· and worst-case number of integers 
MARKed and SET in PREMARK. . Using number theory and 
the theory of recurrence relations, we find: 

Proposition 2.1.1:' 
n 

1. At least one integer larger than l~J is 
2 

SET in PREMARK(n)~ 
2. The' average number of integers MARKed 

as simple in PREMARK(n) is e (log n). 

3. The average number of integers SET in 

PREMARK(n) is e( (log n) 2) . 

4. In the worst case, only the integer 1 is 
MARKea as simp/ e in PREMARK(n). 

5. As few as e (log n) integers·, could be 
SET in PREMARK(n) 

Proof: 

640 

1. jo = USORT [1 llNDEX is MARKed. If.' 
n 10 

:$ l;j, then at least one multiple kjo has 
n 

l-j < kjo :$ n. 
2 

2. Let PAIn) = the average number of 
simple in· integers found to be 

{ 1,2,3, ... ,n}. Then 

PA(n)=[1 ,n=1 
1 n-l 

1+-"L PA(k),n> 1. 

whence, 
n k=l 

reasonably 

PA (n) =L:= 1 k = 0 (log n). 

directly, 

3. Let SA = the average number of integers 
in {1 ,2,3, ... ,n} SET during PREMARK. 

SA (n) =t , n=O,1 

L (lkj+SA(k-1),n> 1. 
n k=l 

Exchanging double summations, we have 

n d (k) 
SA(n) = L --, 

k= 1 k 
where d(k) = the number of divisors of 
k, Another double-summation argument 
shows that n 

n n 

L lkJ = L d(k). 
k=l k=l 

Finally, from Hardy and Wright [7J, we 
have that 

n 
L d (i) = n log n + 0 (n), 

i= 1 

whence the average value of d(i), 1 :$i:$n, 
is log n. Replacing d(i) by log n for each 

n log i 2 
i gives L

i
= 1 -,- = e ( (log n) ). 

I 

4. Clear. 

5. Let SW(n) = the' fewest integers SET in 

Ex. 2.1;1: 
PREMARK: 

execution of PRE MARK on 
{ 1 ,2,3, ... ,n}. Then 

[
n ,n=O,1 

SW (n) = n 

min {lkj+SW(k-1)}n ,n> 1 
k= 1 

n 

which is minimized for k = l2 j + 1. 

Iteration gives SW(n) = e (log n). 

An example of worst-case behavior for 

Consider the USORT.INOEX permutation for n = 31: 



(16 30 29 28 27 26 25 24 23 22 21 20 19 18 17 
8 15 14 13 12 11 10 947 6 5 2 3 1 31) 

for which only 16 8 4 2 1 will be MARKed, and no 
other integer SET. 

2.1.0.1 The work done by PRE MARK 

The total cost of 'PREMARK is 0 (n log n). since USORT is 
not otherwise needed. But how much work does 
PREMARK save? That is. how much work would have been 
required in PART to solve equations solved in PREMARK? 
Assume that evaluation of a -term in an -equation. and 
comparison of its value with the current min value of the 
equation is 0 (1); the question then reduces to: How many 
evaluations of terms are rendered unnecessary by 
PREMARK? 

The previous 'example shows that the worst case is e (nl. 

. llog n J k 
since the number of evaluations saved is E 2 .2. which 

k=l 
is between nand 2n. But: what is saved on average? If 
the index of the first entry 'of· USORT is k. then no 

n 

searching is required for k,2k,3k, ... , lkJ * k. which. 

compared to original 0 (n 2
) algorithm accounts for 

n n 

k*E LkJ i = k * l:J * (l:J + 1) 12; 
i= 1 

together with any saved work from the induced permutation 
on {1.2.3 ...•• k-1}. Thus: 

Definition 2.1.1: Recur s i ve def i nit ion f or aver age 
work done by PREMARK: 

WORK (n)-[; n _ n 
, n=1 

n 

- E 2* lkJ * (lkJ+1) + WORK(k-1),n> 1. 
n k=l 

Proposition 2.1.2: WORK(n) = L::= 1 d (k) = e (n log n). 

Proof: We first show 
by calculus of sums and differences that 

n n 

t k* LkJ * (lkJ+1) = t 2k*d(k). k=l k=l 
(Clearly equal when n = 1. 

and manipulation of sums shows 
Ll(left-hand side) = Ll(right-hand side) for n > 1.) 

Induction then establishes that 

WORK(n) = E:= 1 d (k) . -which is 0 (n log n) by 

the previously cited result of Hardy and Wright 
[7]. 

Since the average work saved by PREMARK is only 
e (n log n) even in comparison to the original algorithm. and 
this is also its worst-case cost complexity. what are the 
reasons for its introduction? 
First. it is more e'fficient and somewhat helpful in 
constructing an incremental algorithm [1 1 J ; 
second. as we shall see in section 3.1. PREMARK handles 
monotone and nearly monotone -cost functions well. Its 

641 

own complexity will frequently be less than 0 (n log n) (in 
fact. 0 (n) if USORT is monotone. when PREMARK itself 
will be more productive); 
and. third. analysis of its properties provides an interesting 
application of certain techniques for determining average 
complexity. 

Some final comments: 

• First, if we are only concerned with the 
generation of LCP(n) for some fixed n, then: 

1. -Ifn has been SET in PREMARK. do not 
invoke procedure PART; this occurs 

d(n) 

with probability -. 
n 

2. If C is not an increasing function, then 
, any integer i < n whose cost cm is 

greater than or equal to C(n) can be 
eliminated from U before sorting, 

• Second. if um ~ U(j) for i I j. then j can be 
partitioned by i's, and cannot 'be simple; a 
modification of SORT could eliminate j from 
USORT. 

2.2 Analysis of PART 

For each i not SET during PREMARK, PART selects the best 
decomposition of i by examining the partition COl + SO-j) 

for each simple integer. j, less than or equal to 2. The 
complexity of the -procedure is therefore determined by, the 
number of integers SET in PREMARK and the sum for all 
integers not SET of the number of si mpl e integers less 
than or equal to half that integer. We have. seen that as 
few as log n integers may have been SET even though 
every integer may in fact be simple (the partition of 31 in 
example 2.1.1). Thus worst-case complexity is still 

o ((n - log n) *n) = 0 (n2
). 

In the given worst-case example, significant improvement 
may be realized by - using the observation that some 
partisand in the partition of j -must have unit cost no 
greater than j's (otherwise. j would be simple.) We could 
thus use an alternate. set 'of ,equations: 

S (j) = min {C (j) + S (j-i) }, 

where the min is taken over all i < j preceding j in 
USORT. However, the use of such an approach in general 
requires traversal of USORT for each i, and is clearly 

o (n2 l. not only in worst-case. but on average. We will in 
fact show that any algorithm using only the USORT 
permutation and pairwise comparison of partition costs 

must have worst-case complexity 0 (n2
) (see Section 3.2). 

The interesting consideration, therefore. is the average 
complexity of the algorithm. which relies on the 
determination of the average number -of simple integers. 
We will average on the (equally-likely) permutations of 
{1.2.3, .•• ,n} induced by USORT.INDEX,: and we will assume 
that every integer which could be si mpl e based on that 
information will be, although this need not in general be the 
case. (Su:h combi natoria! averaging techniques [22J have 
been used for complexity analysis in other, sharper settings; 
the bibliography by Slominski [20J cites 70 references.) 



Ex. 2.2.1: Simpl icity not fully determined by 
USORT.INDEX: 
If (2 7 3 65) are the first five entries of 
USORT.INDEX, then 2 must be simple, 6 (= 3·2) and 
5 (= 2 + 3) cannot be, but 3 and 7 might or might 
not be, depending on the particular values of C. 

Generalizing, for a given USORT.INDEX permutation 
(independent of the particular cost function C)' the integers 
MARKed in PREMARK must be si mpl e, an integer j 
following one of its partisand sets cannot be, and others 
are undetermined: they may be si mpl e for some cost 
functions for the permutation, and non-simple for others. 
In fact, it seems probable that for any integer knot 
MARKed in the PREMARK phase there is a cost function 
with the given permutation for which k is not simple, 
though this will not be possible for every subset of sllch 
integers. 

Ex. 2.2.2: Restrictions on non-sirtlple subset: 
Suppose 5 has the USORT.INDEX permutation (354 1 
2) and 4 is simple. Since any non-simple 
partition of 5 must involve 3, the only 
a 1 ternat ives are 3+2 and 3+1+1. But 3+1+1 is 
clearly less costly than 3+2, and if LCP(5) 
3+1+1 then LCP (4) = 3+1. CONTRAD I CT I ON. Thus 5 
must also be simple. 

Note that for any permutation 1 must be simple; and 2 
cannot be undetermined. Note also that if there are at 
least two si mpl e integers the second smallest (i.e., other 
than 1) must also be identified in PREMARK. Otherwise, 
essentially any behavior can occur: Given two disjoint 
subsets A and B of {2,3, ... ,n}, there is a permutation of 
[1. .n] so that every integer in A and no integer in B is 
simple. 

The heart of the improvement in average-case performance 
lies, as mentioned earlier, in determination of the expected 

number of simple integers less than a given 2, which in 
turn depends on the probability that each given integer j 
will be simp/e. Note that we also assume that "any integer 
which might be si mpl e for the given USORT permutation 
will be". We then need to determine an estimate for the 
probability that k might be simple, i.e., that it has not been 
preceded by a set of partisands which, possibly with 
repetitions, sums to k. 

In particular, we note: 

Proposition 2.2.1: k will not be simple if 
preceded in USORT.INDEX by: 

1. any divisor d of k 

2. any pair of primes m and n < k 1 /2 

3. any pair of numbers i and k -i. 

Proof: (2) Given any pair of relatively prime 
integers m and n, every integer larger than mn -
m - n can be written as a positive integral 
combination of m and n [7, 19]. 

We model only the third constraint, which appears to 
dominate in practice. Let 
f(m) = the probability that a distinguished element * occurs 
before both elements of any of m pairs (a., b.l in a random 

J J 
permutation of those 2m+ 1 elements; and let 

642 

Simp(n) be the probability that n may be simple for a 
random permutation (i.e., that there is some cost function C 
with the· given USORT.INDEX permutation for which n is 
simple). Then: n 

Si mp (n) :S f( L -J) . 
2 

n 
This follows directly if n is odd; for n even, if - occurs 

2 
before n, then n is clearly not simple, so that Simp(n) is 

n 
even less than it would be if - had to match a paired 

2 

element. 
following 
inequality: 

Our main theorem 
combinatorial lemma, 

Lemma 2.2.1: f (n) :S 

Proof: See [11]. 

1/2 
n 

then follows 
related to 

from the 
Chernov's 

Theorem 2.2.1: The PART algorithm has average 

complexity between 0 (n log n) and 0 (n
3

/
2

). 

Proof: The average number of simple integers 
less than i is at least log i, since the PREMARK 
phase MARKs an average of log i integers, and is 

certainly no greater than 
I 2TI 

L Simp (j) < L (L - J) 112 "" 2· (TI;) 1/2 

j= 1 j= 1 j 
by the integral test. 

Thus the average complexity of 
the algorithm lies between 

n n 

L log i and L 2· (TIL2J) 1/2, 
i= 1 i= 1 

which are 0 (n log n) and 0 (n3
/
2

) respectively. 

Also note that each integer i will be si mpl e with probability 
1 

no less than - (since that is the probability that, in the 

induced permutation on [1 .. i], USORT [ 1] .INDEX = i). Thus, 
at least k 1 

L - = 0 (log k) 
i= 1 i 

integers less than k will be simple on average, which 
would also show a minimum average complexity of 
o (nlog n). 

Note that this ignores the contribution of the PREMARK 
algorithm, but section 2.1 shows that PREMARK will not 
make a significant improvement on average. Nonetheless, 

k 
the approximation of Simp(k) by f( L -J ) can be seen 

2 
numerically to be a large overestimate. 

2.3 Analysis of PRINT 

We first show that LCP(n) will be printed in non-decreasing 
order. Consider the data structure (Fig. 1-1): If the 
condensed equation' for k is S(k) = aC(j} + S(r), then 
A [k] .FIRST = j, A [k] .NUM = a, and A [k] .NEXT = r. Since, 
for j be an element of LCP(k) we must have that 
LCP(k) - {j} is a least-cost partition of k - j, we have: 



Prop'osition 2.3.1: At the end of the LCP 
algorithm, A [k] .FIRST is the smallest integer in 
LCP(lc). 

Proof: If A [k].NEXT = 0, then only one integer 
occurs in LCP(k), and the result is clear. (In 
particular, this occurs if k is simple or if k was 
SET in PREMARK). 
So assume at least two distinct j occur in 
LCP(k). For each distinct j in LCP(kL j is simple 
and LCP(k) - {j} is a least-cost partition of k- j. 

However, the recursive line of the definition of 
LCP must have been invoked for k, and must 
have selected some integer less than k (since k 
is not si mpl e), and so must certainly have 
considered the smallest integer actually occurring 
in LCP(k). But if the smallest was considered, it 
must have been selcted, since LCP chooses the 

smallest at each step. 

Corollary ,2.3.1.1: LCP(k) is generated in non
decreasing order. In particular, all occurrences 

. of a given integer are consecutive, and therefore 
condensed. 

In fact, this demonstrates that 

Corollary 2.3.1.2: Among pc.-titions of n with 
equal and least cost, the LCP . Igorithm chooses 
the first in lexicographic ordE. (when listed in 
sorted increasing order). 

However, any partition of n, given in non-decreasing order, 
whether a least-cost partition or not, can be printed by the 
PRINT procedure outlined in time proportional to the 
number of distinct integers (partisands) therein,. i.e., to its 
reduced height. We therefore have: 

Proposition 2.3.2: 
1. No partition of n, whether a least-cost 

partition or not, has reduced height 

~ (2n) 112. 

2. If Sand T are two sub-multisets of 
LCP(k), disjoint as sets of partisands, 
then 

1:s E 5 s ;t 1:t E Tt. 

3. If a l' a2, a
3

, and a 4 are distinct elements 

of LCP(k), then a ,-a
2 

;t a
3 

-a 4' In 

particular, differences between 
consecutive distinct integers in LCP(k) 

cannot take on the same value more than 
twice. 

4. The reduced height of LCP(k) is at most 
log2 (k + 1). Thus the complexity of 

PRINT(k) is a (log k). 

Proof: 

1. Let P be a partition of n, in which each 
of k distinct integers aj' 1 ~ i ~ k, is 

repeated nj ~ 1 times. Then 

k k k k (k+ 1) 
n = 1: n.a. ~ 1: a. ~ L =---

i= , 
I I I 

2 i= , i= , 

643 

But then k < (2n) '/2. 

2. If the total cost of S ;t the total cost 
of T, then the cost of LCP(k) could be 
lowered by replacing the more costly 
with the other. If total costs are equal, 
then by Proposition 2.3. 1, . the one with 
the smaller least entry would have been 

chosen. 
3. Else a,+a4 = a2 -+-a3· 

4. Let r(LCP(k)) = R. 

Then each of the 2R_1 non-empty 
F1 

subsets of {aj} i=' must sum to distinct 
R 

integers, of which k ~ L
i
= 1 a

j 
is the 

largest, whence k ~ 2R
-1. 

Thus the number of distinct integers in 
LCP(k} is at worst a (log k), whence 
likewise the complexity of PRINT(k). On 
the other hand, it is clear that 

[
1,a=i for some i 

C (a) = . 
co , otherwise 

gives LCP(2r -1) = 1,2,4,8, ••• ,2r
- 1, which 

has R = log2(k+l). 

Corollary 2.3.2.1: Determination and printing of 
the LCP's of all integers from 1 to n is of 

worst-case complexity 0 (n
2

) , and average 

complexity at worst a (n3/2
). 

Proof: Determination of LCP(n) determines in 
the process the LCP of all smaller integers. 
Printing these LCP's has complexity 

n 

1: a (log k) = 0 (n log n) < a (n3/2
). 

k=l 

Thus LCP(n), seen as an algorithm determining and printing 
the LCP's of all integers between 1 and n, determines n 
'pieces of information' and outputs them in no worse than 

a (n2
) time. 

3. FURTHER ANALYSIS OF THE 
ALGORITHM 

3.1 The effect of monotonicity assumptions 

When unit costs are monotonic or nearly monotanic, 
PREMARK becomes important, and the order of complexity 
of the LCP algorithm is lowered significantly. This occurs 
most dramatically if strict monotonicity holds, in which case 
this follows directly: 

Proposition 3.1.1: If U is monotone increasing, 
then only 1 is MARKed, and everything is SET in 
PREMARK, and the complexity is thus a (n). If U 
is monotone decreasing, then everything is 
MARKed in PREMARK, and the complexity is 
likewise a (n). 



What if U is monotonic except for essentially 'random' 
fluctuations? We show most of the savings available from 
monotonicity still apply in many cases. 

Definition 3.1.1: A func t i on f is nearly monotonic if 
there exist positive real constants a and b so 
that f(m) ~f(n) for allm~a'n+b(orf(m) $.f(n» for all 
such pairs m and n. f is almost monotonic if a can 
be taken as 1. We will use terms such as 'almost 
increasing' and 'nearly decreasing' in the obvious 
sense. 

Proposition 3.1.2: If U is a/most i ncreasi ng with 
constant C, then 

1. no more than the first c integers can be 
simple, 

2. on average, fewer than c 1/2 will be, 
r. 

3. at least L -J integers, and an average of 
c • 

1 C n n log c 
-. L L-J = 0 (--), 
C k= 1 C c 

integers will be SET during PREMARK. 

Proposition 3.1.3: If U is almost i ncreasi ng 

with constant c, then the average complexity of 
the entire LCP algorithm is at most 

1/2 log c o (max (n log n, c • n (1---) ) ) . 
c 

Proposition 3.1.4: If U is known to be almost 

increasing a priori, and c is known, then, then 
the complexity of the SORT phase can be 
reduced from 0 (n log n) to 0 (c log c). Thus 
the complexity of the LCP algorithm is 0 (nc) at 

worst. and 0 (nc 1/2) on average. 

The situation for nearly i ncreasi ng functions is almost as 
good: 

Proposition 3.1.5: If U is nearly increasing 

with constants a and b, then LCP(n} has average 
complexity at most 0 (max (n log n, (a+ b) 1/2. n) ) 

Functions which are essentially decreaSing, however, are in 
most cases not so well-behaved: If U is almost 
decreasi ng with constant c, then U (m) $. U (1) for all m > c, 
and, for any m, at least one of {m,m+ 1 ,m+2, •.• ,m+c- 1} 
must be MARKed in PREMARK. However, the only non
simple integers which could possibly be SET in PREMARK 
are integers less than 2c. 

Proposition 3.1.6: If U is almost decreasing 
with constant c then: 

1. If PREMARK always leaves at least one 
integer between m and m + c unMARKed 
for each m ~ c, then PART(n) has 

complexity between 0 (('!..) 2) and 0 ( (n) 2) 

c 

2. In such a case, PREMARK saves at least 

work 
C 

implementation 
PREMARK. 

over the efficient 

of PART without 

644 

Consideration of Example 2.1.1, restricted to n = 30, 
shows that nearly decreasing functions with a~2 can 
exhibit very nearly worst-case behavior. However, if a and 
b are known a priori, and a < 2, then the algorithm 
suggested for that example at the beginning of section 2. 1 
will be more efficient than PART; a related algorithm may in 
fact be more efficient for many cases in which all that is 
known is that U is nearly decreasing. The corresponding 
set of equations formulation for an almost decreasing 
example with known c would be: 

Definition 3.1.2: Leas t -cos tal gor i thm for almost 
decreasing functions: 

5 (k) = C (k) 

min {min {C (i) +5 (k-i)} L2J 
i= 1 

,k=l 

C(k) } 

,2$.k$.2c 

min {min {C (k-i) +5 (i)} C , C (k) } 
i= 1 

. , 2c<k. 

Proposition 3.1.7: Assume U is al most 

decreasi ng with known constant c. Then the 
algorithm of definition 3. 1.2 gives a least-cost 
partition for each integer k and has worst-case 
complexity 0 (0 (PREMARK) +nc). 

Two final comments: 
• First, the initial phases of the algorithm need 

not be used, if SORT is not required to 
discover monotonicity; 

• Second, we still need not consider non-simple 
trial partisands. 

Further, there exists an elementary 0 (n) algorithm for 
determining whether a sorted list of unit costs is almost 
monotone with an arbitrarily specified parameter c. 

3.2 Minimum complexity of an LCP algorithm 

It is clear that any LCP algorithm will have to examine all of 
the input at least some of the time, since anyone integer, 

n 
and any pair of integers less than -, can occur in LCP(n} 

2 

for some cost function C, whence any LCP algorithm is at 
least 0 (n). 

Further general analysis is difficult (since, for example, 
there exist sorting algorithms in restricted domains more 
efficient than 0 (n log n), if operations are not restricted 
to key comparison and swapping [9]). We can however 
show a lower bound on minimum complexity for any 
algorithm which prOceeds by computing and comparing the 
costs of partitions in order to attain' least-cost partitions 
for integers 1 $. k $. n, even if the array USORT.INDEX 
can also be used. 

Ex. 3.2.1: 0 (n 2
) best-case partition. 

Let n = 4m + 1, and USORT. INDEX 

2m, 2m-1, 2m-2, .•• ,3,2,1,2m+1,2m+2, ••• ,4m,4m+1. 

Then each integer from 1 to 2m is simple, but only 
4m is otherwi se SET by a PREMARK-type prepass 
(actually 4m-1 = 2m + (2m-1) is also known, but 



this is irrelevant, as we wlll show that no other 

LCP could be) • 
m 

S (2m+1) = min {C (i) + C (2m+1- i) } i= 1 ' 

where each of the alternatives must be considered. 
Suppose the partition selected is (1,2m). Then 

m+1 
S(2m+2) = min{C(i) + C(2m+2-i)}i=2 ' 

and again each of the possibi 1 ities must be 
cons i dered. Aga in suppose (2, 2m) is se 1 ected. 
Continuing in this fashion, we must consider 

m + m + (m-1) + (m-1) + (m-2) + ••• + 2 + 2 + 1 

2 
n 

= m (m+1) - 1 = 0 (-) different terms 
'6 

to determine LCP1s of i~tegers 2m+1 through 4m. 

But determination of LCP(4m+1) requires 

consideration of each possible decomposition 

C(j) + S(4m+1-j), for 1 ~ j ~ 2m, 

so that all these o (m
2

) possibilities are 
considered by the algorithm. 

To establish the lower bound, the possibility of a cutoff in 
the evaluation of the SO) must be ruled out. We can 

however show: 
Proposition 3.2.1: Given any pair of integers i 

2m+j 
and j with 0 < j ~ i ~ L--J, there is a cost 

2 

function C. with the USORT.INDEX permutation 
I,J 

of the example above for which the LCP of 
each 2m+k, k :t j, is {k,2m}, and for which 

LCP(2m+ j) is {i,2m+ j-i}. 

Theorem 3.2.1: Let AP be an algorithm which 

determines least-cost partitions for each integer 

from 1 to n, using only ranking of the costs or 
unit costs of using integers, and comparison of 
the cost of partitions with each other or with a 
current minimum. Then the worst-case 

complexity of AP is at least n (n 2
) 

Proof: For n = 4m+ 1 fixed, each of the cost 
functions of proposition 3.2.1 has exactly the 
same USORT.INDEX permutation and the same 

2 
n 

But if any of the 0 (-) COST permutation. 
'6 

terms of the example is not examined by AP, 
say C(i) + C(2m+ j-1L there is a cost function C1.J 

.for which that would have yielded the least cost 

partition of 2m+ j. 

The example appears also to demonstrate a minimum 

o (n2 ) bound on the complexity of an algorithm which 
finds the LCP of n alone. 

3.3 The LCP algorithm and the least-cost partition 
equation set 

The techniques used to achieve reduced con:plexity in the 
LCP algorithm of definition 1.2.4 are most easily understood 
through consideration of the dependency graph and 

equation set [15J of the least-cost partition problem. The 
direct implementation of the initial algorithm of definition 
1.2.1, instantiates the solution of an equation set with 
acyclic dependency graph [12, 15J. The savings of the 
LCP algorithm are threefold, namely: 

1. the use of PREMARK, 
2. the restriction to simplicity, and 
3. the condensation of the equations as created 

for PRINT; 

the use of the data structure (Fig. 1- 1) makes possible the 
incorporation of all three improvements. 

3.3.0.1 The use of PREMARK 

Consider a system of "linear" equations in the form: 

O(k) = (R(i,) +O(j,» -I- (R(i2) +O(j2» ... -I-C(kL 

in which all R values are non-negative and whose 
dependency graph is acyclic. We call such a system an 
acyclic min-sum equation set. We can prune the 
equation set by dynamically determining the minimum 
constant and setting the corresponding value equal to that 
constant. The difficulty lies in the cost of updating 
information. Note, however, that any term in an equation 
of this type whose coefficient R is larger than the current 
constant (the updated C) of that equation can be discarded. 

The work done by PREMARK can be seen, in some sense, 
as· related to the above; it too discards equations based on 
constant and coefficient terms; it is also related to the 
minimum constant principle [15J and the solution procedure 
for triangular matrices/acyclic dependency graphs. 
However, PREMARK does not attempt to solve the entire 
system, but merely applies an initial step, with some 
additional dividends: Not only are the equations in which 
the initial constant dominates eliminated, but also some of 
those in which substitution of those initial constants will 
yield solved equations. PREMARK can thus be viewed as a 
standard technique for solution of equation sets, slightly 
extended, or as a technique applicable to min-sum 
equations, significantly restricted. 

The resulting simplification of the equation set, though 
sometimes of small value, is sometimes very significant, at 
the cost merely of an inexpensive single 0 (n log n) sort 
of the data, without any updating of numerical values. Both 
this efficiency, and the extension to the integers SET, 
appear to depend heavily on domain structure, namely, the 
divisibility structure of the integers. Further, PREMARK is 
not quite an instance of the minimum-constant solution 
technique, relying on unit cost rather than cost. Integers 
marked simple in PREMARK need not have minimum cost, 
and PREMARK does not involve direct application of a min
op equation solution principle. Rather, the operation used 
by PREMARK is convex combination: 

i j 
U (i + j) = -U (i) + -U (j) I 

i+j i+j 

645 

and simplification relies on the fact that in S(kl, the term 
C(i) + SO) has j = k - i. 

The utility of similar techniques would appear restricted to 
situations in which domain knowledge makes such a prepass 
or solution method as cheap to apply as in the least-cost 
partition problem, or as effective as we have seen it to be 
in the case of nearly-monotone unit cost functions. In 
general. we would like the cost of the prepass to be less 
than the average cost achievable by the algorithm without 



prepass, and to save on average an amount of work at 
least comparable to its cost. or else to be of particular use 
in situations actually likely to occur; three tests we have 
seen to be met by PREMARK in the least-cost partition 
problem. 

3.3.0.2 The restriction to simplicity 

The restriction of terms of the min operator to simple 
values, on the other hand, corresponds to the elimination of 
colun:ns (corresponding to non-simple integers) in the 
equation-set 'coefficient' matrix. This is related to the 
elimination of terms· whose coefficient is dominated by the 
c?rresponding constant, but does not appear to follow 
dl~e~tly. from such a procedure. In effect, it proposes 
elimmatlon of terms whose eventual value will certainly be 
dominated by the eventual value of some other term 
whose id~nti.ty and value. however may still be uncertain: 
perhaps It IS most satisfactorily viewed as a use of 
comparabi I ity [15J. The availability of this refinement 
appears to depend highly on the nature of the partition 
pr~blem and on properties of the integers; related 
refmements would also appear to be strongly conditioned 
on detailed domain knowledge. 

3.3.0.3 Condensation of equations 

Finally, condensation for PRINT can be viewed as partial 
solution of equations set aside for back-substitution; the 
economy arises' from the propagation of these partial 
results and the assurance that a significant amount of such 
condensation will occur. Similar complexity savings from 
partially solving equations, though occurring differently and 
at a different pOint in the solution procedure, underlie 
improvements on Gaussian elimination and Allen-Cocke 
interval analysis in program data-flow analysis 

[ 1, 5, 8, 16, 18J. Although such saving too is domain
dependent, its applicability appears fairly wide, and some 
consideration of the possibility of such condensation of 
partial solutions may frequently repay investigation. 

3.3.0.4 The data structure of the LCP algorithm 

The data structure created can be viewed as a multiply-. 
threaded list, linked not only by the integer-successor 
relation, but with each k linked to some i [with LCP(k) = 
FIRST·NUM + LCP(i)], and each simple j linked to the 
si mpl e integers preceding and following it. 

The INDEX and COST fields are inherent in any dynamic 
programming algorithm for a knapsack -type problem, 
although the INDEX field simply repeats address information. 
PREMARK initializes some portions of this data structure, 
and the MARK and SET fields allow for the graceful merge 
of PREMARK information with information being developed 
by PART. NXTMK allows access to the si mpl eli st at a 
cost proprtional to its length, and is needed for average
case improvement. The FIRST, NUM and NEXT fields are 
used for condensation and thereafter by PRINT (although 
anyone of them could be computed on the fly from the 
other two), and their presence is responsible for the 
Improvement in the efficiency of the PRINT routine. 

[lJ 

References 

F.E. Allen, J. Cocke. 

A program data flow analysis procedure. 
CACM 19:137-147, 1977. 

[2J R. Bellman. Dynamic programming. 

Princeton University Press, Princeton, N.J., 1957. 

646 

[3J V. Chvatal. Linear programmi n.Q. 

W.H. Freeman, New York, N.Y., 1983. 

[4 J V. Chvatal. Hard knapsack problems. 

Operations Research 28: 1402-1411, 1980. 

[5J J. Cocke. 
Global common subexpression elimination. 
In Proceedings of ACM SIGPLAN Symposium on 

Compi ler Construction, pages 20-24. July, 1970. 

[6J M. Garey, D. Johnson. 
Computers and intractability: a guide to the theory 

of NP-completeness. 
Freeman, San Francisco, Ca, 1979. 

[7] G. W. Hardy, E.M. Wright. 
An introduction to the theory of numbers. 
Clarendon, Oxford, England, 1938. 

[8] M.S. Hecht. Flow analysis of computer programs. 
Elsevier North-Holland, , 1977. 

[9J E. Horowitz, S. Sahni. 
Fundamentals of computer algorithms. 
Computer Science Press, Rockville, Md., 1978. 

[ 1 0] T. Marlowe. Least-C~st Partition Algorithms II. 
in preparation. 

[ 11 J T. Marlowe, M.e. Paull. 

Least-cost partition algorithms. 

Department of Computer Science Technical Report 
DCS-TR-169, Rutgers University, New 
BrunS~jC?k" N.J., 1986. 

[ 12J T. Marlowe, M.C. Paull, B.G. Ryder. 

Applicability of incremental iterative algorithms. 
Department of Computer Science Technical Report 

DCS-TR-159, Rutgers University, New 
Brunswick, N.J., 1985. 

[13J G. Nemhauser. 

An introduction to probability theory and its 
appl ications. 

Wiley, New York, N.Y., 1966. 

[ 14 J C.H. Papadimitriou, K. Steiglitz. 
Combinatorial optimization: algorithms and 

complexity. 

Prentice-Hall, Englewood Cliffs, N.J., 1982. 

[15J Me. Paull. 

Algorithm design: A recursion transformation 
framework. 

Wiley, New York, N.Y., 1986. 

[ 16] Me. Paull, B.G. Ryder. 

A unified model of elimination algorithms. 
submitted. 1985. 

[17J E.M Reingold, J. Nievergelt, N. Deo. 

Combinatorial algorithms: theory and practice. 
Prentice-Hall, Englewood Cliffs, N.J., 1977. 



[ 1 8J B. G. Ryder. Incremental data flow analysis. 

In Conference record of the tenth annual ACM 
symposium o'n the principles of programming 
languages, pages 167-176. Association for 

Computing Machinery-SIGPLAN, January, 1982. 

[ 19J W. Sierpinski. Elementary theory of numbers. 
Hafner, New York, N.Y., 1964. 

[20J L. Slominski. 
Probabalistic analysis of combinatorial algorithms: A 

bibliography with selected annotations. 

Computing 28:257-267, 1982. 

[21J A. Tucker. Applied combinatorics. 

Wiley, New York, N.Y., 1980. 

[22J H. Wilf. 
Some examples of combinatorial averaging. 

American Mathematical Month/v 92:250-260, 

1985. 

I. EXAMPLE OF THE EXECUTION OF ALGORITHM LCP 

Ex. 1.0.1: Let n = 13, and the input C array be 
(9, 14, 24, 30. 33. 42, 46.9, 

64. 67.S, 72. 75.9. 87.6. 92.3). 
C(k) 

Comput i ng the U(k) = -, U = 
k 

(9. 7. 8. 7.5. 6.6. 7. 6. 7 • 
8. 7.5. 7.2. 6.9, 7.3. 7.1). 

and the stable SORT procedure gives USORT.INOEX = 
(5 • 7, 11. 2. 6. 1 3. 1 O. 1 2. 4. 9. 3 • 8 • 1). 

Applying PREMARK: 
In it i a 11 y. LEAST = 14. and j = S. Thus Sis 
MARKed and 10 is SET. and LEAS~ set to 5. 
Then neither 7 nor 11 is less than S, but 2 is. so 
s is MARKed and 4 SET. and LEAST set to 2. 
Finally, none of 6, 13. 10, 12, 4. 9. 3, or 8 are 
less than 2. but 1 is, so it is MARKed. 
See Fig. 1-3 for the appearance of the array A at 
this point. and Fig. 1-4 for the appearance of 
array A at the end of the algorithm. 

Figure 1-1: Execution of PREMARK 

Ex. 1.0.2: (Examp 1 e 1.0.1. cont i nued.) 
Stepping through the equation set with PART: 

5 (1) = C (1) = 9. (simple by PREMARK) 
S (2) = C (2) = 14. (simple by PREMARK) 
S(3) = min {cO), C(1) + 5(2)} 

= C(1) + 5(2) = 23. (3 is not simple) 
S (4) = 2· C (2) = 28. (not simple by PREMARK) 
S (5) = C (5) = 33. (simple by PREMARK) 
5 (6) = min {C (6). C (1) + S (5). C (2) + S (4) } 

= C (1) + S (5) = 42. (note tie-break i ng) 
50) = min {C(7). C(1) + 5(6). C(2) + S(5)} 

= cO) = 46.9. 0 is simple) 
5(8) = min {c(8). C(1) + 50) ,'C(2) + 5(6)} 

= C (1) + 5 (7) = 55.9. (not simple) 
S(9) = min {C(9), C(1) + S(8), C(2) + S(7)} 

= C (2) + S (7) = 60.9. (not simple) 
S (10) = 2' C (S) = 66. (not simple by PREMARK) 

647 

5(11) =min {C(11). C(1) +5(10). 
C (2) + S (9) • C (S) + 5 (6) } 

= C (2) + 5 (9) = 2C (2) + S (7) 74.9. 
(not simple) 

S(12) = min {C(12). c(1) + S(11). 
C (2) + 5 (10). C (S) + SO)} 

= C(S) + 5(7)= 79.9. 
S(13) = min {C(13). C(1) + S(12). 

C (2) + 5 (11). C (S) + S (8)} 
c(1) + S(12) = 88.9. 

Figure 1-2: Execution of PART 

(not simple) 

(not simple) 

APPEARANCE OF DATA STRUCTURE 

INO CST MRK SET NXM FR5 NUM NXT 

9 
2 14 

3 
4 28 

S 33 
6 
7 
8 
9 

10 66 
11 
12 

13 

o 
o 

o 
o 
o 
o 
o 
o 
o 
o 

1 

o 

o 
o 
o 
o 
o 
o 
o 
o 

o 
2 

2 

5 

5 

2 

2 

o 
o 

o 
o 

o 

Initial values of fields labelled '-' are not used by algorithm. 

Figure 1-3: After PREMARK in Fig. 1- 1 

INO CST MRK SET NXM FRS NUM NXT 

1 9 
2 14 

3 23 0 

4 28 0 

5 33 1 
6 42 0 

7 46.9 

8 55.9 0 
9 60.9 0 

10 66 0 

11 74.9 0 

12 79.9 0 
13 88.9 0 

v 
V 

I 
I 
V 

I 
V 

o 
o 
o 
o 
o 
o 

1 

2 
1 

2 

5 
1 

7 
1 

2 

5 
2 
2 

o 
o 

1 2 
2 0 

o 
5 
o 
7 

1 7 
2 0 

2 7 
10 

12 

The' NXTMK field: 1 points to 2, which points to 5, 
which points to 7, which points to O. All other 
NXTMK fields are insignificant since the corresponding 
integers are not simple. LASTMK, the last 
simple integer seen to date is currently set at 7. 
Current scans for LCP trace the simple list up to 
5, but would include 7 if S( 14) were to be computed. 

Figure 1-4: After PART in Fig. 1-2 



A POLYNOMIAL DETERMINATION OF THE MOST RECENT PROPERTY 

IN PASCAL-LIKE PROGRAMS 

Dieter Armbruster 

Univers:ity of Stuttgart, Institut fur Informatik. 

Azenbergstr. 12, 0-7000 STUTTGART 
W est- Germany 

o. ABSTRACT. 

If a compiler knew which procedures (or functions) of a pro
gram fulfill the most recent property it could produce more 
adequate code. This stands in contrast to the prevailing ta
cit worst case assumption on the non-most-recent behavior of 
those' procedures being passed as parameters (for all other 
procedures this property holds trivially). This old and well 
known phenomenon will attract new attention with the deve
lopment of new computer architectures - such as RISC. 

We present a method which is polynomial in the program 
length for deciding this property in Wirth-Pascal-like pro
grams by explo:lt.ing the inherent restriction concerning for
mal procedures. It is this restriction that enables us to 

1. reduce (polynomia.1Jy) the most-recent problem to a 
reachablltiy problem for certain procedures and 

2. solve this reachability problem with the polynomial 
algorithm which we present. 

This polynomial result for such programs is rather unexpec
ted since for programs in slightly less restricted languages 
,like ISO-Pascal the problem is still decidable but with a 
complexity as bad as P-space complete. 

1. INTRODUCTION 

As new computer architectures emerge, especia.1Jy'those with 
reduced but faster instruction sets (RISC [PA8S]), the use 
'of knowledge about the run time behavior of procedures (and 
functions) in block structered languages like Pascal attracts 
new attention. H'hi1e for the present comfortable (but slow) 
microprogrammed ,machine instructions (e.g. for a subroutine 
call) it ,does not seem to be promising to distinguish bet
ween most.recent (mr) and non-mr or recursive and non-recur
sive procedures, this situation changes for reduced, uncom
fortable (but considerably faster) instruction sets, since 
these call for very sophisticated code optimizers. This means 
that a general worst case assumption on the run time beha
viour of procedures (i.e. being non-mr resp. recursive) can 
no longer be afforded. 

Now, we give (informal) definitions of the necessary notions: 
We say that a procedure Pis_ actually m r (i.e. it fulfflls 
the most recent property) iff 

- P is declared, locally within procedure Q (Q is the 
static predecessor of P, Q=SP(P) ) and 

- in the run time stack which consists of the frames 
( =activation records) of the called 'but not yet ter
minated procedures the static pointer of p' s frame always 
refers to -the downwards closest - :Le. most recent -
frame of Q. 

CH2345-7/86/0000/0648$Ol.OO© 1986 IEEE 
648 

A program is said to be ~ iff -every ,(nested) procedure in 
it is so. 

The non-mr-ness of the following 'Pascal-like p.rogram frag
m ent is revealed by looking at p' s static 'chain in the snap
shot of the run time stack which was taken after the exe
cution of several recursive calls of Q and during the subse
quent callzO, (i.e., Some Cond was false). If P now refer
enced some varlables lOca1to Q, they would be located in the 
second frame of Q (from top), not in the most recent one. 

program PROGj 
procedure Q( z! proc() 

begin 
procedure PC) begin ••• end 
if Some Cond then Q(P)j 
Z()j - --

end 
QWj 

Fig. l.a: A non-mr program fragment with 
snapshot of run time stack. 

Unfortunately this actual property is in general unsolvable 
- even for I/O-free programs (because of the ab:llity of such 
programs to simulate any Turing machine). We thus have to be 
content with an approximation called formal most recent pro
p erty which is defined on the forma:r-e;recution tree of a 
program schemes [W18 2. lA73] rather than on the runtime 
stack (see below). 

In such a scheme (we will call it nevertheless a "program") 
all data, labels, and the related statements are _ removed (to 
provide a better decldability basis) leaving only (arbitra
rily nested) procedure declarations with parameters of type 
procedure and statement parts (body minus local procedure de
clarations) with zero or more call statements (see Fig.l.b). 

If Q = SP(P) (P local in Q) then every call to Q generates 
a modified copY of the declaration of P by replacing those 
global formals in the body of P which are in Q' s parameter 
list by the actuals of this call, according to the copy rule 
of block structered languages. We will distinguish among 
those copies by appending a superscript s~O to P. Now, scan 
be interpreted as a static point~r to the call of that copy 
of Q that generated this copy P of P. 

The static sequence of the call statements within a proce
d ure is made irrelevant by considering them simultaneously, 
i.e. each call in the statement part of procedure A creates 
node (Xi+l on level i+l as successor of node <Xi=A( •• ) on 
level :L The label of this successor node is formed by 
replacing all formals in the call statement by non-formal 



names of copies of procedures - according to the semantics 
of Algol or Pascal. Starting this construction wfth the 
outermostparameterlessprocedure (Xl =PROG (mafnprogram) we 
end up wfth a (possibly infinite) formal execution tree 
E{PROG) of our program{-scheme) PROG: 

PROG: 
( procedure A() 

procedure Q{z: 
procedure 

] 
Q{A) 

Q{P) 
z() 

( ] 

proc{)) 
PO ( 

Fig.lb: The non-mr program{-scheme) of Fig.la 
and its formal execution tree. 

We say further that a procedure P in PROG is formally 
reachable (recursive) iff there is a, branch in E{PROG) 
which begins at PROG and along which an arbftrary copy p" of 
P is called at least once (twice). ( " denotes a "don It 
care" static pointer.) 

A procedure P formally calls procedure Q iff there exists 
a subbranch ( •• , P ( •• ), '., Q ( .. ), •• ) in E{PROG). 

Now, P is formally mr iff 
the subbranch between each 
call to pql on level p and 
its static predecessor Q" 
on level ql contains no 
other call to a copy Q". 
Obviously, P in fig~lb 
is not mr. 

ql: Q"{ •• ) 

q2: Q "( •• ) 
(this node makes 

to be not mr.) 

p: 

It should be clear by now that formal mr-ness implies the 
actual but not vice· versa (the call that destroys formal mr
ness may never get actually executed!). 

By ressorting to this approxi.mation, what do we: win as to 
decidabillty? 

The answer depends on the mode depth MD (~ype depth) of- the 
procedure names. In fig.1, MD{z)=l, because the call"zO" 
has no procedure as parameter. If the call would have read 
"z{P)", then MD{z) would be 2, since MD{P)=l. The specifier 
of z would then look like "z :proc{proc) )". In general: 

The mode depth of a formal or non-formal name x which has 
no parameters when being called is defined to' be 1. Then, 
inductively, the mode· depth of a name y which is called as 
y{.oXj'.) is MD{y) = max{ MD{xj) )+1, and MD of a ,program 
PROG is MD{PROG). = max{ MD{Pi ) ), wfth Pi being the proce
dure names. 

For f:fn:fl:e mode (=FM, e.g. ISO-Pascal [lWS1]) programs-.' 
MD{Pi) is finite, whereas for' FM2 (e.g. Wirth-Pascal) pro-

649 

grams MD(Pi)!O 2. 

Note that in FM -programs all formal parameters can 
therefore be specified completely, as is- done, for 
example, in ISO-Pascal. Thus, a call like P(P) which is 
legal in an inf:fn:fl:e mode allowing language (e.g. 
Algo160) would be syntact.ically illegal in a finite mode 
language, since the formal parameter of P cannot be spe
cified completely (without resorting to recursive types). 

We can now give a brief survey of the history of the mr
phenomenon, thereby answering our still open question on the 
d ecidabillty: 

In the sixties it was widely, (erroneously) believed (at 
least by Dijcstra) that the static link of an activation 
record points "to the most recent ••• activation of the 
first block that lexicographically encloses the subroutine" 
[D16 7], :Le., that every block -structured program is mr. 

In 1972, McGowan pointed out this "most recent error" and 
showed the advantages of a mr-based runtime stack organiza
tion with all static pointers being redundant. Furthermore 
he gave a rather coarse sufficient condition for a compller 
to determine whether a program is actually mr [MG72]. 

In [KA74] ft was shown that formal mr-ness of a program is 
decidable. - even for infinite mode programs - which is asto
nishing if contrasted wfth the negative result for . formal 
reachabillty of procedures in infinite mode programs [LA73J. 
(For finite modes formal termination and hence both, formal 
reachabillty and recursivity is decidable [DFl9.,Affi sJ 
though with complexfty "complete in deterministic exponen
tial time" [M E8 sJ .) 

As a consequence, formal mr-ness of a particular procedure 
P which is based on the reachabillty of copies of P is also 
undecidable in infinite mode programs. The posftive resulJ: 
for programs is quantified in [W183] to be unfortunately' no 
better than P-Space complete for' both finite and infinite 
mode programs. 

However, we obtain a more encouraging resulJ: - namely a 
polynomial one - as shown in the sequel, if we restrict our
selves to .. MD !O 2. e.g. to Wirth-Pascal, where a formal pro
cedure call can no more have actual parameters (remember, 
the only parameters we deal wfth are of type procedure) 
whereas a non-formal call can have formal and non-formal 
actual parameters - as before. 

Now, what is our problem? 

If we want to know' whether P local to Q is mr we have to 
check the formal execution tree for a non-mr situation as in 
the definition. But how deep do we have to search for it? 
F M2 -programs reward us with a pleasant property which we 
will call "permeability" (section 2), that allows us to call 
off the search on a branch after having encountered. pq , 
where q is the level of the first call. to a copy of Q on 
that branch. In section 3 w,e present a transformation that 
reduces the question for mr-ness of P to a reachabillty 
problem, which is solved in section 4 by an 0(n3) algorithm. 
(Whenever possible we omit the attrlhlte "formal".) 



2. PERMEABLE PROGRAMS 

Consider the following figure with MD(EXAMPLE2) = 3: 

EXAMPLE2: 
( procedure Q(x,y: proc(proc(),proc(», 

procedure P() ( ) 
x(P,z) 
Q(y,x,P) 

procedure A(t,u: proc(» 
procedure B(v,w: proc(» 
procedure C() ( ) 
Q(A,B,C) 

( uO 
(vO 

z:procO) 

3: 

4: 

5: 

6: 

Fig.2: A non-permeable program with MD(EXAMPLE2)=3. 

1 1 1 Whlle call node 2: Q ( •• ,C ) has C (), its third actual, as 
successor this is not true for 3: Q 1 ( ••• ,P2).This poss:ihle 
"constipation" for MD2:3 is the reason for the exorbitant 
intractability of all interesting calling behavior problems. 
Therefore we exclude it for permeable programs: 

Definition: If the i -th actual of a call to an arbitraray 
copy of a procedure Q is applied (i.e. either called or 
passed on as parameter) further down on a branch of the 
tree, then in a permeable program the i-th actual of any 
other (possibly different) copy of Q is applied as well 

This - at first glance - exotic and arbitrarily defined pro
perty is inherent to all FM2 programs - as can be proven by 
means of the following lemma which says that if we reach pt, 
which has its static link passing via CXq (we write t=-+q?.' af
ter a call to an arbitrary copy of Q at level q (cxq= Q ( •• », 
then we have an analogous situation for any other call 
cxr = Q •. ( •• ) elsewhere in the whole tree: 

Lemma 1: Let P and Q be procedures in program PROG with 
MD(PROG):S2. If there exists in E(PROG) a 
subbranch (omitting parameter lists) 

B = (cx -Q"-AOaO cx -A ai cx -A an cx -p-+q) q- - ,' •• , q+i- i , ... , q+n- n , p-
with p=q+(n+1), n2:0. and there exists further a 
node cxr = Q ", then 

(1) there also exists a subbranch 

B'= (cxr=Q"=BObO, ' •• , CXr+i=Bibi, ••• , cxr+n=Bnbn, CXp'=P-+~ 
with p' =r+(n+1), 

(2) Ai = Bt, i=O •• n, and 

(3) if aj=-+q, then bj=-+r, j= l •• n. 

Note: The existence of cxp and cxq implies: 
q: Q .. ( •• ) = Spk(p-+q), k=p-q, and hence Q = Spk(p). 

The proof is a lengthy induction on the procedures A 1, •• , 
An between Q and P, following the construction rules for the 
tree. (The complete proofs of the lem mata and theorems would 
not fit into this paper; they should appear elsewhere). 

Lemma 1 is used in Theorem 1 and in the next lemma: 

Lemma 2: Each program PROG with MD(PROG) :s 2 is permeable. 

Proof: We are given 
t a s a 

(cxq=Q ( •• A •• ), ••• , cxp = P ( •• ), cxP+1 = •• A •• ), p~, 
t' b 

and cxr = Q ( •• B •• ) in E(PROG), MD(PROG):S 2. 

We show that 
t' b 

(cxr=Q ( •• B •• ), s' b 
•• , cxp ' = P ( •• ), cxp ' + 1 = •• B •• ) exists. 

a b Let w be the formal being replaced by A and B in cx q and 
cxp resp. Then cxp+ 1 and cxp ' + 1 are created by the statement 

•• w •• in P according the two cases: 

- If w is locall¥ formal then P= Q, and w is simply repla
ced by Bb to bJild cxp+ 1. 

- Ifw is globally formal then s=-+q together with cx r form 
the hypothesis of lemma 1 giving us cxp '+l = •• Bb ••• 

We will make extensive use of this lem ma in the correctness 
proof of our algorithm in section 4 (of the complete paper). 

Now, let's look back to EXAMPLE2 in f18.2 which shows us 
that for programs with MD= 3 the non-mr-ness of a procedure 
(here P) is not necessar:ily re~aled by the first call to Q 
(in fact, here it is the second on level 3, the fourth on 
level 5, etc. on the subbranches •• -Q-Q-A-P. Of course, by 
enlarging the rotating parameter list of Q this event could 
be placed anywhere down the tree). 

This messy situation is cleared by the following theorem 
which assures that in FM2 programs non-mr-ness is detected 
using the first call to Q as reference: 

Theorem 1: Let P and Q be procedures of program PROG 
with MD(PROG):S2 and Q=SP(P). P is not mr 
iff there exists a subbranch in E(PROG) 

(1) B = ( ••• , cxeAi", .'., CXq1=Q", ••• , CX q2=Q", 

.", cxp=pq1, ••• ), 

(2) and Ai;e Q, OSi.<q1 <q2, An = PROG. 

Proof: The right-to-left direction is trivial (def:1n:it:ion of 
--- mr-ness). For the other direction -we only have to 

show (2) which is an application of lemma 1. 

It is this theorem that crunches the intractable (P-space
complete) complexity of the decision problem and makes it 
managable by means of the following sections. 

650 



3. TRANSFORMATIONS 

As a result of the previous section we can c~?centrate on 
the first call to a copy of Q in, say, aq= Q ( •• ) in each 
branch during our nondeterministic search for a non-mr 
situation. From aq on we look. for a second (recur~ve) call 
to Q ". It's only after such subsequent calls to Q that we 
are interested in the reachabi1ity of pq1 - a copy of P the 
static predecessor of which is aq1. 

Now, P is mr iff such a pq1 is unreachable. 

3.1 Reducing calling to reachabillty 

The key tool to achieve this is a reduction of the problem 
"does A call B?" to "is B' reachable?", since for reachabi
lity we have a pol¥nomial algorlthm. 

The reduction idea is simple: 

After having encountered a call to a copy of procedure A in 
a branch during a nondeterministic search through the tree 
we have to change some "state" in order to memorize this 
event and to be ready for any subsequent call to a copy of B 
(which would have beeen ignored up to now). To implement 
this state of change we duplicate each declaration of a pro
cedure Q( • .x •• ) to get the pair: procedure Q1 ( •• x1 •• , • .x2 •• ) 
and Q2( • .x1 •• , • .x2 •• ) on the same nesting level as Q. The 
call ids in the statement parts of Q 1 and Q 2 receive the 
suffix 1 and 2 resp., except for A1 which has only call ids 
with suffix 2. The actual parameterlists get duplicated ana
logously to the formal ones. Note that the mode depths are 
not changed by this transformation. 

Now, let's follow a branch BR and its transformed BR1, 
starting at PROG resp. PROG1: On our way to reach the first 
A" and A 1" all ids in BR 1 have suffix 1. It is directl¥ 
after A1" that the suffix switches to 2 and remains 2 for 
all successors of A1··. So, iff there is a call to B" in BR1 
we must reach B2 ". Now the function of the duplicated para
meterlists becomes clear: they make the •• 2 -procedures sta
t:ical1y available when needed. This transformation TA is 
specified as an attributed grammar in the final paper; here 
we demonstrate it by appl¥ing it to procedure P (i.e. Tp) in 
a didactical modification of the program in fig. 1 b: 

PROG: 
( procedure A(x) 

( A() } 

procedure Q(z) 
( procedure P() 

( P(z) } 

Q(A) 

Q(P) 
z() 

Fig. 3: PROG1 

PROG1: 
( procedure A1(x1 ,x2) 

{ A1 () } 
procedure A2(x2) 

( A2() } 

procedure Q1(zl ,z2) 
( procedure P1() 

( P2(z2) } 
procedure P2() 

( P2(z2) } 

Q1(P1,P2) 
zl () 

procedure Q2(z2) 
procedure P2() 

( P2(z2) } 
Q2(P2) 
z2() 

Ql(A1,A2) 

Tp(PROG) 

651 

Note: 1. We realize that within •• 2-procedures we do not 
need any •• 1 -names since they can never be used. 
Therefore we simpUfted the transformation which 
now yields a worst case (all n procedures in PROG 
nested in each other) of O(n2) procedures in PROG1 
- as opposed to O(2n). 

2. Sometimes we want to distinguish (for didactical 
reasons) between procedures bearing the same name 
(as a result of the transformation). We do this by 
appending to them - seperated by dots - the names 
of their surrounding procedures (inside out) until 
they become unique. 

We are now ready to make a theorem out of it: 

Theorem 2: Procedure A in program PROG (indirectl¥) calls 
procedure B iff 
B2 in PROG1 = TA(PROG) is reachable. 

Proof: The proof is a formalization of the mechanism: it 
takes an arbitrary branch BR and analogously constructs its 
transformed BR1 by induction on the different cases that 
may arise: a successor may be called by a nonformal, local 
formal, or global formal statement. Then, if we are about 
to construct a node in BR with a call to a copy of B -
after having previously constructed a node with a call to a 
copy of A, we are in BR1 within a •• 2-procedure and about 
to construct the node B2··( •• ). 

For the other direction, a branch BR1 containing B2'·( •• ) is 
transformed back to BR with the inverse transformation and, 
again by induction, it is shown that BR then must contain 
both, a call to a copy of A and B. 

3.2 Reducing mr-ness to reachabillty 

In order to look for the first occurence of some copy of 
Q =SP(P), we appl¥ TQ to the program to be a~zed: If then 
Q 2 is reachable, we know there exists (at least) a second 
(recursive) call to Q on some branch in the original tree. 

Now, we want to know whether this Q2 (indirectl¥) calls 
P2.Q1, i.e. SP(P2)=Q1, which would violate the mr-ness of 
P. This is accomplished by a second application of the 
transformation with respect to Q2, i.e. TQ2' which takes 
P 2.Q 1 into P22.Q 11 - if it shows up (the second "2" in the 
suffix stems from the fact that P2 is called after the suf
f:fx switching Q2 whereas the call to Q11 =SP(P22) occurs 
before Q2 which explains the second "1"). 
It should be clear by now, that and why the following 
theorem holds (s. fig.5): 

Theorem 3: Let P and Q be procedures in PROG, with 
MD(PROG)S2 and Q=SP(P). 
P is mr iff P22.Qll in PROGll 
TQ2 0 TQ(PROG) is unreachable. 



ql : q2: q3: p: pl : p2: 

Q A Q B Q pq1 pq2 pq3 

TQ: 
Ql A2 Q2 B2 Q2 P2 .Ql ql P2.Q2

q2 
P2.Q2

q3 

TQ2: 
Qll A21 Q21 B22 Q22 P22.Qll ql P22.Q21

q2 
P22.Q22

q3 

Fig. 5: Transformation of a non-mr situation in an execution 
tree (to be read from left to right). 

4. THE ALGORITHM FOR CALCULATING REACHABILITY 

We now need an efficient method to calculate the reachabi
l.tty of a specific procedure, preferably only by inspecting 
the program text - without constructing the execution tree. 
Such a method is well known and it computes what is someti
mes called the "potentially" reachable procedures. But 
unfortunately they form only a (less exact) superset of 
the formal reachable ones [KE74, WA76J. 

The method keeps a set of actuals for each formal para
meter X, being continuously updated during (in general 
several) passes through the program: wherever a new actual 
is found on the posit.ion of x it is simply added to the 
set. 

Since no static information is used it is little sur
prising that this method is less accurate than one 
operating on the tree. However, the following algorithm is 
based on the above described method, and yet it yields 
exactly the formal reachable procedures if applied to FM2-
(Wirth-Pascal-)programs (in fact it is only applicable to 
such programs). 

This means: for FM2-programs formal and potential reacha
bllity coincide! 

Let P be the set of procedures in program PROG, and 
X the set of all formal parameters in PROG, 

then I £. P x X is the insertion relation: 
A I x < = = > A is inserted for x. 

R £. P is the reachability relation: 
H..A) < = = > A is reachable. 

Step 1: Initialization (I and R 
arrays): I. R:= "false"; 

viewed as boolean 
H..PROG) := "true". 

Step 2: For all reachable procedures A, i.e. those for 
which li(A)="true", do: 

Step 3: For all statements stm in the statementpart of 
A do one of the following three cases depending 
on the form of stm: 

Step 4a: stm = B( •• D •• ), with the nonformal actual D 
on the posit.ion of y: 
H..B) := DlY := "true". 

4b: stm = B( •• z •• ), with the formal actual z on 
the posit.ion of y: 
H..B) := "true". 
QlY : = QlY v Q1Z, for all Q E: P. 

4c: stm = yO: 
H..Q) := H..Q) v QlY, for all Q E: P. 

Step 5: If R or I has been changed in step 2 then go back 
to step 2. 

Step 6: HalJ::. 

Complexity considerations: 

If n is the number of procedures in the program (= I PI), 
s the number of statements of the longest statement 

part, and 
f the number of formal names in the program (= I X I ), 

This yields an overall complexity of 0(s*f2*n3). 

The correctness of this algorithm is stated in our last 
theorem: 

Theorem 4: P is formally reachable iff R(P) holds. 

Proof: The left-to-right direction is shown with an induc
tion over a branch containing P"( •• ). While constructing 
this branch, we observe the changes that occur to I and R. 
The other direction uses an induction over the passes 
through step 4, where R and I are affected. 

Now we are ready for our final resulJ:: combining theorem 3 
and 4: 

Theorem 5: Let P and Q be procedures of a (FM2-)program 
PROG, with MD(PROG)~2. Q=SP(P) and 

Note: 

PROGll = TQ2 0 TQ(PROG). Then 

P is not mr iff RpROGll (P22.Qll) holds. 

If an original program has n procedures, then PROGll 
has at worst 0(n2*2) procedures. Since the transfor
m ation itself is essent::i.al1y a parsing mechanism with 
output (the transformation is implemented by means of 
solely synthesjzed attributes) it can certainly be 
done in O(n*f*s). Then R is calculat~d in 
o (s*f2*n4*3), i.e. polynomiaL 

However, if we restrict the nesting depth of proce
dures (to an arbitrarily hJgh limit), our transfor
mation will then yield only O(n) new procedures; a 
further restriction on the length of parameter lists 
a nd statement parts then allows to compute R in 
0(n3). 

5. CONCLUSION 

We presented a polynomial method that determines whether or 
not a procedure P behaves most-recently and - applied to 
all nested procedures - whether the whole program behaves 
so. Strictly speaking, we were dealing with the weak mr
property; an extension to the strong one (where mr-ness is 
required not only for the static predecessor but rather for 
all procedures in the whole static chain) is straightfor
ward but didactically less usefuL 

We do hope that these resulJ::s stimulate a reconsideration 
of an old phenomenon. 

652 



[AR8S] 

[Dna] 

[DIG7] 

[ISoal] 

[KA74] 

[KL74] 

[LA73] 

[MESS] 

6. REFERENCES 

D. Armbruster: On the Decidability of Weak/Strong 
Recusivity of Procedures in Pascal-like 

W. Damm, E. Fehr: On the Power of Selfapplication 
and Higher Type Recursion. 
In G. Aussiello / C. Bohm Eds., Automata, 
Languages and Programming, Udine, 177 - 191, 
1978. 

E. Dijkstra: Recursive programming, in 
Programming Systems and Languages, S. Rosen, 
McGraw-Hill, New York, 1967. 

ISO/TC79/SC5N: Specification for Computer 
Language Pascal, Third draft proposal, 
1981-11-04. 

P. Kandzia: On the most recent property of Algol
like programs. Lecture Notes in Computer 
Science, Vol. 14, 97 - 111, Springer Verlag, 
1974. 

P. Kandzia, H. Langmaack: On a Theorem of McGowan 
concerning the most recent property of 
programs. 
Fachbereich Informatik, Universitat 
SaarbrUcken, 19 S., A74/07, May 1974. 

H. Langmaack: On Correct Procedure Parameter 
Transmission in Higher Programming 
Languages. 
Acta Informatica 2, 110 - 142, 1973 

A. R. Meyer: Complexity of Program Flow Analysis 
for Strictness ••• 
Yet unpublished extended abstract, August 
1985. 

653 



MODELING AND MEASUREMENT ARENA 

Performance Modeling and Measurement 

TRACK CHAIR: Dr. Stephen Lavenberg 
IBM T. J. Watson Research Center 

The State of the Art of Capacity 
Management in MVS Systems 

TRACK CHAIR: Mr. Kenneth Kolence 
Kolence Associates 



FRAME CACHING IN MENU-DRIVEN VIDEOTEX SYSTEMS 

Seetha Lakshmi, Seraphin Calo and Piyush Gupta 

IBM T.J. Watson Research Center 
Yorktown Heights, N.Y. 10598 

Abstract 
The concept of frame caching in Videotex systems is 

explored. Caching of frames is expected to improve the 
response time for retrieval requests. The level of 
improvement, however, isa function of the cache hit ratio. 
In this paper, by modelling the user activities on the data 
base frames, we obtain an analytic expression for cache hit 
ratio. The analytic solution provides exact results for 
simple user models, and a tight upper bound for complex 
models of user behavior. In addition, we use a simulation 
methodology to study the impact of different parameters 
on the hit ratio. Our studies reveal that a considerable 
amount of locality of reference exists among menu-driven 
videotex users. 

1. Introduction 
A Videotex system is a medium for delivering 

information in an effective, user friendly, and relatively 
inexpensive manner to a large user population. It combines 
color, graphics, and text to present information in an 
attractive manner. It provides a unified interface between 
multiple data bases and a wide variety of user terminals. 
The interface is simple enough to enable naive users 
(non-dp professionals) to easily use the services offered. 
These services range from retrieval services for 
information such as general news, entertainment listings, 
financial news, airline schedules, etc., to transactional 
services such as banking and home shopping. 

The back bone of a Videotex system is a powerful data 
base management system (DBMS). The users access the 
DBMS through a high level, user friendly interface rather 
thana traditional data base query language[2,16,18]. An 
important factor, besides user interface, that must be 
considered in designing a successful Videotex system is its 
ability to provide very fast responses to user requests, and 
to support a large number of users. One of the design 
strategies that is expected to improve the response time is 
frame caching. 

A Videotex frame is defined as a logical unit of 
information that can be displayed on a user terminal. A 
Videotex data base is a collection of frames pertaining to 
a specific topic. The Videotex system maintains several 
such data bases. Frame caching is a mechanism by which 
a subset of the most frequently accessed frames (across all 
users) is stored in a cache external to the DBMS. For 
caching to be effective, the cost of retrieving the frame 
from the cache should be less than the cost of retrieving it 
from the DBMS. 

CH2345-7j86jOOOOj0655$Ol.OO© 1986 IEEE 
655 

users 

data base 
server 

users 

A Videotex System 

Figure 1 

users 

Figure 1 represents a conceptual architecture for a 
Videotex system that supports a large number of users. 
It consists of a data base server which maintains the 
Videotex data bases, and a set of front-end 
communication! distribution servers, which connect the 
user terminals and the data base server. The front-ends act 
as terminal concentrators, provide session and terminal 
management functions, and perform simple user 
commands which do not require access to the data base 
server. 

Typically, when a front-end receives a frame retrieval 
command from a user, it performs some preprocessing (to 
resolve the frame id, data base id, etc., if possible) and then 
sends a message to the data base server to retrieve the 
appropriate frame. When frame caching is in effect, 
frames retrieved from the data base server are retained in 
a cache maintained by the front-end. Retrieval commands 
from the users are sent to the data base server only if the 
required frame is not already present in the cache. Since, 
for some requests, this scheme avoids the communication 
delay and processing delay involved in accessing the data 
base server, it is expected to enhance the average response 
time perceived by the users. Also, by sending only some 
of the requests to the data base server, the load on the data 
base server is reduced. This, in turn, enables the data base 
server to support more users, thus increasing the overall 



capacity of the system. The expected performance of a 
Videotex system.with frame caching is evaluated in [7]. 

The performance improvement is proportional to the 
cache hit ratio (ratio'of the number of requests that found 
the required frame in the cache to·. the total number of 
requests served by the front-end processor). This paper 
attempts to determine the, range of hit ratios that is 
achievable in real Videotex systems. 

In Section 2, we discuss the related work on caching in 
conventional programming environments and data base 
transaction processing environments. In Section 3, we 
describe the access mechanisms prevalent in Videotex 
systems; we also elaborate on Dossible on!anizations of 
frames in the data base, and the user ~ behavior. In 
Section' 4, we develop an analytical model to evaluate the 
cache hit ratio. Numerical results based on the analytical 
model are compared with simulation results. The 
simulation methodology used . to study the impact' of 
various parameters on cache hit ratio is described in 
Section 5. The results are presented in Section 6. 

2. Previous,Work 
No previous: work has been reported on cache studies 

in Videotex systems. Exhaustive studies of.-cache memory 
performance in conventional programming environments 
can be found in [3,14,15]. Program behavior, which 
influences the effectiveness of cache memory, has been 
well studied and understood. It has been established that 
programs exhibit strong locality, i.e., over a short. period 
of time most accesses' tend to reference only a few pages, 
and these pages constitute a very small subset of the 
program's total set of pages. Such strong locality enables 
one to achieve very high hit ratios with very small, cache 
memory sizes; Techniques such as structured programming 
and loop constructs help achieve this strongJocality. 

The analog of program behavior in the realm of 
conventional DBMS is transaction behavior .. There has 
been very little work done in 'modelling the behavior of 
data base transactions. Authors [4,9] have studied data 
reference traces from specific IMS (a hierarchical DBMS) 
applications and characterized the transaction behavior. 
An interesting observation made from these studies is that 
within a single transaction there is very little rereferencing 
of data; however, data referenced by one transaction is 
often referenced by other transactions as well. It appears, 
therefore, that in a DBMS such as IMS, locality is mostly 
due to inter-transaction rereferencing. Whether, 
inter-transaction locality will improve cache hit ratio will ' 
depend, among other, things, on the cache management 
policy, and the scheduling of the transactions. Discussions 
on alternate cache management schemes for, DBMS are 
found in [10]. 

3. Videotex Data Bases and Users 
In this section, we' characterize the organizational 

structure of frames and the behavior of users in Videotex 

656 

systems. Such a characterization enables us to 
systematically study cache performance. 

3.1 Data-Base 

As mentioned in Section 1, Videotex data bases consist 
of a collection of frames. The organization of these frames 
within the data bases and the types of retrieval commands 
to be supported are interdependent. These are key issues 
in designing a successful Videotex system. Studies by 
Videotex researchers are underway to establish the types 
of retrieval requests that are efficient and powerful, yet 
easy to learn/use by non-dp professionals [11,17]. 
Currently, two types of retrieval commands, menu-driven 
and key word based, are widely supported. 

In a menu-driven system, the data base is organized as 
a tree with one, frame 'at each node. The frames which 
guide the users are known as menu frames. The frames 
which contain the information sought by the users are 
called information frames. Information frames are located 
at the leaf nodes of the tree while menu frames are located' 
at the intermediate nodes. Users traverse the tree to view 
the various frames. They are presented with a series of 
menu frames which guide them to the information frame 
of interest. Let us consider an example where a user is 
interested, in some travel related information. The first 
frame displayed to the user will, be a menu frame that 
resides at the root of the tree. This frame lists the various 
categories of information available on the system (see 
Figure 2). Suppose the user selects a menu choice 
corresponding to travel service. In response, another menu 
frame containing the information providers logo, 
categories like domestic travel, foreign travel, etc., will 
appear on the user's terminal. The. user can make further 
selections based on city, hotel, airlines, etc. Thus, with very 
few key strokes, the user is guided towards the information 
of interest. 

In a key word based retrieval system, tree traversal by 
the user is avoided. The users specify key words which 
succinctly describe the information required. The system 
searches the whole data base and displays the frames 
containing the specified key words. While key word based 
systems may be convenient to use (for experienced users) 
they have some inherent drawbacks with today's 
technology. First, a list of key words has to be distributed 
to the users (perhaps akin to telephone directory 
distribution). When the list gets frequently updated, 
distributing most recent versions could become a problem. 
Second, although it is a simple matter to search the data 
base for the occurrences of the key words, as the number 
of data bases and their sizes get larger, the search can 
consume most of the processor's capacity. A poor choice 
of key words will also result in wasted processor capacity: 
On the other hand, the processing requirement in a 
menu-driven system, which lists only a limited number of 
selections, will be',significantly less. Therefore, while the 
experienced users. may profit from the use of key word. 



Listings of Data Bases 

1. News 
2. Travel 
3. Finance 
4. 

1 ____________ 

News Travel ...... 
0 .... 1. USA 0 · . 
0 .... 2. Canada 0 · . 

3. 0 · . 

/\ 
USA ...... 

0 NY 0 · . 
0 LA 0 · . 
0 SF 0 · . 

1 
New York 

o Hotels 
o Airlines 
o Restaurants 
o Museums 

A Tree Structured Data Base 

Figure 2 

based retrieval commands, inexperienced users may 
actually achieve a higher level of productivity with 
menu-driven commands. Efficient methods of structuring 
the data bases and providing both types of commands are 
still open research problems[ 5,13]. 

In this paper, we study frame caching in the context of 
menu-driven retrievals. We further limit our attention to 
tree structured data bases. In reality, the data bases may 
not have a pure tree- structure; there may be multiple links 
to a given frame. We conjecture that data base structures 
containing multiple links to a frame will provide better hit 
ratio than pure tree structures because the probability of 
several requests fetching the same frame increases. Hence, 
compared to other structures, our results based on tree 
structure can be interpreted as a lower bound on cache 
performance. 

In our model, each data base is characterized by two 
parameters: N, the number of levels in the data base tree 
and K, the number of choices in each menu frame. The 
information frames are located at the leaf nodes (level N) 
and the menu frames are located at the intermediate nodes 
(levels 1 to N - 1). The level 0 frame corresponds to the 

root node which lists the available data bases in the system. 
Each node representing a menu frame has K children. The 
parameters Nand K completely describe the data base 
organization. The total number of frames in the system is 
M. 

3. 2 User Behavior 

Users are assumed to have independent identical 
behavior, j.e., a user's entry into the system and 
subsequent frame selections do not depend on the 
behavior of other users; however, the frame retrieval 
patterns of all the users are statistically identical. By 
statistically identical we mean: if several users retrieve a 
large number of frames, the probability Pij of selecting 
frame j while viewing frame i (for all i and j) has the same 
distribution for all users. (It is possible to have models of 
user b.ehavior where different groups of users have 
different Pij values. Such models are not .considered here.) 
Users traverse the Videotex data base tree as discussed in 
Section 3.1. While viewing any of the frames, a user 
leaves the system with probability Po , and views another 
frame with probability (1 - Po). The next frame chosen 
depends on the probability matrix Pij. In Sections 4 and 5 
we consider different Pij matrices. 

4. Analytical Model 
In this section, we develop analytical models -to evaluate 

. cache performance. For simple user behavior patterns, the 
analytical model provides closed form expressions for 
cache hit ratio. As the user behavior becomes more 
complex, a closed form expression is no longer possible; 
instead, it requires an algorithmic evaluation. One of the 
limitations of the analytical model is that it does not 
explicitly consider the dynamics of cache management 
policies. It assumes the existence of a perfect replacement 
policy that retains the optimal set of frames in the cache. 
i.e., the replacement policy_ is considered to have absolute 
knowledge of future frame references. In reality, 
replacement decisions are 'not necessarily optimal since 
they are based on the past history of user references. 
Hence, the results from the analytical model should be 
considered an upper bound on the cache performance. 
Comparison with simulation models (which capture the 
dynamics of cache behavior) shows that this is indeed true, 
and that the analytical model can be-confidently used for 
establishing bounds on cache performance. In the 
remainder of this section a general formula for hit ratio is 
obtained and the hit ratios for different user behavior 
patterns are evaluated. The analytical results are validated 
through a simulation. 

657 

To obtain an analytic expression for cache hit ratio, we 
model each frame in the data base as a separate service 
center. Thus, there are M service centers labelled 
1, ... ,M. Users enter the system according to a Poisson 
process with rate A. Upon entering the system, the users 
first visit service center i, (i = 1,2, .. ,M), with probability 



M 

l!0i. Note that i~foi = 1. The residence time at each center 
IS assumed to nave a general distribution with a mean of 
1/ J-L. The sequence of frames referenced by the users is 
governed by a first order Markov chain 
{Pij}, 1 $ i, j $ M. Pij is the probability that the next 
frame to be referenced is j, given that the frame being 
viewed is i. Let PiO denote the probability of a user 
departing from the system after referencing frame i. The 
Markov chain whose states are labeled by i is shown in 
figure 3. 

Let Ai be the aggregate rate at which frame i is 
requested by the users. The following set of linear 
equations hold good ior the system. 

M 

Ai= A Poi + '2Pji Aj 
j=1 

i = 1, ... ,M (4.1) 

If the probability of leaving the system is independent of 
t~e current frame being viewed, i.e., Pio = Po, for all i, then 

.L Ai = A/po. In the following discussions, unless 
otberwise stated, we assume that Pio = Po. 

In the Videotex system, it is possible for several users 
to view the same frame simultaneously. Hence, the 
occupancy process at each service center is that of a center 
with infinite number of servers. Such a network of M 
service centers clearly belongs to the class of product form 
networks [1]. Let us define the aggregate state of the 
system by the vector X = [xt>~, ... , xM] where Xi 

represents the number of references to frame i. Let P[X] 
denote the steady state probability of the system being in 
state X. Knowing the rate at which frames are being 
referenced (A;), and the mean viewing time of each frame 
(1/ J-L), we can compute P[X] using the closed form 
expression given in references [1,6]. The equilibrium state 
probabilities are given by 

M Xi 
II _po Pi 

e '-
i=1 Xi! 

where Pi = A/ J-L 

The marginal probability distribution p[xJ is obtained by 
summing P[X] over all feasible states with fixed Xi' i.e., 

p[xJ, Prob. that Xi references are made to frame i 

~(~)Xi 
Xi! J-L 

The expected number of references to frame i is given by 

00 

'2 XiP[XJ = Pi 
Xi =0 

And, the expected number of overall references in the 
system is given by 

658 

P j i 

j = 1, .•• ,M 

j ~ i 

where P = A/J-L 

POi 

16, 
~8 

Pi j 

j = 1, ••• ,M 

j ~ i 

j 
Pio 

Figure 3 

M 00 

'2 '2 XiP[XJ 
P 

Po i=1 Xi =0 

In a cached system, a subset r of the M frames is 
captured in the cache. The subset r retained in the cache 
is determined by the cache management policy. Efficient 
cache management policies attempt to retain the most 
frequently accessed frames in the cache. If the next frame 
referenced is already present in the cache, then a cache hit 
is said· to occur. The steady state probability of cache hit 
(also known as hit ratio) is defined as the ratio of the 
number of references to frames in r over the total number 
of references to the system. 

Expected value of number of references to frames in r 

E[~ Pi] 
I€~ 

Expected value of number of references to all M frames 

;}{ , cache hit ratio = Po '2 Ai / A 
i€~ 

(4.2) 

Let I r I be the cardinality of the set r. Since the cache 
retains the I r I most frequently referenced frames, the 
summation in the expression (4.2) is over those frames 
which have the highest request arrival rate (i.e., the A;'s are 
sorted in ascending order, and the first I r I elements are 
summed). 



In the following sections, we compute the cache hit ratio 
for different user behavior patterns. Each pattern leads to 

'" a different Markov chain. 
"~ ... 

Case 1: Random Entry and Uniform Transitions 

Users, upon entering the system, choose to view any of the 
M frames in the system with equal probability; and after 
viewing frame i, choose any frame j with equal probability. 
Le., 

tl/M 
Po 
(1 - Po)/M 

i = 0, j = 1, ... ,M 
j = 0, i = 1, ... ,M 
i, j = 1, ... ,M 

Substituting these in equation (4.1) the arrival rate for 
each frame is given by 

A 
A·=--

I Mpo 
i= 1, ... ,M (4.3) 

Since the request arrival rates are equal, the first I r I 
frames can be considered to be in the cache. From 
equations (4.2) and (4.3), the cache hit ratio is derived as 

J( = Po I r I A/A 
I rl 
M 

Case 2: Unique Entry and Uniform Transitions 

There is a designated frame I that is viewed by all the 
users upon entering the system. After viewing frame I, the 
subsequent frames viewed by the users are as described 
under case 1. Thus, the arrival rate to each frame is given 
as 

I-p M 
At = A + __ 0 LA' 

M j=l J 

Le., 

I-po~ 
--L.JA. 

M j=l J 
i = 1, ..... , M; i::j:. I 

i = 1, ..... , M, i::j:. I 

Substituting the above expressions in equations in (4.2), 
the cache hit ratio is derived as 

I rl 
J( = Po + (1 - Po) ~ 

When Po (the probability of leaving the system) is small, 
case 2 degenerates to case 1 and the hit ratio approaches 
I r I / M. (Le., unique entry does not have any significance 
in the long run.) On the other hand, when Po approaches 

659 

1, users reference only a few frames before leaving the 
system; and these frames are found in the cache. This 
results in a high hit ratio (approaching O. 

Case 3: Strict Tree Traversal 
Here, users enter the Videotex database tree at the root 

and traverse the tree by selecting the menu choices 
available at each level in the tree. When they reach the leaf 
nodes, they return to the root node and traverse the tree 
again. 

For this analysis, a balanced tree with N levels (level 0 
corresponds to the root node) and degree K is considered. 
Let {S.} be the set of frames located in the tree at levels 0 
through v. Now, 

M, the total number of frames in the system 

K N+ 1 _ 1 

K-l 

I Sv I, the sum of all the frames up to level v 

Kv+l _ 1 

K-l 

The number of frames cached I r I is such that, 
I s.1 < I r I ~ I s.+11 for some vin the range O ... N - 1 
Let An denote the rate of arrival to any frame at level n in 
the tree and let qo = (1 - Po). Then, 

n 1, ... ,N 

Solving for Ao from the above equations 

A 

1 N+l 
-% 

Let R. denote the expected number of references to frames 
in the set IS,}. 

1 v+l 
P -% 

Po 1 N+l -% 

The cache hit ratio is given by 

Rv + # of references to frames in {r - Sv} 
J( = (4.4) 

RN 

Equation (4.4) will lead to the following expressions, 
based on the cache size. 

when It I = 1, }( Po 

1 N+l 
-% 

And, when I Sv I < I r I ~ I SV+ 1 I , v = 0, ... , N - 1 



;)( Po 

1 N+l 
-% 

4.1 Validation 

1 v+l 
-% ----+ 

Po 
(4.5) 

In this section, the cache hit ratio is computed using the 
expression (4.5) and compared with that obtained from a 
simulation study (described in Section 5). Two different 
trees are being considered. The users are assumed to 
perform a strict tree traversal as discussed under Case 3. 
The probability of leaving the system, Po is assumed to be 
0.0125. The results are presented in Table I. One can 
observe, as expected, that the simulation results are always 
lower than the analytical results. 

cache 

2K 
4K 
6K 
8K 

10K 

Table I 

Analytic Vs Simulation 
Comparison of Hit Ratios 

M = 66,430 M = 9331 
K = 9. N = 5 K = 6, N = 

size 
anal s im anal s im 

frames 0.704 0.690 0.84 0.79 
0.754 0.760 0.89 0.88 
0.804 0.802 0.93 0.93 
0.840 0.803 0.97 0.95 
0.846 0.804 1.00 1.00 

5 

The analytic solution is also used to obtain a general 
understanding of the effectiveness of frame caching. 
Table II illustrates the cache hit ratio as a function of 
cache size for various data base sizes. Interestingly enough, 
it appears that hit ratios higher than 60% can be achieved 
with cache sizes which are merely 1 % of the data base 
size, irrespective of the depth or degree of the tree. The 
actual hit ratio in a real system may, however, be slightly 
less. These results are corroborated by the simulation study 
presented in Section 5. 

5. The Simulator 
While the analytic model developed in the last section 

can be further extended to model more complex user 
behavior, it has the limitation of providing only a bound 
on the performance. In this section, the results from the 
analytical model are augmented with a simulation study. 
For this purpose, we constructed a two part simulator. The 
first part, a reference string generator, generates a 
sequence of frame ids referenced by the active users. These 
synthetic frame reference strings are processed by the 
second part, the cache simulator. While processing the 
reference strings the cache simulator also collects statistics 
on the cache performance and displays them at the end of 

660 

Tab Ie II 

Cache Hit Ratio for 
Str i ct Traversa lin a Ba I anced Tree 

K = 3 K = 5 K = 10 K = 18 
cache size N = 10 N = 7 N = 5 N = 4 
(as % of M = M = M = M = 
db size M) 88,573 97656 11111 11151 

1 % 0.63 0.64 0.67 0.63 
5 % 0.76 0.77 0.75 0.78 

10 % 0.82 0.80 0.83 0.81 
20 % 0.86 0.88 0.86 0.84 
50 % 0.94 0.93 0.91 0.90 
90 % 0.98 0.98 0.98 0.98 

the run. The design of the traffic generator and the cache 
simulator allows the data base related, user related, and 
cache related parameters to be easily varied, and their 
effects observed. We first describe the different 
parameters that are being varied. 

5.1 DB-Related 
It is assumed that there are 9 data bases; i.e., there are 9 
choices at level O. The depth N and the degree K of the 
tree depend on which of the 9 data bases is selected at 
level O. For example, if data base i is chosen, the depth 
along that path will be IV; and the degree will be K j • Thus, 
the Videotex tree used in the simulator need not be a 
balanced tree. IV; and K j are randomly chosen (from a 
uniform distribution between 5 and 9), such that the total 
number of frames M in the system ranges from 10 
thousand to 10 million. From a human factors view point, 
traversing more than 9 levels of a tree or choosing among 
more than 9 choices may not be tolerated by the users, 
hence, the choice of values for IV; and K j • 

5.2 U ser-Related 
User behavior is characterized by the following 

probability measures: 

Po probability of leaving the system 

Pr(l) probability of retrace, i.e., probability of 
backing up to levell - 1 while viewing a levell 
frame (0 < 1 < N); Pr(O) = 0 

pi/) probability of descending to level 1 + 1 while 
viewing a level 1 frame, (0 ~ 1 < N); 

piN) = 0 

Pb(n) probability of backing up to level n while 
viewing a level N (leaf) frame, (0 ~ n < N) 

A typical user enters the system through the level 0 frame 
(the root node) which lists the data bases on available 
topics. While at level 0, he chooses to view any of the 9 



data bases with equal probability. When the user is viewing 
a level 1 frame, (0 < 1 < N), he decides to retrace (back up 
one level on the tree) with probability p,(l); or decides to 
select a menu choice and traverse down the tree with 
probability pil). When the user is viewing any of the leaf 
nodes (level N), he backs up to level n, (0 :5 n < N) , with 
probability Pb(n). The probabilities defined above satisfy 
the following invariants: 

(0 :5 1 < N) 

N-l 

Po + LPb(n) = 1 
n=O 

The various parameter values considered in the 
simulation study are listed below: 

1. Po = 0; i.e., the users do not leave the system. In a real 
system, Po = 0 implies that when an active user leaves 
the system, he is immediately replaced by another user 
entering the system. This is true when the total user 
population is much larger than the number of active 
users. The fixed number of active users model has 
been successfully used in evaluating the performance 
of time sharing computer systems [8,12]. In the 
simulation, number of active users = 1, 2, 50, 100. 

2. p,(l) = 0, 0.1, or 0.2. A higher value for p,(l) implies 
that the user will be rereferencing a frame more 
frequently. 

3. pi/) = 1 - p,(l) , since the invariant has to be 
maintained. 

4. Menu choice selection: Letj be a menu frame at some 
level I, (0 :5 1 < N), containing K choices. If a user 
decides to traverse down the tree, one of these K 
choices has to be chosen. Let Pjk be the probability of 
selecting menu choice k,(l :5 k :5 K). Two different 
probability distributions for menu choice selection are 
used in the simulation. 

Case 1: The menu selection is based on a uniform 
probability distribution, i.e., each menu choice is 

equally likely to be selected. Pjk = ~ ,for all k. 

Case2: The menu selection is based on a geometric 
probability distribution. Here, the probability of 
selecting choice k is less than the probability of 
selecting choice k-1. With a geometric distribution it 
is possible to model the fact that some choices have a 
higher probability of being selected than others. In a 
geometric distribution with parameter g, (0 < g :5 1) 

Pjk 

= Jg(l - g)k-l 

1(l _ g)K-l 

l:5k<K 

By assigning different values to g we can model 
different degrees of locality in frame references. 
Results for g =0.3 and 0.5 are reported in Section 6. 

661 

5. The probability of backing up to level n after viewing 
a leaf node is assumed to be uniformly distributed. i.e., 

1 
Pb(n) = N for 0 :5 n < N 

5.3 Cache-Related 
The following cache related parameters are varied: 

1. cache size, also referred to as the number of frames 
cached (.125K, .25K, .5K, 1K, 2K, 4K, 8K, and 10K) 

2. replacement policy (Least Recently Used vs First In 
First Out) 

3. caching policy (any frame can be cached vs only menu 
frames can be cached) 

6-. Results 
The base parameters for the following experiments are 
assumed to be 

DB size = lOOK frames 
Number of users = 100 
Uniform distribution for menu choice selection 
Retrace prob. = 0.1; 
Replacement policy = LRU; (menu frames and 
information frames cached) 

In each experiment, one of these parameters and the cache 
size are varied, and the effect observed. 

6.1 Impact of Data Base Size and Cache Size 
In this experiment, the dependence of the hit ratio on 

data base size (total number of frames in the system) and 
cache size are studied. The data base size is varied from 
10K to 10M frames. For each data base size setting the 
cache size is varied from 125 to 10K frames. Plots of hit 
ratio against the cache size, as a function of data base size, 
are given in Figure 4. These plots show that it is possible 
to achieve a high hit ratio with a relatively small cache size. 
In fact, a cache size of 2K frames, which can only hold a 
very small fraction of the (lOM frames) data bases, is able 
to provide a hit ratio as high as 0.6. This supports the 
analytical results. 

6.2. Impact of Number of Active Users 
In order to investigate how the number of concurrently 

active users affects the cache hit ratio, the cache behavior 
is studied while the number of users is varied from 1 to 
100. The total number of frames in the system is held 
constant at lOOK frames. The menu choice selection 
probability is assumed to be uniformly distributed; the 
probability of retrace is assumed to be 0.1. The hit ratios 
achieved for different cache sizes are listed in Table III. 
Interesting observations can be made from Table III. The 
high hit ratios observed in the single user experiments 
suggest that there is strong intra-user locality of reference. 
Even when the number of active users in the system 
increases, the hit ratio remains high. This suggests that 
there is also considerable inter-user locality of reference. 



..•. .. .. .. .. .. .. ......... .•.. ...... 

- DB &1_ 101( Fra1M8 
•• • 1001( 
~ 1M 
...... 10M 

CacM SIze In I( Frunw. 

Hit Ratio vs Cache size and Data Base size 

Figure 4 

Based on the 10K cache size experiment, one can conclude 
that a single user is interested in only 100/0 of the frames 
available in the data base. Also, when there are multiple 
users active in the system, 80% of the references (across 
all users) are for only 10% of the data base. These 
observations suggest that more detailed studies should be 
undertaken to establish some rules of thumb for locality 
of reference in Videotex systems (similar to the 80-20 or 
90-10 rules in conventional programming environments). 

Tab Ie III 

Hit Ratio Vs. Active Users 

active users 
cache size 

1 2 50 100 

.125K frames 0.58 0.58 0.34 0.24 
.25K 0.60 0.60 0.55 0.42 

.5K \ 0.63 0.62 0.63 0.61 
lK 0.66 0.66 0.61 0.66 
2K 0.70 0.70 0.70 0.70 
4K 0.74 0.74 0.74 0.74 
8K 0.78 0.78 0.78 0.78 

10K 1.00 0.80 0.80 0.80 

6.3. Impact of Menu Selection Probability 
Distribution 

In this and the next experiment, the effect of changing 
user related parameters is studied. As discussed in 
section 5.2, two different probability distributions 
(uniform and geometric) are considered for menu choice 
selection. In the geometric distribution, two different 
values are assigned for the parameter g (g = 0.5 and 0.3). 
The parameter g is the probability of selecting the first 
choice in the menu frame. A high value for g implies a high 
degree of commonality of interest among all the users. 

662 

Clearly, it should be possible to achieve better hit ratios 
with a geometric distribution rather than a uniform 
distribution. The simulation results, shown in Table IV 
strongly support the above conjecture. For a given cache 
size and data base size, uniform distribution provides the 
lowest hit ratio while geometric distribution (with g 
approaching 1) provides hit ratios very close to one. 

Table IV 

Hit Ratios with Different Distributions of 
Menu Selection Probability 

Prob. Distribution 

geometric 
cache size uniform 

g = 0.3 g = 0.5 

.125K frames 0.24 0.26 0.34 
.25K 0.42 0.44 0.56 

.5K 0.61 0.63 0.72 
lK 0.66 0.68 0.78 
2K 0.70 0.72 0.83 
4K 0.74 0.76 0.89 
8K 0.78 0.82 0.92 

10K 0.80 0.84 0.94 

6.4 Impact of Probability of Retrace 
In this experiment, p,(i) , the probability of retrace 

(backing up one level in the tree) is varied from 0 to 0.2, 
and the hit ratio is observed. This models the situation 
where the users tend to rereference a frame within a short 
period of time. The hit ratios achieved for different retrace 
probabilities and cache sizes are listed in Table V. As 
expected, when users retrace their path often, higher hit 
ratios are observed. 

Table. V 

Impact of Probability of Retrace 

Prob. of Retrace 
cache size 

0 0.1 0.2 

.125K frames 0.23 0.24 0.28 
.25K 0.39 0.42 0.45 

.5K 0.59 0.61 0.63 
lK 0.65 0.66 0.68 
2K 0.69 0.70 0.72 
4K 0.72 0.74 0.76 
8K 0.77 0.78 0.80 

10K 0.79 0.80 0.82 

6.5 Impact of Caching Only Menu Frames 
The locality of reference observed in all the above 

experiments can be attributed to the tree structure of the 
data bases. Since the users are constrained to traverse the 



tree, the frames in the top few levels of the tree are more 
likely to be rereferenced. In this experiment, the cache hit 
ratios are determined when only the menu frames 
(non-leaf nodes) are cached. The hit ratios from this 
experiment along with those obtained when any frame is 
allowed to be cached are listed in Table VI. As expected, 
for the same cache size, higher hit ratios can be achieved 
by caching menu frames alone. However, the improvement 
is not that appreciable. An alternate way to interpret this 
improvement in hit ratio is as follows: if only the menu 
frames are cached, a given hit ratio can be achieved with a 
smaller cache. 

Table VI 

Hit Ratio When Only Menu Frames Are Cached 

cache size any frame only menu frame 
is cached is cached 

.125K frames 0.24 0.27 
.25K 0.42 0.47 

.5K 0.61 0.64 
1K 0.66 0.67 
2K 0.70 0.71 
4K 0.74 0.76 
8K 0.78 0.81 

10K 0.80 0.82 

6.6 Impact of Re placement Policy 

The choice of cache replacement policy may have an 
impact on the cache performance. Here, hit ratio is studied 
under two different cache replacement policies, LRU 
(least recently used) and FIFO (first in first out). When a 
frame is to be inserted in the cache and the cache is already 
full, it replaces another frame. In the case of LRU, the 
frame that has been used least recently is replaced while in 
the case of FIFO, the frame that has been in the cache for 
the longest time -is replaced. The hit ratios are determined 
for different cache sizes. The results are given in 
Table VII. Although there is no dramatic difference in 
performance, LRU replacement policy tends to provide 
better performance than FIFO policy. 

7. Conclusion 
In this paper, we have considered a caching mechanism 

for Videotex systems, wherein, a dynamic subset of the 
information is moved closer to the users. The subset that 
is moved is dependent on the users' behavior. Since the 
data base functions and the front-end functions are not 
implemented within the same processor, moving a subset 
of the information closer to the users reduces the 
communication and processing delays involved in 
accessing the data base server. Therefore, users perceive 
better response times and the data base server is able to 
support more users. The effectiveness of this scheme, 

663 

Table VII 

Hit Ratio Vs. Active Users 

replacement pol icy 
cache size 

LRU FIFO 

cache any frame 

2K frames 0.70 0.67 
4K 0.74 0.71 
8K 0.78 0.76 

10K 0.80 0.77 

cache only menu 

2K frames 0.71 0.69 
4K 0.76 0.74 
8K 0.81 0.80 

measured by cache hit ratio, is a function of the locality of 
references. 

Through an analytic model and a simulation method, 
we have explored the performance of frame caching in 
Videotex systems. We find that when the frames are 
organized as a tree structure, and the users traverse the 
tree (as in a menu driven retrieval service), it is possible to 
achieve hit ratios in the 600/0 to 80% range, with very 
small cache size. Because of the tree structure, a single user 
tends to rereference the frames often and exhibits 'strong 
locality (only 10% of the data base is referenced). When 
there are multiple users, there are several frames that are 
shared by them, resulting in a high degree of inter-user 
locality (800/0 of references across all users are observed 
to be for only 10% of the data base). We feel that more 
detailed studies should be conducted to establish rules of 
thumb for locality of reference in Videotex systems. 
Varying user related parameters like menu selection 
probability distribution and retrace probability influences 
the hit ratio in an expected manner. Cache replacement 
policy does not have a major impact on the hit ratio. 

The simulation methodology discussed in this paper is very 
general and can be used for detailed studies. However, it 
is computationally expensive. On the other hand, the 
analytic model developed in this paper is computationally 
inexpensive; but it is useful only in establishing a tight 
upper bound. We believe the two approaches complement 
each other. 

References 

[1] F.Baskett, K.M. Chandy, R.R. Muntz, and F.G. 
Palacios, "Open, Closed, and Mixed Networks of 
Queues with Different Classes of Customers, " 
JACM, 22(2) (April 1975) 

[2] D.D. Chamberlin, et al. "SEQUEL 2: A Unified 
Approach to Data Definition, Manipulation and 
Control," IBM J. Res. Dev. 20(6), (Nov. 1976) 



[3] E.G. Coffman, and P.J. Denning, Operating 
Systems Theory" Prentice Hall, Englewood Cliffs, 
N.J. (1973) 

[4] 'M.C. Easton, "Model for Interactive Data Base 
Reference String," IBM J. Res. Dev. 19(6) (Nov. 
1975) 

[5] D. Gangopadhyay, "Conceptual Model for 
Videotex Data Bases," Unpublished work, 198~, 

[6] H.Kobayashi, Modeling and Analysis, 
Addison-Wesley, Mass. (1978) 

[7] -M.S .. .Lakshmi, "Performance Engineering of a 
Videotex -System, "JBM Research Internal Report 
(1985). 

[8] S.S.Lavenberg, (editor) Computer Performance 
Modeling Handbook, Academic Press, 1983 

[9] J. Rodriguez-Rosell, "Empirical Data Reference 
Behavior in Data Base Systems," Computer, (Nov. 
1976) 

[10] G.M. Sacco, and M.Schkolnick, "Mechanism for 
Managing the Buffer Pool in a Relational Data 
Base System Using the Hot Set Model," IBM 
.Research Report, RJ3354, (Dec. 1981) 

664 

[11] S. Santo, "An Eye on the CBS Database: a Case 
Study of Information Access Methods", in 
Proceedings of Videotex'83, London Online Inc., 
1983 

[12] C.H. Sauer and K.M. Chandy, Computer Systems 
Performance Modeling, Prentice-Hall, Englewood 
Cliffs, New Jersey, 1982 

[13] D. Shasha, "Netbook - Knowledge Based Support 
for Readers and Writers," Proceedings of VLDB, 
1985 

[14] A.J. Smith, "Cache Memories," A CM Computing 
Surveys, 14(3) (Sept. 1982) 

[15] J.R. Spirn, Program Behavior: Models and 
Measurements, Elsevier-North Holland, N.Y., 1977 

[16] M. Stonebraker et. aI., "The Design and 
Implementation of INGRES," A CM Transactions 
on Data Base Systems, 1(3) (Sept. 1976) 

[17] F. Tompa and A. Schabas, "Trees & Forests: User 
Reactions to Two-Page Access Structures," in 
Proceedings of Videotex'83, London Online Inc., 
1983 

[18] J. Ullman, Principles of Data Base Systems, 
Computer Science Press Inc., Maryland (1982) 



THE CONTRIBlJTION TO PERFORMANCE OF INSTRUCTION SET USAGE IN SYSTEM/370 

O. R. LaMaire and W. W. White 

IBM Thomas J. Watson Research Center 
Yorktown Hts., New York 10598 

Abstract 

The actual usage of instructions in the different environments in 
which a processor must run reflects both architectural.and work
load considerations,. while the achieved overall internal processor 
performance reflects these as well as processor implementation 
considerations: The most frequently used instructions are not 
necessarily. those which the processor spends the most time exe
cuting, either totally or on a per instruction basis. Furthermore, 
focusing on the effects of instruction usage in one environment 
may provide an inadequate basis for projecting the effects in other 
environments. This is illustrated by measurements of production 
systems executing on large IBM mainframe processors. A signif
icant aspect is the differentiation between supervisor and problem 
program instruction usage, and the extent of their commonality 
across environments. 

1. Introduction 

The internal performance of modern, high end computers is heav
ily affected by both architectural and implementation consider
ations. However, the nature of the workload actually being 
executed on the machines is itself a major factor. It is not hard to 
find cases where one workload running on a machine executes up 
to twice as fast as a different workload running on the same ma
chine. In an earlier paper [7], we examined the effect of a major 
implementation factor, the cache (high speed buffer memory), on 
processor performance in different workload environments. In 
this paper we will explore a possibly more direct workload effect, 
the instruction mix of the workload itself. However, implementa
tion considerations (including the cache itself) come into play 
when considering overall performance, as it is the time spent exe
cuting the instructions which is then important. Examples drawn 
from real processing environments will be used to illustrate these 
points. 

One of the major aspects of instruction usage is the amount of 
system code being executed. In some sense, as we shall see, the 
system code provides a degree of commonality between different 
workloads, while the problem code may be more different since it 
is more specialized towards solving a particular problem or per
forming a particular function. Thus, environments which have a 
higher supervisor content will tend to look more alike than envi
ronments in which the supervisor content is low. From a user's 
perspective, this is important for two reasons: (1) neglecting the 
system code may be misleading in terms of processor evaluation, 
and (2) system code is usually not under the control of the user. 
From a designer's perspective, this is important because it provides 
a 11 core 11 set of instructions which should occur with some degree 

CH2345-7j86jOOOOj0665$Ol.OO© 1986 IEEE 
665 

of regularity, and then another set of instructions, more workload 
specific, which will provide the variability which must be ad
dressed in order to design an effective, general purpose machine. 
With special purpose machines,,,of course, one can be. much more 
specific as to one's design points, with a .corresponding loss of 
performance if the machine is not used for what it was designed. 

In any case, however, instruction set usage should be tracked in 
real environments. Often this will provide the necessary feedback 
to designers on what the real life problems are, which should be 
driving systems design. And this information can be used to cali
brate benchmarks which can then be used to provide deeper, lab
oratory studies of processor performance. For these purposes, it 
is necessary to look at all the instructions executed in order to.see 
the effects on processor performance, and not just on application 
characteristics. 

The processors with which we will be concerned will be the large 
mainframes on which businesses run their major production work, 
including commercial and scientific programs, large corporate data 
bases, program development, etc. While the implications of much 
of the material presented below is applicable to such machines 
offered by many different manufacturers, our focus is on machines 
using the IBM System 370 instruction set (see [6]), or its variants, 
and the examples will come from IBM processors such as the 
3081K. 

In Section 2 below we will discuss internal processor performance, 
noting the dependence on workload, and how instruction set usage 
contributes to the overall internal performance. A measurement 
technology for obtaining instruction mixes using a hardware 
monitor is discussed in Section 3, and in Section 4 we go into more· 
detail on the measurements themselves. In Section 5 we explore 
some of the supervisor and problem program content consider
ations, and a general discussion of the implications, as well as some 
possible extensions, is given in Section 6. Section 7 presents a 
short summary of the major points made. 

2. Internal Processor Performance 

As noted above, the actual use of instructions delineates the work 
done from an internal processor viewpoint. If all instructions ex
ecuted in the same amount of time, for example in one machine 
cycle, a RISC architecture-like feature (see Colwell et. aI., [4]), 
then one could evaluate the internal speed of the processor directly 
from knowing the total number of instructions executed. If, how
ever, even just a subset of the instructions executes in a different 
number of machine cycles, then one must know the number of 
cycles each instruction will take to execute in order. to evaluate 
performance, as well as the instruction mix its elL 



This is generally more complicated than looking up some nominal 
value supplied by instruction timing formulas. While such an ap
proach can be workable, e.g., for base timing of particular in
structions dependent on operand length, it may have little 
connection with actual execution as experienced within a full sys
tem context. In this case, the interaction of the instructions with 
other aspects of the workload behavior may dominate the 
'kernel-like' characteristics. In particular, many machine imple
mentation considerations will have an effect, especially in high
performance processors. These include pipeline breakage due to 
branching, holding off of instruction execution due to lack of op
erands (or of the instruction itself) being present, memory inter
ference, and so forth. 

To do a full performance evaluation from first principles, one 
needs to get at more information than just instruction mLx and in
struction timing formulas (see, for example, Peuto and Shustek 
[10]). However, one can do a characterization of the performance 
impact of instruction usage by measurement 'after the fact', i.e., 
by actually measuring code execution,as in Clark and Levy [2], 
although the focus there is more specific rather than at system 
level behavior across environments. Depending on what data one 
collects, one can gain insight into how the instructions of a par
ticular workload drive performance. 

To provide a somewhat more specific basis for our discussions, let 
us call.t: the fraction of occurrence, i.e., the normalized frequency, 
of the i th instruction, so that 

In the following, we will also sometimes refer to.t: as a percent in
stead of a fraction, but the context will make it clear which is 
which. 

It is generally convenient to assume an order to the instructions. 
In particular, one that we shall use will be the frequency of oc
currence itself with respect to a given workload, so that, for that 
workload,J: ~ .t:+1 for all i. For other workloads ordered according 
to the given workload, this relationship need not hold, of course. 
With this ordering, then, we can define the partial sum 

;=p 

Fp= Dt 
;=1 

of the first p instructions, ordered according to the given workload. 
As a percent, Fp is then the percent of the total instructions for this 
workload executed by the top p instructions of the given workload. 
This metric, a cumulative frequency distribution, is of interest as 
it is indicative of the "working set" of instructions for this work
load. The differences between these values for different work
loads, keeping the same instruction ordering, shows the amount 
of variation which can occur between environments, with impli
cations as to the necessity of robust design. One notes that the 
Fp for the given workload itself must be at least as great as any Fp 
for this workload generated by the order of some other workload. 

If we then look at the total execution time for all instructions, i.e., 
the total processor busy time, we can try to allocate it to individual 
instructions, as follows. Let ti be the fraction of the total busy time 
attributable to the execution of the i th instruction, in such a fashion 
that the whole of the busy time can then be accounted for. Using this 
definition, it is then true that 

666 

It should be noted that this is a definitional statement, where we 
are apportioning the total amount of processor busy time between 
all instructions, including the time spent on all the other machine 
dependent factors noted above. 

A simple way to achieve this is to attribute all the time spent be
tween the start of execution of one instruction and the start of 
execution of a seco",d instruction to the first instruction. In a 
strictly sequential machine; the applicability of this simple ap
proach is clear, while in a pipelined machine, this amounts to 
placing emphasis on the execution element, and ignoring some in
struction fetch and other overlapped activity. An alternative sim
ple approach, employed in Clark and Levy [2], is to attribute the 
time between successive decodes to the first instruction: in a se
quential machine this is largely equivalent to the first approach 
(i.e., bet'.veen starts of execution) but in a more pipelined machine, 
this places more emphasis on instruction element processing 
(missing some overlapped execution). While some care must be 
taken in interpretation in either case *, we use the first approach 
here (between successive starts of execution) as we prefer an ex
ecution element emphasis as providing more insight into processor 
performance behavior. 

Other ways of attributing time may be more meaningful depending 
on machine implementation, and, in fact, one may gain additional 
insight into machine behavior by not apportioning all the busy time 
to actual instruction execution, but splitting some of the time off 
for other factors (e.g., for cache effects as suggested by LaMaire 
and White [8], or for more detailed performance factors as delin
eated in MacDougall [9]). A very good example of this is in Emer 
and Clark [5], where this is done on groups of opcodes. In prac
tice, much of this depends on the signals available from the 
processor under study. One could also go further and develop 
expressions relating to the average execution time per instruction, 
but we will not do so here, as it is less important to the develop
ment of this paper. 

As with instruction frequencies, one can also assume an ordering 
for instruction times. The one which we shall generally employ 
here will be the same as for instruction frequencies, i.e., we shall 
assume an ordering of the 1; according to the frequency, not time. 
Thus Tp as defined by the relation 

;=p 

y;, = 2:t; 
;=1 

for the first p instructions ordered according to the frequency of 
occurrence in the given workload, is the contribution to the total 
busy time of these instructions. The degree to which Tp is less than 
Fp is indicative of the performance impact of infrequently used but 
"long" instructions. In words, one can talk about p instructions 
accounting for Fp of the instruction use, but only for Tp of the time 
(with some implicit ordering assumed). 

We shall focus on these two metrics Fp and Tp as the items of in
terest, in that they summarize, in the first case, the usage of the 
instruction set, and in the second case, the impact of this usage on 

* We note that either of these approaches can be used for other 
processor organizations, including vector processors which execute 
instructions synchronously, although they both become less and less 
applicable the more overlapped the operations become, e.g., for mul
tiple execution units fed from a single instruction processing element. 
Overlapping in multiprocessor systems can be handled by examination 
of each processor in the configuration separately. 



processor performance, i.e., on where the processor spends its 
time. A more detailed analysis could delve into individual in
structions and their characteristics (as noted in Section 6), but our 
main purpose is to develop some overall characterizations of in
struction set usage. Such overall system-level characterizations 
will serve to illustrate our principal points regarding instruction set 
skew, environmental differences and similarities, and the impor
tance of considering supervisor content in such analyses. 

3. The Measurement Approach 

There are many different ways to get instruction usage data, often 
depending on, or limited by, the nature of the workload environ
ment being examined. In laboratory environments one can in
strument processors, both by hardware and software monitors, to 
gather a wealth of information. In such cases, one can often repeat 
measurements (in fact, repeatability is a major feature of labora
tory environments), so as to extract more data in multiple passes. 
This might be necessary, for instance, when the amount of infor
mation gathered per pass must be limited, in order to minimize 
processor interference induced by the monitor, or because of a 
limited collection capability in the monitor. 

There is a difficulty in focusing on workloads in laboratory envi
ronments, though, in that it means one is dealing with closed, 
largely known entities, which mayor may not be representative 
of how real production workloads execute on these processors. 
Both this representativity, and the question of how many other 
environments may exist, indicate the need to address oneself to 
real world behavior. In the very least, one can then develop a feel 
for how representative are the laboratory benchmark workloads. 
In other cases, one can get input from workloads not easily created 
in the laboratory, such as large data base systems, and see if such 
workloads lie in the design space of the processors themselves. 

Gathering data from real production workloads implies many op
erational restrictions on the collection process. First, there must 
be minimal impact on the real system. Second, one has to get all 
the data 'on the fly', as there is no controlled environment -- re
peating an experiment by re-running is not possible. This points 
to the use of hardware monitors, as software monitors tend to 
cause processor degradation (although for some kernel analyses, 
as in Bonnes [1], they can be of use). An additional problem with 
software monitors in general environments is that, to be efficient, 
they must be sampling monitors, and it is difficult to handle the 
bias introduced when the operating system inhibits getting a sam
ple (e.g., when interrupts are inhibited). The fact that one is in
terested in all instructions, including those executed while in 
supervisor state (meaning that the software monitor cannot simply 
be an application code) compounds the problem. 

For our measurement activity we have employed a specially de
signed hardware monitor to collect such data as may be available 
from the large IBM processors in which we have an interest. This 
monitor operates transparently to the processor being measured, 
that is, there is no processor degradation, and is readily trans
ported to different real production locations. These sites are cho
sen as leading edge systems, both in terms of the compute power 
required for the applications, and for the importance of the appli
cations themselves. Effort is made to look at a variety of different 
production workloads. Typically, a measurement takes place over 
a week, 24 hours a day, to gather data on the overall measured 
system, with data being written to a recording device at a fre
quency sufficient to profile the system at, for example, 15 minute 
intervals. During periods of greater interest, however, such as 
during peak hour operation, snapshots of 5 to 15 minutes are taken 

667 

at a high resolution, i.e., a high recording rate, to allow for more 
detailed study. There is sufficient commonality in the data being 
collected so that, from the overall profile, one can identify if 
anomalous behavior existed during one of the snapshot periods 
(e.g., extensive error processing) and therefore ignore the data 
gathered during that unrepresentative interval. 

The hardware monitor employed has some special features which 
allow the collection of instruction information. In addition to a set 
of accumulators generally available in these monitors, it contains 
an 8 bit decoder. Since the primary instruction code, the operation 
or op code, for System/370 instructions (see the architecture doc
uments [6], [7]), is eight bits long*, decoding these eight bits and 
then incrementing one of 256 registers addressed by this decoding 
effectively counts the occurrence of that instruction, at the time 
when the decoding takes place. In order to make use of this facil
ity, one must guarantee a valid strobe for telling when the partic
ular 8 bits are to be decoded (and, of course, one must know that 
the 8 bits do in fact represent a valid op code at that time). Typi
cally, one can generate a strobe signal corresponding to the first 
machine cycle of the execution of an instruction. Assuming the 8 
bits present at that time do in fact represent the instruction being 
executed, this facility will then collect in its 256 registers the in
struction mix being executed. Alternatively, if one 'latches up' the 
8 bits so that they are valid until the next instruction is executed, 
then by strobing on every machine cycle one can get a time dis
tribution of the instructions, i.e., each register then contains the 
number of machine cycles spent executing the corresponding in
struction**: By performing logical combinations on the strobe 
signal, for example, 'ANDing' it with the supervisor state signal, 
one can get instruction information about what's happening in 
supervisor state. During a week's measurement, several snapshots 
are in fact taken with different such 'conditionings' being done. 

Another practical aspect is that to gather both instruction mix and 
instruction time distributions requires two such facilities, and if 
one is measuring a two-processor multiprocessor system such as 
the IBM 3081K, getting all the information desired would require 
four such facilities. This then becomes a substantial hardware and 
software issue, as well as an operational one. To ease these diffi
culties, we multiplex the use of a single facility, as follows: during 
one recording interval (say of one second's duration) we gather 
the data one way, and, after writing it out, we gather the informa
tion a second way during the next interval, thus alternating among 
the possibilities. For a single processor machine such as the IBM 
3083J this amounts to alternatively collecting the data so that half 
the time we are collecting instruction mix data, and half the time 
instruction time data, interleaving the collection periods. By 
interleaving many small (relative to the run length) periods, and 
performing some calculations as to the stability of the mean of the 

* Technically, for those instructions with an extended op code, the sec
ondary op code, also 8 bits, is also of interest. To some extent, since 
not all 256 possibilities of the primary or secondary op codes are 
present, one might 'fold' these together into one set of 256 registers, 
thus collecting a full set of information. In this paper, however, we 
will restrict our attention to the primary op code only, without differ
entiating on the basis of different secondary op codes. 

** In practice, looking at every machine cycle requires a very fast moni
toring capability, particularly on modern high speed processors with 
cycle times of under 25 nanoseconds. Consequently, a sampling pro
cedure is usually employed, looking every k machine cycles and de
coding at that time. By taking k to be a small, prime number, say, less 
than 32, the sampling error for runs the length considered here is 
minimal. 



collected data, one can collect both kinds of instruction data dur
ing one measurement, thus providing most of the information 
needed with an economy of operation and expense. 

4. Measurement Experience 

Table 1 gives a high level description of several different measured 
real life production systems. While these are all IBM 308x 
processor family environments, one should note that the 9083 is 
a uniprocessor, the 3081 's are dyadic (2-way multiprocessors), 
and the 3084 is a 4-way multiprocessor (although when run in 
partitioned mode, it runs as two separate 2-way processors). The 
3081D and 30810 processors each have a 32K cache per proc
essing unit (Le., 2 32K caches total), while the other processors 
have 64K caches per processing unit (plus other enhancements), 
so that one would expect different ranges for the performance 
parameters of interest, particularly those dependent on cache ac
tivity (see LaMaire and White [8] for more detail on this). Also, 
the 3081D and 30810 processors differ somewhat in their internal 
organizations from each other and from the 3081K and Q ma
chines which will further change the average cycles per instruction. 
Additionally, the cycle times on the machines are not all the same. 

Three different operating systems are present, and the MVS op
erating system itself has two distinct versions, SPI for System/370 
mode operation, and SP2 for System/370 Extended Architecture 
(370-XA) mode. The workload environments range from scien
tific batch, to VM/370 and TSO time-sharing for interactive pro
gram development and execution, to three different data base data 
communication environments, IMS and CICS operating under 
MVS, and the TPF high transaction rate environment for airline 
reservations. The VM/370 environments also contain a fair 
amount of 'personal computing': mail, text processing, and the 
like. 

ID Processor Operating System Description 

A 3081D VM/370HP02 Program Development, Text, 
Scientific Processing 

B 9083 TPF2 Airlines reservations 
C 3081G MVS/SP2.1 CICS production data base, 

background batch 
D 3081G MVS/SP2.1 CICS production data base 

(dedicated) 
E 3081K MVS/SP1.3 Scientific batch 
F 3081K MVS/SP1.3 Scientific interactive 
G 3081K MVS/SP1.3 Scientific interactive with 

background batch 
H 3081K VM/370HP02 Program Development, Text, 

Scientific Processing 
I 3081K MVS/SP1.3 Scientific batch 
J 3081K MVS/SP1.3 Scientific TSO, interactive 

graphics, background batch 
K 3081K MVS/SP1.3 Scientific TSO, interactive 

graphics, background batch 
L 3081K MVS/SP1.3 Scientific TSO, batch 
M 30840 MVS/SP2.1 IMS production data base 

(2 of 4 CPUs measured) 
N 30840 MVS/SP2.1 IMS production data base 

(Partitioned mode, 
performance enhanced) 

° 30840X MVS/SP2.1 TSO, background batch 
(2 of 4 CPUs measured) 

Table 1: Workload Summary 

668 

There is a mix of languages present across workloads, and most 
of the workload environments themselves include many different 
languages. The operating systems tend to use assembler or related 
low level languages, as does the code in the major subsystems such 
as IMS and CICS. The scientific applications tend to use 
FORTRAN in various flavors, and PL/I in some instances, while 
the more commercial applications can be COBOL or PL/I; some 
special constructs are also used for graphics processing. In gen
eral, it is not possible to pick out individual language character
istics from such a melange: more controlled studies would be 
necessary, which is not possible in these production environments 
(it is usually difficult enough just to identify which applications are 
being run, e.g., to what extent sorts or other utilities in general are 
part of the workload mix). From other experience, we share with 
Clark and Levy [2] the conclusion that it is how the application 
uses the language, not so much the language itself, that is impor
tant. As such, we have characterized the environments in broad 
terms indicative of their principal activity. 

The measurement data represents peak period operation of these 
workloads. Peak period is taken to be a two-hour period, which 
can vary between sites, during the day time when the processing 
load is the heaviest, e.g., in terms of processor utilization*. Often 
this is in the afternoon, such as between 2 and 4 PM. The data 
comes from the 5 to 15 minute snapshots taken during this period, 
for as many days of the week as possible, usually comprising on 
the order of 2 hours total. 

For each of the measured environments, Figure 1 presents in
struction frequency data in terms of the cumulative frequency, Fp 
for p ~ 100. The instruction ordering used here is that of the 
average instruction frequencies for all the environments, so that 
the figures represent the top 100 instructions of this 'average', re
spectively. As there are about 170+ primary op codes in the 
S/370 and S/370-XA instruction sets, slightly under 60 percent 
of them are represented in Figure 1. The 'outlier' is a scientific 
batch workload, Workload I, probably the most heavily scientific 
of the set (it is, however, a real workload -- there is no basis for 
discarding its data as anomalous). The other workloads separate, 
of sorts, into two pieces, as can be noted by looking at the gap 
between the sets of curves at the top 20 or top 40 instructions: the 
lower group is predominantly more scientific in nature than the 
upper group. 

If we consider the top 17 instructions (10 percent of all in
structions), we see that these account for from slightly more than 
60 to somewhat under 80 percent of the instructions executed, 
depending on workload; the average is slightly more than 70 per
cent. For the top 35 instructions (20 percent of all instructions), 
we see that these account for from somewhat under 80 to slightly 
more than 90 percent of the instructions executed, again depend
ing on workload; the average here is in the high 80's. 

* This 'peak period' view is oriented toward workloads for which re
sponse time is a criteria, since much of the work done at that time has 
an interactive content. As such, the data is indicative of those sites' 
stress environments which, for example, one might use as a basis for 
characterizing high daytime load. Not included here is overnight 
processing, which more often has a 'turn-around' criteria, e.g., the 
work must finish by the next morning. This kind of work often con
sists of longer running jobs, utilities, and the like, and may have more 
problem program activity. Scientific work, in particular, may have a 
higher computational content. This means that one may well expect 
more variability in instruction use data were one to include nighttime 
activity in the set of measured data. 



PEAK PERIOD - ALL SITES PEAK PERIOD - ALL SITES 
0 0 

~ ~ 

~g 0 
<Xl 

0 W 
t.) :::;: 

i= 

:>: 
t.) 

•• 0 >- <0 
z 0 
w <0 

t.) :::::> z a w w 
:::::> 0:: a u... 
w w 
E ~ ~ ~ 
w ~ > 
~ 

:::::> 
:::;: 
:::::> :::::> t.) 

~ ~ 0 
C'I 

0 0 
0 20 40 60 60 100 0 20 40 60 60 100 

TOP 100 INSTRUCTIONS TOP 100 INSTRUCTIONS 

Figures 1 and 2: Cumulative Instruction Distribution for All Sites 
by Count and Time for the Top 100 Instructions Ordered by Average Frequency 

From another perspective, to achieve 70 percent of the in
structions executed requires anywhere from 13 to 25 of the top 
100 instructions, varying according to workload (13 to 20 disre
garding the 'outlier'). This 50+ percent variation of the maximum 
over the minimum is not atypical for other percentiles, and gives 
some indication of the range one must design for, in terms of 'in
struction working sets', when addressing these environments. 

We note that instruction mix data should not be as sensitive to 
machine implementation as instruction timing data should be, 
since the instruction mix is principally driven by the kind of work 
done on the machine. Instruction timing data, however, is influ
enced both by the work done, and how (in terms of processor im
plementation) it is done, thus leading us to guess a larger variation 
in the cumulative instruction times across workloads. 

Figure 2 in fact shows what the instruction time distribution is for 
the measured sites. Again, the instructions are the top 100 in
structions executed, ordered by frequency, not time,Jor the overall 
average frequencies. In other words, we have plotted the cumu
lative instruction times Tp for p :5 100 for the same instructions p 
as we did above. The variation is indeed larger. Again, Workload 
I still stands out, but the other workloads do not separate as obvi
ously. However, the more scientific workloads tend to be the 
lower curves, as before. The differing machine implementations 
(cache size, cycle time) do not stand out significantly; the work
load effects are substantially more dominant. The plotted curves 
are much more 'wavy' than those in Figure 1, indicating the effect 
of 'long' (in terms of machine cycles per instruction) ops, and the 
extent of their commonality across the environments. 

When considering where processors spend their time, then, we 
observe that now the top 17 (10 percent) of the instructions exe
cuted account for from about 40 to somewhat over 60 percent of 
the time of execution, and the top 35 (20 percent) account for 
from about 60 to somewhat under 80 percent of the time of exe
cution. In the extreme, in some of the environments, 10 percent 
of the time has not been accounted for by the top 100 instructions, 
indicating that some very infrequently used ops may account for 
significant portions of the execution time. 

669 

From our other perspective, to achieve 70 percent of the instruc
tion time being accounted for requires anywhere from 26 to 47 of 
the most frequently used (on the average) instructions, according 
to workload (26 to 42 disregarding the 'outlier'). The 50+ percent 
variation of the maximum over the minimum is still generally true 
for other percentiles, and again shows the range one must design 
for, from an instruction execution point of view. 

One can put this data, both count and time frequencies, together 
to see how much coverage of execution time is given by instruction 
usage. To simplify things, we just do this for the overall averages 
in Figure 3. The two curves then represent the cumulative average 
instruction use Fp and time Tp frequencies, with the former being 
the upper curve. The instruction order is, as before, that of de
creasing average instruction use frequency, so that, as one would 
expect, the upper curve is the smoothest presented so far. 

From this figure we can note the on-the-average 'coverage' be
havior. The top 17 (10 percent) of the instructions account for 
slightly more than 70 percent of the instruction usage, but only 
around 55 percent of the time, assuming the given instruction or
dering. In order to account for, say, eighty percent of the exe
cution time, one has to consider those instructions accounting for 
over 90 percent of usage. And while it is true that a small number 
(12-14) of instructions account for two thirds of the use, they ac
count for under half of the time. 

Figure 4 presents another way of looking at the data of Figure 3. 
Here is plotted the ratio of the number of instructions needed to 
get roughly equal percents, timing to counting. That is, if one 
draws a horizontal line on Figure 3 and notes the two instruction 
indices of the places where the line intersects (one for the cumu
lative instruction count distribution, and one for the cumulative 
time), the ratio is that index for the time curve over the index for 
the count curve*. The ratio then gives the factor increase for the 
number of instructions needed to obtain the same 'coverage' of 

* Actually, since the distributions are discrete, the index for the time 
distribution is the average of two indices, one being the maximum in
dex i for which T; :::; Fp and the other being the minimum index j for 
which ~ ~ Fp , for the same given ordering. 



PEAK PERIOD - ALL SITES PEAK PERIOD - ALL SITES 
0 

~ I") 

I-
Z I-::;) 
0 z 
Uo ::;) 

0 WIO U :::;: 
F ~ 
~ ~ N 

~g F 

0 c5 
w ~ c:: 
lL. 

W (;S 
~ 
:5~ Cl 

~ 
::;) z~ :::;: 0 
::;) t; U 

J ~ :~ 
::;) 
c:: 
Iii 
~ 

I I I 
0 20 40 60 BO 100 0 20 40 60 BO 100 

TOP 100 INSTRUCTIONS TOP 100 INSTRUCTIONS 

Figures 3 and 4: Cumulative Instruction Count and Time Distribution and Ratio of Equivalent Instruction Indices 
for the Average of All Sites for the Top 100 Instructions Ordered by Average Frequency 

execution time as the given number of instructions 'cover' in
struction use. One can note that, over a wide range, one needs 1.5 
to 2 times as many of the top most frequently used instructions to 
get the same percentile coverage of execution time as of instruc
tion use. 

It is clear that in order to gain maximum performance, one should 
concentrate on a somewhat different set of instructions than 
would be dictated by strictly frequency-of-use considerations. For 
a general architecture, however, this can lead to difficulties, as one 
would expect that over time implementations will differ as new 
processor models are introduced, and what was stressed at one 
time may not be as important later. The general frequency of use 
should be a more important consideration long term, as this is 
more closely associated with the work which the processors must 

PEAK PERIOD - ALL SITES 
0 
~ 

I-
Z 
::;) 
0 
U 0 

• 10 
W 
:::;: 
F 

t 
Z 0 
~co 
0 w 
c:: 
lL. 

W 

~~ 
::;) 
:::;: 
::;) 
U 

~~ 
w 
> 
0 

0 
0 20 40 60 80 100 

TOP 100 INSTRUCTIONS BY FREQUENCY COUNT. TIME 

I-
Z 
::;) 
0 
U 

~ 

execute (although seeing how this evolves over time is interesting, 
and is important both for architectural considerations, and to see 
where design emphasis should be placed). This would give one a 
more solid base, and the time distribution of instructions would 
then be indicative of how 'all-encompassing' and robust the most 
frequently used instructions should be implemented. 

One can compare the distributions, instructions ordered by fre
quency to those ordered by time, to get a rough estimate of what 
the 'best case' might be in terms of 'coverage'. Figure 5 shows 
these two cumulative distributions for the top 100 instructions of 
each ordering. The top curve is still the frequency curve, as in 
Figure 3, while the bottom curve is the time curve. It is evident 
that even if the most frequently used instructions were the same 
as the ones to which the most execution time were attributed, it 

PEAK PERIOD - ALL SITES 
I") 

~N 
F 

c5 

~ 
(;S 
Cl 
~ 
Z ~ 

0 
F 
U 
::;) 
c:: 
Iii 
~ 

0 
0 20 40 60 BO 100 

TOP 100 INSTRUCTIONS BY FREQUENCY COUNT. TIME 

Figures 5 and 6: Cumulative Instruction Count and Time Distribution and Ratio of Equivalent Instruction Indices 
for the Average of All Sites for the Top 100 Instructions Ordered by Average Frequency for Count and Execution Time for Time 

670 



would still take more instructions to 'cover' the same percent for 
time than for frequency. In fact, the plot of the instruction index 
ratios for equal coverage, Figure 6, shows that, for a wide range 
of interest, one still needs about 1.4 times as many instructions to 
achieve the same percent coverage by time as by count, even in 
this 'best case'. This same property holds on a workload by 
workload basis as well, although the 'equal coverage factor' does 
vary. 

5. Workload Content Considerations 

In the Introduction it was mentioned that the supervisor compo
nent of workloads, because it is present to some extent in all 
workloads, might provide a thread of commonality across envi
ronments. And to the extent that it may dominate some work
loads, it could be quite important in and of itself. We can see how 
important this might be by borrowing some ideas presented in 
LaMaire and White [8]. If we let Nbe the average instruction time 
(in, say, nanoseconds per instruction), then we can write 

N = A.~ + (1 - A.)~ 

where IV. is the average instruction time when in supervisor state, 
and Np is the average instruction time when in problem state. Thus 
A. is the fraction of the time in supervisor state. Clearly, as A. ap
proaches 1, the supervisor state workload component dominates 
the overall execution time. 

To see how important this may be, we can examine the measured 
workloads. But here again, we run into practicalities. Some 
workloads treat supervisor time differently than others. For ex
ample, the IMS data base control program executes largely in 
supervisor state, but is not present unless one is running an IMS 
data base; other major application subsystems have similar char
acteristics. But let's consider that what we are really looking for 
in terms of commonality is the functions which are accomplished 
in the operating system itself, in what is called the system control 
program. For the MVS operating system, this is code which exe
cutes predominantly in Storage Protect Key O. As a further sim
plification, we will just look at the measurements from sites using 

PEAK PERIOD MVS SITES, KEY 0 ONLY 
0 

~ 

vi g:o 
Vl!Xl 

:?:: 
0 

~ 
~o 
•• <0 

G z 
W 
:::l 
0 

~ ~ 
w 
~ 

~ 
~ ~ 
U 

0 
0 20 40 60 80 100 

TOP 100 INSTRUCTIONS 

w 
:::::;: 
i= 

!Q Description Key 0 Fract. 

E Sci. Batch .2 
F lnt. Sci. .6 
G lnt. Sci with Batch .3 
I Sci. Batch .2 
J Sci. Graph with Batch .6 
K Sci. Graph with Batch .5 
M IMS data base .5 
N IMS data base .6 
0 Prog. Devt with Batch .7 

Table 2: Fraction of Busy Time in Key 0 for the MVS Sites 

the MVS operating system. Thus, as a surrogate for a general 
supervisor state time, we shall consider MVS Key 0 time. The 
fraction of the total busy time spent in Key 0 for nine of the MVS 
environments appears in Table 2 * . This Key 0 ('supervisor') 
fraction ranges from .2 to .7, so that for some of these environ
ments the Key 0 component is indeed a major contributor to per
formance. 

Let us now consider the instruction usage of our pseudo
supervisor code, Le., the code executing in MVS Key O. This Key 
o instruction data for the sites in Table 2 was gathered similarly 
to the way the overall data for all the sites was gathered. In this 
case there were also 5-15 minute snapshots taken during the 'peak 
periods', although there were fewer snapshots, and, of course, not 
at the same time. Thus while the data for these Key 0 periods is 
still representative of peak period behavior, one would expect 
some small differences between this data and the overall data in 
some of the principal performance metrics, the source of which 
comes from the natural variability of the workload. These differ
ences are not significant in any major way. 

* Data is not included for the 3081G (Workloads C and D), as related 
instruction data was not readily available, nor for Workload L, one 
of the 3081K sites (for which the related instruction data was not 
available). 

PEAK PERIOD MVS SITES, KEY 0 ONLY 
0 

~ 

: 0 
Vl !Xl 
a:: 
!Ii 
:?:: 
0 

~ g 
~ 

~ 
Z 
W 

5~ w 
a:: 
lL. 

W 

~ :s 0 
:::l N 
:::::;: 
:::l 
U 

0 
0 20 40 60 80 100 

TOP 100 INSTRUCTIONS 

Figures 7 and 8: Cumulative Instr~ction Frequency and Time For Selected Sites 
for Key 0 Instructions Ordered by Frequency of Top Instructions Averaged over All Sites 

671 



Figure 7 presents the Key 0 instruction mix cumulative frequency 
for the measured sites. The ordering of instructions is the same 
as before: the decreasing average frequency of all instructions over 
all sites. Note now the high degree of similarity between the Key 
o instruction usage between these sites. The 'waves' indicate dif
ferences between instruction usage between the Key 0 ('supervi
sor') component and the overall general instruction usage., i.e., 
show where some instructions occur more frequently in Key 0 than 
in the general case. By comparing Figure 7 with. Figure 1, one 
notes that the curves in Figure 7 lie more along the upper curves 
of Figure 1, which as we had. noted, were the workloads which 
have a higher interactive content (and as Table 2 shows, have a 
higher fraction of Key 0 time). One sees that indeed a fair com
monality exists across the workloads coming from the Key 0 
component, and that it is dominant in workloads with a high frac-
tion of Key 0 time. 

Figure 8 shows the. corresponding Key 0 cumulative instruction 
time distribution. Again there is less variation across the sites than 
in the general case, though more so than when considering just 
instruction frequencies -- while Key 0 uses similar instructions, 
some of them may be taking more time in some of these workloads 
than in others. 

This commonality of Key 0 usage across the sites seems indeed to 
reflect the commmonality of supervisor function. All environ
ments require I/O and interrupt handling, task scheduling and 
switching, and various other supervisor services, albeit in possibly 
somewhat different proportions. If one accepts the paradigm of 
an operating system providing its service at the request of a user 
program or to handle an interrupt, the similarity across environ
ments seems intuitively likely, even though these services are in
voked less frequently in some environments than in others. For 
the sites given here, for example, there is no readily apparent dif
ferentiation between the curves for more compute bound as op
posed to more I/O bound environments. 

We can also examine the pseudo non-system code instruction us
age, or, as we use it here, the 'non-Key 0' instruction usage. This 
non-Key 0 component corresponds to application code and major 

o o 
t- ~ 

Z 
::::> 
a 
u 

vi 0 
Q::IX) 

tii 
~ 
o 

~ 0 
~ <D 

Z 
a z 
~ 

~ ~ 
::::> 
8 e: 

PEAK PERIOD MVS SITES, NON KEY 0 ONLY 

20 40 60 BO 100 

TOP 100 INSTRUCTIONS 

w 
:::;; 
1= 

vi 

subsystem (e.g., IMS) code. The data is derived by subtracting the 
Key 0 data from the overall data, with appropriate weightings. 
As such, it is somewhat artificial, since the overall data and the 
Key 0 data came from two different sets of snapshots, but it is a 
reasonable representation of 'non-Key 0' activity. 

Figures 9 and 10 present cumulative instruction mix and instruc
tion time distributions for the non-Key 0 instruction usage; the 
instruction ordering is our standard decreasing overall average 
frequency for all sites. There is substantially more variation. be
tween sites than seen earlier, indicating that the variation in the -
overall instruction use (and time) comes from non-Key 0 usage 
differences. In addition to the 'outlier', Workload I. showing up, 
one can also see a similarity within the four 'scientific' workloads, 
and, above them, the four 'interactive' workloads, particularly for 
instruction use frequency (Figure 9). 

6. Discussion 

The foregoing shows that there is a certain amount of variability 
in instruction usage across different environments, with some 
commonality based on the presence of supervisor code in each 
environment. The way processors are implemented affects in
struction execution time, and accentuates the variability. Because 
of this variability, it is important for robust design to consider 
different possible instruction mix contexts when evaluating po
tential system performance. 

As an example of this, suppose that instead of the decreasing 
overall average instruction frequency as an ordering, we select an 
ordering based on the decreasing average instruction frequency for 
one particular workload. Even more, let us use the decreasing 
average non-Key 0 frequency: This would be somewhat akin to 
basing design decisions on a particular sort of application code. 
To illustrate this, we shall use Workload I. 

* The curve in Figure 11 is not as smooth as, for example, the top curve 
in Figure 3, since the curve represents the cumulative use of all in
structions, but the ordering is based on non-Key 0 instruction·fre
quency. 

PEAK PERIOD MVS SITES, NON KEY 0 ONLY 
0 

~ 

Q:: 0 
t- IX) 
III 
~ 
0 

~ 
~o 

<D 
Z 
a z 
~ u 
~ ~ 
0 
W 
Q:: 
LL 

W 
~ 0 

~N 
::::> 
:::;; 
::::> 
u 

0 
0 20 40 60 BO 100 

TOP 100 INSTRUCTIONS 

Figures 9 and 10: Cumulative Instruction Frequency and Time For Selected Sites 
for non-Key 0 Instructions Ordered by Frequency of Top Instructions Averaged over All Sites 

672 



PEAK PERIOD - ALL SITES 

o~--~--~~--~--~----~--~----~--~----~--~ o 20 40 60 BO 

TOP 100 WORKLOAD I NON-KEY 0 .INSTRUCTIONS 

100 

PEAK PERIOD - ALL SITES 

o~--~--~~--~--~----~--~----~--~ ____ ~ __ -J 
o m 40 W ~ 100 

TOP 100 WORKLOAD I NON-KEY 0 INSTRUCTIONS 

Figures 11 and 12: Cumulative Instruction Frequency and Time For All Sites 
for All Instructions Ordered by Frequency of Top non-Key 0 Instructions of Workload I 

Figures 11 and 12 present cumulative instruction mix and instruc
tion time distributions for instruction usage for all sites; the in
struction ordering is now the decreasing average frequency for the 
non-Key 0 instructions of Workload I. *. In both figures, the curve 
for Workload I starts out below the curves for the rest of the 
workloads, but becomes the top-most curve after 12 to 20 or so 
instructions, for counting and timing respectively. This shows the 
extent of mismatch with general instruction usage, on the average, 
were one to use Workload I application code as a design point: 
while for the first few instructions, one would be safe (since their 
use in other workloads is higher than in Workload I), one would 
be exposed after that. And comparing Figures 1 and 11 and Fig
ures 2 and 12 shows that the extent of coverage is less when using 
Workload I application code as the base, since the general curves 
in Figures 1 and 2 are generally higher than their counterparts, 
particularly in Figure 2 in the range of 10 to 30 top instructions. 

Akin to the problem of just using .application code as a base for 
instruction use analysis (unless, of course, one only wants to 
characterize that particular code) is just using a subset of the in
structions as a base for analysis. It was noted in the discussion 
following Figure 3 in Section 4 that while a given set of the top 
instructions may 'cover' a fair portion of the total instruction use, 
they usually 'cover' less of a portion of the total execution time. 
From a design point of view, this means that analyses based on the 
top so many instructions may not generalize well, i.e., there could 
be performance exposures in not evaluating substantially more of 
the instructions. In Figure 3, 90 percent of the instruction use 
accounted for about 75 percent of the execution time. If, for ex
ample, one did not look closely at the instructions accounting for 
the last 10 percent of the usage, resulting in an implementation 
which was slower by, say, a factor of 2 for these instructions, then 
40 percent of the total execution time would not have been ac
counted for, a 25 percent increase in overall execution time. 

There are several extensions that would be of interest, both from 
an instruction use and from a performance analysis orientation. 
For instruction use, one could do more in terms of instruction 
categories, such as statistics on instruction type usage (e.g., 
register-to-register, register-to-storage, etc.), or instruction func-

673 

tion usage (e.g., loads vs. stores vs. branching, etc.). A number 
of these would have implications as to addressing hardware, stor
age bus, computational (e.g., floating point) element design, and 
so forth. Clements and Kolence [3] provide three general cat
egorizations for software-sampled data, and Peuto and Shustek 
[10] give several in-depth examples of such categorizations, albeit 
for problem programs, along with a good discussion of why one 
looks at them. Emer and Clark [5] present results for groups of 
instructions where the data is obtained directly, not by summa
rization from individual instructions; the groups are meaningful 
for their analyses. What would be harder .here would be to look 
at sequences of instructions and operand length distributions, for 
which data is not directly gathered (although some of this can be 
backed out, e.g., BC instructions generally follow TM instructions, 
and one might estimate operand length by looking at the cycles per 
instruction for particular instructions, such as LM or MVCL). 

A more interesting extension is the integration of the approach 
presented here with more general processor performance models. 
Conceptually, one would like to incorporate implementation con
siderations, such as pipeline breakage, cache effects, and so forth, 
as noted in Section 2 above, and as presented in MacDougall [9]. 
The extent of the· model presented in that paper is generally be
yond the ability of a single performance tool to produce the data 
for, particularly in real environments. But there may be ways to 
extend the measurement capability, combining the approach pre
sented here with that in LaMaire and White [8]. In that paper a 
fairly simple model of internal processor performance is given, 
which separates performance into a component having to do with 
execution time when all instructions and data are found in the 
cache, and a component relating the effect of delay when infor
mation is not found in the cache. The attempt here would be to 
try to apportion the in-cache effect on an instruction basis, similar 
to that presented in this paper. 

7. Conclusion 

One can conjecture about how wide the application of the fore
going is to different architectures and implementations. It does 
provide some insight into current instruction usage and its per-



formance impact for large IBM mainframe processors. However, 
the actual numbers should be less important than some of the 
general observations that have been noted. 

The first of these is another confirmation of the skew (with long 
tails) in instruction usage, as has been noted by others (Clark and 
Levy [2], Peuto and Shustek [10], etc.), and that this holds at the 
system-wide level as well as for problem code. Related to this is 
the general tendency in these cases of instruction mix 'coverage' 
to be higher than instruction execution time 'coverage', for the 
same most frequently used instructions. Presumably, the fre
quency of use data for the top instructions should always dominate 
the time data for these instructions for most of the environments 
for which a processor is designed, because the biggest performance 
gains come from speeding them up, and hence the most attention 
should be paid to their implementation. Considering these two 
points, the implication here is that analyses based on a certain 
number of frequently used instructions may be overly optimistic 
when considering the performance impact. 

Another observation relates to the commonality of supervisor 
code across environments. This does, in effect, provide a "core" 
set of instructions which should occur with some degree of regu
larity, even though this core may appear in different proportions 
in different environments. 

Concomitantly, the particularity of problem program code is what 
will give an environment its own flavor. These more workload 
specific instructions provide the variability which must be ad
dressed in order to design an effective, general purpose machine. 
Consequently, there is a need to address a variety of mixes (espe
cially for general purpose machines) to get a feel for the need for 
robust processor design. 

Finally, one should analyze production systems; after all, the final 
assay of value lies in the crucible of the real world. 

674 

References 

[1] Bonnes, A. H. J., "Instruction Execution Time Measurements in 
MVS Systems", Computer Performance. September 1983, pp. 
167-175 

[2] Clark, D. W., and H. M. Levy, "Measurement and Analysis of In
struction Use in the VAX-ll/780", Proceedings of the 9th Annual 
Symposium on Computer Architecture. April 26-29, 1982, pp. 9-17 

[3] Clements, R. and K. W. Kolence, "Building Workload Profiles to 
Estimate Practical CPU Power", Proceedings of CMG '85. The 
Computer Measurement Group, 1985, pp. 392-399 

[4] Colwell, R. P., C. Y. Hitchcock III, E. D. Jensen, H. M. B. Sprunt, 
and C. P. Kollar, "Computers, Complexity, and Controversy", 
Computer. September 1985, pp. 8-19 

[5] Emer, J. S., and D. W. Clark, "A Characterization of Processor 
Performance in the VAX-ll/780", Proceedings of the 11th An
nual Symposium on Computer Architecture. June 5-7, 1984, pp. 
301-310 

[6] IBM System!370 Principles of Operation. GA22-7000, IBM Corp. 

[7] IBM System!370 Extended Architecture Principles of Operation. 
SA22-7085, IBM Corp. 

[8] LaMaire, O. R., and W. W. White, "Processor-Level Workload 
Characterization", Proceedings of the International Workshop on 
Workload Characterization of Computer Systems and Computer 
Networks. (North Holland, to appear), Pavia, Italy, October 1985. 
Also as IBM Research Report RC11385, IBM Corp., September 
1985. 

[9] MacDougall, "Instruction-level Program and Processor Modeling" , 
Computer. July 1984, pp. 14-24 

[10] Peuto, B. L., and L. J. Shustek, "An Instruction Timing Model of 
CPU Performance", Proceedings of the 4th Annual Symposium on 
Computer Architecture. March 23-35,1977, pp. 165-178 



Dynamic Load Sharing in Distributed Database SysteInS 

Philip S. Yu 
Simonetta Balsamo 

Yann-Hang Lee 

IBM Thomas I. Watson Research Center 
P. O. Box 218 

Yorktown Heights, NY 10598 

Abstract 

In this paper, we investigate dynamic load sharing strate
gies for locally distributed database systems in which the data
base is partitioned and distributed among multiple transaction 
processing systems and a common front-end processor is em
ployed for transaction routing. In this environment, if a trans
action issues a database request referencing a non-local 
database partition, the request has to be shipped to the system 
owning the referenced partition for processing. A total of four 
different dynamic strategies have been studied. Their perform
ances are compared with that of the optimal static strategy. A 
dynamic load sharing strategy which takes into account previ
ous transaction routing decisions is found to provide a sub
stantial improvement over the optimal static strategy. The 
robustness of this strategy is further studied through sensitiv
ity analysis over a wide range of conditions, including trans
action load, communication overhead and database reference 
distribution. 

1.0 Introduction 

When processing power is distributed over multiple com
puter systems, load sharing is critical in achieving higher ag
gregate throughput and better response time. To attain 
appropriate sharing, arriving tasks are allocated according to 
some strategy. Strategies are static in nature if allocation de
cisions are based solely on the static characteristics of arriving 
tasks and the processing systems. The other category, in which 
allocation decisions depend upon not only the static character
istics but also the current system state, is referred to as dy
namic strategies. 

Numerous load sharing strategies, both static and dy
namic, have been studied for models of distributed systems. 
Queueing network analysis, mathematical programming, and 
other techniques can be used to obtain performance estimates 
and then to derive optimal static strategies; for example, the 
optimal deterministic allocation of tasks in [Ston77, Ston78], 
and optimal probabilistic assignments in [Ni85,Tant85]. On the 
other hand, certain optimalities in the dynamic approach have 
also been discovered. For instance, the send-to-shortest queue 

CH2345-7j86jOOOOj0675$01.00© 1986 IEEE 
675 

strategy is found to be the best for the case of Poisson arrivals 
and identical exponential servers [Wins77] and the round-robin 
strategy becomes optimal when the queue length at each server 
can not be observed, provided that all servers have the same 
initial state [Ephr80]. A survey on load sharing strategies in 
distributed systems can be found in [Wang85]. For other more 
complex cases, like heterogeneous servers, multiple classes of 
tasks and different arrival and service time distributions, sim
ulations have been adopted to study the performance of various 
strategies [Agra82, Care84, Chow79]. 

The dynamic load sharing approach takes into account the 
changing condition of the system state and would appear to be 
more advantageous than the static approach. However, if a 
significant amount of overhead is needed to collect the required 
system state information to make routing decisions, the dy
namic strategy can become impractical. The collection, the us
ages and the impacts of different levels of information are 
critical issues in the study of dynamic strategi'!s. In [Eagr84, 
Eagr85], a probe limit scheme based on queue length threshold 
is proposed to make a compromise between the overhead of 
collecting information and the amount of information col
lected. Their results show that using a small arriount of state 
information can improve performance considerably. 

In these previous studies, it is assumed that incoming 
tasks can be serviced completely at any processing system. This 
implies that either all tasks are purely computational or re
quested resources,e.g. database or files, are shared or replicated 
among all processing systems. This assumption can be quite 
restrictive. Consider a locally distributed database environ
ment as shown in Figure 1.1. By locally we mean so close to
gether that communication delay are negligible, e.g., the entire 
system is located in the same machine room. The database is 
partitioned among the various processing systems and a com
mon front-end system is employed for routing transactions to 
one of the processing systems. If a transaction issues a database 
request referencing a remote database partition, the request has 
to be shipped to the system owning the referenced partition for 
processing. This is referred to as a remote database request. 
Thus, a new dimension, the reference pattern or the reference 
locality, has to be considered in load sharing strategies. 

In a locally distributed database complex, the processing 
associated with each transaction can be divided into two cate
gories. The first category denoted as routing dependent proc
essing, is to be executed at the processing system where a 
transaction is routed to. The application process belongs to this 
category. The other is partition dependent processing which is 
a service request against a particular database partition, e.g. the 



database requests, and can only be executed at the processing 
system owning the partition. To balance the loads among 
processing systems, only the routing dependent processing can 
be used as leverage. In addition, different transaction routing 
strategies may affect the number of remote database requests 
and, thus, incur different communication load. Load sharing 
has become more complicated compared to the case without 
request shipping between processing systems. 

In this paper, we consider four different dynamic strate
gies for load sharing in a locally distributed database environ
ment and evaluate their impacts on system performance. These 
strategies require different levels of information on the system 
state. The usefulness of different levels of state information is 
quantified through performance comparisons. From simu
lation results, we notice that good dynamic load sharing strat
egies should strike a compromise between balancing the 
processing load and reducing remote database requests. Neg
lecting either the load condition or database reference infor
mation during routing decision making can lead to less than 
satisfactory results. Also, detailed information on instantane
ous system state, e.g. queue length at a particular moment, is 
found not to be beneficial to improve performance. 

In the next section, the locally distributed database envi
ronment and transadion characteristics are described. The 
model of the system complex is also described. In section 3, 
various load sharing strategies are discussed. Section 4 presents 
simulation results on response time under different load sharing 
strategies. Detailed sensitivity analyses are also provided. We 
summarize the results in Section 5. Note that the model 
studied is not limited to the database system. It can be applied 
to any system with distributed resources and requests. 

2.0 Model Description and Formulation 

We consider a locally distributed transaction processing 
system as shown in Figure 1.1. The system consists of N 
transaction processing systems and a front-end system, con
nected by an interconnection network. The transaction proc
essing systems execute transaction application processes and 
handle database requests. The whole database is partitioned 
into N databases which are denoted as DBl> ... , DBN , where 
DB, is attached to the transaction processing system, P,. All 
database requests to DB, are assumed to be handled by the 
processing system P,. The processor speeds and the I/O service 
times at the different processing system are assumed to be 
identical. 

Transactions submitted by users enter the system through 
the front-end system where transactions get formatted and are 
routed to one of the processing systems. After a transaction 
processing is completed, output messages will be mapped into 
the user's screen format and delivered back to the user via the 
front-end system. A load sharing strategy is employed at the 
front-end system to determine the assignment of an incoming 
transaction to a processing system. 

At the assigned processing system, a transaction invokes 
an application process which may issue a number of database 
requests. The application process of a transaction will be exe
cuted completely at the assigned processing system, whereas 
database requests will be executed at the processing system 

676 

1"112 

Figure 1.1 The Configuration of a Locally Distrihuted Datahase System 

owning the database partition. During the execution of data
base request, I/O devices will be accessed if the required data 
is not in the processing systems. The flow of transaction proc
essing is shown in Figure 2.1, where a transaction will be com
pleted after several iteration~ of" application processing 
segments and database requests. Transactions, then, can be 
characterized into different classes by (1) the processing service 
demand of each application processing segment, (2) the number 
and reference distribution of database requests, and (3) the 
processing and I/O service demands of each database request. 
For simplicity, we assume that these service demands are ex
ponentially distributed. Also, at the end of each application 
processing segment, fixed probabilities of issuing a database 
request to a particular database or terminating the transaction 
processing are assumed where the probability can depend on the 
transaction class. 

Based on the sequence of transaction processing, we con
struct the model of transaction processing as shown in Figure 
2.2. Let there be K transaction classes in the system ana let IXk 

denote a class k transaction, k = 1, ... ,K. For each k IXk 's arrive 
according to a time-invariant Poisson process with rate A/(t 
where k = 1,2" ... ,K. The mean processing service demands of 
an application processing segment and a database request of IXk 

are ak and bk , respectively. Both ak and bk can be estimated by 
measuring pathlength of application processing and database 
request. For each database requests issued by IXh we assume 
that, with a fixed probability plo ,an I/O device will be accessed 
and the service time of each I/O access is exponentially dis
tributed with mean dk • When the execution of an application 
processing segment is completed, transaction IXk may issue a 
database request to database DB; with probability Pki , or may 
terminate with probability PkO. The Pk, is referred to as the da
tabase request probability of transaction k to DB,. Thus, the 
total processing load of incoming transactions per unit of time 
to the whole system becomes 

K Ak 
S = L-(ak + (1 - Pko)bk) 

k .. 1 PkO 



application 
pr_a1nt 

application allllllco1lon 
procH,ln; proc .... ng 

ttort 1-1 ---I---l------+----+--_+_ ..... -+1------1f-----l1 .nd 

Input 
formottlng 

dGloba,. 
request 
10 Oil 

(with 10 ocen,) 

datoba,. 
requ.st 
10 OBI 

(wlthoul 10 oce ... ) 

Figure 2.1. The Sequence or Transaction Processing 

output 
! formatting 

Figure 2.2. Model of Transaction Processing 

output 
formatting 

Among this total processing load, there is a portion associated 
with the processing of database requests. We denote the proc
essing load of database requests per unit time at P, as follows 

S~ = ± AkPkjbk 

I k-l ho 

Notice that S and S~ only depend upon the characteristics 
of transactions and are independent of the transaction routing 
decisions. When a database request is issued, it must be shipped 
from processing system P, to Pj if a transaction being executed 
at P, issues a database request to DB) , where i =1= j. After the 
request gets processed, the result will be sent back. Both P, and 
P j have to perform sending and receiving services in this case. 
The service demands of sending and receiving a database re
quest or the results of a request are referred to as communi
cation overhead and are assumed to be exponentially 
distributed with mean c. 

The system model is illustrated in Figure 2.3. Each 
processing system is modeled by a single server processor shar
ing queue to represent the processor and an an infinite server 
queue to represent the I/O. After a transaction is routed to a 
processing system, its various tasks may be executed sequen
tially at different processing systems. The transmission delay 
of shipping database requests in the network and the delay due 
to the decision process at the front-end system are assumed 
negligible. The former assumption while reasonable in a locally 
distributed system would not be in a geographically distributed 
system. 

677 

e: application process 

I: locel dotebase requests 
ov: communication overhead 

r: receiving service and 

remote detebase requests 

Front-end system 

DC 

submodel for 
databese requests (I & rI 

Pl - DBl 

P2 - 82 I 

\~)II 
~ 

Figure 2.3. Model ror Locally Distributed Database System. 

3.0 Load Sharing Strategies 

We now consider four different dynamic routing strate
gies which can be employed at the front-end system. Different 
system static and state information are considered in making 
the routing decision under each strategy. We call the number 
of tasks being executed at processing system P, the queue length 
at i, where a task is either application processing, database re
quest processing or communication overhead. The number of 
tasks receiving 10 service at system i is not included in the 
queue length at i. 

3.1 Minimum Instantaneous Queue Length 

The min'imum instantaneous queue length strategy (de
noted as MQL) routes each arriving transaction to the proc
essin~ system that has the least number of tasks being executed. 
Let n = (n\>".,nN) where n, is the instantaneous queue length of 
the processing system P, , for i = 1,2, .. ,N. The minimum queue 
length strategy selects the processor element P, such that 
n, = min{n;l. If the minimum is not unique, a processing sys
tem,lf/gong the ones that achieve the minimum, is randomly 
chosen. This strategy is only based on the state information ~ 
and does not require any static information. 

The minimum instantaneous queue length strategy, also 
known as the send-to-shortest queue policy, is optimal for a 
system with identical exponential queues, a single Poisson ar
riving transaction stream and where each transaction executes 
on only one processor and can executed on any processor. For 
more complex systems with multiple classes and/or trans
actions which cannot execute on certain processor and/or 
transactions which must execute on more than one processor, 
the minimum queue length strategy is not in general optimal. 

3.2 Minimum Expected Response Time Strategies 

p. Consider a set of dynamic strategies where tf_e routing de
cision process consists of two steps. First, the expected re
sponse time of the incoming transaction given the transaction 
is routed to the processing system P" is estimated. Then, the 



incoming transaction is routed to the processing system p. 
which provides the minimum expected response time. 

Assuming the system state on arrival is known, the ex
pected response time of the incoming transaction should be es
timated using a transient analysis. For simplicity. a 
steady-state analysis is applied. Consider the system model 
shown in Fig. 2.3. Let us assume that the class k transactions 
are routed, according to a certain probability distribution, to 
the processing system Pi' Then the system can be represented 
by a product form open queueing network [Bask75] with K 
chains corresponding to the transaction classes and N processor 
sharing queues representing the processors, each connected 
with an infinite server queue representing the I/O servers. If 

the steady state queue length L = (L1, ••• ,LN ) , where LI denotes 
the mean queue length of p. , for i = 1, ... ,N, is known, then the 
mean response time of an arriving type k transaction, denoted 

as Rb(L), provided that it will be routed to p., can be approxi
mated as follows. 

Let R't..(L.) denote the expected response time for com
pleting the application process for a class k transaction, [xl> 

which is routed to a processing system Pi' Consider the proc
essing time of a database request at a processing system given 
there is no I/O access. The expected response time of serving 
a local database request to DB. at p., for a transaction txt routed 
to p., is denoted by Ri.(L.). For a database request to PB j issued 
from p., where i #: j, a database request must be shipped from 
processing system Pi to Pj • Then, in this case, there are two 
components in the expected response time: the first, R'k:(L.) ,is 
due to the communication overhead in p. of shipping the re
quest and receiving the result, and the second, Ri:;CL} , is due 
to the servicing a remote database request in Pj' which includes 
receiving the request, processing the request and sending !he 

result back. Hence, the total expected response time RL(L) , 
for an arriving type k transaction assigned to processing system 
Pi can be written as 

N 

Rki(L) = P~D [Rki(L j ) + Pki Rt(Li) + ~kj RZ~(Li) + 
}-1 
#i 

N 

Vk~k}L) + p£Odk ] 
j-l 

j~i 

(1) 

where plodt is the expected I/O service time for each database 
request and Pkj is the database request probability of a class k 
transaction to DB p 

On the other hand, each component in the expected re
sponse time in (1) can be approximated by 

(2) 

for k = I, ... ,K, i = I, .... ,N, where x = a,l,ov,r, S:. is the service 
time of tXk on PI for service x. Given the mean service demand 
for txk of application processing segments, database requests 
and sending or receiving requests, i.e. ak , bk and c, respectively, 
one can write 

ak 
~k'=-, P. 

678 

where IL is the processing speed of each processor. Hence, by 
(2) and (3), the total expected response time given by (1) for 
transaction txt routed to Pi can be rewritten as 

j~i 

N 

L(Lj + l)srcj Pkj + pio dk } (4) 
j~1 

#i 

Note that the above equation is a steady-state expression 
of the expected response time of the arriving transaction as a 

function of mean queue length L. We now consider three dif

ferent ways to estimate L which result in three different rout
ing strategies. 

3.2.1 Instantaneous Queue Length Based Strategy 

We assume that the instantaneous queue length 

~ = (nit ... , nN ) is known on arrival and we estim~te L by~. i.e., 
the expected response time is estimated by Rk.(n) . Thus, this 
strategy requires state information ~ and static information 
{au bu C,PkO,Pb' IL}. We refer to this strategy as MRT.IQL for 
minimum response time based on instantaneous queue length. 
Note that the instantaneous queue length information required 
can be costly to collect. In addition, the instantaneous queue 
length may not be representative of the mean queue length. 

3.2.2 Service Time Based Strategy 

Consider the moment that a new transaction arrives. Let 
mkl be the number of class k transactions assigned to the proc
essing system PIt and not yet completed, i.e., m kl is determined 
by the previous routing decisions for all transactions still in the 
complex. Let probt(it/) denote the probability that a class k 
transaction assigned to processing system Pi is waiting for or 
receiving processing service at Pp Hence, we can express the 
expected queue length LJ of Pj as 

N K 

Lj = L Lmkiprobk(it/) 
i-I k-l 

(5) 

for j = I ..... N. Assuming that the fraction of time that a type 
k transaction is either (a) waiting or receiving processing ser
vice at P j , or (b) receiving I/O service is proportional to the 
corresponding overall service time, one can approximate the 
unknown probabilities in (5) as follows 

probk(iJ) = S/ej Pkj _1_ i #: j 
Cki 

N 

probk(i,i) = [.sfi + SkiPki + s,:;Vkj]_I-
j-l Cki 
j~i 

where the normalizing constant Ctl is given by 

N N N 

Cki = .sfi + st Pki + .sf:Vkj + L S/ej Pkj + pio dkL Pkj 
j~1 j-l j-l 
j"#i j# 

(6) 

Notice that the probabilities probt(it/) are normalized by con- , 
sidering the transactions assigned to Pi and receiving either 
processing or I/O service. the I/O devices. 



Hence, given;;' = (mkj:k = 1, ... ,K; i = 1, ... ,N) and the ap
proximate probabilities probk(i,,) based on the service time 
proportions, one can derive estimates from Eq. (5) of the mean 

queue length L. Each incoming trans~ction is then :outed to 

the processing system P, such that Rk.(L) = min{Rkj(L)} . This 
strategy is called MRT.ST which requires ~[ftYe-dependent in
formation;;' and static information {au bkt C, PtO' Pt., IL} • 

3.2.3 Residence Time Based Strategy 

The residence time based strategy, which will be called 
MRT.RT, is different from MRT.ST only in the computation 
of probabilities probk(i,,) . With MRT.RT strategy, the proba
bility probk(i,,) is proportional to the residence time at the 
processing system P

l
, instead of the service time. An iterative 

approach based on the MVA equations [Reis80] is applied in 
order to derive the probability probk(i,,) and the expected queue 

length, L. 

The residence time ~(i,,) in Pj of a transaction of class k 
initially assigned to p. can be written as 

where NkUJ) is the mean number of tasks that a type k trans
action assigned to p. finds in Pj and Sk(i,,) is its total service 
time at P. Values of SkU,,) can be simply derived from the 

1 • 
service times expressed in (3). Nk(iJ) can be approxImated by 
Nk(iJ) = L; - probt(iJ) which is similar to the well known 
Bard-Shweitzer's algorithm [Schw79, Bard80]. Thus, the 
probability probk(iJ) which is proportional to the residence time 
TtUJ) is given as 

1 
probk(iJ) == s'fcjPkj (Lj - probk(i,,) + 1) C

ki 
(7) 

N 1 
probk(i,i) == [~i + SkiPki + ~; Vkj] (Li - probk(i,i) + 1)c. 

~1 b 
i~i 

where the normalizing constant ClI is given by 

N 

Cki = [~i + sfciPki + s,:;:Vkj](Li - probk(i,i) + 1) + 
j=1 

j# 

N N 

Ls'fcjPkj (Lj - probk(i,,) + 1) + pt dkVkj 
~1 ~1 
Ni 

Hence, given a system state;;' , the mean queue lengths 
are computed by iterating (7) and (5), starting with zero values 
for both queue lengths L j and probabilities probk(iJ), for 
k = 1, ... ,K, iJ == 1, ... ,N. The MRT.RT strategy uses the same 
static and state-dependent information as the MRT.ST strat
egy. The iteration between (7) and (5) should not impose any 
substantial overhead during decision making. 

4.0 Simulation Study and PerforITlance' 
COITlparisons 

In the following, we use simulation to investigate the ef
fectiveness of the proposed load sharing strategies. Mean 
transaction response time is the main concern and is used to 

679 

indicate system performance under the different load sharing 
strategies. To compare the performance of Inc above strategies, 
we also consider the optimal static load sharing strategy. Under 
a static load sharing strategy, an incoming transaction is routed 
to a processing system according to a predefined routing prob
ability. The optimal static load sharing strategy takes account 
of all static information, i.e. {Au at, bk , c, P10Pt.,Il } , to determine 
the routing probabilities such that the mean transaction re
sponse time is minimized. The details of solving this optimiza
tion problem have been given in [Yu85a], where a simplex 
reflection method is used to find the optimal routing probabil
ities. 

4.1 Description of the Sirn.ulations 

In order to evaluate dynamic load sharing strategies, we 
simulated the model for a locally distributed database system 
illustrated in Figure 2.3. The simulation was implemented us
ing RESQ [Saue82]. The routing decision is implemented as a 
separate function and is invoked upon transaction arrival at the 
front-end system. In addition, for all simulation runs, 95% 
confidence level was obtained. The simulations were run until 
the relative width of the confidence interval (width divided by 
midpoint) was less than O.l. 

In the experiments reported in the following, we assume 
that there are three transaction processing systems (N == 3) and 
three transaction classes (K == 3). Based on data from some 
IBM IMS systems [Corn85, Yu85b], the average number of 
database requests per transaction is set to 15 for all transaction 
classes, i.e., PkO == 0.0625 for k == 1,2,3. The matrices 

__ l __ [PkJ , which indicate the distribution of database re
Juesfg:~are given in Table 4.1 to reflect low, middle, and high 
localities of database requests. 

To study the impact of processing load on database re
quests and request shippings, various service demands and 
processing powers arc assigned with relative values. We regard 
at + bk as a unit of service demand for all k. The mean service 
time of this unit is assumed to be 0.04, i.e., IL = 25. The service 
demand of shipping a request, c, is defined in terms of this unit. 
The 10 access time, dt , and the probability of having 10 access, 
pLo, are assumed to be 0.4 and 0.7 for all transaction classes, 
respectively. Also, we denote the ratio of bJc to ak + bk as rk • The 
complexity of database requests can be represented through 
this ratio. 

The load of a processing system could be due to the ser
vices of transaction application processing, database request 
processing, and communication overhead processing. Let 

Pp == ~, where S is given in Section 2, which indicates the 
averag'{fprocessing load per system due to application process
ing and database requests and is independent of the routing de
cisions. By changing the arrival rates Ak , we can study the 
transaction response time under different P,. The load of a 
processing system P, due to processing database requests, de-

low loca lit Y mi ddle local ity high loca Ii ty 

Database I 2 3 I 2 3 I 2 3 

Tx type I 0.65 0.20 0.15 0.75 o. II 0.14 o. 90 o. 10. O. a 
Tx type 2 0.17 0.52 0.31 0.07 0.82 0.11 0.07 0.87 0.06 
Tx type 3 0.21 0.21 0.58 o. II 0.06 0.83 0.11 0.03 0.86 

Table 4.1 The Distribution of Database Requests Used in Experiments 



Sb 
noted by Pb(i) ,is routing independent and is equal to -' ,where 
S; ;s given in Section 2. By changing the arrival ratls subject 
to a fixed Pr, we can vary the relative value of the Pb(i) which 
represent the partition depending processing loads. 

4.2 Perforznance Coznparisons 

First, we study the effectiveness of load sharing strategies 
under different processing loads, Pp' The incoming transactions 
ar\;' assumed to have middle locality in" regard to the distrib
ution of database requests and rl = 0.3 for all transaction 
classes. The partition dependent load on each processing sys
tem is assumed to be equal. i.e., Pb(1):Pb(2):Pb(3) = 1:1:1 . Fig
ures 4.1 and 4.2 show the transaction response times versus P, 
for c = 0.05 and c = 0.25, respectively. 

" II) 
E 
;= 

" en 
c 
o 
Co 
en 

" a:: ,... 
c 
.~ 
U 
o 
en 
C 
o 
~ 
C ID 
o 

" ~ 

c-0.05 
rk- 0.3 
Pb( 1 I:PbC21:PbC31-1 : 1 : 1 

0.4 0.6 

Processing Load Pp 
0.8 

Figure 4 .. 1 Mean transaction response rime vs. processing load (c = 0.051 

c-0.25 
rk - 0.3 
PbC 1 I:PbC21:PbC31-1 : 1 : 1 

Processing Load Pp 

WRT .1Cl 

Figure 4.2 Mean transaction response time \'5. processing load (c = 025) 

680 

Notice that when the communication overhead of ship":' 
ping remote requests is low, all dynamic load sharing strategies 
have better performance than the optimal static strategy. When 
the communication overhead is high, optimal static strategy 
becomes better than MQL and MRT.lQL, strategies. Over all 
strategies considered, MRT.ST and MRT.RT strategies yield 
the best performance. Neither of these two strategies needs 
instantaneous state information. If we keep a count at the 
front-end system of the ·previous transaction routings and 
completions, both strategies can be implemented without the 
extra communication between the front-end system and the 
transaction processing systems that would be needed to collect 
instantaneous state information. 

Both MQL and MRT.lQL strategies use instantaneous 
queue lengths to make transaction routing decisions. The queue 
length at each processing system contains the tasks of applica-

:tion processing, database request processing and communi
cation overhead. The instantaneous queue length may fluctuate 
frequently due to the issuing of database requests. As a conse
quence, the decision processes using MQL and MRT.lQL are 
based on more instance where the system has 'unbalanced load 
than under the other strategies. Thus, more transactions are 
routed to a non-preferred system where only small percentage 
of database requests are designated to and more remote data
base requests are introduced. When the communication over
head is high, these additional remote database requests lead to 
an increase of system utilization and transaction response time. 
Both the MQL and MRT.lQL strategies end up with inferior 
performance to the optimal static strategy, which does not 
consider the system state in making the routing decision. 

4.3 Sensitivity Analyses 

In Figures 4.1 and 4.2, it has been shown that both 
MRT.ST and MRT.RT are superior to the other load sharing 
strategies considered in this paper. We shall proceed further to 
investigate the ,robustness of these two strategies through sen
sitivity analyses on various system and workload parameters. 
Specifically, we vary communication overhead, distribution of 
database requests and degree of balance of the partition de
pendent loads. 

1. Sensitivity 10 communication overhead 

The relationship between transaction response time and 
communication overhead is illustrated in Figure 4.3 where 
simulation results for various communication overheads. are 
presented for MRT.ST, MRT.RT, and the optimal static strat
egies. Two groups of curves are shown; one is for Pp =0.57, the 
other is for Pp = 0.71. The response times increase more than 
linearly in the second group which is under higher processing 
load. Figure 4.4 shows the increase in mean communication 
load at each processing system when the communication over
head of shipping database requests and results becomes large. 

Although both MRT.ST andMRT.RT are superior to the 
optimal static strategy, the mean communication load under 
the optimal static strategy is less than that under MRT.ST or 
MRT.RT. This is shown in Figure 4.4. Compared with the op
timal static strategy, the larger shipping loads under MRT.ST 
and MRT.RT indicate that more transactions are routed to a 
non-preferred processing system to eliminate temporary load 
unbalancing. Despite the increase in communication load, the 
dynamic routing balances the loads among processing systems, 
eliminates possible bottlenecks, and thus reduces the response 



time. The other interesting observation in Figure 4.4 is that the 
number of non-preferred routings under MRT.RT is greater 
than that under MRT.ST. In contrast to MRT.ST, the 
MRT.RT's approximation captures queueing effects. Thus, the 
difference of estimated queue lengths between processing sys
tems under MRT.RT tends to be larger than that under 
MRT.ST. As a consequence, more transactions are routed to a 
non-preferred processing system under MRT.RT. 

CIJ 
E 

>= 
CIJ 

'" C 
o 
~ <C 
CIJ 

a:: 
c 
.~ 
U 
o 
'" c 

~ 
c 
o 
CIJ 
~ 

rk-O . .3 
_ : with MRT . RT strategy 
_ : with MRT . 5T strategy 
_ : with optimal static 
Pb( 1 l:p b(2l:Pb(3)-1 : 1: 1 

~L-__ ~ __ ~ ____ ~ __ ~ ________ ~ __ ~~--~--~--~ 
o O. , 0.2 0.3 0.4 0.5 

Communication Overhead 

FIgure 4.3. Mean transaction response time \Is. communication overhead 

2. Sensitivity to the degree of balance of database request processing 

In Figure 4.5, the performance of MRT.ST, MRT.RT and 
the optimal static strategy is studied for different proportions 
of Pb(1):Pb(2):Pb(3) which is changed from 0.5:1:1 to 2.5:1:1 . 
This is achieved by changing the. arrival rates of different 
transaction classes. Since the application processing load can 
be allocated, to any processing system, the changes of arrival 
rates only vary the load of serving database requests. The load 
of serving application processing and communication at each 
processing system is determined by the load sharing strategy. 
However, this underlying unbalancing certainly increases the 
difficulty in trading off sharing transaction processing load and 
reducing communication overhead load. As shown in Fioure 
4.5, when the Pb(i)'S are unbalanced,. the response timeincre~ses 
apparently because (1) more contention for one or two proc
essing systems when database requests are issued, and (2) more 
communication load is introduced during balancing the load at 
each processing system. In addition, the MRT.ST strategy is 
much more sensitive to the degree of balancing of Pb(i). 

The unbalanced loads in the processing systems can also 
be used to differentiate the performances under MRT.ST and 
MRT.RT. Since the routing decision is based on the difference 
of estimated loads bet ween processing .systems, the accuracy in 
estimation only becomes clear when the loads. are quite differ
ent. As shown in Figure 4.5, the performance under MRT.RT 
can be a lot better than that under MRT.ST for highly unbal
anced cases. When Pb(1):Pb(2):Pb(3) = 2.5:1:1. the response 
time under the MRT.ST gets even worse than that under the 
optimal static strategy. 

681 

'0 
o 
S 
c 
.~ 
o 
u 
'c 
:J 
E 
E 
o 
u 
c 
o 
v 
~ 

e 
o 

~ 
o 
c:i 

rk-O . .3 
_ : with MRT. RT strategy 
__ : with MRT . 5T strategy 
- : with optimal static 
Pb( 1 l:P bC2l:Pb(.3)-1 : 1 : 1 

°0~--~---0~.~1--~----0~2----~---0~.3--~~--0~.-4--~--~0.5 

CIJ 

.~ 
v 
'" c 
8. e 
'" v 

a:: 
e 
.~ 
U 
o 
'" C <C 

~ 
l-

e 
o 
CIJ 
~ 

o 

Communication Overhead 

F'tgllre 4.4. Average communication load vs. communication o.verhead 

c-O.25 
rk-O . .3 

: with MRT. RT strategy 
: with MRT. 5T strategy 

- : with optimal. static 

Balancing Factor of Partition Dependent Service 

Figure 4.5 Mean transaction response time vs. degree or balancing on partition 

dependent load 

3. Sensitivity to the database reference pattern 

Under the MRT.RT strategy, Figure 4.6 shows the mean· 
response time versus processing load for the different reference 
distributions of database requests defined in Table 4.1. As ex
pected, the cases with less locality have longer response times. 
When Pp = 0.81 and c = 0.25, the processor utilization of the 
low locality case can reach 0.99~ The decrease in the locality 
leads to higher communication load. When the locality of da
tabase request decreases, the benefit of routing transactions to 
the preferred processing system decreases. Thus, more trans
actions get routed to a non-preferred processing system to bal
ance the load. Figure 4.7 shows the percentage of transactions 
routed to non-preferred processing systems versus .. processing 
load. Clearly, the percentage of non-preferred routing in the 



case with low locality is larger than that of the cases with mid
dle or high locality. The changes in transaction routing under 
different processing load can be studied in Figure 4.7. When 
the utilization increases, the communication load incurred from 
assigning transactions to a non-preferred processing system 
may deteriorate transaction response time more than the gain 
from balancing the load. Thus, this percentage will be reduced 
to avoid system saturation. 

c 
o 
OIl 
~ 

c 
o z 
'0 

CD 

o 

Q) N 

g' 0 
C 
OIl 
U 
Q; 

Cl. 

with MRT . RT strategy 
r.-0.3 

-- low locality 
-- middle locality 

- -- high locality 

0.4 0,6 

Processing Load Pp 

c-O.2S 

c-O.OS 

0.8 

Fagure 4.6. Mean transaction response time Ys. processing load 

with MRT . RT strategy 
r.-0.3 

-- low locality 
-- middle locality 

_ -- high locality 

c-O.OS 

------ c-O. 2S 

oL-----~0.-4------~----~0~.6------~----~0~,8~----~ 

Processing Load Pp 

FIgUre 4.7. Non-prererred routing rrequency \'5. processing load 

s.o Conclusion 

In this paper, we have evaluated different strategies for 
dynamic load sharing in a locally distributed database environ
ment. The issue is how to make effective load sharing decisions 
at the front-end system with the least amount of communi
cation between the front-end and processing systems to collect 
system state information. A total of four different dynamic 

682 

strategies have been considered. The minimum queue length 
(MQL) strategy which does not consider the transaction's da
tabase reference pattern has the worst performance among all 
the dynamic strategies considered. It often performs worse 
than the optimal static strategy. The dynamic strategy which 
uses the instantaneous queue length to estimate the mean re
sponse time of each possible routing is also not very successful. 
This is due to the fact that instantaneous queue length does not 
accurately reflect the current loads of processi'lg systems. 

The other two dynamic strategies, MRT.ST and MRT.RT, 
estimate the mean response time at each processing system 
based on the number of executing transactions at each ptocess
ing system. Both strategies lead to very satisfactory results 
when the partition dependent load is well balanced. The dif
ference between the two strategies is in the estimation of the 
mean queue length at each processing system: the MRT.ST is 
simply based on the' remaining processing load, whereas the 
MRT.RT further considers the queueing effect. The sensitivity 
analyses show that the MRT.RT is much more robust for un
balanced database load and can provide substantial perform
ance improvement over the optimal static load sharing strategy. 

In summary, dynamic strategies can be superior to the 
optimal static strategy if good routing decisions are made using 
appropriate information about the system state. Good dynamic 
strategies need to consider both balancing the load and reducing 
remote processing requests. The state information used in 
making decisions must be able to characterize the average sys
tem behavior instead of the instantaneous load fluctuation. 
An immediate extension of the study, which is currently being 
investigated, is to consider the collection of the above infor
mation and the load sharing strategies for a transaction proc
essing complex with distributed front-end systems. 

Acknowledgem.ent 
We would like to thank Steve Lavenberg for his com

ments and suggestions; Douglas Cornell for obtaining the opti
mal static routing strategy; Edward A. MacNair for assistance 
with the use of the RESQ package. 

References 

[Agra82] Agrawala, A. K., Tripathi, S. K., and Ricart, G., 
"Adaptive Routing Using a Virtual Waiting Time 
Technique," IEEE trans. on Software Eng., Vol. 
SE-8, No.1, Jan. 1982, pp. 76-81. 

[Bard80] Bard, Y., "A Model of Shared DASD and Multi
pathing," Comm. of the ACM, Vol. 23, No. 10, (Oct. 
1980), pp. 564-572. 

[Bask75] Baskett, F., Chandy, K. M., Muntz, R. R., Palacios, 
F., "Open, Closed and Mixed Networks of Queues 
with Several Classes of Customers", Journal of 
A CM, Apr. 1975, pp. 248-260. 

[Care84] Carey, M. J., Livny, M., and Lu, H., "Dynamic Task 
Allocation in a Distributed Database System," 
Computer Science Technical Report 556, University 
of Wisconsin-Madison, Sep. 1984. 

[Chow79] Chow, Y-C. and Kohler, W. H., "Models for Dy
namic Load Balancing in a Heterogeneous Multiple 



Processor System." IEEE Tran. on Computers, Vol. 
C-28, No.5. (May 1979). pp. 354-361. 

[Corn85] Cornell. D.W., Dias. D.M., and Yu. P.S .• ItAnalysis 
of Multi-system Function Request Shippinglt. IBM 
Research Report, RC11154, Yorktown Heights, NY 
(May 1985). Also, to appear in 2nd Int'/' con! on 
Data Engineering, Feb. 1986. 

[Eagr84] Eager. D.L., Lazowska, E.D. and Zahorjan, J .• 
ItAdaptive Load Sharing in Homogenous Distrib
uted Systems", Technical Report 84-10-01, Depart
ment of Computer Science, University of 
Washington (Oct. 1984). 

[Eagr85] Eager. D.L., Lazowska, E.D. and Zahorjan. I., itA 
Comparison of Receiver-Initiated and Sender
Initiated Adaptive Load Sharinglt. Performance 
Evaluation Review, Vol. 13. No.2 (Aug. 1984), pp. 
1-3. 

[Ephr80] Ephremides, A .• Varaiya, P. and Walrand. I .• itA 
Simple Dynamic Routing Problem,lt IEEE Trans. on 
Automatic Control, Vol. AC-25. No.4, Aug. 1980, 
pp.690-693. 

[Ni85] Ni, L. M. and Hwang, K., 1t0ptimal Load Balancing 
in a Multiple Processor System with Many lob 
Classes. It IEEE on Soft. Eng., Vol. SE-ll. No.5. 
May 1985. pp. 491-496. 

[Reis80] Reiser. M., Lavenberg, S. S., ItMean-Value Analysis 
of Closed Multichain Queueing Networkslt Journal 
of ACM, Apr. 1980, pp. 313-322. 

[Saue82] Sauer, C. H .• MacNair, E. A., and Kurose, J. F., 
"The Research Queueing Package Version 2: Intro
duction and Examples,lt IBM Research Report, 
RA-138, Yorktown Height, NY, 1982. 

[Schw79] Shweitzer, P .• ItApproximate Analysis of Multic1ass 
Queueing Networks of Queues", Int. Con! on 
Stochastic Control and Optimization North Holland, 
Amsterdam, 1979. 

[Ston77] Stone, H. S., "Multiprocessor Scheduling with the 
Aid of Network Flow Algorithm," IEEE Trans. on 
Soft. Eng., Vol. SE-3, No.1, Ian. 1977, pp. 85-93. 

[Ston78] Stone, H. S., "Critical Load Factors in Two 
Processor Distributed Systems," IEEE Trans. on 
Soft. Eng., Vol. SE-4, No. 3,May 1978,pp. 254-258. 

683 

[Tant85] Tantawi, A. N. and Towsley, D .• 1t0ptimal Static 
Load Balancing in Distributed Computer Systems," 
Journal of ACM, Apr. 1985, pp. 445-465. 

[Wang85] Wang, Y.-T., and Morris, R.I.T., "Load Sharing in 
Distributed Systemslt , IEEE Trans. on Computers, 
Vol. C-34, No.3, (March 1985), pp. 204-217. 

[Wins77] Winston, W., ItOptimality of the shortest line Dis
cipline," J. Appl. Prob., Vol. 14, 1977, pp. 181-189. 

[Yu85a] Yu, P.S., Cornell, D.W., Dias, D.M., and Thomasian, 
A. "On Coupling Partitioned Database Systems" 
IBM Research Report, RC-11410, Yorktown 
Heights, NY, 1985. 

[Yu85b] Yu, P.S., Dias, D.M., Robinson, I. T., Iyer, B. R., and 
Cornell, D. W., ItModelling of Centralized Concur
rency Control in a Multi-System Environment," 
Performance Evaluation Review, Vol. 13, No.2, 1985, 
pp.183-191. 



A LOAD INDEX FOR DYNAMIC LOAD BALANCING (*) 

Domenico Ferrari and Songnian Zhou 

Computer Systems Research Group, Computer Science Division 
Department of Electrical Engineering and Computer Sciences and 

the Electronics Research Laboratory, University of California, Berkeley 
ABSTRACT 

The problem of selecting the load index or indices to be used 
in dynamic load balancing policies is discussed. One such 
index, based on a mean-value equation, is proposed, and its 
main characteristics investigated. The index is obtained 
assuming that the goal of the load balancing scheme is the 
minimization of the response time of the user command 
being considered for possible remote execution. The main 
advantages of the proposed index are its being based on a 
mathematical foundation and on a clearly specified criterion, 
the simplicity of its calculation, and its suitability for use in 
a heterogeneous network. The main problems with it are its 
dependence on the command's arguments and the steady
state assumption on which it is based. However, it can be 
argued that, in most practical cases, the index does not have 
to be used in its full generality, but reduces to simpler 
ex pressions for which the former problem does not arise. 
The results of some experiments to study the latter problem 
are presented and discussed. 

L INTRODUCTION 

One of the most important potential benefits of loosely
coupled distributed systems is in the area of resource 
sharing. By interconnecting a number of machines via a 
data communications network with an adequate bandwidth, 
a larger variety and a larger number of hardware and 
software resources can be made available to the users of the 
resulting distributed system than is usually possible in a 
centralized system. The processing powers of the hosts in a 
distributed system are among the sharable resources, and 
are indeed made available to remote users in most such sys
tems, sometimes via a remote login mechanism, some other 
times by allowing users to subdivide the work to be accom
plished between a foreground machine and a background 
"number cruncher," and some other times by having on the 
network a pool of "public" machines (compute servers) 
accessible on demand to the users. 

In spite of these mechanisms and provisions, we cannot state 
that the processing resources of a distributed system are 
always shared as much as they could and should be. This 
(0) The research reported herein was partially supported by the Defense Advanced 

Research Projects Agency (000), ARPA Order No. 4031, monitored by the Naval 

Electronics Systems Command under Contract No. N00031l-84-C-0235, and by the 

National Science Foundation under Grant DMC-8503575. The views and conclu

sioD8 contained in this document are those of the authors, and should not be inter

preted as representing official policies, either expressed or implied, of the Defense 

Advanced Research Projects Agency, of the National Science Foundation, or of the 
U.S. Government. 

CH2345-7/86/0000/0684$01.00 © 1986 IEEE 
684 

unsatisfactory state of affairs is particlllarly not.iceable, and 
particularly unfortunate, in many local-area network (LAN) 
based distributed systems, where the small intercomputer 
distances, the relatively broad bandwidths, and the greater 
homogeneity of host ownership (which is frequently res
tricted to a single organization) would make it easier and 
more rewarding to share the processing resources of the 
hosts among all or most of the system's users. The dramatic 
im balances among the loads of the various hosts we often 
observe in these systems cause poor performance and a 
waste of system resources. In certain LAN-based installa
tions, both the workload imposed on the system by each 
user and the set of active users have largely predictable and 
not too rapidly changing characteristics; under these condi
tions, the manual (or static) approach to load balancing, 
which consists of distributing the users over the available 
hosts (one of them being defined as the "usual host" of each 
user), may be quite successful. Since no workload is abso
lutely constant in its volume and characteristics, it will be 
necessary to rebalance the loads periodically; that is, we will 
have to retune the system when its operating point has gone 
far enough from the point of balance. However, a large frac
tion of the LAN-based installations are characterized by a 
workload so dynamic that the maximum frequency at which 
the load can be rebalanced manually is too low for manual 
rebalancing to be effective. As in the case of the bottlenecks 
that are found in centralized systems, the initial balancing 
and periodic retuning with the manual approach may be 
useful; however, shorter-lived bottlenecks, whose impact on 
performance grows with the width of the workload's fre
quency spectrum, car only be eliminated by automatic (or 
dynamic) approaches . In principle, providing the users with 
such mechanisms as a remote login and a network-wide load 
reporting command allows them to give their individual con
tributions to the balancing of the loads. This may, however, 
be ineffective and even counterproductive, due to the fre
quency of the possible interventions, which is likely to be too 
low, and to the necessarily limited and incomplete informa
tion that each individual user has about the system's state. 
Thus, for a large number of installations, dynamic load 
balancing is required to improve resource usage and perfor
mance. 

This paper discusses the problem of selecting the load index 
or indices to be used in dynamic load balancing policies, and 
proposes one such index. Section 2 defines the load balanc
ing schemes the rest of ·the paper refers to. Our criteria for 
load index selection and our assumptions are presented in 
Section 3. The specific index we propose in this paper is 
introduced in Section 4, together with the arguments for its 



choice. Section 5 presents the results of experiments per
formed to verify the validity of some of the assumptions on 
which the new index is based. The main characteristics of 
the index and the major problems that arise with its use in 
a load balancing scheme are discussed in Section 6. 

2..:. DYNAMIC LOAD BALANCING POLICIES 

Since the terminology used in the load balancing literature is 
still fluid, we must provide our definitions of the terms we 
will use, and clarify, by introducing a classification of 
schemes as well as the various assumptions we are making, 
the scope of our investigation. This will be done both in 
this and in the next section. 

First we notice that the two terms load balancing and load 
sharing very often appear in the literature with the same 
meaning. One could easily introduce a distinction between 
them based on the different meanings the terms "balancing" 
and "sharing" suggest: for instance, use of the term "balanc
ing" could be restricted to those schemes whose objective is 
to keep the loads on the machines within a relatively narrow 
band around the instantaneous average, whereas "sharing" 
could refer to those schemes in which a machine sends some 
of its load away (or accepts some of the load of other 
machines) only when its load goes beyond an upper thres
hold (or falls below a lower threshold). In both types of 
schemes the decision-maker must know the load existing on 
the machine being considered; in the l~ad balancing ones, 
also the current average system load must be known. 
However, even though drawing a distinction between 
"balancing" and "sharing" may be useful in certain con
texts, both types of schemes are dealt with in the same way 
in this paper. We therefore use "load balancing" as a 
generic term encompassing both, even though our primary 
objective in selecting a load index is not that of equalizing 
the loads (we shall indeed see that, with our approach, this 
objective would be meaningless). 

It is also useful to distinguish preemptive from non
preemptive load balancing schemes. In the former, a running 
process may be suspended and migrated t~ a remote 
machine, w here its execution will resume from the point of 
suspension. A non-preemptive scheme is one in which a pro
cess' is assigned to a machine before beginning its execution, 
and cannot be moved to another after its execution has 
begun. We shall usually refer to non-preemptive schemes in 
the sequel, though most of our considerations apply to the 
preemptive ones as well. In either type of scheme, the local 
machine is the machine at which a given process entered the 
system. 

Another classification of load· balancing schemes that is 
sometimes useful is the one based on the identity of the 
machine which takes the initiative. When the scheme 
involves a centralized controller that makes the placement 
decisions, this controller can be thought of as the initiative
taker as well as the decision-maker, even though it may be a 
prospective 80urce or destination machine which takes the 
initiative and asks the controller t~ decide. In other schemes 
(the so-called sender-initiated ones ), the local machine takes 
the initiative when a new process is to be executed or when 
its load has gone beyogd the upper threshold. In ~he 
receiver-initiated schemes , instead, underloaded prospective 
receivers take the initiative of broadcasting information 
about their enviable state so as to attract currently running 

685 

or soon-to-arrive new processes. 

Thus, the initiator will have to select senders and receivers 
in the centralized controller case, one of the eligible receivers 
in sender-initiated schemes, and one of the eligible senders in 
receiver-initiated schemes. This selection can be either 
load-independent or load-dependent. 

Among the lo~d-independent policies are Random 4 or Ran
dom Splitting, which chooses at random the destination of 
a process to be executed remotely; Fixed Destination or 
Fixed Source5, which, in the sender-initiated version, stati
cally binds a given receiver to a given sender or group of 
senders, or, in the receiver-initiated version, a given sender 
to a given rec5iver or group of receivers; Cyclic Splitting or 
Cyclic Service, in which the destination (respectively, the 
source) is selected according to a cyclic ordeBing of the avail
able machines; and Proportional Branching , a probabilistic 
policy which selects destinations or sources according to pro
babilities proportional to their processing speeds. 

Exa~1e~ of load-dependent policies include Lowest 
Load ' , , w hich s:l~cts. the machine with the 4mall~st load 
at the time the deCISion IS to be made; Shortest ,w hlch does 
the same but restricts its search to a r~ndomly chosen sub
set of the eligible machines; Threshold , which probes ran
domly selected machines to determine whether adding a pro
cess would raise their loads above f given threshold; Broad
cast When Idle or Poll When Idle , a receiver-initiated pol
icy in which a lightly loaded machine invites or polls the 
others, so that only those prospective senders whose loads 
are heavier than a threshold will ship processes to the ini
tiating machine (note that, if priority is given to the most 
heavily loaded machine, we obtain the Highest Load policy, 
i.e., the receiver-initiated analog of Lowest Load); Neighbor 
Pairing9, which shifts load from the more heavily to the less 
heavily loaded machine in dynamically defined pairs of 
macfJnes; and the policy used in the MOS operating sys
tem ,which cyclically selects machines among the lightly 
loaded ones in a subset of the eligible machines. 

While in load-dependent policies the load of each machine in 
the system is to be measured, and its value must be known 
by at least some of the possible decision-makers, load
independent policies do not have such a requirement. How
ever, as was observed at the beginning of this section, at the 
very least a policy must rely on the know ledge of the load 
on the local machine, as moving processes is not a zero-cost 
operation and should be done only when necessary. Thus, 
the load of each machine must be measured, i.e., quantita
tively expressed, in all cases. What index (or indices) should 
be used to measure a machine's load! 

;L A CRITERION FOR LOAD INDEX SELECTION 

Many indices have been explicitly or implicitly used in the 
load balancing literature to express the load existing on a 
machine at a given time. Examples of such load indices 
include the utilization of the CPU, the length of the ready 
queue (in UNIX* terminology, the "load average"), the 
stretch factor (defined as the ratio between the execution 
time of a process on a loaded machine and its execution 
time on the same machine when it is empty), and more com
plicated functions of these simple variables. However, to the 
authors' knowledge, a scientific justification for the choice of 
a load index has never been given. In fact, some papers 

.• UNIX is a trademark or AT & T Bell Laboratories 



even ignore the question altogether, and simply refer to "the 
load" as if there existed a well-known and universally 
. accepted definition of this term. Is any of the indices used 
in the literature a valid one! Which! And what does it 
mean for a load index to be "valid"! 

To simplify our discussion, we shall assume that the object 
to which load balancing applies is the interactive user com
mand, as represented by the typing in of a command line or 
equivalent action on the part of an interactive user: In 
other words, the execution of a command will be considered 
atomic from the load balancing viewpoint, even w hen a com
mand causes the creation and execution of several processes 
that, in principle, could be executed on different machines. 
This assumption is made to facilitate the description, but is 
not essential for the application of our approach. 

. An assumption that is essential is the choice of the 
command'8 re"ponse time as the performance index to be 
minimized by the load balancing scheme. This is another 
area in which some of the papers on load balancing leave 
something to be desired: the objectives of the schemes pro
posed therein are sometimes not clearly specified. Our 
choice of the response time objective is certainly question
able, since the exact relationships between it and such 
system-wide objectives as throughput maximization are unk
nown, but (we believe) not unreasonable. 

Under these assumptions, a valid load index Ii must be such 
that the relationship between the response time rt of a com
mand and the index is repre~ented by a 8ingle-valued curve. 
In other words, rt must be a function of Ii. The reason for 
this condition is obvious: if the function r~ I.) for a given 
machine, a given configuration, and a given command is 
known, the value of Ii at the time a decision is to be made 
can be used to predict the response time that the command 
will have if it will be sent to that machine. The predicted 
response times for all the eligible machines (including the 
local one), adjusted for the expected communications delays 
due to the shipment of the command, of the output, and 
possibly of the files it needs to execute, can be compared by 
the decision-maker in order to determine the machine which 
is likely to process the command in the shortest possible 
time. Note that this condition, even though it seems not to 
be very restrictive, is not generally satisfied by any of the 
indices proposed in the literature. Simple experiments per
formed by the authors have shown that the curves relating 
rt to CPU utilization, ready queue length, stretch factor, 
and other indices are multi-valued ones for at least some 
types of commands. 

If more restrictive conditions are imposed, the selection of 
the least loaded machine can be made more efficient. For 
instance, in a system consisting of identical machines, a 
monotonically non-decreasin£: rt{ I.) function would allow the 
decision-maker to restrict the choice to the local machine 
and the remote machine with the smallest value of Ii, and to 
compute the function only for these two machines. Further
more, if the monotonic function has a known minimum slope 
or, even better, is linear, then all comparisons will involve 
only the values of Ii, and no computation ofrt will have to 
be performed. These observations can be extended to 
heterogenous systems, but will apply only to each group of 
identical machines within them. 

Note that our choice of command response time minimiza
tion as the objective of load balancing makes it impossible 
to define the load of a machine as a command-independent 

686 

quantity. This means that our answer to the question: 
"How much load is there on this machine!" will be another 
question, that is: "For what command!". Thus, oUr 
approach does not help when the policy is load-independent, 
unless a standard "basket" of commands is defined to be 
used in the computation of a command-independent load 
index for each machine. 

.1.:. A. LOAD INDEX 
BASED ON A. MEAN-VALUE EQUATION 

In this section, we shall propose a load index which, under 
certain assumptions, sat!sfies the criterion introduced in the 
previous section. 

Consider a machine M, a command A, and a mix of com
mands B. Among all the possible loads that M may be pro
cessing, con8ider the following three: 

(A) command A alone; 

(B) mix B (the background load); 

( C) the combinat.'on of A and B. 

Our problem can now be expressed in these terms: predict 
the response time of A when load C is running on M from 
the knowledge of A and of the background load B (the load 
that was there just before the arrival of A). 

We make the assumption that machine M can be accurately 
modeled by a closed queueing network model hnving: 

(i) R chains; 

(ii) L service centers 1, 2, ... L of the FCFS, PS 
(processor sharing), LCFSPR (Iast-come-first
served-preemptive-resume), and IS (infinite 
servers) types [11]; center 1 is an IS-type service 
center representing user terminals; 

(iii) a fixed number of customers (i.e., commands) in 
each chain (note that customers never change 
chain); 

(iv) service rates independent of the number of cus
tomers at the respective centers; 

(v) FCFS centers that are all single-server centers, 
and have a chain-independent service rate. 

The three loads A, B, and C can be modeled as follows: 

(a) command A is the only customer in chain 1; 

(b) the commands in load B are clustered, and each 
cluster is represented by one of the chains 2 
through R (R is set equal to the number of clusters of 
B plus 1); 

(c) load C is represented by chains 1 through R. 

Under these assumptions, the mean-value equation of Corol
lary 1 of [12] holds for each non-IS center I in such a model: 

(1) 

where 



K = (kl' k2' ... kr): population vector (kr = popula
tion size of chain r); 

e r = R-dimensional unit vector in direction r; 

wr,I(K) = mean time spent by a chain .r customer. at 
center I at each visit in the network with populatIOn 
vector K; 

T I = mean service time per visit of a chain r customer 
;;, center I; 

nl(K - e r ) = mean number of customers (mean 
"queue length") at center I in the same 
queueing networkwith one less customer 
in chain r. 

Note that, for a FCFS center l, we have Tr,1 = TI, and that, 
for an IS center, 

Wr,1 = Tr,l· (2) 

If the model includes IS centers other than center 1, the 
corresponding nl will be defined to be o. 
Denoting by rtr(X) the mean response time (i.e., the mean 
time spent outside service center 1) of a chain r command 
under load X, and by Ur,1 the mean number of visits a chain 
r customer makes to service center I, we can write for com
mand A 

and for load 0 

L 
rtl(A) = ~ Vl,ITl,l, 

1=2 

L 
rt l( 0) = ~ Vl,l Wl,I(K). 

1=2 

Substituting (1) into (4), and using (3), we obtain 

L L 

(3) 

(4) 

rtl(O) = ~ Vl,ITl,1 + ~ Vl,IT1,lnl(K - ed = 
1=2 1=2 

L 
- rt l(A) + ~ V 1,1 Tl,l nl (B), 

1=2 
(5) 

since K - el represents load 0 with one less customer in 
chain 1, i.e., with no customers in that chain; in other 
words, it represents load B. 
By (2), the increase in command response time can be writ
ten as: 

L 
~rt = rtl(O) - rtl(A) = ~ Vl,IWl,/(A)nl(B). (6) 

1=2 

Thus, under the assumptions made, the response time of a 
command A is a linear combination of the mean queue 
lengths at the non-IS centers under load B, the coefficients 
being the total times spent by A in the respective centers 
when running alone on the same machine. Note that, in the 
terminology adopted here, the queue length at a center also 
includes the customer in service at that center. Further-

687 

more, note that IS centers do not contribute to the sum on 
the right-hand side of (6). 

Equation (6) can be used to ·predict rt l( 0). Its right-hand 
side is a load index satisfying the condition discussed in Sec
tion 3. Furthermore, rt is a linear function of the index, 
which, in turn, is a linear function .of the mean queue 
lengths. 

The load index we have just introduced does not have to be 
always used in its full generality. Indeed, it could be argued 
that this will in practice be the exception rather than the 
rule. We expect that very often one of the terms in the 
linear combination on the right hand side of (6) will dom
inate its value. If the machine has a bottleneck, the term 
corresponding to the saturated resource will tend to be the 
dominant one, and only for commands making much heavier 
use of other resources this will not be the case.' For 
instance, all of the machines we have observed on our local 
internetwork are very substantially CPU-bound; thus, 'only 
for the (few) heavily I/O-bound commands will it not be 
possible to define the load as expressed by the normalized 
CPU queue length (note that the coefficient of this queue 
length in (6) for a given command is inversely proportional 
to the CPU's instruction execution speed, hence, in a hetero
geneous network, the CPU queue length of each machine 
will have to be normalized by dividing it by this speed). 
I/O-bound commands are rare in an environment similar to 
ours. Thus, the mistakes possibly made by a load balancing 
scheme that ignores them (e.g., one based on the normalized 
CPU queue length as the load index), are likely to have a 
small impact on the scheme's performance. 

In summary, the index proposed in this section may be 
approximated in practical cases by indices that have been 
adopted in a number of previous studies, such as the CPU 
queue length, and even implemented in existing systems, 
such as the load average in UNIX. The main contribution 
of this proposal does not consist so much of a new index, 
but of a theoretical foundation for all the load indices based 
on resource queue lengths. This foundation provides a 
justification for these indices, specifies the assumptions 
under which they are valid, and gives an indication of the 
limits of their applicability. As for those indices that are 
mentioned in the literature and cannot be obtained from (6), 
we have not proved their lack of validity (though some 
experiments based on a simple queueing model have con
vinced us that they do not satisfy the criterion in Section 3). 
We would only like to see any proponent of a load index 
specify the reasons for choosing it in a way that will subject 
'such a choice to scientific scrutiny instead of requiring much 
'guesswork or an act of faith. 

~ EXPERIMENTAL VERIFICATIONS 

In the preceding section, we pointed out that, according to a 
mean value equation valid for closed queueing networks, a 
linear combination of the queue lengths of a machine's 
resources should be a good predictor of command response 
time, provided that the system is in steady state and that 
the queueing disciplines of the resources are FCFS, PS, 
LCFSPR, or IS. However, these assumptions are not gen
erally satisfied in real-world computer systems. For exam
ple, in Berkeley UNIX, a multi-class priority scheduling algo
rithm with round-robin preemption is used for the CPU. 
The scheduling discipline for the disks in Berkeley UNIX is 



one-way scan; thus, an incoming I/O request may find itself 
right ahead of the disk arm, and hence be serviced first. 
With the usually complicated queueing. disciplines adopted 
for various'resources, it is not clear whether a linear relation 
exists between resource queue lengths and command 
response times. The closed system and steady state assump
tions in the model are also not generally satisfied in com
puter systems; users log on and off, and the number of jobs 
submitted· can fluctuate widely. On the other hand, model
ing experiences have repeatedly demonstrated that fairly 
simple models can provide results that closely reflect reality, 
even though some of the assumptions of the model do not 
strictly hold. 

In order to evaluate the suitability of the resource queue 
lengths as load indices, and to study the sensitivity of 
responsiveness to variations in the queue lengths for 
different types of commands, we conducted a series of meas
urement experiments on production VAX-ll/78D systems 
running Berkeley UNIX 4.3BSD and under both natural 
workloads and . artificial workloads. The resource queues 
measured were: 

(1) the CPU ready queue: the number of processes that are 
loaded and running or waiting to be scheduled to run; 
the process inexecution is included; 

(2) the di8k request queue: the number of disk I/O requests 
that are waiting to be processed; this is the aggregate 
queue for all the disks in the machine's configuration. 

There are other types of resources, such as memory space 
and network bandwidth, but our measurements show that 
the contention. for them is very low. 

While the resource queue lengths and other indices were 
being traced, we ran benchmark commands periodically and 
measured their response times. Three types of commands 
were used at different times: 

(1) A text processing';command (TROFF) that is mostly 
CPU-bound, with some I/O. 

(2) A purely CPU-bound benchmark (CPU) that performs 
a large number of arithmetic computations. 

(3) A predominantly I/O-bound benchmark (10) that 
copies a large file block by block in reverse order to 
defeat the read ahead mechanism in UNIX. 

For each of the measurement sessions, we computed the 
correlation coefficient between the average queue lengths 
during the entire command execution and the command 
response times. Linear regression tests were also performed 
to determine the amount of improvement in correlation we 
can obtain by using both CPU and disk queue lengths. We 
found that the correlation between the average CPU queue· 
length and the response time of a CPU-bound job (rpOFF 
or CPU) is very close to 1 under a wide spectrum of system 
load conditions, both live and artificial. On the other hand, 
the correlation between the aggregate disk queue length and 
the response time is much lower (the correlation coefficient 
was between DA5 and 0..85), and the amount of improve
ment obtained by taking it into consideration is negligible. 
This is not only true for live workloads that usually do not 
cause much contention on the disks, but also with artificial 
workloads having high disk demands. Similarly, for the 
I/O-bound benchmark, when the disk is highly contended, 
the correlation between the disk queue length and the 
response time is very high. (always greater than 0..85), 

688 

whereas the CPU queue length has a much lower correlation 
(0..65 - 0..75). Considering both CPU and disk queues pro
vides ~ittle improvement even in this case. 

These results suggest that, at least for strongly CPU-bound 
or I/O-bound commands, resource queue lengths are excel
lent load indices. We have thus experimentally verified the 
boundary-case validity of the load index proposed in the 
previous section. To evaluate the ability of the resource 
queue lengths in predicting the response times of commands 
still to be started, we computed the correlation coefficient 
between the command response time and the average queue 
lengths measured during a period (5, 10., 15, 3D or 60. 
seconds) before the start of the command's. execution, 
instead of those measured during the execution of the com
mand. The coefficients were found to be much lower than in 
the "during" .case, almost never exceeding 0..7. Attempts to 
improve the accuracy of,. the- predictions by. using an 
exponentially smoothed average of the queue lengths yielded 
little improvement;; Furthermore, the higher the load, the 
greater the fluctuations observed; and the poorer the predic
tion. The consistently poor correlation in all the sessions 
suggests that the resourcecqueue lengths are changing so 
rapidly that their values just before the execution of a com
mand poorly predict those during the execution, and hence 
the command's response time cannot be accurately 
predicted. In other words; the steady state assumption in 
the model on 'w hich the load index proposed in. Section 4 is 
based does not hold. This is confirmed -by our measure
ments of the rate of change of the CPU queue length. Fig
ure 1 shows the distribution of net CPU queue length 
changes during 3D-second. intervals over an entire session 
(about eight hours). As can be observed, 33% of the time 
the net change is 3 or beyond. For an average queue length 
of 6, which is fairly high, this represents a 50.% change in 
CPU load. For the machine we measured, th.e average net 
change in CPU queue length in a 3D-second interval·is, 2.31. 

p 
e 

C 

e 
n 
t 
a 
g 
e 

0 
f 

n 
t 
e 

v 
a 
I 

18.0 

111.0 

14.0 

12.0 

10.0 

8.0 

e.o 

4.0 

2.0 

0.0 -FI~r-_-T'"'"-'-..,..-r--yo-,..--',.....'" 

·10 ·8 ·e ·4 -·2 0 2 4 

Load Difference 

Figure 1. Load Change Frequency 
(in 3D Seconds) from,Measurement 

10 



The prediction of command response times gets worse as the 
command's execution gets longer, which is a negative 
characteristic of our index since .load balancing is most 
advantageous when it deals with heavy commands. How
ever, it should be pointed out that, for load balancing, we 
are interested in comparing the loads of a number of 
machines in order to choose a machine that is lightly loaded, 
rather. than determining the absolute response times the 
command would have if it were executed on each of the eli
gible machines. Another factor that is likely to ease the 
difficulty of-prediction is that load balancing, if effective, 
should tend to reduce the fluctuations of the load on each 
machine, thereby improving the accuracy :of ,response time 
prediction. In other words, load balancing should provide a 
negative feedback that will tend to stabilize machine loads. 
This conjecture was confirmed by the results obtained from 
a trace-driven slmulator that we constructed for studying 
load balancing! . Records containing the CPU and disk 
I/O resource demands for all the jobs submitted to a pro
duction system during a number of tracing sessions were 
used to drive the model that simulated the executions of the 
jobs on a number of hosts, with and without load balancing. 
It was found that load balancing tends to smooth out the 
temporal fluctuations in the load of each machine. For a 
typical machine, the distributions of load changes during 
30-second intervals as described above were computed for 
cases with and without load balancing, and are shown in 
Figure 2. The average net change in load decreased from 
2.42 for the no-load-balancing case to 0.93 for that with load 
balancing. Our simulation study also demonstrates that 
load balancing based on resource queue lengths can reduce 

'the average job response time by half or more when the sys
tem is loaded (average CPU utilization above 60%), even 
when the costs of message exchanges and job transfers are 
taken into consideration. 

40.0 

P M.O 

e 

C 
e 
n 
t 
a 
g 
e 

0 
( 

n 
t 
e 

v 
a 
I 

30.0 

with LB 

25.0 

20.0. 

15.0 

10.0 

5.0 

-10 -8 -II -4 -2 0 2 4 

Load Difference 

Figure 2. Load Change Frequencies 
(in 30 Seconds) (rom Simulation 

10 

689 

!h CONCLUSION 

A load index for dynamic load balancing schemes has been 
presented. The index is based on a mean-value equation 
that applies to closed multichain queueing network models 
with population-independent service rates and PS, LCFSPR, 
IS, or single-server FCFS service centers. The objective that 
has guided the choice of the index is the minimization of a 
command's execution time. The proposed index is a linear 
com bination of the mean queue lengths in the machine being 
considered, the coefficients being the total times the com
mand would spend in each service center if it ran alone on 
the machine. 

Our measurement experiments have shown·,that mean queue 
lengths can be good load indices indeed, if used properly. 
For CPU-bound. commands, the CPU queue length accu
rately predicts the response time, whereas the disk queue 
lengths have negligible effect. For I/O-bound commands, 
the particular disk queue length reflects the response time 
very well when processes are queued up there. However, for 
live workloads characterized by short queues at the disks, 
the response time seems to be relatively insensitive to both 
CPU and disk queue lengths in this case. 

The load of the live 'systems we measured in our environ
mentchanges very rapidly, making response -time predic
tions difficult. On the other hand, load .balancing is 
expected to smooth out the wide fluctuations, thereby 
improving the accuracy of the predictions. Also, predicting 
absolute response times accurately .is not necessary, as long 
as the relative rankings of the machine loads are reflected in 
the respective values of the index. 

Instantaneous queue length measurements are not difficult 
to perform. They could be gathered periodically (or on 
demand) and .broadcast (or sent to the requesting machine). 
Whether instantaneous or smoothed queue lengths should be 
used is not clear, and can ;only be decided after careful 
experimentation; however,_ we note that smoothing can be 
easily performed w hen instantaneous values are available. 
In the fully general case, the contribution of each mf:chine to 
the value of the load index would thus be a vector 3. That 
of each command would be another vector, with components 
equal- to the times spent by. the command in each server 
when running alone. Clearly, each command must be 
represented by different vectors of coefficients for different 
machines or even· different configurations. This characteris-

. tic should not, however, be regarded only as a drawback: in 
fact, the ability elegantly to adapt to configurationally and 
architecturally heterogeneous networks is a major advantage 
of the load index ,proposed in this paper. 

The dependence of the value of the index on the particular 
command being considered is a very simple one, and the 
coefficients that characterize each command are easy to 
measure. However, command dependence causes two prob
lems: 

(i) the abloiute load of a machine cannot be defined; this 
problem can be alleviated, as noted in Section 3, by referring 
to a standard workload (a "basket" of commands); in any 
case, the index. only measures the load relative to a -given 
command or mix of commands; 

(ii) the coefficients characterizing a command generally 
depend on the command's arguments (input files, input 
data, options, and so' on); thus, an accurate characterization 



of a command type may turn out to be very complex and 
very expensive to build; also, any modifications to the 
command's code may cause appreciable changes in the 
values of the coefficients. 

As stated at the end of Section 4, the index will very sel
dom, if ever, have to be applied in its full generality. Prob
lem (ii), which does not arise when only the CPU term of 
the linear combination is taken into account, is a very hard 
one to solve. Our hope is that, for most important com
mands, the dependence of the coefficients on the arguments 
can be approximated by functions with simple mathematical 
forms, and that their sensitivity to changes is low. For 
instance, we conjecture that the coefficients (or at least some 
of them) of text processing and compilation commands are 
roughly linear functions of the size of the input file. These 
and other similar conjectures will, however, have to be vali
dated by an extensive study which is being planned now. 

ACKNOWLEDGEMENTS 

The authors are grateful to Harry Rubin for making his 
benchmark program available to them, and for his com
ments on the manuscript. They are also indebted to Hamid 
Bahadori, who provided useful comments, and to Jean 
Richter for her impeccable preparation of the various 
human-readable versions of this paper. 

[1] 

REFERENCES 

D. Ferrari, G. Serazzi, and A. Zeigner, Mea3urement 
and Tuning of Computer SY3tem6. Prentice-Hall, 1983. 

[2] A. Barak and Z. Drezner, "Distributed algorithms for 
the average load of a multicomputer," Tech. Rept. 
CRL-TR-17-84, Computing Research Laboratory, 
University of Michigan, March 1984. 

[3] D. L. Eager, E. D. Lazowska, and J. Zahorjan, "A 
comparison of receiver-initiated and sender-initiated 
dynamic load sharing," Proc. 1985 ACM SIG
METRICS Conference on Mea3urement and Modeling 
of Computer SY3tem6 (August 1985), pp. 1-3. 

[4] D. L. Eager, E. D. Lazowska, and J. Zahorjan, 
"Dynamic load sharing in homogeneolls distributed 
systems," Technical Report 84-10-01, Department of 
Computer Science, University of Washington, Seattle, 
October 1984. 

[5] Y.-T. Wang and R. J. T. Morris, "Load sharing in 
distributed systems," IEEE Tran3actiom on Comput
er3 C-94, vol. 3 (March 1985), pp. 204-217. 

[6] Y.-C. Chow and W. H. Kohler, "Models for dynamic 
load balancing in a heterogeneous multiple processor 
system," IEEE Tran6action6 on Computera C-28, vol. 
5 (May 1979), pp. 356-361. 

[7]" M. Livny and M. Melman, "Load balancing in homo
geneous broadcast distributed systems," Proc. A CM 
Computer Network Performance Sympoaium (April 
1982), pp. 47-55. 

690 

[8] J. A. Stankovic, "Decentralized control of job 
scheduling," IEEE Tran6actiona on Computera C-94, 
vol. 2 (Feb. 1985), pp. 117-130. 

[9] R. Bryant and R. A. Finkel, "A stable distributed 
scheduling algorithm," Proc. 2nd International 
Conference on Di6tributed Computing SY6tem6 (April 
1981), pp. 314-323. 

[10] A. Barak and A. Shiloh, "A distributed load balanc
ing policy for a multicomputer," Internal Report, 
Department of Computer Science, The Hebrew 
University of Jerusalem, 1984. 

[11] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. 
Palacios, "Open, closed, and mixed networks of 
queues with different classes of customers," Journal of 
the A CM 22, vol. 3 (April 1975), pp. 248-260. 

[12] M. Reiser and S. S. Lavenberg, "Mean-value analysis 
of closed multichain queueing networks," Journal of 
the A CM 27, vol. 2 (April 1980), pp. 313-322. 

[13] S. Zatti, "A multivariable information scheme to bal
ance the load in a distributed system," Rept. No. 
UCB/CSD 85/234 (PROGRES Rept. No. 85.6), 
University of California, Berkeley, May 1985. 

[14] S. Zhou, "A trace-driven simulation study of dynamic 
load balancing," Rept. No. UCB/CSD 86/, University 
of California, Berkeley, June 1986. 



AN APPROXIMATION OF THE PROCESSING TIME 

FOR A RANDOM GRAPH MODEL OF PARALLEL 

COMPUTATION 

E. Gelenbe (*), R. Nelson, T. Philips, and A. Tantawi 

IBM Thomas J. Watson Research Center 

Yorktown Heights, New York 10598 

Abstract 
The task graph of a parallel computation is modeled 

by a random, acyclic, directed graph (K, p) where K is 

the number of nodes and p is the probability that an arc 

exists between two nodes (from a smaller numbered node 

to a larger one). In this model, each node corresponds 

to a task that is to be processed and each arc implies a 

precedence relationship that must be satisfied during 

processing. An approximation for the expected processing 

time of a task graph of this type on an infinite number 

of processors is derived under the assumption that each 

task requires an exponentially distributed amount of pro

cessing. This approximation shows that the expected 

processing time grows linearly with K at rate 

2p/(1 + p). Furthermore, maximum likelihood estimators 

for the value of p given specified characteristics of a 

particular task graph are obtained. 

1. Introduction and Model Description 

In multiprocessing computer systems, a job is divided 

~~to a number of tasks, each executing on a processing 

unit concurrently with other tasks. The division of a job 

into a set of tasks is governed by the logical structure of 

the job and the interdependencies among tasks. This is 

usually described by a computation graph where nodes in 

the graph represent tasks and directed edges represent 

precedence relations. Such a graph may be used to rep

resent the detailed processing stages in a single program; 

it may also be used to represent the dependencies be

tween separate programs in a large software system. 

(*) This work was performed while E. Gelenbe was vis

iting the IBM T. J. Watson research center. His present 

addre~s is: ISEM, Bat 508, University Paris Sud, 91405 

Orsay, FRANCE. 

CH2345-7j86jVOOOj0691$01.00 © 1986 IEEE 
691 

Another interpretation of this graph model is in terms of 

a PERT diagram (or activity network), commonly used 

to organize or schedule tasks in industrial engineering and 

operations research. 

In general, one associates processing or execution 

times with the nodes of a computation graph in order to 

represent the time it would take to carry it out assuming 

a given processing system. Furthermore, it is assumed 

that each task represented by a node cannot itself be 

subdivided any further into smaller tasks. An important 

performance measure of parallel processing systems is the 

processing time of a job described by a computation 

graph. 

The computation graph, also referred to as a task 

graph, is characterized by the number of tasks, their 

processing times, and the structure of precedence re

lations. Special cases of structures of precedence relations 

represented by series parallel graph models have been 

considered5• 6• Fayolle et aU consider a tree structure of 

precedence relations where the number of sons of a node 

in the tree is described by a random variable. They an

alyze such a structure and obtain the distribution of the 

job processing time of a job on an infinite number of 

processors, in the special case that the number of sons 

is geometrically distributed and the task processing times 

are constant. Otherwise, numerical solutions are calcu

lated. 

Again, Mussi and Nain4 assume a tree structure with 

exponentially distributed task processing times and con

sider two execution policies: (1) level-by-Ievel and 

(2) take-a-Ieaf. They obtain the Laplace-Stieltjes trans

form of the processing time of the tree under the two 

policies. For policy (1), they assume an arbitrary number 



of processors, whereas for policy (2) they assume equal 

expected task processing times and consider two cases: 

two processors and an infinite number of processors. 

In many cases the structure of precedence relations is 

either unknown or the number of tasks is so large that a 

characterization of the structure of precedence relations 

is hard to obtain. In such cases, since a detailed analysis 

of the task graph is intractable, one attempts to charac

terize the interdependencies between nodes using a higher 

level model. Solutions of such models can provide insights 

into performancc chaiactcristics inheient in the underlying 

system. One such model is to assume that precedence 

relationships between nodes are determined in a prob

abilistic manner. Specifically, in such models one assumes 

that for every ordered pair of nodes there is a specified 

probability that the first node is a predecessor of the 

second. By varying the value of these probabilities one 

can model both very sparse and very dense task graphs. 

Random graph models of this type can be found in the 

literature for various applications. Indurkhya et aP, for 

example, consider a random graph model of a distributed 

program and derive properties of the optimal task as

signment policies for heterogeneous processors. Random 

graphs are also used to model concurrency in transaction 

processing systems. A node in such a graph represents a 

transaction and an edge represents a conflict. An edge 

between pairs of transactions exists with some fixed 

probability. Franaszek and Robinson2 consider such a 

random graph model and obtain bounds on the expected 

number of transactions that can run concurrently. 

In this paper, we consider parallel computations which 

are modeled by random, acyclic, directed graphs consist

ing of K nodes in which an arc from node 

i, i = 1, 2, ... , K - 1 to node j, j = i + 1, i + 2, ... , K ex

ists independently with a fixed probability p. In this mo

del, each node corresponds to a task that is to be 

processed and each arc implies a precedence relationship 

that must be satisfied during processing. We assume that 

each task requires an exponentially distributed amount 

of processing with mean 1. The processing time of a task 

graph of this type on an infinite number of processors is 

denoted by TK(P) , and its expectation by E[ TK(P)]. 

An approximate expression for the expected processing 

time of a job described by such a graph is derived in 

Section 2. In Section 3, this approximate expression is 

compared to simulation results. In Section 4, maximum 

likelihood estimators for the value of the probability pare 

derived. 

2. Approximate Analysis of the Expected 

Processing Time 

We next show that the expected processing time varies 

almost linearly with K, the slope being given by 

2p/(l + p). To do this, we will consider a particular re

alization of a (K + 1, p) graph. We can imagine that this 

graph is generated by taking an already generated (K, p) 

graph, adding a (K + 1 )st node and then adding directed 

edges from nodes 1,2, ... , K to node K + 1 independently 

with probability p. We note that because no directed edge 

exists from node K + 1 to any lower numbered node, the 

completion times of the nodes in the original (K, p) graph 

are not influenced by the addition of node K + 1. Fur

thermore, we note that the distribution of the processing 

time of the (K + 1 )st node is not influenced by the ex

istence of edges leading into it. 

Consider the execution of the original (K, p) graph, 

with K> 1 (the case of K = 1 is trivial). We relabel the 
nodes in the graph in the following manner: Let 0 be the 

last node to finish execution and let 1 be the direct pre

decessor of 0 that, among all the predecessors of 0 fin

ished executing last. By this definition, the completion 

time of node 1 is the starting time of node O. In a similar 

manner, let node i, i = 1,2, ... , L - 1, be the direct pre

decessor of node i-I that was the last to finish exe

cuting. It is clear that all the nodes of the original 

(K, p) graph are not necessarily relabeled by this proce

dure but those that are labeled lie on a path. Further

more, by definition, this path contains the node that 

completes last. Accordingly we will call, for this particular 

execution, the path defined by nodes L - 1, L - 2, ... , 0 

the longest path of the original (K, p) graph. Nodes not 

labeled in this procedure will play no role in our ap

proximation. We will now use these relabeled nodes to 

derive an approximation to the expected processing time 

for the (K + 1, p) graph defined above. Basically our 

method of approximating the expected processing time 

of the (K + 1, p) graph is to consider the relationship 

between the longest path of the original (K, p) graph and 

the longest path of the new (K + 1, p) graph. 

The processing time of the (K + 1, p) graph depends 

on the processing time of the longest path for the un

derlying (K, p) graph and upon the arcs directed into the 

692 



(K + 1)st node. Define e;, i = 0, 1, '" ,L - 1 to be the 

event that in the reordered graph, an arc exists from node 

i to the (K + 1 )st node, but that no arc exists between 

node j and it for j < i. Furthermore, let eL be the event 

that no arcs exist from node i, i = 0, 1, ... , L - 1, to the 

(K + 1)st node. Denote the probability of event e; by 

P[eJ. It is clear that 

Jpqi, 

P[ei] = 1 L 
q , 

i = 0, 1, ... , L - 1, 
(1) 

By conditioning on these events, we write the expected 

increase in processing time as 

L 

L E[TK+1 (P) - TK(P) I ei] x P[ea. (2) 
i=O 

We will develop an approximation to this expression by 

assuming that nodes not lying on the longest path do not 

influence the increase in processing time that arises when 

the (K + 1 )st node is added to the graph. One can easily 

create examples where this assumption is false. Our jus

tification for this assumption and for the assumption that 

we will next make concerning the processing time of 

nodes along the longest path, essentially lies in the 

mathematical difficulty of obtaining an exact solution to 

equation (2) and the intuitively plausible argument that 

the processing time of a random graph of this nature 

should depend on the processing time of the longest path. 

Using simulation we will show that these assumptions lead 

to a good approximate formulae for the expected proc

essing time of these graphs. 

To continue with the derivation of our approximation 

we next must determine an approximation to the condi

tional expected increase in processing time given in 

equation (2). If i = 0, then the expected processing time 

is clearly incremented by 1. For i> 0, we will assume 

that the intercompletion intervals are exponentially dis

tributed with parameter 1. Since node 

i, i = 1, 2, ... , L - 1, is defined to be the direct prede

cessor of node i - 1 that finished execution last, its ex

pected processing time is lower bounded by the 

expectation of an exponential random variable with pa

rameter 1. This assumption will thus lead to an approxi

mate expected processing time of the (K + 1, p) graph 

693 

that is a lower bound to the actual expected processing 

time. If we condition on the event e; it is apparent that 

there are two possible cases for the execution of the re

sultant (K + 1, p) graph. The first is that node K + 1 

finishes executing before nodes lying on the path 

i, i-I, ... , 0 and the second is that it finishes after these 
nodes along the longest path. Since the processing times 

of nodes i, i - 1, ... ,0 are assumed to be independent 

and exponentially distributed with parameter 1, the sum 

of their processing times is Erlangian with parameter i. 

Then the expected increase in the processing time that 

results from the addition of node K + 1 can be calculated 

by determining the expectation of the positive difference 

between an exponentially distributed random variable and 

one whose distribution is Erlangian with parameter i. In 

Appendix A it is shown that this quantity equals (l/2)i, 

By substituting E[TK+J(P) - TK(P) leJ f:;; (1/2); into 

equation (2) we get 

L . 

E[TK+l (P) - TK(P)] ~ L (1/2)IP[eJ 
i=O 

(3) 

As K grows the number of nodes on the longest path also 

increases. For large K we will approximate the finite sum 

in equation (3) with an infinte sum and thus write: 

The expected processing time can now be approximated 

by 

E[TK(P)] ~ E[T~)] + (K - N) x 2p/(1 + p), (4) 

K ~ N ~ 1, where E[ TN(P)] is an initial value that is 

determined by some other method. One possible method 

to determine this initial value is to use the boundary 

condition E[ TJ (P)] = 1. Another method is to run a si

mulation for some suitably large N. 

3. Comparison of Approximation and Simu

lation 

In this section we compare our approximation to re

sults obtained from simulation. We ran simulations for 

values of p ranging from .01 to .9 and values of K in the 

range of 25 to 500. Accurate simulation for greater K 

values was found to be computationally intractable. For 

each (K, p) graph our simulation worked as follows: We 

first generated a random (K, p) graph. This is performed 



by creating a K x K adjacency matrix where each element 

is initially set to O. We added random arcs to this graph 

by independently replacing each zero in the lower trian

gular portion of of the matrix with a 1 with probability 
p. The resultant (K, p) graph was then simulated to de

termine its expected processing time. To do this we 

generated confidence intervals using independent repli

cations. More precisely, after 30 replications we sampled 

the processing times obtained and continued the repli

cation process until the width of the 95 % confidence 

interval was less than 5 % of the sampled average or until 

a maximum of 200 replications had been performed. We 

then continued by generating another instantiation of a 

(K, p) graph and determined its expected processing time 

in the same manner. After generating processing times 

for 30 different (K, p) graphs we checked the confidence 

intervals obtained over this set of graphs and continued 
to generate graphs until the 95% confidence interval was 

less than 5 % of the average or until a maximum of 200 

graphs had been generated. 

The results of this simulation are shown in Figure 1 

where we also plot our approximation using equation (4). 

The accuracy of our simulation is shown by the fact that 

the 95 % confidence interval widths are approximately the 

size of the points used to indicate the values obtained 

from simulation. The value of the offset values in 

equation (4), denoted by E[TN(P)], is given by the sim

ulated values obtained for N = 25 and the corresponding 

value of p. As shown in the Figure, our approximation 

compares favorably with the simulation results and, as 

noted before, is an underestimation for the expected 

processing time. It is important to !lote that for a fixed 

value of p, our approximation holds for sufficiently large 

K. If p ~ .1, the approximation is accurate for graphs with 

as few as twenty or thirty nodes. On the other hand, if 

p is close to 0, K may have to be very large indeed (on 

the order of a thousand nodes) for the approximation to 

be useful. The reason for this behavior is as follows. If 

both p and K are small, then the graph consists primarily 

of roots. As all the roots can be processed simultane

ously, one would expect the completion time to grow lo

garithmically with K. As K grows, however, a rich 
interdependency among the various nodes appears, and 

it is this interdependency that finally gives rise to the 

observed linear growth in the processing time with K. 

These considerations explain the observation, a shown in 

the figure, that for a given value of K the approximation 

is more accurate for large values of p. 

694 

Approximation Compared to Simulation 
95 Percent Confidence Intervals 

Number ot Nodell. K 

Figure 1 

4. Maximum Likelihood Estimation of the 

Probability of Conflict 

Often, when modeling an actual computation by a 
random graph, no apriori knowledge of the probability 

of conflict is available, and consequently it is necessary 

to have an estimation procedure so that the value of p 

can be determined experimentally. In this section, three 

estimators for p are presented. The first estimates p from 

the indegree of a randomly chosen node, the second es-

timates p from the number of 'roots' or nodes of indegree 

o in the graph, and the third estimates p from the total 

number of arcs in the graph. 

4.1. Estimating p from the Indegree of a Ran

domly Chosen Node 

Given a (K, p) graph, we denote the probability that 

the indegree of a randomly chosen node equals D by 

LK(D, p). This likelihood function is given by 

where the ith term in the summation is the probability 

that vertex D + i has indegree D. Expanding the binomial 

coefficient out we get 

D D K-D-l D . 
(-p) x _d_[ L (l-p) +1] 

(K - D) D! dpD ;=0 



(_p)D dD [(1_p)D _ (1_p)K] 

(K - D) D! x D P 
dp 

D 
( -p) 

(K - D) D! 

dD LK [(K) (D) ] i-I i-I x -- - (-1) p . 
D i i 

dp i=1 

Only powers of p greater than D survive the differen

tiation. and some rearrangement gives us 

K-D 

-1 (K) D-l~(K-D)_i (_)j 
K-D D p LJ i i+D P 

-1 (K) D-l 
K-D D P 

;=0 

I I d~(K-D). iD+i-l 
x 0 dx LJ i (-x)y Ix=p dy 

;=0 

1 

(K) DJ. D K-D-l 
D P 0 Y (1 - py) dy 

(K) D D! [1 _ e -PK~ (~p);~. 
D P D+l LJ I! 

(PK) ;=0 

Let p (D) be a maximum likelihood estimate of p, i.e. 

vp' € [0,1]' 

To find p, the expression for LK(D, P) must be maxi

mized, and this is most easily done by differentiating it 

with respect to p, equating it to 0, and then solving it for 

p. On doing so, we get after some simplification 

A D+l 00 A ; 

(Kp) = ~ (Kp) 

D! LJ i! 
;=D+l 

695 

or 

00 A i-D-l 

L _(_Kp=---) ___ x_(D_+_l)_! = D. 
·r l. 

(5) 

i=D+2 

If we replace the product Kp by the single variable x 

the left hand side can be seen to be a polynomial of in

finite degree. As it is strictly convex, and takes on a value 

of when x = 0, we may conclude that a unique solution 

exists. This in turn implies that p = a(D)/ K where a(D) 

is the solution to the above equation. To insure numerical 

stability of the solution to equation (5), it is convenient 

to define the following set of functions. We let 

Fo(x) = x/(D + 2), and let 

fj+l(X) = fj(x)(l + x/(D + j + 3». It is clear that fj(x) 

is the value of the summation of equation (5) truncated 

at j + D + 2. Using these relationships, the equation 

fj(x) - D = ° can be approximated numerically to any 

degree of desired precision by choosing j suitably large. 

Clearly, p can be estimated from the outdegree of a ran

domly chosen node in exactly the same manner. 

4.2. Estimating p from the Number of Roots 

Let R be the number of roots, or nodes of indegree 

° in a particular realization of a (K, p) graph. As all of 

these nodes can be processed simultaneously the number 

of roots in a (K, p) graph is the maximum level of con

currency that can be achieved when the program or task 

begins execution. Define PK(R,p) to be the probability 

that a (K, p) graph possesses exactly R roots. As before, 

define p (R) to be a maximum likelihood estimate of p, 

i.e. 

vp' € [0,1]. 

The following recurrence can be written for the dis

tribution of the number of roots: 

K-l 

L (
i) i-j+l j-l 

. . 1 P (1 - p) PK - 1 (i, p).(6) 
I-J+ 

i= max(1J-l) 

The ith term in the sum is the probability that the addi

tion of a single node to a (K - 1, p) graph with i roots 

results in a (K, p) graph with j roots. Unfortunately, this 

recurrence cannot be solved to give PKU, p) in closed 



form, though it can be computed from (6) starting with 

PI(1,p) = 1 and PI(O,p) = O. On the other hand, the 

, mean of the 'distribution is easily found as follows. Define 

a set of K indicator random variables {xJ as 

{
I if node i is a root, 

xi = ° if node i is not a root. 

Clearly, Pr{x; = 1} = q;-I. Let X be a random variable 
K 

that counts the number of roots. Then X = . LX;, 
;=1 

and 

K . 1 v _" 1-
.... - £.J q 

i=1 

K+l 
1-q 

p 
(7) 

This leads us to consider the following estimator for 

p, which is not a maximum likelihood estimator. Our es

timate of p, p, is the solution to the equation 

~K+l 
1-q 

p=---
R 

(8) 

where' R, as stated before is the observed number of 
roots. As the distribution of p is not known, the mean 

and the variance of the estimator cannot be found. 

Computational experience with (8) however shows p to 

lie within 5% of the maximum likelihood estimate of p. 

4.3. Estimating p from the Number of Edges in 

the Graph 
Let E be the number of arcs in a particular sample 

.realization of a (K, p) graph, and LK(E, p) the likelihood 

function for p. Then, we have 

(~) 
LK(E,p) = ( E ) 

E (~)-E 
xp X q . 

By differentiating this expression and equating it to 0, 
A 

we find that the maximum likelihood estimate of p, p is 

the solution to 

A A (k) E(1 - p) = p ( 2 - E) 

or that 

A E 

p = (~) 

exactly as one would suspect. 

696 

5. Conclusions and Future Research 

In this paper we have considered the execution of a 

job modeled by a task graph with precedence relation

ships on an infinite number of processors. Our model of 

the task .graph was a random, acyclic, directed graph 

consisting of K nodes in which an arc existed from node 

i, i = 1,2, ... , K - 1 to node j,j = i + 1, i + 2, ... , K in
dependently with probability p. In this model, each vertex 

corresponds to a task that is to be processed and each 

arc implies a precedence relationship that must be satis-

fied during processing. The processing time of the tasks 

in our model was 'assumed to .consist 'of-independent and 

identically distributed. exponential random variables. The 

approximation we derived for the expected processing 

time of the task graph, which we call a (K, p) graph, ex

hibits linear growth with the number of tasks for a given 

value of p and compares favorably to simulation values. 

In our model we assume an infinite number of pro

cessors, or more precisely that· whenever a task is avail

able for ,execution there exists an idle processor upon 

which it can be executed. For other than very. small va

lues of p this is not a restrictive assumption. The. reason 

for this follows from equation (7) which shows that, for 

'large K, the expected number of tasks that can be si
. multaneously executed in a . (K, p) graph· is approximately 

equal to lip. This approximation becomes more accurate 

with increasing K: Thus the expected number of proces

sors necessary to begin execution of a (K, p) graph is not 

large for all but small values of p. The same reasoning 

cannot . be used to determine the expected number of 

processors. needed during the execution of a (K, p) graph. 

This follows from the fact that as tasks are removed from 

the graph (Le. they finish executing) the remaining graph 

is no longer an example of a (K, p) graph. In other 

words, conditioned on the .fact that a root is removed 

from the graph, the underlying statistics are not the same 

as those .for the initially generated graph. Simulation re

sults (not shown here) however, show that, as the graph 

is executed. the expected number of processors required 

'is non-increasing. Thus we can conclude that 1 I p is an 

approximation to the expected number of processors re

quired at any point in' the execution. 



Appendix A 

Lemma 1. 
Let X be an exponentially distributed random variable 

with parameter 1, and let Y be the sum of i ~ 1 inde

pendent exponentials with parameter 1. Assume that X 

and Yare independent and let Z = max(O, X - Y). Then 

E[Z] = (l/2)i. 

Proof. 
The density functions for X and Yare defined on the 

non-negative real line and are given by 

-x 
fX<x) = e x ~ 0, 

i-I -y 
Y e 

fY(Y) = 
(i - 1)! 

, y ~ 0, 

respectively. The density function for Z consists of an 

impulse at z = 0 and for z > 0 can be written as 

fz(z) = J +fx(x + z)fy(x)dx 
o 

-z 00 

= x e dx 
e J i-I-2x 

(i-I)! 0+ 

e 
-z 

i 
2 

, z> O. 

Using this expression we thus have that the expectation 

of Z is given by 

E[ZJ = J ze -: dz = (1/2)i . 

+ 2 o 

• 

References 
[IJ G. Fayolle, P. J. B. King, and I. Mitrani, liOn the 

Execution of Programs by Many Processors ", in 
Performance'83, A. K. Agrawala and S. K. Tripathi, 
eds., North Holland, pp. 217-228, 1983. 

[2J P. Franaszek and J. T. Robinson, "Limitations of 
Concurrency in Transaction processing 11 , ACM 
Transactions on Database Systems 10; 1. pp. 1-28, 
March 1985. 

697 

[3 J B. Indurkhya, H. S. Stone, and L. Xi-Cheng, "0p_ 
timal Partitioning of Randomly Generated Distrib
uted Programs 11 , IEEE Transactions on Software 
Engineering 12, 3, pp. 483-495, March 1986. 

[4 J P. Mussi and P. Nain, "Evaluation of Parallel Exe
cution of Program Tree Structures 11 , Proc. 1984 
ACM SIGMETRICS Conference on Measurement 
and Modeling of Computer Systems, Cambridge, 
Mass., pp. 78-87, August 1984. 

[5J J. T. Robinson, "Some Analysis Techniques for 
Asynchronous Multiprocessor Algorithms 11 , IEEE 
Transactions on Software Engineering 5, 1, pp. 
24-31, January 1979. 

[6J R. A. Sahner and K. S. Trivedi, 11 SPADE: A tool for 
Performance and Reliability Evaluation", Research 
report CS-1984-15, Duke University, 1984. 



PERFORMANCE ANALYSIS' OF DYNAMIC LOCKING 

In Kyung Ryu 
Dept. of Electrical Eng-Systems, SAL 300 

University of Southern California 
Los Angeles, CA 90089 

Abstract 

The paper is concerned with performance analysis of a 
transaction processing system due to both hardware and 
data resource contention. Hardware resource contention 
is taken into account by analyzing the queueing network 
model of the computer system on which the transactions 
are executed. Transactions lock the data items they 
access from the database dynamically, according to strict 
two-phase locking. Data contention manifests itself as 
lock conflicts and deadlocks. Lock conflicts (resp. 
deadlocks) are resolved by blocking (resp. restarting) the 
transaction that caused the lock conflict. Probabilistic 
analysis is used to determine the frequency of lock 
conflicts/deadlocks. A multilevel solution method based 
on decomposition is then used to obtain system and user
level performance measures. An iterative solution scheme 
with reduced computation cost is also derived from the 
decomposition solution method. Graphs/Tables are 
provided to show validation results against simulation and 
to study the behavior of the system. The analysis 
presented in this paper can be generalized in several 
directions. 

1. Introduction 
In this paper we develop a detailed Queueing Network 

Model (QNM) of transaction processing in a centralized 
database; Concurrency control of dynamic lock requests 
is attained by a strict two-phase locking (2PL) scheme [4], 
i.e., locks are released upon transaction completion. 
Transactions encountering lock conflicts are blocked and 
the transaction causing a deadlock is restarted. 

An analytic solution based on multilevel decomposition is 
adopted. A top-down method is used to identify the 
parameters required to compute the performance 
measures of interest at each level with the ultimate goal 
of user-level performance measures. Such parameters are 
then computed at the lower level, perhaps requiring the 
computation/measurement/estimation of additional lower 
level parameters. Probabilistic analysis is used to estimate 
the probability of lock conflict based on an estimate of 
locks held by in-progress transactions. We also present 
an iterative solution based on the analysiS developed for 
the decomposition method. 

The performance of dynamic locking schemes has been 
studied by numerous researchers. Extensive simulation 
studies of dynamic locking were presented in [9, 1]. A 

CH2345-7 /86/0000/0698$01.00 © 1986 IEEE 
698 

Alexander Thomasian 
IBM T. J. Watson· Researcll Center 

P.O. Box 218 
Yorktown Heights, NY 10598 

system with two-phase locking was simulated in [8]. 
Regression analysis was then applied to simulation results 
to obtain equations relating lock conflict probabilities to 
key system parameters such as number of transactions, 
transaction size, and database size. 

The probability of lock conflict and deadlock was 
computed in [5, 14]. In [5], each transaction was assumed 
to hold half of the locks . it will request in its lifetime. 
Simple expressions for probability of conflict and deadlock 
were obtained based on this simple assumption. In [14], 
the state of the system was represented by a forest of 
trees, where the roots of the trees denote active 
transactions and the non-root nodes of each tree denote 
transactions blocked by their parent node. 

A two-phase locking scheme with dynamic lock request 
policy was presented in [6, 18], using a lock-wait station 
to represent the delay due to blocking. In [6], the lock
wait station was modeled by an infinite-server station with 
a fixed service time corresponding to the no-queueing 
transaction response time. A more accurate solution was 
presented in [18], by using a service time at the lock-wait 
stations related to residual transaction residence times. 
Since transaction residence times are unknown a priori, 
iteration was used to solve the model. The results of this 
analysis could be further improved by adopting a state
dependent server for the lock-wait queue. 

A mean value analysis method to study locking in 
database appeared in [15, 16, 171. The analysis was based 
on estimating the mean number of transactions holding a 
given number of locks in the active and blocked states. 

Individual transactions were treated in isolation and 
analyzed in steady state in [2]. The influence of other 
transactions in the system was represented by the 
probabilities that a data item required by a transaction is 
unavailable on the first and second attempts. An iterative 
method was used for the solution- and a proof of 
convergence was given. 

The work reported in this study was undertaken to 
alleviate the shortcomings of previous work from the 

viewpoint of obtaining a very accurate model for dynamic 
locking. A solution method is based on decomposition for 
a comprehensive model of centralized databases. We 
were able to determine detailed performance measures, 



previously only reported in simulation studies. A 
comparison of some of our conclusions with those of 
others appears in Section 4. 

In what follows, we first describe the model of the 
computer system. A solution method based on multilevel 
decomposition is discussed in Section 3. In Section 4 we 
validate the proposed analytic methods and carry out a 
limited parametric study of the system behavior. A 
detailed analysis of Data Contention Model appears in the 
Appendix. 

2. Description of the Model 
We ,are concerned with concurrent transaction 

processing on a multiprogrammed computer system. The 
behavior of transactions from the viewpoint of accessing 
the database is described in Section 2.1. We then 
describe the processing of transactions by the computer 
system in Section 2.2. 

2.1. Database Model 
The database consists of D data items. There are N 

locks in total, each lock is associated with G data items 
(G=D/N). A single level of locking is considered in our 
studies. Lock requests are exclusive. Each transaction 
accesses a fixed number of data items (n), which are 
uniformly distributed over the D data items in the 
database. The case of variable number of lock requests is 
considered in [10]. The probability P m(kln) that k. locks are 

requested by a transaction accessing n data items can be 
computed according to the following recursion for k>O 
and n~l: 

with the initialization P m(kIO)=l for k=O and P m(kIO)=O for 

k>O. Thus the mean number of locks requested by a 

transaction ([) is given by: 

L 
L = ~ Pm(kln) k 

k=1 
(2) 

when n is fixed and L is the maximum number of lock 
requests per transaction: L=min(n,N). 

We ignore the variability of the number of lock requests 

and assume that each transaction requests [ locks and 

that the [ lock requests are distributed uniformly over the 
lifetime of. a transaction (it attains the same amounts of 
service demands at the devices of the computer system in 
each interval preceding a lock request and leading to 
transaction completion). The fact that data item requests 
are uniformly distributed over the 0 data items in the 

database implies that the [ lock requests are also 
uniformly distributed over the N locks (all lock requests 

are unique). A transaction requesting [ locks has [+1 
phases, where the last phase results in the release of all 

699 

locks rather than a new lock request. Such a model has 
been used in [5, 6, 16, 18]. Note that this assumption is 
compatible with an assumption that n database accesses 
are uniformly distributed over the lifetime of a transaction 
in the case of the finest granularity of locking (one lock 
per data item), since each access to the database results 
in a lock request. This is not so for coarse granularity of 
locking, where it is possible that the transaction already 
holds the lock on a data item when it makes a lock 
request. Thus the lock request rate by a transaction 
decreases as it acquires more locks, i.e., lock requests are 
concentrated in the beginning of transaction execution. 
Thus the uniform lock request distribution assumption will 
result in ·mderestimating lock utilization, since locks are 
in fact he,ld for more than half of transaction's residence 
time in the system. The results of our analysis tend to be 
less accurate for coarse granularity of locking (see Figure 
4.1 in Section 4.3). This is of little concern, since a coarse 
granularity of locking is inappropriate for dynamic locking. 

2.2. The Computer System Model 
Transaction arrivals at the computer system are assumed 

to be Markovian, according to a random (Poisson) process 
with fixed rate A, or terminal-driven arrivals, in which case 
the arrival rate is a function of the number of transactions 
in the system. 

The maximum number of transactions that can be 
activated is limited to W, which acts as a congestion 

control parameter. 1 Activation means that the transaction 
is admitted from the Pending Queue into the Memory 
Queue, as shown in Figure 2-1. The number of Activated 
transactions is V=min(A,W), where A is the total number of 
transactions available for processing. Activated 
transactions can be processed by the Computer System, 
which has a maximum Multi-Programming Level (MPL) 
equal to M. The value of W should be chosen 
appropriately in order not to degrade system throughput 
by reducing the effective MPL. On the other hand 
activating a large number of transactions can result in 
excessive lock conflicts and deadlocks. In fact, thrashing, 
similarly to multiprogrammed virtual memory computer 
systems, may occur if congestion control is not exercised 
(see Section 4.5). 

The flow of transactions is shown in Figure 2-1. 
Transactions that are admitted into the Memory Queue and 
proceed to execute at the Computer System are referred 
to as Eligible transactions. The number of Eligible 
transactions is denoted by J and there are min(J,M) Active 
transactions and max(O,J-M) transactions delayed in the 
Memory Queue. A transaction making a lock request 
either succeeds, in which case it continues with its 
processing, or it fails: lock conflict. A transaction causing 
a deadlock releases all of its locks (unblocking at least one 
transaction from the Lock-Wait Queue) and is immediatly 
restarted by becoming an Eligible transaction again. 
Otherwise, the transaction is blocked in the Lock-Wait 
Queue until the requested lock becomes available. 

lWe use capital letters to refer to terms with a special meaning in 

our model. 



A=total 

· ........... . 
• V=min(A,W) Activated tra~~c~i~n~ 

Lock-Wait Queue 

+--------------------------+ · +< -IBlocked transactions (V-J) 1< __ + 
+---------------------------+ 1 

Unblocking of blocked 
transactions 

1 

Blocked 1 

nUllber of • 
transactions 

Restart due to deadlock 

1 

1 
1 

+<------------------------------+ 
1 Lock conflict 1 
1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _ ~ 

1 - Lock acquisition 1 ~ 1 - +<--________________ + _ 
1 - 1 1 
1 - Memory 1 1 -

Arrivals. 1 - Queue 1 1 _ 
----+ . 1 - ---+ 1 

--->1111--->+-->+-->+->1111-+-
----+ . ---+ 

Primary -Delayed 
-transactions 
-max(O,J-M) 

1 Departures 
------+---------> 

Computer -
System -

Queue 
maz:(O,A-W) • 
trans. J Eligible transactions 

... ..... ..... ... ..... ..... ..... ..... 

. . . . . . . . . . . . 
Figure 2-1: The computer system model. 

Each transaction is considered to consist of elementary 
transactions, each corresponding to a data item access or 
a lock request. Only the latter model is considered in this 
paper, while the former model is considered in [11, 10]. 
Based on an earlier assumption that lock requests are 
uniformly distributed over the lifetime of a transaction, it 
follows that all elementary transactions ·are 
homogeneous, i.e., belong to a Single job-type. A 

transaction consists of [+ 1 elementary transactions on the 

average, with the first [ phases leading to a lock request 
and the last phase resulting in the release of all locks. 
Upon the completion of a transaction a check is made to 
unblock transactions in the Lock-Wait Queue, which were 
waiting on the locks held by the completed transaction. 
Newly unblocked transactions and delayed transactions in 
the Memory Queue are allocated at the Computer System 
in FCFS order (observing the MPL constraint). 

The Computer System consists of K state-independent 
devices: a CPU and K-1 disks. It has a maximum MPL 
equal to M. Transactions are characterized by the service 
demands at the K devices of the Computer System per 
data item access/lock request: sk' O<k~K-1. Note that a 

more comprehensive queueing network model for the 
multiprogrammed computer system incorporating other 
workloads can be handled under this modeling framework 
and would only affect Level 3 of the analysis (see Section 
3.3). 

3. Analysis of the Model 
An analysis of the model described in Section 2 using 

hierarchical decomposition similarly to [19] is presented at 
this point. The analysis is carried out from top to bottom 

700 

in the following four sections. The analysis at each level 
uses quantities derived at lower levels. Also the details of 
the probabilistic analysis of the Data Contention Model 
appears in the Appendix. The iterative solution approach 
is discussed in Section 3.5. 

3.1. User Response Model (Level 1) 

The final. stage of analYSis deals with computing user 
response times. The Computer System is specified by its 
mean throughput as a function of Activated transactions 
(ll(V)). Since only V=min(A,W) transactions can be 
activated, we compute ll(V), l~V~W. Note that ll(V)=ll(W), 
V>W. ~he be.havior of the system can be represented by 
a one-dimensional birth-death process, where the arrival 
(birth) process is random or terminal-driven. The birth
death model can be solved easily yielding the state 
probabilities. The mean transaction response time (R) can 
b.e c~mputed, using the state probabilities and applying 
Little s law. The computation cost at this level is 
determined by the cost of solving the birth-death model. 

3.2. Transaction Throughput Model (Level 2) 
This stage of analysis entails the computation of the 

effective system throughputs ll(V), l~V~W. There are J 
Eligible and V-J Blocked transactions in a closed system 
with V Activated transactions such that the completion of 
each transaction results in the immediate activation of a 
new transaction. The behavior of the system can be 
represented by a Markov chain with V states, where the 
number of Eligible transactions (J) determines the state. 

The transition rate from state J (S) is determined by the 

completion rate (throughput) of elementary 
transactions: t(J), which is computed at the Hardware 
Contention Model (Level 3). The following transitions are 
possible from S j as implied by Figure 2-1: 

1. Successful lock request with probability P a(JIV): 

Sj+Sj' 

2. Conflicting lock request without causing a dead!ock 
with probability P c(JIV): S j+S j-1' 

3. Transaction restart due to a deadlock with 
probability P r(JIV): S j+SI' I >J. 

4. Transaction completion with probability Pt(JIV): 

Sj+SI,I>J. 

The routing probabilities for elementary transactions: 
P a(JIV), P c(JIV), P r(JIV), and P t(JIV) are derived in the 

Appendix based on the analYSis carried out for the Data 
Contention Model (Level 4). 

The transition rate from S j to SI is given by: 

rtran(J,IIV)=ptran(J,IIV)t(J) 

where Ptran(J,IIV) is the transition probability from S j to SI 

at the completion instants of elementary transactions and 
is obtained by solving the Data Contention Model (Level 4). 
The balance equations for the state· probabilities of the 
system are given as follows: 



v 
Ps(JIV)t(J) = L PS(IIV)rtran(I,JIV) 1~J~V (4) 

I=1 
and solved to obtain the steady-state probabilities Ps(JIV), 
l~J~V. 

The throughput of elementary transactions is: 

V 
~e(V) = L t(J) PS(JIV) (5) 

J=1 
The effective transaction throughput under the same 
condition is given by: 

V 
~(V) = L Pt(JIV) t(J) PS(JIV) (6) 

J=1 
where Pt{JIV) is the probability that the completed 

elementary transaction was the last phase of a 
transaction. When the fraction of restarted transactions is 

negligible, ~(V)= ~e{V)/{[ + 1). 

The residence time components of transactions are 
computed using Little's result: 

1 V 
Ra(V) = -- L min(J,H) PS(JIV) 

~(V) J=1 
1 V 

Rm(V) = ---- L max(J-H,O) PS(JIV) 
~(V) J=1 

V 
Rb(V) = ---- L (V-J) PS(JIV) 

~(V) J= 1 
V 

R(V) = ----
~(V) 

(8) 

(9) 

(10) 

where Ra{V), Rm{V), Rb{V), and R{V) are the mean residence 

time at the Computer System, the mean waiting time at 
the Memory Queue, the mean waiting time at the Lock
Wait Queue, and the total residence time in the system, 
respectively, when V transactions are activated. The 
wasted time due to restarts can be obtained as follows: 

_ V 
Rd(V) = R(V) - (L+1) -----

~e(V) 
( 11) 

The computational cost at this level for a given value of 
V is determined mainly by the cost of solving the balance 
equations (4). 

3.3. Hardware Contention Model (Level 3) 
At this level we compute the throughput of the 

Computer System in processing elementary transactions: 
t(J). The Computer System model was described in 
Section 2.2, where we noted that it has a maximum MPL 
equal to M. The service demands for a transaction that 
accesses n data items is Sk = n"sk' O<k~K-1. The service 

demand for elementary transactions is given then by bk(J) 

The throughputs t(J), l~J~min(V,M) for elementary 

701 

transactions are computed using one of the available 
algorithms in [7]. When we have a product-form queueing 
network model for the Computer System the 
computational cost to obtain these throughputs is O{KM). 

3.4. Data Contention Model (Level 4) 
At this level we proceed to compute Ptran{J,IIV) the 

transition probabilities of the Markov chain for the 
Transaction Throughput Model (Level 2). The routing 
probabilities P a{JIV), P c(JIV), P r{JIV), and P t(JIV) defined in 
Section 3.2 are also computed. The derivation of the 
probabilities, due to its lengthy nature, is given in the 
Appendix. 

3.5. An Iterative Solution Method 
In the decomposition method described in previous 

sections, we must solve the linear equations at Level 2 
and solve Level 3 and 4 for l~J~V. The computational 
complexity of the decomposition method increases rapidly 
with V. To reduce the computational cost, an iterative 
solution method based on the decomposition method is 
proposed for a given V as follows. Define A{JIV) as mean 
of the variation in the number of eligible transactions at 
the completion of an elementary transaction. A{JIV) can 
be computed as follows: 

V 
A(JIV) = L (I-J) Ptran(J,IIV) (12) 

I=J-1 
It can be shown numerically (using the decomposition 
method) that A(JIV) is a monotonically decreasing function 
in J and that: 

A(JIV) = 0 for J = J (13) 

where J denotes the mean state at the completion 
instants of elementary transactions. The interpretation of 
equation (13) is that the system's mean state is its balance 
point, such that the system tends to stay there [3]. For 
fractional values of J, A(JIV) is defined as a linear 
interpolation of the neighboring two states r Jl, LJj: 

(14) 

Equation (13) can be solved using the bisection method, 
since A(JIV) is a monotonically decreasing function in 
J. This implies that the computation at the Data 
Contention Model (Level 4) needs to be carried out only 
for values of J encountered during the iteration. The 
number of iterations required is bounded by logzV, and 

the reduction in computational cost is therefore 
proportional to V / logzV. The QNM at Level 3 need only 

be solved for the two states rJl and lJJ. The need to 
solve the set of linear equations at Level 2 is also 
obviated and substituted by the computation of throughput 
when the system is in its mean state. 

In order to compute the throughput of elementary 



transactions, we first compute the mean interdeparture 
time of elementary transactions when the system is at its 

mean state J. This can be accomplished by noting that 

PL(J) and PH(J) are the fractions of elementary transactions 

that leave behind J transactions, i.e., the probabilities 
pertain to departure instants. It follows: 

= + (15) 

t( LJJ IV) 
The probability of termination at an elementary transaction 
completion is obtllined by interpolation: 

(16) 

The effective system throughput at the Transaction 

Throughput Model is computed by: 

instead of equation (6) in Section 3.1. 

4. Validation and Results 

( 17) 

We first define the parameters for the test case. A 
summary of validation results and comments about the 
accuracy of the solution methods are then given. After 
ascertaining that the iterative method has an accuracy 
comparable to the decomposition method (see explanation 
in Section 4.1) we proceed to use this technique in 
reporting further results. We proceed to discuss the effect 
of varying the granularity of locking, database size, number 
of transactions, and the no-waiting policy, i.e., transactions 
making conflicting lock requests are restarted. 

4.1. Parameters of the Test Case 
A database with 0=1024 data items was considered. The 

granularity of locking was varied such that the number of 
locks was N=32, 64, 128, 256, 512, and 1024. The number 
of data items accessed by a transaction (n) was set to 2, 
4, 8, 16, and 32 to investigate the effect of transaction 
size. The Computer System consists of 10 devices disks 
and the service demands at all devices are the same 
(balanced)s " 'i

k
=0.002, O~k~K-1. The maximum MPL of 

the Computer System was set to M=15 and the number of 
Activated transactions (V) was varied. 

4.2. Validation 
The hierarchical nature of our model lends itself to 

hierarchical validation (from bottom to top), such that 
inaccuracies at each level can be rectified by adopting a 
more accurate model at the appropriate level. In this 
manner inaccuracies are not allowed to propagate to 
higher levels, where the tracing of the sources of 
inaccuracy is more difficult. Due to space limitation, we 
consider a system with a fixed number of Activated 
transactions (V) since the open model at Level 1 has been 
shown to be accurate elsewhere [20]. 

A simulation program was written taking advantage of 
hierarchical decomposition to reduce the simulation cost. 
The Computer System was represented by a flow

equival~~t ... ~~r'~i.c~. center characterized by its throughput 

characteristic for elementary transactions: t(J), 
l~J~min(M,V). The residence times of active elementary 
transactions were sampled from. the exponential 
distribution with the mean J/t(J). The hierarchical 
simulation was validated using a discrete-event simulation 
and shown to be adequately accurate. In the simulation 
elementary transactions were specified at the data item 
request level. The service demands for elementary 
transactions were n·sJ(n+l). When a transaction 

requested a conflicting lock, the deadlock detection routine 
was invoked. When a cycle was found in the waiting-for
graph, the transaction causing the deadlock was restarted 
after releasing its locks. The data items (locks) requested 
by restarted transactions were resampled. This has a 
negligible effect on the performance measures obtained by 
simulation since the probability of deadlock is expected to 
be low in the region under consideration: 

The analysis of the Data Contention Model (level 4) is 
based on the initial estimates that the number of locks 

held by Eligible and Blocked transactions are le =(f2 and 

lb=([-l)12, respectively. This estimate is quite accurate 

when lock contention is low [11). Iteration2 can be used 
to improve on the initial estimates for le and lb (see 

Appendix). The estimates obtained by this iteration used 
in conjunction with the decomposition (DEC) and iterative 
(ITR) solution methods are very accurate except for cases 
of severe data contention [11). No iteration is required to 
estimate Le and Lb when lock contention is not severe. A 

comparison of blocking and restart probabilities derived 
here with other results [5, 16] appears in [11]. 

+--------------------------------------------------------------+ 
I I I Lock Grant I Blocking I Completion I Deadlock I 
I I 1-------------+-------------+-------------+-------------I 
I nl vi SIH I DEC I SIH I DEC I SIH I DEC I SIH I DEC I 
I--+---+~-----+------+------+------+------+------+------+------1 
I I 51 .794 I .794 I .00561 .00621 .200 I .200 1.00000 I .000021 
I I 101 .787 I .786 I .01451 .01401 .200 I .200 1.000041.000031 
I 41 151 .779 I .778 I .02141 .02151 .200 I .200 1.000161.000051 
I I 201 .770 I .711 I .03011 .02911 .200 I .200 1.000081.000011 
I 1251.765 I .163 I .03531 .03661 .200 I .200 1.000001.000091 

702 

1--+---+------+------+------+------+------+------+------+------1 
I I 51 .816 I .875 I .01291 .01361 .111 I .111 I .00031 .00021 
I 81 101 .859 I .859 I .03001 .03031 .111 I .111 I .00051 .00051 
I I 151 .843 I .842 I .04601 .04661 .111 I .111 I .00051 .00081 
I I 201 .821 I .826 I .06191 .06251 .111 I .111 I .00071 .00121 
1--+---+------+------+------+------+------+------+------+------1 
I I 51 .914 I .914 I .02731 .02101 .05801 .573 I .00111 .00181 
1161101 .882 I .882 I .05811 .05801 .05611 .556 I .00391 .00501 
I I 151 .856 I .854 I .08291 .08231 .05341 .520 I .00771 .01141 
1--+---+------+------+------+------+------+------+------+------1 
I I 51 .925 I .923 I .04191 .04131 .02!!51 .02331 .00821 .01191 
1321101.889 1.881 I .013!!1 .01721 .01111 .01561 .02011 .02641 
+--------------------------------------------------------------+ 

Table 4-1: Transaction routing probabilities. 

2This iteration is different from the one described in Section 3.5. 



Table 4-1 shows the routing probabilities at the 
completion of an elementary transaction for a given value 
of V. The results show that the probabilistic analysis in the 
Data Contention Model provides accurate estimates for the 
routing probabilities. It can be observed that the 
probability of lock conflict increases linearly with the 
number of activated transactions minus one (V-l) and the 
number of lock requests per transaction. The probability 
of deadlock increases even more rapidly. Since the 
average number of transaction completions in simulation 
runs was 50000, the estimate for probability of deadlock is. 
not accurate enough for some cases. When lock 
contention is very severe, e.g., L=32 and V=10, the 
probability of deadlock per transaction exceeds 60%. This 
is atypical of operational databases, but this parameter 
settings were used to estimate the accuracy of our 
analysis under heavy data contention. 

+------------------------------------------------------------+ 
I I Throughput I Mean HPL I Residence Time I 
I 1-----------------+-----------------+-----------------I 

nl vi 51M I DEC I ITR 151M I DEC I ITR 151M I DEC I ITR I 
1--+---+-----+-----+-----+-----+-----+-----+-----+-----+-----1 
I I 51 44.61 44.11 44.11 4.951 4.911 4.921 .1131 .1131 .1131 
14110164.7164.6164.619.7219.6319.651.1551.1551.1551 
I I 15176.6176.4176.41 14.41 14.21 14.21 .1961 .1971 .1161 
I 120178.7178.1178.1118.8118.7118.81.3181.3201.3201 
1--+---+-----+-----+-----+-----+-----+-----+-----+-----+-----1 
I I 5121.6121.1121.214.8014.6414.691 .2321 .2371 .2361 
I 81 101 31.11 30.21 30.51 9.071 8.561 8.661 .3221 .3311 .3281 
I I 15136.1135.0135.51 12.51 11.81 11.91 .4161 .4291 .4231 
I I 201 38.21 37.21 38.31 15.71 14.31 14.51 .5251 .5381 .5221 
1--+---+-----+-----+-----+-----+-----+-----+-----+-----+-----1 
I I 519.7818.6819.1614.2113.7013.881.5121.5761.5461 
116110112.2110.2111.216.4315.1715.501.8201.9801.8971 
I I 151 11.91 9.671 10.81 6.871 5.371 5.701 1.271 1.551 1.391 
1--+---+-----+-----+-----+-----+-----+-----+-----+-----+-----1 
I I 51 3.411 2.071 2.141 3.141 2.501 2.501 2.251 2.421 2.341 
1321 101 1.801 1.521 1.521 3.761 2.881 2.761 6.381 6.581 6.581 
+------------------------------------------------------------+ 

Table 4-2: Transaction throughput, mean MPL, and mean 
residence time of transactions. 

Transaction throughput (ll(V)), the mean number of 
eligible transactions (mean MPL), and mean transaction 
residence time (R(V)) are given in Table 4-2. Throughputs 
given for the simulation are the mean values with relative 
half-widths about the mean of less than 5% at 90% 
confidence level. The proposed analytic methods provide 
reasonably accurate estimates for all three parameters 
except in the case of heavy data contention. It is 
observed that the transaction throughput decreases when 
the number of Activated transactions becomes too large. 
This is due to the increase in the probability of lock 
conflict and deadlock. The loss of accuracy for L=32 is 
due to the inadequacy of the Data Contention Model to 
estimate lock conflict probabilities for the case of high 
data contention. 

Table 4-3 shows the components of the mean 
transaction residence times and the mean time wasted 
due to restarts. The decomposition method provides quite 
accurate estimates for all components. In heavy data 
contention, the delay at the Lock-Wait Queue is 
overestimated due to the inaccuracy in modeling the 
unblocking probability of blocked transactions. Note that 

703 

+--------------------------------------------------------+ 
I I I Active: Ral Blocked:Rbl Memory: Rml Restart: Rd I 
1--+---+-----------+-----------+-----------+-------------I 
I nl vi 51H I DEC I 51H I DEC I 51H I DEC I 51H I DEC I 
1--+---+-----+-----+-----+-----+-----+-----+------+------+ 
I I 51 .1111 .1111 .0011 .0021 -- I -- 1.000001.000011 
141 101 .1501 .11191 .00111 .0061 -- 1-- 1.000031.000021 
I 1151.1881.1861.0081.0111 -- 1-- 1.000161.000031 
I 1201.1901 .1921 .0141 .0191 .0501 .01161.000081.000061 
I 1251 .1901 .1921 .0191 .0291 .1081 .0991.000001.000091 
1--+---+-----+-----+-----+-----+-----+-----+------+------+ 
I I 51 .2161 .220 I .0091 .0171 -- I -- 1.000521 .000281 
I 81 101 .2831 .2831 .0301 .01181 -- I -- 1.000901.000791 
I I 151 .3301 .3361 .0691 .0931 -- 1-- 1.001691.001951 
1--+---+-----+-----+-----+-----+-----+-----+------+------+ 
I I 51 .4201 .4231 .0811 .1231 -- I -- I .00901 .01071 
1161 101 .4751 .4931 .2941 .11041 -- I -- I .011121 .0490.1 
I 1151.5181.5281.6941.8611 -- I -- 1.159 1.146 I 
1--+---+-----+-----+-----+-----+-----+-----+------+------+ 
I I 51 .9651 .9881 .6391 .9881 -- I -- I .320 I .1156 I 
1321 101 1.421 1.1191 2.721 3.921 -- I -- I 2.05 I .185 I 
+--------------------------------------------------------+ 

Table 4-3: Residence time components. 
the delay at the Lock-Wait Queue due to blocking is much 
larger than the time wasted due to restarts, except for the 
case of heavy data contention. The degradation in 
performance can be ascribed mainly to blocking due to 
lock conflicts rather than restarts due to deadlocks. The 
analysis can be simplified without a significant effect on 
accuracy (except in the case of high data contention) by 
setting the probability of deadlock equal to zero and 
ignoring transaction restarts. 

SIM'JLAnOtJ ANALYlTIC 

n=2 

4 It) b4 Lob 102.4 

Granularity ot Locking 

Throughp~ __________ ..... . 

15 

n=8 

o L----'-_.-1-_~= 
64 256 1 4 16 

Figure 4-1: 

Granularity of Locking 

Throughput versus granularity of locking 
with V=10 and sk=O.OOl, O~k~9. 



In Figure 4-1 we plot transaction throughput versus 
granularity of locking for different transaction sizes. 
Simulation results were obtained using the data item 
access model, while the analysis was carried out using the 
iterative solution method in Section 3.5 with the lock 
access model. It is observed that the analysis is accurate 
for fine and medium granularities of locking as long as 
transaction sizes are not excessively large, in which case 
analytic results tend to be peSSimistic for fine granularity 
of locking. This is partially due to inaccuracies in 
estimating the lock conflict probabilities. For coarse 
granularity of locking lock requests are usually made - in 
the first stages of processing while the analytic model 
presumes that they are uniformly distributed over the 
lifetime of a transaction. The analytic method 
overestimates the throughput for coarse granularity as 
was predicted in specifying the database model in Section 
2.1. 

Analytic results are used in Section 4.2";"4.6 with the 
understanding that they are somewhat inaccurate for high 
data contention regions, which are of little practical 
interest. 

4.3. Granularity of Locking 
Fine granularity of locking is beneficial as can be 

observed in Figure 4-1. For small transactions the 
throughput reaches its peak (saturates) very quickly as a 
finer granularity of locking is adopted. The degree of data 
contention becomes insignificant for fine granularity and 

5 

°2~~~~7--~--~'2-------'~7--~--~~--~ 

Transaction Size 

a. Throughput 

Residence iime 

TOTAL 
.7 

.6 

.5 

.4 

.3 i...-___ =_=-_-__ - -_________ ~~AC!t'!L---
./" ./ 

-" ----°2~~~~7--~--~,2--~==~,~7--~--~~~-~ 

.2 

• 1 LOST ......... -
Transaction Size 

b. Residence time components 

Figure 4-2: Performance measures vs transaction sizes. 

704 

the throughput is determined mainly by hardware resource 
contention. For large transactions the throughput initially 
drops in coarse granularity due to increased restarts as 
the number of locks increases, i.e., the system progresses 
from serial processing to concurrent processing with high 
degree of conflicts. The throughput eventually improves 
for our test case since the largest transactions with n= 16 
access a small fraction of the database granules. 

4.4. Transaction Size 
Figure 4-2 shows the transaction _ throughput and 

residence time components as a function of transaction 
size. For small transaction size, few transactions are 
blocked due to lock conflicts and the throughput is 
determined mainly by hardware contention. The residence 
time at the Lock-Wait Queue and the time wasted due to 
restarts are insignificant. When transaction size increases, 
the effect of lock conflicts becomes significant. The mean 
MPL and throughput decrease with transaction size. Up to 
medium size -transactions; the performance- degradation is 
mainly due to lock conflicts since the increase of 
residence time is mainly due to the increase of blocking 
time. For very large transactions, the mean MPL is 
independent of the number of Activated transactions (V). 
The residence time at the Lock-Wait Queue increases 
rapidly with transaction size as shown in Figure 4-2.b - to 
the extent that there is a drop in mean MPL, which also 
results in a drop in active residence time at the Computer 
System. The wasted time in this figure corresponds to the 
sum of active and blocked time spent in the system by 
transactions which were restarted. 

4.5. Number of Transactions 
The effect that the number of transactions (V) has on the 

system performance was discussed qualitatively in Section 
2.2, and it was noted that increasing V potentially results 
in an increase in the effective MPL. On the other hand, 
lock conflicts are more probable due to the fact that more 
locks are held by transactions. To investigate the effect of 
varying number of transactions quantitatively, we plot 
throughput versus V for different granularities of locking in 
Figure 4-3.a. In Figure 4-3.b we plot the throughput as a 
function of V for different transaction sizes. 

From Figure 4-3.a, it is observed that system throughput 
increases with V for fine granularity of locking (V~ 10 and 
N=256, 512, 1024) for small transactions. On the other 
hand a degradation in performance is observed for coarse 
granularity of locking, which is attributable to excessive 
lock conflicts. 

It follows from Figure 4-3.b that increasing V initially 
results in an increase in throughput. On the other hand, 
for large transactions (n >8) a point of diminishing returns 
is soon reached and performance actually degrades. This 
is because of the increase of lock conflicts, such that the 
mean MPL decreases with increasing V. This thrashing 
behavior phenomenon due to lock conflicts was also 
observed in [15, 18]. 

Degradation in performance is possible in transaction 
processing systems with very high MPL's even for fine 
granularities of locking, as can be observed in'Figure 4-3 
for large V. It should be noted, however, that the 



40 Throughput - -. H-1024 __ -

--. H-S!l- - - -,..... -
~--

~ __ --!!:ZS6 

20 ~..,...- -----
15 ,, __ -----_~-_ 

--_..:j!-128 
10r~-- ---------------
5 

o ----~--
2 7 

a. Throughput 

8OrrOUghPU~ ___________________ _ 

70r 
&at 
5Q[ 

.of _-~~-----------;I~ 
30 _ •• -

20 /-,."'--- I 
,., I 

10 - - - - ...!!!!6 i ob"" - ,- 1=-_~32 ,- -,-
2 7 12 17 22 

Number of Transactions 

b. Throughput 

Figure 4-3: Performance measures vs number 
of transactions. 

pr.obability of lock conflict per transaction is proportional 
to V-1 and the second power of transaction size(n) [5]. 
Therefore the combination of high V and nhas the 
potential of inducing thrashing and W can be used for 
congestion control in this case. 

4.6. The No-Waiting Policy 
At this point we consider the no-:waiting policy, 

according ito which a transaction is restarted whenever 
there is a lock conflict. The no-waiting policy obviates 
the need. to check for deadlock, since there are no blocked 
transactions. On the other hand, the processing attained 
by a transaction is lost when it is restarted. 

In Table 4-4 we show the transaction throughput versus 
the number of transactions (V) for different transaction 
sizes for the waiting (our original model) and the no
waiting policy considered in [15], where a transaction 
'encountering a lock conflict is replaced by a new 
transaction (resamplingoflocks). It can be observed that 
the performance of the no-waiting policy is inferior to the 
waiting policy with the exception of small transactions. 
This can be ascribed to the fact that the analysis in 
[15] considers transaction processing in a system with no 

hardware contention. A more detailed analysis of the no
waiting 'case appears in [12]. 

5. Conclusion 
Two' methods based on decomposition and iteration were 

,proposed in this paper for analyzing the performance of a 

705 

+---------------------------------------------+ 
I n I Case I V=5 I V=10 I V=15 I V=20 I 
1---+---------+-------+-------+-------+-------1 
I 2 I Waiting 189.06 I 131.0 I 155.3 I 156.2 I 
I I No Wait I 89.05 1130.8 I 154.8 I 154.3 I 
1---+---------+-------+-------+-------+-------1 
14 I,Waltlng 144.09 I 64.59 I 76.43 I 78.11 I 
I I No Wait, I 44.02 I 63.73 I 76.43 I 78.11 I 
1---+---------+-------+-------+-------+-------1 
18 I Waiting I 21.23 I 30.53 I 35.49 I 38.33 I 
I I No Wait I 21.01 I 28.72 I 31.68 I 29.46 I 
1---+---------+-------+-------+-------+-------1 
116 I Waiting 19.163 I 11.15 I 10.80 I 9.462 I 
I I No Wait I 8.758 I 9.761 I 8.982 I 7.108 I 
1---+---------+-------+-------+-------+-------1 
132 I Waiting 12.530 I 1.846 I 1.251 I 0.838 I 
I INo Wait I 2.328 I 1.531 I 0.975 I 0.690 I 
+---------------------------------------------+ 

Table 4-4: Throughputs for Waiting and 
No-Waiting cases. 

centralized database with' dynamiC locking scheme. The 
iterative solution method was introduced to reduce the 
computational cost of the decomposition method by 
estimating the mean' number of eligible transactions, rather 
than their distribution (as obtained by the decomposition 
method). Simulation was used to validate both methods, 
which were shown to. be of adequate accuracy except for 
systems with excessive data contention. 

We also investigated the effect of varying system 
parameters on system performance. Our conclusions 
generally concur with those of other researchers. The 
same framework can also be used to study the effect of 
exclusive/shared locks, update/readonly transactions 
[11] and to compare the performance of concurrency 

,control schemes based on locking, 'optimistic concurrency 

control, and timestamp ordering [13]. 

The main contribution of this paper is the methodology 
developed for the probabilistic analysis of lock 
conflict/deadlock probabilities. ,These are then used to 
compute transaction routing and transition' probabilities for 
the embedded Markov chain. An advantage of the 

hierarchical solution method is that -the probabilities for 
the Data Contention Model can be obtained by means of 
simulation (trace or random number driven). 

I. Analysis of the Data Contention Model 
This appendix is concerned with computing the transition 

probabilities among the states of the Markov chain model 
for the Transaction Throughput Model (Level 2) as 

. explained in Section 3.2. and the lock conflict probability 
for the Hardware . Contention Model. The reader is 
forewarned that the derivations are carried out in a top
down manner, such that parameters used in earlier 
derivations are -themselves derived later. .Also note that 
the parameter V is elided, since it remains. fixed in the 

following derivations. 

The transition probability P tran{J,IIV) depends on whether 

the c.ompleted elementary transaction belongs to a 
transaction holding k-' locks and its routing probabilities: 
P a{k) {successful lock request}, P c{k) {blocking}, Pt(k) 



{completion}, and Pr(k) {deadlock}. These probabilities are 

computed in (21), (24), (20), and (22), respectively. 

Defining Ptr(J,llk) as the probability that transition occurs 

from S J to SI when an elementary -transaction holding k-1 
locks is completed, we have: 

f
C(k) for I=J-l 

Ptr(J,Ilk)= Pa(k)+Pt(k)Pta(J,Ilk) for I=J 

Pt(k)Pta(J,Ilk)+Pr(k)Pra(J,Ilk) 

for I>J 

(18) 

where Pta(J,llk) (resp. Pra(J,llk) is the probability that I-J 

blocked transactions are unblocked when a transaction 
holding k-1 locks teminates (resp. is restarted after 
releasing its locks). These probabilities are derived in (33) 
and (34), respectively. The unconditional transition 
probability from S J toSI is: 

L+l 
Ptran(J,IIV) = I Ptr(J,Ilk) Pi(k) 

k=l 
(19) 

where Pj(k) is the probability that the completing 

elementary transaction holds has k-1 locks and is obtained 
in (25) and (26). 

The routing probabilities (P a(JIV), P c(JIV), P r(JIV), and 

Pt(JIV» are then computed by unconditioning on k using 

Pj(k) from P a(k), P c(k), P r(k), and P t(k). 

When all transactions access a fixed number of data 
items: n, Pt(k) is given by: 

Pt(k) = L (20) 

I Pm(k-1In) 
h=k 

where Pm(kln) ·is the distribution of number of locks 

requested by a transaction requesting n locks and was 
given by equation 1 in Section 2.1. Defining Pal (k) as the 

probability that k'th lock request is successful (which is 
derived in equation (35», the probability of lock acquisition 
P a(k) can be obtained as: 

(21) 

The probability of deadlock P r(k) is then: 

Pr(k) = (l-Pt(k)-Pa (k» Pr l(k) (22) 

where P rl(k) is the probability that a conflict at k'th lock 

request causes a deadlock and is represented by the sum 
of probabilities of deadlocks with different cycle lengths: 

V-J+l 
Pr1 (k) = I Prr(clk) (23) 

c=2 

where Prr(clk) is the probability of deadlock with cycle 

length c at a conflicting k'th lock request and is derived in 
equation (37). 

706 

The probability of blocking P c(k) is simply the 

complement of the other routing probabilities as follows: 

(24) 

Pj(k), the probability that an elementary transaction holds 
k-1 locks, is computed as follows: 

Pi(k) (25) i
lIA for 1~k~2 

k-l 
llA IT (l-Pt (h)-Pr (h» for 2~k 

h=2 
where where A is the normalization constant. When there 
are no transaction restarts due to deadlocks (or the 
fraction of such transactions is negligible) in the finest 
granularity of locking, then all transactions request exactly 
n locks, and: 

1 
Pi (k) = n+l (26) 

which means that the number of locks held by elementary 
transactions is distributed uniformly over [O,n]. 

The mean number of locks held by an Eligible (resp. 
Blocked) transaction is denoted by Le (resp. Lb). We have: 

L+l 

Le = I 
k=l 
L+l 

Lb = I 
k=l 

(27) 

(28) 

For finest granularity of locking with small transactions 
and low data contention: 

L n 
Le ~ - - (29) 

2 2 

(L-1) (n-l) 
(30) Lb ~ :=: 

2 2 

This was observed in simulation studies [11] and can 
also be argued intuitively [5]. This estimates given by 
equation (29) and (30) were used with fine granularity 
locking, in which case equation (27) and (28) confirm the 
initial estimate. In the case of medium granularity of 
locking an initial estimate for Le and Lb was chosen and 

iteration was used to improve the initial estimate. The 
iteration was carried out from equations (21) through (28) 
until Le and Lb converge. 

To derive Pta(J,llk) {resp. P ra(J,llk)} used in equation (18), 

we first compute P at(llb,J,k) {resp. P ar(llb,J,k)} as the 

probability that I-J of b blocked transactions are 
unblocked from the Lock-Wait queue when k-1 locks are 
released due to completions {resp. restarts}. P at(llb,J,n) 

and P ar(llb,J,n) are then computed by the following 

recursion for l~b~V-J, J~I~min(V,J+k-1): 



Pat{Ilb,J,k) =Pat{Ilb-1,J,k){1-Po(I-Jlk» 
+Pat{I-1Ib-1,J,k)Po(I-J-1Ik) 

Par{Ilb,J,k)=Par{Ilb-1,J,k)(1-Po(I-J-1Ik-1» 
+Par (I-1Ib-1,J,k)Po(I-J-2Ik-1) 

with the initial condition of 

Pat(Ilb,J,k) = [~ for I=J and b=O 
otherwise 

Par (I I b,J ,k) = [~ for I=J+1 and b=1 
otherwise 

(32) 

where P o(qlk) is the probability that a blocked transaction 

following q transactions is unblocked when k-1 locks are 
released and is computed from (41). The second 
initialization is different from the first one since at least 
one blocked transaction is unblocked upon the restart of a 
transaction. Since we have V-J blocked transactions in 
the Lock-Wait Queue, then probabilities Pta(J,llk) and 

Pra(J,llk) become: 

(33) 

(34) 

We now proceed to compute the basic probabilities: 
P a' (k), Prr(clk), and P o(qlk) when lock requests are mutually 
exclusive, independent and uniformly distributed over the 
N locks. The key assumptions in our analysis is that (i) an 
outstanding lock request by a transaction is conflicting 
equally probably with all busy locks held by other 
t.ransactions. and (ii) eligible (resp. blocked) transactions 
hold Le (resp. Lb) locks. P al(k), the probability that the k'th 

lock request is successful, is obtained by: 

(35) 

where the ratio is the number of locks taken by other 

transactions divided by the total number of available locks. 

We now proceed to derive Prr(clk), the probability that a 

transaction requesting k'th conflicting lock causes a 
deadlock of cycle c. Consider a deadlock involving three 
transactions T" T2, and T3 (c=3), where T, is the 
transaction requesting a conflicting lock. A deadlock cycle 
of length three is made, i.e., T,+T2+T3+T" where Tj+Tj 

denotes that Tj is blocked by Tj . P rr(3Ik) is then computed 

by the product of Prob[T,+T2], Prob[T2+T3 I T,+T2]' 

Prob[T3+T, I T,+T2+T3], and the number of choices to 

choose T 2 and T 3 among blocked transactions. Note that 

Prob[T3+T, I T,+T2+T3] is not equal to Prob[T3+T,]. T3+T2 

and T 2+ T 3 can not happen simultaneously since all 

deadlocks have been resolved before T, makes a lock 

request. 

707 

Defining P w,(k), P w2(kli), and P w3(kli) as follows: 

P w,(k) = Prob[A transaction requesting k'th lock is blocked 

by a specific blocked transaction I Lock conflict 
occurred]. 

P w2(kli) = Prob[A blocked transaction. waits for an eligible 

transaction which holds k-1 locks I It does not 
wait for the i other blocked transactions.] 

P w3(kli) = Prob[A blocked transaction is blocked by a 

specific blocked transaction I It does not wait for 
the i other blocked transactions.] 

Prob[T,+T2] becomes Pw,(k), Prob[T2+T3 I T,+T21 becomes 

P w3(kIO), and Prob[T 3+T, I T,+T 2+T3] becomes P w2(kI1). 
The number of ways to choose T 2 and T 3 from V-J 

transactions is obtained by (V-J)"{V-J-1). Hence the 
probability of deadlock involving three transactions when a 
transaction makes its k'th conflicting lock request is 
represented as follows: 

The probability of deadlock involving m transactions at k'th. 
conflicting lock request in general is obtained for 
2~m~V-J+1 by: 

m-2 
Prr{mlk)=Pw1(k)Pw2{klm-2) IT {(V-J-i)Pw3(kli)} (37) 

i=O 

P w,(k) is obtained from the mean number of locks held 
by other transactions as follows: 

Lb 
Pw1 {k) = -----

Le(J-1)+Lb (V-J) 

Then P w2(kli) and P w3(kji) are then obtained by: 

k-1 Pw2 (kli) = ---------
Le{J-1)+Lb{V-J-i-1)+k-1 

Lb 
Pw3{kli) = 

Le (J-1)+Lb(V-J-i-1)+k-1 

(38) 

(39) 

(40) 

Finally P o(qlk),the probability that a transaction is 

unblocked following q transactions when k-1 locks are 
released, is computed as follows: 

k-1-q 
Po(q Ik) ;: for q<k 1 (41) 

(J-1)Le+{V-J-1)Lb+k-1 -



References 

1. Carey, M. Modeling and evaluation of 
database concurrency control algorithms. 
Ph.D. Th., University of California, Berkeley, September 
1983. 

2. Chesnais, A, Gelenbe, E., and Mitrani, I. "On the 
modeling of parallel access to shared data." Comm. ACM 
26,3 (March 1983), 196-202. 

3. Courtois, P.J .. Decomposabil ity: Queueing and 
Computer System Applications. Academic Press, 
1977. 

4. Date, C.J.. An Introduct ion to Da tabase 
Systems, Vol. II. Addison-Wesley, 1983. 

5. Gray, J. N., Homan, R., Obermack, R., and Korth, H. A 
straw-man analysis of waiting and deadlock. Tech. Rept. 
IBM Research Center Report RJ 3066, February, 1981. 
Also in Proc. 5th Berkeley Workshop on Distributed Data 
Management and Computer Networks, 1981. 

6. Irani, K.B. and lin, H.L. Queueing network models for 
concurrent transaction processing in a database system. 
Proc. ACM SIGMOD Conf. on Management of Data, ACM, 
Boston, Mass., June, 1978, pp. 134-142. 

7. Lavenberg, S.S. (Ed.). Computer Performance 
Modeling Handbook. Academic Press, 1983. 

8. Lin, W.T.K. and Nolte, J. Communication delay and two 
phase locking. Proc. 3rd Int'l Conf. on Distributed 
Computing systems, IEEE, Miami, Florida, October, 1982, pp. 
502-507. 

9. Ries, D.R. and Stonebraker, M.R. "Locking granularity 
revisited." ACM Trans. Database Systems 4, 2 
(June 1979), 210-227. 

10. Ryu, I.K. and Thomasian, A. Analysis of database 
performance with dynamic locking. Tech. Rept. RC 11428, 
IBM Research Report, October, 1985. 

11. Ryu,I.K. Performace evaluation of 
concurrency control in database systems. 
Ph.D. Th., Dept EE-Systems, University of Southern 
California, 1985. 

708 

12. Ryu, I.K. and Thomasian, A Performance study of a 
centralized DBMS with dynamic locking using no-waiting 
policy. Submitted for publication. 

13. Ryu, I.K. and Thomasian, A Performance comparison 
of concurrency control schemes for centralized DBMS. 
Submitted for publication. 

14. Shum, AW. and Spirakis, P.G. Performance analysis of 
concuurency control methods in database systems. In 
Performance 81, Kylstra, F.J., Ed.,North-Holand, 1981, 

pp. 1-19. 

15. Tay, V.C. A mean value performance model for 
locking in databases. Tech. Rept. TR-04-84, Harvard 

University, 1984. 

16. Tay, V.C., Suri, R., and Goodman, N. "A mean value 
performance model for locking in databases." Journal 
ACM 32, 3 (July 1985), 618-651. 

17. Tay, V.C., Goodman, N., and Suri, R. "Locking 
performance in centralized databases." ACM Trans. 
Database Systems 10,4 (December 1985),415-462. 

18. Thomasian, A An iterative solution to the queueing 
network model of a DBMS with dynamic locking. Proc. 
13th Computer Measurement Group Conf., San Diego, CA, 
December, 1982, pp. 252-261. 

19. Thomasian, A. and Ryu, I. K. A decomposion solution 
to the queueing network model of the centralized DBMS 
with static locking. Proc. ACM Conf. on Measurement and 
Modeling of Computer Systems, ACM, Minneapolis, MN, 

August, 1983, pp. 82-92. 

20. Thomasian, A. "Performance evaluation of centralized 
databases with static locking." IEEE Trans. 
Software Engineering II, 2 (April 1985), 346-355. 



A Graphical Interface for Specification of 
Extended Queueing Network Models 

J. B. Sinclair 
S. Madala 

Department of Electrical and Computer Engineering 
Rice University 

Houston"Texas 77251-1892 

ABSTRACT 

GUIDE is a graphical user interface to a performance evalua
tion tool based on extended queueing network models. The inter
face allows a user to specify the structure of a model by creating a 
graphical representation of the objects in the model and their inter
connections. Additional information about the specific objects 
and/or the model as a whole is input through a set of dialog win
dows that adapt to the specific context and prior information entered 
by the user. This enforces the creation of complete models that are 
syntactically correct. We briefly describe the implementation of 
GUIDE and its modeling capabilities, and illustrate its usage 
through a small example. 

1. Introduction 

GUIDE (the Graphical User Interface and Dialog Editor) is a 
tool for constructing extended queueing network models. It is part 
of a simulation-based modeling and performance evaluation pack
age called GIST developed at Rice. [1] In designing GUIDE (and 
GIST), we had several objectives: 

(1) The interface should be easy to learn and simple to use. 

(2) It must be powerful in its descriptive capabilities, to allow 
very complex systems to be modeled. 

(3) Users should not be able to create a syntactically incorrect 
model specification. 

(4) The user should be able to easily specify large models 
(dozens or even hundreds of components). 

(5) The interface should be flexible in allowing the user free
dom to construct a model with as few restrictions as 
possible, other than syntax enforcement. 

(6) The interface implementation hardware should be inexpen
sive to make its use practical in an educational 
environment. 

In this paper, we discuss both the implementation and use of 
GUIDE. We also describe some proposed extensions to the current 
implementation that will improve its utility and bring us closer to 
achieving these objectives. 

2. Background 

Queueing models (QN's) and extended queueing models 
(EQN's) can be specified in several ways. The most primitive way 
is to describe them in a conventional programming language such as 
FORTRAN, C, or PASCAL. This approach offers complete gen
erality but, in the case of simulation, requires that the programmer 
also construct the mechanism for the execution of the simulation 

CH2345-7j86jOOOOj0709$01.00© 1986 IEEE 
709 

model. To avoid this we can use a simulation language, which is 
often an extension of a conventional programming language that 
provides high-level modeling constructs and a run-time environ
ment for model execution. [2,3,4,5,6] 

An alternative to this "language-oriented" approach, and the 
approach chosen for GIST, is to use an interface tailored to the 
specification of EQN's. In this "transaction-oriented" approach, the 
interface deals with the model at the same level of abstraction as the 
user. Examples of this approach include RESQ, [7] QNA, [8] 
QNAP2, [9] XL, [10] SNAP, [11] SuperNet, [12] PANACEA, [13] 
PERFORMS, [14] BEST/I, [15] COPE, [16] PAWS, [17] PLANS, 
[18] NUMAS, [19] the Performance Analysis Workstation, [20] and 
STEP-I. [21] There are several advantages to a transaction-oriented 
approach. Since the tool allows the user to describe the model 
directly in terms of the abstractions used to construct the model, it is 
easier to learn and to use the specification tool. It is also easier to 
insure that the specification matches the model. Some types of 
errors are avoided completely or can be detected at model 
specification time. A major advantage is that the model 
specifications are easier to understand and to modify. 

In most cases the user of one of these performance tools 
interacts with the tool through a textual interface, but graphics inter
faces have been proposed or implemented for at least four of them: 
PAWS, [22] RESQ, [23] the Performance Analysis Workstation, 
and NUMAS. 

3. Description of GIST 

GIST allows specifications of EQN models through a graphi
calor a textual interface and produces executable images to simu
late a model of the system under consideration. The EQN models 
are specified as a network of high level objects drawn from a set of 
object types. GIST is based on CSIM, a subroutine package that 
provides runtime support environment for discrete event simulation. 
[24] The major parts of GIST are two distinct user interfaces that 
accept specifications from the user, a translator that generates CSIM 
source code, and a library of object routines written in CSIM to 
model the various object types (Fig. 1). 

3.1. User Interfaces 

The two interfaces have similar modeling capabilities, but one 
is graphics-oriented (GUIDE) while the other (TIDE) is intended for 
use on terminals without graphics. 

3.1.1. GUIDE 

A natural way to specify many aspects of an EQN model is 
graphical. GUIDE allows users to assemble EQNs from elements of 
a set of icons representing the various object types, interconnected 
by routing paths. Users can define or edit object specific parameters 
through the use of "dialog" windows. 



GUIDE was implemented on a SI2K Macintosh personal com
puter because the window environment, mouse input, and pull down 
menus provided a friendly, easy-to-learn, easy-to-use interface and 
the software tool base made the prototype development much 
simpler. Also, a Macintosh is a relatively inexpensive graphics 
workstation. GUIDE runs standalone; no host computer is needed 
during the specification process. This reduces the load on the main
frame that executes the simulation model. The output of GUIDE is 
a file containing the EQN model specifications. The file is 
transferred to the host for processing by the translator. 

3.1.2. TIDE 

The Textual Interface and Dialog Editor (TIDE) is provided 
as an alternative when a Macintosh is unavailable. [25] It runs on a 
Unix-based system and is intended to be used with a VT100 or 
equivalent terminal. It uses the CURSES windowing library rou
tines for efficient screen management 

The user is guided through a series of hierarchically structured 
menus. A unique feature of this interface is that, unlike the dialog 
interfaces for some performance evaluation tools such as RESQ, 
interaction is menu-driven and conducted via overlapping "win
dows" on the screen. This helps the user maintain a sense of per
spective of the current context of the specification process. The out
put of TIDE is again a specifications file to be processed by the 
translator. 

3.2. Translator 

The translator is the link between the user interface and the 
object routines. Its input is the specifications file created by the user 
interface and its output includes CSIM source code (see below). 
The translator produces as output the following files: a main file, a 
definitions file, a "make" file and optionally a report file. The main 
file contains code for initialization and calls to the appropriate 
object routines. The definitions file contains declarations of special 
CSIM constructs. The "make" file is provided to simplify the task 
of creating the final executable image. The report file contains a 
user-readable summary of the EQN model. A parser, generated 
using the Unix facilities lex and yacc, is used for parsing the user
specified conditions. 

3.3. CSIM 

CSIM is a subroutine package, written in C, that providesla 
runtime support environment for discrete event simulation. It is 
based on the process interaction approach, in which related sets of 
events are combined into a single process. A simulation 
specification in CSIM consists of a set of procedures, one for each 
type of process, and declarations of instances of special constructs 
such as conditions, semaphores, and state variables. CSIM provides 
routines to manipulate both processes and these special constructs. 

4. GIST Objects 

One of the approaches used in attempting to meet the goal of 
providing GIST users with a high-level model specification capabil
ity is the implementation of a set of object types that can be used for 
realistic and detailed representation of relevant propelties of sys
tems of interest. An EQN model can be built from a number of 
objects, each object of a predefined object type. The object types in 
a GIST model are briefly described below. 

710 

SOURCE: 

SINK: 

AUOCATE: 

Jobs of a specific jobclass are created at a 
SOURCE object. The creation of a job may be 
condition-dependent, or jobs may be created at 
intervals determined by an inter-generation time 
distribution. 

Jobs arriving at a SINK object are removed from 
the network. 

An ALLOCATE object assigns units of a specific 
resource to the visiting jobs that request it. Jobs 
request resources in integer amounts according to 
jobclass-dependent distributions. Sometimes, a 
request from a job cannot be satisfied immediately 
due to an insufficiency of the resource. In that 
case, the job is delayed until its request is met in 
accordance with an allocation policy that is fol
lowed at the object. 

DEALWCATE: At a DEALLOCATE object, all the units of a 
specific resource held by visiting jobs are 
reclaimed and returned to the pool of available 
resources. 

DESTROY: 

FORK: 

JOIN: 

PROBE: 

SWITCH: 

When jobs visit a CREATE object, an integer 
amount of a particular resource is produced. The 
amount of resource created is in accordance with a 
jobclass-independent distribution. 

At a DESTROY object, all the units of a specific 
resource held by visiting jobs are removed, but 
they are not returned to the pool of available 
resources. 

A FORK object creates a new job when a job of a 
specific jobclass visits it. The new job is defined 
to be either a child job or a peer job in relation to 
the visiting job. The created job can have a job
class different from that of the visiting (creator) 
job. 

When a job that has a parent or child relationship 
with any other job reaches a JOIN object, it waits 
there until its child or parent reaches there. When 
the two meet, the child job terminates and the 
parent job continues through the network. When 
a job has more than one child jobs in the network, 
it waits at a JOIN object for the arrival there of its 
most recent unterminated child job. Jobs that 
have no child jobs or parent jobs are unaffected by 
a visit to a JOIN object and are not delayed there. 

A PROBE object collects user-specified statistics 
from the visiting jobs. The jobs themselves are 
unaffected by visit to a PROBE object. 

SWITCH objects perform job routing. The rout
ing decision made at a SWITCH object can be 
based on a condition-evaluation, stochastic selec
tion, or a static, jobclass-based routing 
specification. A SWITCH object does not delay 
the jobs that visit it. 



QUEUE, 

SERVER: 

QSERVER: 

The two functions, queuing and service, of a 
QUEUE object in a QN model can be performed 
separately by QUEUE and SERVER objects in a 
GIST EQN model. QUEUE objects perform only 
the queuing function (without service). Jobs join
ing a QUEUE object wait there while service is 
unavailable. Jobs at a QUEUE object conform to 
that object's queuing discipline, a policy which 
determines the order in which jobs become eligi
ble to leave the object The next job eligible to 
leave is said to be at the head of the QUEUE. 

A QSERVER object in an EQN model is 
equivalent to a QUEUE object in a QN model. It 
is an object where both the queuing and service 
functions are performed. It is computationally 
more efficient to use a QSERVER if the general
ity provided by separate QUEUE and SERVER 
objects is not required in an EQN model. 

We will use the term QUEUE to refer to the EQN model 
object. If the discussion concerns a QUEUE object type as in a QN 
model, we make the context explicit. 

s. Implementation of GUIDE 

EQN models are characterized by a network of objects and 
their interconnections. An analyst almost always draw a pictorial 
representation of an EQN model before actually specifying it to a 
typical modeling tool. Such representations or block diagrams are 
much more readable than textual information accepted by EQN 
modeling tools. Then the analyst in effect manually translates the 
graphical representation, augmenting it with additional information, 
into a form recognized by a modeling tool or programming 
language. The translation process is time consuming and is a poten
tial source of errors. An obvious way to bypass this step is to pro
vide the user with an interface that directly accepts graphical 
specifications. However, certain information associated with EQNs 
is necessarily specified textually. Examples of such information 
include the attributes of each object such as parameters of probabil
ity distributions, names of objects, and initial conditions. The 
graphical interface shields the user from implementation details and 
minimizes the possibility of errors during the specification process. 
It lets the user concentrate on the model specification rather than on 
the tool itself. 

GUIDE is written in the C language, using the Stanford 
University Mac C (sumacc) development software. [26] It is tailored 
to the Macintosh and presently is not portable to other 
computers/graphics terminals. Users familiar with some typical 
Macintosh application programs can" learn to use GUIDE in a few 
minutes. Provision has been made to give on-line help about the 
various objects of GIST and about GUIDE itself, but at present this 
feature is unimplemented. 

The minimum hardware requirements for the graphical inter
face are a high resolution display, sufficient memory to specify 
large models, and a graphical input device such as a mouse, track
ball or digitizing pad along with a keyboard. Several workstations 
and personal computers satisfy the above requirements. We chose 
the Macintosh computer primarily because it was the least expen
sive system which meets these minimum requirements, and is more 
widely available at Rice than more sophisticated (and more expen
sive) workstations. Moreover, the Macintosh has an excellent 
library of graphics routines and a well defined standard user 

711 

interface that reduced our implementation effort considerably. 

The software for GUIDE can be divided into two parts, the 
graphical input package and a set of specification routines. The 
input package allows the user to create a graphical representation of 
the network topology, i.e., the objects and their interconnections. It 
also handles all generic system functions such as saving partial or 
complete specification files, and opening existing files. The 
specification routines allow the object-dependent data to be entered 
in windows tailored to each object type. These routines have been 
implemented in a modular fashion, making it easy to modify exist
ing object types or add new object types. 

GUIDE presents the user with a set of menus, a working win
dow and an options window (Fig. 2). The working window is the 
region of the screen displaying the part of the larger work area in 
which the user is currently creating the model. The work area can 
be scrolled horizontally and vertically in the working window to aid 
in specifying large models. The options window contains graphical 
representations (icons) for each object type available in GIST, as 
well as an interconnect option. The icons for the object types are 
given in Fig. 3. 

There are seven pull down menus: 1) the apple menu, 2) the 
file menu, 3) the edit menu, 4) the help menu, 5) the specify menu, 
6) the transfer menu, and 7) the debug menu. Moving the cursor 
over any menu item and pressing the mouse button results in the 
display of a set of items grouped under this menu. Any item within 
the menu can then be selected by moving the cursor over it and 
releasing the mouse button. The apple menu is common to most 
Macintosh application programs. The transfer and debug menus 
will not appear in future implementations of GUIDE and will not be 
discussed. 

The file menu lets a user invoke the following functions: open 
a new file, open an existing file, close the current file, save the 
current specifications in a file, save the current specifications in a 
different file, revert back to the last saved version of the 
specifications, check for partial correctness of specifications, and 
quit the program. 

The edit menu allows a user to delete objects or interconnec
tions. Other items in this menu are the standard cut, copy and paste 
items found in other Macintosh applications. These items at present 
work only with concurrent mini-applications (Desk Accessories) 
that are invoked via the apple menu. 

The help menu is used to invoke on-line help. Currently this 
feature is not implemented. 

The specify menu lets users specify initial jobs, runtime 
parameters, and initial quantities of passive resources. In addition, 
it lets user view information about job classes and objects. 

6. Example of the Use of GUIDE 

We shall now illustrate the usage of GUIDE through a small 
example. Consider a computer system which services jobs of two 
different classes, batch and interactive. Batch jobs arrive from the 
external world, receive service from the system, and depart. 
Interactive jobs continually circulate in the system between termi
nals and the CPU. Both classes of jobs contend for primary 
memory before they receive service and release the memory alloca
tion after service. The system consists of two processors, a "fast" 
cpu and a "slow" cpu. In the interest of high throughput the batch 
jobs are processed on the fast cpu, while the interactive jobs are pro
cessed on both processors, pre-empting the batch jobs whenever 
necessary to reduce response time. 

This system can be modeled using the GIST object t'jpes 
SOURCE, SINK, ALLOC, DEALLOC, QUEUE, SERVER, 



SWITCH and PROBE. The SOURCE and SINK objects model 
arrival and departure of batch jobs, the ALLOC and DEALLOC 
objects model acquisition and release of primary memory by both 
classes of jobs, the QUEUE and SERVER objects model the wait
ing jobs and the two processors, and the SWITCH object models job 
routing. 

The model might be specified using GUIDE as follows. Posi
tioning the cursor over an icon in the options window and pressing 
the mouse button selects and highlights the icon by inverting it. We 
now can specify a new"object of the selected type by moving the 
cursor into the working window without releasing the mouse button 
(Fig. 4). During this "dragging" process an outline of a box enclos
ing the icon follows the cursor movement. 

After some or all of the required objects have been dragged 
into the worying window we can specify the interconnections 
between them ,using the interconnect option in the options window. 
The cursor changes shape to a cross to keep the user aware of this 
option. To interconnect two objects we click first on the source icon 
and then on the destination icon. The source icon represents the 
object from which jobs depart and, the destination icon represents 
the object to which jobs are routed. In Fig. 5 the source icon and 
the destination icon represent the 'SOURCE type object and the 
ALLOC type object, respectively. During this process an "elastic" 
line anchored at the source object tracks the motion of the cursor. 
Interconnections with more than one line segment can also be 
specified by clicking in succession on the source icon, intermediate 
points that define the line segments, and the destination icon. The 
completed EQN model diagram for the example appears in Fig. 6. 

Object type specifications for an object can be entered at any 
time after the icon for the object has been placed in the working 
window. Clicking twice in succession (double clicking) on an icon 
brings up a "dialog", window specific, to the object type represented 
by that icon. These windows contain boxes to accept object names, 
items that permit selection among a number of alternatives, items 
that accept yes/no options and items that start immediate actions. 

As an example, double clicking on the SOURCE icon in Fig. 6 
brings up the SOURCE specification dialog window in Fig. 7. This 
window contains text boxes to accept the name of the object, the 
class of jobs ,to be generated by this SOURCE and initially boxes 
for distribution parameters. The interface is designed to hide as 
much irrelevant detail as is possible from the user. If the condi
tional generation option is chosen, the distribution related items 
disappear and a text box to accept a condition appears in their place. 

Other items in the dialog window allow the user to specify the 
statistics that can be collected at this SOURCE. Clicking on the OK 
button confirms the specifications for the object. This closes the 
dialog window and takes the user back to the working window. 
Alternatively, clicking on the Cancel button undoes all changes 
made to this object's specification and returns the user to the work
ing window. This undo feature is available in all object 
specification dialog windows. 

A noteworthy feature of the interface is that the dialog win
dows adapt, to different interconnections in the model being 
specified. For example, the appearance of the QUEUE specification 
dialog window depends upon the number of SERVER type objects 
to which the QUEUE type object is connected. The dialog window 
for the upper QUEUE of Fig. 6. ("Interact queue"), which is con
nected to two SERVER type objects, is shown in Fig. 8 and differs 
from the dialog window for the lower QUEUE' ("Batch queue") 
shown in Fig. 9, in that it has additional items for specifying server 
selection. Clicking on the "Edit" button brings up another dialog 
window (Fig. 10) for the specification of "server selection. GUIDE's 
context-dependent syntax is again illustrated in the dialog windows 
for the two SERVER objects (Figs. 11 and 12). 

Modifying an already existing model specification is relatively 
easy with GUIDE. Objects and interconnections can 'be added or 
deleted at any time during the specification process. It is not neces
sary to have all the objects and interconnections ready before 
specification for some of the objects can begin. Some checking is 
done during additions and deletions so that internal data structures 
remain consistent at all times. Icons can be moved on the working 
,area at any time, even after they have been connected to other icons, 
and the connections will be maintained. Multiple-segment routing 
paths can be manipulated by moving the point at which any two 
segments join. 

Details which are not object-specific but are peninent to the 
model as a,whole, such as passive resources, run time parameters 
and initial jobs, can be specified in other dialog windows that are 
invoked by selecting items from the "Specify" menu. The Runtime 
parameters dialog window is shown in Fig. 13. 

When specification of the model is complete, it can be saved 
in a file and transmitted to the host computer for processing by the 
translator component of GIST. 

" 7. Summary and Discussion 

712 

GUIDE has only recently been,made available for general use. 
However, even our limited experience with it offers some basis for 
judging how well our objectives have been achieved. We believe 
that it is extremely easy to learn to use for anyone with an under
standing of extended queueing network models. The icons are simi
lar or identical to those found in the literature. Virtually all of the 
object types that are typically found in EQN models are supported 
by GUIDE and by GIST, although in some cases the semantics of 
the objects have been modified. These include objects for modeling 
active and passive resources, concurrency, and open networks. New 
object types (principally the QUEUE, SERVER, SWITCH, and 
PROBE objects) provide additional modeling capabilities andlor 
"make model specification easier. 

The. user cannot construct a complete model that is syntacti
cally incorrect. By complete we mean a model in which all object 
inputs and outputs are connected to other objects. At any point in 
the specification process, GUIDE requests and a user can only enter 
information that is appropriate for the context. Menus for entering 
object information adapt to user responses. 

Support for large models is' currently limited to tlle ability to 
scroll within a large virtual screen. This causes an undesirable 
,"peephole"effect, in that a user can only see a part of the model at 
one time. °The problem is made more severe by the small size of the 
working window, which in tum is due to the small screen size of the 
Macintosh computer. 

The user has a great deal of flexibility in creating and editing 
model specifications. Objects can be inserted into the model at any 
time. Information for an object can be entered when the object is 
inserted or later, and all of the information does not have to be 
entered at the same time. Icons and connections between icons can 
be deleted at any, time, and icons (even with connections) can be 
moved around in, the virtual workspace. The model specification 
can be saved for later additions andlor modification. 

The major deficiencies of GUIDE are in the area of large 
model specification. Currently, GUIDE has no concept of a submo
del, and hierarchically structured models are not possible. Scrolling 
is useful, but forcing the user to always see every part of the system 
at the same level of abstraction may result in an, amount of detail 
that confuses rather than clarifies the nature of the model and the 
interactions among its components. Also, each model must be com
pletely constructed from the set of GIST primitive objects. The user 
should be able to use previously specified models as higher level 



abstractions when constructing new models, and nesting of model 
definitions should be possible. The most important extension that 
we plan for GUIDE (and GIST) is the inclusion of single-input, 
single-output submodels. 

Another useful feature for modeling systems, especially large 
ones, is that of a replicated object. That is, a user should be able to 
declare an instance of an object and then specify that the object is to 
be replicated several times. For instance, in a.model of an interac
tive computer system, the set of all terminals/users could be 
modeled as a single replicated QSERVER. Enhancements to CSIM 
currently under way will make the task of implementing this feature 
easier and the result will be more efficient than it would be under 
the current CSIM implementation. 

Overall, GUIDE offers an interesting and efficient alternative 
to more traditional methods of extended queueing network 
specification. We are in the process of gaining experience with its 
use in both courses and research and we will use that experience to 
identify other enhancements that will increase its utility. 

References 

[1] lB. Sinclair, K.A. Doshi, and S. Madala, "GIST: The 
Graphical Input Simulation Tool," TR 8511, Department 
of Electrical and Computer Engineering; Rice University, 
Houston, TX 77251-1892, May 1985. 

[2] O.-J. Dahl and K. Nygaard, "SIMULA - An ALGOL-Based 
Simulation Language," CACM, Vo1.9, no.9, pp.671-678, 
September 1966. 

[3] A.A.B. Pritsker, The GASP IV Simulation Language. New 
York: Wiley, 1974. 

[4] P.J. Kiviat, R. Villanueva, and H.M. Markowitz, SIM~ 
SCRIPT 11.5 Programming Language. Los Angeles, CA: 
C.A.C.I., 1973. 

[5] G. Gordon, The Application ofGPSS V to Discrete Systems 
Simulation. Englewood Cliffs, NJ:Prentice-Hall, 1975. 

[6] A.A.B. Pritsker, Modeling and Analysis Using Q-GERT 
Networks. New York: Wiley, 1977. 

[7] C.H. Sauer, E.A. MacNair, and IF. Kurose, "The Research 
Queueing Package Version 2: Introduction and Examples," 
RA 138, IBM T.1. Watson Research Center, Yorktown 
Heights, NY, April 1982. 

[8] W. Whitt, "The Queueing Network Analyzer," BSTJ, 
Vo1.62, no.9, Part 1, pp. 2779-2815, November 1983. 

[9] M. Veran and D. Potier, "QNAP2: A Portable Environment 
for Queueing Systems Modelling," .Proc. International 
Conference on Modelling Techniques and Tools for Perfor
mance Analysis, Paris, May 1984. 

[10] A. Brandwajn, "Issues in Mainframe System Modelling -
Lessons from Model Development at Amdahl," Proc. 
International Conference on Modelling Techniques and 
Tools for Performance Analysis, Paris, May 1984. 

[11] M. Booyens; P.S. Kritzinger, A. Krzesinski, P. Teunissen, 
and S. van Wyk, "SNAP: An Analytic Multiclass Queueing 
Network Analyser," Proc. International Conference on 
Modelling Techniques and Tools for Performance Analysis, 
Paris, May 1984. 

713 

[12] 

[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 

[25] 

[26] 

S.C. Bruell, G. Balbo, S. Ghanta, and P.V. Afshari, "A 
Mean Value Analysis Based Package for the Solution of 
Product-Form Queueing Network Models," Proc. Interna
tional Conference on Modelling Techniques and Tools for 
Performance Analysis, Paris, May 1984. 

K.G. Ramakrishnan and D. Mitra, "An Overview of 
PANACEA, a Software Package for Analyzing Markovian 
Queueing Networks," BSTJ, Vo1.61, no. 10, Part I, 
pp. 2849-2872, December 1982. 

I. Kino and S. Morita, "PERFORMS - A Support System 
for Computer System Performance Evaluation," Proc. 
International Conference on Modelling Techniques and 
Tools for Performance Analysis, Paris, May 1984. 

1 Buzen, "BEST/l - Design of a Tool for Computer Sys
tem Capacity Planning," Proc. 1978 AFIPS National Com
puter Conference, Vo1.47, pp. 447-455, 1978. 

H. Beilner and 1. Maeter, "COPE: Past, Presence and 
Future," Proc. International Conference on Modelling 
Techniques and Tools for Performance Analysis, Paris, 
May 1984. 

"PAWS - Performance Analyst's Workbench System: 
INTRODUCfION AND TECHNICAL SUMMARY," 
Information Research Associates, Austin, TX, July 1983. 

T. Nishida, M. Murata, H. Miyahara, and K. Takashima, 
"PLANS: Modelling and Simulation System for LAN," 
Proc. International Conference on Modelling Techniques 
and Tools/or Performance Analysis, Paris, May 1984. 

B. Mueller, "NUMAS: A Tool for the Numerical Model
ling of Computer Systems," Proc. International Confer
ence on Modelling Techniques and Tools for Performance 
Analysis, Paris, May 1984. 

B. Melamed and R.1.T. Morris, "Visual Simulation: The 
Performance Analysis Workstation," Computer, Vo1.18, 
no.8, pp. 87-94, August 1985. 

A.K. Agrawala, S.K. Tripathi, M. Abrams, K.K. Ramak
rishnan, M. Singhal, and S.H. Son, "STEP-I: A User 
Friendly Performance Analysis Tool," Proc. International 
Conference on Modelling Techniques and Tools for Perfor
mance Analysis, Paris, May 1984. 

lC. Browne, D. Neuse, 1 Dutton, and K.-c. Yu, "Graphi
cal Programming. for Simulation of Computer Systems," 
Proc. 18th Annual Simulation Symposium, pp. 109-126, 
March 1985. 

A. Blum, E.A. MacNair, and C.H. Sauer, "The Research 
Queueing Package: Graphics Developments," RC 9513, 
IBM T.1. Watson Research Center, Yorktown Heights, 
NY, August 1982. 

R.G. Covington, "CSIM: An Efficient Implementation of a 
Discrete Event Simulator," M.S. Thesis, Department of 
Electrical and Computer Engineering, Rice University, 
Houston, TX 77251-1892, April 1985. 

K.A. Doshi, "Extended Queueing Network Modeling," 
M.S. Thesis, Department of Electrical and Computer 
Engineering, Rice University, Houston, TX 77251-1892, 
April 1985. 

S. Madala, "Design of a Graphical Input Simulation Tool 
for Extended Queueing Network Models," M.S. Thesis, 
Department of Electrical and Computer Engineering, Rice 
University, Houston, TX 77251-1892, April 1985. 



Graphical 
Interface 

DialoglMenu
driven Interface 

~--------~ 

~.--------~ 
Executable 
Simulation 

Model 

Report 
Generator 

Templates for 
Object procedures 

CSIM library 

Figure 1 Organization and components of GIST 

.. " file Edit Help S 

Figure 2 GUIDE windows 

714 



-TID QSERLIER 

ID QUEUE 0 SERLIER 

D SOURCE 4 SINK 

6 ALLOC V- DEALLOC 

& CREATE W DESTROY 

~ FORK 1>- JOIN 

4 SWITCU -<D- PROBE 

Figure 3 Object type icons 

r " File Edit Ilelp Specify Transfer Debug 

Figure 4 Dragging an icon into the working window 

r " File Edit Ilelp Specify Transfer Debug 

Figure 5 Specification of interconnections 

715 



" File Edit Help Spe 

H--+---I.I~ 

Figure 6 Complete Example 

" File Edit Help Transfer Debug 

Source Object 

Ilootch Source 

/notch closs 

@ Parometric 0 Conditional 

EHponential ( 0.100000 ) 

o Inter generation time 

o Number of jobs 

Figure 7 Source specification dialog window 

" File Edit Help Specify Transfer Debug 

Queue Object 

/Ilnteract queue 

@FCFS OlCFS 

o Priority 

Seruer selection 

~ Queue length 

~ Ulaiting time 

o lCFS PR 0 PS 

Figure 8 "Interact Queue" specification window 

716 



r C File Edit Help Speci 

Queue Object 

!IBatch Queue 

@FCFS OlCFS 

o Priority 

~ Queue length 

~ Waiting time 

o lCFS PR 0 PS 

Figure 9 "Batch queue" specification window 

r C File Edit Help Spe 

Seruer selection at a Queue 

Selection: o Probabilistic @ Priority based 

!Interact class , ~ IDelete] ~ 

''-1 ____ -'' ~ 
for Seruer: slow cpu 

Figure 10 Server selectiun at "lnter3ct queue" 

r C File Edit lIelp Specify Transfer Debug 

0- Seruer Object" 

Name !SIOW cpu 

@ EHponential 0 Unlfor-m 

Parameters L!I_"_O ____ ...J 

Statistics 0 Utilization 

o Number of jobs 

(cancel) ~ 

Figure I I "Slow cpu" specific3tion window 

717 



" File Edit Help Specify Transfer Debug 

Nome 

Distribution 

Semer Object 

I fast cpu 

@ £uponential 0 Uniform 

Parameters LI2_._0 ____ -' 

Queue Selection 0 Probabilistic @ Priority based 

InterQ pre-emption [8] 

Queue Name: Interact Queue 

Probabilit!.l 

Statistics [8] Utilization 

o Number of jobs 

Figure 12 "Fast cpu" specification window 

" File Edit lIelp 

Runtime pilrometers 

11000.000000 

D Debug 

o ELlent Trace 

Figure 13 Runtime parameters specification 

718 

II 



A Graphics-Oriented Modeler's 
Workstation Environment for the 

RESearch Queueing Package (RESQ) 

James F. Kurose 
Kurtiss J. Gordon 

Department of Computer and Information Science 
University of Massachusetts 

Amherst, Mass. 01003 

Robert F. Gordon 
Edward A. MacNair 

Peter D. Welch 

Computer Science Department 
IBM Hawthorne Research Laboratory 

Yorktown Heights, NY 10598 

ABSTRACT 

The development of computer programs for evaluating the per
formance of resource contention systems such as computer, com
munication and manufacturing systems, represents a significant 
software d:velopment effort. This effort can be very costly in 
terms of the work required to evaluate the results of these pro
grams and to build, verify, modify, and maintain the programs 
themselves. In the paper we discuss our current efforts on de
sign, development and implementation of an integrated, inter~c
tive, high-level, graphics-oriented environment for constructmg 
and evaluating extended queueing network performance models 
of resource contention systems. The RESQ modeling language 
provides the foundation for the capabilities provided by the envi

ronment. 

1. Introduction 

Evaluating the performance of resource contention systems 

such as computer, communication, and manufacturing systems 

is a critical and complex step in the design, planning and eval

uation process for such systems. Fortunately, the difficulty and 

complexity of this step can be considerably reduced by providing 

the performance analyst with an appropriate set of software tools 

to aid in the performance evaluation process. 

Traditionally, the notion of an "appropriate" software tool 

has meant a declarative language in which a performance model 

may be specified and then evaluated {either numerically or 

through simulation}. General purpose programming languages 

such as PASCAL or FORTRAN and general purpose simu

lation languages such as GPSS, SIMULA and SIMSCRIPT 

IThis work was partially supported by a grant from the International Busi

ness Machines Corporation. 

CH2345-7j86jOOOOj0719$01.00© 1986 IEEE 
719 

have often been used in the performance evaluation process. 

More recently, special-purpose modeling languages such as RESQ 

[Saue82] [Saue84], PAWS [IRA8l] and STEP-l [Trip84] have been 

developed. The languages in this latter group provide the modeler 

with a rich set of programming constructs or "modeling elements" 

which can be easily used to specify the objects and actions actu

ally found in the modeling domain. At this level of abstraction, 

performance models can be easily and rapidly constructed, eval

uated, and verified; the analyst's productivity and effectiveness 

thus increase dramatically. 

With the recent widespread availability of relatively inexpen

sive, graphics-oriented workstations, the development of a perfor

mance evaluation workstation environment has become possible. 

At the heart of such an environment is the notion of a graphi

cal representation of a performance model [Mela85]. We believe 

a graphical representation is the most natural form in which to 

express a performance model; indeed, there has always been a 

very strong pictorial flavor even in textual modeling languages 

such as RESQ and PAWS [S~ue841. Perhaps more importantly, 

the graphical representation of a model creates the opportunity 

to provide a single, uniform interface for all aspects of the mod

eling and performance evaluation process, and the environment 

can thus provide the analyst with an integrated set of software 

tools for use throughout the modeling lifecycle. A model may be 

graphically constructed, edited, and documented. In the case of 

simulation the solution may be animated. Performance results 

can be displayed, manipulated and examined together with the 

performance model itself in a single and integrated manner. We 

believe that the ability to easily create such a natural expression 

of performance models together with the ability to easily access 

all the modeler's software tools through a uniform and integrated 

interface will result in yet further increases in an analyst's capa-



bilities and productivity. 

In this paper, we discuss our current efforts in developing an 

integrated, graphics-oriented performance evaluation workstation 

environment for constructing, maintaining, revising, and evalu

ating performance models of resource contention systems. The 

RESq modeling language provides the foundation for the capa

bilities provided by the environment. This language provides the 

modeler with a rich set of high-level modeling primitives with 

which a performance model may be constructed, multiple meth

ods (both analysis and simulation) for solving these models, and 

sophisticated statistical techniques for evaluating performance re

sults. 

'Ve believe our RESq modeler's workstation environment of

fers several important advantages over other related efforts; in

deed, we adopted what we have found to be the most promising 

aspects of this previous work and have- drawn on the modeling 

experience and methodology of RESq users (including ourselves) 

in designing the environment. We believe that the use of a sin

gle graphical description of the performance model throughout all 

phases of the modeling process is central to the development of 

a truly integrated modeler's workstation environment. We con

trast this with the approach taken in SIMVISION and CINEMA 

[HeaI85], which provide graphical animation of textual specifica

tions of SIMSCRIPT 11.5 [Russ85] and SIMAN [Pegd85] perfor

mance models, respectively. We also note that, since the RESq 

language provides an extremely rich set of modeling primitives, 

our environment offers greater modeling power and flexibility than 

are available in other environments such as. [Mela85] [Sinc85]. 

In the following section we· provide an overview of the RESq 

modeling language. In section 3 we describe the hardware and 

software configuration of the· performance modeler's workstation 

environment. In section 4, we discuss the process of constructing 

and revising the model, solving the model, and displaying the 

output performance results. A sample modeling session is used 

to illustrate these ideas .. Section 5 summarizes this paper and 

discusses directions for future work. 

2. The Research Queueing Package (RESQ) 

In this section we provide a brief overview of the RESq lan

guage, since it forms the foundation upon which our performance 

modeler's workstation environment is built and demonstrates the 

wide range of modeling capabilities that must be supported by 

the environment. For a more detailed discussion of RESq, the 

reader is referred to [Saue82] [Saue84]. 

The RESq modeling language provides the analyst with a 

rich set of high-level modeling primitives with which performance 

models of resource contention systems (such as computer, com

munication, and manufacturing systems) may be specified and 

evaluated. At the highest level, a RESq model consists of 

• a population of jobs, 

• a set of queues, 

720 

• a set of nodes, 

• rules specifying how the jobs circulate among the nodes and 

queues, 

• additional modeling constructs, and 

• information concerning the solution of the model. 

queues typically represent resources in the system being modeled; 

jobs represent the objects in this system which require the use of 

these resources. The purpose of the model is typically to analyze 

this contention for resources and its effect on the flow of jobs 

through the system. 

RESq provides two type of queues: active queues and passive 

queues. Active queues have servers which provide service to a 

job. An active queue might be used to represent, for example, 

a computer's central processing unit, a communication link in a 

network, or an assembly station in a flexible manufacturing sys

tem. A job arrives at an active queue, waits until it is selected 

for service (according to the user-selected service discipline), re

ceives service, and eventually leaves the queue. Passive queues 

allow for a more general notion of resource use and provide a nat

ural mechanism for modeling phenomena such as simultaneous 

resource use and blocking. A passive queue consists of a pool of 

tokens, where each token typically represents a distinct unit of 

some resource (e.g. a buffer or a block of memory). A passive. 

queue additionally consists of a set of nodes at which the passage 

of a job may cause a user-specified number of tokens to be allo

cated, deallocated, created or destroyed. A job may hold tokens 

from a passive queue as it visits other nodes or (active or passive) 

queues in the model. 

Additional nodes are provided by RESq in order to model 

phenomena other than strict resource contention. For example, 

if there are external arrivals or departures to/from the system 

being modeled, source and sink nodes (respectively) can be used 

to model these effects. Set nodes permit values to be assigned 

to variables associated with the simulation. Split nodes allow a 

job to create an independent copy of itself. Wait nodes cause 

a job to be delayed until a specified Boolean condition becomes 

true. These and other additional auxiliary nodes are described in 

[Saue82]. 

A chain specifies the route or path that a class of jobs will 

follow through the queues and nodes in a model. These routing 

decisions may be fixed, probabilistic, or dependent on the current 

state of the simulation (e.g., dependent on the number of jobs at 

a given queue). In an open chain, new jobs may be created at 

source nodes and jobs may leave the chain at· a sink node. In a 

closed chain, an essentially fixed number of jobs circulates among 

the nodes in the chain. 

RESq also provides numerous modeling constructs in addition 

to those discussed above, such as symbolic constants and parame

ters, and arrays of nodes. Another important modeling construct 

is the submodel, which may be used to define a parameterized 



template of an interconnected "subnetwork" of nodes and queues. 

This submodel may then be invoked several times (much the same 

way that a macro may be invoked several times in a programming 

language) to create multiple instances of that subnetwork. We 

note that submodels provide an important mechanism for con

structing modular, hierarchically-structured models of large and 

complicated systems. 

The final component of a RESQ model concerns the solu

tion itself. RESQ can both simulate and, in some cases, ana

lytically solve for the various performance measures requested by 

the performance analyst. In the case of simulation, the analyst 

may specify information regarding the desired length of the sim

ulation run, a method for generating confidence intervals, trac

ing parameters, and other simulation-related information. Re

source utilization, throughput, average queue length, queueing 

time and queue length distribution are typically requested per

formance measures. Several methods are provided by RESQ for 

generating confidence intervals, including "independent replica

tions", the "spectral" method, and the "regenerative" method 

[Saue82]. 

3. An Overview of the Modeler's Workstation En
vironment Configuration 

In this· section we provide an overview of the physical and 

logical structure of the performance modeler's workstation envi

ronment. A detailed description of the functioning of each of the 

major software components together with a sample modeling ses

sion is described in the following section. 

The hardware and software configuration of the modeling en

vironment is shown below in figure 1. The workstation currently 

in use is a personal computer connected to the mainframe with 

an all points addressable graphics display and a character display. 

The graphics screen is considered the primary display device, and 

a pictorial representation of the network model is visible to the 

user at. all stages of model construction, evaluation, and output 

analysis. The analyst controls the modeling process by selecting 

menu items and pointing to objects on this display. The graphics 

display is programmed using the Virtual Device Interface (VOl) 

provided by the Graphics Development Toolkit. 

The~character screen is used for: 

• entering the attributes of the elements in the RESQ model 

(e.g the service discipline of a queue, the number of jobs in 

a closed chain), 

• specifying the parameters for model runs (e.g., service times, 

interarri val times), 

• choosing the multiple performance measures to plot and 

specifying the non-default viewing attributes of output 

graphs (e.g., color, axis intervals), and 

• displaying tutorial-like help. 

721 

I High-level command Interfaca 

\.Evaluatc \:u 

IlESQ 

Figure 1: Input/Output Hardware and Soft

ware Configuration 

The textual information is entered via the keyboard into dynamic 

forms on the character display. 

Our decision to employ two screens was influenced by the work 

of [Gilb85] and motivated by our experience that complicated, 

real-world RESQ models may require a significant amount of tex

tual attribute information to be specified. Since we desired to 

display a significant amount of graphical information at all times 

(to display the appropriate context for a given modeling element) 

as well as use the graphics display to cue the attribute specifi

cation process, a two-screen mode of interaction was a natural 

selection. 

As shown in figure 1, the software divides broadly into three 

modules (model creation and editing, model evaluation, and out

put analysis); the functionality provided by each of these will be 

described in the following section. For now we note that uniform 

access is provided to each of these modules by a high level graphi

cal command dispatcher. We also note that each of these modules 

directly relies upon portions of previously developed components 

of RESQ [Saue82]. 

The PC-to-host connection provides the best of two worlds; we 

may simultaneously exploit the processing power of the mainframe 

for exer.lltion of large RESQ models and the int.eractive graphics 

capability of the PC for constructing the model and viewing the 

graphical results. This allows the user through a consistent inter

face on the PC to iteratively create the model, view the simulation 

results, revise the model based on the output, and view compara

tive results for families of models. The user is presented with one 

workstation interface, making the PC-to-host connection trans

parent to the user. 

4. System Modeling Using the Performance Anal
ysis Workstation Environment 

4.1 Introduction 

In this section we describe the functionality provided by the 

RESQ performance modeler's workstation environment. Using a 

simple model of a time-shared computer system as an example, we 



trace the analyst's interaction with the environment from model 

construction to solution, to the display and manipulation of the 
performance results. 

Let us suppose that the computer system to be modeled con

sists of a fixed number of terminals at which users enter jobs for 

execution. The computer itself consists of a single CPU, memory, 

a fixed disk, and a floppy disk. The purpose of the model is to 

an,alyze the contention for the memory, CPU, and I/O resources. 

The system operates as follows. Once a job is submitted to the 

system, it must first be allocated a single memory partition from 

the fixed number of partitions which comprise the computer's ac

tive memory. The "execution" of a job then consists of some 

ra.ndom number of repetitions of a CPU burst (of random length) 

followed by an I/O operation (also of random length). A job thus 

cycles some random number of times between the CPU and the 

I/O devices before terminating execution and returning results to 

a terminal. Once a job terminates, the user then waits some ran

dom amount of time before submitting the next job for execution. 

Our RESQ model of this system - which we shall call 

CSMTM, for "central- server model with terminals and memory" 

- will be a variation on the well-known central server model 

[Saue81] for timesharing systems. The I/O devices will be repre-

sented by first-come first-served active queues with exponentially 

distributed services times; the CPU by an active queue with a 

proc.E'ssor-sharing service discipline. A spec.ial type of active queue 

known as an infinite server queue will be used to model the termi

nals, and the service time at this queue will be an exponentially 

distributed user "think time". A passive queue which contains a 

fixed number of tokens will be used to model memory contention, 

and each token will correspond to a memory partition. Finally, 

a fixed number of jobs (equal to the number of users in the sys

tem) will circulate among these various queues. A job waiting at 

the infinite server queue models the thinking user seated before a 

terminal; a job circulating among the CPU and I/O devices may 

be thought of as "executing". 

4.2 Layout of the Graphics and Character Screens 

Upon entering the workstation environment, the analyst is 

presented with the main command menu in the lower left of the 

graphics screen and a screen-management menu along its right 

border (see Figure 2). The main menu permits selection among 

the three subsystems of the environment: create/edit, evaluate, 

and output analysis. It also contains items to display help screens 

and to permit the redefinition of global default options. Based 

upon the user's selection, additional menus will pop up to display 

the more detailed suboptions. In particular, selection of one of 

the three subsystems first brings up a submenu containing a list 

of models currently available in the user's library or database, and 

the option "Other" for a textual specification of a model name. 

The screen-management menu, which is visible throughout all 

three subsystems, has options for zooming in or out and panning 

the view of the model, for locating a particular model element by 

name, for traversing levels of a hierarchically structured model, 

N 
0 
0 ;x 
0 , c:: 
.-j 

f--

N 
0 
0 ;x 

.D.~Et.40RY PARTITIONS 
.... 
z 

flOPPY f--

TERt.4INALS D 
~r} CPU ~ 

." 

Y 
S; : ~~~D DISK f--

o GETt.4Et.40RY ~D FREEt.4Et.40RY 
t'" 
0 
(") 

~ 
t'1 

I--
.-j 

~ 
;j 

CREATE/EDIT ADD [> =i> -er ··0···. -+D ~ 
t'iI 

EVALUATE MODIFY 
I---<J -<]:: --+]Cr -rlr OUTPUT ANAL. DELETE 1b}- ~ 

722 

HELP MOVE 0 -¢ ~ -w: 
OPTIONS COpy 

Figure 2: Graphics screen showing a par
tially completed RESQ model 

0 
"'I 
"'I 

and for toggling the visibility of the other menus. With the other 

menus visible, the modeling area is restricted to the upper 3/4 

of the display, and a single-line prompt describing the action ex

pected from the user appears just above the menus. When they 

are turned off, the modeling area expands to fill the entire screen. 

The display on the character screen is divided horizontally into 

four sections (see Figure 3). The top section contains the name of 

which subsection of the environment is active, and the name and 

version (date and time) of the model which is being worked on. 

The second section is used for the dynamic forms controlling the 

entry and manipulation of textual information. The third section 

repeats the expected action prompt, also visible on the graphics 

screen. The final section provides space for messages from the 

environment to the user and summarizes the current meanings of 

the function (PF) keys. Initially, all of these sections except for 

the expected action window are blank. 

4.3 Graphical Model Construction and Specifica
tion 

When the analyst selects the model create/edit command, 

"Create/Edit" appears in the top section of the character screen 

and the environment prompts for the name of the model. Once 

this has been specified, the graphical representation of the model 

is displayed in the modeling area, and the menu of create/edit 

commands pops up in the lower portion of the graphics screen; 

any existing tylodel element attribute specifications are also parsed 

at this point. If a new model is being defined (as we will assume in 

this example), the graphical display will be blank and no attribute 

definitions will be available to be parsed. 



RESQ Subsystem 
CREATE/EDIT 

Model Name: CMSTM 
Submodel Name: 

06/22/86 
15:43:56 

QUEUE: cpuq 
TYPE: ps /* processor sharing */ 
CLASS LIST: cpu 
SERVICE TIMES: _ 

Expected Action Summary 
Enter the distribution for a job~s service time at this class 

Message Windell'" =================== 

1Help 2Select 3Duplic 4Delete 5Insert 6Up 

Figure 3: Character screen showing a par
tially completed form for a model

ing element 

The first time the modeler selects the "add" option from the 

create/edit menu, a palette of the available RESQ icons pops up. 

The graphical RESQ model is constructed by picking icons from 

the palette using a graphics pointing device (typically a mouse or 

a joystick) and placing these icons in the modeling area. Each icon 

consists of a stylized drawing of the RESQ modeling element it 

represents within a rectangular color-filled background; an icon's 

fill color is used to cue the modeler on the "state" of that model

ing element. When a palette icon is picked, it is highlighted in red 

and connected (via a rubberband) to the graphics cursor until the 

icon is placed in the modeling area. Once in the modeling area, 

the icon's fill color is set to yellow to indicate that its attributes 

have not yet been specified. Figure 2 shows the icon palette, the 

main and "Create/Edit" command menus, and the seven model 

elements in our central server model. (Due to the reproduction 

process for this paper we are unable to show the fill colored back

ground and thus have simply shown the stylized drawing of the 

elements). 

Once an icon has been placed in the modeling area, that in

stance of the icon is considered an element of the model and its 

textual attributes can be defined. These attributes are specified 

in a context-sensitive form on the character display. The overall 

attributes of the model itself (specifically, the model parameters, 

numerical constants and maximum size information) are typically 
specified as a first step in the model construction process. At

tributes for the other modeling objects may be entered or mod

ified at any point in the model construction process. Figure 3 

shows a partially completed attribute form in which the queue 

name, service discipline, and class name have been specified. 

723 

General information about the current model is displayed 

above the form. The form itself closely resembles the "dialogue 

file" definition of an element in the text-only version of RESQ. 

Each line in the form contains a "prompt" and a field in which 

the "reply" to the prompt is to be specified by the analyst. As 

the analyst moves the text cursor from one of these reply fields to 

another, a message concerning the information to be entered in 

the current reply field is dynamically displayed below the form in 

the Expected Action Window. Certain fields (such as the service 

discipline for a queue) may contain one of only a fixed number of 

possible replies. In such cases, the analyst simply scrolls through 

the various possible replies until the desired reply is displayed. 

Finally, we note that these forms must be context sensitive in the 

sense that a reply to one prompt may change the remainder of the 

form. For example, if the analyst had selected (through scrolling) 

a priority service discipline for the disk queue, prompts for the 

priority information would also have dynamically appeared in the 

form. The forms mechanism also supports the repetition or dele

tion of prompts (or sets of prompts) and the extension of a reply 

field over several lines. 

Once the analyst completes an attribute form, the form is 

immediately parsed for syntactic and semantic correctness. A 

correctly completed form causes the background color of the icon 

to change from yellow to green. An incorrect form causes error 

messages to be displayed below the form and turns the background 

color to red. The analyst may correct the form either immediately 

or at some later point. The completed set of attribute forms for 

the central server model is given in Appendix A. 

After the analyst has correctly specified the attributes of a set 



compacted 0-1 

Figure 4: Line Drawing Types 

of graphical elements in the modeling area, it is time to specify 

the routing of jobs which defines how they should flow "from" 

one of these elements (nodes) "to" other nodes in the model. The 

environment provides extensive support for this routing definition 
process. The routing between nodes is accomplished using the 

pointing device. As the analyst graphically defines the routing 

with the pointing device, a textual description of the routing also 

appears in the attribute form for the routing chain currently being 

defined. 

In order to define the routing between nodes, the user first 

graphically picks a group consisting of one or more "from" nodes. 

A group of "to" nodes is then selected, and the environment con

nects the "from" nodes and "to" nodes using straight lines (except 

as noted below). If another set of "to" nodes is immediately se

lected, the previous "to" nodes are implicitly used as the set of 

"from" nodes; this considerably reduces the amount of work re

quired in the routing specification. 

Examples of the different types of line drawing supported 

by the environment are shown in figure 4. As discussed above, 

straight lines are automatically drawn by the environment. How

ever, a user may alter a straight line by picking a point along the 

line, inserting a vertex, and then moving the vertex to another 
point in the modeling area; this permits lines such as the one im

mediately below the disk queue in figure 5 to be drawn. We note 

that the existence of a vertex in a line has no syntactic or semantic 

meaning in the RESQ model itself. Finally, a "compacted" line 

may be used to define a I-N or N-l routing, as shown in figure 4. 

The above discussion has focused on the initial construction 

of a model. In addition to the capabilities (adding elements, pan

ning and zooming) described above, a modeler may also delete, 

move, copy, modify, annotate, print and plot any portions of the 

graphical model description. Finally, we note that the environ

ment provides direct graphical support for the use of submod

els. Each submodel is defined on a different graphical "plane", 

and the traverse command is used to move the modeler from one 

plane to another. We believe this approach greatly encourages a 

top-down, hierarchical, and structured approach towards model 
development. 

724 

CREATE/EDIT 

EVALUATE 

OUTPUT ANAL. 

HELP 

OPTIONS 

••••• D.~:~O~ PARlTTlONS 

...... JD(.;~.... ~OPPY ••••••••••••• 

.' . 
I DISK 

I 

Figure 5: Graphical Display after Model Construction 

Once a model's elements, the routing, and the simulation

dependent information (if any) have been specified, the model 

can now be solved. 

4.4 Model Solution 

The Model Solution component of the workstation software 

allows the analyst to specify run parameters (such as think time, 

number of users, and number of partitions in our CSMTM model 

example) and then to evaluate the model and produce the out

put statistics for analysis. In our workstation architecture, the 

parameter specifications and run commands are uploaded to the 

host where the model is executed. While the RESQ model is ex

ecuting on the host, the analyst can continue to work on the PC 

to construct and modify models and to evaluate output statis

tics from previous runs. The analyst can check the progress of 

the host batch run and, when the model's run is completed, can 

directly view its results on the PC. The upload to the host of 

commands and parameters and the subsequent download to the 

PC and accompanying EBCDIC to ASCII translation of RESQ 

results are handled by the model solution software, transparently 

to the user. The analyst selects "Evaluate" on the main menu 

and need not be aware that there are host/PC communications 

and translations being done automatically for him. 

When the analyst wants to evaluate his model, he selects 

"Evaluate" from the main menu on the graphics screen (see figure 

5) and chooses the name of the model to execute. The template on 

the character screen then displays the parameters to be specified 

for that model. The analyst provides the values of the parameters 
for each run desired (see figure 6), and the model is then solved on 

the host. In the CSMTM model example, parameter values are 

input for four runs of the model with the number of users varying 

N 
o o 
;3: 

o c:: 
>-i 

N 
o o 
;3: 

.... 
z 



RESQ Subsystem 
EVALUATE 

Model Name: CMSTM 
Submodel Name: 

06/22/86 
15:48:31 

THINI<TIME: 10 
USERS: 20 25 30 35 
PARTITIONS: 4 

Expected Action Summary 
Enter a value for this numeric parameter 

Message Window 

IHelp 2 3 4Delete 5Insert 6Up 8Top 9Bc.ttom OReturn 

Figure 6: Parameter Specification for Evalu
ate on the Character Screen 

QUEUEING TlIoIE DlSTRIIIUTlON 

CREATE/EDIT SPECIFY CONTENT 

EVALUATE SPECIFY VIEW 

OUTPUT ANAL. PLOT 

HELP REMOVE 

OPTIONS 

Figure 7: Graphics Display During Output Analysis 

from 20 to 35, with think time fixed at 10 and partitions fixed at 

4. 

When the evaluation run has been completed, the output 

statistics are downloaded to the PC, and the performance mea

sures are stored for output analysis. 

N 
o o :x 
g 
>-l 

N 

8 :x 
..... z 

725 

4.5 Output Analysis 

The Output Analysis component of the workstation software 

provides the analyst with the capability of viewing graphically all 

the performance measures of the simulation. The analyst selects 

the contents and form of the graphs to suit his purposes, such as 

for model verification, determination of transient phase, compar

ison of runs, or investigation of alternatives. Decisions based on 

this analysis can then be immediately translated into direct mod

ification of the model diagram, re-running of the model, and the 

resulting production of the next version of performance measures. 

This cycle of model construction, execution, and output analysis 

is performed by the user without switching modes; all actions are 

accomplished from the one workstation environment. 

Selecting "Output Analysis" from the main menu creates a 

submenu for providing plotting specifications. This submenu (see 

figure 7) provides the analyst with the ability to specify the con

tent, location, and form of any graph, to plot the graph, and to 

remove it from the display screen. The latest content, location, 

and form are remembered by the system, so that the analyst can 

produce graphs without further specifications or, if desired, can 

change any specifications to tailor the next chart to his needs. 

The following illustrates the use of the Output Analysis sub

menu to produce graphs of performance measures. For example, 

marking a node or group of nodes by pointing to them on the 

model diagram and then selecting the menu item "Specify Con

tent" would provide the analyst with a list of output variable 

names associated with the marked area of the model. Each out

put variable name represents a vector of x-y value pairs that can 



F:ESQ Subsystem 
OUTPUT ANAL. 

Madel Name: CMSTM 
Submodel Name: 

06/22/86 
15:52:22 

PLOTTING CONTENT SPECIFICATION 

MODEL CSMTM 

X-Y ARRAY(S): a. a QUEUE MEMORY QT 
b. a QUEUE MEMORY QTLCI 
c. a QUEUE MEMORY QTUCI 

X REPLACEMENT 
VECTOR: 

Expected Action Summary 
Enter a variable name to be used as the x-vector 

Message Wi ndclw 

1Help 2 3 4Delete 5Insert 6Up 7Down 8Tel p 9Bottclm OReturn 

Figure 8: The Plot Content Specification Form 

MEt.4ORY MEAN QUEUEING TIME 

Z8 

USERS 

Figure 9: Plot of Mean Queueing Time 

be plotted. Selecting one of the variable names and pressing the 

menu item "Plot" will immediately produce the plot with the 
latest default values for window position, size, x- and y-axis in

tervals, etc. In particular, pointing to the memory node in the 

CSMTM model, selecting the variable name "Queueing Time Dis
tribution" , and pressing "Plot" will produce the graph in figure 7, 

showing the queueing time distribution with its confidence inter
val for the memory queue. The analyst can also choose to display 
several variables on the same graph, or to substitute the y values 

of variable v' for the x values of variable v, or to fit a curve, or to 

726 

request a projection. These specifications are made by filling in 

the template for Plotting Content Specifications on the character 

screen. Figure 8 shows the template to plot the mean queueing 

time of the memory queue in the CSMTM model with its confi

dence interval. Completing the template with the variable name 

for the number of users in each run and selecting "Plot" would 
produce the graph shown in figure 9. 

Independently of content specification, the analyst can specify 

the form of the output graph by choosing "Specify View" in the 

Output Analysis submenu. He can choose the graph type, such as 

line graph, bar chart, histogram. The analyst can place the graph 

at any point on the modeling field. The analyst points to the 
desired spot on the graphics screen for one corner of the output 

window. A rubberbanding box allows him to view the resulting 
window location as he tacks down the opposite corner. Selecting 
the "Plot" menu item will produce the graph in this window using 

the remaining default values for its form. The analyst can use 
the Plotting Attribute Specifications template on the character 

screen to change the form attributes, such as the x- and y-axis 

tick marks, the axis labeling, graph colors. Selecting "Plot" will 

produce a graph of the latest specified performance measures in 

the form just specified. Selecting "Remove" will remove the graph 

and redraw the underlying portion of the model. 

5. Summary and Future Directions 

We have discussed an integrated graphics-oriented workstation 

environment for the specification, evaluation, and output analysis 

of network models. The environment provides a uniform interface 

for all aspects of the performance evaluation process. The model 



is constructed and modified by creating and editing the model 

diagrams on a graphics display and bv entering textual informa
tion on a character display. Model specification and modification 

can be performed in various orders to accommodate the working 

styles of different analyst.s. In the evaluat.ion phase, the user as

signs values for any parameters defined in the model for one or 

more solutions, and the model is sent to the host for evaluation. 

The workstation is then free to be used for any other purposes. 

When the solution is complete, the output analysis phase per

mits the graphical and tabular display of any desired results. The 

graphical facility provides a flexible mechanism for plotting mul

tiple performance measures. This will allow the user, through a 

consistent interface on the PC, to iteratively create the model, 

view the results of the analysis or simulation, revise the model 

based on the output, and compare results for families of models. 

Future work is planned to extend the capabilities of the graph

ical performance modeler's environment. This work will include 

• a tutorial facility to teach users about the structures and 
features of RESQ in a programmed-learning environment, 

• an "include" facility to permit the user to extract segments 

from completed models as building. blocks for new models, 

• higher-level modeling by permitting the design and use of 

"smart" icons to represent particular models or submodels, 

• animation capabilities to display the movement of jobs on 

the model diagram and the accompanying changes in per

formance measures, 

• a database component to manage the storage and manip

ulation of models and permit the merging of results from 

solutions of related models, 

• an experimental-design facility to aid the analyst in opti

mizing model designs through appropriate parameter-search 

techniques. 

Acknow ledgments 

We would like to express our appreciation to Richard Gilbert 

for a number of fruitful discussions, which significantly influenced 

our choice of the design features of the environment. 

References 

Brow85 J. Browne et al., "Graphical Programming for Simula

tion of Computer Systems", Annual Simulation Conference, pp. 

109-128., 1985 

Gilb85 R Gilbert and W. Kleinoder, "CNMGRAF - Graphic 
Presentation Services for Network Management" ,Proc. 9th Data 

Communications Symposium, (Whistler Mountain, BC), pp. 184-

199. 

Heal85 K.J. Healy, "Cinema Tutorial", Proc. 1985 Winter Sim

ulation Conference, (San Francisco), pp. 94-100. 

727 

IRA81 "Performance Analyst's Workbench System (PAWS) 

Users Manual, Information Research Associates, Austin, TX, 
1981. 

Mela85 B. Melamed and RJ.T. Morris, "Visual Simulation: The 

Performance Analysis Workstation" , IEEE Computer, Vol 18, No. 
8 (Aug. 1985)' pp. 87-94. 

Pegd85 C. Pegden, "Introduction to SIMAN", Proc. 1985 Win

ter Simulation Conference, (San Francisco), pp. 66-73. 

Russ85 E.C. Russell, "SIMSCRIPT II.5", Proc. 1985 Winter 

Simulation Conference, (San Francisco), pp. 57-59. 

Saue81 C.H. Sauer and K.M. Chandy, Computer System Perfor

mance Modeling, Prentice Hall, 1981. 

Saue82 C.H. Sauer, E.A. MacNair and J.F. Kurose, "RESQ: 

CMS User's Guide", IBM Research Report RA-139, Yorktown 
Heights, N.Y., April 1982. 

Saue84 C.H. Sauer, E.A. MacNair and J.F. Kurose, "Queueing 

Network Simulation of Computer Communication", IEEE Jour

nal on Selected Areas in Communications, Vol. SAC-2, No.1, 
Jan. 1984, pp.203-220. 

Sinc85 B. Sinclair, K. Doshi, S. Madala, "GIST: A Tool Speci

fying Extended Queueing Network Models", Proc. 1985 Winter 

Simulation Conference, (San Francisco), pp. 290-300. 

Trip84 S. Tripathi et al., "STEP-I: A User Friendly Performance 

Analysis Tool", Proc. Int. Conference on Modeling Techniques 

and Tools for Perf. Analysis, INRIA, Paris 1984. 

Appendix A 

This appendix contains the attribute specification for the 

RESQ performance model shown in Figure 5. 

MoDEL:csmtm 
METHOD: simulation 
NUMERIC PARAMETERS:thinktime users partitions 
NUMERIC IDENTIFIERS: floppy time disktime cputime 

FLoPPYTIME: . 22 
DISKTIME: .019 
CPUTIME: . 05 

NUMERIC IDENTIFIERS:cpiocycles 
CPIOCYCLES:8 

QUEUE:floppyq 
TYPE:fcfs 
CLASS LIST:floppy 

SERVICE TIMES:floppytime 



QUEUE:diskq 
TYPE:fcfs 
CLASS LIST:disk 

SERVICE TIMES:disktime 

QUEUE:cpuq 

TYPE:ps /* processor sharing service discipline */ 
CLASS LIST:cpu 

SERVICE TIMES:cputime 

QUEUE:terminalsq 
TYPE:is 

CLASS LIST:terminals 
SERVICE TIMES:thinktime 

QUEUE: memory 
TYPE:passive 
TOKENS:partitions 
DSPL: fcfs 
ALLOCATE NODE LIST:getmemory 

NUMBERS OF TOKENS TO ALLOCATE: 1 
RELEASE NODE LIST:freememory 

CHAIN:interactiv 
TYPE: closed 
POPULATION:users 
:terminals-> floppy; .1 
:getmemory->floppy; .1 
:cpu->floppy; .1 
:terminals->disk; .9 
:getmemory->disk; .9 
:cpu->disk; .9 
:floppy->freememory;l/cpiocycles 
:floppy->cpu;l-l/cpiocycles 
:disk->freememory;l/cpiocycles 
:disk->cpu;l-l/cpiocycles 
:freememory->terminals 

728 

QUEUES FOR QUEUEING TIME DIST:memory 
VALUES:l 2 3 4 5 6 7 8 

QUEUES FOR QUEUE LENGTH DIST:memory 

MAX VALUE:users/2 
CONFIDENCE INTERVAL METHOD:replications 

INITIAL STATE DEFINITION -

CHAIN:interactiv 
NODE LIST:terminals 

INIT POP:users 
CONFIDENCE LEVEL:90 
NUMBER OF REPLICATIONS:5 

REPLIC LIMITS -
QUEUES FOR DEPARTURE COUNTS:memory 

DEPARTURES: 1000 
LIMIT - CP SECONDS:50 

TRACE: no 



THE PERFORMANCE ANALYSIS WORKSTATION: 
AN INTERACfIVE ANIMATED SIMULATION PACKAGE 

FOR QUEUEING NETWORKS 

B. MELAMED 

AT & TBell Laboratories 
Holmdel, NJ 07733 

ABSTRACf 

The advent of low cost high powered intelligent workstations 
equipped with high resolution displays is gradually changing the 
practice of performance analysis., .. Exciting new visual tools are now 
emerging at research laboratories and in the marketplace. 

A typical visual tool combines text and graphics in a user-friendly 
interface. The interface supports three main functions: system 
specification (editing icons and parameters), performance evaluation 
(simulation or analysis), and displaying statistics (time-series, 
histograms and summary reports). Visual tools reward users with 
higher productivity, ease of communication and a vastly more 
pleasing work environment when compared to traditional 
programming tools. 

This paper describes a visual simulation tool dubbed the 
Performance Analysis Workstation (PAW), currently under 
development at AT&T Bell Laboratories. PAW enables a user to 
draw a queueing network model on a CRT screen with a mouse, 
parameterize the model by filling out forms from a keyboard and 
then make animated simulation runs displaying traffic flows and 
evolution of statistics. 

1. THE ENTERPRISE OF MODELING 

A model is a simplified representation of an entity. A model 
purports to capture certain behavioral aspects of the modeled 
entity (see [1-2]), and is only as good as its success in 
reproducing select behavior of the modeled entity. Examples 
are: a scale model of an airplane in a wind tunnel; a set· of 
equations describing the state evolution of a queueing network; 
a computer program describing a protocol across a 
communication line. 

The enterprise of modeling consists of building models, 
checking for their goodness, and using them to generate 
predictions. The utility of models lies in their predictive 
power; the modeler is interested in the value added of new 
information gleaned from models, and the subsequent scientific 
and economic benefits engendered by it. Since a model is used 
to understand and predict the behavior of complex systems, it 
must combine and balance the opposite requirements of 
faithfulness and simplicity. Consequently, the process of 
modeling is often tedious, complex and error-prone. It 
requires both knowledge and intuition, and often proceeds in 
cycles of "try and modify", backtracking and refinements. In 
many cases, modeling is more Art than Science, and good 
performance analysis is often the domain of experts. 

CH2345-7/86jOOOOj0729$Ol.OO © 1986 IEEE 
729 

The modeler starts with a conceptual model which is 
invariably a verbal description of the modeled entity's 
structure, rules of behavior and numerical parameters. The 
conceptual model must often be further reduced to a form that 
can be "solved". Models and their solution methods can be 
grouped into two broad categories: analysis and simulation. 
This paper will concentrate on Monte Carlo simulation and 
the role of workstations in hosting visual computer tools to aid 
users in simulation modeling. 

2. SIMULATION VS. ANALYSIS 

A Monte Carlo simulation is a computer program used to 
generate sets of conceivable system histories. Data collected 
from those histories are cast into statistics which serve as 
estimates of system performance. Random phenomena are 
driven by pseudo random number generators, thus conjuring 
up the chance experienced by gamblers at that ultimate casino 
of Monte Carlo. 

The statistical approach, so central in simulation, contrasts 
sharply with analytic methods where mathematical tools 
(equations, etc.) are used to compute performance measures of 
sample aggregates (means, probabilities, etc.). An analytic 
approach rarely addresses transient phenomena or individual 
histories; rather, it usually deals with systems in steady state. 

The trade-off between an analytic approach and a simulation 
approach can be summarized as follows: 

A tractable analytic solution often requires stringent 
as~umptions on the model to be solved. However, if those 
assumptions can be validated, the analytic method used is 
likely to require a fraction of the computer time consumed by 
a corresponding simulation program. Simulation models can 
be used validly for a far larger class of conceptual models. A 
lesser degree of abstraction can be employed in their 
construction because a simulation program can mimic the 
behavior of the conceptual model more directly. However, a 
simulation can be extremely costly to run or plainly infeasible 
due to the computer time or memory necessary to achieve 
satisfactory statistical confidence. 

All in all, it is harder on balance to develop a valid solvable 
analytic model, and deriving a solution where none is known 
can require considerable mathematical skill. In contrast, a 
simulation approach is engineering-like in nature, imposes on 
balance fewer restrictions on models, and the problem of how 
to derive an "unknown solution" never arises. 



3. MODELING WORKSTATIONS 

The advent of affordable workstations with ever increasing 
computational power and rapidly improving graphics has 
recently rendered the concept of a simulation workstation an 
attractive and reachable goal. I argue that an animated 
simulation approach to solving models meshes neatly with· a 
workstation environment where the user interacts with a 
graphics screen, keyboard and pointing device. Points 
supporting this argument are: 

a) A workstation is a dedicated resource. Model building is 
inherently incremental, evolutionary and subject to 
cycles of "try-modify-test repeat." A workstation setting 
being a dedicated resource can allow the process to 
proceed swiftly and smoothly, through uninterrupted 
interaction between Man and Machine. 
Experimentation is thus encouraged and facilitated. 

b) A workstation has graphics capabilities. Model 
simulations, particularly network models, have 
fundamental and inherent visual components. These 
include displaying a pictorial representation of the model 
and its statistics, and generating animated sequences 
which represent the model in operation (traffic flows, 
state changes and statistics evolution). 

c) A workstation can support a user-friendly interface. It 
lends itself to object-oriented programming where icons 
depicted on the screen are directly manipulated by 
clicking the buttons of a pointing device. Models that 
can be manipulated visually appear more natural and 
concrete to the user. 

As a result, the user community of modelers could gain in two 
professional segments. First, engineers will find modeling 
easier because of the reduced need for abstraction. For them, 
a simulation workstation fulfilling a CAE (Computer Aided 
Engineering) function would be a familiar and accessible tool. 
Second, mathematically-oriented users who are not proficient 
with computers could find the burden of interaction alleviated 
by a good user-interface shielding them from inessential 
programming detail. 

The above discussion must not be construed as advocating the 
replacement of analytic methods by Monte Carlo simulation, 
or that analytic methods have no place in modeling. Quite to 
the contrary. Analysis and simulation are in fact 
complementary and each approach should be used where 
appropriate and economical, often on the same problem. A 
good modeling workstation should ideally use both simulation 
and analysis for cross validation and to obtain well-rounded 
understanding of the system under study. The point is, 
though, that a simulation approach has the most to gain from 
the visual capabilities of a workstation environment. 

4. OVERVIEW OF THE PERFORMANCE ANALYSIS 
WORKSTATION (PAW) 

The Performance Analysis Workstation (PAW) is a visual 
modeling tool with both simulation capabilities and interfaces 
to analytic tools, currently under development at AT&T Bell 
Laboratories [31. A number of visual modeling tools have 
preceded PAW or are contemporaneous with it. Noteworthy 
commercial packages include SEE WHyTM (by BLSL Inc.), 

730 

RESQTM (by IBM; work is in progress [4]), IDSSTM [5] (by 
Pritsker and Associates, Inc.), Model Master™ (by GE), 
PAWS™ (by Information Research Associates) and 
SIMAN™ [6] (by Systems Modeling Corporation). SIMAN 
has a particularly nice graphics package called CINEMA ™ 
which allows users to draw a realistic-looking simulation scene 
complete with color and semantic icons. Recently, PC
SIMSCRIPT was enhanced with visual capabilities by a 
program called SimVision™ [71. 

Hardware and Software 

PA W runs on a Teletype Dot Mapped Display 5620 terminal 
(DMD for short) in conjunction with a host computer running 
under the UNIX™ operating system. A UNIX host is 
required for file operations because the DMD has no 
peripheral memory. The DMD has 1MB memory and is 
equipped with a keyboard and a three button mouse (a 
pointing device). PAW is available to the public from AT&T 
through the UNIX System Toolchest. 

PA W is written in C and assumes that the host computer has 
a UNIX operating system. The user interface is menu driven 
with pop-up menus appearing on the screen so as to allow the 
user to make a selection with the mouse. The style of 
interaction with the user interface is object-oriented. Icons on 
the screen represent concrete objects (nodes, transactions, 
statistics, etc.) and the user refers to them by pointing 
(placing the mouse cursor in an icon) and depressing, 
releasing or clicking a mouse button (to specify a selection or 
cause an action). Mouse button functionality is programmed 
in software. 

Human .Factors 

PA W was designed with the user in mind. A basic design 
decision was to trade off generality and modeling scope for 
simplicity and ease of use. PAW is self-teaching and requires 
little reference to its documentation in the course of a session. 
To achieve this goal, a special subwindow on the screen is 
dedicated to communication with the user (see Figures 1-3). 
Called the Reporter Corner, this subwindow is updated after 
every key stroke or button action with three messages: 

1) PREVIOUS ACTION FEEDBACK: informs the user 
of the outcome of the most recent action. Erroneous 
actions are also accompanied by a double beep to draw 
the user's attention. 

2) CURRENT MODE: reminds the user of the current 
operation mode. This is helpful to novices attempting to 
navigate the menu tree. 

3) EXPECTED ACTION: details a suggested sequence of 
actions. This is particularly helpful in graphics 
operations. 

In addition to placing a good deal of ready "help" function in 
the Reporter Corner, PAW will also place needed information 
in a reminder window, but only when necessary. 

PAW extends the user a one step grace period following any 
text or graphics deletion operations. This allows the user to 
recover text and graphics deleted by mistake. 

Error checking throughout PAW is extensive with detailed 
error reporting (PAW stores some 16K bytes worth of 
messages). Error localization is carried out as soon as 



possible, even in the middle of lexical tokens. Most errors are 
checked for in the editors as information is being entered, and 
very little is left to be checked in the simulator. 

PAW recovers from user errors with default values inserted 
whenever missing or erroneous information is encountered. 
Thus, a model description is maintained consistent and error
free from PAW's point of view. Of course, high level 
modeling errors cannot be discovered by PAW, but rather by 
the user observing PAW. Consistency is not guaranteed only 
when PAW runs out of memory. 

s. PAW's WORLD VIEW 

PAW's world view is a queueing network. In this regard it is 
an extension of Jackson, BCMP and Kelly Networks [8-10l 
PAW's simulator is a discrete event simulation system 
operating in a world of queueing networks. 

PAW Entities 

PA W's world consists in the main of two fundamental entities: 
nodes (geographical sites in a network) and transactions (jobs, 
customers, etc.) which circulate among nodes. 

A node has associated with it a queue whose positions can 
accommodate (hold) transactions. A queue capacity can be 
finite or infinite, but it has to be strictly positive. Queue 
positions are ordered 1,2,... from head to tail. A block of 
contiguous positions starting at the head (position 1) can have 
servers associated with them. There must be at least one 
server, but obviously the number of servers cannot exceed the 
queue capacity. Nodes have incoming and outgoing paths so 
that a queueing network can be thought of as a directed 
graph. 

A special kind of nodes called environment nodes represent the 
"outside" environment of the network; all other nodes are 
called regular nodes. An environment node that feeds into a 
regular node is called a source; an environment node fed by a 
regulilr node is called a sink. Regular nodes can be freely 
connected, but any two environment nodes cannot. Unlike 
regular nodes, environment nodes have no queues. 

While nodes are static entities anchored to particular network 
locations, transactions are dynamic entities that circulate and 
move from node to . node. Each transaction has two 
fundamental attributes associated with it: a class tag and a 
family membership. A transaction class tag is a dynamic 
attribute assigned to the transaction whenever it enters a 
regular node. Typically, class tags are used to denote the 
"state" of a transaction during the course of its life in the 
network. A node and class dependent priority can be specified 
by the user for transactions. All transactions with the same 
class tag at a given node will exhibit the same probabilistic 
behavior as regards external arrivals (from a source), service 
delays and routing decisions because they all have the same 
priority and share the probability distributions governing that 
behavior. A transaction may change class (and consequently 
priority) on routing to another node. 

In contrast, family membership is a static attribute that 
cannot be changed. PAW keeps track of the total number of 
each family's members in the system by incrementing or 
decrementing appropriate counters whenever transactions are 
created or destroyed respectively. Note that there is no 
motivation to do the same for classes because transactions with 

731 

the same class tag but in different nodes may well be 
conceptually unrelated. Family members, on the other hand, 
are conceptually related and they can "recognize" each other 
even when they reside in different nodes and carry different 
class tags. The family concept is motivated chiefly by 
situations where a transaction is split (spawns a batch) and 
the batch members must be eventually joined to "recover" the 
original transaction (e.g., messages which are split into 
interleaving packets that must be reassembled at their 
destination). Family membership can propagate and expand 
by further splitting. 

In PA W, there are no special types of transactions. For 
example, a transaction modeling a token will have its service 
time set to infinity with probability one, but otherwise it 
appears like a normal transaction (a token is a transaction 
resource that cannot move in the network on its own; rather, 
another transaction must move it around through the so-called 
yanking action to be described later). Passive queues can be 
modeled in PAW, but they do not exist as such, because 
conceptual "token" transactions are allowed to mingle freely 
with "non-token" ones. Specialized modeling constructs are 
embodied in the various types of nodes supported by PAW, to 
be described next. 

6. PAWNODES 

The regular nodes in PAW fall into several categories: 
standard nodes, SPLIT nodes, JOIN nodes and YANK nodes. 
The list above is ordered in increasing specialization. 

Standard Nodes 

All PA W nodes are variations on the standard node 
mechanism. Transactions may be created dynamically at any 
source node during a simulation run according to a user 
defined arrival interval distribution, or statically at any 
regular node directly by the user. At arrivals times, 
transactions may arrive in batches according to a user defined 
arrival batch distribution or singly (batch size one); batch size 
of zero is also allowed, in which case no arrival occurs. 

On arrival at any regular node, a transaction is assigned a user 
defined class and priority. It then attempts to seize a server 
position. If successful, its status changes to busy and it is said 
to join the busy queue. A service time is sampled for it by a 
user defined service time distribution, and the transaction will 
stay in the busy queue until its service time requirement is 
satisfied. If all servers are occupied (busy), the incoming 
transaction has its status set to idle and it is said to join the 
idle queue. Transactions in the idle queue have no service 
dispensed to them; rather, they queue up until a server 
becomes available at which point in time they switch from the 
idle queue to the busy queue. A user specified mechanism 
called the queueing discipline governs this behavior. A 
transaction may move from the busy queue to the idle queue if 
the queue discipline permits preemption; in this case, PA W 
will automatically keep track of the residual service time of 
the preempted transaction. 

Eventually, the transaction will finish service and attempt to 
route to another node according to a user defined routing rule. 
If the destination node is a sink node, the routing always 
succeeds. However, if it is a node with finite capacity, the 
routing may fail for lack of queue space. At this point, the 
transaction can have another shot at an alternate routing rule, 



provided the user had defined it (alternate routing is optional). 
If the alternate routing fails or if it is undefined, the 
transaction status changes to blocked and it is said to join the 
blocked queue. In this case, the transaction remains in its 
origination queue and waits there until a free queue position 
becomes available at its destination node. The server of the 
blocked transaction remains unavailable throughout the 
blocking period. Eventually, a queue position may become 
available at the destination queue. The transaction will then 
unblock by moving to the destination node where it will be 
assigned a new class and priority. The process then repeats 
itself. 

A transaction is destroyed when it leaves the network by 
entering a sink node. A transaction attempting to enter a full 
node from a source is not blocked but immediately destroyed; 
such transactions are said to be lost. 

PA W maintains in each node three contiguous disjoint 
subqueues. These are (from head to tail) the blocked, busy 
and idle queues. Within each of them, PAW implements 
queue ordering as follows: 

1) Blocked transactions are ordered from head to tail by 
blocking clock time; that is, those that blocked earlier 
precede those that blocked later. 

2) Busy transactions are ordered from head to tail by 
residual service time; that is, transactions with 
shorter residual service time precede those with 
longer residual service times. 

3) Idle transactions are ordered from head to tail 
according to the node queue discipline within priority 
sets; that is, higher priority transactions precede 
lower priority ones. 

The queueing disciplines supported by PAW at standard nodes 
are: 

• FCFS = First Come First Served (within priority sets). 
Also commonly called FIFO. 

• LCFS = Last Come First Served (within priority sets). 
Also commonly called LIFO. 

• PS = Processor Sharing. Here the set of transactions 
with the highest priority share the (single) server. If n 

are present, their service is being completed at rate .i. 
n 

• IS = Infinite Server. Every transaction in the node is 
guaranteed a server immediately on entering the node. 

• PR_SRT_FCFS = Preemptive Resume, Shortest Residual 
Time, First Come First Served. Same as FCFS, except 
that preemption is allowed in which case the busy 
transaction with the shortest residual service time is 
selected for preemption. 

• PR_LRT_FCFS = Preemptive Resume, Longest Residual 
Time, First Come First Serve. Same as PR_SRT_FCFS, 
except that the busy transaction with the longest residual 
service time is selected for preemption. 

• PR_SRT_LCFS = Preemptive Resume, Shortest 
Residual Time, Last Come First Serve. Similar to 
PR_SRT_FCFS, except that the idle queue is LCFS. 

732 

• PR_LRT_LCFS - Preemptive Resume, Longest Residual 
Time, Last Come First Serve. Similar to 
PR_LRT_FCFS, except that the idle queue is LCFS. 

SPLIT and JOIN Nodes 

SPLIT nodes are essentially FCFS nodes with infinite queue 
capacity. However, on service completion of a transaction at a 
SPLIT node, that transaction (called the parent) samples a 
batch size from a user defined split batch distribution and 
spawns the sampled number of transactions (called children). 
If the distinction between parent and children is unimportant, 
they are collectively called siblings. The chIldren mayor may 
not have the class tag or family membership of the parent. 
All transactions involved in the split event then attempt to 
route out of the SPLIT node according to their prescribed 
routing rules. 

PA W supports the following SPLIT nodes: 

• CL_SPLIT - Class-Split. All transactions involved in 
the split event are guaranteed to have distinct family 
memberships. In particular, each child forms a singleton 
family. 

• FM_SPLIT - Family-Split. All transactions involved in 
the split event (parent and children) are guaranteed to 
belong to the same family. 

JOIN nodes perform roughly the opposite function of SPLIT 
nodes. The first transaction (in a batch to be joined) to arrive 
at a JOIN node samples a batch size from a user defined 
joined batch distribution. The transaction class and sampled 
batch size specify a join demand which is then posted at the 
JOIN node. The first transaction and subsequent ones (which 
arrive in due time) wait idly until the sampled batch size is 
met. At that point all batch members are collapsed into a 
single transaction. The resultant transaction changes status to 
busy and assumes a user defined class tag; it then proceeds to 
be served by one of the node's infinite number of servers, 
before routing out as usual. Busy and blocked transactions are 
excluded from further batching and join events at the JOIN 
node. Multiple batching of disjoint batches may take place 
simultaneously. Joining like splitting may involve transactions 
of the same class or same class and family. 

PAW supports the following JOIN nodes: 

• CLjOIN = Class-Join. Transactions of the same class 
are batched for joining. Infinite batch size is allowed, but 
in this case that batch will never join; in effect, the batch 
will behave like tokens (passive resource). 

• FM_JOIN = Family-Join. Transactions of the same 
class and family are batched for joining. The effective 
batch size used by PAW is always the minimum of the 
sampled size and the total family size in the system. 
Infinite batch size is allowed but it simply means that 
joining occurs when all family members congregate in the 
JOIN node and all carry the same class tag. 

SPLIT and JOIN nodes can be used to model the following 
phenomena: 

1) Transaction generation: SPLIT nodes provide an 
alternate means of complex transaction generation. In 
particular, a SPLIT node can be conveniently used to 
model the simultaneous arrival of multiple transaction 



batches each having a different class. In this case, a 
generator transaction enters a SPLIT node repeatedly 
(via a feedback path). On each visit it enters the node 
with an appropriate-class tag and spawns the requisite 
batch (after spending zero time in service). 

2} Assembly operations: Class-JOIN nodes can be used to 
model factory assembly operations where finished 
products are assembled from various parts. 

3} Synchronization points: Family-JOIN nodes provide a 
natural way to model synchronization points, especially 
situations where a parent job spawns subjobs which must 
all be completed before the parent job is allowed to 
proceed. The family-JOIN node is necessary to group 
precisely the subjobs that were spawned by a given 
parent. 

YANK Nodes 

Yank nodes are special nodes where a transaction is allowed to 
yank some other transaction from another node and route it 
elsewhere. In effect, yanking is an extreme case of preemption 
followed by rerouting. Unlike preemption, the status of the 
yanked transaction does not matter; while preemption only 
applies to busy transactions, yanking applies to blocked, idle or 
busy ones. Furthermore, yanking does not have the resume 
aspect of preemptive-resume; rather, the yanked transaction is 
"restarted" at its destination. 

The yanking mechanism is non-trivial and operates as follows. 
A transaction entering a YANK node mayor may not have a 
yank targets distribution specified for it. If none is specified, 
that transaction is considered a pass-through transaction and 
routes out of the YANK node without delay. Otherwise, that 
transaction samples a target node from which to yank, a target 
class to be yanked and a batch size which together specify a 
yank demand. It then posts the yank demand at the target 
node and attempts to satisfy it. A yanking action is executed 
as follows. Each member of the target batch is moved from 
the target node to a destination node. PAW determines the 
destination node by appeal to the routing rules of the yanked 
transactions at the YANK node. Each yanked batch member 
may have its class changed on entry at the destination node 
where it is considered an ordinary arrival. If a yanked 
transaction gets blocked, it will stay blocked at the YANK 
node. A yank event is said to succeed if the posted yank 
demand can be satisfied by transactions on hand; otherwise it 
is said to fail. If the yank event fails and the yanking 
transaction has no alternate routing defined for it, then that 
transaction will wait at the YANK node until its yank demand 
is completely satisfied. If, however, the alternate routing rule 
is defined for it, that transaction will invoke it without 
completing the yank action. When a yank event succeeds, 
only the routing rule is invoked for the yanking transaction. 

A YANK node may yank from another YANK node but not 
from itself. Like splitting and joining, yanking can be 
programmed for class alone or for family and class; the family 
to be yanked is implicitly that of the yanking transaction. 
When specifying a class to be yanked, the user may specify a 
single class or the keyword "all" meaning "yank regardless of 
class". 

733 

It is common for mUltiple yanker transactions (possibly at 
distinct YANK nodes) to attempt to yank the same target 
transactions from a common target node. Such situations 
model contention for transaction resources (as opposed to 
contention for server resources which occurs within a standard 
node). In particular, if a YANK node targets a JOIN node, 
then yanking and joining demands may coexist in contention. 
PA W resolves contention for transactions by ordering the 
incoming demands first by priority (of the yanking and joining 
transactions) and then FIFO by the time the demands were 
posted. 

The discipline of satisfying a yanking demand comes in two 
flavors: first-fit and immediate. In both cases, a demand list 
is scanned head to tail. If a first-fit yank demand is 
encountered, it will be satisfied only if its posted batch size 
can be met by transactions on hand. In contrast, an· 
immediate yank demand may be partially satisfied by any 
number of transactions on hand, and the corresponding posted 
batch size is accordingly reduced. 

PA W supports the following YANK nodes: 

• FF _ CL _YANK == First-Fit Class-Yank. First-fit yanking 
is carried out for target transactions in a prescribed class 
or regardless of class. 

• FF _FM_YANK .... First-Fit Family-Yank. First-fit 
yanking is carried out for target transactions in a 
prescribed class or regardless of class, but only if they 
belong to the same family as the yanker transaction. 

• IM_CL_YANK = Immediate Class-Yank. 
FF _CL_YANK except that immediate 
employed. 

Same as 
yanking is 

• IM_FM_YANK = Immediate Family-Yank. Same as 
FF _FM_YANK except that immediate yanking is 
employed. 

YANK nodes can be used to model the following phenomena: 

1) Multiple resource possession: Token transaction are 
placed in a node representing a pool of available tokens. 
A transaction requiring multiple resources enters a 
class-YANK node and attempts to yank token 
transactions from the pool of available tokens to another 
node holding all unavailable tokens. Eventually that 
transaction will release the resources by yanking token 
transactions from the pool of unavailable tokens back to 
the pool of available tokens. Transactions that cannot 
find tokens to yank from the pool of available tokens 
must wait until they become available. 

2} Finite queues: Although PAW admits finite queues in 
standard nodes, it is sometimes required to restrict the 
entrance of certain transaction classes into a standard 
node with an infinite queue. For example, in a machine 
breakdown model, a preemptive-resume node with 
infinite queue represents the machine, low priority 
transactions represent the product worked on by the 
machine and high priority transactions represent 
breakdowns. The infinite queue is necessary to allow 
any breakdown transaction to enter the machine node 
without blocking. However, product transactions can 
enter the same only when buffer space is available. This 
can be implemented via the token scheme described 
above. 



3) Time-out: To restrict the time a target transaction may 
spend at a node, a time-out transaction is created in a 
family-SPLIT node and proceeds to be delayed, say, in 
an infinite server node. The time-out transaction then 
enters a YANK node and attempts to yank the target 
transaction. If successful, that means that the target 
transaction has timed out; otherwise, the target 
transaction has beaten the time-out "clock" and will 
usually proceed to destroy the time-out transaction by 
yanking it from the delay node to a sink. A similar 
setup can restrict the time a transaction is allowed to 
spend in a set of nodes (subnetwork). 

7. PAW STATISTICS 

PA \V permits statistics collection in the background or in the 
foreground (in a statistical window). All statistics are 
displayed up to date on every screen refresh. PAW statistics 
are packaged in three formats: summaries, time-series and 
histograms. 

A summary maintains eight numerical statistics: number of 
observations collected, the most recent observation, minimum 
observation, maximum observation, average, variance, 
standard deviation and coefficient of variation. A time-series 
is a pictorial representation of observations and the times they 
were collected, displayed as a sequence of bars. A histogram 
is a pictorial representation of an empirical distribution 
computed from collected observations. Both time-series and 
histograms also display the respective summary statistics, 
space permitting (see Figures 1-3). PAW will automatically 
redisplay updated pictorial statistics whenever the display 
window is reshaped or refreshed. 

Once the user selects the statistics format from a menu, the 
particular statistical aspect to be collected can be chosen from 
a menu of fourteen items: 

I) Server utilization 

2) Total queue length 

3) Idle queue length 

4) Busy queue length 

5) Blocked queue length 

6) Total input interval 

7) Total output interval 

8) Lost arrival interval 

9) Node sojourn time 

10) Node idling time 

II) Node service time 

12) Node blocking time 

13) Network sojourn time 

14) Network cycle time 

Utilization and queue length statistics are computed as time 
integrals. The total input interval, total output interval and 
lost arrival interval are respectively the time intervals between 
successive arrivals, departures, and losses at a node; they can 
be used to obtain traffic rates (e.g. throughputs). Node 
sojourn time is the total time spent by a transaction in a node 

734 

during a visit. Node idling time and node service time are the 
time periods a transaction is idle or busy respectively during a 
node visit; they are of interest in preemptive resume or 
processor sharing nodes. Network sojourn time is the total 
time spent by a transaction in the network, while network 
cycle time is the time elapsed between a transaction's 
departure from a node and its next return to it (useful for 
collecting "response time" observations). In any given node, 
statistics can be customized to be collected only for particular 
classes, as well as for all classes. 

8. PAW ARCHITECTURE 

PA W software is made up of four components: graphics 
editor, text editor, Monte Carlo simulator and utilities. The 
menu mechanism allows the user to quickly and easily walk 
among components. 

The Graphics Editor 

The creation of a new model must always begin in the 
graphics editor. Using the mouse, the user draws the 
individual nodes of the network, and then specifies the 
topology by connecting nodes as necessary. "Node drawing" is 
in fact a simple process because the node icon has been pre
programmed; by moving the cursor, the user merely changes 
the node size and orientation in the plane. Nodes can be 
deleted from the screen, in which case all node information is 
automatically purged from the model. A node icon can also 
be moved around on the screen. This is done by placing the 
cursor in a node icon, pressing a button, "dragging" the icon to 
its requisite place on the screen and then releasing the button. 
Every node may have a source and a sink. However, all 
source and sink nodes denote the same "environment" node. A 
distinct label is generated and associated with each regular 
node. Node labels can be made to appear and disappear on 
the screen and can be changed in the text editor. 

To reserve screen space for statistical displays, the user sweeps 
out rectangular areas called windows. Statistical windows can 
also be moved around or deleted. PA Wallows the user to 
bind a statistic to a window (an operation called pegging), to 
clear a window of a statistic or to delete the window 
altogether. The last two operations never delete the statistic 
itself; rather, statistics collection is moved from the foreground 
to the background. 

The Text Editor 

PA W's text editor is used to parametrize a model and define 
its statistics. All text data are entered in captioned fields of 
appropriate forms. The user can scan, enter data or delete 
data while moving among the form's items in a wrap-around 
manner. The advantage of form entry is that the user has 
almost no syntax to remember. On the other hand, this 
necessarily limits the expressive power of the system. Still, 
PAW can model a respectably large class of queueing 
networks. 

PAW's text editor checks every input token thoroughly for 
lexical and some semantic errors. For example, node and 
transaction labels are checked for validity and uniqueness; 
routing is checked for discrepancies with the drawn topology; 
discrete distributions are checked so as not to exceed one, etc. 
Error localization occurs at the first erroneous character; a 
double beep sounds and the offending character is rejected or 
an appropriate default is used. 



The Monte Carlo Simulator 

PAW's simulation activities are largely controlled from the 
simulation panel and its nine windows located at middle 
bottom of the screen (see Figures 1-3): 

1) Stop window: when highlighted, the simulator is 
stopped. 

2) Continuous window: when highlighted, the simulator is 
running in continuous mode. ' 

3) Step window: when highlighted, the simulator is running 
in step mode. 

4) Current window: current simulation time. 

S) Interval window: simulation time interval since last 
screen refresh. 

6) Reset window: simulation time to reset all model 
statistics. 

7) End window: simulation end time. 

8) Realtime window: real time delay between screen 
refreshes. 

9) Snapshot window: simulation snapshot interval. When 
zero, every event is animated; when positive, successive 
snapshots are displayed at the specified time granularity. 

PA W supports a variety of run modes and options to suit the 
requirements of various stages in the modeling process. When 
a model is first constructed and debugging gets under way, the 
modeler wants to examine the detailed (microscopic) behavior, 
of the model. As confidence in the model builds up due to 
modifications and bug removal, the modeler's interest turns to 
more global (macroscopic) behavior. Finally, when the model 
is deemed valid, the modeler often makes long production runs 
and collects final statistics with few or no intermediate 
snapshots. This last stage rarely requires interaction and is 
preferably launched in batch mode. 

In PAW, the user can set the snapshot window to any 
nonnegative value. To examine the simulation event by event, 
the user sets the snapshot window to zero. In this case, screen 
animation displays the shuttling of transactions among nodes, 
their creation and destruction and more complicated behavior 
such as splitting, joining and yanking. For added convenience, 
the user can elect to step through events or to run the 
animation continuously, somewhat like a movie. When the 
snapshot window is set to a positive value, the screen is 
refreshed every snapshot interval to give a time lapse account 
of model behavior at the specified time granularity. Again, 
snapshots can be stepped through or run continuously. 
Finally, to launch production runs in batch mode, the user can 
select the upload option and specify an output file. The model 
on the DMD screen is then uploaded to the host, a batch run 
is initiated and the final state of the model will be saved in due 
time in the designated output file. The user can later 
download the output file from the host to the DMD and look 
at the final state and statistics. Uploading simulations is 
particularly desirable when the host has floating point 
hardware because of the speedup gains (the DMD has all 
floating point in software). 

Uploaded PAW simulations can be run outside PAW under 
UNIX. In a typical scenario, the user runs the DMD under 
the layers program [11] which supports multiple windows. 

735 

The user downloads PAW in one window, and launches one or 
more batch simulations of an already debugged model. To 
track the progress of a simulation run, the user may interrupt 
it at any time. PAW arranges to save a model snapshot on 
the nearest event boundary. The user can then download the 
snapshot and look at it at leisure. The run itself can be 
restarted either from the saved snapshot or from the 
downloaded one, etc. Alternatively, the user may investigate a 
snapshot's microscopic behavior by running it on the DMD 
and perhaps later resume it in batch mode. 

In a more complicated situation, the user may wish to run 
replications, step through a model's parameters for a 
sensitivity analysis, or compare multiple models. To facilitate 
these kinds of activities, PA W provides a host programming 
environment that allows the user to access and change model 
parameters through an interface package. The user writes a 
control program in C that takes one or more PAW models, 
modifies them as necessary and calls the PAW simulator to 
produce the requisite runs. The user is then responsible for 
processing summary statistics such as confidence intervals, 
x-y plots or statistical tests. Only when using the host 
programming environment do users assume the responsibility 
for any programming bugs resulting from their code; on the 
DMD, they are only responsible for "high level" errors. 

Utilities 

PAW provides an array of utilities, mostly involving file 
manipulation and translation. 

In PAW, models are always created on the DMD; but because 
the DMD lacks peripheral memory, models must be saved on 
the host. A PAW model is always saved with its full state, 
including the random number generator seed. Consequently, a 
PAW simulation can be stopped at any time, a model snapshot 
saved in a file and later read back into the DMD (or the host) 
to resume the simulation from where it left off. 

PAW models are saved in binary (machine-readable) form for 
the sake of efficiency. Another set of utilities produces 
human-readable printouts of PAW models. The user can get 
a listing of an entire PAW model or save a screen image in a 
file and print it as a hard copy. Individual statistics can be 
blown up on' the screen and similarly printed. 

PA W is envisaged as a single point of contact with multiple 
modeling and analysis tools for queueing networks. Currently, 
PA W includes interfaces to two analytical packages: 
PANACEA (which uses asymptotic expansion to solve large 
steady state queueing networks [12]), and QNA (which 
generates an approximate analytical solution for steady state 
queueing networks based on the first two moments of each 
modeling distribution [13]). Both tools were created in 
AT &T Bell Laboratories, but expect different source formats. 
PAW merely provides translators which take a PAW model as 
input and generate as output the source files in the requisite 
format. As usual with simulations, the modeling scope of the 
PA W simulator subsumes that of PANACEA and QNA by a 
wide margin. 

Most PA W utilities can be invoked either from PA W (in 
which case they apply to the model on the screen), or from 
outside PAW (in which case they can be applied to arbitrary 
files). In particular, the upload facilities and the host 
programming environment of PAW enable the user to run 
simulations without being confined to the PAW screen 



environment. Downloading and uploading can be freely mixed 
in any combination.- Listing, screen hard copy and translation 
utilities can also be invoked directly from UNIX in order to 
save the overhead of file transfer between the DMD and the 
host. 

9. INTERACflNG WITH PAW 

A typical interaction scenario with PA W has a distinct 
pattern, extending possibly over multiple sessions. The 
following stages sketch the broad outline of a typical PA W 
modeling and simulation scenario. 

1) The user always begins in the Graphics Editor. At this 
stage, nodes are created and connected, their labels 
placed on the screen and statistical windows are swept 
out. 

2) The user enters the Parameters Editor. Form entry is 
used to specify and edit mostly numerical data 
describing the behavior of nodes and transactions. 

3) The user enters optionally the Statistics Editor to define 
statistics and display them in statistical windows. 

4) The user enters the PAW Simulator to verify the PAW 
model G.e., to ascertain that it represents the conceptual 
model) and sets the windows of the simulation panel. 
Testing and debugging runs usually start in step mode 
and progress to continuous mode with the snapshot 
window set to zero. The user observes sequences of 
event-by-event animations and notes the flow of 
transactions, the sequence of clock values and the 
evolution of select statistics. Later, the user sets the 
snapshot window to a positive value and proceeds to 
observe sequences of model snapshots at increasing time 
granularities. Any discrepancy noted between the PAW 
model and the conceptual'model requires the user to loop 
back to any of the previous stages to modify the PA W 
model's topology, parameters or statistics. 

5) If a real system- gave rise to the conceptual model,. then 
model validation is called for to ascertain that select 
aspects of the real system are in sufficient agreement 
with their counterparts in the PAW model. To this end 
the user launches production runs with few snapshots, or 
may elect to upload simulation runs to the host to attain 
additional speedups. The statistical summaries obtained 
from such runs are then compared to those of the real 
system. If agreement is not satisfactory, the' user may 
loop back to earlier stages for further . rounds of model 
modification, verification and validation. If possible, 
PA W's interfaces to the analytical packages -may also be 
invoked to cross-check the simulation and thus aid in 
validation. 

6) Finally, when the PAW model is verified and validated, 
the user has finally reached the point where the model's 
predictive power may be used to gain new information. 
The user can elect to step through model parameters, 
different topologies, etc., and make production runs to 
answer "what-if' questions. The host programming 
environment can be used for these activities as well as 
statistical post-processing (confidence intervals, 
hypothesis testing, comparison plots, etc.). 

736 

The above scenario sketch only gives an idea of the interaction 
between the user and PAW. It glosses over the important 
interactions among analyst colleagues or between analyst and 
client. Inter-user communication is greatly facilitated by 
PAW since phenomena can be jointly observed on the DMD 
screen rather than merely talked about. 

10. AN EXAMPLE: A PAW MODEL OF PACKET VOICE 

In a transmission system, multiple sources feed streams of 
packetized voice into a high speed line. The conceptual model 
is designed to capture the bursty nature of human speech. A 
voice source is either on (active) or off (silent), corresponding
to a customer talking or pausing respectively. When on, the 
voice waveform is sampled, and a voice packet is generated 
every 16 ms. A voice burst is assumed to be exponential in 
length with mean 352 ms. When off, the voice source is silent 
for an exponential time with mean 650 ms. The time to 
transmit a packet on the high speed line is .333 ms. The 
PAW model in Figures 1-3 is designed to model only the 
traffic flow of packets in the system. 

To initialize the simulation model, (see Fig. 1) the user need 
only introduce the requisite number of voice sources. This is 
done by putting a set of transactions Gn this case 100) with 
class tag src at node INIT. Because PAW allows the user to 
create transaction batches directly at any regular node, 
initialization requires just one action. Note that only six 
transactions are displayed in INIT - the first five and the last 
one. The gray area separating them is the "fog" covering all 
undisplayed transactions. 

When the simulation is started, each src transaction in the 
family-SPLIT node INIT splits into a family of two siblings. 
One sibling goes to node SILENCE with class tag gen, and 
the other to node DELAY with class tag idl. Class gen 
transactions model the packet generation process by forever 
shuttling between nodes SILENCE and GENERATOR. 
When at node SILENCE, they have an infinite service time 
thus representing a pause in the speech pattern. However, 
while at the class-SPLIT node GENERATOR, a class gen 
transaction will keep spawning a class pkt transaction 
representing a voice packet every 16 ms. Each pkt transaction 
is routed immediately to the HSL node (representing the high 
speed line) for transmission before exiting the system. The 
parent gen transaction retains its class tag and simply loops 
back to GENERATOR for the next packet generation~ A 
class gen transaction is delayed (I6 ms) before each split, and 
packet generation by multiple class gen transactions proceed in 
parallel with no queueing interference, because 
GENERATOR has infinite servers. 

The switching on and off of the packetizing process is 
governed by the sibling of each class gen transaction. Initially, 
that sibling resides in node DELAY with class tag. idl for the 
duration of the silence period; again multiple sources co-exist 
there without interference because DELA Y is an infinite 
server node. When the silence period ends, the class idl 
transaction is routed to the family-YANK node ON _OFF. 
From the ON_OFF node it seeks and finds its sibling in node 
SILENCE, and yanks it to node GENERATOR thereby 
inaugurating an active period during which packets are 
generated at GENERATOR and sent to the high speed line 
HSL. The yanker sibling is routed to node DELAY where it 



assumes class tag act and times the duration of the active 
period. When it is time to switch the line off, the class act 
sibling moves to node ON_OFF to yank its sibling from 
GENERATOR back to SILENCE. The process will then 
repeat indefinitely. 

Figures 1-3 depict three snapshots in the evolution of the 
model. They were obtained with the DMD's screen copying 
utility and show the entire screen (note the Reporter Corner 
and simulation panel located below the model area). 

In Figure 1, the initial· state at.time 0 is shown with all 
transactions in the INIT node. Two statistics are collected in 
the foreground: a time-series of the number of active lines 
(bottom left) and a histogram of packet delay at node HSL 
(bottom right). Summary statistics are shown at the right 
margin of each. 

Figure 2 depicts the state just after initialization. All gen 
transactions are in node SILENCE and all their siblings 
appear as idl transactions in node DELAY. This state 
represents a "cold start", i.e., all channels start in silence 
mode. To get rid of startup conditions, the reset window has 
been set to 1000.0; consequently, all statistics will be reset 
after a warmup period of 1000 time units. A pilot run can be 
used. to gauge a reasonable reset time. Because initialization 
takes zero simulation time, the simulation clock is still O. 
Note that the simulator is in step mode (step window is 
highlighted) . 

In Figure 3, the network state has already evolved 
considerably. The snapshot shows that at time 7185.687, a 
buildup of active channels is causing some idling time delays 
of packets . at node HSL (see right hand histogram). The 
time-series on the left shows that 33 channels are now active 
{and by implication 67 are idle}. Although a small queue of 
pkt transactions is present at HSL, a dynamic view of the 
model (through event-by-event animation) reveals that those 
queues are intermittent; they build up to moderate size and 
then .disappear periodically. An idl transaction is shown in 
node ON_OFF poised to yank its gen sibling from node 
SILENCE to node GENERATOR. Note that the simulator 
is stopped and that the second line in each statistics window 
reflects the fact that all statistics had been reset at time 
1000.0. 

11. CONCLUSION 

The modeling constructs of PA Wallow a quick and efficient 
modeling of a wide variety of systems and phenomena. For 
example, the split/join mechanism can model message 
packetizing, product assembly, process forking, job 
synchronization .and more. The yank construct was found to 
be surprisingly powerful. With it one can model inventories, 
time-out, flow control, polling, multiprogramming level control, 
and general phenomena involving token manipulation such as 
gating, and multiple simultaneous resource possession. 

Within AT&T, PAW has been used in dozens of projects and 
in a wide variety of applications including voice and data 
communications, computer systems and manufacturing. The 
response has been positive; users appreciate the ease of use 
and efficiency of modeling provided by PAW. 

PA W is not yet a completely general purpose modeling tool. 
The fact that it lacks a general programming language, while 
often a strength, is sometimes a weakness. In particular, 

737 

predicates are not supported beyond the built-in ones (for 
example, PAW supports a limited number of state-dependent 
. routing rules). Nevertheless, PA W is adequate for modeling a 
large class of queueing systems. Where it can be used, PA W 
is quite effective. It is hoped that future enhancements will 
further increase PA W's expressive power and consequently its 
modeling scope. 

Acknowledgements 

I wish to thank Robert Morris and Harry Heffes for reading 
and commenting on this paper. Robert Morris participated in 
the design of PAW and, in particular, in developing the notion 
of YANK nodes. The PA W model of packet voice is included 
here courtesy of Harry Heffes. 

REFERENCES 

[1] Shannon, R. E. "Systems Simulation" Prentice Hall, 
1975. 

[2] Bratley P., Fox B. L. and Schrage, L. E. "A guide to 
Simulation", Springer-Verlag, 1983. 

[3] Melamed, B. and Morris, R. J. T. "Visual Simulation: 
The Performance Analysis Workstation", IEEE 
Computer, Vol. 18, No.8, pp. 87-94, 1985. 

[4] S. S. Lavenberg, private communication, March 1986. 

[5] "IDSS Prototype (2.0) Version 4, Users Reference 
Manual", Pritsker and Associates, Inc., 1983. 

[6] Pegden, C. D., "Introduction to SIMAN," Systems 
Modeling Corp., 1982. 

[7] Mullarney, A. "SimVision for PC-SIMSCRIPT", 
CACI,1985. 

[8] Jackson, J. R. "Networks of Waiting Lines", Operations 
Research, Vol. 5, pp. 518-521, 1957. 

[9] Baskett, F., Chandy, K. M., Muntz, R. R. and 
Palacios, F. G., "Open Closed and Mixed Networks of 
Queues with' Different Classes of Customers", JACM, 
Vol. 22, pp. 248-260, 1975. 

[10] Kelly, F. P. "Reversibility and Stochastic Networks", 
John Wiley, 1979. 

[11] Kelly, M. J., et.al., "An. Intelligent Windowing 
Graphics Terminal for the UNIX System", EUUG 
Proceedings, Nijmegen, Netherlands, 1984. 

£12] Ramakrishnan, K. J. and Mitra, D. "An Overview of 
PANACEA: A Software Package for Analyzing 
Markovian Queueing Networks", Bell System Technical 
Journal, Vol. 61, No. 10, pp. 2849-2872, 1982. 

[13] Whitt, W. "The Queueing Network Analyzer", Bell 
System Technical Journal, Vol. 62, No.9, pp. 2779-
2815, 1985. 



AT&T Bell Laboratories 

PAW Z.0 
(5-27-86) 

rutl'lii 

------~.~ 

SIMULATION RUN STATUS: ~~~2~!~~_~2~~~~ .1.1. I cont in I I step I PREVIOUS ACTION FEEDBACK: 
SIMULATION CLOCK READINGS: menu item selected 

I ~~c~u~r~r~e~n~t~L~~i~n~t~e~r~va~1 ~ CURRENT MODE: J~ [~ select from SIMULATOR menu 
SIMULATION MARK TIMES: 

reset end 
11000.0 I 110000000.0 

DISPLAY UPDATE INTERVALS: 
realtime snapshot 

101 10 

EXPECTED ACTION: 
1) place cursor 
Z) depress button 3 
3) select item with cursor 
1) release button 3 

Figure 1: First Snapshot of packet voice model 

738 



------~.~ 

AT&T Bell Laboratories 

SIMULATION RUN STATUS: ~~~2~!~~_~2~~~~ 

t-t:=s=t=o~p=I~I=c=o=n=t=i=n=I~.~~i¥~.~ PREVIOUS ACTION fEEDBACK: 
SIMULATION CLOCK READINGS: PAW simulator entered = I,. b U~c~u~r~r~e~n~t~~~~i~n~te~r~v~a~l~ CURRENT MODE: 
"4 • step mode simulat ion 

EXPECTED ACTION: 
1) hit BRK to exit 
2) hit anythin9 else to step 

PAW 2.0 
(5-27-86) 

SIMULATION MARK TIMES: 
reset end 

11000.0 I 110000000.0 

DISPLAY UPDATE INTERVALS: 
realtime snapshot 

10 I 10 

Figure 2: Second Snapshot of packet voice model 

739 



AT&T Bell Laboratories 

PAW Z.0 
(5-27-86) 

Im.e!ili 

SIMULATION RUN STATUS: ~~E2~!~~_~2~~~~ 
.;.Ui I cont in I I step I PREVIOUS ACTION FEEDBACK: 

SIMULATION CLOCK READINGS: simulation stopped 

[~ U~c~u~r~r~e~n~t~~~~i~nt~e~r~v~a~l~ CURRENT MODE: 
- select a panel item 

SIMULATION MARK TIMES: 
reset end 

11000.0 1 110000000.0 

DISPLAY UPDATE INTERVALS: 
realtime snapshot 

10 I 1100.0 

EXPECTED ACTION: 
1) depress button 3 
Z) place cursor in item 
3) release button 3 

Figure 3: Third Snapshot of packet voice model 

740 



AN OVERVIEW OF THE CAPACITY MANAGEMENT PROCESS 

Kenneth W. Kolence 

Kolence Associates, 3591 Louis Road, Palo Alto, CA 94303 

ABSTRACT 

This paper provides an overview of the general 
capacity management processes used to assure 
re 1 iab Ie on-l ine response times for large 
production oriented IBM systems operating under 
MVS or MVS/XA. The other survey papers in this 
series focus on the techniques and tools used in 
these processes, such as analytic modeling, work 
load management, anp software performance 
engineering. Taken together, this set of papers 
is an attempt to review the history of capacity 
management and its current state of the art 
capabilities. Finally, in this paper, the 
relationships between the field of capacity 
management and the academic disciplines of 
computer science and software engineering are 
commented on in the context of Ferrari's recent 
paper, "Consideratjons on the Insularity of 
Performance Evaluation". 

INTRODUCTION 

It is often said that computers have ushered in the 
Information Age over the last two decades, and this 
has been reflected in not only What we do, but how 
we do it. Just as the period we now ca 11 the 
Industrial Revolution was characterized by major 
changes in the means of organizing business en
deavors, so too have computers caused radical 
changes in the business processes which charac
terize the modern corporation. While the develop
ment of broad corporate data bases ultimately lies 
at the heart of this new organizational revolution, 
the outward manifestation is most often in the form 
of an on-line system. Such systems fit smoothly 
into the natural pace of work of the business 
processes, only if their response times are both 
reasonably fast and reasonably consistent. 

For major production systems, one of the most 
consistently vexing probl.ems of on-line systems is 
how to reliably provide such response times at 
a reasonable cost. Perhaps because the focus of 
concern is on production environments, this issue 
and its means of solution have received relatively 
little attention in either the academic world or 
the IEEE and ACM professional literature. However, 
the problems are of great practical concern, and as 
such have given rise to a large and vigorous com
munity of professionals dedicated to ~stablishing 
the relevant theory and practice. 

CH2345-7/86/0000/0741$01.00© 1986 IEEE 
741 

The purpose of this paper is to provide an overview 
of the history and current state of the art of this 
fie ld, and to part ially addres s the academic 
implications of the technologies and viewpoints 
that have evolved. Other survey papers presented 
in the Capacity Management sessions at this FJCC 
Conference consider the major technological issues 
and provide rich bibliographies of the available 
literature. (BUZE86, HOWA86, L086, SMITHB86, 
SMITHC86) 

BACKGROUND AND HISTORY 

In this set of papers, the term capacity management 
has been used to refer to the general c'ollection of 
processes concerned with assuring on-line response 
time and batch service time requirements are 
reliably met at reasonable cost. Both the day-to
day processes and the planning and design processes 
are included as part of the general capacity 
management process, since the latter must fully 
support the former. 

The term capacity management was originally intro-
duced in the mid-1970s. (KOLE74, KOLE76) This was 
about the time on-line applications were first 
being widely placed in use, and slightly before 
analytic modeling concepts were made available in a 
generally usable product form. At that time, the 
major activities were tuning systems to improve 
utilization and throughput, reducing the run times 
of batch applications, and equipment planning. 
The importance of response times, and especially 
the difficulties in reliably providing required 
response times, were then only beginning to be 
fully appreciated. Had the field been named 
slightly later, a more properly descriptive term, 
such as service management, would probably have 
been chosen. Although the tuning activities are 
still a major aspect of capacity management, the 
focus is now more on response time and service, 
along with equipment planning. 

Capacity management is almost uniquely identified 
with large mainframe production environments, and 
in particular IBM and IBM compatible systems 
running under the MVS and/or MVS/XA operating 
systems. Partially this is because these systems 
are highly multiprogrammed and typically configured 
with several 308X and/or 309X central processors 
using a CODDDon pool of disks and tapes. Signifi
cant cost and throughput benefits accrue When an 



Jngoing tuning activity is applied to such an 
environment. The key reason though is that in 
modern corporations, these systems usually act as 
the underlying engines which drive many vital 
business processes. As such, response time and 
batch service reliability is of sufficient organi
zational importance to justify the costs and 
manpower involved in developing and maintaining 
service reliability. 

As a conservative estimate, well over 10,000 DP 
professionals in the U.S. are involved in some 
aspect of capacity management, many if not most on 
a full-time basis. Worldwide, .the number certainly 
exceeds 15,000. 

The growth of capacity management capabilities in 
this environment was not paced by the equipment 
vendors. The existence of the potentially large 
and easily accessible MVS marketplace encouraged 
the entrepreneurial spirit in many individua~s, 
resulting in.a large variety and number of ~apac1ty 
management oriented software products be1ng made 
available for the MVS environment. Contrariwise, 
the relatively small and unaccessible marketplaces 
for other large mainframe manufacturers discouraged 
independent product development, and much less 
choice is available to these users. The even 
smaller budgets for mini and supermini instal
lations, as. well as their relative lack of a 
production orientation, has resulted in an almost 
complete absence of such products or even capa
bilities. For example, the UNIX 4.3 system 
released from a group at U.C. Berkeley contains 
only one or two of the most basic types of measure
ment tools. Thus, it is probably quite fair to say 
that the evolution of the current state of the art 
in capacity management has been driven by. a 
combination of corporate needs for product10n 
response time and service reliability and the 
entrepreneurial spirit. 

Any group of professionals as large as that in
volved with capacity management will normally be 
involved in one or more professional societies 
related to their work. In general, however, these 
people belong neither to the ACM n?r IEEE and 
have little interest in the broader 1nterests of 
either group. Because of the homogeneity of 
interest centered on large IBM operating systems 
and work loads, the IBM SHARE and GUIDE organiza
tions were more natural loci of interest. Also, in 
the early 1970s the most universally used products 
were offered by a company named Boole & Babbage, 
Inc. A user's group based on these products was 
founded in 1971. Because the at tendees also 
represented almost al ~ of the users of .o~her 
products as well, it quickly outgrew the hm1ta
tions of a single vendor orientation. To reflect 
this, it was formally incorporated in 1975 as a 
non-profit organization called the Computer 
Measurement Group, Inc., or CMG. 

At the time of incorporation, CMG member interests 
were almost solely limited to problems associated 
with tuning systems and applications, and with 
charge-back methods. To some extent, ~hfs was 
because available software products were l1m1ted to 

742 

these functions. The more general concepts and 
methods of capacity management were popularized by 
a company called the Institute for Software Engi
neering, Inc., beginning in early 1976. This 
same company also published a book called "An 
Introduction to Software Physics: The Meaning of 
Computer Measurement". (KOLE76, KOLE85) This 
theory permitted the unification of the many 
different measurements in use, and postulated the 
basic structure of the capacity management process 
to identify where to focus further research in and 
applicat ion of the theory. A variety of courses 
and publications, and the International Conferences 
on Computer Capacity Management (ICCCM) were used 
to inject these concepts into the CMG community. 

Almost concurrently with the activities of the 
Institute, another company called BGS Systems, 
Inc., was founded to exploit the techniques of 
analytic modeling in the form of a software product 
called BEST/I. At that time, modeling was an 
unproven technique in the eyes of most practi
tioners, and was initially met with considerable 
Skepticism. However, the combination of an avail
able product to predict response times, the prob
lems of managing on-line systems response times, 
and the concepts of capacity management quickly 
resulted in genuine acceptance of both analytic 
modeling and the capacity management subprocess 
called capacity planning. 

In effect, the development and use of the product 
provided the empirical proof of the concepts of 
analytic modeling. This undoubtedly contributed 
great ly to the re lat ive 1y wides pread academic 
interest in these techniques. 

By about 1980, a relatively balanced emphasis on 
tuning (or performance management) and capacity 
planning had emerged at CMG. By this time also, 
ins tallat ion management had begun to formally 
organize capacity planning functions as well as the 
older performance management activities. Often, 
this was done at the direct instigation of senior 
management above the DP group, because of the 
serious need to provide reliable response times for 
the major on-line systems used by the corporation. 

The planning and tuning activities of capacity 
management are now generally accepted within the 
community of large IBM MVS production sites, at 
least in the U.S. and Europe, and probably all of 
the other cont inents as well. Th is has been 
reflected in a dramatic growth of the CMG member
ship and U.S. conference attendance. For example, 
the 1982 CMG conference attracted 550 people; 950 
attended in 1983, growing to 1,200 in 1984 to over 
1,600 in 1985. The 1986 conference in December of 
this year is expected to draw close to 2,000. 

In addition to its annual conference, CMG has a 
large number of Regional Chapters. Typically, 
these groups meet monthly and present one-day 
technical programs. 

In Europe, a private organization sponsors an 
annual conference called ECOMA. It is roughly 
equivalent to a CMG conference. For various 



reasons, however, local CMG organizations in some 
of the European countries have begun to form and 
can be expected to eventually merge with or replace 
the ECOMA organization. For example, the first 
U.K. CMG organization was formed in January 
of 1986. It held its first conference in late May. 
Over 250 people attended, and the quality of the 
papers and presentations was excellent. During the 
same period of time, a less formal meeting of CMG 
Italy attracted about 100 attendees. Going to the 
other side of the world, Australia has a very 
active national CMG with several regional chapters. 

The relationships between the various national CMGs 
is currently quite informal and based mostly on 
personal relationships. However, the problems to 
be solved are essentially the same worldwide for 
everyone who uses large MVS systems. For this 
reason, one can always expect to see considerable 
cooperation between the national CMGs, and perhaps 
some form of internat ional confederat ion will 
evolve over the next several years. 

Clearly, the· vitality of CMG reflects the economic 
value of the capacity management activities within 
the sponsoring DP organizations. However, it 
should also be pointed out that the drive and 
energy of many individuals have contributed both to 
the field and to CMG itself. CMG is probably also 
unique in the degree of support it receives from 
the vendors -of capacity management produc ts, 
although this is generally in the form of personnel 
commitments rather than money. 

AN OVERVIEW OF CAPACITY MANAGEMENT 

The Major Subsystems 

The most general definition of capacity management 
is that it is the collection of processes by which 
the response time and batch service requirements of 
applications software are consistently and reliably 
provided, at all times and at a reasonable cost. 
In practice, capacity management breaks into two 
major subprocess es. The firs t, often call ed 
performance management, is concerned with those 
processes which use existing configuration capacity 
with existing systems and applications software, 
and provide real response times and real batch 
service to real transactions at some load level. 
That is, performance management operates in the 
current time frame and is charged with meeting 
user service requirements with the means at hand. 
To emphasize it is a major subprocess of capacity 
management, performance management is often re
ferred to in this paper as the Current Time Frame 
(CTF) capacity management subsystem. 

The second major subprocess is typically called 
capacity planning. Because the term implies the 
process is limited to equipment planning, it is 
considered by the author to be a serious misnomer. 
More generally, the objective of this second major 
process is to assure the means required by the 
performance management process to provide actual 
service within requirements are in fact delivered 
at the appropriate points·in the future time frame. 
For this reason and others, this second major 

743 

subprocess is referred to in this paper as the 
Future Time Frame· (FTF) capacity management sub
system. It should be understood that the FTF 
subsystem fully includes capacity planning as the 
term is currently understood. 

Since phys ically real configurations, work loads, 
and service times only exist in the current time 
frame, the FTF subsystem must develop and use 
representations of reality to determine what will 
be required, and then must obviously implement the 
solutions proposed. As a result, much of the FTF 
subsystem is concerned with the processes of work 
load classification, work load characterization, 
transaction arrival rate and batch volume pro
jection, service and response time projection, and 
equipment and conf igurat ion des ign. Ana lyt ic 
modeling software products are widely used in this 
subprocess for the equipment (capacity) planning 
subfunction. 

The emerging discipline called Software Performance 
Engineering is part of the larger FTF process, and 
as such is a major reason for discarding the term 
capacity planning to represent the more compre
hensive FTF process. Software performance engi
neering is concerned with the problem of assuring 
new systems and applications software have in
herently good quantitative properties, both service 
and utilization/cost. While less. well recog
nized, it is also concerned that such software 
prop·erly interfaces to the other capacity manage
ment processes. Al though still in a very early 
stage, Software Performance Engineering will 
probably become the major bridge bringing together 
the capacity management and the computer science 
and software engineering academic communities. 

The respons ibi lity of the FTF capacity management 
process is to deliver what is needed by the CTF 
process to provide actual response and service 
times which meet the required levels. Thus, it is 
useful to consider the characteristics of a typical 
MVS installation, and the real processes which 
result in the observed service characteristics. 
Figure 1 is a simplified schematic of these charac
teristics and the basic processes at work. Since 
the word capacity figures . prominently in this 
diagram, the software physics interpretation of the 
term will be discussed first. 

Capacity and Power 

The term capacity generally can refer to either the 
quantity of available storage (disk, main storage, 
etc.) or to process ing power. The most general 
definition of processor power is simply bytes per 
second transferred to a storage medium (including 
CPU registers) , taking into account the full 
execution time of the processor. (KOLE76, KOLE85) 
It has been shown in general that processor power 
defined in this manner is a function of a variety 
of software and resour.ce allocat ion parameters in 
addition to the raw hardware speeds. Thus, the 
processor powers available from a system depend 
partially, and sometimes largely, on how these 
parameters are set. 



--J 

t 

REQUIRED RESPONSE TIME 

OBSERVED RESPONSE TIME 

1 I 
System ~ Configurat ion 

Design Power & 
Storage Capacity 

Power --- POWER OIIIII.~--_ 
Configuration 

System 

CPU 
Main Storage 
Channels 

System 2 

CPU 
Main Storage 
Channels 

Common 
Controllers 

Disks 

Tapes 

On-line 
Terminal 
Networks 

CPU 
Power 

I/O 
Power 

Disk 
Storage 
Capacity 

Main 
Storage 
Capacity 

Network 
Power 

Allocation USED 
Processes 

Scheduling Application 
Impedance 

Data Set Match 
Allocation 

Data Base 
Performance Size 
Group 
Assignments Op. Sys. 
& Power Power 
Allocation Usage 

Software & Other 
OS Parameters Work Load 

Power 
Main Storage Usage 
Allocation (in MP 

Environment) 

A Software Physics Analysis of CTF Response Time 
Characteristics and Processes 

Figure 1 

Work 
Arrival 
Rate 

SLAt s or 
Other Sources 

(Business 
Process 
Dependent) 

SOURCES 

Work 4--Application 
per Design & 
Transaction Code 

Transaction 

Mix '" 

Transaction ~APPlication 
Arrival Rate Design & 
& Distribution Business 

Process 
Activity 



The most commonly used approximations to power are 
MIPS (Millions of Instructions executed Per Second) 
for central processors, I/O rates (Number of I/O's 
per second) for DASD (disk) and tape subsystems, 
and messages per second for networks. Since power 
is generally defined as work per unit time, the 
corresponding units of work in this system of 
measures are Millions of Instructions Executed 
(MIE's), Number of I/O's, and Number of network 
messages. However, on any given CPU it is more 
normal to measure and refer to CPU work in terms of 
CPU seconds. 

In general, the amount of work required by a,unit 
of systems or applications software to process a 
given quant ity and mix of data is invariant. 
(However, the work may be quite sens itive to 
changes in the quantity and/or mix of data:) ~n 
particular, the average work per. tran~ac~10n 1n 
on-line systems, and the transact10n m1X 1n con
junction with the transaction arrival rate, defines 
the processor powers required to provide any given 
level of service and response time. 

The work per transaction (or per record in batch 
systems) is a vector quantity, and the ratios of 
work required by different processors. (e.g., CPUs 
and DASD systems) are fixed for given data. As a 
result, the application software can only use 
available capacity in proportion to the work vector 
requirements. For example, assume one million 
instructions and 50 I/O's are required to process a 
transaction. If a ten MIPS CPU is being used, and 
the I/O system and data set allocation is such that 
the application can only get 50 I/O's per second', 
then the application can only use one-tenth of a 
CPU second per elapsed time second. And, the 
minimum obtainable response time for the trans
action will be close to one second plus the network 
service time. 

In large MVS and MVS/XA systems one typically finds 
more than one central processor (308X or 309X) with 
a common pool or network of DASD and tapes. Within 
the I/O network, strings of drives are attached to 
controllers or storage directors, and these in turn 
are attached to one or more channels on one or more 
central processors. The major reasons for this 
common I/O pool are reliability and storage ac
c e s sib il it y . Th at is, i f a CPU 0 r c han n e lor 
controller fails, another I/O path and/or CPU can 
be used to continue processing of critical systems. 

The exact manner of connecting I/O devices through 
controllers and CPU channels is the design of the 
I/O subconfiguration. In conjunction with the 
physical drive speeds and storage characteristics, 
the configuration defines the I/O processing power 
available overall, and to each of the central 
processors. In large MVS systems, the overall I/O 
design capacity is 'usually considerably less 
than the sum of the I/O capacities available to 
each CPU. In Figure 1 the capacity identified as 
configuration design capacity includes total CPU, 
I/O, and network power as well as main and secon
dary storage capacity. 

745 

The allocation of design capacity occurs in several 
ways. First, the scheduling of applications onto 
various CPUs results in the allocation of each 
system's total MIPS power and main storage among 
temporally concurrent applications. In an' opera
tional mode, MVS further dynamically allocates CPU 
power and main storage according to "performance 
groups and classes", to which each of the applica
tions is assigned. 

An important form of power allocat ion is done by 
the DASD space allocation process. There are only 
a limited number of independent or non-interfering 
I/O paths within the DASD channel-controller-drive 
network. If data sets from temporally concurrent 
applications (and the operating system) are allo
cated space on the same path, interference can 
occur and DASD service times increased and made 
more variable. In effect, the I/O power' which the 
application can draw from the design capacity is 
often significantly reduced. Within a single 
application, the degree of I/O concurrency' between 
data sets on the same path and other space alloca
tion factors such as head movement and block size 
can further reduce the actual abi 1 i ty of the 
application to draw I/O power from the system. 

The work vectors for applications require CPU, I/O, 
and network power be drawn from the system in fixed 
proportions. In many ways, the problems of allo
cating processor power to an application correspond 
to electrical impedance load matching problems. In 
both instances, mismatching leads to a situation ~n 
which less than the design. power of a system 1S 
usable. In the capacity management context, this 
means increased unit. costs and increased service 
and response times. It· can also mean wide vari
ability in response times when the mismatch occu:s 
as a result of interapplication interference. Th1S 
is a particularly undesirable situation in most if 
not all on-line production systems. 

The Performance Management Subsystem 

The performance management function is usually 
performed within the computer operations group,. 
often in the group called technical services. They 
are essentially overconstrained. in terms of. the 
means available to them to assure required service 
levels are consistently provided. At any given 
time, the equipment and thus the design. cap~city 
they use is fixed, the work per transact10n 1S an 
inherent property 0 f the appl ica t ion, and. the 
transaction arrival rates are determined by the 
business processes being supported. 

Performance analysts are thus limited in capability 
to adjusting power allocations, and to improv~ng 
the "impedance match" through data set allocat10n 
and placement and by interapplication data set 
isolation techniques. In addition, they can also 
improve the available power of the sys~em .by 
adjusting various operating system and. app11cat10n. 
system parameters, particularly those' involving 
main storage management and paging activities. 



In general, such activities are referred to as 
"tuning the system", and indeed performance manag~
ment is basically limited technically to improving 
and maintaining the ability of the overall system 
to deliver as much of its design capacity as 
possible to the applications. 

It should also be mentioned that a considerable 
amount of effort by performance management person
nel is spent in monitoring on-line response times 
and analyzing prob 1 ems to determine their causes 
and possible solutions. Because of the high degree 
o~ mUlti-programming found in MVS systems, along 
w1th huge transaction volumes, this is often a very 
difficult task. It is also not easy to determine 
the most effective action to take, or indeed even 
if a given action will completely solve a given 
problem. As a result, there have been recent 
proposals that analytic modeling software products 
be developed and used in conjunction with direct 
measurements to detect problem causes and quantify 
potential solution options. In fact, early results 
have been quite encouraging and a rapid· evolution 
of this new application of analytic models can be 
expected. 

In addition to response times, the performance 
management - group monitors utilizations, work load 
volumes, and so forth. Various management reports 
and historical trends are prepared and maintained. 
Much of the input to the capacity planning function 
is thus provided by the performance management 
activity. Typically, these two groups are sepa
rate. The day-to-day orientation of performance 
management and the longer range viewpoint of 
capacity planners have not been found to mix well 
organizationally. 

Future Time Frame Subsystems 

Figure 2 is a schematic of the FTF capacity manage
ment subsystem corresponding to the structure of 
Figure 1. 

Service Level Agreements. All of the capacity 
planning activities clearly require a quantitative 
definition of what "required response time and 
batch services times" are. In practice, only 
cert~in critical applications (normally, just the 
on-11ne systems, but some batch systems are also 
critical) have formal response time requirements 
set for them. These are typically stated in the 
form of Service Level Agreements, or SLAs. These 
are agreements between the Operations and user 
departments that a minimum response time will be 
g~aranteed some percentage (typically 95%) of the 
t1me. 

The guarantees in SLAs are generally difficult 
to fulfill, and may be even more difficult to 
negotiate. As a result, formal Service Level 
Agreements and the as soc iated "Service Leve 1 
Management" systems are far from universal. In 
the less sophisticated large MVS installations, 
the problem of establishing required response times 
for capacity planning purposes is sidestepped by 
Operations setting response time objectives without 
formal user consultations. Still, if this is 

746 

recognized as a primitive form of service level 
management, then it is reasonable to say that all 
MVS installations require a service level manage
ment activity. 

The Capacity Planning Subsystem. The performance 
management system must match the available capacity 
to the actual work load to provide the required 
response and service times. The FTF (Future Time 
Frame) capacity management subsystem therefore is, 
among other things, charged with the responsibility 
of assuring the required capacity is available when 
needed and in fact can be allocated as required. 

ro do so requires several things. One is a set of 
work load projections grouped into applications and 
other work w"hich correspond to the scheduling of 
the various physical configurations in the instal
lat ion; i. e., IMS, TSO program deve lopment , pro
duction batch, etc. Typically, only peak loads are 
projected and so a means for identifying and 
projecting the peaks of various applications is 
also required. Another requirement is a means of 
projecting the response and service times to be 
expected at these peak loads using the existing 
configurations and also using alternative equipment 
and 'Configurations. The activities associated with 
developing these forecasts and determining when and 
what equipment changes are required are generally 
called the capacity. planning function within a 
typical MVS installation. 

The papers by Buzen, Lo, and Brian Smith review 
the evolution and current state of the art of the 
major capacity planning activities (BUZE86, L086, 
SMITHB86). While analytic modeling techniques and 
products have been a boon to capacity planning 
practice, these papers demonstrate that current 
capabilities are not yet all that are needed. In 
particular, a more direct linkage between mode Is 
and the various power allocation processes would be 
useful to provide the performance management 
process with directions on how best to accomplish 
this in the current time frame. 

Software Performance Engineering. The importance 
of reliable and consistent response times to the 
successful operation of the basic corporate busi
ness is being increasingly recognized at senior 
non-DP management levels. Considerable pressure is 
thus being brought to bear for the use of formal 
SLAs. The importance of the performance management 
function, which is also usually charged with the 
resultant day-to-day service management responsi
bility, is increasing in response to this pressure. 
Similarly, the importance of the capacity planning 
function, and especially work load forecasting, is 
also increasing. However, taken together, both 
functions are limited in terms of their technical 
methods of assuring proper response times to simply 
providing more computing power, more effectively. 
The other two determining technical factors, work 
per transaction and. transaction arrival rates (in 
some mix), are currently left largely uncontrolled. 
This failing probably represents the most signifi
cant unresolved area in the field of capacity 
management. 



(Software Performance Engineering) 

Planned Planned 
System Design Power 
Configurations & Storage 

Planned _ ANALYTIC 
Schedule MODEL 
& Power 

_ Planned 
Work 
Arrival 

Planned 
Applications 

Planned 
Work 
Arrival 
Rates & 
Characteristics 

Existing 
Applications 

(By Period) Capacity Allocation 
(By Period) 

(By Period) Rate Planned 
Work 
Arrival 
Rates 

Existing 
Work Load 
Forecasting 
Sources 

(By Period) 

'-___ (Capacity Planning) ___ _ 

Replan Period System 
Configurations 

NO ... _----

A Software Physics Analysis of the FTF 
Capacity Management Subsystem 

Figure 2 

1 
Predicted 
Response 
Times 

(By Period) 

1 
Reduce Work/Transaction, Mix, or Arrival Rate 

I 
(Existing: Application Tuning) 
(Planned: Software Perf. Eng.) 1 

OK FOR FUTURE PERIODS? _ NO .-J 
1 

Predicted 
Required 
Response 
Times 
(SLAts) 

Planned 
Applicat ion 
Work Load 
Forecasting 
Sources 

Applications 
Deve lopment 
Work Load 
Characteristics 

r
'<t r-



Ultimately, the transaction arrival rate charac
teristics of an on-line application are determined 
by the level of activity of the corporate business 
processes being supported. One is thus tempted to 
say that arrival rates are in fact inherently 
uncontrollable, and move on to the question of how 
to adequately project arrival rates given business 
plans. Certainly this is the basis of one of the 
major technical thrusts in work load forecasting 
methodology. However, the arrival rate of logical, 
as opposed to physical, transactions is a function 
of the application design, which in turn is a 
function of the basic business process design. In 
other words, the actual transaction arrival rate 
required to support a given level of corporate 
activity is determined during the design process. 
Obviously, this is similarly true of the third 
independent variable determining response time, the 
work per transaction. 

The field of software performance engineering is 
concerned wit:tt assuring that appl ications and 
systems software have the quantitative and func
tional attributes required to meet required re
sponse and batch service times, at reasonable cost. 
It is therefore a process of basic importance 
within the overall capacity management process, 
with interfaces to all of the other capacity 
management subprocesses; e.g., performance and 
service management, work load forecasting, and 
capacity planning. 

Software performance engineering currently has only 
a tiny number of proponents and practitioners com
pared to the other capacity management funct ions. 
A major hurdle to the growth of the field is that 
the practitioners really need to be the applica
tions development and maintenance people within a 
company, and historically such groups. have been 
outside of the mainstream of capacity management. 

An oft-repeated development philosophy is to 
develop first and then "tune" if necessary. 
Painful experience has proven this approach is 
not only gross ly wasteful of computing capacity, 
but much worse, is operationally unacceptable in 
the context of any company whose business is paced 
by its computer systems. The basic initial hurdles 
faced by software performance engineering are thus 
twofold: (1) to understand the technical methods 
of designing applications with the desired quanti
tative and functional capacity management proper
ties, and (2) to encourage the adoption and use of 
such methods within the application life cycle. 

Today, the basic focus qf software performance 
engineering research is on deve loping an under
standing of the technical principles which should 
be applied in order to reduce the work per trans
action characteristics of applications. As with 
the other capacity management processes, these 
efforts are proceeding in the classical scientific 
way by combining empirical efforts with a search 
for underlying pat terns and princip les. Good 
progress appears to have been made in understanding 
what these principles may be. (SMITHC/UP) How
ever, they can be difficult to apply in the context 

748 

of applications development systems developed in 
ignorance of these principles. 

For example, information hiding and data base 
navigation are typical properties of the so-called 
fourth generat ion data bases, languages, and 
systems (such as FOCUS and IBM's DB2). The func
tional generality of these properties come at a 
high cost in terms of work per transaction, and in 
some instances this work may be highly variable. 
Neither the means to understand a design decision 
in these terms nor methods for controlling the 
work per transaction are easily available to the 
designer, using such systems. So, the problem of 
encouraging the adoption and use of technical 
methods of software performance engineering may 
be more formidable than developing the technical 
aspects of the discipline. 

There are other major obstacles to extending the 
concepts and techniques of software performance 
engineering into the applications design and 
maintenance processes, at least relative to the 
problem of controlling the response time and work 
per transaction characteristics. Essentially, they 
all center on two facts: (1) qualified development 
personnel are a scarce and expensive resource, and 
(2) a large backlog of applications requirements 
exist in a typical MVS installation. While soft
ware performance engineering can easily be shown to 
be high ly cost-e ffect ive over the life of an 
application, it is perceived as requiring more 
personne I and more deve lopment time. In many if 
not most development efforts, especially where 
considerable tuning is required, this is not true. 
Nonetheless, this misperception hampers the accep
tance of the process. 

It should be noted that the other aspects of 
software performance engineering, such as those 
concerned with interfacing applications directly to 
the other capacity management functions, have not 
been explored in any significant manner. It would 
appear they could be solved in some form amenable 
to productization. The history of the growth of 
capacity management functions corresponds closely 
with the general availability of product., to 
support functions. The likelihood then is that 
once such products become available, these other 
aspects will quickly become important. 

Another area of software performance engineering 
that would benefit from the availability of 
additional software product tools is applications 
tuning. In the earliest days (circa 1970), such 
tools were able to lead quickly and easily to quite 
significant improvements in most batch applica
tions. However, these tools have not been extended 
and adapted to current software as well as could 
have been hoped. Properly upgraded capabil ities 
of this type would be of direct value to the per
formance management area. They would also identify 
coding methods and styles which have pos';.tive and 
negative impacts on response time and service. 
This in turn would lead to enhanced awareness of 
the value of software performance engineering in 
the applications development area. 



ON THE ISSUE OF INSULARITY 

The presentation of this collection of survey 
papers at FJCC '86 is to a large extent a direct 
response to, and in support of, Ferrari's recent 
paper entitled "Considerations on the Insularity 
of Performance Evaluation". (FERRA86) In it 
Ferrari observes that the topics of performance 
evaluation (here called capacity management) have 
primarily evolved outside of the academic disci
plines of computer science and software engi
neering. He also points out that in general there 
is a great lack of academic interest in the quanti
tative concepts' and methods exemplified by the 
field of capacity management. He then argues this 
is no longer an acceptable state of affairs, both 
because scientific and engineering disciplines are 
classically quantitative, and because the quanti
tative properties of computer-based systems are of 
great concern in all major projects. Ferrari also 
fully recognizes that such quantitative concepts 
and methods cannot be treated as a separate disci
pline. Rather, they need to .be permeated into the 
very fabric of both computer science and software 
engineering. Finally, \ Ferrari suggests several 
areas of both research and action to assist and 
support the process of fully integrating capacity 
manageme'nt with the academic disciplines. 

Ferrari's paper c loses with the statement that a 
small group of people have kept" ... the esoteric 
cult of performance' evaluation. . alive but 
relatively secret for twenty years." While true 
with regard to the academic community, it is untrue 
in the context of the community of capacity manage
ment professionals. Thus, an anomalous and, as 
Ferrari argues, perhaps unique situation has 
deve loped. A strong and vigorous profess ion 
exists, it is deeply wedded to quantitativeness and 
scientific empiricism, and it is \ without repre
sentation or support in the corresponding academic 
disciplines. 

It would perhaps be easy to argue that this con
dition has arisen due to the "insularity" of either 
or both groups, and to a certain extent these 
arguments would carry a ring of truth. Still, the 
existence of the thriving professional society, 
CMG, with a rich technical literature certainly 
implies openness. Beyond that, CMG's highest 
award, the A. A. Michelson Award, celebrates the 
famous experimental physicist and thereby sets his 
accomplishments in science as a model for the 
capacity management professional. Moreover, the 
1985 award winner was Dr. K. M. Chandy, an aca
demician who, in his acceptance speech, spoke on 
the same basic issues as Ferrari. So the academic 
community is in fact represented in and recognized 
by the CMG community. What then are some of the 
problems? 

The focus of attention of capacity management has 
been and is large IBM systems under MVS, and 
such systems are not easily learned nor accessed by 
academicians. Second, the major topics have been 
systems tuning, capacity planning, and other 
production oriented concerns. Again, these are not 
areas academicians would normally become involved 
in. Products, often specialized to MVS and MVS 

749 

application systems, playa major role in the 
basic'activities of a capacity management pro
fessional. Although a few academics have been 
involved in the design of such products, products 
are not generally transportable to the systems, 
such as UNIX, which are favored in the universi
ties. Even if they were, the production orienta
tion of most of them would render them useless and 
uninteresting. Finally, as Ferrari points out, art 
is fun, but scientific empiricism is often hard, 
tedious work. The game must be worth the candle, 
and little in the way of financial, intellectual, 
or "fashionable" support or reward is available to 
academicians who venture into this area. 

In the author's op1n10n, part of the solution to 
dissolving the insularity Ferrari observes is to 
recognize that the types of problems of interest to 
the academician and to the practicing capacity 
management professional only appear to be quite 
different. There are many instances where great 
commonality of interest exists. For example, 
as Ferrari again correct ly argues, practice would 
benefi t greatly from improved theory. In the 
author's opinion, the direction and form of the 
required theory must relate to the needs of prac
tice as, for example, the general problem of 
quantitative work load characterization. Such 
work clearly would, and undoubtedly will, lie at 
the heart of a discipline of software performance 
engineering. While other examples can easily be 
given, perhaps it is simplest to say that a part of 
the solution to bringing the practical and the 
academic disciplinea together is to recognize where 
and in what manner their interests overlap. 

To be turned into reality, commonality of interest 
needs to be turned into a commonality of importance 
and support. This part of the solution involves 
many things, but the most important is simply to 
develop proper 'funding sources and intellectual 
acceptance and support within the academic com
munity. Opening much broader and meaningful lines 
of communication between academics and prac
t1t10ners, perhaps initially through professional 
society activities, would be important, too. But 
of· the most basic importance, it will take people 
to make all of these things happen. It is to be 
hoped that Ferrari's paper, and this set of FJCC 
papers, will encourage the necessary personal 
commitments in both communities. 

REFERENCES 

A. Conference proceeding references in this paper 
and other papers in the FJCC Capacity Manage
ment sessions may be obtained from: 

(1) CMG Proceedings: 

The Computer Measurement Group, Inc. 
6397 Little River Turnpike 
Alexandria, VA 22312 
(703) 354-3306 



(2) ICCCM and ICIM Proceedings: 

Institute for Information Management, Inc. 
The Pruneyard Tower, Suite 230 
1901 South Bascom Avenue 
Campbell, CA 95008 
(408) 559-6911 

B . Th e 0 the r pap e r sin the F j C C '86 Cap a cit y 
Management sessions are: 

BUZE86 

HOWA86 

L086 

SMITHB86 

SMITHC86 

Buzen, J. P., "An Overview of 
Performance Prediction in MVS 
Systems and SNA Networks" 

Howard, P. C., "The Evolving Role 
of Software Products in Capacity 
Management" 

Lo, T. L., "The Evolution of 
Workload Management in the Data 
Processing Industry: A Survey" 

Smith, B. J., "A Survey of the 
State of the Art and Practice 
in I/O Subsystem Modeling and 
Analysis" 

Smith, C. U., "The Evolution of 
Software Performance Engineering: A 
Survey" 

(Refer to these papers for extensive bib
liographies on the corresponding subjects.) 

C. References in this paper, other than those 
above, are: 

FERRA86 Ferrari, D., "Considerations on 
the Insularity of Performance 
Evaluation", IEEE Transact ions on 
Software Engineering, June 1986. 

KOLE74 Kolence, K. W., "Computer Plan
ning and Control", 1974 Inter
national Systems Meeting, Associa
t ion for Systems Management. 

KOLE76 Kolence, K. W., "An Introduction 
to Software Physics: The Meaning of 
Computer Measurement", Institute 
for Software Engineering (now the 
Institute for Information Manage
ment), Campbell, CA, 1976. 

KOLE85 Kolence, K. W., "An Introduction 
to Software Physics", McGraw Hill, 
New York, 1985. 

SMITHC/UP Smith, C. U., "Applying Synthesis 
Principles to Create Responsive 
Software Systems" (unpublished as 
of 7/1/86). 

750 



AN OVERVIEW OF PERFORMANCE PREDICTION IN MVS SYSTEMS 
AND SNA NETWORKS 

Dr. Jeffrey P. Buzen 

BGS Systems, Inc. 

ABSTRACT 

Analytic models based on the theory of 
queueing networks are used extensively in 
capacity planning applications involving 
mainframe computer systems. The 
mathematical theory which provides the 
backbone for such models has been extended 
recently to deal with SNA based 
telecommunications networks. This paper 
surveys the use of analytic models in both 
host and network capacity planning. Some 
of the important differences between 
analytic queueing models for host systems 
and telecommunications networks are then 
discussed. Finally, the paper reviews the 
operation of relevant SNA mechanisms 
including polling, half and full duplex 
protocols, slowdown mode, and the 
parameters MAXIN, MAXOUT and PASSLIM. 

INTRODUCTION 

The problems cau~ed by an overloaded data 
center are all too familiar to many users. 
As workloads grow, response times for 
online applications can increase dramati
cally, creating numerous difficulties. 
These include long lines at automated 
banking machines, sluggish response for 
order entry and customer information 
systems, and reduced productivity among 
programmers, data entry clerks and word 
processing personnel. 

The process of planning hardware upgrades 
to avoid such overloads is generally 
referred to as capacity planning. 
Although it is an essential function, 
capacity planning is not an easy task. One 
problem is that the processing demands on 
most data centers are continually varying 
and shifting. In addition, evaluating 
alternative upgrade strategies has become 
substantially more difficult as systems 
have increased in complexity. For example, 
it is not easy to determine whether a 
faster CPU, more processor storage, or an 
additional telecommunications line 
represents the most cost-effective 
solution to an overload that is expected 
to arise three months in the future. 

CH2345-7j86jOOOOj0751$01.00 © 1986 IEEE 
751 

Despite these difficulties, every data 
center manager does -- in fact -- employ 
som~ method for dealing with the capacity 
planning process. The simplest but least 
satisfactory approach. is to be purely 
reactive: that is, to wait until a 
serious problem arises and then react by 
ordering additional hardware. This 
creates obvious problems such as 
disrupting normal business operations and 
frustrating both external customers and 
internal users. In addition, management 
must still address the important technical 
problem of deciding exactly what hardware 
is required to resolve an existing 
overload condition. The simplest approach 
here is to rely purely on intuition and 
experience. However, as already noted, it 
is difficult for human intuition to keep 
pace with increasing system complexity. As 
a result, relying on intuition can become 
a costly trial and error process that 
generates overexpenditures in certain 
areas as well as further delays in 
restoring satisfactory performance. 

One obvious way to improve the capacity 
planning process is to employ predictive 
techniques that can indicate: 1) how much 
longer a system can operate before an 
upgrade is required; and 2) what the most 
cost-effective upgrade will be at that 
time. Since response time is the primary 
indicator of system performance in most 
installations, predictive techniques 
employ~d for capacity planning must 
provide information about response time. 
Queueing theory is a branch of mathematics 
that deals directly with the prediction of 
response times, and as a result queueing 
models have become important tools for 
capacity planning. Before discussing 
queueing models in more detail, it is 
useful to present an overview of the major 
response time components in MVS/SNA 
systems. 

MANAGING RESPONSE TIMES IN HOSTS AND 
NETWORKS 

As shown in Figure 1, the response time 
for a typical transaction can be divided 
into three major components. The first, 



inbound network response time, is the 
length of time needed for the user's 
transaction to travel from a remote 
terminal to the host computer. Host 
response t'ime, the second component, is 
the time required to process the 
transaction at the host. Finally, 
outbound network response time is the time 
necessary to transmit the transaction 
results back to the end user. 

In many organizations, responsibility for 
maintaining acceptable network response 
time (inbound and outbound) is assigned to 
the manager of the telecommunications 
department. The data processing manager 

Inbound Ne1work Response Time 

Outbound Network .Response Time 

Figure 1: The Components of On-Line Response Time 

is then. responsible for maintaining 
acceptable host response time. 
Conceptually, this separation of 
responsibility is appealing because of the 
clean hardware interface and reasonably 
clean software interface between the host 
computer and the network.. Furthermore, 
the substantial quantity of specialized 
information needed to manage the host 
computer and the communications network 
can be separated under this scheme, 
considerably reducing the complexity of 
the overall management problem. 

Despite the advantages of dividing the 
responsibility for host and network 
response time, it must be remembered that 
the end useL of an online application sees 
no such separation. The user is concerned 
only with total response time (inbound 
plus host plus outbound) and is satisfied 
only if the sum of the three components 
meets expectations. 

Traditionally, total response time is 
controlled by establishing formal or 
informal "service contracts" between the 
host data processing department and the 
network management department. For 
example, the host data processing 
department might commit to providing a two 
second host response time for a particular 
class of order entry transactions. Based 
on the assumption that this will be true, 

752 

the network management department can 
then configure its telecommunications 
lines and network processors to meet the 
total response time requirements of the 
remote offices that it serves. At the 
same time, the host data processing 
department can plan its hardware and 
software upgrades to meet the two-second 
requirement as the total load increases. 
This host oriented planning can be done 
wi thout concern for network response 
time. 

Although there are several advantages to 
this division of responsibility, there are 
certain disadvantages as well. 
Specifically, without an overall view of 
host/network interaction, time and effort 
can be wasted trying to optimize the wrong 
component. For example, rather than 
adding higher speed lines to handle 
increased traffic from a distant city', a 
more economical approach may be to reduce 
host response time by increasing the speed 
of the paging subsystem. Such trade-offs 
are difficult to see when the 
responsibilities for telecommunications. 
and host capacity planning are assigned to 
separate organizations. . 

Another problem with dividing the 
responsibility is that certain 
interactions between host and network work 
loads may be hidden. For ~xample, as the 
number of remote users lncreases, the 
network traffic and host processing loads 
increase, and there may be feedback 
effects resulting from the interaction and 
interdependencies of the network and host 
system. These effects can be difficult to 
account for without direct links between 
the models used for host and network 
capacity planning. 

A further consequence of the traditional 
approach to capacity planning is that 
advances in the analysis techniques of one 
area may not be fully communicated to the 
other. The evolution of performance 
modeling tools during the past five years 
is a case in point. 

PERFORMANCE MODELING 

A performance model allows the capacity 
planner to assess how performance will be 
affected by changes in a system's external 
workload and internal hardware and 
software components. For example, a model 
can be used to predict the effect on 
response time if the transaction volume 
from a remote site increases by 75 percent 
and a faster host CPU or telecom
munications line is installed. 

Figure 2 illustrates a very simple 
queueing model known as the single server 
queue. It is assumed in this model that a 
stream of "customers" are arriving at the 



"server", which is represented by the 
circle in Figure 2. Each customer 
requires a certain amount of processing or 
"service time" at the server. If a 
customer arrives at a time when the server 
is idle, the customer receives service 
immediately. Otherwise, the customer 
joins the queue of waiting requests, which 
is represented by the rectangle in Figure 
2. When the server completes processing 
for an individual customer, the queue is 
examined; if there are customers waiting 
at this point, one of them is selected and 
is immediately placed in service. 

SERVER 

QUEUE 

Figure 2 
Single Server Queue 

One of the most important quantities that 
analysts consider when analyzing a single 
server queue (or almost any queueing 
model) is the response time of a typical 
customer. Response time includes both the 
time spent by a customer while waiting in 
the queue and the time spent receiving 
service. In general, if server utilization 
is low (i.e., if the server is idle much 
of the time), the majority of arriving 
customers will not have to wait at all in 
the queue. Thus, average response time 
should be approximately equal to service 

Response 
Time 

/ /e 
~e 

e_e_e--e Server 
e __ e __ e-- Utilization 
I 

o 20% 40% 60% 

Figure 3 
Response Time Function 

80% 

time. As server utilization increases, it 
becomes more likely that arriving 
customers will encounter a busy server. 
This will increase queueing delays, which 
in turn will increase response time. 
Figure 3 illustrates the way response time 
typically varies as the utilization of the 

753 

typically varies as the utilization of the 
server increases from 0% to 100%. 

Note that the curve in Figure 3 has a 
steadily increasing slope. Thus, the 
increase in response time that uccurs when 
server utilization changes from 30% to 40% 
will always be less than the corresponding 
increase for a 40% to 50% change in 
utilization, and this in turn will be less 
than the corresponding increase for a 50% 
to 60% change in utilization. 

Many performance analysts try to make 
predications of future response time by 
generalizing upon historical observations 
of the relationship between previous 
changes in utilization and their associated 
effects on response time. For example, an 
analyst might note that last year 
utilization increased by 10%, and response 
time increased by 15%. If another 10% 
increase in utilization is anticipated next 
year, the .analyst might conclude that there 
will be another 15% rise in response time 
as well. 

The steadily increasing slope of the 
response time function implies that this 
intuitively plausible procedure will almost 
always underestimate actual response time. 
The errors that arise when applying simple 
intuitive reasoning to response time 
prediction provide one of the principal 
motivations for the development of queueing 
theory. The importance of obtaining 
accurate response time estimates explains 
why queueing theory is now such an 
indispensible tool for capacity planners 
and computer performance analysts. 

MODELS FOR MAINFRAME COMPUTER SYSTEMS 

When developing a model of a mainframe 
computer system, the single server queue 
illustrated in Figure 2 can be regarded as 
a basic building block which is used many 
times in the overall model. For example, 
to model the CPU in a uniprocessor (UP) 
system, analysts generally use a single 
server queue in which the "server" 
represents -the CPU itself, the "customers" 
represent programs that have instructions 
ready to execute, and "service time" 
corresponds to the amount of time it takes 
the CPU to execute these instructions for 
each program. 

Similarly, to model an I/O device such as a 
disk or drum, an analyst would use another 
single server queue in which the "server" 
represents the I/O device, the "customers" 
represent programs that have I/O operations 
(reads or writes) ready to be initiated, 
and "service time" corresponds to the 
amount of time it takes the device to 
perform the I/O operation. 

In typical computer systems, an arriving 



program begins by requesting a burst of 
processing at the CPU. The initial CPU 
processing request completes when the 
program generates an I/O request such as a 
read operation to a data file or a page-in 
request to a page data set. At this 
point, the program proceeds to. the 
appropriate I/O device where it will wait 
in a queue (if necessary) and then perform 
I/O processing. Once the I/O transfer is 
complete, the program returns to the CPU 
queue and begins the next CPU-I/O cycle. 

ARRIVING 
PROGRAMS 

1/0 
DEVICES 

Figure 4 
Central Server Model 

Figure 4 illustrates the overall flow of 
programs (customers) in this model. Since 
the model contains a network of 
interconnected queues and servers, it is 
referred to generically as a queueing 
network model. In particular, Figure 4 
presents an example of the "central 
server" queueing network model [9,10], 
which has proven extremely useful in 
analyzing mainframe computer systems. It 
should be noted, of course, that in order 
to provide satisfactory analyses of 
complex MVS systems, the basic central 
server model in Figure 4 must be extended 
in a number of ways. The next section of 
this paper surveys some of these 
extensions. 

MVS MODELING CONSIDERATIONS 

One important extension to the central 
server illustrated in Figure 4 is the 
representation of multiple customer 
classes (multiple workloads). The 
discussion in the preceding section 
implicitly assumed there is a single class 
of customers (programs) circulating 
through the network. This class is 
represented by a set of parameters that 
represent the average processing demands 
that programs make at each server as they 
circulate. Suppose, however, there are 
two or more workloads being processed by 
an MVS system (e.g., batch, TSO, IMS, 
CICS) . In this case a single workload 
model could be used to approximate 
performance, but the set of parameters 
that represent the processing demands at 

754 

each server would be averaged across all 
workloads. In addition, predicted 
response times and throughput rates could 
only be provided for the single (average) 
workload. This is clearly unacceptable in 
cases where separate performance 
objectives are defined for batch, TSO, 
IMS, CICS, etc. 

To provide this additional detail, the 
single class queueing network solutions 
developed by Jackson [22,24] were extended 
by Baskett, Chandy, Muntz and Palacios [5] 
to deal with multi-class (multiple 
workload) networks. Shortly thereafter, 
the computational algorithms originally 
developed by Buzen [9,10J for single class 
models were extended by Reiser and 
Kobayashi [28] to handle multi-class 
models. The development of alternative 
algorithms that provide improved numerical 
stability in certain cases or improved 
speed through the use of various 
approximations continues to be an active 
area of research [2, 3, 15, 17, 25, 29, 
30, 31, 32]. Additional papers on this 
subject will appear soon in the Journal of 
the ACM and the ACM Transactions on 
Computer Systems. 

Another important extension needed for 
realistic models of MVS systems is an 
analysis of the delays programs experience 
before entering memory. Note that the 
"memory queue" is different from the queue 
at a CPU or I/O device since memory is not 
an active server that processes a program 
for a short burst and then allows the 
program to proceed to another server. 
Instead, memory is a "passive resource" 
that a program must acquire before 
proceeding to the active job mix and being 
allowed to compete with other jobs for 
CPU's, I/O devices, and other conventional 
servers. 

Memory queueing is beyond the scope of the 
exact solutions developed ln [24J and 
[5]. However, a number of approximations 
have been developed based on the idea of 
decomposition. Brandwajn [7J presented 
one of the earliest analysis of this type. 
Work by Courtois [18] and Chandy, Herzog 
and Woo [14] clarified some of the 
theoretical assumptions involved, and 
subsequent papers by Menasce [27J and 
Lazowska and Zahorjan [26] proposed 
additional approximations to deal with 
multi-class extensions. 

Other problems that must be addressed to 
develop realistic models of MVS systems 
include the modeling of preemptive 
priority scheduling at CPU's and the 
modeling contention within the I/O 
subsystem for channels, control units and 
heads of string. In general, these 
problems have been addressed by analyzing 
individual servers or sets of servers in 



these solutions into complex network 
models via transformational techniques 
[1]. The use of operational analysis [11, 
19] has facilitated the development of 
some of these approximations and also 
provided new theoretical insights into why 
queueing models work well in practice 
[33] . 

It is important to note that the end user 
of an MVS modeling tool is insulated from 
these mathematical details in the same way 
that a programmer using a high level 
language is insulated from machine 
language instructions. Thus, the 
literature on the use of analytic models 
in capacity planning has shifted from 
early papers stressing basic feasibility 
[12] to more recent descriptions of how 
the models are used to solve everyday 
problems [6,16,20,21,23]. 

MODELS FOR TELECOMMUNICATIONS NETWORKS 

The basic objectives of a queueing model 
for a telecommunications network are to 
predict the response time for various 
classes of messages: in particular, for 
"inbound" messages which originate at user 
terminals and are destined for the host 
computer system, and for "outbound" 
messages which originate at the host 
computer system and are destined for a 
user terminal. This problem would appear 
to be well suited for a queueing theoretic 
analysis since it involves response time 
prediction for customers that correspond 
naturally to inbound and outbound 
messages. 

Having identified the customers, the next 
step is to specify the servers, the 
service times, and the sources of queueing 
delay. Consider a very simple case in 
which a set of user terminals communicate 
with a host system over a single 
transmission line as shown in Figure 5. 

HOST 
FRONT 
END 
PROCESSOR 

FigureS 

COMMUNICATION LINE 

TERMINALS 

Simplified Layout of a Communication Line 

Assume that only one message can be in 
transmission on the line at any time. In 
this case the communication line 
corresponds to the server in a single 
server queue, messages correspond to 
customers, and the service time for a 
customer corresponds to the time it takes 

755 

to transmit the associated message from 
the terminal to the host or vice versa. 

In this simple case, service time is a 
reasonably straightforward function of 
total message length (both data and 
overhead characters) and the bandwidth of 
the line (the number of characters per 
second the line can transmit) . 
Essentially, service time in this case is 
equal to message length divided by 
bandwidth. 

In reality, queueing models of 
communication lines are seldom this 
simple. An important complication arises 
because of the nature of inbound messages. 
These messages are prepared at terminals, 
where they must wait until the line 
becomes available for the next trans
mission. Since these messages are not all 
in one centralized location, it is 
difficult to arrange things so the "next" 
message begins transmission as soon as the 
transmission of the current message 
completes. In fact, it even takes some 
special synchronization mechanisms to 
prevent one message from attempting to use 
the line at a time when another message is 
already in transmission. 

Note that these synchronization and 
coordination problems do not arise in the 
central server queueing model shown in 
Figure 4. This is because each queue in 
the central server model contains only 
local (rather than remote) customers. 
Thus it is easy for the software that 
manages each queue to determine exactly 
when one customer completes a service 
request, and to dispatch the next customer 
waiting in the queue without significant 
delay. 

In contrast, the queue of inbound messages 
waiting for a communication line contains 
a geographically distributed set of remote 
customers. Any analysis of such a queue 
must account for the significant delays 
that occur between the completion of one 
service request and the initiation of the 
next. Because they include queues with 
remote customers, the mathematical models 
developed for telecommunications networks 
differ in important respects from the 
central server models used to analyze 
mainframe computer systems. 

Systems Network Architecture, or SNA, is 
the hardware and software architecture 
employed in most IBM communications 
networks. Because it must support 
different types of communications 
hardware, SNA supports several alternative 
families of algorithms for managing 
message traffic between remote terminals 
and host computers. The next few sections 
of this paper discuss some of the more 
important algorithms and architectural 



concepts incorporated into SNA. The 
discussion will consider basic 
functionality as well as implications for 
performance modeling. 

EFFECT OF POLLING 

A number of techniques exist for 
controlling a transmission line to prevent 
attempts to transmit two or more messages 
at the same time, and to allow the "next" 
queued message to begin transmission once 
the line becomes free. The technique 
selected for use in SNA networks is known 
as polling. 

To implement the SNA polling algorithm, a 
front-end processor (e.g. 3705) is placed 
between the transmission line and the host 
computer as shown in Figure 5. 
Conceptually, this processor tests the 
status of each terminal on the line in 
succession by sending a test message (a 
poll) to each. When a terminal receives a 
poll, it responds by either transmitting a 
message (if it has one ready) or by 
transmitting a "null response" indicating 
that it has no message ready. Once the 
front end processor has received a response 
from one terminal, it proceeds to the next 
terminal on the list. When the end of the 
list is reached, the polling algorithm in 
the front end processor returns to the 
beginning of the list and starts the next 
polling cycle. The list that controls the 
polling algorithm is known as the service 
order table. 

Note that the simple queueing model in 
Figure 2 is no longer directly applicable 
since the sending of polling messages and 
null responses takes additional time, thus 
introducing additional delays between 
successive message transmissions. Suppose 
the service time per message is increased 
to account for these additional delays. 
That is, suppose the delays are added to 
the "basic message transmission time" in 
order to create a larger "effective message 
transmission time" for use in the model in 
Figure 2. 

At a minimum, the additional delay is the 
time to transmit and propagate one polling 
message. However, there could also be 
several other polling messages, each 
followed by a null response, before an 
actual message is finally sent. Moreover, 
the number of null responses between actual 
messages will vary as a function of the 
total load on the line. That is, as the 
load increases, the expected number of null 
responses between actual messages will 
decrease. All these considerations make it 
difficult to determine the correct 
"effective service time" to use for the 
transmission line (the server) when 
attempting to apply the simple queueing 
model of Figure 2. 

756 

Figure 6 
Position of Cluster Controllers 

EFFECT OF CLUSTER CONTROLLERS 

There are many other factors to consider 
when developing realistic models of SNA 
communications networks. For example, 
Figure 5 is somewhat simplified in that it 
shows each user terminal connected 
directly to the transmission line. In 
fact, a set of terminals is typically 
connected to single cluster controller, 
which is then connected to a line as shown 
in Figure 6. 

The point here is that the polling 
messages generated by the front end 
processor are, in fact, sent to the 
cluster controllers rather than the 
individual terminals. This is more 
efficient since a single poll can now be 
used to test the status of several 
terminals. Hence, there will be less 
polling overhead and fewer null responses 
in each complete polling cycle. However, 
there is now an additional source of delay 
since the messages queued at terminals on 
the same controller must be transmitted 
sequentially. Thus, one of the messages 
at the controller will begin transmission 
as soon as poll is received! but all other 
messages present will experience 
additional delays prior to transmission. 
These delays are comparable in nature to 
the simple queueing delays in Figure 2, 
but must be combined with the polling 
delay described above for a complete 
analysis. 

OUTBOUND MESSAGES 

The original motivation for polling has 
just been presented for the case of 
inbound messages. In principle, outbound 
messages are simpler to deal with since 
they are queued together in the front end 
processor and are controlled by an 
algorithm executing on that processor. In 
SNA networks, this algorithm is 
conceptually similar to the inbound 
polling algorithm in that use of the 
transmission line is allocated to messages 



destined for each cluster controller by 
cycling through a fixed list (service order 
table) . However, because the queue of 
outbound messages resides locally in the 
front end processor, the time to send polls 
and null responses is negligible. Thus, 
outbound message traffic is more naturally 
treated as an ordinary queueing process 
with local customers of a type illustrated 
in Figure 2. There are, however, a number 
of complicating factors, some of which are 
discussed below. 

HALF AND FULL DUPLEX LINES 

The transmission line connecting terminals 
with a host commputer must, in general, be 
able to handle both inbound and outbound 
messages. A half duplex line can only 
handle one message at a time, and thus must 
switch back and forth between inbound and 
outbound traffic, further complicating the 
polling processes described above. 

In the case of a full duplex line, there 
can be one inbound messsage and one 
outbound message in transmission at the 
same time. This would appear to decouple 
the inbound and outbound traffic, allowing 
each to be analyzed separately. In fact, 
things are not this simple because there 
are interactions between inbound and 
outbound traffic even on full duplex 
lines. 

One obvious interaction arises because of 
the interference between polling messages 
and normal outbound messages. Polling 
messages generated by the inbound polling 
process are transmitted on the same 
transmission lines as ordinary outbound 
messages. Thus, a model of the inbound 
polling process must account for the delay 
incurred when a polling message is being 
transmitted on the outbound message line. 
Similarly, a model of the outbound message 
process should include the effect of 
additional load due to polling messages. 
Some of the more subtle interactions 
between inbound and outbound polling 
processes are discussed below. 

EFFECT OF MAXOUT, MAXIN AND ACKNOWLEDGEMENT 
MESSAGES 

Data integrity considerations make it 
essential that all messages sent on a 
transmission line be checked for 
correctness at their destination. If the 
message passes appropriate tests (e.g., 
checksum OK) , an acknowledgement is 
transmitted to the message originator. If 
there is a problem, a negative 
acknowledgement may be sent to request 
message re-transmission. Messages will 
also be re-transmitted automatically after 
a time-out period if no response is 
received by the message originator. 

757 

Complete messages in SNA networks are 
divided into a series of fixed length 
packets or frames (BLU' s) prior to 
transmission. Each frame is tested for 
correctness at its destination, but to 
reduce overhead there are provisions for 
accumulating a batch of test results and 
sending only one acknowledgement per 
batch. The number of frames that are 
accumulated between each acknowledgement 
is specified by the parameters MAXIN and 
MAXOUT, which are always greater than or 
equal to one. MAXIN controls inbound 
messages, and MAXOUT controls outbound 
messages. 

Suppose a total of MAXOUT frames have been 
sent to a cluster controller. No 
addi tional outbound frames will be sent 
until an acknowledgement is received. 
However, the acknowledgement represents an 
inbound message, and it cannot be 
transmitted by the cluster controller 
until the inbound polling process reaches 
it. Since the inbound and outbound 
polling processes operate asynchronously 
in a full duplex line, the outbound 
process typically experiences a delay at 
this point while it waits for the inbound 
process to catch up. In addition, the 
inbound acknowledgement messages generate 
overhead that interferes with the normal 
inbound message traffic. These factors 
must be included in any complete analysis 
of full duplex SNA networks. 

EFFECT OF PASSLIM 

Suppose a very long outbound message 
(comprised of many frames) is queued for 
transmission in the front end processor. 
If the entire message is transmitted when 
the appropriate entry is reached in the 
service order table, the line could be 
tied up for an extended period of time. 
To prevent this, the parameter PASSLIM is 
used to limit the number of outbound 
frames transmitted to a cluster controller 
each time it is encountered in the service 
order table. That is, once a total of 
PASSLIM frames have been transmitted, the 
polling process moves on to the next entry 
in the service order table even if there 
are more frames to send. 

PASSLIM also limits the total number of 
frames that can be transmitted to all the 
terminals attached to a single cluster 
controller each time an entry for that 
controller is encountered in the service 
order table. For further analysis of 
PASSLIM, see [34]. 

It should be noted that an additional 
level of control is available in SNA since 
the number of times each controller 
appears in the service order table is user 
specified. Thus, if there are three 
entries for a given controller, the 



maximum number of outbound frames that can 
be transmitted to that controller per 
complete polling cycle is three times 
PASSLIM. Multiple entries also affect the 
inbound polling process, but in this case 
the main consequences are a reduction in 
polling delays prior to message 
transmission and an increase in apparent 
polling frequency. 

EFFECT OF PAUSE 

Suppose a complete scan of all the entries 
in the inbound service order table results 
in very few (or no) inbound messages. 
This indicates that line traffic was light 
during that polling cycle. Assuming that 
line traffic will remain light in the near 
future, it is not essential to begin a new 
polling cycle immediately. 

The advantage of "pausing" before 
initiating the next polling cycle is that 
the front end processor's load will be 
reduced. This is helpful if the front end 
processor has other work to do, such as 
polling other lines for inbound traffic or 
managing the flow of outbound traffic. 

The SNA paramater PAUSE is used to achieve 
this result. If the inbound scan time 
falls below the value of PAUSE, an 
appropriate delay is automatically 
introduced so that the time between 
successive scan cycles never falls below 
PAUSE. Proper setting of the PAUSE 
parameter is important for good SNA 
performance [34]. 

EFFECT OF SLOWDOWN MODE 

The front end processor maintains buffers 
that are used to store messages waiting 
for outbound transmission to terminals or 
inbound transfer to the attached host. If 
line traffic is heavy, the buffers may 
fill up, making it impossible for the 
front end processor to accept additional 
inbound or outbound messages. 

When this point is reached, the front end 
processor will devote all its capacity to 
clearing out its buffers. In the case of 
SNA networks, the front end processor is 
said to enter SLOWDOWN mode. 

While it is in SLOWDOWN mode, the network 
will be unresponsive to users at terminals 
who are attempting to send new messages to 
the host. The additional delays that 
users experience at these times must 
clearly be considered when making a 
complete analysis of an SNA network. 

CONCLUSIONS 

The theory of queueing networks has 
advanced substantially in the past fifteen 
years. Much of the impetus for this 

758 

expansion has come from the practical need 
to develop realistic models of mainframe 
MVS systems. With approximately one 
thous~nd MVS sites now using analytic 
~odel1ng tools for capacity planning, it 
1S cl~ar tha~ the gap between theory and 
pract1ce has 1n fact been bridged. Recent 
advances in analytic models for SNA 
networks have enabled network capacity 
planners to take advantage of comparable 
performance prediction tools. 

REFERENCES 

[1] S.C. Agrawal, J.P. Buzen and A.W. 
Shum, "Response time preservation: a 
general technique for developing 
approximate algorithms for queueing 
networks", Proc. 1984 ACM Sigmetrics 
Conference, Cambridge, MA, pp 63-77, 
Aug. 1984. 

[2] G. Balbo, S.C. Bruell and S. Ghanta, 
"The solution of homogeneous queueing 
networks with many job classes", 
Proc. of the International Workshop 
on Modeling and Performance 
Evaluation of Parallel Systems, 
Grenoble, France, pp 385-417, Dec. 
1984. 

[3] Y. Bard, "Some extensions to 
multiclass queueing network 
analysis." In M. Arato, A. 
Butrimenko, and E. Gelenbe (eds.), 
Performance of Computer Systems, 
North-Holland, 1979. 

[4] Y. Bard, "A model of shared DASD and 
multipathing", CACM 23,10, pp 564-
572, Oct.1980. 

[5] F. Baskett, K.M. Chandy, R.R. Muntz, 
and F.G. Palacios, "Open, closed, and 
mixed networks of queues with 
di fferent classes of customers", JACM 
22,2, pp 248-260, Apr. 1975. 

[6] J.W. Blaylock and S.c. Fisher, 
"Capacity planning on both Amdahl 470 
and Sperry 1100 systems using 
BEST/I", CMG' 84 Conference 
Proceedings, pp 215-222, Dec. 1984. 

[7] A. Brandwajn, "A model of a time-
sharing system solved using 
equivalence and decomposition 
methods", Acta Informatica 4,1, pp 11-
47, 1974. 

[8] A. Brandwajn, "Models of DASD 
subsystems: basic model of 
reconnection", Performance Evaluation 
1,3, pp 263-281, Nov. 1981. 

[9] J.P. Buzen, Queueing Network Models 
of Multiprogramming, Ph.D. Disserta
tion, Harvard University, May 1971. 

[10] J.P. Buzen, "Computational algorithms 
for closed queueing networks with 
exponential servers", CACM, 15,9, pp 
527-531, Sept. 1973. 



lll] J. P. Buzen, "Fundamental operational 
laws of computer system performance", 
Acta Informatica 7,2, pp 167-182, 
1976. 

[12]J.p. Buzen, "A queueing network model 
of MVS", ACM Computing Surveys, 10,3, 
pp 319-331 Sept. 1978. 

[13] J.P. Buzen and A. Bondi, "The response 
times of priority classes under 
preemptive resume in M/M/m queues", 
Operations Research 31,3, pp 456-465, 
May, 1983. 

[14]K.M. Chandy, U. Herzog and L.S. Wood, 
"Parametric analysis of queueing 
networks", IBM Journal of Research and 
Development 19,1, pp 50-57, Jan. 
1975. 

[15]K.M. Chandy and D. Neuse, "Linearizer: 
A heuristic algorithm for queueing 
network models of computing 
systems",CACM 25,2, pp 126-133,Feb. 
1982. 

[16]L.K. Chu, "BEST/1 modeling experience 
and credibility at Security Pacific 
National Bank", CMG' 84 Conference 
Proceedings, pp 494-505, Dec. 1984. 

[17]A.E. Conway and N.D. Georganas, "An 
efficient algorithm for semi
homogeneous queueing network models", 
Proc. 1986 ACM Sigmetrics Conference, 
Raleigh, NC, pp 92-99, May 1986. 

[18]P.J. Courtois,"Decomposability, inst
abilities and saturation in multi
programming systems", CACM 18, pp 371-
377, 1975. 

~19]P.J. Denning and J.P. Buzen, "The 
operational analysis of queueing 
network models", Computing Surveys 
10,3, pp 225-261, September 1978. 

[20] J. Dwyer, "Modeling large IMS systems 
using commercial analytic queueing 
model software products" , CMG' 84 
Conference Proceedings, pp 283-289, 
Dec. 1984. 

[21]E.M. Friedman, J.L. Rosenberg and D.A. 
Sheetz, "XA migration: predicting the 
performance impact using analytic 
models", CMG' 85 Conference 
Proceedings, pp 358-362,Dec. 1985. 

[22]W.J. Gordon and G.F. Newell, "Closed 
queueing networks with exponential 
servers", Operations Research 15, pp 
244-265, 1967. 

759 

[23]L.M. Greene, and J.J. Simon, 
"Establishing performance and 
capacity planning in a conversion 
environment", pp 452-458, CMG '85 
Conference Proceedings, Dec. 1985. 

[24] J.R. Jackson, "Jobshop-like queueing 
systems" , Management Science 1 0, pp 
131-142, 1963. 

[25] S.S. Lam, Y.L. Lien, "A tree 
convolution algorithm for the 
solution of queueing networks", CACM 
26, 3, pp 203-215 Mar. 1983. 

[26] E.D. Lazowska and J. Zahorjan, 
"Multiple class memory constrained 
queueing networks",Proc. 1982 ACM 
Sigmetrics Conference, pp 130-140, 
Aug.1982. 

[27]D.A. Menasce and V.A.F. Almeida, 
"Operational analysis of multiclass 
systems with variable multi-
programming level and memory 
queueing", Computer Performance 3,3, 
pp 145-159, Sept. 1982. 

[28]M. Reiser and H. Kobayashi, "Queueing 
networks with multiple closed chains: 
theory and computational algorithms", 
IBM J. of Research and Development 
19, 3 pp 283-294 May 1975. 

[29] M. Reiser, "Mean-value analysis and 
convolution method for queue
dependent servers in closed queueing 
networks", Performance Evaluation 
1, 1, pp. 7 -18 , 1981. 

[30]M. Reiser and S.S. Lavenberg, "Mean 
value analysis of closed multichain 
queueing networks", JACM 27,2, pp 313-
322, Apr. 1980. 

[31] C.H.Sauer, "Computational algorithms 
for state-dependent queueing net
works",ACM TOCS 1,1,pp 67-92,Feb. 
1983. 

[32]P.Schweitzer, "Approximate analysis 
of multiclass closed networks of 
queues", Proc. International 
Conference on Stochastic Control and 
Optimization, 1979. 

[33]R.Suri, "Robustness of queueing 
network formulas", JACM 30,3, pp 564-
594, July 1983. 

[34]A.K.Thareja, S.C.Agrawal, J.P. Buzen, 
D.E.Hall, R.W.McNitt, E.B. Petrovich, 
C. Zaiontz, "Impact of network 
parameters on the performance of 
single domain SNA networks", CMG XIV 
Conference Proceedings, Dec. 1983. 



A Survey of the State of Art and Practice 
I n liD Subsystem Modeling and Analysis 

Brian J. Smith 

International Business Machines Corporation 
General Products Division 

San Jose, California 

Abstract 

This paper presents a survey of I/O Subsystem Mod
eling practice as seen in large IBM mainframe in
stallations. It discusses state of the art 
techniques, 
techniques, 
practice. 

but focuses on real problems, real 
and discusses the gap between art and 

The planning problem for liD sUbsystems is a spe
cial case of the more general problem of system-wide 
capacity planning. Basically the problem is to 
predict the future behavior of a system from ob
servation of its current behavior. There are two 
subproblems: the capacity planning problem for a 
particular installation and the systemlsubsystem 
design problem. The two problems are related, but 
the differ with respect to workload characterization. 
A particular installation can, presumably, measure 
and characterize its workload. System design 
problems must deal with typical or average or rep
resentative workloads rather than an actual work
loads. Furthermore, the potential changes and 
variations in future workloads make the challange 
even greater for the system designer. 

The approach to capacity planning or 
systemlsubsystemdesign being described involves 
measurements of existing computer systems to de
termine workloads. Modeling of the hardware con
figuration explains the behavior observed in the 
measurements. There are two distinct parts to 
modeling computer systems: 1 ) the system model 
describing the hardware, configuration, and algo
rithms controlling the system; and 2) the workload 
characterization which is imposed on the basic 
model. A significant factor in this approach is 
validation of the model -- making sure that the 
hardware model and workload characterization ade
quately explain the current state of the system be
havior. 

One approach to capacity planning or design 
trade-off studies uses Monte Carlo simulation. The 
performance analyst creates a model to. simul.ate ~he 
detailed behavior of the hardware, drives It With 
workload descriptions and observes the system be
havior. There is one fairly well known, though not 
generally ·available, tool based on such a simulation. 

CH2345-7/86/0000/0760$01.00 © 1986 IEEE 
760 

It is called SNAPSHOT and described in [INGRA85]. 
Another approach is to use analytic queueing mod
els. CRYSTAL is a modeling tool based on queueing 
equations. There is a very readable discussion and 
comparison of CRYSTAL and SNAPSHOT in 
[INGRA85]. 

For liD subsystems, ,the models typically are based 
in simple queueing theory, though detailed simu
lation models work as well. If queueing theory is 
used to describe the behavior of the liD subsystem, 
then the behavior of the hardware is transcribed 
into the primitives of queueing theory, namely ar
rival rates and service times. Arrival rates fall into 
the category of workload description, so the hard
ware part of the models involve more or less detail 
about the service time distributions or the size of 
waiting rooms in the system. The model must in
clude such things as the number of liD devices, 
number of data transfer channels, algorithms which 
control the hardware, such as path selection algo
rithms and whether or not the liD devices use ro
tational position sensing (RPS). Other 
characteristics of the hardware such as the access 
times of the liD devices must also be captured by 
the model. So the models are essentially collections 
of equations which describe the behavior (through
put and response time) of the hardware under 
various workload conditions. 

The workload 'is described in "units of work de
manded of the system. First is usually the access 
rate. Some queueing models derive access rates 
from other input assumptions (such as multipro
gramming level), but for most purposes we can as
sume the access rate for each device is an input 
assumption. The workload further includes such 
items as the number' of bytes of data to be trans
ferred (blocksize), and perhaps additional parame
ters involving seek times or other factors of 
interest. Estimates of these parameters for large 
IBM mainframe production systems can be found in 
[SMITH81] . 

The proportion of the access' rate to each device is 
a very interesting piece of the workload description. 
Expressed as a probability distribution vector, we 
call this the liD skew. Many of the examples in 
the literature assume a uniform arrival skew -
meaning all the devices do about the same amount 
of work. Of the input parameters for liD subsys
tems, few have as much influence on the answers 



as the skew. It is fortunate that the arrival skew 
is routinely reported by most system monitoring 
reports, unfortunate that real skews are so seldom 
studied. 

Many of the interesting articles in the literature 
focus on configurations, algorithms in the operating 
system, or microcode in pieces of the system. For 
example, multipathing considerations, RPS phenom
ena, and dynamic path reconnect are current topics 
of investigation. Cached DASD subsystems is an 
additional item of current interest. Performance 
models need to capture the operational character
istics of the microcode and data path ing implemen
tations in order to adequately distinguish one 
product design from another. 

Chapter 10 in the text by Lazowska [LAZOW84], 
provides a good introduction to I/O subsystem 
modeling. It discusses RPS phenomena, dynamic 
reconnect, and includes an introduction to cache 
modeling, as well. CMG '85 Conference Proceedings 
include a number of interesting case studies. Two 
which illustrate current topics are "Analysis of De
vice Level Select in IBM 3380 Disks" [BUZEN85] and 
"DASD Performance Analysis Using Modeling" 
[BERET85] . 

The text [LAZOW84] shows that analytic techniques 
are applicable to a broad range of problems in ca
pacity planning and system evaluation. The math
ematics has developed impressively, capturing the 
effects of several queueing disciplines and multiple 
classes of customers. These tech niques have been 
implemented in a number of packages, such as 
BEST/1 and CRYSTAL from BGS Systems, MAPS 
from Amdahl Corp., and CMF from Boole and 
Babbage. SNAPSHOT and DCA T are I BM internal 
tools with similar capabilities, and VMPPF is an IBM 
program for capacity planning in the' VM environ
ment. 

Simulation technology has also progressed over time. 
The IBM Research Queueing package (RESQ) is an 
example of a general simulation strategy with fea
tures particularly suited to the analysis of computer 
systems, capacity planning and system design 
questions [SAUER80]. 

After one develops a model of the hardware, the 
next step is to characterize the workload on the 
hardware. Workload parameters are usually esti
mated from software monitors. Examples of these 
monitors for large IBM systems' include RMF for 
MVS, VM MAP for VM, and DOS/PT. Additional 
data is sometimes available from key SUbsystem fa
cilities. For IBM products these include things like 
IMS Log, Database 2 Performance Monitor, and GTF 
Trace. Some applications lack adequate software 
instrumentation, which makes workload character
ization difficult. For a good discussion of these 
issues, I suggest "Establishing Performance and 
Capacity Planning in a Conversion Environment," 
by Greene and Simon [GREEN85]. 

If one reads the articles mentioned in this survey, 
it becomes clear that capacity planning tools are 
plentiful and powerful. There is good progress and 
capability in analytic modeling. If the problems are 

761 

important enough and too difficult for analytics, 
simulations can help provide the answers. Workload 
characterization is made feasible by software per
formance monitors. The goals and process of ca
pacity planning are well understood,. and are 
handled by several papers in the current session. 

Most importantly, complete packages are available 
to do the job. They extract workload information 
from a running system, build a model of the con
figuration, and validate the model and workload 
characterization against the measured data. The 
performance analyst can use the model to study 
changes in hardware and/or workload. This does 
not mean that all the problems are solved. The 
"what if" studies still require experience and insight 
by the analyst. The amount of data involved in 
capacity planning studies can be enormous. Data 
entry and data manipulation is a problem. The 
current tools for for handling such data and system 
information are epitomized by SAS and MICS 
[CHEN85]. They foreshadow fourth generation da
tabase and data manipulation tech niques. 

Finally the whole process suggests knowledge-based 
or expert systems. The proceedings of CMG '85 
have a representative collection of papers wh ich 
capture the current state of this development 
([ARTIS85], [HELLE85], [LEVIN85], and 
STROE85]). The essence of such systems is a 
combination of rules of thumb for good performance, 
combined with inferences based on the analysis of 
queueing models. Nevertheless, there is a consid
erable gap between what is possible and what is 
easy to do. [SMITH85] is an excellent dicotomy 
between the (largely unrealized) potential of the 
mathematical techniques and the problem of a 
friendly, flexible user interface. 

Facing the Challenge of Other Problems 

In the area of system/subsystem design, the diffi,... 
cult problems are a result of the long time frame· 
involved. Real and potential changes to hardware 
must be evaluated, along with changes in software 
to exploit new hardware or simply to offer better 
function. The performance analyst is required to 
extrapolate far enough into the future to see where 
the system is likely to break or bottleneck. The 
job is to effect a change to the system .design to 
avoid such s bottleneck. The system designer must 
stretch the capabilities of existing systems, thus 
establishing new rules of thumb for the system. 
This implies that a knowledge-based .system for ca
pacity planning will have to assimilate new rules 
over time. 

Predictions as much as 2-5 years in the future rely 
on properly characterizing the workload and how it 
may be changing. From the perspective of a system 
designer, the problem is predicting the change in 
the workload. To be precise; the job is to design 
the change in the workload resulting from a change 
in the system design. Even simple modifications like 
a different number or type of devices in the I/O 
SUbsystem have potentially large impacts on the 
workload. As an example, consider a recent prob
lem in capacity planning. What happens to the av
erage seek time in an I/O subsystem when an 



installation migrates to anew, larger capacity de
vice? It happens that there is nearly enough 
measurement data to predict the answer to this 
question, so it is surprising how many studies make 
simplyfing assumptions only to arrive at partial 
conclusions. This particular question is studied 
from real data in "The Impact of 2-to-l Volume 
Folding on Seek Time" [MCNUT85]. 

But I/O subsystem workloads have many more ele
ments in their characterization than seek times. 
There is connect time, disconnect time, including 
latency and RPS misses, as well as seek time. 
There is the access skew to the devices. For 
cached DASD there are hit. ratios, read to write 
ratios. Even if you measure them in your current 
subsystem, how do you predict what happens to all 
of them when you make a change? 

Another technique is to hold many study parameters 
arbitrarily constant wh ile we change a few to study 
consequences. Th is specifically denies the possible 
interactions of several simultaneous changes. All 
this works well enough for capacity planning and 
its time frame, but. the system design problem, with 
its longer time horizon, requires that more effort 
be spent to study possible interactions. 

Other problems arise in the characterization and 
validation of a model. Consider a simple model of 
an I/O subsystem as a collection of M/M/l servers. 
Each device is represented by a server with Poisson 
arrivals and exponentially distributed service times. 
Theory then predicts that at 50% device utilization, 
the response time for a device is twice the service 
time, or the wait time is equal to the service time. 
What does the measured data say? Measured data 
says that many devices have little or no queueing 
-- that is, the queue lengths are much less than 
most queueing equations predict. This is most 
easily understood by imagining the common situation 
in which exactly one task in the system is using the 
disk device. No matter how hard the task uses the 
device, there will be no waiting line when the task 
wants issues its I/O. Even so, M/M/l queueing 
theory provides a lot of insight into the qualitative 
behavior of I/O sUbsystems. The problem, of 
course, is that as computer scientists, we want, 
expect, even promise quantitative descriptions of 
the behavior. So we apply the scientific method 
and t'ry to improve our models. 

What can we do to improve the predictions of wait 
time for I/O devices? We try M/G/l equations, fi
nite population models of one type or another, 
separable queueing equations [BUZEN73], even de
tailed simulations. But in the end there is always 
some system phenomenon wh ich was not modeled -
which we handle by saying that the models are ab
stractions, and that the effects they ignore are 
second order effects. Examples include system de
sign features that exploit parallelism in the I/O 
subsystem ( such as the page/swap subsystem in 
MVS) or memory and lock contention in databases. 

Usually they are second order, but not always. In 
many ways, the situation is similar to Newtonian 
physics versus relativistic physics. The simple 
models are adequate as long as you don't try to 

762 

extrapolate their results too far beyond the range 
of current measurements. Trying to use more so
phisticated models introduces additional complexity 
that may make it harder to decide about simple 
questions at hand. Using more complex models to 
attack the discrepancies on queue lengths adds ex
tra parameters to the analysis -- parameters like 
multiprogramming levels, or variance of the service 
distributions. Often these new parameters cannot 
be extracted from existing monitors. As mathemat
ically attractive as closed system models with non
homogenous workloads may be, it is difficult to use 
an RMF report to apportion paging activity to dif
ferent workload classes. For I/O subsystem models, 
it is hard to beat simple queueing theory augmented 
by heuristics to deal with new or unique features 
in hardware or microcode. 

The problems are hard, but not insurmountable. 
So it is discouraging to see the simplistic answers 
that pass for computer science. It is discouraging 
to see performance studies use superficial tech
niques to predict disaster, but never check the 
assumptions against real data. If the workloads are 
characterized carefully, if the effects of change are 
given some thought, then the modeling techniques 
actually suggest ways to avoid disaster. Per
sonally, I believe some performance analysts have 
more fun predicting disaster, especially if they can 
appeal to mathematical arguments to make the case 
that much more plausible. 

On the other hand, models may suggest solutions 
which simply don't work in real systems. Queueing 
theory can be used to show the profound advantages 
of uniformly spreading I/O requests across all the 
I/O devices. But on systems like MVS or VM, the 
mechanisms which cause skew prevent us from easily 
modifying the skew toward uniform activity across 
devices. And in real systems it may not even be 
desirable. The busiest devices often have the least 
queueing because only a single task owns and uses 
the device. The mechanisms which spread activity 
across volumes would "probably" introduce queueing 
(wait time) where there was none. The operable 
word is probably. That is because there is no real' 
program of experimental computer science to address 
these types of questions. There is not enough data 
to make scientific hypotheses to be tested by fur
ther measurements. 

Right now, the mathematical techniques available to 
the capacity planner or the system designer are 
ahead of our willingness to collect and analyze data 
about real systems. We are unwilling to bear the 
costs. Better measurement techniques are possible, 
even advocated, but there is no systematic program 
of experimental computer science where a group is 
willing to put up money and facilities. Such a fa
cility could be comparable to a phYSics research 
program. In part, this is because systems and 
technology are still evolving too rapidly for the 
performance engineers to evaluate every trade-off. 
Ferrari states other reasons for this phenomenon 
[FERRA86] . 



The Prognosis 

The use of capacity planning techniques is wide
spread. Data processing shops are known to use 
sophisticated techniques, and the computer man
ufacturers apply similar technology to the design 
and evolution of their systems. Of particular 
promise are packages which measure a system, 
characterize its workload, construct a model of the 
hardware configuration and validate the model 
against the real system. Such systems are easy 
enough to use for them to become powerful tools 
for attacking capacity management problems -- they 
suggest tuning alternatives in the short term. 

Traditionally, much tuning is trial and error. 
These modeling tools can now be used in a diag
nostic mode to show where performance problems 
might be hiding. They can also use simple de
ductions based on queueing theory to suggest sol
utions to the potential problems. Admittedly, there 
are difficulties in th is tech nique. The models need 
to be enhanced to deal with more complex workloads. 
There must be a way to incorporate some common 
sense into their recommendations. But you see the 
way this will evolve. 

Already we read about expert systems for computer 
performance. Knowledge based systems to operate, 
tune, and design systems are receiving much at
tention. They will undoubtedly be a boon to the 
performance analyst in time. And as these systems 
become common and proficient, another development 
will occur. Systems will incorporate the same 
tech niques to tune themselves. This is a natural 
evolution of operating systems and liD SUbsystems. 
There are elements of computer systems which al
ready exhibit th is trend. The paging supervisor 
in MVS (VM too), the subsystems which allocate 
scratch and spool data sets on disk devices, and 
to some extent, the capabilities of cached I/O sub
systems already exh ibit the characteristics of self
tuning subsystems. So it is most fitting that the 
subjects of capacity management and capacity plan
ning are topics of this particular joint computer 
conference dedicated to "Exploring the Knowledge
Based Society." 

Bibliography 

ARTIS85 Artis, H.P., "Using Expert Systems for An
alyzing RHF Data," CHG '85 Conference Pro
ceedings, December, 1985, Dallas, Texas. 

BARD80 Bard, Y., "A model of shared DASD and 
multipathing," CACH 23, no. 10 (October, 
1980). 

BERET85 Beretvas, T., "DASD Performance Analysis 
Using Nodeling," C~IG '85 Conference Pro
ceedings, December, 1985, Dallas, Texas. 

BUZEN73 Buzen, J. P. "Co~putational algorithms for 
closed queueing networks with exponential 
servers," CACH 16, no. 9 (September, 1973). 

763 

BUZEN85 Buzen, J. P. and A. W. Shum, "Analysis of 
Device Level Select in IBM 3380 Disks," C~IG 
'85 Conference Proceedings, Decemb~ 
1985, Dallas, Texas. 

CHEN85 Chen, W., "A ~Iethodology for Modeling ~1204 
On-Line Existing Workloads Using BEST/1 and 
NICS NVS Hodel Generator," CNG '85 Confer
ence Proceedings, December, 1985, Dallas, 
Texas. 

FERRA86 Ferrari, D., "Considerations on the 
Insularity of Performance Evaluation," 
These proceedings of the ACH/IEEE Fall 
Joint Computer Conference, November, 1986, 
Dallas, Texas. 

GREEN85 Greene, L. N. and J. J. Simon, "Establish
ing Performance and Capacity Planning in a 
Convers ion Environment," C~IG '85 Confer
ence Proceedings, December, 1985, Dallas, 
Texas. 

HELLE85 Hellerstein, J, and H. Van Woerkom, 
"YSCOPE: A Shell for Building Expert Sys
terns for Solving Computer-Performance 
Problems," CNG '85 Conference Proceedings, 
December, 1985, Dallas, Texas. 

INGRA85 Ingrassia, F. J., "Performance of New On
line Systems," CNG '85 Conference Pro
ceedings, December, 1985, Dallas, Texas. 

KLEIN75 Kleinrock, L., Queueing Systems, Volume 1: 
Theory, John Wiley & Sons, New York, 1975. 

LAZO\v84 Lazowska, E., J. Zahorjan, G. S. Graham, 
and K. C. Sevcik, Quantitative System Per
formance, Prentice Hall, Englewood Cliffs, 
New Jersey, 1984. 

LEVIN85 Lev ine, A. P., "ESP: An Expert Sys tern for 
Computer Performance Hanagement," CHG '85 
Conference Proceedings, December, 1985, 
Dallas, Texas. 

NCNUT85 McNutt, B., "The Impact of 2-to-1 Volume 
Folding on Seek Time", CHG '85 Conference 
Proceedings, December, 1985, Dallas, 
Texas. 

SAUER80 Sauer, C. H., E. A. HacNair, and S. Salzer, 
"A Language for External Queueing Network 
Hodels," IB~I Journal of Research and De
velopment, vol. 24, no. 6, November, 1980. 

SHITH81 Smith, B. J., "I/O Subsystem Workloads: 
Neasurements and Nodeling," 1981 CHG Con
ference, December, 1981, New Orleans, 
Louisiana. 

SHITH85 Smith, C. U., "Experience with Tools for 
Software Performance Engineering", CNG '85 
Conference Proceedings, December, 1985, 
Dallas, Texas. 

STROE85 Stroebel, G. J., R. D. Baxter, and N. J. 
Denny, "A Capacity Planning Expert System 
for the IBM System/38," CHG '85 Conference 
Proceedings, December, 1985, Dallas, 
Texas. 



THE EVOLVING ROLE OF SOFTWARE PRODUCTS IN CAPACITY MANAGEMENT: A SURVEY 

Phillip C. Howard, Editor 

EDP Performance Review, p.o. Box 9280, Phoenix, Arizona 85068 

Abstract 

A great many tools have evolved over the years to aid in the capacity 
management area. In this paper, seven different tool categories are 
defined and described, including job accounting systems, hard
ware/software monitors, operations management, communications 
management, data management, simulation and modeling, and in
tegrated systems. The types and functions of tools are described for 
each area, including their role in capacity management. 

Introduction 

There is no shortage of tools to aid capacity planners in doing their 
jobs, although the sheer numbers of those tools presents its own prob
lem in terms of selection and training. There is no tool which can 
be said to be the perfect solution for capacity management. Probably 
those which fall in the general class of simulation and modeling come 
the closest. That is, they are primarily intended for predicting future 
capacity requirements based on given workload data, although their 
predictions are only as good as the forecast data entered into the model 
and the validity of the model itself. In short, there is no perfect answer 
to the capacity management problem in terms of software tools, but 
there are many which can help to make the planner's job easier. 

No attempt at capacity management can be successful unless 
grounded on a firm base of measurement data which accurately por
trays the present actual operating environment in terms of both 
workload and resource utilization. For that reason, a number of tools 
must be included which are primarily performance measurement
oriented, but which are critical in terms of supplying capacity plan
ners with good measurement data about present operating 
environments. 

Performance measurement or management, as differentiated from 
capacity management, generally refers to the measurement of existing 
systems for the purpose of tuning or optimization. However, because 
capacity management is so dependent on good measurement data, 
we view performance measurement as a subset of the larger function 
of capacity management for the purposes of this paper. 

The Role of Products 

For the most part, the entire capacity management profession has 
developed from the tools introduced by private companies, mostly 
entrepreneurial ventures that evolved from advances in the systems 
programming area. Although the tools market is dominated by IBM 
MVS offerings, the same capabilities are available for all mainframe 
vendors, albeit in smaller numbers. Nevertheless, it is probably safe 
to say that the technology has generally been based on IBM operating 

,system software. 
In most fields, academic research is the driving force behind the 

CH2345-7/86/0000/0764$01.00 © 1986 IEEE 
764 

development of a technology. Except possibly in the area of queueing
based modeling, where the initial work was begun in a university en
vironment, nearly all of the tools were developed in entrepreneurial 
settings. Several examples come to mind: the contributions of Dudley 
Warner to the field of hardware monitoring; Ken Kolence's early 
development of a software monitor and founding of Boole & Bab
bage; leffBuzen's development of the first modeling package for com
mercial use and his part in the founding of BGS Systems; and Mario 
Morino's contributions to the collection and archiving of performance 
data. There are certainly many other examples of individuals and com
panies which have contributed to the growth of this field. 

The principal professional organization in the field, the Computer 
Measurement Group, has by and large grown up around the tools and 
technology offered by these types of companies, as opposed to develop
ing around a strict academic discipline. In short, it is the tools and 
their application, plus the expertise in hardware and software that is 
found in the many small companies which make up this field, that 
accounts for much of the growth and success of capacity management. 

In this survey, we have covered seven categories of software tools 
which are in general use in the performance management/capacity 
management field. Only the simulation and modeling category is really 
dedicated to the capacity planning problem. Most of the rest are 
primarily measurement or optimization tools. Both job accounting 
and software monitors provide almost exclusively measurement 
capabilities. The operations management group is more oriented toward 
optimization and making life easier for the operator, but scheduling 
packages, for example, may have a simulation capability to test the 
impact of introducing new applications. Both the communications 
management and data management categories focus primarily on 
measurement and optimization, but within each there are packages 
to aid in configuration and space management. The integrated systems 
typically offer a variety of capabilities, often with an interface to a 
modeling package. 

Job Accounting Systems 

Most advanced operating systems keep statistics on internal opera
tions and collect that data in a file or data base. Numerous software 
packages have been written to process such "job accounting files", 
both for the purpose of billing resource use back to customers and 
summarizing the information into meaningful performance reports. 
It is the use of job accounting files (such as SMF and RMF in the 
IBM environment) as the primary source of input which uniquely 
characterizes this category of software tools. 

In most cases, the activity data is collected at the termination of 
a specific event such as a job step, a transaction, a TSO session or 
other work unit. There are literally hundreds of specific measures 
or facts which may be collected, depending on the specific system, 
but the most common are metrics relating to CPU utilization, disk 



utilization, I/O requests, memory usage, paging activity, spooling 
statistics, volume mounts, terminal connect time, logons/logoffs, and 
similar measures. Most job accounting systems have some data base 
management capability to permit the retention and processing of 
historical data. 

By their very definition, all job accounting systems have some 
capability for charging usage back to customers, although not all with 
the same degree of sophistication. In many cases, there is both an 
on-line and off-line aspect to the system. The on-line capability 
generally provides users with immediate feedback on the cost of their 
jobs or sessions and may provide for on-line inquiry into accounting 
data. The off-line portion produces invoices and other accounting 
reports. Many systems provide capabilities for user-defined charging 
algorithms, the input of manual charges and adjustments, comparison 
to budget data, and cost liquidation for full recovery chargeback 
situations. 

The other major use of job accounting systems is in the reporting 
of performance data. In addition to serving as a basis for computing 
charges, the collected data can be processed and summarized to pro
vide a wealth of information on performance and capacity utiliza
tion. Data can be sorted and summarized by user, project, shift, depart
ment or any other entity which can be identified as the source of work. 
Since all data is date and time-stamped, reports can be prepared by 
day, week, month, or any other time period to show workload levels 
and resource utilization for both a central system and a network. 
Reports can also be prepared of abnormal terminations and "top 10" 
or "top 20" lists to identify the largest users. 

Although job accounting packages generally don't provide the same 
level of performance detail as either hardware or software monitors, 
they have the advantage of not requiring any changes to the operating 
system or operating environment. For this reason, they often serve 
as the starting point for users just starting in performance evaluation 
and capacity planning. 

Hardware/Software Monitors 

Software monitors differ from job accounting in that they general
ly have "hooks" into the operating system so that they can collect 
performance data directly, either from operating system tables and/or 
"control blocks", or by sampling various internal status conditions 
directly. Hardware monitors collect data by attaching to "probe points" 
on the computer system itself, avoiding the CPU and memory overhead 
that is required by a software monitor. 

Monitors of both types provide more accurate measurement data 
than job accounting information and generally provide a more detailed 
look at the internal workings of the operating system. They tend to 
be more system-oriented than job or work unit-oriented, as are job 
accounting packages, although many of these packages allow the user 
to see relationships between job class performance and overall system 
performance. 

Hardware monitoring of mainframes seems to be on the decline. 
In the past few years, hardware monitors have been disappearing from 
the market, although there are still a number of them to be found 
in user installations. They have not disappeared altogether, however. 
There has been a significant growth in the use of hardware monitors 
for communications networks. 

Software monitors may be either sampling-type monitors or event
driven. In either case, they do impose some amount of overhead on 
the system, requiring a small amount of CPU time, memory space, 
and a collector device, usually either tape or disk. There is generally 
an extractor component, which actually does the data collection, and 
an analyzer component, which produces hard-copy reports from the 

765 

collected data. Many software monitors also provide for on-line, real
time display of performance data to assist operators in controlling 
the system. In most cases, operators control the activity of the monitors 
(sampling intervals, duration of monitor period, areas to be monitored, 
etc.) through an on-line terminal. 

Many different measurements may be taken by monitors, including 
CPU utilization, I/O and channel activity, paging and swapping, device 
allocation, disk arm contention, internal system queues, interrupt ac
tivity, and storage utilization. Some monitors also provide informa
tion about network activities, reporting on such things as response 
time, TSO activity, transaction rates, and transaction types. They may 
also provide information about the internal workings of the operating 
system to aid in decisions regarding page fixing, module assignments. 
etc. 

In addition to raw measurement data, monitors may also detect and 
report certain kinds of system problems, monitor performance ac
tivity against operator-defined performance thresholds, and produce 
a variety of performance profiles and reports. In many cases reports 
and displays may be in graphic form, and user-defined reports may 
be facilitated through a report generation language. 

The outputs of monitors are intended to support system optimiza
tion activities, and in some cases the monitor itself may take direct 
optimization actions. In addition, the outputs support capacity plan
ning activities by providing the basic measurement data needed to 
detect trends in utilization, bottlenecks in configurations, and workload 
changes. In some cases, the data collected by monitors can be used 
as direct input to modelling packages. 

Operations Management 

This category of software packages is really made up of several sub
categories. The common denominator among them all is their sup
port of the operations function in terms of streamlining work flow 
and optimizing the human/computer interface at the operator control 
level. There are five sub-categories which are described separately 
below: 

Backup and Recovery - One common problem that all DP installa
tions have is the backup, restoration, and recovery of DASD files and 
data bases. These packages generally replace mainframe vendor sup
plied utilities with improved performance and added functionality. 
The systems provide for the dumping of files to tape, compression 
of the data, frequency control of backups, automatic JCL creation, 
and security through encryption and/or passwords. Another type of 
package facilitates recovery from tape and/or disk errors, and analysis 
of tape media for quality. 

Hardware Management - There are basically two functions per
formed by this class of package. The first accumulates error statistics 
from logged peripheral errors, maintaining historical records and pro
viding for reports on potential reliability problems based on threshold 
error limitations. Potentially bad devices and/or media are identified. 
The second type of package maintains inventory data on all hardware 
devices incuding descriptions, leasing/pricing data, dates installed, 
maintenance contracts and similar information to facilitate manage
ment of the inventory of hardware and the preparation of equipment 
lists and other reports as necessary. 

Operator Control - There is considerable diversity among the 
specific packages in this grouping, but most are directed at an im
proved operator/system interface. Such packages typically give the 
operator better control over the running of applications, improved com
munications with the system, special function keys, new message 
capabilities, access to and control over spool files, displays of system 
and job status, shared consoles, and other operational controls. Some 



of the packages also provide special capabilities for problem or event 
tracking and reporting. 

Scheduling - This is the largest of the five groups and generally 
these packages are the most sophisticated and complex. Scheduling 
capabilities provide for the automatic submission of scheduled jobs, 
taking that task out of the hands of the operations personnel. Such 
systems include built-in calendars, job history information, priority 
setting, on-line inquiry into job status, automatic rescheduling, recogni
tion of pre and post run manual activities as well as job dependen
cies, the prompting of operators for expected events, schedule revi
sions, and JCL input and maintenance. Most scheduling systems can 
also be run in a simulation mode to test the effect of new applica
tions. A number of reports are typically provided as well, including 
daily production schedules, jobs completed and backlogged, perfor
mance against schedule, off-line workstation activities, and job tickets. 

Tape Management - This special class of package is intended to 
optimize and simplify the manual handling involved in tape libraries. 
Typical capabilities include automatic volume recognition, operator 
prompts for needed tape mounts, an on-line tape catalog, early device 
release, security controls, ownership pools, scratch dates, usage history, 
maintenance of generation data, and identification of tape location 
(including vault storage). Tape management packages also provide 
for several types of reports including data set lists, volume serial 
number lists, scratch lists, daily pull lists, tapes due for cleaning and 
certification, and volumes out of service. 

Communications Management 

In the context of performance management and capacity planning, 
the communications network is often just as important as the main
frame environment. There are several sub-categories of software tools 
which assist the user in analyzing and optimizing the communica
tions environment. 

Configumtion Management - There is quite a range of variety among 
this group of packages, but most are intended to facilitate the manage
ment of the physical network configuration. The more elaborate of 
the packages provide for inventory management of the entire com
munications network, including problem/change control and track
ing. Some packages generate the necessary software tables, parameters, 
and commands to properly start up the network. Others allow for 
special configuration capabilities not supported by standard mainframe 
software, for example automatic speed recognition and code conver
sions. Various reports may be produced by certain of the products 
to aid in the ma~agement of the network. 

Data Manipulation - The few packages in this category generally 
provide data compression capabilities to reduce transmission times 
and improve throughput. 

Design Aids - This group of products provides assistance to net
work designers in engineering optimum network layouts. Simulation 
capabilities provide estimates of service times by priority and 
throughput rates based on the characteristics of the network, traffic, 
and applications as specified by the analyst. The more sophisticated 
of the packages may produce an optimized topological design in hard 
copy and/or on a display screen. Yet another group of packages pro
vides for an analysis of telephone traffic with recommendations for 
optimum line usage. 

Network Monitors - This class of products includes both hardware 
monitoring devices as well as software monitors. Like mainframe 
monitors, they are designed to measure performance characteristics 
of a network during operation and provide network control person
nel with displays and reports of network status, with particular em
phasis on the status of lines, response times, outages, and traffic con-

766 

tention. Other types of measurements may include disk 110 activity, 
message lengths and counts, numbers of transactions by type, buffer 
use, terminal traffic, error counts, and polling time. Some monitors 
allow the operator to conduct tests and diagnostics on remote devices 
and provide alarms when certain performance thresholds are exceeded. 
Log files and/or a data base of historical network performance data 
may also be generated. 

TP Control Progmms - This group of packages have also been called 
teleprocessing monitors, but should not be confused with the type 
of monitor discussed above. Control programs provide operating 
system-like services, specifically improved interfaces between the ap
plication programs and the remote devices, including line control and 
terminal interfacing. They often perform functions which one nor
mally associates with operating systems, including the scheduling and 
dispatching of TP programs, file handling capabilities, access to data 
bases, and message switching. These control programs may also col
lect operating statistics, provide restart capabilities, generate transaction 
logs, and provide traces of TP activity. 

Data Management 

With the expanding use of Data Base Management Systems and 
the growth of data bases, DASD storage has become one of the most 
significant resources relative to both day-to-day system performance 
and long term capacity planning. There are a number of tools available 
to aid the user in designing a data base, tuning and optimizing DASD 
storage, and handling utility functions such as backup. 

Access Methods - There are only a handful of these packages, but 
they are intended to provide faster processing and access times than 
standard access methods. 

Analysis and Monitoring - This group of tools performs analysis 
of existing DASD environments, either by examining vroCs or Direc
tories, or by monitoring DASD activity during program execution 
(much like a software monitor). The former type report on space usage, 
free space, track allocation, clustering, etc~ The latter provides ac
tual measurements of service time components on disk, CPU times, 
record counts, etc. Some packages maintain trend information to 
predict when space will run out and may provide information on such 
things as pointer problems, defective tracks, workload volumes, and 
problem areas. Analysis reports may support decisions regarding 
reorganization of DASD space. 

Backup/Recovery - There are a number of products on the market 
to facilitate the backup and recovery function, most providing faster 
operation than standard system utilities, plus added functionality. 
Backup functions may provide for data compression and restructur
ing of files, compaction of fragmented files, and audit trails. Recovery 
tools typically produce a log or journal of activities, provide for the 
back-out of transactions when necessary, and requeue messages after 
a restart. 

Data Base Design - In many cases, the design of a data base has 
a significant effect on the performance of an application. This group 
of tools provide the user with information on which to base design 
decisions. Given various design alternatives and information about 
the DBMS and the workload, such packages provide estimates of space 
and time requirements, recommend record design and logical/physical 
file organization, and may simulate application program logic. Out
puts are analytical reports providing information on which users can 
base design decisions. 

Space Management - This group of tools perform an active, rather 
than a passive, role in terms of DASD space allocation and manage
ment. Many of them actually administer direct access storage including 
such capabilities as archiving and migration of dormant files, sharing 



of disk areas between partitions, deleting obsolete files and truncating 
unused space, pooling of unused fragments of space, and dynamical
ly allocating space as requested. Another group of products provide 
for optimizing the selection of modules for in-core storage to eliminate 
frequent fetches. In many cases, the products in this category pro
duce reports analyzing the use of storage space, much like the 
Analysis/Monitoring category. 

Utilities - Various DASD utility programs provide specific func
tions to improve the use of DASD storage including such capabilities 
as data compression, calculation of optimum blocking factors, con
version of data files from one device type to another, and encryption 
of data files. 

Simulation and Modeling 

For the most part, this category consists of queueing-theory-based 
modeling packages which are used for prediction of future system 
performance and capacity planning. The models typically allow the 
user to specify system configurations and workload characteristics 
and volumes, and produce projections of system response times, 
throughput, CPU utilization, device utilization, waiting times, and 
queue lengths. Most packages have interactive capabilities allowing 
the user to alter the basic inputs to the model and ask "what if' ques
tions regarding future performance and capacity expectations. 

Many of the packages accept measured performance data from job 
accounting or software monitor files and use this as the basis for con
structing so-called "baseline" models in order to validate the basic 
model for the given environment. 

In addition to modeling mainframe system operation, there are also 
several models which can be used to evaluate communications net
works, and others specifically designed to predict the performance 
of applications prior to their development. There are also synthetic 
workload drivers which allow a user to simulate a real workload on 
their actual hardware and software configuration and measure the 
results directly. 

A number of years ago, before the advent of queueing-based models, 
there were several event-based simulation packages which were used 
primarily for equipment selection decisions. These packages main
tained libraries of hardware/software specific data to enable the com
parison of different vendors' systems on a given workload. There is 
only one of those packages, SCERT, which is still being marketed. 
Otherwise, the queueing-based models are used primarily for capacity 
planning within a single installation, rather than for comparison of 
different vendor's equipment. 

Integrated Systems 

This relatively small group of products generally encompass several 
of the functional characteristics covered in the other categories, 
possibly providing capabilities in the areas of job accounting, monitor
ing, operations management, and modeling or at least an interface 
to another modeling package. One of the unique characteristics they 
possess is a performance data base, or a formal and organized ap
proach to the archiving and summarization of historical performance 
data. 

These packages provide capabilities in both performance evalua
tion and capacity planning, usually with interactive user control over 
their operation as well as an extensive repertoire of reports. 

Summary 

Readers might argue that many of the capabilities of software tools 

767 

discussed above don't really have much to do with capacity manage
ment. Technically, this is true; many of them are strictly for tuning 
and operational enhancement. However, all of the categories should 
be considered within the context of capacity management, even though 
some of the specific capabilities may not be applied in that area. 

The important point to remember is that any capacity plan must 
be constructed on a foundation of solid measurement data. All of the 
various tool categories provide measurement data in one form or 
another. Furthermore, even optimization and tuning affects capacity 
planning to the extent that future hardware requirements are reduced 
as the performance and throughput of existing systems is improved. 
Certainly, capacity planners must at least know what the possibilities 
are and when improvement efforts are being applied. 

We have not provided any references throughout this paper, not 
because there aren't any, but because there are too many, few of which 
really stand out, at least when we restrict the subject matter to tools 
per se, rather than the larger subject of the tool category itself. In 
ACR's EDP Performance Management Handbookl, Volume 1, there 
are bibliographies for most of the areas covered listing numerous 
references. Similarly, in the Annual Reference Issue of the EDP Per
formance Review2 a subject index of the literature for the previous 
calendar year includes coverage of most of the tool categories. 

The only book which has been written specifically on the subject 
of tools in this field is Computer Performance Evaluation: Tools and 
Techniques for Effective Analysis3, although there is also coverage in 
the EDP Performance Management Handbookl of tool usage (Volume 
1) as well as detailed descriptions of specific tools in Volume 2 (up
dated quarterly). The Special Reference Issue of the EDP Performance 
Review2, mentioned above, provides capsule descriptions of the 
available tools in ten subject categories. 

References 

[1]. Howard, Phillip C. (Ed.), EDP Performance Management Hand
book, 2 Volumes, Loose-leaf, 1986, Phoenix, Arizona. 

[2]. Howard, Phillip C. (Ed.), EDP Performance Review, monthly, 
1986, Phoenix, Arizona. 

[3]. Morris, Michael F. and Roth, Paul F. Computer Performance 
Evaluation: Tools and Techniques for Effective Analysis, Van 
Nostrand Reinhold, 1982, 260 pp., New York, NY. 



THE EVOLUTION OF WORKLOAD ~IANAGEHENT 
IN DATA PROCESSING INDUSTRY: A SURVEY 

T. Leo. Lo 

McDonnell Douglas 
Aerospace Information Services Company 

St. Louis, Missouri 63166 

ABSTRACT 

Data processing workload management is an essen
tial compenent of the capacity management (CM) 
process. Workload management consists of work
load characterization, workload forecasting, and 
workload control. Workload characterization is 
concerned with the measuring and modeling of 
production. workloads; workload forecasting is a 
process of projecting future resource usages 
based on measured or observed statistics; work
load control is a procedure to implement and 
monitor the workloads. 

This paper reviews the past ten years 
(1976-1986) of workload management activities in 
the data processing industry based on documents 
and proceedings from the Computer Measurement 
Group (CMG) , the International Conference on 
Computer Capacity Management (ICCCM), the Com
puter Performance Evaluation User Group (CPEUG), 
and the European Computer Heasurement Associ
ation (ECOHA) conferences. All three areas in 
workload management are discussed with emphasis 
on their past and present activities and future 
direction. 

INTRODUCTION 

Capacity Management (CH) can be generally de
scribed as a process to ensure that the process
ing capacity can and always will deliver the 
services to meet DP users productivity goals 
within their budget requirement. These capac
ity, service and cost requirements are the inte
grated mechanism driven by the processing 
demands (workloads) to provide information for 
DP management making appropriate decisions. 
Therefore, capacity planning, service level man
agement, cost management, and workload manage
ment, together with the corporate business plans 
constitute a management decision support system 
(ALLE83, DITH83 , HOWA80, L084, MULLE85). 

Capacity planning is concerned with the manage
ment of resources and configuration and the pre
diction of service impact due to workload 
changes. Service level management is concerned 
with the service agreements between service pro
vider and end-users in terms of timeliness, ac
curacy, reliability, and cost (HOWA80). Cost 

CH2345-7j86jOOOOj0768$Ol.OO© 1986 IEEE 
768 

management deals with the recovery of DP ex
penses by establishing standard rates for dif
ferent types of users running in different time 
zones and applications. Workload management is 
treated as an external driving force to the 
capacity-service-cost component due to its 
vacillating nature. The corporate business 
plans are also treated as an external factor, 
but they are more influential than workloads 
since business plans include many non-DP factors 
such as business strategy, industry growth po
tential, competitive pressures, and economic im
pacts. The conceptual diagram of these 
relationships is shown in Figure 1. 

USER COMMUNITY 

FIGURE 1 - A MOSS STRUCTURAL OIAGRAM_ 

This paper. only addresses the workload manage
ment portion of the capacity management. It 
however will conceivably address other areas of 
CH since they are interrelated. Workload man-



agement consists of three key prospective areas: 
workload characterization, workload forecasting 
and workload control. Workload characterization 
is concerned with the measurement and modeling 
of the production workloads; workload forecast
ing is a process of projecting future resource 
usages based on measured or observed data; Kork
load control is a procedure to incorporate the 
forecasted requirements into the capacity plan
ning process and continue to monitor the imple
mented workloads for possible future 
modifications. It is not the intent of this pa
per to suggest or recommend methods or tech
niques for workload management. It merely 
reviews all three areas in detail with respect 
to how the DP industry has been dealing with 
them in the last ten years (1976-1986), and what 
the future directions are. Some of the problems 
encountered in managing workload are also pre
sented. 

The references used in this paper are based on 
the Computer Measurement Group (CMG) 1976-1985 
conference proceedings, the International Con
ference on Computer Capacity Management (ICCCM) 
1979-1985 proceedings, the Computer Performance 
Evaluation User Group (CPEUG) 1976-1983 confer
ence proceedings, and the European Computer 
Measurement Association (ECOMA) 1983-1985 con
ference proceedings. All references are listed 
in one of the three areas based on the nature of 
the material: workload characterization, work
load forecasting, and workload control which ad
dresses other areas in CM including the workload 
management. 

\:V0RKLOAD CHARACTERIZATION 

Workload characterization, or workload classi
fication as some DP analysts call it, is con
cerned with the measurement and modeling of the 
production workloads. The purpose of character
izing the workloads is to understand/determine 
the resource usages and performance behavior for 
subsequent system tuning, performance evalu
ation, and/or capacity planning activities. Most 
workload characterization performed in DP indus
try is for workload forecasting which is used as 
an input to the capacity planning process. 

The most publicized workload characterization 
technique is the Cluster Analysis approach. It 
is a technique which attempts to identify the 
natural groupings of jobs (or transactions) 
based on the similarity of the resource require
ments. One way to determine the resource re
quirements is to use the vector form. There are 
generally five steps to group jobs or trans
actions. 

* Define a resource vector (CPU seconds, 
storage bytes, disk I/O etc.) for jobs; 

" Identify sets of similar jobs (or jobs 
steps) based on the description of 
their resource requirements. A geo
metric distance between a resource 

769 

vector and a cluster is the measure of 
similarity. A job can be assigned to 
a cluster by finding the minimum of 
the distances between this job and 
each of the cluster centroid; 

* Scaling the resource ve~tors; scaling 
is designed to avoid possible mistakes 
when comparing the geometric distances 
of a resource vector (e.g. number of 
tape drives) with another distinct 
resource vector (e.g. No. of disk I/Os). 
Scaling can normally be accomplished by 
normalizing each resource with its 
robust mean and standard deviation via 
a Z statistics; 

* Provide the description of all the input 
data and cluster assignments. When the 
clusters generated from the sample input 
are used to classify the entire input 
data, each resource vector is assigned 
to the nearest cluster based on the 
geometric distance calculations; and 

* Create a workload mix using a mix vector 
representing the different time intervals 
(i.e. prime shift, weekends,etc.) for 
subsequent benchmark generation. 

Artis (ARTIS76) presented a case study using 
this technique for determining the capacity of a 
batch computer system at the 12th CPEUG confer
ence in 1976. Agrawala and Mohr (AGRAW76) at the 
same conference presented the result of applying 
the cluster analysis technique to predict the 
workload of a computer system. Agrawala & Mohr 
(AGRAWnA) again presented the results of apply
ing the clustering approach to workload modeling 
at 13th CPEUG conference in 1977, and discussed 
the relationship between pattern recognition 
problems and workload characterization problems 
at the 1977 CMG conference. Since then there 
have been many applications of the cluster anal
ysis on computer workload modeling (AGRWA78B, 
HUGES78, ARTIS79, HARTR79, ELMS80, MOHR80B, 
LEVY81, SMITH81, FRIED83, LEE83, VINCE84, 
DOMAN85) . 

In addition to the application of cluster analy
sis, there were several articles discussing 
characteristics and problems of the technique. 
Mohr (MOHR80A) presented a survey of available 
workload characterization techniques at the 1980 
CMG conference. There were many articles in 
ICCCM conferences to discuss workload character
ization problems (MERL083, PRICH81, YEN83). 
There were also many articles discussing the 
workload characterization and modeling 
implications/problems at the CNG conferences 
(HUGES80, MOHR81, SMITH81, WIGHT81, GILM082, 
FRIED84, DOMAN85). 

Although benchmarking is a natural continuation 
of workload characterization, it can be treated 
as a separate topic in workload management. 
Benchmarking is one of many ways to determine 
the dynamic nature of a user workload on a given 
system configuration. Determining the workload 



characteristics and the basic benchmark measure
ments can be accomplished following basic model
ing techniques. There were so many fine 
articles on benchmarking at the ICCCM, CMG, 
CPEUG and ECOMA conferences (e.g. DUJM080, 
KAZLA83, PLICH84), that this paper does not at
tempt to address the benchmarking issues. 

The second workload characterization approach is 
the use of Software Physics concept first intro
duced by Kolence (KOLEN76) in 1976. It is a 
study of the quantitative and measurable proper
ties of executable codes and their operands in 
relation to configurations and class of process
ors and storage devices. Kolence (KOLEN77) and 
Hoffman (HOFFH77) both gave a very good presen
tation on software physics at the 1977 CHG con
ference. Software physics focuses on a single 
measurement: software work. User demands, system 
performance and future requirements can all be 
represented and quantified through the applica
tion of this measure. The basic measurable 
properties are work (W), time (T), and storage 
(S). The basic unit is a quantified unit which 
can be converted to software work per equipment 
class by means of some scalar quantity. Workload 
can then be characterized in a vector form which 
can be normalized as the unit vector form. For 
example, for a Hth class job, it could have 

J(M) W 
W(CPU) I 
W (I/O) I 
W(tape) I 

units of software works, where W is the total 
work performed over a period of time for Mth 
class job, and W(x) is the measured work for an 
equipment class, CPU, I/O or tape. 

The application of software physics has been 
greatly promoted by the Institute for Software 
Engineering, which was changed to the Institute 
for Information Management later to broaden its 
services to the information society. Greenacre 
(GREEN76) presented a general description of the 
software physics at the 1976 CHG conference in 
Atlanta; since then more applications were re
ported at various DP conferences (HOFFM77, 
DAVID79, KOLEN79, SENSA79, WILLI80, KOVAC81, 
MEADA83, CLEHE85). 

In addition to the cluster analysis and software 
physics approaches, the traditional way of using 
some statistical methods still accounts for a 
significant portion of the workload character
ization activities in the DP industry. The com
mon practices are: (i) to identify the resources 
to be tracked, such as CPU utilization, I/O EXCP 
counts, (ii) to collect resource usage statis
tics, and (iii) to group resources either by ma
jor application class (e.g. IMS, TSO), time 
zones (8 to 5, weekend), or both. However, this 
approach is different from cluster analysis and 
software physics that it uses collective sum of 
ALL jobs belong to an application class, thus 
ignoring individual job's influence. 

770 

Anderson (ANDER79) presented a technique using 
statistical regression to determine the resource 
consumption overhead for each major class of us
ers at the 1979 CHG conference. Davis and Lo 
(DAVIS81) reported the evaluation results of se
veral methods in determining resource overhead 
for proper workload characterization at the 1981 
CMG conference, and concluded that even with the 
production workloads, there is no one method 
that is always superior than the other methods. 
The Statistical Analysis System (SAS) is proba
bly the most widely used tool for reducing and 
grouping workload data on IBM systems (e.g. 
PEDRI78, PHIPP81, BROCK82, and HINTZ83). Again, 
the data manipulation is a separate topic in ca
pacity management and is also addressed at this 
conference. Therefore, most SAS related reports 
were not included in the reference. 

In the last six years, the concept of the Na
tural Forecast Unit (NFU) , introduced by Kolence 
(KOLEN76), has been gradually applied to both 
workload characterization and forecasting. The 
NFU approach is to identify and group resource 
usage patterns based, not on the traditional DP 
resources, but on the end-user business oriented 
terms, such as number of checks printed and num
ber of hospital beds. This approach is different 
than the traditional approaches, including clus
ter analysis, that it uses a bottom-up approach 
as opposed to the top-down approach. The NFU ap
proach will be explored further in the workload 
forecasting section. 

WORKLOAD FORECASTING 

Forecasting can generally be described as a 
process of projecting the past into the future. 
It is concerned with determining what the future 
will look like. There are three types of fore
casting routines that are frequently referenced 
by the DP industry: 

~ Short-range forecast - usually is in 
monthly/quarterly units and extends out 
over the next few months/quarters, but 
seldom goes beyond one year. It is 
sometimes referred to as an "operating" 
forecasting since it deals with the 
immediate future operations. 

~ Medium-range forecast - usually is made 
on a quarterly or annual basis, and is 
used to establish the processing capacity 
for the next year. It is often referred 
to as the "budgetary" forecasting. Some 
organizations extend the range to one to 
three years. 

... t .. Long-range forecast - most companies 
make some attempts in various degrees of 
sophistication to determine the long-run 
course of the future. The business 
direction and national economy trend are 
the key elements considered. It usually 
forecasts over the next five to ten 
years; thus is referred to as the 
"strategic" forecasting. 



Most DP workload forecasting activities deal 
with the short and medium range forecasts, and 
very seldom deal with the long range forecast 
(MAGER79, SHERK84) since the DP workload fore
casting tends to become less accurate the fur
ther into the future. 

Before any forecast is done, a forecast system 
needs to be established. Three generally used 
approaches are: 

* Model development - based on objectives, 
various models can be properly chosen. 
One analyst may use a regression model 
whereas the others may wish to use a 
smoothing technique. 

* Eclectic research - is a strategy of 
comparing one method against the others 
both objectively and subjectively. 
Tables, graphs, surveys, and models 
are commonly used to serve the means 
of comparison. 

.. Judgement model - it is generally a 
subjective process, qualitatively but 
not quantitatively. It usually consists 
of information or opinion from people 
who have direct experience on the 
subject, historical analogy, and the 
management's direction. 

Most DP installations establish their forecast 
systems using the first two approaches. This pa
per does not intend to address how to establish 
a forecast system. 

Once a forecast system is established, certain 
analysis techniques are required to calibrate 
and validate the data. There are three general 
approaches that are used by DP analysts and 
planners: naive method, time series and natural 
forecast unit. 

The naive method generally does not attempt to 
explain the cause of an event, but simply exam
ines variations over times. In other words, it 
only uses data on the variables of inter~st and 
simply projects the historical patterns 1nto the 
future. The "rule-of-the-thumb" sometimes are 
applied to incorporate expert's experience into 
the data analysis process. In the early DP days 
when the system accounting data was not fully 
implemented, the eclectic research and judg
mental approaches were used. 

The second type of data analysis approach and 
probably the most common approach is the use of 
the time series techniques. A time series is a 
set of observations taken at specific times, 
usually at equal intervals. It can be described 
by thinking a point moving to the passage of 
time. Analysis of such movement is of great 
value in many respects, one of which is the 
problem of forecasting future movements. There 
are in general four types of movements: 

771 

,,;': 

Trend movement - refers to the general 
direction in which the point moves over 
a long period of time. 

Cyclical movement - refers to the long 
range oscillations about a trend line 
or curve. The cycle mayor may not 
follow exactly the similar patterns 
after equal time intervals. 

Seasonal movement - refers to the 
identical patterns which a time series 
appears to follow during the corres
ponding months of successive years. 

Irregular or random movement - refers 
to the sporadic motions of time series. 

A majority of the reported DP workload forecast 
approaches use the time series analysis tech
niques (DEAGR84, HOFFM82, KULP80, LUIST83, 
MACKI78 , PERLH79, ARTIS80, LINDE80, NIEDZ83, 
REED81, SHERK84). Some consider the trend only 
while others consider both trend and seasonality 
effects. There were also general descriptions 
on workload forecasting techniques at the CMG 
(BIASI85), ICCCM (L080), and CPEUG (MCNEE79) 
conferences. Although workload forecasting is 
commonly used to determine an application's fu
ture resource usages, it can be used to estimate 
other types of DP activities such as software 
development effort (GODWI85), new applications 
(INGRA85), resource correlation analysis 
(YEN85), and service level management (HALBI80). 
In addition to the application of time series 
techniques, the potential problems facing work
load forecasting were also discussed by Allen 
(ALLEN83), Applegate (APPLE83), Lo (L085), and 
Wandzilak CWANDZ84) at the CHG conferences, and 
by Lo (L084) at the 1984 ECOHA conference. 

The third approach of the DP workload forecast
ing is the use of the natural forecast unit 
CNFU) concept. The NFU concept is also referred 
to as the Key Volume Indicator (KVI) by Sarna 
(SARNA79). A NFU is a measurable business ori
ented unit for which DP resource usages are 
tracked. For example, in an airplane manufactur
ing factory, the appropriate NFUs could be the 
number of engineering drawing hours, number of 
spare parts ordered, and number of training 
hours, etc. The underline principle behind the 
NFU approach is that the DP users, given suffi
cient information, understand their own needs. 
They probably can not forecast accurate DP re
source usages, but can predict their business 
related growth with a fair degree of confidence. 

When a corporation's business plans are estab
lished, they can be translated into the corre
sponding DP resource units (DPUs). Therefore, 
the NFU approach attempts to link business plans 
to DP plans. Figure 2 shows a conceptual process 
which links corporate plans and DP plans. 



Units 

Business 
Planning ==> 

component 
-'-------'- I

APPlication Natural 
==> workload .==> Forecast 

L-____ ~ ~ .. .-----------------~-----------I p~=nsl 
Figure 2 A Conceptual NFU Approach 

To Correlate the NFUs to DPUs is not a straight
forward process. In addition to the correlation 
process, the accuracy of the future DPUs is de
pended on the accuracy of the business fore
casts. It is therefore advisable to use mUltiple 
forecasted values to represent a range of expec
tations in order to minimize forecasted errors. 
The NFU approach requires a computer resource 
usage measurement package, such as job account
ing system, and a statistical method, such as 
regression models, to correlate business and 
computer forecasts. 

Febish (FEBIS81) discussed the fundamental rules 
of converting business plans to DP workload 
forecasts at the 3rd ICCCM in 1981. Waggoner 
(WAGG084) emphasized the importance of database 
design to integrate business and DP plans at the 
6th ICCCM in 1984. Liu (LIU8S) presented an ex
cellent case study on using NFU dependency anal
ysis for the production CICS workload 
forecasting at the 7th ICCCM in 1985. Lo and 
Elias (L086) discussed the pros and cons of ap
plying the NFU concept in a manufacturing envi
ronment (the paper has been submitted to 1986 
CMG conference to be held in Las Vegas). 

WORKLOAD CONTROL 

The workload control is concerned with the im
plementation and monitoring of the workloads. 
The implementation involves the data selection, 
data adjustment, and forecasting technique im
plementation. Workload monitoring includes data 
collection and reporting, and data projection 
analysis. 

The essence of workload forecasting is the ex
trapolation into the future of some structure in 
the past and present situation, regardless which 
approac~ is used. The approach itself, however, 
can not provide good forecasts unless there are 
some controls over input data as well as the se
lection of the forecasting parameters. There
fore, the forecasting parameters must be 
determined. As indicated before, most DP instal
lations use system accounting data as the fore
casting parameters. The length of historical 
data to be collected is suggested, as a rule of 
the thumb, at least four times the square root 
of the number of forecasted periods (L080); that 
is, d > 4 ~': SQRT(f). Others simply use d > f. 

772 

There are two major concerns regarding data se
lection. The first one is the data quality; most 
DP installations archive a lot of system log 
data over a period of several years, but may not 
have the "right" type of data. For example, if 
the number of sheet metal cut per hour is used 
as the forecasted NFU, an installation may not 
have that type of information in its historical 
database. The second concern is the way data is 
collected and interpreted. For example, market
ing people may forecast their sales revenue 
based on individual salesman's numbers which 
generally contain more variances since they al
ways use a % growth over the past year. 

To reduce data varian~es, data need to be ad
justed. There are four practical ways for data 
adjustment. The first one is the adjustment of 
the time period. Most forecast mechanisms are 
based on the assumption that data arrive at 
fixed intervals. An accounting month may not be 
the same as a calendar month. Therefore, ac
counting data periods may require adjustment. 
One way to adjust the differences between a 
four-week month and a five-week month is to as
sign weights to make them equal. The second data 
adjustment is the adjustment for known causes 
such as holidays, strikes, etc. One example of 
data adjustment used in DP industry is to deter
mine the peak-to-average resource usages for 
planning purpose. 

The third data adjustment is to adjust the range 
of the data in order to reduce the variances. 
For example, the Z statistics is used in cluster 
analysis (ARTIS76) to reduce the variances be
tween two types of resource vectors with dis
tinct values. The fourth type of data adjustment 
is also concerned with the reduction of data 
variances. It transforms the data before carry
ing out the forecasting process. The common 
transformations are 

yet) = LOG X(t) 
T = X(t) - X(t -1). 

The first one is commonly applied to reduce the 
percentage changes to absolute changes, to re
duce the growth model to a linear model, or to 
change from a multiplicative to an additive sea
sonal form. The second transformation is fre
quently used as a device for removing the effect 
of a wandering mean. 

The workload monitoring process involves data 
collection and reporting, and projection analy
sis. Data collection and reporting are generally 
managed by using either vendor supplied system 
accounting packages, home-grown data collection 
tools, or commercial packages. Regardless which 
method is used, a large amount of storage would 
be required to to store the historical database. 
Most DP installations keep the current 
month/quarter data on on-line storage devices 
and the past months/quarters on either off-line 
storage or mass storage system. In order to 
produce reports, most IBM installations use SAS 
to manipulate their voluminous data. There are 
many data collection and reporting packages, 



such as Morino Associates' MICS, Boole & 
Babbage's CMF, Boeing Computer Services' SARA, 
and IBM's RMF and SMF, to just name a few. 

One of the major concern, from capacity manage
ment viewpoint, is how to link the end-user ser
vices (e.g. response time and availability for 
on-line applications) and the processing capac
ity (e.g. CPU, memory and I/Os). In a large cor
poration, it is cost prohibitive to measure the 
entire workload with respect to linking service 
and capacity. In other words, what end-users see 
the response time (service) may be different 
from what the monitor reports simply because de
lays occurred at the communications network com
ponents can not be accurately and/or completely 
measured. Consequently, the forecasted resource 

CORPORATE Q~NTITATIVE DATA 

* Business Elements: 
- purchase orders 
- production schedules 
- direct labor hours 
- etc . 

.. Application/system 
- transaction counts 

.. Computing resource 
usages 

.. Quantitative model 

.. Computer usage forecasts 
- CPU times I~ 
- I/O counts ~ 

- arrival rates 

DECISIOt ~'ODEL 
.. Center management 

determines necessary 
computing capacity 
for next operating 
planning year 

MONITOR ~ EVALUATION 

(capacity) usages can not be correlated with the 
services delivered. 

The projection analysis is actually a review 
process which tracks forecasting parameter sta
tistics, incorporates the forecasts into the 
management decision support system, and reviews 
the feedback process. The center of the review 
process is the management decision support sys
tem; the relationship among various components 
in capacity management has been extensively dis
cussed at the CMG, ICCCM and ECOMA conferences 
(ALLEN83, DITHM83, HOWAR80. KOLEN77, L084, L085, 
MULLE85 , ORCHA85, POLLA84). The overall concept 
of the review process can be illustrated by the 
detailed execution flow of the NFU application 
discussed by (L086), as shown in Figure 3. 

CORPORATE QUA~ITATIVE DATA 

.. expertise on applica-
tions & systems 

* tactical & strategic 
.. new business direction 
.. potential business 

problems 
~ new applications 

and systems 

I 
ITERATIVE REVIEW WITII 

MANAGEMENT 

.. Acceptability and 
feasibility of 
computer usage 
forecasts 

FEEDBACK PROCESS 

.. observed computing 
usages 

.. observed computing 
and charges 

.. performance statistics 
for the forecasting 
model 

* performance statistics 
for decision model 

.. extraordinary events: 

H 

.. Have dependency - "bluebird" contracts 
relationships changed ? - strikes 

* Is the quantitative I----!".. - new financial policy 
model still valid? * quantitative model 

... etc. adjustments 

Figure 3 NYU Application Execution Flow 

773 



DISCUSSIONS & CONCLUDING REMARKS 

It appears that cluster analysis is more popular 
than software physics probably because of its 
statistical nature for easier acceptance. The 
software physics actually requires no more back
ground skill than cluster analysis technique, 
but has not gained much acceptance probably due 
to its symbolic formats that are not natural to 
most DP analysts. One of the concerns on clus
ter analysis is that if a cluster contains a mix 
of applications such as TSO and IMS trans
actions, and short batch jobs, where and how to 
properly incorporate end-user's forecasted 
growth. In other words, a cluster's future di
rection may represent that particular cluster's 
growth, but an application's forecasts do not 
break down by clusters. Hence, it may require 
another layer of processing and analysis effort 
to translate user's forecasts into each clus
ters. The concern on software physics is not on 
its technicality, but on its formality. Perform
ance analysts may be familiar with the 
hexadecimal numbers but may not be, 
psychologically, familiar with the Greek-like 
symbols and its multidimensional vector re
lationship. 

However, both approaches are no doubt better 
than the traditional intuitive workload charac
terization approaches. One of the major factors 
that will make any method popular is through 
commercialized packages. Although there have 
been a lot of reported case studies on workload 
characterization, they are individual applica
tions. There are several cluster analysis pro
grams such as the ISODATA Points program by Ball 
& Hall from Stanford Research Institute 
(ARTIS76). The Institute for Software Engineer
ing (now The Institute for Information Manage
ment) had partially incorporated the software 
physics concepts into their DP educational pro
grams and consulting services. For example, they 
developed a set of programs to measure the rela
tive power of various types of CPUs and I/O de
vices. However, as far as workload 
characterization is concerned, there is still a 
demand for an automated commercial package to 
characterize the workloads from immense data. 

Workload forecasting is probably the most diffi
cult task in capacity management process. It is 
a collection of individual forecasts which tend 
to inherit errors from the algorithm used. An
other layer of complexity is that each 
corporation's business plans actually govern the 
future business direction. Business plans are 
made based on previous experiences and external 
influences rather than internal measurable 
units; hence they tend to produce higher fore
casting errors. One good example is that the 
sale of the high technology product (i.e per
sonal computers) was forecasted to be doubled 
every year. We have seen a much slower growth 
rate after only five years of the introduction 
of the personal computers. 

774 

As far as DP workload forecasting is concerned, 
the dominant techniques are still statistical 
methods especially the time series techniques. 
The NFU/KVI concept is an ideal way to incorpo
rate business activities into DP plans, but its 
acceptance has not been as expected mainly for 
two reasons. First, there are lack of standards 
to select proper NFU parameters to forecast 
since every business preserves its unique char
acteristics and requires special skill and 
understanding to select NFU parameters; and sec
ond, there is no available commercial package 
which can readily link the business plans and 
the corresponding DP resource requirements. 
Boole & Babbage company is probably one of the 
leading developers to incorporate the NFU con
cept into their CMF product lines. Regardless 
which approach is used, there is still a demand 
for a complete commercial package to incorporate 
proper forecasting techniques into an automated 
process with satisfactory results. Again, a word 
of reminder: the skill, experience and knowledge 

of the analyst still play an important role in 
the workload forecasting process. 

The workload control is actually an instrumental 
measurement and reporting process. There are 
many automated data collection and reporting 
packages that provide excellent data manipu
lation and management capabilities for a DP in
stallation. The only problem is that there is 
no one complete package that can link the capac
ity, service and cost information to produce a 
timely decision support information so that the 
management can make right decisions at the right 
time to provide the best services at the most 
economic means. 

In summary, the three pertinent components of 
the workload management have been discussed. 
There have been many individually reported case 
studies applying various techniques in workload 
management. But the urgent need is not to de
velop more techniques but to incorporate avail
able techniques such as cluster analysis and the 
NFU concept into a complete package which pro
vides sufficient and timely information for the 
analysts and management to properly manage their 
workload growth in the years yet to come. 



TECHNICAL REFERENCES 

I. WORKLOAD CHARACTERIZATION 

ARGAW76 Agrawala, A.K. & Hohr, J.M., "Predict
ing the Workload of A Computer System," 
12th CPEUG Conference; November, 1976, 
Washington, D.C. 

AGRAW77A Agrawala, A.K. & Mohr, J.M., "Some Re
sults on the Clustering Approach to 
Workload Modeling," 13th CPEUG Confer
ence; October, 1977, New Orleans, 
Louisiana. 

AGRAW77B Agrawala, A. K. & Mohr, J.M., "The Rela
tionship Between the Pattern Recognition 
Problems and Workload Characterization 
Problems," 1977 CMG Conference; December 
1977, Washington, D.C. 

AGRAW78A Agrawala, A.K. & Mohr, J.M., "A Markar
vian Hodel of A Job," 14th CPEUG Confe
rence; October, 1978, Boston, Hassachu
setts. 

AGRAW78B Agrawala, A.K. & Hohr, J.M., "A Compari
son of the Workload on Several Computer 
Systems," 1978 CMG Conference; December, 
1978, San Francisco, California. 

ANDER79 E. Anderson, "A Method for the Estima
tion of Resource Queueing Models," 1979 
CMG Conference; December, 1979, Dallas, 
Texas. 

ARTIS76 Artis, H.P., I~ Technique for Determin
ing the Capacity of A Computer System," 
12th CPEUG Conference; November, 1976, 
Washington, D.C. 

ARTIS78 Artis, H. P., "Capacity Planning for MVS 
Systems," 1978 CMG Conference; December, 
1978, San Francisco, California. 

ARTIS79 Artis, H.P., "Methodology for Establish
ing Resource Oriented Job Class Struc
ture," 1979 CNG Conference; December, 
1979, Dallas, Texas. 

BROCK82 Brocklebank, J.C., "Analyzing Computer 
Workload Data Using SAS," 1982 CMG Conf
erence; December, 1982, San Diego, 
California. 

CLEME85 Clements, R. & Kolence, K.W., "Building 
Workload Profiles to Estimate Practical 
CPU Power," 1985 CNG Conference; Decem
ber, 1985, Dallas, Texas. 

DAVID79 Davidson, C.M., "Using Software Physics 
to Evaluate Utilization in a MultiCompu
ter System," 1st ICCCM; April, 1979, 
Washington, D.C. 

DAVIS81 Davis, L.E. & Lo, T.L., "The Evaluation 
of Methods for the Estimation of System 
Resource Usages," 1981 CMG Conference; 
December, 1981, New Orleans, Louisiana. 

DOMAN85 Domanski, B., "HIS Workload Characteri
zation: What Comes After Clustering," 
1985 CMG Conference; December, 1985, 
Dallas, Texas. 

DUJM080 Dujmovic, J.J., "Workload Characteriza
tion, Benchmark and the Concept of Total 
Resources Consumption," The 2nd ICCCM; 
April, 1980, San Francisco, California. 

775 

ELMS80 Elms, C.M., "Clustering - One Method of 
Workload Characterization," 2nd ICCCM; 
April, 1980, San Francisco, California. 

FRIED83 Friedman, E.M., "Workload Characteriza
tion for Subsystems: A Case Study for 
CICS/VS," 1983 CMG Conference; December, 
1983, Washington, D.C. 

FRIED84 Friedman, E.M., & Rosenberg, J.L., 
"Workload Characterization for CSCI/VS: 
the Modeling Implication," 1984 CMG 
Conference; December, 1984, San Francis
co, California. 

GILM082 Gilmore, M., "Characterizing the Perfor
mance of A Distributed Processing Pro
duct," 1982 CMG Conference; December, 
1982, San Diego, California. 

GREEN76 Greenacre, G.R., "Applied Software Phy
sics," 1976 CMG Conference; December, 
1976, Atlanta, Georgia. 

HARTR79 Hartrum, T.C. & Thompson, J.W., "The 
Application of Clustering Techniques to 
Computer Performance and Modeling," The 
15th CPEUG Conference; October, 1979, 
San Diego, California. 

HOFFM77 Hoffman, J. M., "Software Phys ics and the 
SARA System," 1977 CHG Conference; 
December, 1977, Washington, D.C. 

HUGES78 Huges, H.D., "Workload Characterization 
of Computer Systems," 1978 CMG Conferen
ce; December, 1978, San Francisco, 
California. 

HUGES80 Huges, H.D., "A Study of a Procedure for 
Reducing the Feature Set of Workload 
Data," 1980 CHG Conference; December, 
1980, Boston, Massachusetts. 

KAZLA83 Kazlauski, F.A., "Benchmark & Conversion 
Tool: Test Data Reduction Program," 1983 
CMG Conference; December, 1983, 
Washington, D.C. 

KOLEN79 Kolence, K.W., "CPU Power Analysis: 
Theory and Practice," 1st ICCCH; April, 
1979, Washington, D.C. 

KOVAC81 Kovach, R. P., " 1/ 0 Power Analysis and 
Reporting," 3rd ICCCH; April, 1981, 
Chicago, Illinois. 

LEE83 Lee, B.K., "Workload Characterization of 
HIS Using Cluster Analysis," 1983 CMG 
Conference; December, 1983, Washington, 
D.C. 

LEVY81 Levy, A.I., "A Case Study of Workload 
Characterization and Configuration Plan
ning," 1981 CMG Conference; December, 
1981, New Orleans, Louisiana. 

MAEDA83 Maeda, A.R.T., "The Software Physics 
Update," 5th ICCCM; April, 1983, New 
Orleans, Louisiana. 

MAMRA77 Mamrak, S.A. & Amer, P.D., "A Feature 
Selection Tool for Workload Characteri
zation," 1977 CMG Conference; December, 
1977, Washington, D.C. 

MERL083 Merlo, S., "Workload Classification 
Problems," 5th ICCCM; April, 1983, New 
Orleans, Louisiana. 

i'lOHR79 Mohr, J.M., "The Time Varying Nature of 
Computer Workload," 1979 CMG Conference; 
December, 1979, Dallas, Texas. 



MOHR80A Mohr, J.M., "A Survey of Available Work
load Characterization Techniques," 1980 
CMG Conference; December, 1980, Boston, 
Massachusetts. 

MOHR80B Mohr, J.M. & Penansky, S.G., "A Frame
work for Projecting the ADP Workload," 
1980 CMG Conference; December, 1980, 
Boston, Massachusetts. 

MOHR81 Mohr, J.M. & Penansky, S.G., "A Forecast 
Oriented.Workload Characterization 
Methodology," 3rd ICCCM; April, 1981, 
Chicago, Illinois. 

PILCH84 Pilch, J., "Modeling Benchmark Work
load,"1984 CMG Conference; December, 
1984, San Francisco, California. 

PRICH81 Prichard, E.L., "Workload Types and 
capacity Hanagement Data Requirements," 
3rd ICCCM; April, 1981, Chicago, 
Illinois. 

REDDI76 Reddington, D.M., "DP Authority Workload 
History, Characterization and Forecast
ing Description," 1976 CMG Conference; 

- December, 1976, Atlanta, Georgia. 
SENSA79 Sensabaugh, S. L., "A Systematic Approach 

to the Support of Software Physics," 1st 
ICCCM; April, 1979, Washington, D.C. 

SMITH81 Smith, B.J., "I/O Subsystem Workloads: 
Measurements and Modeling," 1981 CMG 
Conference; December, 1981, New Orleans, 
Louisiana. 

VINCE84 Vince, N., "Clustering Techniques and 
Their Practical Application," 1984 ECOHA 
Conference; October, 1984, Munich, West 
Germany. 

WIGHT81 Wight, A.S., "Cluster Analysis for Char
acterizing Computer System Workloads: 
Panacea or Pandora," 1981 CMG Conference 
December, 1981, New Orleans, Louisiana. 

YEN83 Yen, E. H., "The Importance of Workload 
Definition in Capacity Planning and 
Performance,"5th ICCCM; April, 1983, 
New Orleans, Louisiana. 

II. WORKLOAD FORECASTING 

ALLEN82 Allen. L.E., "How to Obtain Accurate 
Workload Forecasts From Users," 1982 CMG 
Conference; December, 1982, San Diego, 
California. 

APPLE83 Applegate, T.L., "Decision Roles for 
Forecast Tracking and Control: Living 
With Your Forecast as Time Goes By," 
1983 CMG Conference; .December, 1983, 
San Francisco, California. 

ARTIS80 Artis, H;P. &.Boast, D.R., "Estimating 
Latent Demand for Random Arrival Batch 
Workloads: A Case Study," 2nd ICCCM; 
April, 1980, San Francisco, California. 

BIASI85 Biasi, 0., "Workload Forecasting Metho
dology," 7th ICCCM; April, 1985, San 
Francisco, California. 

DEAGR84 De Agro, D. & Preston, S., "The Linear 
Projection Model: An Event Driven Fore
casting Model," 1984 CMG Conference; De
cember, 1984, San Francisco, California. 

FEBIS81 Febish, G.J., "Converting Business Plans 
to DP Workload -Forecasts," 3rd ICCCM; 
April, 1981, Chicago, Illinois. 

776 

GRANT81 Grant, J.S., "Peak Workload Analysis and 
Identification," 3rd ICCCM; April, 1981, 
Chicago, Illinois. 

GODWI85 Godwin, W. & Suhler, W., "A timing Esti
mation Method for Large System Software 
Development," 1985 CMG Conference; 
December, 1985, Dallas, Texas. 

HOFFM82 Hoffman, L.L., "Workload Forecasting 
Using Econometric Time Series Analysis," 
1982 CMG Conference; December, 1982, 
San Diego, California. 

KULP78 Kulp, R.W. & Melendez, K., "An Applica
tion of the Time Series in Computer 
Performance Evaluation," 14th CPEUG 
Conference; October, 1978, Boston, 
Massachusetts. 

LINDE80 Linde, S. & Morgan, L., "Workload Fore
casting for the Shuttle Mission Simula
tor Computer Complex at Johnson's Space 
Center," 1980 CMG Conference; December, 
1980, Boston, Massachusetts. 

LIU85 Liu, M., "Using NFU Dependency Analysis 
in Business Oriented Forecasting of 
Workload Growth," 7th ICCCM; April, 
1985, San Francisco, California. 

L080 Lo, T. L., "Computer Workload Forecast
ing Techniques: A Tutorial," 2nd ICCCM; 
April, 1980, San Francisco, Califo.rnia. 

L086 Lo, T.L. & Elias, J.P., "Workload Fore
casting Using NFU: A Capacity Analyst's 
Perspective," Submit to 1986 CMG Confer
ence; December, 1986, Las Vegas, Nevada. 

LUIST83 Luistro, F.M., "The Cone Theory as Appl
ied to Computer Workload Forecasting," 
1983 CMG Conference; December, 1983, 
San Francisco, California. 

MACKI78 MacKinder, C.M., "A Statistical Approach 
to Resource Control in a Time-sharing 
System," 14th CPEUG Conference; October, 
1978, Boston, Massachusetts. 

MAGER79 Magers, J.C. & Fischer, R.C., "Capacity 
Planning & Long Range Forecasting," 1st 
ICCCM; April, 1979, Washington, D.C. 

MCNEE79 McNeece, J.E., "Computer Workload Fore
casting," 15th CPEUG Conference; October 
1979, San Diego, California. 

NIEDZ83 Diedzielski, V. P. & Cecchi, W. J., "Work
load Analysis and Forecasting: A case 

·Study at BKB Corporation," 5th ICCCM; 
April, 1983, New Orleans, Louisiana. 

PERLM79 Perlman, W., "Data Processing Workload 
Forecasting," 1979 CHG Conference; 
December, 1979, Dallas, Texas. 

REED81 Reed, H.L., "Managing DASD Performance 
to Satisfy Workload Requirements," 1981 
CHG Conference; December, 1981,New 
Orleans, Louisiana. 

SANRA79 Sarna, D.Y., "Forecasting Computer Re
source Utilizations Using Key Volume 
Indicators," 1979 AFIPS Conference Proc. 
Volume 48. 

SHERK84 Sherkow, A.M., "Hainframe Computer Faci
lity Usage Evaluation and Future Requi
rements Recommendation," 1984 CMG 
Conference; December, 1984, San Fran
cisco, California. 

WAGG084 Waggoner, W.W., "Effective database 
Design: A Key to Integrating Business 
and DP Plans," 6th ICCCH; April, 1984, 
Washington, D.C. 



WANDZ84 Wandzilak, J., "Problems Facing Workload 
Forecasting," 1984 CMG Conference; De
cember, 1984, San Francisco, California. 

WEINT83 Weintraub, M., "Predicting Computer 
Performance With CMF," 11th ECOMA Confe
rence; October, 1983, Copenhagen, 
Denmark. 

WILLI80 Williams, B., "Capacity Planning through 
Reduced Scale Implementation of Software 
Physics," 2nd ICCCM; April, 1980, San 
Francisco, California. 

YEN85 Yen, K. "Projecting CPU Capacity Requi
rements - A Simple Approach," 1985 CMG 
Conference; December, 1985, Dallas, TX. 

III. WORKLOAD CONTROL 

ALLEN83 Allen, L.E., "A Decision Support System 
for the MIS Executives," 5th ICCCM; 
April, 1983, New Orleans, Louisiana. 

ARTIS78 Artis, H.P., "Capacity Planning for MVS 
Computer Systems," 1978 CMG Conference; 
December,1978, San Francisco, California 

BECKE85 Becker, G., "Capacity Planning for App
lications Still Under Development," 1985 
CMG Conference; December, 1985, Dallas, 
Texas. 

DITHM83 Dithmar, H., "Key Ingredients for Succ
essful Capacity Management,." 5th ICCCM; 
April, 1983, New Orleans, Louisiana. 

HAEBI80 Haebig, D.G., "Managing Service Levels 
Through Workload Scheduling," 2nd ICCCM; 
April, 1980, San Francisco, California 

HARTR83 Hartrum, T. C., "The Application of Multi
variate Statistical Techniques to Compu
ter Performance Evaluation Using Simu
lated Data," 19th CPEUG Conference; Oct
ober, 1983, San Francisco, California. 

HINTZ83 Hintze, J., "Multiple Regression Analy
sis Using SAS," 1983 CMG Conference; 
December, 1983, Washington, D.C. 

HOWAR80 Howard, P.C., "Planning Capacity to meet 
User Services," 1980 CMG Conference; 
December, 1980, Boston, Massachusetts. 

INGRA85 Ingrassia,. F., "Modeling the Performance 
of New On-line System," 1985 CMG Confe
rence; December, 1985, Dallas; Texas. 

JACKS81 Jackson, R.M., "Workload Characteriza
tion and Capacity Planning at a Large 
IBM Installation," 1981 CMG Conference; 
December, 1981, New Orleans, Louisiana. 

KOLEN76 Kolence, K.W., "The Meaning of Computer 
Measurement: An Introduction to Software 
Physics," The Institute for Software 
Engineering, 1976. Palo Alto, California 

KOLEN77 Kolence, K.W., "Software Physics: A To
turial," 1977 CMG Conference; December, 
1977, Washington, D.C. 

L084 LO, T.L., "Planning, Service, and Cost 
Considerations for Management," 12th 
ECOMA Conference; October, 1984, Munich, 
West Germany. 

L085 LO, T.L., "Capacity Management: A multi
dimensional Process," 1985 CMG Conferen
ce; December, 1985, Dallas, Texas. 

777 

MULLE85 Mullen, J. W., "Capacity Planning: Basic 
Elements for the Process," 1985 CMG Con
ference; December, 1985, Dallas, Texas. 

ORCHA85 Orachard, R.A. & Domanski, B.E., "System 
Performance Management and Capacity 
Planning," 1985 CMG Conference; December, 
1985, Dallas, Texas. 

PEDRI78 Pedriana, F .L., "Some Practical Applica
tions of SAS to Capacity Planning," 1978 
CNG Conference; December, 1978, San 
Francisco, California. 

PHIPP81 Phipps, L.W. & Schiavone, T.H., "Capaci
ty Management Information System Via 
SAS," 3rd ICCCM; April, 1981, Chicago, 
Illinois. 

POLLA84 Pollack, T., "Capacity management: A 
Case Study," 1984 C~IG Conference; Decem
ber, 1984, San Francisco, California. 

SIMPS83 Simpson-Felix, S., "Implementing an Ana
lytic Model for CICS System," 1983 CMG 
Conference; December, 1983, Washington, 
D.C. 



The Evolution of Software Performance Engineering: 
A Survey 

Connie U. Smith, Ph.D. 
Performance Engineering Services Division 

L & S Computer Technology, Inc. 
PO Box 9802-120 
Austin, TX 78766 

(505) 988-3811 

Abstract 

This paper surveys the approaches to software performance from the 
1960's to the present. It points out the breakthroughs leading to the 
software performance engineering approach (SPE), a comprehensive 
methodology for constructing software to meet performance goals. SPE 
advocates building performance into the software architecture (as opposed to 
tuning code). The paper summarizes the concepts, methods, models, tools, 
and use of software performance engineering and suggests future trends in 
each of the areas. 

Introduction 

Software performance engineering (SPE) is a method for 
constructing software systems to meet responsiveness goals. With it, one 
models software requirements and designs, and evaluates whether predicted 
performance metrics meet the specified goals. If not, alternatives are 
proposed and assessed. The process continues through the detailed design, 
coding, and testing stages to develop more precise models of the software 
and its predicted performance. 

Performance refers to the response time or throughput as seen by the 
users, that is, its responsiveness. Real-time command and control systems 
must be responsive to be correct. Shneiderman observed that 
responsiveness is an important human interface factor in all systems 
[SHN79]. Since it limits the amount of work that can be processed, it also 
determines a system's effectiveness. 

SPE focuses on software development, but it is also an important 
part of a capacity management program [BER84]. Accurate planning 
requires data on new applications and data on the effect on resource 
requirements of growth in current work; SPE models provide both. Three 
important factors that capacity management should address are in Figure 1. 

A passive capacity planning program anticipates growth and reacts 
to it. The approach advocated in Figure 1 is an active capacity management 
program that controls configuration requirements. Growth in workload 
demands may be inevitable, but growth due to resource requirements of 
software can be controlled through SPE. 

Control 

Growth Planning 

Figure 1. Capacity Management Functions 

CH2345-7j86jOOOOj0778$Ol.00© 1986 IEEE 
778 

Many aspects of capacity management are dependent on the 
exe~ution environment. Other papers in this session are specifically 
oriented to IBM environments. SPE, though, works in all computer 
environments. System dependent characteristics are incorporated into the 
SPE models. 

This introduction claims that SPE is a viable methodology. The 
next section reviews its evolution from the first applications, through the 
modeling breakthroughs to the tools and methodology that established its 
viability. Then, recent advances are described, and finally. the future of 
SPE is predicted. 

Early approaches 

Performance was typically considered in the early years of 
computing. The space and time required by programs had to be carefully 
managed in order to fit them on small machines. The hardware grew but, 
rather than eliminating performance problems, it made larger, more complex 
software feasible and programs grew into systems of programs. Some of 
the software systems had strict performance requirements, such as flight 
control systems and other embedded systems. Performance modeling and 
assessment for these systems was expensive and labor-intensive. They used 
detailed simulation models, consequently creating and solving them was 
time-consuming. Updating the models to reflect the current state of 
evolving software systems was also problematic. Thus, the modeling and 
assessment was cost-effective only for systems with strict performance 
requirements. 

Other systems adopted the "fix it later" methodology. It advocates 
concentrating on software correctness, deferring performance considerations 
to the integration testing phase and (if performance problems are detected 
then) procuring additional hardware or "tuning" the software to correct them. 
The results have been acceptable until recently. The following figure 
explains why it no longer works: 

Response time was seldom a problem for batch systems. When on-line 
systems were first introduced, they had modest resource demands, and there 
were fewer users and other systems competing for the resources. Since then 
the number of users and on-line systems have grown substantially. The 
systems now have more ambitious functions, rely on large data bases, and 
use fourth generation languages; thus, the demand has significantly 
increased. As Figure 2 shows, an increase in demand on the right end of the 
curve causes a much higher increase in response time than one on the left. 
So the likelihood of performance problems. was low in the past when 
demand was low, but they are more likely now. 

Unforunately the "fix it later" approach is still used by many system 
developers. The approach has many disadvantages: it takes time to procure 
and install hardware and to tune software; testing must be repeated after code 
changes; and an interim period of poor performance leaves a negative 
impression with users long after it is corrected [PEAR82]. The rationale for 
"fix it later" is to save development time, cost and maintenance cost. The 



response 
time 

demand 

models. Since they are solved analytically, they can be used interactively. 
Since then, many advances have been made in modeling computer systems 
with queueing networks, faster solution techniques, and accurate 
approximation techniques [LAZ84, SAU81). They are commonly used in 
capacity planning to model large computer systems. 

Figure 2. Effect of demand on response time 

Figure 3 illustrates their use: the model is constructed from 
information on the computer system configuration and measurements of 
resource requirements for each of the workloads modeled. The model is 
solved and the resulting performance metrics (response time, throughput, 
resource utilization, etc.) are compared to measured performance. The model 
is calibrated to the computer system. Then, it is used to study the effect of 
increases in workload and resource demands, and of configuration changes. 

savings will not be realized, however, if initial performance is 
unsatisfactory because of the additional time and cost for tuning and 
maintenance (introduced by efficiency "tricks" for tuning and code entropy 
resulting from the changes) 

The models were used primarily for capacity planning. For SPE 
they were sometimes used for feasibility analysis: request arrivals and 
resource requirements were estimated and the results assessed. More precise 
models were infeasible since the software could not be measured until it was 
implemented. 

Table 1 summarizes the premises that led to "fix it later," the current 
reality, and the consequences of unacceptable performance. It was a viable 
approach for batch software, but it is inappropriate for large on-line 
systems. 

The second SPE modeling breakthrough was the introduction of 
analytical models for software [B0079, SAN78, SMI79). With them, 
software execution is modeled, estimates of resource requirements are made, 
and performance metrics are calculated. They yield an approximate value for 
best, worst, or average resource requirements. They can also be used to 
derive an estimate for response time; they can detect response time 
problems, but since they do not model resource contention they do not yield 
precise values for predicted response time. 

Modeling Breakthroughs 

In 1971, Buzen proposed modeling systems with queueing network 
models and published efficient algorithms for solving some important 
models [BUZ71). The models are an abstraction of the computer systems 
they model, so they are easier to create than general purpose simulation 

The third SPE modeling breakthrough was combining the anlaytic 
software models with the queueing network system models to more 
precisely model execution characteristics [BGS83,SMI80). Figure 4 shows 

Premises: 

Performance problems 
are rare 

It's too expensive 
to build high-performance 
software 

Tuning can be done 
later 

Efficiency implies 
"tricky" code 

Hardware is fast 
and inexpensive 

Table 1. "Fix it Later" Approach? 

Reality: 

The number of on-line software 
systems, their size, and their 
complexity have increased; 
many large systems cannot be 
used initially due to performance 
problems 

Data on time and cost of 
building-in performance is 
out of date; methodologies 
and tools have dramatically 
reduced costs 

Problems are usually due to 
fundamental architecture 
or design problems rather 
than inefficient coding 

Acceptable performance is 
required; it can be designed-in 
early 

No installations have unlimited 
hardware budgets. Advanced 
planning and justification are 
needed for procurements. 
Software demands may exceed 
all hardware capabilities 

779 

Consequences (of unacceptable 
performance): 

Requires tuning and/or hardware 

Testing is slower so cost is higher; 
maintenance costs (for "tuned" code) 
are higher 

Code tuning yields modest 
improvements; large gains require 
major revisions. Very expensive 
(often infeasible) to change fundamental 
design choices 

"Tricky" code may be the only option 
for achieving goals late in life cycle 

Lose control of equipment purchase and 
maintenance budgets 



Figure 3. Conventional Performance Modeling 

the combination of the conventional model used for capacity planning and 
the software model for systems under development. They not only model 
more precisely the execution, but also show the effect of new software on 
existing work and on resource utilization, and identify computer device 
bottlenecks and the parts of the new software with high use of bottleneck 
devices. 

By 1980, the modeling power was established and many software 
tools were available [BGS82, BGS83, IRA75, QSP82] (note: the products 
and publications have been updated since 1980). Thus, it became 
cost-effective to model large software systems early in their development. 

SPE Methodology 

Early experience with a large system under development confirmed 
that sufficient data could be collected early in development to predict 
performance bottlenecks [SMI82]. Unfortunately, despite the predictions, 
the system design was not modified to remove them and upon 
implementation (approximately one year later) performance in those areas 
was a serious problem, as predicted. The modeling problems were resolved, 
but that was not enough to prevent problems. 

The SPE methodology in Figure 5 was proposed [SMI81] and later 
updated [SMI84]. Key parts of the methodology are methods for collecting 
data early in software development, and critical success factors (Figure 6) to 
ensure SPE success. The methodology also addresses compatibility with 
software engineering methods, what is done, when, by whom, and other 
organizational issues. SPE remains an art--the problems are not technical, 
they require human communication and interaction techniques that can be 
leamed. 

SPE Use 

Lately, many papers have been written reporting success in applying 
SPE. A special issue of the Computer Measurement Group Transactions 
on experience with SPE appeared in fall 1985 [CMG85]. It contains an 
extensive bibliography on SPE reporting experiences, methodologies, 
modeling techniques, tools, software measurement techniques, and program 
improvement techniques. The US Army Information Systems Engineering 
Command developed a performance engineering handbook for their software 

780 

/~ 
..-----......::--, 

System 
Configuration 
Specs 

Figure 4. SPE Modeling 

engineers. Many conferences now include sessions on software performance 
engineering; and seminars are offered to teach SPE techniques. 

Recent Advances 

The purpose of SPE is to support the development of software 
systems that will be responsive to users when they are initially 
implemented. Performance problems have been detected and corrected early, 
before implementation. Since ideas and designs must be formulated before 
they can be modeled, problems still tend to be present in the initial 
formulation. To prevent this, a set of formal, general principles for 
performance oriented design was developed [SMI86]. Software architects 
who are experts in formulating requirements and designs for large, 
high-performance systems use intuition to develop their systems. The 
general principles formalize that expert knowledge. They can, thus, transfer 
the expert's intuition, developed through years of experience, to software 
architects with less experience in building responsive systems. 

With this advance, the evolution of SPE can be depicted with the 
chart in Figure 7. 

Other recent advances offer incremental improvements to the areas in Figure 
7. 

The models have evolved. Complex execution characteristics (such 
as memory usage, locking resources, parallel execution, etc.) cannot be 
solved easily with analytic queueing models. It is easier to use a similar 
model structure to the queueing network models, but use simulation-based 
solution algorithms that execute much quicker than the old, detailed 
simulation models [IRA83]. Petri net models have also been used to model 
parallel execution of software and hardware [BAL85, SMI85]. 

The user interfaces of tools have improved; graphics devices provide 
visual feedback to designers [FRA85, IRA85,LS86]. SPE has been 
extended to new applications such as point of sale systems [AND84], and 
software/hardware codesign [FRA85]. 



Yes 

Enter next phase 

Figure 5. P. E. Methodology 

Modify life cycle 
phase product 

Project management: 

commitment -react to significant results 

scheduling - include sufficient time for SPE (and 
for possible modifications) 

control - perfonnance consciousness 

credibility of results (analyst training and backing) 

Data requirements: 

representative workload scenarios 

precise estimates of critical resource usage 

best and worst case results: 
focus attention on problems rather than models 
for desirability evaluation 

Organizational issues: 

outside expert or member of design team? 

cooperative effort 

ongoing CPE provides better data 

Perfonnance analyst responsibilities: 

timely results 

previous experience (chicken & egg problem?) 

quantitative data for alternatives 

project visibility 

Figure 6. Critical Success Factors for Effective SPE [SMI84] 

Methods 

conC~~6 

Tools Models 

~use 
Figure 7. SPE Evolution 

781 



The Future of SPE 

Advances in SPE are likely to continue at a rapid rate. Table 2 
summarizes some predicted advances in each of the five areas identified in 
Figure 7, and adds a new area: verification and validation of SPE models. 

There are many exciting challenges for researchers. Most require 
skills in multiple areas (e.g., software engineering and performance 
modeling, computer architecture and software engineering, etc.). For 
practitioners, many systems under development need SPE. Each will 
provide new modeling challenges and many learning opportunities. The 
support tools available in the future will be fun to use and will reduce the 
amount of time spent "pushing numbers." 

Area 

Concepts 

Methods 

Models 

Tools 

Use 

Table 2. Future Directions 

Improvements 

General software design principles to incorporate other quality attributes 
such as reliability, testability, maintainability, etc. 

Formal integration of SPE and software engineering 

Models, tools, and methods for assessing the other quality attributes early in 
development 

Official organization positions for "performance engineers" with continuing 
education to improve the human interaction skills 

New models to evaluate extensive parallel and distributed processing 

Models for new computer architectures 

Models of transient behavior to study periodic behavior or unusual 
execution characteristics 

Computer-aided design (CAD) tools to support the designer in automatically 
performing design assessments while formulating designs, and to integrate 
the models with the design evolution 

Expert systems to automatically detect and suggest design improvements 

Effective graphical techniques for reporting SPE results 

Software measurement tools to capture, reduce, interpret. and report data at 
a level of detail appropriate for designers 

A software performance data base to store evolutionary design and model 
data and support queries against it 

Rapid increase in application to new, large systems 

More literature documenting experience with SPE 

New domains, such as predicting performance of VLSI chips early in design 

Verification and Validation Techniques for including instrumentation in software designs 

Techniques for calibrating software models, automatically relating 
predictions to measurements, and studying discrepancies 

782 



References 

[AND84] Gordon E. Anderson, "The Coordinated Use of Five Performance 
Evaluation Methodologies," CACM, 27,2, Feb. 1984, 119-125. 

[BAL85] G. Balbo, S.C. Bruell, S. Ghanta, "Modeling Priority Schemes," 
Proc. ACM SIGMEIRICS ConJ. on Measurement and Modeling of 
Computer Systems, Austin, Aug. 1985. 

[BER84] Margaret E. Berry, "The Best of Both Worlds: An Integrated 
Approach to Capacity Planning and Software Performance 
Engineering," Proc. Computer Measurement Group ConJ. XV. San 
Francisco, Dec. 1984,462-466. 

[BGS82] BEST/l Modeling Package, BGS Systems, Inc., Waltham, MA, 
1982. 

[BGS83] CRYSTAL Modeling Package, BGS Systems, Inc., Waltham, 
MA,1983. 

[B0079] T. L. Booth, "Use of Computation Structure Models to Measure 
Computation Performance," Proc. Conference on Simulation. 
Measurement and Modeling of Computer Systems. Boulder, August 
1979. 

[BUZ71] J. P. Buzen, "Queueing Network Models of Multiprogramming," 
Ph.D. Thesis, HarvardUniversity, Cambridge, MA, 1971. 

[CMG85] "Special Issue on Software Performance Engineering," Computer 
Measurement Group Transactions. 49, Sept. 1985. 

[FRA85] G.A. Frank, C. U. Smith, J.L. Cuadrado, "Software/Hardware 
Codesign with An Architecture Design and Assessment System," 
Proc. Design Automation Conference, Las Vegas, 1985. 

[IRA75] User's Manual for the CADS System, Information Research 
Associates, Augstin, TX, 1975. 

[IRA83] Performance Analyst Workbench System (PAWS), Information 
Research Associates, Austin, TX, 1983. 

[IRA85] GPSIM: Graphical Programming for Simulation, Information 
Research Associates, Austin, TX, 1985. 

[LAZ84] E.D. Lazowska, J. Zahorjan, G.S. Graham, K.C. Sevcik, 
Quantitative System Performance: Computer System Analysis 
Using Queueing Network Models. Prentice Hall, Inc., Englewood 
Cliffs, 1984. 

783 

[LS86] Graphical Queueing Network Analysis (GQUE) User's Manual, 
L & S Computer Technology, Inc., Austin, TX, 1986. 

[PEA82] S.W. Pearson, Tutorial on Information Systems Effectiveness, 
18 Computer Performance Evaluation Users Group, Washington, 
DC, Oct. 1982. 

[QSP82] A Modeling and Analysis Package (MAP), Quantitative System 
Performance, Seattle, WA, 1982. 

[SAN78] J.W. Sanguinetti, "A Formal Technique for Analyzing the 
Performance of Complex Systems," Proc. Computer Performance 
Evaluation Users Group 14. Boston, October 1978. 

[SAU81] C.H. Sauer, K.M. Chandy, Computer Systems Performance 
Modeling. Prentice Hall, 1981. 

[SHN79] B. Shneiderman, "Human Factors Experiments in Designing 
Interactive Systems," IEEE Computer, 12,12, Dec. 1979,9-20. 

[SMI79] C.U. Smith, J.C. Browne, "Performance Specifications and 
Analysis of Software Designs," Proc. Conference on Simulation 
Measurement and Modeling of Computer Systems, Boulder, August 
1979. 

[SMI80] Connie U. Smith, J.C. Browne, "Aspects of Software Design 
Analysis: Concurrency and Blocking," Proc. Performance 80 also· 
in ACM Performance Evaluation Review, 9,2, Summer 1980. 

[SMI81] Connie U. Smith, "Software Performance Engineering," Proc. 
Computer Measurement Group Conference XII, Dec. 1981,5-14. 

[SMI82] Connie U. Smith, J.C. Browne, "Performance Engineering of 
Software Systems: A Case Study, Proc. National Computer 
Conference, Vol. 15, Houston, June 1982,217-224. 

[SMI84] Connie U. Smith, "Effective Implementation of Software 
Performance Engineering," Proc. European Computer Measurement 
Association 12. Munich, Oct. 1984,241-245. 

[SMI85] Connie U. Smith, "Robust Models for the Performance Evaluation 
of Software/Hardware Designs," Proc. Int. ConJ. Timed Petri Nets, 
Torino, July 1985, pp. 172-180. 

[SMI86] Connie U. Smith, "Applying Synthesis Principles to Create 
Responsive Software Systems, " Duke University Technical Report 
CS 1986-11, submitted for publication, 1986. 



COMPUTER DESIGN ARENA 

Fault-tolerant Computing 

TRACK CHAIR: Prof. John Meyer 
University of Michigan 

VLSI Design and Test: Theory and Practice 

TRACK CHAIR: Mr. Jerome Kurtzberg 
IBM T. J . Watson Research Center 

Computer Graphics 

TRACK CHAIR: Prof. Michael Wozny 

Rensselaer Polytechnic Institute 



PERFORMABILITY ANALYSIS OF OPERATION MODES OF CONFIGURABLE DUPLEX SYSTEMS 

Balakrishna R.lyer, Daniel M. Dias and Philip S. Yu 

IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 

Abstract 
Configurable duplex system structures, like the ruM 3084, are capable 
of operating as one single system (single image mode) or as two inde
pendent systems (partitioned mode). The user installation has a choice 
of operation modes. The single image mode of operation is more tol
erant to hardware failures because of component redundancies, but on 
operating system failure all processors are lost. In the partitioned mode 

. the outage of any hardware component or operating system brings 
down the affected half of the duplex system. The problem is to select 
the mode of operation. Since mUltiple performance levels, derived 
from a model, are involved a .composite performance reliability meas
ure like pcrformability is required. Areas based on the hardware .and 
software failure rates are demarcated, where ·one of the operation 
modes is better than the other. The sensitivity of the choice of opera
tion'mode to the the goals of the installation (choosing on the basis of 
average or percentile) is also demonstrated. The use of a steady state 
perfonnability measure instead of transient perfonllability is shown to 
distort the choice of operation mode. Hence, simple to compute tight 
upper and lower bounds for the hard to compute transient 
perfonllability are derived. 

1. Introduction 

The demand for higher system availability and greater processing 
power has been growing rapidly in various installations. A general 
trend of commercial computer system architectures is towards mUltiple 
processor systems with (a) fault tolerance and (b) horizontal growth 
as major design goals. Both goals can be achieved by replicating 
functional units and providing proper recovery software. In the IBM 
308X processor family, some 3081 models are field upgradable from 
a two processor system into a four processor 3084 system, Boos 
(1985) describes an interesting feature of the 3084 system in that it 
can be configured either as a· 4-way . tightly coupled mUlti-processor 
system or as two separate 2-way tightly coupled mUlti-processor sys
tems, each of which can be used to service half the total workload. 

A simplex system consists'of various functional units and operates 
under a single operating system. A configurable duplex system is ob-

. tained by taking two simplex systems and adding interconnections be
tween their functional units. A configurable duplex system may be 
configured to operate in two different modes - PARTITIONED or SINGLE 

IMAGE. In the partitioned mode the duplex is configured as two sepa
rate (simplex) systems each with a single instance of each functional 
unit. In the single image mode the duplex runs as one system with dual 
copies of every functional unit. We consider the problem of selecting 
the operation mode for a configurable duplex system structure, like the 
IBM 3084. A study of different configurable duplex system structures 
can be found in Iyer (1985). 

The user installation has a choice of operation modes. The single 
image mode of operation is more tolerant to hardware failures because 
of component redundancies, but on operating system failure all 
processors are lost. In the partitioned mod~ the optage of any hard-

CH2345-7/86/0000/0785$01.00 © 1986 IEEE 
785 

ware component or operating systeill brings down the. affected half of 
the duplex system. The problem is to select the mode of operation: 
based not only on the the available statistics about the failure rates of . 
the system and the projected performance levels during periods of de
graded operation but also based on the-installation requirements. For 

. instance, if system availability is a critical installation requirement, as 
in online ATM systems, then a 95'th percentile metric related to avail
ability may be appropriate. In throughput odented installations, like 
those doing check processing, average system performance may be the 
preferred metric. 

Since mUltiple performance levels are involved reliability or avail
ability analysis based on a binary valued function is inadequate. The 
composite performance reliability measure performability (Meyer 
(1980», which can be used both as a percentile oriented metric and a 
throughput oriented metric, is required for the problem. Perfonnability 
may be viewed as the total accumulated reward of a system during its 
mission time- the interval during which the system is required to give 
uninterrupted service. Examples of mission times are a) 8 a.m. to 5 
p.m. for office systems, and b) the blast-off to earth landing time for 
a computer system aboard a space vehicle. The normalized capacity 
of a system is defined as the work per unit time (e.g. transaction rate 
in a database system) that the system can sustain during the system 

. mission time nonllalized by the maximum work rate. Clearly the 
available capacity at any instant depends upon the number of func
tioning processors at that instant. Normalized capacity is a special case 
of perfonllability. We refer to the work of Furchgott and Meyer. 
(1984), Kulkarni et. at. (1984) and Goyal and Tantawi (1984) for 
recent investigations into applications and analysis of perfonnability. 

The simplex and duplex system structures and the two duplex sys
tem operation modes are described in Section 2. In Section 3, the 
partitioned mode operation and single image mode operation are com
pared using performability me'aSures. This comparison is found to be 
sensitive to the metric chosen (e.g average or tail of the distribution of 
performability) and also to other system parameters. Usage of steady 
state perform ability instead of transient is shown to lead to distortion 
of choice between single image and partitioned modes. In Section 4, 
we focus on the difference between transient and steady state 
perfonnability measures and derive easily computable analytical upper 
and lower bounds for their difference. An approximation is also pro
vided. The bounds themselves are shown to be the basis of good ap
proximations to compute transient average perfonllability starting from 
the steady .state performability measure. Conclusions are drawn in 
Section 5. 

,2. System Structures 

2.1. Simplex System Stl1lcture 

The computer system structure envisioned in this paper ·is depicted 
in Figure 2.1 (a). The configuration is similar to the configuration of 
the IDM 3081 processor complex described by Pittleret. at. (1982) and 



Gustafson and Sparacio (1982). The processor (P) executes in
structions that reside in the memory (M). Memory access is coordi
nated by the memory controller (MC). Both the memory controller 
and processor are connected through the system controller (SC) which 
serves the purpose of a switch and may be used as a controller for a 
processor buffer (cache). The system controller is also attached to the 
external data controller (X) which contains the intelligence required to 
address the control units which communicate with the disks, tapes, 
printers, terminals and other peripheral devices for data. Hardware 
functional units of the above kind are typically subject to frequent 
transient failures. Each hardware unit described above is assumed to 
have comprehensive error detection, correction and fault isolation ca
pabilities similar to those described by Bossen and Hsiao (1980,1982) 
and Tendolkar and Swann (1982). The processor.controller (PC) co
ordinates such retry activity and maintains a log of functional unit er
rors. It interfaces to each functional unit through the interface sensor 
sets (I) over links that are typically of much lower bandwidth than 
those used between the other hardware units for data transfer. Reilly 
et. al. (1982) describe the processor controller for the IBM 3081. 
Operating system software (SW), running on top of the hardware 
configuration, is considered as another component. We will use the 
terms component and functional unit interchangeably. 

The simplex system is available only if aU the hardware and soft
ware components of the system are operational. (Discussion of power 
and thermal unit failures is beyond the scope of this paper.) Basic 
systein availability is pictured by a coherence diagram in Figure 2.1 (b). 
The system is considered to be available if there is an end-to-end path 
in the coherence diagram that contains non-faulty components. 
Memory is assumed to be protected by error correcting circuitry and 
most memory failures are masked out. n.emaining memory failures and 

. memory controller failures are lumped together as memory controller 
failures. There are two such types of failures considered. The first 
type consists of failures for which the system may be successfully 
re-IPL'ed (IPL is used to abbreviate the 'initial program load' function) 
after bypassing the failed portion of memory or memory controller. 
The system now operates with less memory than before. It is assumed 
that such loss of memory is usually sniall and therefore the impact on 
perfonnance may be ignored. The second type of failure is more seri
ous and knocks off the entire memory until a hardware repair action is 
taken on the memory modules or controller. The ratio of failures of the 
first type to the second is assumed to be r/(l - r). Both types of 
failures cause system outage. Under the assumption that the system is 
subject only to single component faults, Figure 2.1 ( c) gives a transition 
.diagram representation of the system availability process. Lp , Lsc ' 
Lx, LMC ' Lpc and L/ are assumed to be the permanent hardware 
failure rates of the processor, system controller, external data control
ler, memory controller, processor controller, and the interface sensor 
set, respectively. The average repair time for such a functional unit 
failure is assumed to be l/MR . Lswis the failure rate of the operating 
system running on the simplex system induced by (a) program logic 
errors and (b) transient or intermittent hardware failure. These do not 
include operating system failures attributable to its inadequacy in 
dealing with permanent functional unit failures - these are accounted 
for by the coverage probabilities. Operating system failure is recovered 
by a system re-IPL which takes time 1/M/. Link failures are assumed 
to be negligible and are not modelled. There are two modes of failures 
of the interface sensor set modelled here. In the first we consider the 
loss of the sensor link to a single component in the system. The failure 
is incorporated into the individual component failure rate. The second 
mode of failure, referred to as the common mode of failure, models the 
loss of all sensor lines from the sensor set. This is modelled by the 
failure rate L/. 

2.2. Duplex System Strudures 
The duplex systems may be run in either partitioned mode or single 
image mode, described below. 

786 

Partitioned Mode Operation: 

In the partitioned operation mode, depicted in Figure 2.2.1(a), 
there is no coupling of the two systems running on the two halves of 
the duplex. In a transaction processing environment, two separate da
tabase systems with disjoint sets of databases can be running on each 
half of the duplex. The advantage of this mode is that failures on one 
side do not affectthe other side. Such failures include both hardware 
and operating system failure. The disadvantage, though, is that failure 
of any hardware component leads automatically to the outage of half 
the system. In Figure 2.2.1(b) these availability considerations are 
depicted in a coherence diagram. Recall that the system is considered 
to be available if there is an end-to-end path in the coherence diagram 
that contains only non-faulty components. Perfect fault recovery 
coverage is assumed for parallel pairs in the coherence diagrams. In the 
next section, the impact of imperfect recovery coverage is considered 
for parallel pairs. We pick throughput as the reward to signify per
formance levels in different configurations. Each state is associated 
with a single throughput value, thus ignoring the transient effects of, 
on throughput immediately after a reconfiguration. For systems where 
the jobs to be processed take small time compared with the time be
tween reconfigurations (e.g. transaction processing systems), our as
sumptions are realistic. Assuming a (normalized) reward rate of unity 
for a fully operational partitioned mode system (both systems running) . 
the reward rate for partitioned mode during component failure (only 
one system running) becomes 0.5. We do not model occurrence of 
failures during the repair of another failure. Figure 2.2.1(c) is a tran
sition diagram indicating state transitions on failures with the states 
labeled with the associated reward rates. The failure rates assumed in 
Figure 2.2.1(c) reflect the fact that there are two of each component 
in the duplex system architecture. Each operating system is assumed 
to have the the same failure rate Lsrv as the operating system for the 
simplex system. System loss due to either software failures and partial 
memory failure may be recovered by a re-IPL. Other hardware failures 
require a hardware repair action. 

Single Image Mode Operation: 

In this mode of operation, two simplex systems are assumed to be 
connected through their system controller's with connectivity further 
enhanced by having each memory controller connect to both system 
controllers and by having each processor controller connect to both 
sets of interface circuits, as illustrated in Figure 2.2.3(a). This inter
connect architecture is similar to the IBM 3084 interconnect architec
ture described by Boos (1985), where two tightly-coupled (Le. dyadic) 
processors replace the single processor we have assumed for each P in 
Figure 2.2.3(a). The impact of component failure on this mode of 
operation is shown in Table 2.1. The rows in this table indicate the 
effect of component failure. The columns labelled P, S, M, X, show the 
number of processors, system controllers, memory systems and ex
ternal data controllers that remain active for each type of component 
·failure. In the last two columns of this table we indicate the transitions 
experienced due to covered and uncovered failures for each kind of 
component failure. For uncovered failures there is an outage. Re-IPL 
(average time l/M/) restores the failed system to a level of degraded 
perfonnance. A hardware repair action starts simultaneously. At the 
end of the repair action the system returns to a state of normal per
formance. We assume that the time for the repair action to complete 
after the end of the IPL action is given by l/MR_/ = l/MR - 1IM/. 
The failure of memory or memory controller leads to an instantaneous 
loss of half the memory and is assumed to be catastrophic and causes 
system outage. For covered failures of memory the resultant outage is 
recovered by a re-IPL. For other component failures, degraded per
formance results until the end of the repair action (average repair time 
l/MR ). Markov transition diagrams in Figure 2.2.2(c) illustrates these 
transitions and changes in rewards, graphically. 

We make the following additional observations about this mode of 



operation. (i) Only one operating system is run on the duplex system 
and hence system software failure leads to system outage for tbe du
ration of an IPL. The exact relationship between the operating system 

'failure rate of the simplex macbine and the duplex machine running in 
single image mode is unknown. On the duplex machine we have one 
operating system controlling twice the number of resources as in a, 
simplex nl~chine .. In the absence of experimental evidence we assume 

Jor most of tbis paper that the software' failure rate for single image 
mode operation is twice that for the operating system of the simplex 
macbine. One parametric study varying the ratios between the soft
ware failure rate of the single image mode with that of the partitioned 
'mode is conducted in the next section. (ii) Only one processor con
troller need be available for nonnal system operation. Since th~ 
processor controller is used mainly for error logging and retry oper-' 
ations, the effect of having two or one processor controllers does not 
'have any effect on system performance. Hence it is not included in 
Table 2.1. (iii) Jobs are assumed to be picked up by any free processor 
for execution. It is in this way that the single image mode recovers 
from processor failure. (iv) We assume that there are dual access paths 
to all I/O devices - one path through each external data controller. ' 
Every I/O request is sent to both system controllers and from there to 
'both external data controllers. The external data controller that can . 
first satisfy the I/O request does so. Thus single image mode operation 
;can continue in thejace of an external data controller failure. (v) It is 
'assumed that the software system has no capability to recover from a 
:system controller failure. (vi) Both interface sensor sets are crucial to 
,the operation of the system because failure of anyone of them brings 
:down half the coupled system, and since half the memory is lost we 
'assume that there is a system outage .. Furthermore, on processor loss, 
memory loss or external data controller loss the system may be recon
figured leaving out only the lost component. Software failures of the 
operating system lead to complete system outage until the system is 
re-IPL'ed. 

3 Performability Analysis 

3.1 Methodology 

Traditionally reliability and performance analysis of computer sys
tems have been carried out separately. Computer system states have 
been traditionally classified into 'up' and 'down' states. In a 
reconfigurable duplex system there are a class of states in which the 
computer system is operational but not at peak performance, due to 
loss of some component. It is important to further refine the concept 
of availability to reflect more clearly the performance of the system in 
these states. 

Meyer (1980) first defined performability in terms of the state of 
the systemXs (at time s). The state dependent function!O defines the 
reward rate in state Xs' Yr, the perfomlability of the system over the 
mission time (O,!) is defined as the distribution of the accumulated re
ward 

When the states space is discrete and finite and~ e: (0,1,2, .. ,N) then 

N 

Yr = L!U}rj 
j=O 

where l' j is the time spent in state i during the system mission time. 
We pick!max to denote the largest reward in the system states and de
fine normalized capacity as :t;/(t !;nax) , and steady state normaliZed 
capacity as lim :t;1 (t !max)' If we let !(i) denote the throughput of the 
system in slate i then normalized capacity is the normalized work out
put by the system per unit time over the course of the system mission. 

787 

Y. Y. 
Both the mean E(-.!..) and the distribution P(-.!.... <y) metrics are of 
interest in this papef. t 

We quote the following result due to Iyer et. al. (1984) that sets 
forth an analytical method to compute the moments of the 
perform ability distribution. They assume that the time to failures and 
repair times are exponentially distributed. All vectors shall be under
stood to be column vectors. Let m,,(!) be the vector with entries 
mj,lI(t) where mj.n(t) = £(17 Ixo = i) is the n'th moment of 
performability starting from state i. Note that mj,o(t) = 1. The n'th 
moment of performability is given by 

N 11 

ml/(t) = L L v"UJ)/\'I, 
j=Oj=o 

where, the Aj 's are the eigenvalues of the generator matrix of the 
Markov process Xs and the vectors vn(iJ) are computable by 
recursions. 

Programs were developed to compute all n moments of 
perfonnability based on the above result and used to generate transient 
average normalized capacity for the different system configurations 
described in Section 2. For the Markov models considered in this pa
per, the steady state normalized capacity is derived through the steady 
state probabilities derived by using balance equations and the normal
ization constraint. 

No general closed form solution is known for the distribution of 
perfonnability. Kulkarni et. al. (1985) have recently used a numerical 
Laplace transform inversion procedure to obtain the distribution of 
performability for Markovian models. Donatiello and Iyer (1985) have 
recently shown that even in the case of a simple two state Markov 
process th~ distribution of performability is composed of modified 
Bessel functions. We use simulation to generate the performability 
distribution. The simulation assumes that the time to failure is expo
nential and uses both the exponential and deterministic distribution for 
repair times. 

3.2 Comparison of Operation Modes 

In this section we investigate the choice of single image or parti
tioned operation modes. The choice is found to be sensitive to the 
hardware and software failure rates, and other factors. We compare 
the use of steady state measures as approximations to transient meas
ures and show that conclusions drawn by using the fonner may lead to 
anomalies. This observation motivates the approximation technique 
for the transient average normalized capacity proposed in the next 
section. 

Instead of differentiating operation modes on the basis of the re
ward rate during normal operation we focus on the difference in the 
impact of component failures on different system structures and modes 
of operation. System operation is quantified by the accumulated re
ward. The reward rate may signify the throughput of the system under 
a response time constraint or may reflect other performance related 
variables as described by Donatiello and Iyer (1984). The choice of 
the reward rates is a function of the computing system environment. 
For example, in a high availability environment a severe penalty may 
be the reward for down states. 

The performance level of each operation mode is different for each 
state and can be derived from some lower level model. For example, 
in the Appendix a model is presented to evaluate the system through
put for a transaction processing environment. The impact of each type 
of component failures is captured in the modelling. To evaluate the 
effect of external data controller or system controller failure, 10 paths 
to storage devices are explicitly modelled. In the partitioned mode, the 
two halves of the duplex are assumed to run different database systems 



with disjoint sets of databases. For an equitable comparison with the 
partitioned mode, the same types of transactions and databases are 
assumed in the single image mode. The perfonllance level derived for 
the single image mode of operation for each state is summarized in 
columns 6 and 7 of Table 2.1. 

There are two coverage probabilities involved in this study. One 
is the probability r that a memory can be reconfigured after either 
memory or memory controller failure to continue system operation. 
This coverage probability is usually a characteristic of the memory 
hardware design. We set r = 0.75. Then there is the coverage proba
bility that the system does not suffer an outage on the failure of one 
component of a parallel pair in the coherence diagram. This coverage 
probability is detenllined by the functionality of the software to con
:tinue operation in the face of component failure. In an ideal system 
this probability should be unity. However in practical systems limita
tions of software (due to which every possible error state is not cov
ered) cause the coverage probability for each type of failure to be 
smaller than unity. In this study we set coverage probability for all 
such components to the same value c and vary c in our studies. 

Figure 3.2.1 shows the transient average normalized capacity of 
the single image and partitioned modes of operation as a function of 
the coverage probability. Software failure rate is assumed to be 0.5 
per week. For these parameter values, partitioned mode operation 
:exhibits smaller performability as compared to the single image mode 
operation. The comparison is sensitive to the software failure rate, as 
indicated in Figure 3.2.2(a). For higher software failure rates parti
tioned mode operation exhibits greater performability. This is because 
while partitioned mode loses one half of its processing capability on 
software failure, the single image mode loses its entire processing ca
pability. In contrast single image mode has greater perform ability than 

-partitioned mode for large hardware failure rates, because of the ability 
!of the single image mode to use redundant components to mitigate the 
idegradation in perfomlance during hardware component.failure. This; 
!is illustrated in Figure 3.2.2(b). In Figure 3.2.3(a) steady state and 
transient average normalized capacity for the single image and the; 
partitioned mode operation are plotted, assuming that software failure! 
x:ate is O. Transien.t average (curves with labels subscripted with a T) 
is always greater than the steady state (curves with labels subscripted 
with an SS) because for smaller mission time the probability of a failure 
within the mission is smaller and because we always start in the normal 
system state for transient perform ability. The single image normalized 
capacity (curves labelled SI) is better than partitioned (curves labelled 
P). When the software failure rate is set to 1 per week (Figure 
3.2.3(b» the partitioned system has greater normalized capacity - in

. dicating the sensitivity of the comparison to software failure rate. 

As pointed out earlier the exact relationship between the software 
failure rate in single image mode and in partitioned mode is unknown. 
An expansion factor of 2 for the software failure rate in single image
mode over the simplex software failure rate has been so far assumed. 
We explore the sensitivity of the comparison between the partitioned. 
and single image modes to the expansion factor in Figure 3.2.4. Each 
half of the duplex in partitioned mode is assumed to suffer a software 
failure rate of 1 per week - that for the simplex. We vary the software 
failure rate expansion factor of the single image mode from 1 to 2. For 
low software failure rate expansion factors the single image mode has 
greater perfonuability than partitioned mode because of the ability of 
the single image mode to partially cover hardware component failure. 
On the other hand partitioned mode always loses half the system. As 
the single image mode software failure rate expansion factor increases 
the relationship between the performabilities in the two modes is re
versed exposing the greater impact of a software failure on single image 
mode of operation. 

Since the difference between steady state and transient normalized 
. capacity is of the order of less that 1 %, one may be tempted to use 
steady state normalized capacity itself to approximate the transient 

788 

normalized capacity as the comparison metric. Unfortunately, such an 
approximation leads to anomalies shown in Figure 3.2.5, over a wide 
parameter range. In Figure 3.2.5 we vary both the software failure rate 
and the coverage probabilities and find that in region A, single image 
mode operation is superior to the partitioned mode operation when 
compared on the basis of transient normalized capacity. The relation 
is reversed in regions Band C. Comparing on the basis of steady state 
normalized capacity, single image is better in regions A and Band 
partitioned mode better in region C. In region B the single image is 
better for the steady state but worse for the transient. The reason is 
that steady state favors single image because even though uncovered 
failures cause system outage for the single image, a re-IPL following 
the outage puts the single image into a state with reward rate greater 
than 0.5 in some cases and at worst 0.5 in the remaining, as in Figure 
2.2.2(c). For short mission times the single image does not derive the 
full benefit of being in the intermediate stage and the penalty of the 
10 minute system outage is amplified. Hence, even though the using 
steady state instead of transient performability constitutes less than 
1 % error, conclusions drawn by the use of steady state performability 
may not be the same as using the results of transient analysis. There
fore, in section 4 we derive a quick way to approximate the transient 
normalized capacity from the steady state normalized capacity. 

In Figures 3.2.6 and 3.2.7 the 99'th percentile of normalized ca
pacity has been plotted for the single image and partitioned modes for 
software failure rates of 0 and 1 per week, respectively. Both expo
nential and fixed repair time distributions are considered. The Jagged 
nature of the curves are due to inaccuracies inherent to simulation. 
We observed from simulations that the fixed repair time distribution 
has a smaller transient average normalized capacity than the exponen
tial. This is because in the exponential case - long repair times tend to 
get cut off by the end of the mission; hence the expected outage time 
in the exponential case is smaller than that in the fixed repair time dis
tribution case. However, there are some missions with large outage 
times, for the exponentially distributed repair times (as expected), in 
comparison to the fixed repair time cases. Thus, the tail of the tran
sient normalized capacity is longer for the exponentially distributed 
repair times cases than for the fixed repair time cases. This phenome
non can affect the higher percentiles. In Figures 3.2.6 and 3.2.7 the 
effect is seen for the partitioned 99'th percentile capacity, where the 
exponential case is worse than the fixed. From Figures 3.2.6 and 3.2.7 
we find that the single image mode of operation exhibits better 99'th 
percentile transient normalized capacity for both software failure rates 
of 0 and 1 per week. In the previous figures we had plotted average 
normalized capacity and found that the comparison between the two 
modes was affected by the two failure rates. (This implies that we have 
to be careful about the choice of metric for comparison of the modes 
of operation of the two systems - because they give different results.) 
The choice of average or percentile of the perform ability distribution 
is of course determined by the goals of the system installation. 

4. Approximations for Transient Perform ability 

The previous section presented results of the transient analysis and 
simulation of normalized capacity for the two operation modes, and 
.compared these with the steady state results. We note that while the 
steady state analysis is straightforward, transient analysis is complex. 
The complexity of transient analysis arises because it requires the sol
ution of an eigenvalue problem as illustrated in Theorem 3.1, and in
volves evaluating time constants and coefficients of the transient terms. 
The solution procedure can lead to numerical problems. Although the 
difference between the transient and steady state average normalized 
capacity can be small the use of steady state analysis may give rise to 
anomalies, as discussed in Section 3. Thus, the question arises as io 
when transient analysis is required. In this section we develop simple 
upper and lower bounds and an approximation for the difference be
tween the transient and steady state average normalized capacity . 
These bounds can be used both to determine the deviation of steady 



state normalized capacity from transient average normalized capacity 
and as an approximation to the transient solution. We illustrate the use 
of these bounds by applying it to the operation modes of Section 3, and 
observe that the bounds are tight. The approximation lies between the 
bounds, and appears to be a good one. 

For ease of presentation, we first consider a simple two state case, 
with states denoted by 1 and 0, and with rewards 1 and 0 in these states 
respectively. The high reward state typically represents the "up" state, 
and the low reward state the "down" state. Thus, the system starts in 
the 1 state at the start of the mission. Furthermore, failures are rare. 
That is, on the average, the system spends most of the mission time (t) 
in the 1 state. 

For computing the steady state average normalized capacity, the 
time axis can be divided into intervals, each of length equal to the 
mission time t, and averaging over this ensemble. For a Markov failure 
and recovery process (i.e. an exponentially distributed time in each 
state), the steady state average normalized capacity m can be com
puted as, 

where, mx,l (I) is the transient normalized capacity when starting in 
state x at the beginning of the interval, and," x is the probability of be
ing in state x at the start of the interval. For the transient normalized 
capacity, we are typically interested in the performability given that 
we start in the "up" (1) state. The difference between the steady state 
normalized capacity and the transient average normalized capacity 
when starting in the "up" state is 

Since '"0 + '"1 = 1 , 

'"0 (ml,I(t) - mo,l(t» 

'"0 10 

I 

(4.1) 

where 10 is the mean "down" time. This last inequality is derived as 
follows. Figure 4.1(a) shows that the average normalized capacity, 
ml I (t), starting in the "up" state is monotonically decreasing. Figure 
4.1(b) shows the case of starting in the "down" state, and staying in 

A 
the down state for time I . FoIlowing this down time, the average nor-

A 
malized capacity for the rest of the mission time is ml,l (I - I ). The 
average reward when starting in the "\Ip" state, is the area marked as 
A and bounded by add in Figure 4.1(b), while the corresponding av
erage reward starting in the "down" state is marked as B and bounded 
by bcjf. The difference mll(/) - .mo 1(/) is (Area A - Area B)/t. 
An upper bound on this difference is merely (Area C)/t, where area 

A A 
C is bounded by ghej, or I II. Now, the mean value of I is, 

J: ;: e-Xlfod'( + Ir"" e-Xlfo(Jx = 10 - Ie-fifo < 10(4.2) 

Thus,(mll(t) - mol(/» < toll ,givinginequality(4.1). The bound 
can be improved by lising equation (4.2). 

This bound is easily generalized to a system with more than two 
states. For a system with (N+ 1) states denoted by O, ... ,N , and state 
N as the "up" state, 

mN,I(/) - m = mN,I(t) - '"NmN,l(t) -

N-I 

L '"; (mN,I(t) - m;,I(/» 
;=0 

N-l (IN - Ii) T; 
::; L'", I 

;=0 

N-I 
~ ,".m·l(t) L.J I I, 

;=0 

(4.3) 

789 

where, '"; is the probability of being in state i at the start of the interval, 
/; is the reward in state i, T; is the mean time to get from state i to state 
N , and t is the mission time. The final inequality in equation (4.3) 
follows by an extension of the argument used in deriving equation 
(4.1), and assumes that the reward in intermediate states in returiling 
from a down state i to state N is a non-decreasing reward function. 

The bound in equation (4.3) can be tightened by considering the 
rewards and times spent in intermediate states between states i and N. 
Suppose that the system (given that a transition occurs) goes from a 
failure state i to state N through intermediate states, with rewards as 
indicated in Figure 4.2. The concomitant loss in performability is in
dicated by the area A in this figure, and will be denoted by tl; for the 
loss in state i. Suppose that the system goes from state i to state j, 
o ::; j < N, with probability Pi} when a transition occurs. Then, for ex
ponential failure and repair times, 

N-l 

A; = L tljPi} + (fN - /;) I; , 
j=O 

(4.4) 

where I; is the mean time spent in state i and IN - /; is the loss in re
ward in state i compared with the "up" state N. Thus, 

[

1. . . 'J [ tlo 1 [(fN - 10) 10 1 · 1 -Pi} . tll 
· . ... . 
· . -Pi} 1.. . 
· 1 tlN_ l (fN - IN-I) IN_ l 

Writing this equation as P ~ = R, 

Now, we may rewrite equation (4.3) as, 

N-l 

L '"; (mN,l(/) 
;=0 
N-l tl. 

L'",-' = 
;=0 I 

- m;,l(/» 

~Tp-l R 

t 

(4.5) 

(4.6) 

While equation (4.6) expresses a solution for the general case, for most 
systems, such as those examined in Section 3, ~ reduces to a simple 
summation and can be written directly by inspection, as discussed be
low; this applies to transition diagrams in which all cycles pass through 
the "up" state, as in the transition diagrams of Figures 2.2.1(c) and 
2.2.2(c). 

Figure 4.2 illustrates an alternate method of deriving the upper 
bound of equation (4.6), and an approximation and lower bound. This 
figure shows the reward as a function of time, starting in a down state 

A 
i, with reward rate /;. At time t the system is in the "up" state N for 

the first time, with reward rate IN Thus, from time; to the end of the 
mission time t, the system behaves as though it had started in the "up" 

A 
state N, and had a mission time of (t - t). That is, the average reward 

A . 

from time t to t when starting in the "down" state i, is the same as the 
A 

average reward from time 0 to (t - I) when starting in the "up" state 
N. Notice from equation (4.3), we are interested in the difference 
~N,l(t) - m;,I(t) representing the difference in rewards when starting 
III state N, and when starting in state i. From the above observation 
it follows that this is the same as the difference in the reward from tim: 

"t to (I + ;) when starting in the "up" state at time ; (denoted as 
A 

Reward1) and the reward from time 0 to t when starting in the down 
state at time 0 (denoted as Reward2). This difference in rewards is 

shown as area B in Figure 4.2 (where the reward from time 0 to; when 



A 
starting in state i is replicated between times t and (t + I), so that the 
difference in rewards can be indicated). The upper bound in equation 

A 
(4.6) takes Reward1 as (f" x I ), with area B upper bounded by area 
A in Figure 4.2. A closer approximation can be obtained by taking 

A 

Reward 1 as (m x I ), where m is the steady state normalized capacity. 
With this approximation, equation (4.4) is changed to, 

N-I 

t::.'; = 2: t::.'jPij + (m - 1;) I j , 

j=O 
(4.4') 

with t::.'j as an approximation to the mean lost reward (i.e., mean area 
B) when starting in state i. The rest of the development is similar to 
deriving equations (4.5) and (4.6). Again, t::.'j can be written by in
spection for many interesting cases, such as those in Section 3. 

A lower bound for the difference between transient and steady 
state can be derived for cases in which all cycles pass through the "up" 
state. The error in the upper bound of equation (4.6) is due to two 
approximations. First, the up-state reward iN is used for the mean re-

A 
ward during times t and (t + I), when starting in the "up" state at 

A 
time I . This is an upper bound, while the steady state performability 
is a lower bound on this mean reward, because the average normalized 
capacity, when starting in the up-state is a monotonically decreasing 
function of mission time. Second, the mean time in a down state is 
overestimated in the upper bound, as expressed in equation (4.2). This 
is because, the effect of the mission time boundary is not accounted for 
in the upper bound. As for the two state case, for which the mean 
down time is derived in equation (4.2), the exact mean down time can 
be derived in closed form, as discussed in Donatiello and Iyer (1984), 
and used in place of I j in equation (4.4') Combining this with using the 
steady state performability instead of iN' as in the above approxi
mation, leads to a lower bound. 

First consider the partitioned system structure of Figure 2.2.1 (a). 
The transition diagram of Figure 2.2.1(c) shows the "up" state and 
two failure states, each with reward 0.5, and mean down times of 
l/MR and l/M[ respectively. Denoting these failure states as 0 and 
1, and since there are no intermediate states between these failure 
states and the "up" state, equations (4.3) reduces to, 

The resulting bound on the transient normalized capacity is shown in 
Figure 4.3 for a software failure rate of 1 per week. The value com
puted by the exact analysis of Section 3 is shown as a solid line that is 
barely distinguishable from the bound, shown as the dotted line. The 
error in the difference between the steady state and transient normal
ized capacity is about 0.6%. (The percentage error in estimating the 
transient normalized capacity, rather than the difference between the 
transient and steady state, is much smaller, or about 0.0002%.) 

We now consider the single-image mode. The transition diagram 
of Figure 2.2.2(c) shows some failure states that return to the "up" 
state through some intenuediate states. However, the solution of 
equation (4.5) for ~ can be written directly by inspection. For in
stance, for the failure of the interface sensor sets (I), with rate L[ the 
system goes to a state with zero reward, say state i, for time l/M[ , 
and then goes to a state with reward 0.5 and stays there for time 
(1/MR - l/M[). Thus, t::.j equals l/M[ + 0.5 (l/MR - l/M[). 
The other components of the vector ~ can be computed similarly. 
Figure 4.4 shows the resulting bound on the transient nornlalized ca
pacity as a function of the coverage probability, for a software failure 
rate of 1 per week. Again, the bound (dashed line) is seen to be very 
close to the exact analysis (continuous line). 

790 

The bound can also be applied to some non-exponential repair time 
distributions. No exact solution to the general mean normalized ca
pacity is known for non-exponentially distributed repair times. The 
only difference in the bound for non-exponential repair times is in es
timating To in equation (4.1), or t::.j in equation (4.4). Considering the 
simple two state problem for which equation (4.1) was derived, the 
remaining time in the "down" state given that the (mission time) in
terval starts in the "down" state, now depends on the repair time dis
tribution. For a fixed down time, the mean remaining "down" time is 
one half of the (fixed) down time. Thus, the bound predicts that the 
difference between the transient and steady state normalized capacity 
for a fixed down time distribution is about one half that for the expo
nential distribution with the same mean down time. A similar argu
ment can be used to compute t::.j in equation (4.4) for a general system 
with fixed repair times. Applying this bound to the partitioned system 
structure and assuming a fixed repair time distribution, provides a 
bound'on normalized capacity of 0.997865 for a mission time of21 
hours and a zero software failure rate, versus a simulation estimate of 
0.997818 and a steady state normalized capacity of 0.997705. Simi
larly, for a software failure rate of one per week, the bound on nor
malized capacity is 0.99689 versus a simulation estimate of 0.99693 
and a steady state value of 0.99672. The difference of 0.00004 is 
within simulation accuracy. 

The error in the above bound (i.e., the bound versus the actual 
difference between the steady state and transient normalized capacity) 
is sensitive to the error rates. For high error rates, the probability of 
being in a down state increases and so does the accumulated error in 
equation (4.3). Figure 4.5 shows the effect on the bound of varying 
the error rates from the nominal values in Section 3 up to ten tim~s the 
nominal error rates, for the single image mode. The figure indicates 
that the upper bound is good even at ten times the nominal error rates. 
Figure 4.6 shows the upper and lower bounds, the approximation for, 
and the exact difference between steady state and transient normalized 
capacity with increasing failure rates. The upper bound is reasonably 
good even at high error rates, while the approximation and lower 
bound are practically indistinguishable from the exact value. 

5. Conclusion 

In this paper we used performability analysis to compare 
configurable duplex system structures. Since they differ in both fre
quency of outages and in the impact of outages on the system per
formance normalized capacity is used as a measure for comparison. 
We found the choice of optimal mode sensitive to the failure rate and 
to the performance metric - average or percentile. It is precisely for 
this reason that choice of mode of operation should be left to the in
stallation, that can best determine which mode is suited for a particular 
environment. Use of steady state analysis instead of transient analysis 
gave rise to some anomalies. This motivated the upper bound, lower 
bound and approximation formulae for transient average normalized 
capacity derived in this paper. Both the bounds and the approximation 
were found to be very close to the values of transient average normal
ized capacity. The approximation and bounds are also applicable for 
computing the difference between steady state and transient average 
normalized capacity. In summary, we have shown that the combined 
goals of performance and reliability for reconfigurable duplex systems 
affect the choice of operation mode. While we have applied this 
methodology to configurable duplex systems, it can be used in any 
system with combined performance and reliability requirements. 

Acknowledgements 
We would like to thank Don Brand for discussing the single image and 
partitioned mode operations of the IBM 3084 with us, Joshua 
Kurtzberg and Al Pastro for developing the programs and plotting the 
curves used in this paper, Brian Bennett for useful comments on I/O 
modelling, Mickey Tsao for many clarifications and Yann-Hang Lee 
for reviewing a previous draft of this paper. 



Appendix 

In this appendix we use an example to illustrate the performance 
levels that can be obtained by the single image and partitioned modes 
of operations for different failure scenarios. The performance levels 
depend on the workload and the configuration. Here we will assume 
a typical transaction processing environment similar to that reported 
by Yu et. al. (1985). 

Figures Al and A2 show the assumed ~ystem configuration for 
the model. The figures show a typical I/O subsystem consisting of two 
sets of disks connected to the EXDC's through heads of strinO' and 
control units, such that each disk has a dual path to the main me~ory. 
We will assume an equal load on each disk. 

We use an approximate model to estimate the transaction response 
time versus throughput characteristic for normal operations and dif
ferent failure scenarios. The average transaction path length, INST 
that includes the overheads for. locking, I/O, application and commit 
processing, is assumed to be 1000 K instnJctions. Each CPU is mod
elled as an M/M/l server. An M/M/l model is natural for each 
processor in the partitioned mode. For the single image mode an ad
ditional assumption is required to justify the M/M/l queueing model, 
i.e., the assumption that transactions are pre-assigned to execute on 
specific processors. This may be done to eliminate processor cache 
degradation. I/O's for a disk are queued in the operating system so 
that only one outstanding I/O can ever exist for a disk. The I/O time 
is derived by estimating the utilization of each channel path (the com
munication path between the EXDC and a control unit controlling ac
cesses to disks, communications occur over these paths synchronously 
to match the rates at which data are accessed on disks during their ro
tation) and disk, computing the mean time taken by the disk for each 
I/O and then using an M/M/I model for the total I/O time, including 
queueing for I/O requests. The CPU time is added to the total I/O 
time to give the total transaction response time. Finally, using a binary 
search procedure, we compute the throughput that can be supported 
for a given a response time constraint. 

For more detail, the I/O time is estimated as follows. The disk 
service time consists of components, to send the I/O request to the 
disk (ld); disk seek and latency (Is + I,); missed rotation time if no path 
is available from the disk to the EXDC when the required data on the 
disk arrives under the disk head (1m); and the time to transfer the data 
(It). Let the probability that no channel path can be obtained at the 
time the channel program is started (I/O request is initiated) be /l 
This is also the probability that channel path is not available when the 
disk head is over the location of the data to be transmitted for the I/O. 
It the I/O request is blocked due to the channel busy condition it must 
wait for the current I/O transmission to end. Thus Id = 131/2. Simi
larly the disk must rotate once more if the channel path is not available 
when the disk is ready for transmission, giving (using a geometric' 
probability distribution for the wait time measured in number of disk 
rotation times) 1m = Ir 13/1 - 13, where Ir is the the time for the disk to 
complete one revolution. Typical values for the other delay compo
nents are ts = I[ = 8 msec, tt = 1.5 msec, and tr = 16 msec. 

The probability of obtaining a path depends on the number of 
channel paths to a disk and the probability that a channel path is busy 
when the request is made. The probability that a path is busy due to 
transfer of data to or from another disk is 

where n is the number of disks with which the path contention occurs, 
"A is the transaction rate, I is the number of I/O's per transaction, and 
P is the number of channel paths to each disk. Then 13 = (/3't. For 
these configurations of Figures Al and A2 P = 2. 

791 

The disk utilization is given by 

AI 
Pdisk = n(ts + t[ + 1m + It)· 

Finally, the delay for an I/O seen by the operating system, because of 
queueing for the device, is estimated as 

Id + Is + t[ + t1/ + It 
t/O = 

1 - Pdisk 

'The number of I/O's per transaction depends on the number of mem
ories available. Typical values are used as follows: 16 I/O's per 
transaction for configurations with 2 (1) memories and 2 (1) process
ors, 15 I/O's per transaction for the configurations with 1 processor 
and 2 memories and 19 I/O's for the configurations with 2 processors 
but 1 memory. Note that these values are sensitive to the workload. 
If MIPS denotes MIPS per CPU then the CPU time is estimated as 

INST 
IcpU= . 

MIPS(1 - Pcpu) 

where Pcpu is the CPU utilization estimated as 

"AINST 
Pcpu= NpMIPS' 

where Np is the number of available CPU's in the complex. For the 
fully operational system, Np = 2. For either a processor, SC or I fail
ure, ~ = 1. 

Using the following values for the parameters: total number of' 
disks n = 32, CPUMIPS = 15 MIPS per processor and a response time, 
bound of 0.5 seconds, the transaction rates that can be supported are, 
shown in Table 2.1 after being normalized with respect to the trans
action rate for the fully operational case. 

References 
1. Boos, D. D. (1985), 'An Introduction to the IBM 3084 Processor 

Complex', IBM Technical Bulletin GG 22-9387-00, Washington 
Systems Center, Gaithesberg, Maryland. 

2. Bossen, D. C., and Hsiao, M. Y. (1980) , 'A System Solution for 
the Memory Soft Error Problem', IBM Journal of Research and 
Development, Vol 24, 390-397. 

3. Bossen, D. C., and Hsiao, M. Y. (1982) , 'Model for Transient 
and Permanent Error-Detection and Fault-Isolation Coverage', 
IBM Journal of Research and Developmenl, Vol 26, No 1,67-77. 

4. Donatiello, L. and Iyer, B. R (1984), 'Analysis of a Composite 
Performance Reliability Measure for Fault-Tolerant Systems', 
IBM Research Report RC 10325, Yorktown Heights, New York. 

5. Donatiello, L. and Iyer, B. R (1985), 'Closed-Form Solution for 
System Availability Distribution', IBM Research Report RC 
11169, Yorktown Heights, New York. 

6. Furchgott, D. G. and Meyer, J. F. (1984), 'A Performability Sol-
ution Method Degradable Non-repairable Systems', IEEE 
Transactions on Computers, No 6. 

7. Goyal, A and Tantawi, A N. (1984), 'Evaluation of 
Perform ability in Acyclic Markov Chains', IBM Research Report 
RC 10529, Yorktown Heights, New York. 

'8. Gustafson, R N. and Sparacio, F. J. (1982), 'IBM 3081 
Processor Unit: Design Considerations and Design Process', 
IBM Journal of Research and Development, Vol 26, No 1, 12-21. 

9. Iyer, B. R, DonatieIlo, L. and Heidelberger, P. (1984 ), 'Analysis 
of Performability for Stochastic Models of Fault-tolerant Sys
tems', IBM Research Report RC 10719, Yorktown Heights, New 
York. 

10. Iyer, B. R, Dias, D. M., Yu, P. S. (1985), 'Performability Com
parison of Configurable Duplex stnJctres', IBM Research Report 
RC 11316, Yorktown Heights, New York. 



11. Kulkarni, V. G., Nicola, V. F. and Trivedi, K. S. (1984), 'On 
Modelling the Performance and Reliability of Multi-Mode Com
puter Systems', in M. Becker(ed), Proc. Int. Workshop on Mod
elling and Performance Evaluation of Parallel Systems, North 
Holland. 

12. Kulkarni, V. G., Nicola, V. F., Trivedi, K. S. and Smith, R. M. 
(1985), 'A Unified Model for the Analysis of Job Completion 
Time and Performability Measures in Fault-Tolerant Systems', 
Computer Science Dept. Research Report. CS-1985-13, Duke 

"< University, Durham, North Carolina. 
13. ,Lancaster, P. (1969), The01Y of Matrices, Academic Press, New 

York. 
14. Meyer, J. F. (1980), 'On Evaluating the Performability of 

Degradable Computing Systems', IEEE Transactions on Comput
ers, C-29, 720-731. 

15. Meyer, J. F. (1982), 'Closed-form solutions of Performability', 
IEEE Transactions on Computers, C-31, 648-657. 

16. Pittler, M. S., Powers,D. M. and Schnabel, D. L. (1982), 'System 
Development ,and 'Technology Aspects of the IBM 3081 
Processor Complex~, IBM Journal of Research and Development, 
Vol 26, No 1,2-11. 

17. Reilly, J., Sutton, A., Nasser, R. and Griscom, R. (1982), 
'Processor Controller for the IBM 3081', IBM Journal of Re
search and Development, Vol 26, No 1,22-29. 

18. Tendolkar, N. N., and Swann, R. L. (1982), 'Automated Diag
nostic Methodology for the IBM 3081 Processor Complex', IBM 
Journal of Research and Development, Vol 26, No 1, 78-88. 

19. Yu, P. S., Dias, D. M., Robinson, J. T., Iyer, B. R. and Cornell, 
D. (1984), 'Multi-system Data Sharing Analysis', IBM Research 
Report RC 10979, Yorktown Heights, New York. 

Fail. Type P S M X < ,U ncovered Covered 

Normal 2 2 2 2 -
Processor 1 2 2 2 <O,I>,<0.57,RI> <0.S7,R> 

Sys.Cntlr 1 1 2 I <O,I>,<0.53,RI> <0.53,R> 

Memory 2 2 I 2 <O.l>.<0.70,RI> <0,1> 

Ex.Dt.Cnt. 2 2 2 I <O.l>,<0.7S.RI> <0.7S.R> 

InLCkts.(I) I I 1 I <O.I>.<0.49.RI> 

Column HtJadings 
P : Number of healthy Processors 
S: Number of healthy System Controllers 
M : Number of healthy Memory Systems (Memory + Memory Controller) 
X : Number of healthy External Data Controllers 

Column Entrks 
-: does not occur for'this structure 
0: continued operation without outage 
<LI.a>.<L2.b> :,sequence of events on failure - system degrades to state with reward rate 
L I during the course of repair action a. at the end of action a the system moves to a state 
with performance level L2. The action b returns the system to its normal state of operation. 

RrpairAc:tioM 
I: IPL action 
R: hardware repair action 
RI: hardware repair action (started simultaneosly with previous IPL). 

Failure Reaction Summary for the Single Image Operation Mode 

Table 2.1 

792 

15K 

PC: Processor Controller. I: Interface Sensor. P: Processor, M: Memory 
SC: System Centreller. X: External Data Controller. MC: Memory Controller 

Thick Lines: High Bandwidth Bus, Thin Lines: Low Bandwidth Bus 

'Basic Simplex System 
Figure 2.I(a) 

sW: Operating System Software 

Coherence Diagram for Simplex System 
Figure 2.I(b) 

Lp + LstL /( 1 - r)LMCLpCLI 
'-

"L' ~ M M, 

L~; 9 I 

Transition Diagram for Simplex System Recovery 
(Singl': Fault Assumption) 

Figure 2.l(c) 

ISK 

, Duplex System Partitioned Mode 
Figure 2.2.1(a) 

Coherence Diagram for Partitioned Mode Operation 
Figure 2.2.1(b) 



o 

Transition Diagram for Partitioned Mode Recovery 
Figure 2.2.1(c) 

ISK 

Duplex System Single Image Mode 
Figure 2.2.2(a) 

PC 

Coherence Diagram for Single Image Mode Operation 
Fir.ure 2.2.2(b) 

o 

Transition Diagram for Single Image Mode Recovery 
Figure 2.2.2(c) 

793 

g 
o 

Lsw 0.5/ Week 

0.2 

Partitioned 

0.4 0.5 

COVERAGE PROBABILITY 
Figure 3.2.1 

Coverage Probability - 0.9 

0.2 0.4 0.6 0.8 

NUMBER OF S/W FAILURES PER WEEK 
Figure 3.2.2(a) 

Portitioned 

Coverage Probability - 0.9 
L - 0.5 / Week sw 

0.8 

1.0 

o 
~L..~----~--~----4L---~----6~--~----L---~--~10 

SCALE FACTOR FOR H/W FAILURE RATE 
Figure 3.2.2(b) 

1.0 



SIT __________ w 

------------------------

~ 

~ 
U~ 
00> 
W '" L .0 
N 0 SW 
::; 
« 
:::! 
a: 
o z 
Ii :;:: :5 __________________________________________________________ ~L 
~g; 
0 0 
J: 

CD ... "'U-__ ~ ____ ~ __ ~ ____ ~ __ ~ __ ~~--~--~~--~--~ 
ci 0 0.2 0.4 0.6 0.8 1.0 

~ 

~ 
u 

8 
N 
::; 
« 
:::! 
0:: 
o 
Z 

(j 
:;:: 
0:: 
:;) 
o 
J: 

?= :e 
u '" « co 
~ ci 
u 

~ 
::; 
« 
::; 
a:: N o ..... 
Z g: 
13 ci 

~ 
a:: 
:;) 

o 
J: - ., 

COVERAGE PROBABILITY 
Figure 3.2.3(a) 

_________________________________________________________ !J __ 

-----

L • 1 I WEEK 
SW 

-----

SI T --_. 

U---~----0~.2----~---0~.4--~----0~.6----~--~0~.8--~~-~ 

COVERAGE PROBABILITY 

.......... ~T 

'" '" '" 

Figure 3.2.3(b) 

Simplex S/W Failure - 1 / Week 
Coveroge Probability c - 0.9 

.... 
.... 

.... 
'" .... 

'" 
'" 

'" 
N ~ 

ci ___ j;~ _______ ____________________________________________ _ 

1.0 1.2 1.4 1.6 1.8 2.0 

S/W FAILURE RATE EXPANSION FACTOR 

Figure 3.2.4 

794 

~ 
::; 

., 
o 

10 '" Ci 0 
o 
a:: 
(l. 

w 
~ ~ 
~ 0 

o 
u 

N 

o 

CD 
co 
o 

If) 
0> 

ci 

N 

Norm. 

Q7 Q8 O~ 

SOfTWARE FAILURES PER WEEK 
Figure 3.2.5 

LSW= 0 

Mission Time 21 Hrs. 

-------/ 

St. State"'''9. Norm. 
Cap_ cros~ver 

1.0 

EXP-SI 

F"XO-SI 

FXO-P 

EXP-P 

o>u-__ ~ ____ ~ __ -L __ ~ ____ ~ __ ~ ____ ~ __ _L __ ~~ __ ~ 

o 0 0.2 

CD 
0> 

0 

If) 

'" 0 

~ 
;:: 
~ 
u .. 
5 '" (l. 0 

~ 
01 

..., 
'" 0 

N 
0> 

0 0 0.2 

04 0.6 

COVERAGE PROB 
Figure 3.2.6 

Lsw= 1 / Wk. 

Mission Time = 21 Hrs. 

0.4 0.6 

COVERAGE PROB. 
Figure 3.2.7 

0.8 1.0 

EXP-SI 

F"XO-SI 

FXO-P 

EXP-P 

0.8 1.0 



~ 
'u g 
u 

~ 
"0 
E 
~ 

~ 
'0 
o 
a. 
o 

U 
"0 

~ 
o 
E 
(; 
z 

m-

e 

o 

o 

a 

I 
I 
I 
I 
I 
I 

~ 
Area A 

Monotonically 
Deereosin9 
function 

S 

--------------------------------------~ 

Mission Time 
Figure 4.1 (a) 

-Area A 

: Steady 
I State 

-------------------~ ....... ~--

1\ 

Figure 4.1(b) 

1::::::::::::::::::1 
Area B 

:----: 
______ J I 

1\ 
t 

Time t+t 
Figure 4.2 

795 

0 
to-
0> 
0> 

~ 0 

u 
00{ 
Q. 
00{ 
u 

:i 
oe; 
a IX) 

z ~ 
.:; 

It> 

'" '" 6 0 

>
t:: 
u 

0> 

'" 0> 
en 
.:; 

IX) 

'" 0> 

'" 6 

a: t"-

oo{ '" U g: 
:i a 
oe; 
a 
z 

0.2 

Pr 

~w= 1 / Wk. 

Mission Time = 21 Hrs. 

Pss 

0.4 0.6 0.8 1.0 

COVERAGE PROB. 
Figure 4.3 

Lsw~ 1 / Wk. 

Mission Time = 21 Hrs. 

.,., 
'" o>u-__ ~ ____ ~ __ ~ __ ~ ____ ~ __ ~ __ ~ ____ ~ __ ~ __ __L 

~ 
u 
00{ 
Q. 
00{ 
u 

:i 
oe; 
a z 

6 0 

en 
0> 

0 

IX) 

en 
.:; 

.... 
en 
.:; 

0.2 0.4 0.6 

COVERAGE PROS. 
Figure 4.4 

4 6 8 
SCALE FACTOR FOR FAILURE RATE 

Figure 4.5 

0.8 1.0 

10 



-' 
-' 

-' 

Upper Bound 
-' 

-' 
-' 

-' 
-' 

/' /' Approximotion, 
/' Actual. 

/' /' lowtr Bound 

/ 

/ 
-' 

/ 

/ 

/ 
-' 

/ 

-' 

4 6 

-' 
-' 

-' 
-' 

-' 

SCALE FACTOR FOR FAILURE RATE 
Figure 4.6 

10 

I.4c-0 

D 

Figure A.1: Configuration for Partitioned Mode Operation 

Figure A.2: Configuration for Single Image Mode Operation 

796 



Recog-nition of Error Symptoms in Large Systems 

R.K. Iyer, L.T. Young and V. Sridhar 

CONWUTERSYSTEMSGROUP 
Coordinated Science Laboratory 

University of Illinois at Urbana-Champaign, Urbana, IL 61801 

ABSTRACf 

In this paper, a methodology for automatically 
detecting symptoms of frequently occurring errors in large 
computer systems is developed. The proposed symptom 
recognition methodology and its validation are based on 
probabilistic techniques. The technique is shown to work 
on real failure data from two CYBER systems at the 
University of Illinois. The methodology allows for the 
resolution between independent and dependent causes and, 
also quantifies a measure of the strength of relationship 
among the errors. Comparison made with failure/repair 
information obtained from field maintenance engineers 
shows that in 85% of the cases, the error symptoms recog
nized by our approach correspond to real system problems. 
Further, the remaining 15% although not directly sup
ported by field data, were confirmed as valid problems. 
Some of these were shown to be persistent problems which 
otherwise would have been considered as minor transients 
and hence ignored. 

Keywords: Error records, persistent errors, failure symp
toms, probabilistic techniques, automatic recognition. 

I.INTRODUCI10N 

The diagnosis of the causes of persisting errors in 
computer systems is difficult because the underlying faults 
are complex and may affect different parts of the system. 
The system usually detects the effects of the faults as 
many isolated errors. An incorrect diagnosis leads to 
improper recovery management which ultimately affects 
the integrity of the system. For the diagnosis to be 
effective, it is imperative that the system be able to relate 
errors occurring in different parts or different times. 

When a service engineer tries to rectify a fault, he or 
she studies the error log for the period during which the 
fault occurred. Though the system may record the effect 
of a fault as many isolated incidents, the service engineer 
recognizes the different error entries as symptoms of the 
same error. This recognition of related error records is 
based on the service engineer's observance of some similar
ity, e.g., a recurring pattern among the error records. 

This paper proposes a methodology for recognizing 
symptoms of severe errors in large systems. The goal of 
the methodology is to automate and formalize a process to 

CH2345-7j86jOOOOj0797$Ol.OO © 1986 IEEE 
797 

relate errors occurring in different parts of a system. The 
method was developed after several years of study of sys
tem error logs and through close consultations with 
maintenance and field engineers from several manufactur
ers. The approach uses the system error rate to identify 
error records among which relationships can exist. Proba
bilistic techniques are then used to validate and quantify 
the strength of relationships among error records. The 
approach takes as input the raw error logs containing an 
entry for each error detected as an isolated event by a 
computer system, and produces as output symptoms 
which characterize perSistent errors. 

The methodology for automatically recognizing the 
error symptoms involves three steps: 

( 1) The recognition of error records among which rela
tionships can exist, 

(2) The determination of the existence and validity of 
relationships among these records and 

(3) The quantification of the strength of a relationship if 
one is found. 

The method is illustrated on error data collected from two 
large Cyber systems used on campus at the University of 
Illinois at Urbana-Champaign. The approach is simple in 
concept and hence easy to apply and simple to use. Since it 
is not based on any specialized characteristics of the Cyber 
systems or the error logs, it is expected to be applicable to 
other systems as well. Analysis of error data from two 
IBM systems is now in progress. Comparison made with 
failure/repair information obtained from field maintenance 
engineers shows that in 85% of the cases, the error symp
toms recognized by our approach correspond to real system 
problems. Further, the remaining 15% although not 
directly supported by field data, were confirmed as valid 
problems by the engineers. Indeed, some of these were 
shown to be perSistent problems which otherwise would 
have been considered as minor transients and hence 
ignored. 

1.1 Related Research 

Two studies which offer insight into the characteriza
tion of errors by their associated symptoms are [Velardi 
84] and [Iyer 86]. Software errors in a production 
environment are analyzed in [Velardi 84], and permanent 
CPU errors and their relationship to workload are dis
cussed in Dyer 86]. 



Research closely related to that described in this 
paper (symptom-based recognition) is that of [Tsao 83a] 
and [Sanders 85]. Tsao's work is motivated by the fact 
that a module exhibits a period of (potentially increasing) 
unreliability before final failure. The approach attempts to 
analy:ze trends in errors by first grouping errors occurring 
within a short period into Tuples. Heuristics, specific to 
DEC system error logs, are then used to determine if one 
tuple is similar to another [Tsao 83b]. As the author 
points out, two Tuples may be found to be identical by one 
algorithm, not identical by another. The result of the 
analysis is a small set of tuple types, each of which are 
expected to contain error records pointing to the same 
cause. The approach assumes that all error records in a 
Tuple are related. 

In [Sanders 85], a technique which uses both complete 
and partial recurrences is proposed. The technique is simi
lar in concept to that proposed by Tsao. Instead of using 
matching algorithms, a software table is used to quantify 
system organization. The software table is also used to 
capture both partial and complete recurrences as well as 
similarities among error groups. It was found that nearly 
15% of the groups (Similar to Tuples) contained a collec
tion of unrelated error records, i.e., random groups. 

An alternative approach to the above is called 
"structure-based" diagnosis. The development of a scheme 
based on the description of the structure and function of a 
system is described in [Davis 82]. Similar diagnostic 
schemes have also been proposed in [Shubin 82] and 
[Genesereth 82]. Another approach called "violated expec
tation" ([deKleer 76] and [Brown 81]) has also been pro
posed for troubleshooting. This approach looks for 
mismatches between the values expected from correct 
operation and those actually obtained. Whenever possible, 
the approach identifies a specific component that may be 
faulty. All these diagnostic systems have been shown to 
work on modules within a computer system. It is not clear 
how they will work when a whole computer system is 
taken into account. 

In [Iyer 85], the analysis shows that the system is 
most vulnerable to errors in the hardware/software inter
face. It is not clear that a structure-based diagnosis can be 
fully successful under such circumstances. A structure
based diagnostic system may diagnose the hardware fault 
in a limited domain, but the chances are that complex 
faults (e.g. hardware-related-software errors) may be 
detected as more than one error. In this context, it becomes 
important to study the relationship among errors that 
occur within a short time. 

In our OpInIOn, both the symptom-based and 
structure-based approaches are still in their infancy. 
Hence, further research in both areas, particularly practi
cal studies, needs to be done before either of them can 
generally be implemented. 

The approach proposed in this paper is geared toward 
determining the symptoms of perSistent errors in large 
systems by probabilistically relating the different manifes
tations of the same problem. The approach is naturally 
geared toward differentiating between transient and inter
mittent errors. To the authors' knowledge, there is no 
methodology that is able to do this at present. Further, 

798 

the approach can also evaluate a diagnosis by analyzing the 
diagnoses made in the past, i.e., the goodness of system 
diagnostics. A methodology that quantifies the symptoms 
associated with related errors by determining the relation
ship among detected errors is essential for this purpose. 
The development of such an approach is discussed in the 
following sections. 

2. SYSTEM CONFIGURATION AND ERROR 
MEASUREMENT 

2.1 System Configuration 

The system studied consisted of two Control Data 
CYBER 170 systems maintained by the Computer Services 
Office at the University -of Illinois at Urbana-Champaign. 
The two machines, a model 174 and a model 175, are cou
pled by their disk system. The two machines run indepen
dently but share resources such as tape drives, etc. An 
interlock table is maintained for use by both machines to 
prevent deadlock ariSing from conflicts over shared 
resources. Details of the system configuration and the 
error detection are given in the Appendix. 

2.2 Recognition of Error Groups 

A cursory analysis of the data showed duplicate 
entries within a short time period describing the same 
error condition. It was decided to coalesce error records 
that report the same conditions (i.e., same type of error 
and same machine state) to avoid multiple records refer
ring to the same error. This process is referred to as error 
clustering. Details of the clustering on the Cyber systems 
are given in [Sridhar 85]. A visual examination of the 
clustered data showed the existence of sets of clusters 
occurring within a short time interval. The close time 
proximity among some clusters means a substantial 
increase in the system error rate during that period. The 
high error rate introduces a suspicion that the errors 
occurring during the high error rate period may be related, 
i.e., different errors may be due to a single cause, to multi
ple but related causes, or to multiple and independent 
causes. 

The high error rate periods referred to above are 
called error groups, and are formed by grouping all error 
clusters occurring within a small time interval of each 
other. (This interval was chosen to be fifteen minutes.) 
Analysis showed that the results were largely insensitive 
to variation in this time interval between 5 minutes and I 
hour. It will be seen in section 4 that relationships among 
error records not captured by this choice of time interval 
will be captured during subsequent analysis. I The primary 
difference between a cluster and a group is that clusters 
contain only occurrences of the same error (same error 
type and machine state), whereas groups contain 
occurrences of different errors (different error type or 
machine state). 

1 The choice of the interval is analogous to choosing a starting point in nu
mericaloptimization. A poor starting point will mean that the analysis will take 
a longer time. 



As an illustration of the value of grouping, consider 
the series of observations in Figure 1. Looked upon singly, 
these would appear to be separate occurrences of different 
single bit memory errors. Yet, when the errors are com
bined into an error group, apparently all of them occur 
within bank 4. Also, the syndrome, or the problem bit, is 
the same for all the observations. This points to a problem 
within bank 4, and not to three isolated problems occur
ring within three different memory locations. Specifically, 
it refers to a problem that affects one particular bit of the 
word -- which means the problem is even further isolated 
to the module. The probable causes now are confined to 
those that affect only one module -- such as a faulty 
driver or path. In general, of course, the relationships will 
not be so obvious, hence the need for a probabilistic metho
dology proposed in the next section. 

In summary, we start with the error log file and at 
the end of preprocessing we have reduced isolated errors to 
sets of clearly demarcated, periods of high error rate. 
These sets of error records are called error groups. Error 
groups identify periods of high unreliability in the system. 
The frequency of error groups demonstrates the need to 
relate errors occurring in different parts or times, i.e., glo
bal diagnosis. The tbf of the system increases conSiderably 
when groups are treated as single events. Thus, clearly, if 
the system were able to relate the errors in these groups it 
would be much more reliable. The determination of the 
existence and strength of relationships among error records 
in a group is described in the next section. 

3. RECOGNITION OF ERROR PATTERNS 

Errors in computer systems occur at various times 
and in many different locations. Often, the most severe 
errors are hard to diagnose because of the varied and seem
ingly unrelated symptoms associated with them as they 
occur in different locations and at different times. A suc
cessful diagnostic technique should be able to relate these 
errors in much the same way as a service engineer, through 
past experience, identifies a set of error records as the 
symptoms associated with a particular problem. The goal 
of this research was to automate and formalize a process to 
relate errors occurring in different parts of a system. 

This section describes the key aspects of such a 
methodology, and the succeeding section gives examples 
illustrating the use of this approach. The objectives of the 

REC-
GRPNO TIME NPTS TYPE 

129 23SEP:14:38:18 3 0003 
129 23SEP:14:38:18 1 0003 
129 23SEP:14:38:18 1 0003 
129 23SEP:14:38:18 2 0003 
129 23SEP:14:38:18 2 0003 
129 23SEP:14:38:18 1 0003 

sym ptom recognition strategy are to start with the error 
log file, conSisting of entries for all the errors detected as 
isolated errors by the system, and to produce as output 
symptoms associated with related errors that are being 
diagnosed as isolated and unrelated errors. 

The symptom recognition methodology involves three 
steps: 

(I) recognizing candidates among which relationships can 
exist, 

(2) checking to see if a relationship actually exists among 
these candidates, and 

(3) then estimating a measure of strength of the 
evaluated relationship (if a relationship does exist). 

The first step, i.e., recognition of potential candidates for 
further analysis, is the time-based grouping described in 
the section 2.2. The second and third steps which are now 
discussed are recursively used at three levels of validation. 
At the first level, the relationship among the error records 
within an error group is evaluated; i.e., we determine 
whether there is a valid probabilistic relationship among 
the records in a group or whether they are simply a collec
tion of unrelated records. The second level looks for 
inter-group relationships because the same cause(s) can 
give rise to multiple error groups within a short period. 
The third level looks for overall relationships in the entire 
data. Each level of analysis increases the resolution of the 
data and adds more certainty to the results. At each level, 
a meaSllre of strength of the evaluated relationship is 
quantified. 

The next subsection discusses the probabilistic valida
tion procedure; the subsequent sections discuss the use of 
this procedure at different levels of analysis. 

3.1 Probabilistic Validation Criterion· 

In this subsection, the technique used recursively to 
validate and measure the strength of relationships among 
the error records at various levels is described. 

This technique examines the different records between 
which a relationship may exist and determines whether a 
valid relationship is possible among them on a probabilistic 
basis, based on the past data. In formal terms conSider the 
probability space of n error records AI. A 2. ... • A" . Let 
peA 1 ). peA 2)' ... • P(A" ) be their respective individual 
probabilities calculated from the data, i.e., 

ERR-
ERR SYN QUAD CSU BANK OIIP TYPE 

PARITY 52 1 0 4 2 MEM 
PARITY 52 1 0 4 3 MEM 
PARITY 52 1 0 4 0 MEM 
PARITY 52 1 0 4 3 MEM 
PARITY 52 1 0 4 2 MEM 
PARITY 52 1 0 4 0 MEM 

Figure 1: Sample of Grouped Data 

799 



Figure 2: Error Log Entry for Memory Error 

# of occur. of A" 
P(A" ) = ~--------

if # of occur. of Ai 
i=1 

Then, P (A 1 ) * P (A 2 ) * ... * P (An ) is the probability 
that AI' A 2 •.. , • An will occur together, assuming they 
are independent. Further, let peA 1 • A 2' ...• An ) be the 
joint probability of occurrence computed from all the joint 
occurrences of AI. A 2. . ..• An in the error log, i.e., 

# of joint occur. of (A l' ... • An ) 
peA l' ...• An ) = --~-::-----------

if # of occur. of Ai 
i=1 

If 

P (A 1 ) * ... * P (An ) < P (A 1. ... • An ) (3.1) 

then it is reasonable to assume that the jOint occurrence of 
AI' .... An is not random. A measure of the strength (S) 
of the evaluated relationship is given by the ratio 

peA 1 •.• , • An ) 
S = ~-;--~------,,,.--;:';"7"""7~ 

P (A 1 ) * .. , * P (An 

What AI' A 2 •.•.• An stand for depends on the 
level of analysis: 

(I) When we are attempting to validate the relationship 
among the error records in an error group, 
AI' .... An stand for the individual error records 
within the error group 

(2) When we are studying the relationship among the 
error groups in an event, AI' .... An stand for each 
individual error group. Since the existence and 
strength of relationships are evaluated probabilisti
cally, the approach is not constrained to specific archi
tectures or system configurations. 

3.2 Vafidation at Group level: Inter-Record Relation
ships 

Recall that error groups represent high error rate 
periods during the operation of the system. The high error 
rate introduces a suspicion that the error records within an 
error group may be related. It is, of course, possible that 
the rise in error rate is just a random incident. To distin
guish between these two possibilities, error records in an 
error group are analyzed in three different ways to deter
mine if the records in an error group have a valid relation
ship. 

800 

Complete Analysis 

The first is referred to as a complete analysis. The 
probabilistic validation procedure discussed in the previous 
subsection is applied to all the records in an error group, 
i.e., the individual and the joint probabilities of all the 
error records in a group are computed from the data. If all 
the error records in an error group are found to be statisti
cally related, no further analysis is done on that error 
group. 

Subset-Based Analysis 

If error records in a group are found not to be related 
through a complete analysis described above, then it may 
be that subsets of the original error group have valid rela
tionships. Different combinations of error records in a 
group are then analyzed to determine the existence of valid 
statistical relationships among them. For example, if there 
are three records (A, B, C) in an error group, the subsets 
(A, B), (A, C) and (B, C) are analyzed and Equation (3.1) 
is used to determine the relationship among the error 
records in these subsets. This approach is referred to as a 
subset-based analysis. 

Truncated Analysis 

If no relationship is found with complete or subset
based analysis, a third analysis based on truncated records 
is carried out. In this step, a few fields of the error records 
are masked from the analysis. This is best illustrated 
using the format in Figure 2, which refers to the log of a 
memory error. 

The fields chassiS, quadrant, bank and chip describe 
the location of error. It may be that a statistically valid 
relationship exists at the bank level (say among a few 
banks) and that the chip identity of the error records may 
thwart the recognition of the valid bank level relation
ship.2 Thus, when the chip identity is dropped, we are 
attempting to determine the existence of statistically valid 
relationships at the bank level. Note that when the 
analysis is carried out with truncated records, more 
records can enter the probability space. Thus, the final 
result can be substantially different from the original 
result. 

2 When the chip identity is also taken into account. we are essentially try
ing to determine if errors occurring in different chips within a short period are 
statistically related or not. 

3 The same masking analysis may be carried out by starting from the 
highest level of resolution. i.e .• the last field of the record. The chip identity is 
masked and the analysis is carried out; then the bank identity is masked and so 
on until a relationship is found or until all the fields are masked. This algorithm 
will require more run time. The higher resolution oll"ered by this analysis is 
achieved by subsequent analysis. 



The fields to be masked are determined as follows: 
starting from the lowest level of resolution, i.e., the begin
ning of error records, the records in a group are scanned 
until the first field wherein they. are dissimilar is found. 
All the fields beyond this field are masked from the 

. analysis. For example, two records with the format shown 
in Figure.2 may have identical fields up to the chassis. The 
quadrant is the first field with non-identical values. Then 
the fields bank and chip are masked from the analysis.3 

This three-tier analysis eliminates error groups con
sisting of records with no relationships, i.e., random errors, 
from further analysis. The importance of this analysis is 
underscored by the fact that in our analysis (shown in sec
tion 4) over 25% of the groups were rejected as random 
groups. The validation of subsets eliminates stray records 
present among related. error records in an error group, and 
the validation of truncated records captures non-obvious 
relationships among error records. Thus, the original error 
groups consisting of records among which relationships can 
exist is refined to error groups consisting of records among 
which relationships do exist. 

In some cases, the stray record does not invalidate a 
group. It merely reduces the strength of the evaluated 
relationship. Consider: three records in a group, say. A, B 
and C. A and B may be related and C may be the stray 
record. The strength of the relationship computed by 
analyzing A and B may be much higher than that obtained 
by analyzing A, Band C. It is possible to perform the 
three-tier analysis in all the cases and accept only the rela
tionship with the highest strength. Such an analysis is, 
however, very computer-intensive and, therefore, was not 
performed here. Stray records .are ultimately eliminated 
in subsequent analysis. 

Relationships can exist across error groups; i.e., a sin
gle cause can give rise to a persistent error and thus foster 
multiple error groups within a short time. Therefore, it 
becomes necessary to examine the validated groups for 
inter-group relationships. The methodology to recognize 
inter-group relationships is described in the following sub
sections. 

3.3 Validation at Event Level: '1nter-Group Relation
ships 

The persistence of a single cause(s) and the possibility 
of stray error records among related error records in an 
error group motivate the second level of analysis, i.e., 
recognition of related error groups and the elimination of 
stray error records from error groups.4 

To analyze the relationship among error groups, it 
becomes necessary to introduce the concepts of events and 
symptoms, and symptom sets. An event is defined as the 
collection of error groups occurring within twenty-four 
·hours and having at least two error records in common. A 
symptom is defined as a collection of statistically related, 
non-redundant error records that are common to most of 
the groups in an event. A symptom set associated with an 
event is defined as a collection of symptoms that best 
describe the event. Symptom sets are recognized by 
analyzing the error groups in an event. 

4 Noise is a representative term for stray error records. 

801 

When an event has just one error group, the statisti
cally related error records within that error group form 
the symptom set associated with that event. When there is 
more than one error group in an event, the s:ymptom set is 
formed by intersecting the error groups within the event . 
The error groups are taken N groups at a time, N-I groups 
at a time, and so on down to (N/2),or to the next higher 
integer number of groups. The intersection of such 
different combinations of error groups yields different 
symptoms that are found in these groups. It also elim
inates any stray records that occur in a few of the error 
groups in an event. 

Once the symptom set associated with an event is 
derived, Equation (3.1) is used to check for the relation
ship among the different symptoms. If only one symp
toms is extracted from an event, the event is probably due 
to a single cause. When more than one symptom is 
extracted from an event, the probabilistic validation pro
cedure is used to determine if the different symptoms are 
caused by related or independent causes. For example, if 
two symptoms, say A and B, are extracted from an event, 
and if the symptoms satisfy Equation (3.1), i.e., 

peA) * PCB) < P(A,B) 

then the event is due to multiple but related causes, and 
the ratio 

P(A;B) I (P(A) * PCB)) 

quantifies the strength of the relationship between A and 
B. If 

peA) * PCB) > P(A,B), 

the event is caused by multiple and independent causes. 

If two independent causes exist and persistsimultane
ously,S the extracted symptoms will consist of confusing 
sets of error records. This is because all or most of the 
groups in the event contain records referring to both 
causes. When such groups are intersected, symptoms asso
ciated with both are extracted as though they were related 
causes. The records due to one cause are strays with 
respect to the other cause, and some technique is necessary 
to discriminate between the two. A higher level of 
analysis, necessary to deal with such occurrences, is 
described in the following section. 

,3.4 Validation at Super-Event Level: Inter-Event Rela
tionships 

The possibility of the presence of stray records in all 
of the error groups in an event, and the need to capture 
relationships missed by the choice of twenty-four hours as 
the time interval while forming events, motivate the next 
and the last level of analysis, i.e., determination of inter
event relationships. Further, when the events resulting 
from the same cause(s) across the entire data are analyzed, 
the stray records occurring in one particular event become 
Visible. This allows for the resolution between indepen
dent and dependent (related) failures. 

Three simple rules are used to recognize related 
events and to form super events. Two events are grouped 
into.a super event if they satisfy anyone of the following 

5 Such conditions occur rarely. but they do occur. 



criteria: 

(1) They have at least one symptom in common 

(2) A symptom of one event is a sub or super set of at 
least one symptom of another event 

(3) If they are single-group events, then they have at 
least two records in common. 

Importantly, there is no time restriction when forming 
super events. 

Next, a set of super symptoms, which are collections 
of symptoms found in common among two or more events 
in a super event, is generated. The procedure is exactly the 
same as for events except that instead of taking groups, we 
take events described by the symptom sets. The intersec
tion operation among the events yields symptoms found in 
common among these events. The non-null result of each 
intersection operation forms a super symptom for the asso
ciated super event. 

Some super events have just one super symptom asso
ciated with them, while others have more than one associ
ated with them. To determine whether the different super 
symptoms associated with a super event are related, (i.e., 
whether the super event has a single cause) we use the 
probabilistic validation procedure described in Section 3.1. 
If the different super symptoms are not related, then the 
super event is due to multiple and independent causes. 

When a super event is due to multiple and indepen
dent causes, the number of such distinct independent 
causes may be determined as follows: the super symptoms 
are considered in different combinations, taken N-l super 
symptoms at a time, and so on down to 2 super symptoms. 
The probabilistic validation procedure is applied to each 
such com bination. This analysis determines the relation
ship within a particular subset of super symptoms associ
ated with a super event. If the subset is found related, it 
is counted as one cause. The analysis is continued until all 
independent causes associated with a super event are 
found. 

Recall that the goal of this paper is to automate the 
process by which a service engineer relates errors occurring 
in different parts of a computer system. The super symp
toms derived from the error log file not only consist of 
sets of related error records but also quantify the strength 
of their relationships. Whereas the service engineer usu
ally scans the error log pertaining to the short period d ur
ing which the error occurred, recognizes related error 
records and makes a local jUdgement, the methodology 
scans all the errors that occur in a system and is capable of 
making a global judgement. The application of this tech
nique to real data is discussed in the next section. 

3.5 Summary 

The methodology described in this section establishes 
that it is possible to build a system that will relate errors 
occurring in different parts/times in a computer system or 
when two unrelated causes occur simultaneously in a sys
tem. It has been shown that the proposed methodology 
allows for resolution between them. Some causes persist 
for days or even months. While such causes perSist, other 
independent errors can also occur in a system. 

802 

Three levels of validation are used in a recursive 
fashion. In the first, all groups (high error rate periods) 
are examined to determine if they contain related records. 
Next, the validated groups are examined for inter-group 
relations (events). Finally, the events across the entire 
date are examined for inter-event relationship.6 

The symptom sets obtained using this methodology 
imply that if one error within a symptom set occurs, other 
related errors within the symptom set can be expected to 
occur. The strength of the relationship says how likely it 
is that related errors will follow. 

The number of levels of analysis can be varied for 
higher resolution. That is, if a system is highly error-prone 
and a grouping of errors occurring within fifteen minutes 
leads to coalescing of unrelated errors, then this grouping 
time interval may be reduced to, say, five minutes or less. 
The next section illustrates various facets of this approach 
by applying it to determine the error symptoms in the 
CYBER system. 

4. EXAMPLES OF ERROR SYMPTOMS 

This section illustrates the various stages of the 
analysis involved in the automatic recognition of error 
symptoms from error log data. A summary of the analysis 
is given first. Then three examples are provided, illustrat
ing the three levels of analysis, namely, the group, event 
and super event levels. Some features of the proposed 
methodology not illustrated by the first example are illus
trated in the last two examples. 

4.1 Summary of the Analysis 

Table 1 sums up the number of groups, events and super 
events derived from the error logs o(Cyber 174 and Cyber 
175 machines. Note that 67.1% of the Cyber-174 groups 
and 27.5% of the Cyber-175 groups were rejected as ran
dom groups. Most of the super events in both the machines 
were due to single or related causes. In all, there are fifteen 
distinct causes that result in severe errors on the Cyber-
174 and thirty-three causes on the Cyber-175. 

TABLE 1: 
FREQUENCY OF GROUPS, EVENTS AND SUPER EVENTS. 

I # of groups 

Cyber 174 Cyber 1751 
85 142 I 

I # of groups rejected 57 39 I 
I 1 # of events 

19 53 I I due to single cause 
2 I 

I 
I due to multiple causes o 
I # of super events 

33 I I due to single cause 15 

2 I I due to multiple causes o 

6 Note that each level of analysis adds to the information gathered at previ
ous levels, i.e. a group validated at the group level cannot be rejected in subse
quent analysis but can find other related groups. 



There are 85 error groups in the Cy ber-l 74 data and 
142 groups in the Cyber-175 data. These numbers quan
tify the periods of highly unreliable operation during the 
operation of the computer system. During these high error 
rate periods, many of the system resources may have been 
utilized in recovery measures. 

4.2 Cyber-174 Super Event with Multiple Super Symp
toms 

This section illustrates the various facets of the pro
posed methodology. This particular exam pIe is chosen 
because it illustrates all the important steps and the major 
problems involved in the automatic recognition of symp
toms. 

Figure 3 shows a super event consisting of four 
events. Here all events are single group events. As an 
example of analysis at the group level, we consider the 
group of error records in the second event, marked EVT 2. 
In this group, we find four types of records, i.e., those 
records with ERRTYPE/locations corresponding to E/ ... , 
S/0-0-7-l, S/l-0-1-2. and S/l-O-5-0. Using the method of 
Section 3.1, the strength of this group was 76.50. Since 
this strength is greater than 1.0, the records exhibit a valid 
relationship within this group, so subset-based and trun
cated record analyses are unnecessary. The strengths of 
the groups respective of the order that they appear in Fig
ure 3 are 1.56, 76.50, 1.56, and 4.00. Analysis of symp
toms at the event level is trivial in Figure 3, since each 
event has only one type of error symptom. An example 
which better illustrates event level analysis is discussed in 
the next section. 

Q 
R E C sue 
E R H YAH 
C R A NDA 
T T T N R R S B C 
Y I Y N OASAH 
p M P E MN I N I 
E E E L E T S K P 

3 84May17 08:05:01 S 14 DO 1 0 1 2 
EVT 1 3 84May17 08:07:23 S 14 25 1 0 5 0 

3 84May17 08:15:47 S 14 23 0 0 7 1 
------------------------------------

3 84May20 11:24:59 E 14 23 
3 84May20 11:33:21 S 14 23 0 0 7 1 

EVT 2 3 84May20 11:40:48 E 14 23 
3 84May20 11:58:14 S 14 DO 1 0 1 2 
3 84May20 11:58:14 S 14 25 1 0 5 0 

------------------------------------
3 84May28 12:30:45 S 14 23 0 0 7 1 

EVT 3 3 84May28 12:44:22 S 14 25 1 0 5 0 
3 84May28 12:49:12 S 14 23 0 0 7 1 
3 84May28 12:53:47 S 14 DO 1 0 1 2 

------------------------------------
3 84Jun02 03:54:51 S 14 23 0 0 7 1 

EVT 4 3 84Jun02 04:00:00 S 14 38 0 1 5 3 
3 84Jun02 04:15:54 E 14 23 

Figure 3: 
Example of Multiple Symptom Super Event on CYBER-174 

Analysis at the super event level is performed by 
applying the probabilistic validation procedure to the set 
of super symptoms extracted from a super event. In Fig
ure 3, the union of event symptoms yields the following 
super symptom set: 

803 

(0 (E / .... S /0-0-7-1 . S /1-0-1-2 . S /1-0-5-0) 

(2) (E / .... S /0-0-7-1 . S /0-1-5-3 ) (4.1) 

By definition of a super event, these super symptoms can 
occur within only this super event. The strength of the 
entire super event by Equation (3.1) is 2.0, which indicates 
that the events are strongly related. Thus, this super 
event may be considered the result of a single cause. Had 
these super symptoms failed to satisfy Equation (3.1), we 
would have inferred that the super event was due to mul
tiple causes. 

It should be noted that the error records in this super 
event span a period of seventeen days. The cause appears 
to be an intermittent error which recurs, apparently 
affecting different components. That they are due to a sin
gle cause would not be immediately obvious from looking 
through the entire error log. This example clearly 
demonstrates the power of the proposed methodology to 
extract good quality symptoms associated with severe 
errors in computer systems. 

4.3 Cyber-175 Super Event with Multiple Super Symp
toms 

figure 4 shows part of a super event. This super event 
consists of ten events persisting over a period of the ten 
weeks from July 8 to September 18 of 1985. Three of 
these events are shown in Figure 4. The second event, 
marked EVT 2, consists of three groups, spanning a period 
of less than seven minutes each. In addition to occurring 
less than an hour apart and having at least two records in 
common with another group, these three groups had to be 
validated at the group level to be included in the same 
event. Using the measure of strength of relationship 
between records as described in Section 3.1, the value for 
the first group's locations ( 1-1-1-0 , 1-1-2-2 , 1-1-0-1 , 1-
0-0-1 ) is 8.444. For the second group, the value for loca
tions ( 1-1-1-0 , 1-1-2-2 , 0-1-7-2 , 1-1-3-3 ) is 12.901. 
And for the third group, the value for locations ( 1-:1-1-0, 
1-0-0-1 , 0-1-7-2 , 1-1-3-3 ) is 10.411. These strengths 
clearly indicate the validity of the record relationships 
within the three groups. 

Event Level Analysis 

As an example of analysis at the event level, we con
sider the set of symptoms generated by the groups in EVT 
2. Four symptoms are generated: 

(0 ( 1-1-1-0 ) 

(2) ( 1-1-1-0.1-0-0-1 ) 

(3) ( 1-1-1-0.1-1-2-2 ) 

(4) ( 1-1-1-0 .1-1-3-3 .0-1-7-2 ) (4.2) 



By Equation (3.1) the strength of event EVT 2 is 32.16. 
This indicates a valid relationship between the three error 
groups in event EVT 2, i.e., they were all caused by the 
same problem. But this inference is only a local view. To 
get a global view, we look for related events across the 
entire data. 

Super Event Level Analysis 

For the super-event level analysis, other events with 
at least one symptom set in common are extracted from 
the data. Here we illustrate the procedure for the events 
shown in Figure 4. Events EVT 1 and EVT 3 are single
group events. Their symptom sets are simply the groups 
themselves. The super symptoms obtained are: 

(1) ( 1-0-2-0 . 1-0-2-2 . 1-1-3-3 ) 

(2) ( 1-1-1-0.1-1-3-3 .0-1-7-2 ) 

(3) ( 1-1-1-0 . 1-1-2-2 . 1-0-0-1 ) (4.3) 

Note that the first three symptoms of Equation (4.2) 
have been absorbed into the third super symptom of Equa
tion (4.3). This provides global support of the inference 
made at a local level that errors occurring in locations 1-
1-1-0, 1-1-2-2, and 1-0-0-1 are due to the same cause. 

The physical interpretation of these three super 
symptoms is that the occurrence of one error implies that 
another error is likely to follow. The strength of the rela
tionship among the errors in a symptom set tells us how 
likely it is that the related error will follow. The proba
bilistic validation procedure quantifies a measure of the 
strength of the relationship among error records based on 
their joint and individual occurrences. 

For example, the values of the measure of relation
ship strength between error records pertaining to the three 
super symptoms of Equation (4.3), respectively, are 5.37, 
5.26, and 2.17. Thus, when an error occurs in location 1-
1-1-0, errors are likely to occur in locations 0-1-7-2, I-D
O-I, 1-1-2-2 and 1-1-3-3. Given that an error has 
occurred in location 1-1-1-0, the chances are that an error 
is more likely to occur in location 1-1-3-3 or 0-1-7-2 than 
in location 1-1-2-2 or 1-0-0-1. Thus, the symptom sets 
tell us about the other parts or other errors that are likely 
to occur, and the measure of strength of the relationship 
among the records in a symptom set tells us which parts 
are more likely to be affected from among all the parts 
that can be affected. 

A practical benefit of the proposed methodology is 
that it makes service/maintenance engineers aware of all 
the severe or persisting errors in a system. Although most 
causes of error took the form of single, transient groups of 
errors, there were qUite a few that resulted in numerous 
recurring groups of errors, spanning months of time. For 
example, 26.7% of the CYBER-174's super events were 
composed of multiple groups of errors, as were 36.4% of 
the CYBER-175's super events. In this context, it is 
interesting to note that the maintenance engineers were 
unaware of the persisting errors discussed in this section 
until we brought it to their attention. This was not with-

804 

Q 
R EC S UC 
E RH Y AH 
C RA N CPDA 
T T TN R HPRSBC 
Y I YN EEO PPASAH 
P M P E SCM AANINI 
E E EL T S E RRTSKP 

E 3 84Sep05 04:01:33 S 14 0 5 58 0 0 1 0 2 2 
V 3 84Sep05 04:01:47 S 14 0 5 89 0 0 1 0 2 0 
T 3 84Sep05 04:02:15 S 14 0 5 3D 0 0 1 1 3 3 

3 84Sep05 04:02:28 S 14 0 5 58 0 0 1 0 2 2 
1 3 84Sep05 04:03:32 S 14 0 5 3D 0 0 1 1 3 3 

E 

3 84Sep13 06:00:09 S 14 0 5 54 0 0 1 1 2 2 
3 84Sep13 06:00:22 S 14 0 5 E9 0 0 1 1 0 1 
3 84Sep13 06:00:42 S 14 0 5 54 0 0 1 1 2 2 
3 84Sep13 06:01:31 S 14 0 5 23 0 0 1 1 1 0 
3 84Sep13 06:02:40 S 14 0 5 54 0 0 1 1 2 2 
3 84Sep13 06:03:05 S 14 0 5 23 0 0 1 1 1 0 
3 84Sep13 06:03:28 S 14 0 5 54 0 0 1 1 2 2 
3 84Sep13 06:05:11 S 14 0 5 8A 0 0 1 0 0 1 
3 84Sep13 06:05:40 S 14 0 5 54 0 0 1 1 2 2 
3 84Sep13 06:05:52 S 14 0 5 23 0 0 1 1 1 0 
3 84Sep13 06:05:58 S 14 0 5 8A 0 0 1 0 0 1 

V 3 84Sep13 07:00:02 S 14 0 5 3D 0 0 1 1 3 3 
T 3 84Sep13 07:01:40 S 14 0 5 54 0 0 1 1 2 2 

3 84Sep13 07:02:03 S 14 0 5 23 0 0 1 1 1 0 
2 3 84Sep13 07:02:40 S 14 0 5 3D 0 0 1 1 3 3 

3 84Sep13 07:02:44 S 14 0 5 07 0 0 0 1 7 2 
3 84Sep13 07:02:47 S 14 0 5 3D 0 0 1 1 3 3 

3 84Sep13 08:00:33 S 14 0 5 23 0 0 1 1 1 0 
3 84Sep13 08:01:09 S 14 0 5 3D 0 0 1 1 3 3 
3 84Sep13 08:01:15 S 14 0 5 8A 0 0 1 0 0 1 
3 84Sep13 08:04:12 S 14 0 5 23 0 0 1 1 1 0 
3 84Sep13 08:05:32 S 14 0 5 07 0 0 0 1 7 2 
3 84Sep13 08:06:12 S 14 0 5 3D 0 0 1 1 3 3 
3 84Sep13 08:06:12 S 14 0 5 23 0 0 1 1 1 0 
3 84Sep13 08:07:24 S 14 0 5 3D 0 0 1 1 3 3 

E 3 84Sep18 05:01:53 S 14 0 5 8A 0 0 1 0 0 1 
V 3 84Sep18 05:03:26 S'14 0 5 23 0 0 1 1 1 0 
T 3 84Sep18 05:03:30 S 14 0 5 8A 0 0 1 0 0 1 

3 84Sep18 05:03:59 S 14 0 5 54 0 0 1 1 2 2 
3 3 84Sep18 05:05:06 S 14 0 5 23 0 0 1 1 1 0 

3 84Sep18 05:05:20 S 14 0 5 54 0 0 1 1 2 2 

Figure 4: 
Example of Multiple Symptom Super Event on CYBER-175 

standing the fact that the same maintenance engineers 
went through the error log on alternate days of the week 
during the six-month period when these errors perSisted. 
They, however, failed to notice them. 

4.4 Super Event with Unrelated Super Symptoms 

This section illustrates an example of a super event 
whose records appear to be strongly related at both the 
group and event levels but fail to show significant rela
tionships at the super event level. 

Figure 5 shows a super event constructed from 
CYBER-175 error records and consisting of two events. In 
the first event, marked EVT I, there are two groups. 
Analysis of the records in each group yields strengths of 



1.42 and 19.27 for the smaller and larger, respectively. In 
the second event, marked EVT 2, there are three groups. 
Their strengths, in chronologic~l order, are 19.27,5.23, and 
1.42. Clearly, the records in all five groups are strongly 
related. 

This strong relationship is preserved at the event 
level as well. The groups of EVT I are represented by a 
single symptom: ( 1-1-1-0, 1-0-2-0 ). EVT 2 had three 
symptoms and an event strength of 4.54: 

(0 ( 1-0-2-0.0-0-2-1 .1-1-7-2 ) 

(2) ( 1-0-2-0. 1-1-1-0 ) 

(3) ( 1-0-2-0 ) (4.4) 

This strength again indicates that the error records in EVT 
2 are related to a single cause. 

When analyzed at the super event level, however, we 
find that there is no longer enough statistical support to 
indicate that the super event of Figure 5 was due to a sin
gle cause. The super symptom set is found by taking the 
union of the symptoms generated by EVT 1 and EVT 2 
and is simply the first two symptoms of Equation (4.4). 
The first super symptom appears independently four 
different times among all the events generated from the 
CYBER-175 data. The second super symptom appears 
eight times independently. By Equation (3.1), the strength 
of this super event is only 0.38. This low strength indi
cates that the super event consists of errors due to unre
lated causes. The super symptoms occur independently so 
frequently that their jOint appearance in the super event of 
Figure 5 cannot be considered Significant. 

Two specific procedure of the proposed methodology, 
namely, the subset based and truncated analyses, have not 
been illustrated in the examples discussed so far. Exam
ples of these procedures can be found in a related technical 
report [Sridhar 85]. 

5. PERFORMANCE OF THE METHODOLOGY 

As a final check on the performance of the methodol
ogy, we obtained independent corroboration of our results 
from the log of failures and repair maintained by the field 
engineers. Although this recording was not always com
plete, it did allow us to perform an independent check on 
our evaluation. The results of this check are summarized 
below. 

In nearly 85% of the cases the engineers were directly 
able to confirm that our validated superevents 
corresponded to real system problems. The evaluation was 
made both on the basis of their experience and from their 
field maintenance logs. The confirmed cases corresponded 
to single event superevents. 

For the remaining 15% of the cases, although the 
engineers could not confirm "noticing" a valid problem, 
they agreed that (with the benefit of hindsight) that a 
problem had existed. However, the manifestation (an 
event) was not severe enough to be noticed by their 
analysis. One important case was the superevent consist
ing of ten events, discussed in section 4.2. This superevent 

805 

R 
E 
C 
T 
Y 
P 
E 

T 
I 

M 
E 

E C 
RH 
RA 
TN 
YN 
P E 
E L 

Q 
sue 
YAH 
N C P D A 
R HPRSBC 
o PPASAH 
M AANINI 
E RRTSKP 

3 84~y18 03:12:59 S 14 23 0 0 1 1 1 0 
3 84~y18 03:14:01 S 14 89 0 0 1 0 2 0 
3 84~y18 03:15:12 S 14 23 0 0 1 1 1 0 

E 3 84~y18 04:00:06 S 14 92 0 0 0 0 2 1 
V 3 84~y18 04:00:17 S 14 23 0 0 1 1 1 0 
T 3 84~y18 04:00:31 S 14 92 0 0 0 0 2 1 

3 84~y18 04:01:09 S 14 A1 0 0 1 1 7 2 
1 3 84~y18 04:01:13 S 14 89 0 0 1 0 2 0 

3 84~y18 04:01:24 S 14 92 0 0 0 0 2 1 
3 84~y18 04:01:55 S 14 23 0 0 1 1 1 0 
3 84~y18 04:02:30 S 14 92 0 0 0 0 2 1 
3 84~y18 04:03:19 S 14 89 0 0 1 0 2 0 

E 

3 84~y19 05:00:21 S 14 92 0 0 0 0 2 1 
3 84~y19 05:01:13 S 14 89 0 0 1 0 2 0 
3 84~y19 05:01:53 S 14 A1 0 0 1 1 7 2 
3 84~y19 05:02:31 S 14 92 0 0 0 0 2 1 
3 84~y19 05:02:54 S 14 89 0 0 1 0 2 0 
3 84~y19 05:02:58 S 14 92 0 0 0 0 2 1 
3 84~y19 05:03:40 S 14 A1 0 0 1 1 7 2 
3 84~y19 05:03:59 S 14 23 0 0 1 1 1 0 

V 3 84~y19 06:00:09 S 14 92 0 0 0 0 2 1 
T 3 84~y19 06:00:10 S 14 A1 0 0 1 1 7 2 

2 
3 84~y19 06:00:11 S 14 89 0 0 1 0 2 0 

3 84~y19 07:01:04 S 14 23 0 0 1 1 1 0 
3 84~y19 07:04:15 S 14 89 0 0 1 0 2 0 
3 84~y19 07:04:30 S 14 23 0 0 1 1 1 0 
3 84~y19 07:04:31 S 14 89 0 0 1 0 2 0 
3 84~y19 07:04:52 S 14 23 0 0 1 1 1 0 
3 84~y19 07:04:55 S 14 89 0 0 1 0 2 0 
3 84~y19 07:07:11 S 14 23 0 0 1 1 1 0 
3 84~y19 07:07:27 S 14 89 0 0 1 0 2 0 
3 84~y19 07:07:48' S 14 23 001 1 1 0 

Figure 5: 
Example of Super Event Due to Unrelated Causes 

spans ten weeks. Although, each event by itself was not 
severe enough to show up, when taken as a whole it was 
clear that a persistent problem had existed: It appears that 
as a result of our information corrective action was taken 
because this particular superevent does not exist in the 
data which has been gathered since then. In summary, we 
find that not only do our results agree with field findings 
but also we are able to relate problems over a long period 
of time which would otherwise go undetected. 

The proposed methodology, thus, can be used to 
evaluate the goodness of any diagnostic system, whether 
primitive or sophisticated. This can be done by analyzing 
the relationship among the errors the diagnostic system 
detects as isolated. A very simple measure for the good
ness of diagnosis of a system could be given by 

number of error entries coalescing into related errors 
1 - total number of error entries in the error log 



6. CONCLUSION 

This paper has developed a methodology for automat
ically detecting symptoms associated with perSistent errors 
in computer systems. The methodology was shown to 
work on two large computer systems in a multisystem 
configuration. The recognition process is based on proba
bilistic techniques and is implemented in three levels. Each 
level adds confidence to the results. The power of the 
methodology to allow for the resolution between single 
and multiple but independent causes was also demon
strated. With multiple but overlapping symptoms, the 
methodology determines the number of distinct indepen
dent symptoms. The methodology quantifies the strength 
of the relationship among related errors. Research is now 
in progress to develop a suitable diagnostic system that 
will use the extracted error symptoms and automatically 
carry out diagnosis and recovery. This would not only 
facilitate better diagnosis and recovery management, but 
will also improve the overall reliability and performance 
of a system. 

ACKNOWLEDGEMrnNTS 
The authors thank George Badger. Director CSO. Warner 

Brigham. Sandy Moy and Milt Cloud at CSO for providing 
insight into the measured systems and access to the data. This 
work was supported in part by the Joint Services Electronics 
Program (U.S. Army. U.S. Navy. and U.S. Air Force) under con
tract number NOOOI4-84-C-0149 and in part by IBM corpora
tion. 

APPENDIX 
SYSTEM DESCRIPTION 

This analysis uses detailed error data automatically col
lected over a six-month period by the operating system. As with 
other large systems. the CYBER machines maintain a log of a 
variety of normal and abnormal events -- called the "system 
dayfile." The abnormal events are errors automatically detected 
by the system. Errors can originate in the peripheral processors. 
the central processor. main memory. or the disk subsystem. The 
errors are captured by hardware that checks the integrity of 
information being transmitted between physical elements in the 
system. When an error is detected. a system routine collects per
tinent information from the hardware concerning the state of the 
machine at the time of the error and stores it in the dayfile. A 
decoded sample of the information logged is shown Figure A.I. 

The fields of information include: 

(1) record type: specifies the format of the rest of the record 
(RECfYPE) 

REC-

(2) error code: specifies the nature of the error (ERR) 

(3) time and date of error 

(4) channel in use at the time of error (CHAN) 

(5) equipment number of the device involved (EST) 

The three major record types are: 

(1) deadstarts (RECTYPE = 0001): these are logged for all 
scheduled and unscheduled system restarts. The two com
mon deadstart levels are (a) deadstart level zero which 
denotes a complete halt of the machine with no job 
recovery possible. and (b) deadstart level three which 
implies that the integrity of the machine state is main
tained and recovery is possible for most jobs. 

(2) disk subsystem errors (RECTYPE = 0024): these included 
disk checkword errors. channel parity errors. and device 
contention errors. 

(3) parity-related errors (RECTYPE = 0003): these include 
memory errors (single error correction. double error detec
tion). peripheral processor errors. channel errors. extended 
core parity and central memory controller errors. 

REFERENCES 

[Brown 81] J. S. Brown. et. al.. "Pedagogical and knowledge engr. 
techs. in the SOPHIE systems." Xerox CIS-14.198I. 

[Davis 82) R. Davis. et ai. "Diagnosis based on structure and 
function,' AAAI-82. Pittsburgh. f982. pp. 137-142. 

[deKleer 76] "Local methods for localizing faults in electronic 
circuits," Vol. PAMI-4. No.3. May 1982. 

[Genesereth 82J M. Genesereth. "Diagnosis using hierarchical 
design models. AAAI-82. Pittsburg. 1982. 

[Iyer 85] R. K. Iyer. P. Velardi. "Hardware-related software 
errors." IEEETr. SWE., vol. SE-l1. Feb 1985. 

[Iyer 86] R. K. Iyer. et. al.. "Measurement and modeling of compo 
reI. as affected by syst. activity." ACM TOCS, Aug 1986. 

[Sanders 85] D. Sanders. M.S. thesis. ECE-UIUC. 1985. 

[Shubin 82] H. Shubin and J. W. Ulrich. "IDT: An intelligent 
diagnostic tooL" AAAI-82. Pittsburg. 1982. 

[Sridhar 85] V. Sridhar. et. al.. "Recognition of error symptoms 
in large systems." CSG-46. CSL. UIUC. 1985. 

[Tsao 83a] M. M. Tsao. "Trend analysis and fault prediction: 
Tech. Rep. CMU-CS-83-130. Carnegie-Mellon University. 1983. 

[Tsao 83b] M. M. Tsao and D. P. Siewiorek "Trend analysis on 
system error files" FTCS-13. 1983. 

[Velardi 84] P. Velardi. R. K. Iyer. "A study of software failures 
and recovery in MVS," IEEE Tr. Comp .. vol. C-33. 1984. 

ERR-
OBS TIME TYPE ERR CHAN EST SYN POSIT QUAD CSU BANK CHIP TYPE 

1 19MAY84: 2: 06: 12 0024 CHKWD 5 10 266051 
2 19MAY84:5:00:21 0003 PARITY 92 0 0 2 1 MFM 
3 19MAY84:5:00:57 0003 PARITY 92 0 0 2 1 MFM 
4 19MAY84:5:01:13 0003 PARITY 89 1 0 2 0 MFM 
5 19MAY84:5:01:53 0003 PARITY Al 1 1 7 2 MFM 
6 19MAY84:5:02:31 0003 PARITY 92 0 0 2 1 MFM 
7 19MAY84:5:02:54 0003 PARITY 89 1 0 2 0 MFM 
8 19MAY84:5:02:58 0003 PARITY 92 0 0 2 1 MFM 
9 19MAY84:5:03:40 0003 PARITY Al 1 1 7 2 MFM 

Figure A.I: Sample From Error Log 

806 



METASAN: A Performability Evaluation Tool Based on 
Stochastic Activity Networks 

w. H. Sanders and J. F. Meyer 

Computing Research Laboratory 
Dept. of Electrical Engineering and Computer Science 

The University of Michigan 
Ann Arbor, Michigan, USA 48109 

and 
Communications and Network Laboratory 

Industrial Technology Institute 
Ann Arbor, Michigan, USA 48106 

Abstract 

This paper describes a software package that assists the con
struction and solution of performability models based on stochastic 
activity networks. Stochastic activity networks, a generalization of 
stochastic Petri nets, permit the representation of concurrency, timel
iness, fault tolerance and degradable performance in a single model. 
Their structure allows for direct construction of analytically tractable 
stochastic base models under certain well defined conditions, as well 
as simulation under very general conditions. For a given system, the 
input to 11ETASAN consists of two parts: a description of the struc
ture of the net, and a description of the desired performance vari
ables and solution method. Each part is specified in a flexible input 
language. This language allows the analyst to define very general 
performance variables in terms of the behavior of the net. The user 
interface and solution methods employed are reviewed, and an exam
ple is given illustrating use of the package. 

1. Introduction 

Extensions to Petri nets have proved to be valuable tools for 
both the verification and evaluation of concurrent systems. Many of 
these extensions have included the addition of an explicit representa
tion of time. In particular, one approach has been to add timing of a 
probabilistic nature to transitions in the net. This permits the 
representation of timeliness as well as concurrency in a stochastic set
ting. As models for performability evaluation [1], they also permit 
the representation of fault tolerance and degradable performance. 
Stochastic activity networks (SANs) [2,3,4] were developed to facil
itate the performability evaluation of systems which exhibit any or 
all of these four characteristics. Through the introduction of several 
new primitives, they allow the model to be specified in a convenient 
way, while providing the formal structure necessary for analytic solu
tions. When model characteristics preclude analytical evaluation, 
performability can be evaluated via simulation. 

Others have likewise examined the use of stochastic extensions 
of Petri nets for performance and/or reliability evaluation. Solutions 
via analysis, and to a lesser extent, simulation have been considered. 
Notable in the area of analysis is the work of Natkin ([5]; Timerl 
Petri Nets), Molloy ([5]; Timed Petri Nets), Marsan et al. ([7]; Gen
eralized Stochastic Petri Nets), Chiola ([8]; Generalized Stochastic 
Petri Nets), Cumani ([9]; Stochastic Petri nets with phase type dis
tributions), and Dugan et al. ([10]; Extended Stochastic Petri Nets). 
Examples of solution via simulation include work by Behr et al. ([11]; 
Evaluation Nets), Dugan ( [12]; Extended Stochastic Petri Nets), 
Chiola ([8]; Generalized Stochastic Petri Nets), Godbersen and Meyer 
([13]; Function Nets), and Torn ( [14]; Simulation Nets). 

CH2345-7j86jOOOOj0807$Ol.OO© 1986 IEEE 

In what follows, we assume familiarity with the basic structure 
and execution of SANs [2,3]. For a brief review of basic concepts 
and terminology, consider the stochastic activity network of Figure 1. 
~ctivities ('.'transitions" in Petri net terminology) are of two types, 
tImed and mstantaneous. Elongated ovals represent timed activitie& 
(e.g., computeI) and solid bars represent instantaneous activitie& 
(e.g., diskl). Timed activities are used to represent activities of the 
modeled system whose durations impact the system's ability to per
form. Instantaneous activities represent system activities which 
r~lative to the pe~formance variable in question, complete in a negli~ 
gIble. amount. of time. Places are depicted as circles (e.g., A-J) and, 
as WIth Petn nets, each place can hold a nonnegative number of 
tokens. The distribution of tokens in the places of the network at a 
given time constitutes the marking of the network at that time. 

Cases can be associated with both timed and instantaneous 
activities an.d are repre.sen~ed by small circles (e.g., as in computeI). 
Cases permIt the reahzatIOn of two types of spatial uncertainty. 
Unc.ertainty about which activities are enabled in a given marking is 
reahzed by cases associated with intervening instantaneous activities. 
Uncertainty about the next marking assumed upon completion of a 
timed activity is realized by cases associated with that activity. The 
two remaining net primitives are input gates and output gates. Input 
gates.(e.g., computein~) contain both an enabling predicate and input 
functIOn (on the marklOg of the places). The enabling predicate must 
be true for the activity associated with that gate to be enabled. 
Upon completion of the associated activity, the input function is exe
c?ted, possibly chan?ing the marking of the net. Output gates (e.g., 
dlskoutl) have a smgle output function (on the markillg of the 
places) associated with them, which is executed upon completion of 
the associated activity. 

. . The. stoch.ast~c n~ture of the nets is realized by associating an 
actIVIty tIme dlstnbutIOn function with each of the timed activities 
and a probability distribution with each set of cases. A reactivation 
function [3] is also associated with each timed activity. This function 
specifies,. for each marking, a set of reactivation markings. Infor
ma!l~, gl.ven tha~ an activity is activated in a specific marking, the 
actiVIty 15 reactIVated whenever any marking in the set of reactiva
tio~ ~arkings is reached. This provides a mechanism for restarting 
actiVItIes that have been activated, either with the same or different 
distribution. Note that this decision is made on a per activity basis 
(based on the reactivation function), and is not a net-wide execution 

807 

policy. 

As stochastic activity network models grow in size and com
plexity, analysis by hand quickly becomes intractable. Both the 
growth in possible markings and complexity of activity time distribu
tions contributes to this difficulty. Such considerations have resulted 



Disable All Activities 

TapeJaults 

Figure 1. Example Stochastic Activity Network 

in the development of METASAN (Michigan Evaluation Tool for 
the Analysis of Stochastic Activity Networks). METASAN contains 
routines for both model construction and model solution, and con
tains both simulation and analytical solvers. 

In the discussion that follows, Section 2 describes the high 
level organization of METASAN. Section 3 discusses model con
struction and Section 4 describes model solution. Use of the package 
is illustrated in Section 5 via its application to a specific evaluation 
problem. Finally, suggestions for further work are discussed in the 
concluding section. 

"2. ·METASAN Organization 

METASAN was designed in a modular manner to allow for the 
addition of new solution methods as these become available. It is 
written using UNIX tools (C, Yacc, Lex, and Csh) and currently con
tains some 30,000 lines of source code. Steady-state and transient 
evaluation, via both analysis and simulation, are supported by the 
tool. 

At the highest level, the analyst .interacts with METASAN 
through a menu· structure. This menu {Figure 2} permits access to 
the two basic files that make up a METASAN model: a structure file 
and an "experiment file. The menu also permits access to the com
pilers for each of the description files and the. solution modules. The 
structure file is a direct translation of the SAN into a textual form 
that can be accepted by the package. Specification of desired perfor
mance variables and solution algorithm is done via the experiment 
file. Each of these files will be described in more detail in Section 3. 

Model construction consists of describing the structure of the system 
to be modeled using the editor (option vs), compiling the description 
{option s}, describing the experiment file (option vel and compiling 
the experiment file {option e}. The result of these actions is a 
machine understandable description {a collection of C data structures 
and procedures} of the system to be modeled and the desired perfor
mance variables. By then selecting model solution {option r} this 
machine readable description is bound to the correct solution module 
and is executed. A' flowchart of this process is given in Figure 3. 
Output from the solver depends on the solver chosen, but contains 
either estimates or exact values of the chosen performance variables. 

Items in the pictured menu that are identified by a capital 
letter designate lower level menus. "Set Files" allows the user to 
specify each of the files associated with a particular model. "Set 
Runtime Options" offers a variety of options which, depending on the 
solution module selected, allow the user to set various trace and 
debug options, run the model in the background or on remote 
machines, and direct the output to several locations. "System Com
mands" consists of a collection of commands to aid the user in creat
ing new model directories, removing or copying description files, etc. 

3. Model Construction 

In the context of METASAN, model construction consists of 
describing both the stochastic activity network and chosen perfor
mance variables in a manner understandable to the package and 
translating these descriptions into a form that is understandable to 
the solution modules. This is accomplished in METASAN via two 
input languages and their corresponding compilers. 

808 



############################################################################### 
# # # 
# METASAN # METASAN Selections # 
# # # 
# F) Set Files # batch trace on # 
# 0) Set Options # no verbosity set # 
# S) System Commands # no chkpt set # 
# # # 
# s) compile structure description # # 
# e) compile experiment description # background # 
# r) bind and solve model # # 
# ro) solve without binding # solver> multi21.out # 
# # # 
# vs) edit structure file # # 
# ve) edit experiment file # user: bill # 
# vi) edit a file # model directory: multi # 
# # structure file: multi1 # 
# q) qui t METASAN # experiment file: percent # 
# # object file: multi2l # 
############################################################################### 

Command?: 
Thu Jun 12 1986 03:50 PM 

Figure 2. METASAN Main Menu 

San script Description 
of SAN 

San Compiler 

Binding to Selected 
Solver 

Execution of Selected 
Solver 

Results 

experiment 
File 

Perf Compiler 

Figure 3. METASAN Flow Diagram 

3.1. Sanscript and the SAN Compiler 

The SAN description language, Sanscript, allows the analyst to 
specify the SAN in a textual form understandable to the (SAN) com
piler. Sanscript permits easy specification of complex enabling predi
cates, activity time functions, reactivations functions and gate func
tions. To give the reader a feel for Sanscript, we describe the 
language via the example presented earlier. Figure 4 is the Sanscript 
representation of the portion of the stochastic activity network that 
represents variations in the internal state and environment of the 
system; activities representing fault occurrences are not represented. 
At a high-level, a Sanscript description consists of four parts: a 
header, local variable declarations, definition of all the primitives 

809 

used, and a specification of all functions, values, and interconnections 
associated with each primitive. 

In our example, the header specifies that the name associated 
with this SAN is multi 1. The local variable declaration section is not 
used. Next comes the declaration of primitives. Note that the initial 
marking for each place is specified directly after the place name. 
The specification section follows. In any function, the current mark
ing of the place can be referenced by using the notation 
MARl( (place ), where "place" is the name of the desired place. For 
an example specification, refer to the definition of compute 1. As can 
be seen in the graphical representation, timed activity "computel" 
has two cases, one connected to place C, and one to place B and a 
single input place A. The activity time distribution is specified to be 
exponential with parameter 1.0 * MARl( (A ) and the case distribu
tion is specified such that there is a 30% chance of choosing case 1 
and 70% chance of choosing case 2 upon completion of the activity. 
The reactivation function is specified so that for every marking ( 
denoted by the 1 in the first set of brackets after "react") the set of 
reactivation markings is all markings (denoted by the second 1 in 
brackets). In other words, the activity is reactivated at every state 
change. The reason for this will be discussed in the example section. 
Note that any expression that evaluates to the correct type ( real for 
prob and exp, boolean for react) may be given between the curly 
brackets; complex interactions, activity time descriptions, reactiva
tion functions, and case distributions can be represented easily via a 
few C statements. 

A host of activity time distribution types are available, 
representing all service distributions normally used in evaluation. An 
activity time distribution function of "inst" is used to denote an 
instantaneous activity. Of course, the choice of distribution affects 
the nature of the underlying stochastic process and the solution 
methods that may be used. Complex reactivation functions can be 
represented by specifying several pairs of predicates, the interpreta
tion being that the activity is reactivated if, a) the activity was 
activated in the subset of the reachable markings specified by the 
first predicate, and b) a marking in the subset specified by the 
corresponding second predicate is reached. Again, if the activity is 
enabled in this second marking it is immediately restarted. 

Gates are specified in a similar manner. For example, see the 
description of the input gate "computeinl" in both the graphical and 
textual representation. The input places associated with the gate are 
specified as an indexed list. This abbreviated notation allows place 
names to be abbreviated in the predicate and function descriptions 
according to the following rule: "Xi" denotes the i-th place specified 
in the associated input or output (in output gates) place specification. 



DESCRIPTION multi1; 

OBJECTS 

place: 

activity: 

SPECIFICATION 

conpute1 

tape 

disk1 

disk2 

corrpute2a 

A,7; 
B,O; 
C,O; 
D,O; 
E,O; 
F,O; 
G,O; 
H,O; 
I,O; 
J,2; 
K,3; 
conpute1; 
tape; 
disk1; 
disk2; 
conpute2a; 
conpute2b; 
conpute2c; 
conputein1 
conputein2 
collputein3 
Trans1; 
Trans2a; 
Trans2b; 
diskout1; 
diskout2; 

/* definition of places */ 

/' definition of activities */ 

/' definition of input gates */ 

/* definition of output gates */ 

[ cases 1: prob { .3 } C; 
2: prob { .7 } B; 

input A; 
exp { 1.0 • MARK(A) }; 
react { 1 } { 1 }; ] 

[ case D; 
inputs B; Trans1; 
inst; ] 

[ case diskoutl; 
inputs C; Trans2a; 
inst; ] 

[ case diskout2; 
inputs -C; D; Trans2b; 
inst; ] 

[ case A; 
input conputein1; 
determ { 1. 0 * MARK(E) }; 
react { 0 } { 0 }; ] 

conpute2b 

conpute2c 

diskout1 

diskout2 

conputein1 

conputein2 

conputein3 

Trans 1 

Trans2a 

Trans2b 

end. 

[ case A; 
input conputein2; 
determ { 1. 0 • MARK (F) }; 
react { 0 } { 0 }; ] 

[ case A; 
input conputein3; 
determ { 1. 0 • MARK (G) } ; 
react { 0 } { 0 }; ] 

[ outputs 1: E; 2: F; 3: G; 
func { if (n = 0) Xl = 1; 

else if (X2 = 0) X2 = 1; 
else if (X3 = 0) X3 = 1; } ] 

[ outputs 1: E; 2: F; 3: G; 
func { if (n = 0) Xl = 2; 

else if (X2 = 0) X2 = 2; 
else if (X3 = 0) X3 = 2; } ] 

[ inputs 1: I; 2: E; 3: H; 
pred{X2>=l} 
func { if (X2 = 2) { 

Xl = Xl - 1; X3 = X3 - 1; } 
else 

Xl = Xl - l' 
X2 = 0; } ] 

[ inputs 1: I; 2: F; 3: H; 
pred { X2 >= 1 } 
func { if (X2 = 2) { 

Xl = Xl - 1; X3 = X3 - 1; } 
else 

Xl = Xl - l' 
X2 = 0; } ] 

[ inputs 1: I; 2: G; 3: H; 
pred{X2>=1} 
func { if (X2 = 2) { 

Xl = Xl - 1; X3 = X3 - 1; } 
else 

Xl = Xl - 1; 
X2 = 0; } ] 

[ inputs 1: H; 2: J; 
pred { X2 > Xl } 
func { Xl = Xl + 1; } ] 

[ inputs 1: I; 2: K; 
pred{X2>Xl} 
func { Xl = Xl + 1; } ] 

[ inputs 1: I; 2: K; 
pred{X2>Xl} 
func { n = Xl + 1; } ] 

Figure 4. Example Description File 

An example of this can be seen in both the predicate and input func
tion description of computeinl. Note again that any legal C state
ments may be placed within the brackets, as well as the abbreviated 
notation described above and the MARl( function notation. Output 
gates are specified in an identical manner except that the keyword 
"outputs" is used in place of "inputs" and there is no associated ena
bling predicate. 

Many stochastic activity networks contain numerous similar 
subnetworks (e.g., nodes in a computer network) that are replicated 
many times. Construction of these subnetworks directly in Sanscript 
would be tedious. To make this easy, we have recently completed 
development of a macro-preprocessor for METASAN. This prepro
cessor allows one to define subnetworks once in a parameterized 
manner, and then construct a specific subnetwork via a single macro 
call. 

After the specification of the SAN in Sanscript is complete, it is 
passed to the SAN compiler to be translated into an internal form 
understandable by the solution modules. The SAN compiler is writ
ten in Yacc (yet another compiler compiler), Lex and C. 

3.2. Performance Variables 

In order to understand the available performance variables, it is 
necessary to characterize the execution of a stochastic activity net
work 'in a more formal manner than is found in [2]. This is done by 
introducing the notion of a configuration and a step. A configuration 
is a triple <Il, a, c > where Il is a marking, a is an activity, and c 
is a case of that activity. A SAN is said to be in configuration 
<Il, a, c > if Il is the current marking of the network, activity a 
will complete next, and case c will be chosen. A step is a triple 
«Il, a , C > ,t ,s) where <Il, a, C > is a configuration, t is the 
time of activation of activity a , and s is the activity time of activity 
a. Furthermore, an execution oj a stochastic activity network is a 

sequence of sets of steps S l,S2, ... ,S .. , .... 

Except for markings in which more than one instantaneous 
activity is enabled, each set in the sequence of steps is a singleton 
and corresponds to the state of the network at the specified time. 
Multiply enabled instantaneous activities lead to sets of cardinality 
greater than one. A detailed understanding of the execution of the 
network in this situation is not necessary to understand what follows. 
A more precise definition of execution is found in [15]. 

In order to specify general performance variables in terms of 
the execution of the net, it is helpful to introduce the notion of a 
path. A path is a finite sequence of configurations C 11 C 2, C 3, ••• ,C .. 
such that for each pair of configurations 
<Ilj ,aj ,Ci > <lli+bai+lIci+1> the completion of ai and choice of Cj 

in Ili results in lli+1' During an execution a path may be traversed. 
The following discussion makes this more precise. A completion oj a 
configuration <Il, a, c > occurs at time t +s when during an exe
cution of a SAN the configuration is found in a step 
«Il, a , C > ,t ,s ) in some set of steps. All initiation oj a path occurs 
when the SAN reaches the marking associated with the first 
configuration in the path. A completion oj a path occurs when the 
SAN completes the final configuration in the path after completing 
each configuration in the path in the order specified without reaching 
any intermediate configurations other than those specified in the 
path. A traveTlJal 0/ a path is the act of first initiating the path and 
then completing the path. 

810 

These definitions allow us to introduce a set of performance 
variables to study the behavior of the SAN. These variables are 
listed below. Note that they are indexed either by time or number of 
occurrence so that, if they converge in distribution, their limit can be 
studied. 



NT(J ,t) 
a measure of the value of the function f at time t+. f can 
be any real-valued function on the marking of the net. Exam
ples include the marking of a single place and the sum of the 
markings of several places. 

Tb (S ,n) 
the time between n -llh and nth completion of any path in a 
set of paths S . 

Tw(S,n) 
the time to traverse the nth path to complete in a set of paths 
S. 

/(T ,t) 
an indicator random variable denoting the event of being in 
any configuration in a set of configurations T at time t+. 

NTR (S ,t ll t 2) 
the sum of the number of traversals of any path in a set of 
paths S during [t ll t 1+t 2]. 

TdS ,t 1,t 2) 

the sum of the time spent traversing all paths in a set of paths 
S during [tlltl+t2]. 

Note that there is a chance, depending on the definition of the sets of 
paths, that two paths may complete at the same time. Since some of 
the random variables defined above are indexed by the order of com
pletion of the paths, a rule must be given to resolve any ambiguity as 
to which path is which. To do this we use the convention that if two 
paths complete at the same time, the path which took the longest 
time to traverse will be counted as completing first. 

By varying the index of any of the first four variables above, 
one can construct a sequence of random variables. Under certain 
conditions, the distributions of the random variables in this sequence 
may converge to a single (steady-state) distribution. More precisely, 
following the terminology in [16] , for a sequence of random vari
ables Vn , n =1,2,3, ... , we define 

Fv(x) = lim P {Vn ~x}. 
n-+oo 

In terms of the random variables defined above, we have 

FN (t )(x)= limP {Ndf ,t )~x} 
T t-+oo 

The distribution of the value of function f in steady-state. 

FT (S)(x)= lim P {Tb (S ,n )~x} 
, n-+oo 

The distribution of the time between completions of any path 
in a set of paths S in steady-state. 

FT (S)(x)= lim P {Tw (S ,n )~x} 
til n-+oo 

The distribution of the time between initiations and comple-
tions of any path in a set of paths S in steady-state. 

F1(T)(X)= lim P {I(T ,t }~x} 
t-+oo 

The distribution of the event of being in any configuration in a 
set of configurations T in steady-state. 

Not all solution methods will yield results for all of the perfor
mance variables listed above. Currently, all can be obtained using 
an appropriate simulation (i.e. terminating or steady-state), but 
analytical methods are limited to those that can be determined from 
the stochastic process representing the changes in marking of the 
SAN as a function of time. \-Vork is currently underway to extend 
analytical methods to capture activity related behavior. 

3.3. Experiment File and Pert Complier 

Instances of the above performance variables, along with their 
corresponding path sets, are specified in an experiment file. The exact 
form of this file varies from solver to solver. In general, the experi
ment file specifies the paths sets, variables defined on those paths, 
definitions of any variables derived from previous variables, and 
characteristics of the defined variables desired (e.g., mean, PDF, vari
ance). For the simulation solvers, these characteristics take the form 
of mean, variance, interval, and percentile estimators with confidence 
intervals; for analytic solution they are exact. 

For example, consider an experiment file (Figure 5) for the 
example of the SAN of Figure 1. Here the goal is to obtain the 
mean, variance, an interval, and several percentile estimates of the 
the time between firings of activity "computel". Because the 
activity time distributions of activities compute2a, compute2b, and 
compute2c are uniform, the steady-state simulation solver is used. 
The experiment file requires definitions of configurations, path sets, 
performance variables, and estimators for the defined variables. 
Configurations are specified in a compact notation and path sets are 
built up from sets of configurations. The meta-character "*" can be 
used to denote any marking, activity, or case, depending on its posi
tion. In the example, (MARK (A) == 0, (*,*)) specifies all 
configurations such that the marking of A is 0, any activity com
pletes (denoted by the first *), and any case is chosen (denoted by 
the second *). "==TIMED" and "==INST" can also be used in 
the activity specification to denote any timed or instantaneous 
activity, respectively. Path sets are then constructed from these 
configuration sets. The syntax "II" can be used to "or" configuration 
sets together at either the CONFIGURATION or PATHSET level in 
the experiment file. Although all of the path sets in our example con
sist of a single configuration set, longer paths can be specified by 
naming a sequence of configuration sets separat.t'd hy commas. The 
interpretation of this notation (in the context of our earlier theory) is 

that the set of paths included is all paths constructed by selecting a 
configuration from each of the configuration sets in order. Two addi
tional operators aid in the definition of path sets. "*( )" denotes 
that the sequence of configurations within the parenthesis must be 
repeated 0 or more times. "+( }" denotes that the sequence of 
configurations within the parenthesis must be repeated 1 or more 
times. 

The user then specifies the desired performance variables in 
terms of the previously defined path sets. Each of these variable 
definitions is itself implemented in a low-level language that makes it 
easy to create new variables. Experiment file section ESTIMATIONS 
allows for specification of the estimator to be defined on the vari
ables. Currently, mean, variance, interval, and percentile estimators 
are supported, all with confidence interval estimation. Examples of 
the syntax for each of these estimators can be found in Figure 5. In 
each case the user specifies first the relative confidence interval width 
(.01 in the example) and confidence level (95%). For the interval 
estimator the user also specifies the bounds for the interval to be con
sidered. In the example, the bounds indicate that the probability that 
the time is between .5 and 1.5 is to be estimated. For the percentile 
estimator the user specifies the percentile for which the estimate is 
desired (.05, .35, .70, and 1.0 in the example). 

811 

Similar experiment files are used in conjunction with the ana
lytic and terminating simulation solvers. In each case, the file 
specifies to the package the performance variables and the charac
teristics of those variables that are to be determined. The experi
ment file is then passed to the perf compiler, where the specification 
is translated into a second collection of C data structures and pro
cedures that are understandable to the appropriate solver. 

4. Model Solution 

After the Sanscript and experiment files are converted to their 
internal machine form, they are bound to the chosen solver. Depend
ing on the characteristics of the model to be solved, the solver can be 
one of several analytic or simulation solvers. Each solver will be dis
cussed in some detail below. 



4.1. Analytic Solvers 

Model solution, in the context of analytical solution methods, 
refers to the solution of a base stochastic process for the desired per
formance variables [17]. In light of this, generation of the stochastic 
process realized by a specific stochastic activity network is properly 
part of model construction. However, because generation is specific to 
analytic solutions, it is incorporated as part of each analytic solver 
and hence discussed under model solution. In our framework, this 
consists of generating a stochastic activity system (SAS) [3] realized 
by the stochastic activity network. Stochastic activity systems can be 
regarded as probabilistic extensions of Keller's "named transition sys
tems" [18, 19]. The most detailed description of an activity system's 
behavior are its state-activity sequences, i.e., for a given state, the 
possible sequences of alternating states and activities that can result 
from a finite number of applications of the transition relation. In the 
solution techniques implemented to date, we have not exploited the 
activity related behavior, just state related behavior. The state 
behavior of a stochastic activity system is a stochastic process that 
can serve as the base model of a performability model [1]. 

As can be seen in Figure 6, all analytic solution methods 
require generation of the stochastic activity system realized by the 
SAN model. Informally, this is done as follows. First, the set of 
activities which are enabled in the initial marking is found, by exa
mining the enabling predicate of each input gate. If the enabling 
predicates for all input gates connected to an activity are true, then 
the activity is enabled. If any instantaneous activities are enabled in 
this initial marking, then this is not a valid SAN. Given that the ini
tial marking is stable, the next step is to generate the next 
marking(s) of the SAN supposing that each activity enabled in the 
initial marking completes. A possible next marking is generated for 
each case of each activity. Then, for each of these new markings 
which is not already in the reachability set, the possible next 
marking(s) are computed (i.e. the set of enabled activities in each of 
these new markings is computed, as well as the resulting new 
marking(s) upon completion of each of these activities) except that 
now any enabled instantaneous activities must also be dealt with. 
When all next possible markings which are generated are already in 
the reachability set, all reachable stable markings have been found. 
These markings correspond to the states in the realized SAS. The 
activity time distributions and transition distribution for each labeled 
transition is then constructed as in definition 3.7 of [3], and the gen
eration of the SAS realized by the structure sub model is complete. 

Instantaneous activities complete whenever they are enabled, 
while timed activities complete only if they are enabled in stable 
markings. Therefore, whenever an unstable marking (a marking in 
which at least one instantaneous activity is enabled) is reached, the 
marking does not correspond to a state in the realized SAS. To find 
the next stable state, one must examine all possible next markings 
reached upon completion of this instantaneous activity as well as any 
other instantaneous activities which become enabled, generating new 
markings until the set of possible next markings consists of only 
stable markings. Because we do not know whether the SAN is well
behaved [2] (at the time it is constructed), we must keep track of all 
reachable unstable markings, until the set of next stable markings is 
found. The resulting realization procedure is, therefore, somewhat 
complicated and is omitted in the interest of brevity. It should be 
noted that the procedure requires human intervention to decide when 
a particular marking space is judged infinite, and hence the pro
cedure stopped. The result of this procedure is a machine representa
tion of the stochastic activity system; after the nature of this process 
is determined, one of several techniques may be used to obtain the 
desired performance variables. 

After the stochastic activity system corresponding to the SAN 
model is generated, a check must be made to determine the nature of 
the underlying stochastic process. The nature can be determined 
directly from the structure of the SAS. This check and the desired 
performance variables determine which analytic solver is to be used. 

Solutions for many traditional performance variables can be 
formulated in terms of the steady-state state occupancy probabilities 
of the resulting stochastic process. When this process is Markovian, 
solution for these occupancy probabilities is done either by Gaussian 

812 

PERF percent; 

CONFIGURATIONS 

CYCLE = ( *, (conpute1, *) ) 
CYCLEV = (*, (conpute1, *) ) 
CYCLE1 = ( *, (conpute1, *) ) 
CYCLE2 = ( **' (conpute1, *) ) 
CYCLE3 = ( (conpute1, *) ) 
CYCLE4 = (* (conpute1, *) ) 
CYCLEI = (* (conpute1, *) ) 

PATHSETS 

Mean = [ CYCLE ] 
Variance = [ CYCLEV ] 
Percentilel = [ CYCLE1 ] 
Percentile2 = [ CYCLE2 ] 
Percentile3 = [ CYCLE3 ] 
Percentile4 = [ CYCLE4 ] 
Interval = [ CYCLEI ] 

MEASURED VJI.RIABLES 

SS_TB ( Estjtean, Mean, 100, 3200); 
SS_TB ( Est_Var, Variance, 100, 3200); 
SS_TB ( Per_OS, Percentile1, 100, 3200); 
SS_TB ( Per_35, Percentile2, 100, 3200); 
SS_TB ( Per_70, Percentile3, 100, 3200); 
SS_TB ( Per_100, Percentile4, 100, 3200); 
SS_TB ( Interval_1, Interval, 100, 3200); 

ESTIMATIONS 

MEAN( Estjtean, .01, .95) 
VARIANCE ( Est_Var, .01, .95) 
PERCENTILE( Per_OS, .03, .95, .05) 
PERCENTILE ( Per_35, .01, .95, .35) 
PERCENTILE ( Per_70, .01, .95, .70) 
PERCENTILE ( Per _100, .01, .95, 1. 0) 
PINTERVAL ( Interval_1, . 01, .95, .5, 1. 5 ) 

HALTING CONDITIONS 

RESOLUTION RULES 

lYPE 
steaciy.J;tate 

end. 

Figure 5. Example Experiment File 

SAN to SAS conversion 

Markov S.S. 
Model Solution Solution 

Figure 6. Analytic Solvers 



elimination using a full matrix technique, or by iterative methods 
using sparse matrix techniques, depending on the size of the state 
space. The Gaussian elimination technique employed makes use of an 
algorithm [20] that operates on blocks of columns of the transition 
matrix individually, in order to reduce paging by the virtual memory 
management system. This makes solution possible for quite large 
systems without resorting to iterative solution methods. When this 
technique becomes impractical, an iterative method based on the 
Gauss-Seidel technique [21] is used. 

Reward model [22] techniques have been used successfully to 
solve many performance-reliability evaluation problems (for example, 
see [23, 24, 25, 26, 27]). In the context of performability evaluation, 
one typically constructs a reward model by associating a set of 
reward rates with the stochastic activity system realized by the 
structure sub model [3] (a SAN representing the structure related 
activities). Each reward rate represents the performance rate of the 
system in the respective structure state. This reward model then 
serves as the base model of a performability model. Reward model 
solution techniques for both Markov and non-Markov systems are 
implemented as solvers in METASAN. 

Once again, applicable solution techniques depend on the 
nature of the base model and the performance variables. In the case 
of Markov reward models, a variation on a technique proposed by 
Goyal and Tantawi [26] is used. Our implementation computes a 
conditional performability distribution for each trajectory type using 
the technique described in [26]. Perform ability is then obtained via 
knowledge of the probabilities of trajectory types [24]. When the 
reward model is not Markov, a technique developed by Furchtgott 
and Meyer [24] is used. This solution technique, while it requires the 
underlying stochastic process to be acyclic and non-recoverable (i.e. 
reward rates non-increasing with time), it allows for solutions when 
the base model is not even semi-Markov. Selection of the appropri
ate algorithm is based on the Markov check described earlier. 

Solution for the state occupancy probabilities at a specific time 
for Markov stochastic activity systems is accomplished using a ran
domization technique proposed by Gross and Miller [28,29]. This 
technique provides for computationally efficient computation of 
approximate transient state occupancy probabilities by conditioning 
on the number of state transitions that may occur during the 
bounded interval under consideration. The approach is based on the 
known technique of subordinating a Markov chain to a Poisson pro
cess (see[30], for example). 

4.2. Simulation Solver 

Conditions exist when solution of the base model via analytic 
means becomes intractable. This can occur, for example, when com
plex reactivation functions are specified, activity time distributions 
are general, the desired performance variables are sufficiently com
plex, or the state space of the underlying stochastic process is 
extremely large or infinite. To fill this need, METASAN provides 
facilities for both terminating (transient) and steady-state simulation. 

To do this we provide a discrete-event next-event time advance 
simulator core. Currently, two methods for confidence interval esti
mation are supported. The first is an iterative method based on the 
replication approach, and is used for terminating simulations. Using 
this method, one specifies the relative precision and level of 
confidence desired as part of the experiment file input. Confidence 
intervals for steady-state simulation are currently determined using 
an iterative batching procedure, where the user must specify the 
length of initial transient, batch size, relative precision desired, and 
level of confidence desired. Work is currently underway to permit 
estimation of confidence intervals using the regenerative and spectral 
techniques. 

5. Example 

6.1. System Description 

Consider, for example, a distributed system where all resources 
needed are available locally except tape and disk drives. Whenever a 

Release Resources 

Figure 7. Processing Algorithm 

disk or tape drive is needed, the processor requests one from a com
mon pool. Time to process such requests is negligible, and the 
requests are either immediately granted, or the process is blocked. 
As resources become available, they are allocated to blocked pro
cessers in a FIFO manner. Each processor is running an identical 
application program, whose goal is to process blocks of data. Each 
block requires processing consisting of the following steps (see Figure 
7): 1) computation for an exponentially (with parameter {3 ) distri
buted amount of CPU time, 2) allocation of either a disk. and tape, 
or just a disk, with fixed probabilities p and I-p respectively, 3) com
putation for a deterministic amount of CPU time equal to (a * the 
number of resources requested), and 4) release of all resources allo
cated. The disk and tape drive are used only for temporary storage, 
and hence, are not specific to any processor. Upon completion of the 
processing of a block of data, the processor immediately begins pro
cessing another block. 

813 

Faults can occur due to the failure of a disk or failure of a tape 
drive. In each case, the fault may be covered (i.e. the system 
degrades successfully to a less productive structure state) or it may 
result in a total loss of processing capability (i.e. total system 
failure). We assume further that faults in a tape drive and a disk 
occur as a Poisson process with rates).. and "Y respectively. The per
formance variable considered is the number of blocks that are pro
cessed during a finite utilization period of t hours. 

6.2. Construction of SAN model of system 

Performability evaluation requires the construction of a SAN 
that corresponds to the system being modeled and meets the charac
teristics required by the particular solution algorithm. A seven pro
cessor case is examined. A SAN that meets these requirements is 



found in Figure 1. Here tokens represent the jobs executing on the 
processors and resources (tape and disk drives). Tokens in places 
A,B,C,D,E,F, and G represent the state oC jobs executing on the pro
cessors. The marking on the diagram is the initial marking and 
corresponds to the state where all processors are executing the first 
compute in the sequence of events. Since the length of this compute 
time is exponentially distributed with parameter f3 Cor each processor, 
all first compute times can be represented via a single activity. The 
activity time distribution Cunction Cor computel is, thus, exponential 
with parameter f3 * MARK (A). Since the rate at which computel 
completes is determined by the number oC tokens in place A, it 
should be reactivated at each state change to insure that the correct 
rate is always used. Each completion of computel corresponds to a 
processor completing the first compute. When this occurs, the pro
cess either requests both a tape and disk or a disk only. This choice 
is represented by the cases associated with computel, where case 1 is 
chosen with probability (l-p) and represents :m request for no disk 
only; case 2 is chosen with probability p and represents a request for 
a tape and disk. 

These requests are processed by instantaneous activities diskl, 
disk2, tape, and places H and I. Place H represents the number oC 
allocated tape drives. Place J represents the number of functioning 
tape drives. Input gate Transl determines whether there is an avail
able tape drive. Completion of activity tape results in the allocation 
oC a tape drive to the requesting process and the addition of a single 
token to place H. The number oC tokens in place I represents the 
number of allocated disk drives and the tokens in place K represent 
Cunctioning disk drives. Input gates Trans2a and Trans2b determine 
iC there is an available disk. Similarly, completion of diskl or disk2 
represents the allocation of a disk drive to the requesting process. 
The Cunction of gates diskoutl and diskout2 is to keep track of the 
resources that each process possesses during the second compute 
phase. Two tokens are placed in an output place if the process has 
both a tape and disk drive; one token signifies the process possesses· 
only a disk. Activities compute2a, compute2b, and compute2c
represent the second compute in the algorithm and have deterministi
cally distributed activity times. The compute times cannot be 
represented by a single activity since the deterministic distribution is· 
not memoryless. An activity is needed for each process in this phase. 
Since the maximum number of functioning disk drives in this exam
ple is three, only three processes can be in the second compute phase 
concurrently. Hence, only three activities are needed to represent
this phase. Completion of each of these three activities represents 
the completion of the second compute Cor a process. The action of 
the input gate for the activity is to subtract the appropriate tokens 

from H and I to signify the release of the allocated resources. In 
addition, a token is added to the output place of the activity (place 
A) to indicate that the process is again beginning the first compute in 
the algorithm. 

The arrival oC Caults and (possible) recovery of the distributed 
system is represented by the remaining places, input gates, and 
activities. Here places J and K represent the number of fault-free 
tape and disk drives respectively. Faults arrive to the system upon 
completion of activities Tapes_faults and Disk_Caults. The activity 
time distributions of these activities are exponential with rates 
A*MARK(J) and 'Y*MARK(K) respectively. Selection of case 1 of 
either activity represents successful recovery. In this case, one token 
is subtracted Crom the appropriate place to indicate the failure of the 
corresponding resource. Probabilities Ct and Cb are associated with 
case one of activities tape_faults and disk_faults, respectively. Selec
tion of case 2 represents unsuccessful recovery. If this occurs, a 
token is placed in L. Completion of the instantaneous activity Dis
able signifies total system Cailure. This occurs when either recovery 
Crom a Cault is unsuccessCul (signified by a token in L) or when the 
pool of Cunctioning resources is exhausted (zero tokens in J or K). 
When either oC these events occur, instantaneous activity Disable 
completes and removes all tokens in the network. No blocks are pro
cessed in this state. 

Steady State Simulation Results 

Mean Estimations: 

Measure Name Mean Half Width # Batches 
------------ ----------
Estj!ean [1. 0000] 1.699136 0.001187 200 

Variance Estimations: 

Measure Name Variance Half Width # Batches 
------------ ----------
Est_Var [1. 0000] 1. 023561 0.003838 200 

Percentile Estimations: 

Measure Name Value Half Width # Batches 
------------ ----------
Per _100 [1. 0000] 6.115781 0.061027 200 
Per _70 [1.0000] 2.166035 0.002420 200 
Per _35 [1. 0000] 1.214289 0.002649 200 
Per _C5 [1. OCOO] 0.201392 0.002240 200 

Interval Estimations: 

Measure Name Prob. Half Width # Batches 
------------ ----------
Interval_1 [1. 0000] 0.323516 0.001134 200 

Figure 8. Example METASAN Output 

5.3. Model Construction and Solution 

In order to solve for the specified performance variable, we use 
the performability solution method described in [3]. Using this 
method, the analyst decomposes the SAN into two submodels, a per
formance submodel and a structure submodel. Informally, the perfor
mance submodel contains all activities that represent variations in 
the internal state and environment of the system; the structure sub
model contains all activities which represent variations in the system 
due to a change in system structure. In Figure I, the places, activi
ties, and gates above and including J and K comprise the perfor
mance sub model. The places, activities, and gates below and includ
ing J and K comprise the structure submodel. Places J and K are 
common places, and represent the structural configuration of the sys
tem. 

As described in [3] the evaluation consists of determining a 
reward rate corresponding to each structure state, and solving the 
resulting reward model. In our example, the reward rate is deter
mined by noting that each completion of compute 1 corresponds to a 
completion of processing on a block of data. Hence, the rate of com
pletion of block processing is just the inverse of the expected time 
between completions of compute 1. In terms oC METASAN variables, 
this corresponds to 1/ E [TdS)], where (the path set) S is defined 
to be {<*,computel,*>}. Note that E[TdS)] is an estimator 
defined in the experiment file in Figure 5. Estimates of this measure 
were then obtained using the Sanscript and experiment files 
presented together with the steady-state simulation solver. The ini
tial marking of J and K was varied to correspond to each possible 
structure state. Figure 8 is the resulting METASAN output Cor the 
case MARK(J) = 2, MARK(K) = 1. The results for the mean 
time between completions of "compute1" for each run are as follows: 

814 

MARK(J) MARK(K) E[TdS )] Half Width l/E[TdS )] 

2 3 0.710 .003 1.109 
1 3 1.403 .004 0.713 
2 2 0.850 .001 1.177 
1 2 1.408 .004 0.710 
1 1 1.701 .002 0.588 
2 1 1.699 .001 0.589 

"Half Width" refers to the halC width of a 95% confidence 
interval constructed about the estimate. The interpretation of each 



1,00 

.875 

0 750 

.625 

::J' 
,500 

>-
LL 

.375 

,250 

.125 

o 00 +--=~~------.------r-----.------'------'------'------' 
.000 .449 .899 1,35 1.80 2,25 2.70 3.15 3.59 

Figure 9. PDF of Number of Jobs Processed during [0,240] 

entry in the last column is the rate at which blocks are processed in 
that structure state. These rates serve as the reward rates in the sub
sequent reward model solution. This model was then solved using 
the Markov reward model solver for the following model parameters: 
>. = .001, "( = .005, ct = .98, Cd = .99, and performance submodel 
parameters as in Figure 4. This results in the probability distribution 
function (PDF) of the number of blocks processed during a specified 
utilization period [O,tj. Choosing t=240 produces the PDF in Figure 
9. 

6. Future Extensions 

We have described METASAN, a comprehensive package that 
facilitates performability evaluation via both analysis and simulation. 
It permits detailed evaluations of systems such as complex computer 
networks, distributed computing systems, and flexible manufacturing 
systems. For example, in a recent evaluation study of a CSMAjCD 
network, a model containing over 500 places, gates, and activities 
was solved. Although the package has proved to be extremely useful 
in its current version, extensions would enhance this usefulness. 
Regarding model construction, a graphical input interface may help 
entry and debugging of large models. Regarding model solution, 
several extensions are possible. First, the available methods of 
confidence interval estimation for steady-state simulation should be 
extended to include the regenerative and spectral methods. During 
analytic model construction, an explosion in the number of states 
with increase in model size should also be dealt with. Methods of 
decomposition and state aggregation need to be studied and incor
porated into future versions. Finally, work should be done to extend 
analytical solution methods to capture the activity related behavior 
of the networks. 

ACKNOWLEDGEMENT 

815 

The authors would like to thank Steve Sparks and Paul 
Daugherty for their assistance during the design and implementation 
of this package. Their support has proved invaluable in making the 
tool a reality. 

References 

[1] 

[2] 

[3] 

[4] 

J. F. Meyer, "On evaluating the perform ability of degradable 
computing systems," IEEE Trans. Oomput., vol. C-22, pp. 
720-731, Aug. 1980. 

A. Movaghar and J. F. Meyer, "Performability modeling 
with stochastic activity networks," in Proc. 1984 Real-Time 
Systems Symp., Austin, TX, Dec. 1984. 

J.F. Meyer, A. Movaghar, and W.H. Sanders, "Stochastic 
activity networks: Structure, behavior, and application," in 
International Workshop on Timed Petri Nets, Torino, Italy, 
July 1-3, 1985, pp. 106-115. 

A. Movaghar, "Perform ability modeling with stochastic 
activity networks," CRL-TR-8-85, Computing Research 
Laboratory, University of Michigan, Ann Arbor, Sept. 1985. 

[5] S. Natkin, "Reseaux de Petri Stochastiques," These de 
Docteur-Inge'nieur, CNAM-P ARIS, June 1980. 



[6] 

[7] 

[8] 

[9] 

[10] 

[11] 

[12] 

[13] 

[14] 

M. K. Molloy, "Performance analysis using stochastic Petri 
nets," IEEE Trans. Comput., vol. 0-31, pp. 913-917 Sept. 
1982. ' 

M. A. Marsan, G. Balbo, and G. Conte, "A class of general
ized stochastic Petri nets for performance evaluation of mul
tiprocessor systems," ACM Trans. on Computer Systems, vol. 
2, no. 2, pp. 93-122, May 1984. 

G. Chiola, "A software package of the analysis of generalized 
stochastic Petri net models," in International Workshop on 
Timed Petri Nets, Torino, Italy, July 1-3, 1985, pp. 136-143. 

Cumani, "ESP - A package of the evaluation of stochastic 
Petri nets with phase-type distributed transition times" in 
International Workshop on Timed Petri Nets, Torino, italy, 
July 1-3, 1985, pp. 144-151. 

J. B. Dugan, K. S. Trivedi, R. M. Geist, and V. F. 
Nicola, "Extended stochastic Petri nets: Applications and 
analysis," in Performance 84, North-Holland, 1984 pp. 507-
519. ' 

J. P. Behr, N. Dahmen, J. Muller, and H. 
Rodenbeck, "Graphical modeling with FORCASD," in Com
puter Applications in Production and Engineering, North
Holland Publishing Company, 1983, pp. 61-630. 

J. B. Dugan, "Extended stochastic Petri nets: Applications 
and analysis", Ph.D. Thesis, Department of Electrical 
Engineering, Duke University, 1984. 

H. P. Godbersen and B. E. Meyer, "A net simulation 
language," in Proceedings of the Summer Computer Simula
tion Conference, Seattle, WA, August 25~27, H)80. 

A. A. Torn, "Simulation nets, a simulation modeling and 
validation tool," Simulation, vol. 45, no. 2, pp. 71-75, Aug. 
1985. 

[15] W.H. Sanders, "Stochastic activity network execution and 
performance variable specification", Internal Report, Model
ing Group, Communications and Network Laboratory, Indus
trial Technology Institute, Sept. 1985. 

[16] S. S. Lavenberg, Computer Performance Modeling Handbook. 
New York, NY: Academic Press, 1983. 

[17] J. F. Meyer, "Unified performance-reliability evaluation," in 
Proc. of the American Control Conference, San Diego, Cali
fornia, June 6-8, 1984. 

[18] R. M. Keller, "Vector replacement systems: A formalism for 
modeling asynchronous systems," Computer Science Lab, no. 
117, Princeton Univ. , Dec. 1972 .. 

[19] R. M. Keller, "Formal verification of parallel programs," 
CACM, vol. 19, pp. 371-384, July 1976. 

[20] IMSL library reference manual. Houston, TX: IMSL, 1982. 

[21] G.H. Golub, Matrix Computations. Baltimore, MD: Johns 
Hopkins University Press, 1983. 

[22] R. A. Howard, Dynamic Probabilistic Systems, Vol II: Semi
Markov and Decision Processes. New York, NY: \Viley, 
1971. 

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

[28] 

[29] 

[30] 

816 

R. A. Howard, Dynamic Probabilistic Systems, Vol II: Semi
Markov and Decision Processes. New York, NY: Wiley, 
1971. 

J. F. Meyer, "Closed-form solutions of performability," IEEE 
Trans. Comput., vol. C-31 , pp. 648-657, July 1982. 

D. G. Furchtgott and J. F. Meyer, "A performability solution 
method for degradable, nonrepairable systems," IEEE Trans. 
Comput., vol. C-33, June 1984. 

L. Donatiello and B. R. Iyer, "Analysis of a composite perfor
mance reliability measure for fault tolerant systems," mM 
Res. Report RC10325, January 1984. 

A. Goyal and A. N. Tantawi, "Evaluation of performability 
for degradable computer systems " mM Res. Report·· 
RC10529 (Revised), Dec. 1984. 

V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi, "A unified 
model for performance and reliability of fault
tolerant/multi-mode systems," CS-1984-12, Dept. of Com
puter Science, Duke University. 

D. Gross and D. R. Miller, "The randomization technique as 
a modeling tool and solution procedure for transient Markov 
processes," Operations Research, vol. 32, no. 2, pp. 343-361, 
March-April 1984. 

D. R. Miller, "Reliability calculation using randomization for 
Markovian fault-tolerant computing systems," in Proc. 1983 
Int. Symp. Fault-Tolerant Computing, Milano, Italy, June 
1983, pp. 284-289. 

E. Cinlar, Introduction to Stochastic Processes. Englewood 
Cliffs, N.J.: Prentice-Hall, 1975. 



A Hierarchical, Combinatorial-Markov Method of Solving Complex Reliability Models 

Robin A. Sahner Kishor S. Trivedi 

Gould CSD, Urbana 
1101 E. University 
Urbana. IL. 61801 

Department of Computer Science 
Duke University 
Durham, NC. 27706 

ABSTRACT 

Combinatorial models such as fault-trees and reliability 
block diagrams are efficient in both specification and evalua
tion of system models. But it is difficult if not impossible to 
allow for various types of dependency (such as repair depen
dency and near~coincident-fault type dependency), transient 
and intermittent faults, standby systems with warm spares, 
and-so forth. Markov models can capture such interesting 
system behavior. However, the size ofa Markov model for 
t~e evaluation of such a system may grow exponentially 
WIth the number of components in the system. 

This paper presents a modeling tool called SHARPE 
(Symbolic Hierarchical Automated Reliability and Perfor
mance Evaluator), which is a general hierarchical modeling 
tool for analyzing complex reliability models. SHARPE 
allows its user complete freedom to choose the number of 
levels of models and the type of model (combinatorial or 
Markov) at each level. Thus it allows the flexibility of Mar
kov models where necessary and retains the efficiency of 
combinatorial solution where possible. The analysis of each 
model produces a probability function that is symbolic in 
the time variable t. 

INTRODUCTION 

Combinatorial models (fault trees and reliability block 
diagrams) and Markov or semi-Markov models are two of 
the approaches available for analytically predicting the relia
bility or availability of fault-tolerant systems. The advan
tages of using, combinatorial models -are the parsimony in 
specification and efficiency of evaluation they provide. If 
components are independent, reliability block diagrams with 
series-parallel ("well-nested") structure and fault trees 
without repeated nodes can be analyzed using linear time 
algorithms. 

One method for analyzing structures with dependent 
components and non-series-parallel structures is the use of 
conditioning (the theorem of total probability) [16]. With 
this method, it is necessary to enumerate all of the sequences 
of events that lead to system failure. The number of such 
sequences can grow exponentially with the number of com
ponents, so this method is quite expensive. 

Another alternative for analyzing these structures is to 
use Markov models. Again, the method is expensive; if there 
are n components in a block diagram (or n basic events in a 

This "work was supported in part by the Air Force Office of Scientific 
Research under grant AFOSR-84-0132, by the Army Research Office under con
tract DAAG29-84-0045 and by the National Science Foundation under grant MCS-
830200. 

CH2345-7/86/0000/0817$01.00© 1986 IEEE 
817 

fault tree), the corresponding Markov chain may hav~ up to 
2n states. This severely limits the size of problems that can 
be handled. Since most practical problems do not satisfy 
the assumptions of independence and series-parallel struc
ture, it is important to investigate ways of dealing with 
potentially very large state spaces. 

There are two separate, but related, aspects to the 
large state space problem: constructing the Markov chain 
and analyzing it. The problem of construction can be allevi
ated by an automatic generation of the Markov chain from a 

-more parsimonious description :.of system behavior. Exam
ples of programs that do this are- SAVE (System A Vailabil
ity Estimator) [8] and DEEP (Duke Evaluator for Extended 
stochastic Petri nets) [5,6]. A system can be specified for 
DEEP by means of a stochastic Petri net,which is automat
ically transformed into a Markov chain that is solved 
numerically [6]. 

The problem of analyzing a Markov chain with a large 
state space can be handled by one of two methods: either 
tolerating the large state space or' avoiding it. By "tolerat
ing" the large state space, we mean that special solution 
methods are used that work for very large matrices. Exam
ples are matrix-level decomposition [2] and various numerical 
methods for solving large, sparse, possibly stiff systems of 
algebraic equations [8] or ordinary differential equations [12]. 

One way of avoiding the large state space is by using a 
stochastic Petri net model and simulation to analyze the sys
tem [5,6]. Another way is to use model-level decomposition. 
This is the method used in HARP [7,17,18]' where the relia
bility model is decomposed behaviorally along- temporal 
lines. The fault-occurrence behavior (a slow submodel) and 
the fault/error-handling behavior (a fast submodel) are 
analyzed separately. 

We have developed a hierarchical modeling technique 
that makes it possible to use mixtures of different kinds of 
models at different levels in order to avoid a state space 
explosion. Our technique differs from models such as HARP 
and CARE III [15] in several ways. HARP and CARE III 
assume a specific fixed hierarchy of models __ geared toward 
modeling a ~hosen class of systems. Our technique allows 
complete freedom in the number of levels in the hierarchy, 
which kinds of models to use at each level, and how to com
bine the models. The previous efforts have used numerical 
methods to obtain the reliability for a specified mission time. 
The results are therefore approximate (due to numerical 
integration), and have to be computed repeatedly for each 
value of the mission time. Our technique provides a result 
that is symbolic in the mission time variable. 



In the next section, we provide some details of our 
approach to hierarchical modeling. In section 3, we show 
how to use our method to solve non-series-parallel block 
diagrams. In section 4, we discuss ways to model various 
kinds of dependencies and give several examples of system 
models that contain dependency. 

THE SHARPE FRAMEWORK 

We have developed a hybrid, hierarchical modeling 
framework that we call SHARPE (Symbolic Hierarchical 
Automated Reliability and Performance Evaluator). The 
framework was developed with automation in mind, and it 
has been implemented as a software tool, which we also call 
SHARPE. The SHARPE framework provides five model 
types: 

• series-parallel reliability block diagrams 
• fault trees without repeated nodes 
• cyclic or acyclic Markov chains 
• acyclic semi-Markov chains 
• series-parallel directed (acyclic) graphs 

Block diagram and fault tree models are specialized for 
modeling reliability and availability. Each component is 
assigned a cumulative distribution function (CDF) for the 
time-to-failure of the component. The system is analyzed to 
obtain the CDF of the time-to-failure of the system as a 
whole. 

The other model types can be used to model perfor
mance as well as reliability. This paper focuses on reliability 
modeling; for examples of the use of SHARPE for perfor
mance modeling, see [14J. 

Markov and semi-Markov chains that have absorbing 
states are analyzed for the CDF of the time to absorption. If 
such a chain is acyclic, the analysis also produces the proba
bility of ever visiting each state. Irreducible cyclic Markov 
chains are analyzed for the steady-state probabilities of 
being in each state. 

The series-parallel graph sub model is the most general 
model. In this model, the nodes represent activities and the 
arcs represent precedence constraints placed on the activi
ties. Each node in the graph is assigned a CDF, and the 
graph submodel is analyzed for the CDF of the time-to
completion of all required events in the graph. Once the 
CDF of the time-to-completion is obtained, it is easy to 
compute the mean and variance. 

This model type is similar to series-parallel stochastic 
PERT (Program Evaluation Review Technique) networks [4J 
but is more general in several respects. (Note that PERT 
networks have activities on the edges whereas SHARPE 
associates activities with nodes.) We allow parallel graphs to 
be executed either concurrently or probabilistically. When a 
node has more than one predecessor and the predecessors 
are executing concurrently, most graph models (including 
PERT) require that the node wait for all of its n predeces
sors to finish before it begins execution. We include this 
case as a special case in our graph model; in general, the 
number of predecessors that must finish before the node 
starts is part of the graph model specification, and may be 
any number between (and including) 1 and n. 

The different types of submodels can be combined 
hierarchically by using all or part of the solution to one sub
model as part of the specification of another submodel. The 

818 

solution for each model includes various scalar quantities. 
SHARPE makes available the mean and variance of each 
CDF produced by the analysis of a system, and the value of 
each CDF at specified values of t (including t =0 and 
t =00). SHARPE also makes available the probability of 
visiting a state in a Markov or semi-Markov chain. These 
scalars can be used in another model as elements in the 
expressions that specify probability values, transition rates, 
and the parameters of distribution functions. This mechan
ism allows for the expression of aggregation/approximation 
within the SHARPE framework. Examples of the use of this 
mechanism are given in section 4. 

A second way to combine models hierarchically is to 
assign the solution CDF from a submodel as the CDF for a 
basic event in some other model. This method of combining 
submodels allows us to efficiently analyze large systems 
whose "badness" (non-series-parallel structure) is contained 
in a subsystem or a set of subsystems, with the remaining 
portions of the system being "well-behaved". We can 
extract the non-series-parallel portions of the overall struc
ture and pay the price of 2n states to analyze them exactly. 
Then we use the results from those portions as the CDFs of 
basic components in the remaining graph, and use a com
binatorial solution method to analyze the system exactly. 
Section 3 presents an example of this method. 

Because we allow the solution CDF from one sub model 
to be assigned as the CDF of a basic event in another sub
model, the CDFs for individual events and the solution CDF 
for each model type must have the same form. If we are to 
work with symbolic expressions for the CDFs, we need a 
class of functions that is closed under the operations we 
need to perform during the analysis of the different kinds of 
models. The computational operations involved in the 
analysis of the models are convolution, order statistics [3J of 
independent (not necessarily identically distributed) random 
variables, and mixing of distributions (weighted averages). 
Therefore, we need a class of functions that is closed under 
addition, multiplication, differentiation and integration, and 
includes the exponential distribution. 

The class of functions we have chosen is the class of 
exponential polynomials that are valid distribution func
tions. An exponential polynomial is a function with the fol
lowing form: 

;, t ki bit 
LJ aj e (1 ) 
j=1 

where kj is a nonnegative integer and aj and bj are real or 
complex numbers. 

Of course, a distribution function must be real-valued, 
even if it contains complex coefficients or complex powers of 
e. Allowing a distribution to contain complex numbers is 
equivalent to allowing it to contain sine and cosine func
tions. Such distributions arise naturally in the analysis of 
processes that have cyclic behavior. In particular, a cyclic 
Markov chain with absorbing states may have complex 
numbers in the CDF for its time-to-absorption. 

We allow the distributions to have a mass at zero 
and/or a mass at infinity. A distribution has a mass at 
infinity if it does not reach 1 in the limit, and in that case, 
we call it a "defective" distribution. Defective distributions 
are useful for modeling the performance of programs that 
might fail to complete because of either software or 



hardware faults. It is also possible to use distributions that 
have mass only at zero and infinity. Assigning such a distri
bution to a component is equivalent to assigning to the com
ponent a probability value rather than a distribution func
tion. 

The SHARPE program consists of about 4400 lines of 
code in C ~~ and about 260 lines of Fortran and runs 
under UNIX [9] or VMS™. It is a full implementation of 
the modeling technique and has been tested extensively. 
The SHARPE program may be used either interactively or 
in batch mode. The specification format is the same in 
either mode. In interactive mode, SHARPE will prompt the 
user for all the information it needs and indicate the proper 
format for the information. Experience has shown that this 
mode is easier for beginning users. There is also an option 
that allows for interactive input to be stored in a file, thus 
allowing for a relatively painless way to obtain data files for 
large systems. The specification language is simple enough 
that many users will find it easy and convenient to prepare 
data files using a text editor. 

ANALYZING A NON-SERIES-PARALLEL STRUCTURE 

When a system has series-parallel structure, its failure
time CDF can be obtained (in linear time) by multiplying 
together the failure-time CDFs of parallel subsystems, and 
by subtracting from one the product of the reliability func
tions of series subsystems. This method works because the 
series-parallel nature of the system means that it can be bro
ken down into substructures whose failure times are statisti
cally independent of one another. When a system is not 
series-parallel, such a breakdown is not possible and so the 
standard block diagram method described above is not 
applicable. 

Consider the system in Figure 1. The system is opera
tive if there is a path from source to sink. We want to com
pute the CDF of the time to failure of the system. The sys
tem has two non-series-parallel subsystems having the same 
structure, often called a "bridge" structure. Such a 

source sink 

Figure 1. A Non-Series-Parallel Reliability Diagram 

'1M UNIX is a trademark of Bell Laboratories. 

'lM VMS is a trademark of DEC. 

819 

Figure 2. Markov Chain tor the Bridge System 

structure can be analyzed using conditioning on the cross
over component (8 in the upper bridge subsystem). Alterna
tively, if all of the components failure-time distributions are 
exponential, it is possible to expand each bridge system into 
a Markov chain. 

We have chosen the second approach, to illustrate the 
hierarchical nature of SHARPE and its ability to combine 
results of different model types. The 5-node bridge system 
expands to a Markov chain with 17 states, shown in Figure 
2. Rates are not shown, for the sake of readability. The 
SHARPE framework allows us to use the time-to-absorption 
of each Markov chain as the failure-time CDF of a basic 
component in an upper-level reliability block diagram model. 
This decomposition and aggregation will give us exact 
results. 

Figure 3 shows a batch input file for the two-level, 
hybrid system. For the sake of this exposition, the lines in 
Figure 3 are numbered; an actual SHARPE input file would 
not have its lines numbered. The SHARPE input language 
is described in detail in [13]. First, on lines 1 through 66, we 
define the lower level: a Markov chain called bridge, with 
five parameters. The chain is specified by giving each state 
transition and its associated rate, one transition per line. 
The rates are allowed to be any valid arithmetic expression. 
No initial state probabilities are given; the SHARPE pro
gram will assume that the initial state probability is one for 
the only state (12945) with no predecessors. 

Next, as an illustration of the distribution specification 
mechanism of SHARPE, we show (lines 68 through 71) how 
to define the 2-stage - Erlang distribution 
Erlang2(/l) = l-e -#,t -/lte -#'t. Then,- on lines 73 through 85, 
we define a reliability block diagram for the upper level. We 
first define the basic components, assigning each one a CDF. 
Nodes 11, 12 and 14 are assigned the exponential distribu
tion function, which is built in. Nodes 13 and 15 are 
assigned 2-stage Erlang distributions. Node B represents the 
upper bridge system of Figure 1 and node A represents the 



1 markov brid9a(u1,u2,u3,u4,u5) 37 72 
2 38 125 25 u1 73 block b 
3 12345 2345 u1 39 l:l5 F u2 74 comp 11 axp (.0002) 
4 12345 1345 u2 40 l:l5 F u5 75 comp 12 exp ( .00002) 
5 12345 1245 u3 41 76 comp 14 axp ( .00002) 
6 12345 1235 u4 42 134 F u1 77 comp 13 Erlan92 (.0002) 
7 12345 1234 u5 43 134 14 u3 78 comp 15 Erlan92 ( .00002) 
8 44 134 F u4 79 comp A cdf(bridge;u1,u2,u3,u4,u5) 
9 1234 234 u1 45 80 comp B cdf(brid9a;u6,u7,u8,u9,u10) 

10 1234 134 u2 46 135 F u1+u3+u5 81 parallel C 12 13 
11 1234 124 u3 41 82 .eria. D 11 B C 
12 1234 F u4 48 145 F u1 83 .eries E 14 A 15 
13 49 145 F u4 84 parallel top D E 
14 1235 235 u1 50 145 14 u5 85 end 
15 1235 135 u2 51 86 
16 1235 125 u3 52 234 F u2+u3+u4 87 bind 
17 1235 F u5 53 88 u1 .0001 
18 54 235 F u2 89 u2 .00001 
19 1245 245 u1 55 235 25 u3 90 u3 .0001 
20 1245 145 u2 56 235 F u5 91 u4 .00001 
21 1245 125 u4 57 92 u5 .0001 
22 1245 124 u5 58 245 F u2 93 u6 .00001 
23 59 245 25 u4 94 u7 .0001 
24 1345 F u1 60 245 F u5 95 u8 .00001 
25 1345 145 u3 61 96 u9 .0001 
26 1345 135 u4 62 14 F u1+u4 97 u10 .00001 
27 1345 134 u5 63 :.15 F u2+u5 98 end 
28 64 99 
:.19 2345 F u:.l 65 and 100 expr value (10000;brid9a;u1, u2, u3, u4, u5) 
30 2345 245 u3 66 end 101 expr value (10000;bridge;u6, u7, u8, u9, u10) 
31 :.1345 235 u4 67 102 expr value (10000;b) 
32 2345 234 u5 68 poly Er1an92 (u) g en\ 103 eval (b) o 100000 10000 
33 69 1,0,0\ 104 end 
34 124 F ul 70 -1, 0, -u\ 
35 124 14 u2 71 -u, 1, -u 
36 124 F u4 

Figure 3. Input for Non-Series-Parallel System 

lower bridge system. Nodes A and B are each assigned the 
CDF of the time to absorption in the chain bridge with 
appropriate arguments. After the basic components have 
been defined, we build the block diagram using series and 
parallel combinations. 

Before we can analyze the systems, we must bind the 
variables used to particular values. This is done on lines 87 
through 98. Then we ask SHARPE for the probability that 
each non-series-parallel subsystem has failed by time 
t =10,000 (lines 100 and 101) and the probability that the 
overall system has failed by that time (line 102). Finally 
(line 103), we ask to have the CDF of the overall system 
evaluated between t =0 and t =100,000, at intervals of 
10,000. Because SHARPE computes the system CDF sym
bolically, the only work it needs to do after the initial 
analysis is to evaluate the system CDF for the specified 
values of t. The results produced by SHARPE are shown in 
Figure 4. It took SHARPE 4.5 seconds on a lightly loaded 
DEC VAX . 11/750 to produce these results. 

value (10000;brldge;u1,u2,u3,u4,u5): 3.2426e-01 

value (10000;brldge;u6,u7,u8,u9,u10): 1.4794e-01 

value (10000;b): 4.0948e-01 

system b 

t F (t) 

0.0000 e+OO 0.0000 e+OO 
1.0000 e+04 4.0948 e-01 
2.0000 e+04 8.1903 e-01 
3.0000 e+04 9.5264 e-01 
4.0000 e+04 9.8820 e-01 
5.0000 e+04 9.9713 e-01 
6.0000 e+04 9.9931 e-01 
7.0000 e+04 9.9984 e-01 
8.0000 e+04 9.9996 e-01 
9.0000 e+04 9.9999 e-01 
1.0000 e+05 1.0000 e+OO 

Figure 4. Results for Non-Series-Parallel System 

820 

MODELING DEPENDENCE 

Fault tre~s and reliability block diagram models gen
erally assume that the component lifetimes are stochastically 
independent. In real systems, there are several kinds of 
dependencies. Some of these are: 

• repair dependence. Two or more components or 
subsystems may share a repair person. 

• state-dependent failure rates. It is possible that 
the failure rate of a compon~nt may depend on the 
past history of the system. For example, it is pos
sible that the repair of a component does not 
restore it to its original state. In that case, the 
component may have a larger failure rate after it 
has been repaired. 

• near-coincident fault dependence. The design of 
a system may be such that near-coincident faults 
cause a system failure, while faults that are 
separated in time can be handled individually 
without overall system failure [7,17,18J. 

The common approach to modeling systems that pos
sess anyone of these kinds of dependence is to use a global 
Markov (or semi-Markov) model. Using the SHARPE 
framework, we can avoid a state space explosion by isolating 
the dependencies to portions (subsystems) of the overall sys
tem, using decomposition/aggregation, or by a combination 
of these two methods. The examples in the next three sec
tions show how the SHARPE framework can be used in this 
way to model the kinds of dependence discussed above. 

Repair Dependence 

Consider a system consisting of 2 processors and 3 
memories connected to a bus [8J. Let us assume that the 
mean time to failure of a processor is a month (720 hours), 
that of a memory unit is 2 months, and that of the bus is 3 
months. The system as whole is considered to be up if the 



bus is up, at least one of the two processors is up, and at 
least 2 out of the three memory units are up. The condition 
under which the system is down can be expressed by the 
fault tree in Figure 5. If the system is non-repairable, we 
can easily evaluate the fault-tree directly by one of many 
tools available, including SHARPE. Using SHARPE, we can 
attach either a probability of failure or a distribution of 
time-to-failure to each basic event. 

If the units are repairable and each individual unit has 
its own repair person, we can model the steady-state unavai
lability of the system using the same fault tree, by assigning 
to each component its steady-state unavailability. Using 
SHARPE, we can also use this fault tree to find the instan
taneous unavailability of the system, by assigning the 
instantaneous unavailability expression as the "distribution" 
for each basic event. The instantaneous unavailability for a 
component, labelled i, that is initially operational and has 
failure rate Ai and repair rate Jli is [16, p. 301] 

Ai Ai e -(Aj+Jlj)1 (2) 

Figure 5. Fault Tree 

For a system consisting of parallel components, the unavai
lability of the system is the product of the component una
vailabilities (the system is unavailable only when all com
ponents are unavailable). This is the "and" gate computa
tion in a fault tree. For a series of components, the availa
bility is the product of the component availabilities (the sys
tem is available only when all subsystems are available). 
Thus the unavailability of the system is exactly the "or" 
combination of the components. When the components are 
combined in this way, the solution "distribution" for the 
system will be the system unavailability. 

The limit of Ui (t) as t approaches infinity is the 
steady-state unavailability. Ui (t) does not reach one in the 
limit; it is possible to use this expression as if it were a dis
tribution because the SHARPE framework permits defective 
distributions. 

If we set Jli =0 in Equation 2, we have the CDF for the 
time-to-failure of the component. Thus the same model can 
be used for both reliability and availability. Furthermore, 
we may allow some components to have a repair facility and 
other components to be non-repairable by letting Jli be zero 
for some components and nonzero for others. 

Now suppose that an independent repair facility is 
available for each subsystem (not for each unit). Because of 
the hierarchical capability of SHARPE, we can model each 
subsystem as an independent Markov chain and still model 
the overall system by a fault tree. This is shown in Figure 

821 

6. In the Markov chain for each system, the state gives the 
number of failed components in the system. In the fault 
tree, each component is assigned the steady-state unavaila
bility of a subsystem. For the memory subsystem, the 
steady-state unavailability is the sum of the steady-state 
probabilities for states 2 and 3 in the corresponding Markov 
chain. 

3*mf 2*mf mf 

memory system 

2*pf pf 

pr pr 

processor system 

b 

aB br 

bus 

Fault Tree 

Figure 6. Three Markov Chains Within a Fault Tree 

If repair is shared across all subsystems, we must model 
the entire system by a Markov chain. We assume that the 
repair priorities are bus first, then processor, then memory. 
Figure 7 shows the steady-state availability of the system 
when there is a single repair facility for the system, a repair 
facility for each subsystem, and a repair facility for each 
component. The figure shows that the effect of sharing 
repair persons is relatively minor. 

State-Dependent Failure Rates 

In this section, we consider a model for a system where 
the fault-occurrence behavior depends on the history of 
failures and repairs in the system. Suppose we have a repair 
strategy that involves two kinds of repair procedures. When 
a component fails, we first apply a quick, simple repair pro
cedure. This procedure fixes the component so that it is as 



good as new with probability r, and with probability I-r the 
procedure introduces another flaw that alters the failure 

type of repair steady state availability 

per component ,998822 

per subsystem ,998802 

one for system ,998801 

Figure 7, Effect of Sharing Repair Facilities 

behavior of the component, causing it to fail more quickly 
and with a different kind of failure. If the component exhi
bits the second kind of failure, we use a more complex repair 
procedure that either restores the system to its original state 
(with probability c) or fails to repair the system at all (with 
probability I-c). A Markov model for the failure of a single 
component is shown in Figure 8. It is assumed that )..2>)..1 

and 1'2<1'1' SHARPE can analyze this cyclic chain for the 
CDF of the time to reach state F. 

Now assume that we have a system that uses parallel 
redundancy with three components, using the repair stra
tegy discussed above for each component, and that the sys
tem is operational as long as anyone of the components is 
functioning. We can model this system as a reliability block 
diagram where each component is assigned the CDF of the 
time to absorption in the Markov chain of Figure 8. 

It is possible to give another interpretation to the'Mar
kov chain of Figure 8. If 1'1 is very large, then state JaW 
can represent a transient failure, 1'1 the rate of a transient 
recovery procedure, and r the probability that the transient 
recovery procedure was successful. If the procedure was not 
successful, the fault has become permanent, and )..2 is the 
repair rate of a procedure for repairing permanent faults, 
with c being the permanent-fault coverage. 

Near-Coincident Fault Dependency 

A system design may be such that faults that are 
separated in time can be handled individually without 
overall system failure, but near-coincident faults cause a sys
tem failure. If this is so, the system components are not 
independent. In this example, we show how near-coincident 
faults can be modeled, and also illustrate the flexibility of 
our hierarchical combination mechanism. We will start with 
a single-level model and add levels as we show how the 
model can be refined and how aggregation can be expressed 
in the SHARPE framework. 

We consider problem 7 in appendix G of [1]. This 
problem models an aircraft flight control system. The sys
tem contains three inertial reference sensors (IRS) and three 

C 112 

pitch rate sensors (PRS), that monitor the status of the air
craft. All of the sensors are connected to each of four com
puter systems (CS). The computer systems independently 
collect information from the sensors and process the infor
mation. The computers are connected to each other and to 
three secondary actuators (SA). At least two of each type of 
component must be operational in order for the overall sys
tem to function correctly. In this system, the computers are 
most susceptible to failure (the failure rate for a computer is 
an order of magnitude greater than the failure rates for any 
of the other components). That is why there are four com
puters and only three of each of the other component types. 

A Single-Level Model: Fault Tree 

If we assume that all components operate (and fail) 
independently, and that system reconfiguration afLer a 
failure is perfect, we can model the system using a fault tree, 
as shown in Figure 9. The SHARPE program calculates 
that the probability of failure during an interval of 10 hours 
is 1.02381 X 10-6. This agrees with the result produced by 
the CARE III package. 

A Two-Level Model: Markov Chain within Fault Tree 

The fault tree model assumes that system 
reconfiguration upon failure is a perfect operation. Now 
assume that the probability of failure in the computer sub
syste~ is high enough that imperfect system reconfiguration 
may cause the unreliability of the overall system to be unac
ceptable. Therefore, we would like to model that part of the 
system more closely to incorporate some of the details of the 
fault/error-handling procedure. We assume for now that a 
second (near-coincident) fault does not occur while a first 
fault is being resolved. 

The handling of a single fault can be modeled by the 
Markov chain in Figure 10. This is a model of the sequence 

Figure 9. Aircraft Control System: Fault Tree 

Figure 8, A Component with State-Dependent Failure Rates 

822 



Figure 10. Fault/Error Handling Model 

of events that follows the occurrence of a fault in a system 
that monitors itself periodically. A distinction is made 
between a "fault" and an "error" [111. A fault may occur at 
any time, but it need not cause an error right away. For 
example, the failure of a pitch rate sensor is a fault, but an 
error does not occur until one of the computers tries to use 
results gathered by the sensor. 

In state fault, a fault has occurred. At this point, one 
of two things might happen. The first is that the system 
may detect the fault itself through the self-monitoring pro
cess and recover from the fault. This happens with rate 8. 
The second way of leaving state fault is for an error (owing 
to the fault) to occur, causing the system to go to state 
error. The error rate is p. Once an error occurs, some time 
may elapse before it is detected. The error detection rate is 
L It is assumed that the system may not be able to recover 
from an error. If it can, then the error is "covered", and the 
system goes to state recovered; if not, the system fails and 
goes to state fa£/ed. A detected error is covered with proba
bility p. 

We now introduce a lower-level Markov model that 
incorporates the possibility of lack of coverage. The model, 
shown in Figure 11, is based on the single-fault/error
handling model of Figure 10. The states 4, 8, and 2 
represent the system when 4, 8, and 2 of the computers are 
operational. Each time a fault occurs, we enter the 
fault/error-handling model and eventually leave it to enter 
either the failure state F or a state having one fewer operat
ing computer. 

To incorporate this lower-level model into the fault 
tree, we replace the gate C80f4 and its four inputs by a 
basic event having the CDF of the time to reach node Fin 
the Markov chain. (Figure 14 shows how all of the models 
discussed in the example are specified for the SHARPE pro
gram). When this two-level model is analyzed with 
p = .999, the probability of failure during an interval of 10 
hours is computed to be 7.40614 X 10-6

. Again, this agrees 
with the result computed by the CARE III package. There 

Figure 11. Markov Chain for Computer Subsyste~ 

823 

is a noticeable increase in the likelihood of a failure, even 
though the error detection coverage value is .999. 

We note that in analyzing this model, CARE III 
obtains its solution numerically for the specified mission 
time. The SHARPE program computes the CDF for the 
system lifetime symbolically in t, and then evaluates that 
CDF for the specified value of t. Using SHARPE, we could 
find the probability of failure for other mission times 
without having to reanalyze the system. 

A Three-Level Model: Markov Chain within Markov Chain 
within Fault Tree 

Now suppose that the reliability requirements of the 
system are so stringent that the possibility of near
coincident faults cannot be ignored. Furthermore, suppose 
we assume that the occurrence of a second fault during the 
period between the occurrence of a fault and the completion 
of system reconfiguration causes the system to fail. 

We could model this with a two-level system by 
refining the model of Figure 11 to include the possibility of 
the occurrence of a fault while in states f8, f2, e8, and e2. 
Instead, we would like to show how the SHARPE hierarchy 
of models can be used to express behavioral decomposition 
[7,17,18]. 

Behavioral decomposition is based on the premise that 
a long time passes between faults, but that once a fault 
occurs, the resolution of the fault happens quickly. Based 
on this assumption, we model separately the fault/error
handling behavior of the system. In Figure 12 (a) we show 
the fault/error-handling model, which is the lowest-level 
model. This is a Markov chain that models the sequence of 
events that follows the occurrence of a fault. The difference 
between this model and the model shown in Figure 10 is 
that here we incorporate an additional way for failure to 
occur; failure occurs if a second fault occurs while the chain 
is in state fault or state error. The rate at which the second 

a) lowest level 

4 Ac(3) 3AC(2) 

b) middle level 

Figure 12. Markov Chains for 3-level Model 



failure occurs is k* A, where k is the number of components 
that remain operational after the occurrence of the first 
fault. 

Figure 12 (b) shows the middle-level model for this sys
tem. At this level, we have a Markov chain where state k 
represents the system having k operational computers. A 
state change occurs whenever there is a fault in one of the 
computers. >From state k, we go to state k-l if there .is a 
covered failure and the number of operational computers has 
not fallen below 2. We go to state F if there is an 
uncovered failure or the number of operational computers 
falls below 2. The coverage values (which are state
dependent) will be computed by solving the lower-level 
model of Figure 12 (a). The 'middle-level model is incor
porated into the fault tree of Figure 9 by replacing the gate 
030J4 and its four inputs by a basic event having the CDF 
of the time to reach node F in the Markov chain of Figure 
12 (b). 

When SHARPE analyzes this three-level system, the 
results show that the probability of failure during an inter
val of 10 hours is 7.46150 X 10-6. As expected, this is a lit
tle higher than in the previous two-level model. It is also 
slightly larger than the exact failure probability, which is 
computed by SHARPE to be 7.45961 X 10-6. 

We have noted that because the rate of occurrence of 
the second fault depends on k, the coverage values are 
state-dependent. This means that SHARPE will have to 
reanalyze the lowest-level (coverage) model of Figure 12 (a) 
for each value of k. With a model of this size, the expense 
of doing that is negligible, but it is interesting to see in the 
next section how we can extend the model one further level 
to avoid some of that extra computation. 

A Four-Level Model: Markov Chain within Semi-Markov 
Chain within Markov Chain within Fault Tree 

Let the bottom-most level of our model consist of the 
single-faultjerror-handling model of Figure 10. At the next 

Figure 13. Semi-Markoy Chain in 4-level Model 

level up, we use the semi-Markov model shown in Figure 13. 
The initial state is Jault. When a fault has occurred, two 
processes compete. The first process is the faultjerror
handling process of Figure 10. If this process finishes first, 
we go to state resolved. The second process is the 
occurrence of a second fault, happening at a rate of k* A (a 
state-dependent rate). 

The fault is covered if the faultjerror-handlingprocess 
finishes first and if, within that process, the state recovered 
is reached rather than Jailed. Thus the coverage value is the 
probability of reaching state resolved in the semi-Markov 
chain of Figure 13, multiplied by the probability of reaching 

824 

state recovered in the-Markov chain of Figure 10. We still 
have to solve the model of Figure 13 for each value of k, but 
we only have to analyze the single-fault system one time. 
When we have SHARPE analyze this four-level system, the 
results are, as we expect, the same as for the three-level sys
tem. 

In Figure 14, we show the complete SHARPE input file 
.for all of the models we have discussed. They are defined in 
the input file in the same order as presented here. 

CONCLUSION 

We have developed ,a hierarchical modeling technique 
that provides a very flexible mechanism for using decomposi
tion and aggregation to model large systems. The technique 
allows for both combinatorial and Markov or semi-Markov 
submodels, and can analyze ,each model to produce a distri
bution function. The choice of the number of levels of 
models and the model types at each level is left up to the 
modeler. Component distribution functions can be any 
exponential polynomial whose range is between zero and 
one. 

Work is currently underway to improve and extend the 
SHARPE technique. Possibilities for future work include 
adding one or more queueing network models to the list of 
allowed model types, adding some kind of looping capabil
ity to the SHARPE input language, and allowing fault trees 
to have repeated nodes. 

REFERENCES 

[1] Bavuso, S., Peterson, P., and Rose, D., Care III Model 
Overview and User's Guide, NASA Technical 
Memorandum Number 85810, June 1984. 

[2] Bobbio, A. and Trivedi, K.S., An Aggregation 
Technique Jor the Transient Analysis oj Stiff Markov 
Systems, IEEE Transactions on Computers, 1986. 

[3] David, H.E.,Order Statistics, John Wiley & Sons, NY., 
1981. 

[4] Dodin, B., Bounding the Project Completion Time Dis
tribution in PER T Networks, Operations Research, 
Vol. 33, No.4 (July-August 1985), 862-881. 

[5] Dugan, J.B., Bobbio, A., Ciardo, G.,' and Trivedi, K.S., 
The Design oj a Unzjied· Package Jor. the Solution oj 
Stochastic Petri Net Models, Proceedings Interna
tional Workshop on Timed Petri Nets, Torino Italy, 
July, 1985. 

[6] Dugan, J.B., Trivedi, K.S., Geist, R.M. and Nicola, 
V.F., Extended Stochastic Petri Nets: Analysis and 
Applications, PERFORMANCE '84, Paris, North
Holland (Dec 1984). 

[7] Dugan, J.B., Geist, R., Trivedi, K.S., Smotherman, M., 
The Hybrid Automated Reliabilz"ty Predictor, AIAA 
Journal on Guidance Control and Dynamics (1986). 

[8] Goyal, A., Carter, W.C., de Souaz e Silva, E., Laven
berg, S.S., Trivedi, K.S., The System AVailability 
Estimator, IBM Computer Science Research Report 
(November 1985). 

[9] Kernighan, B. and Pike, R., The Unix Programming 
Environment, Prentice-Hall (1984). 

[10] Kernighan, B. and Ritchie, D., The 0 Programming 
Language, Prentice-Hall (1978). 



" aircraft flight control system 

bind 
lambda .00048 
mIRS .000015 
mPRS .000019 
mSA .000037 
p .999 
delta 360 
rho 180 
epsilon 3600 
end 

precision 5 

ftree 
basic 
kofn 
basic 
kofn 
basic 
kofn 
or 
end 

ftree 
basic 
kofn 
basic 
or 
end 

Non_Computers . 
IRS exp (mIRS) 
I2of3 2,3, IRS 
PRS exp (mPRS) 
P2of3 2,3, PRS 
SA exp (mSA) 
S2of3 2,3, SA 
TOP I2of3 P2of3 S2of3 

CRASH 
CS exp (lambda) 
C30f4 3,4, CS 
others cdf (Non_Computers) 
TOP C30f4 others 

expr value (10;CRASH) 

"add a lower level: 
"exact Markov model for 
"single-fault/error handling 

markov 2 
4 f3 4"lambda 
f3 3 delta 
3 f2 3"lambda 
f2 2 delta 
2 F 2"lambda 
f3 e3 rho 
f2 e2 rho 
e3 3 p"epsilon 
e2 2 p"epsilon 
e3 F (l-p) "epsilon 
e2 F (l-p) "epsilon 
end 
end 

ftree 2-level 
basic CS cdf (2) 
basic others cdf (Non_Computers) 
or TOP CS others 
end 

expr value (10;2-level) 

" add a third level, 

" aggregation. 

" third-level model: 

" fault/error handling 
" with near-coincident 

second- faul t (i) 
recovered delta 
error rho 

with 

model 
faults" 

markov 
active 
active 
error 
error 
active 
end 
end 

recovered p"epsilon 
F (l-p) "epsilon + i"lambda 
F i"lambda 

" approximation - second-level model 
" with coverage value taken from 
"third-level model 

func c(i) \ 
prob(second-fault,recovered;i) 

markov 3 
4 3 4"lambda"c(3) 
4 F 4"lambda" (1-c(3)) 
3 2 3"lambda"c(2) 
3 F 3"lambda" (l-c (2)) 
2 F 2"lambda 
end 
end 

ftree 3-level 
basic CS cdf (3) 
basic others cdf (N on_Compu ters) 
or TOP CS others 
end 

expr value (10;3-level) 

"now for a four-level 
"lowest level is the 
" fault/error handling 

markov single-fault 
fault recovered delta 
fault rho 

model 
single 

model 

error 
error 
end 
end 

error 
recovered 
failed 

p"epsilon 
(l-p) "epsilon 

" next level up: semimarkov 
" chain showing competition of 
" single-fault model with 
" occurrence of a second fault 

semimark 
fault 
fault 
end 
end 

2nd-fault(i) 
second exp (i"lambda) 
first cdf(single-fault) 

" second level: markov chain 
" with coverage values 

func C(i) \ 
prob(2nd-fault,first;i) "\ 
prob(single-fault,recovered) 

markov 4 
4 3 4"lambda"C (3) 
3 2 3"lambda"C(2) 
4 F 4"lambda" (l-C (3)) 
3 F 3"lambda" (1-C(2)) 
2 F 2"lambda 
end 
end 

" top level 

ftree 4-level 
basic CS cdf (4) 
basic others cdf (Non_Computers) 
or TOP CS others 
end 

expr value' (10;4-level) 

" exact two-level model 
" with second fault 

markov 2fault-exact 
4 active3 4"lambda 
active3 3 delta 
3 active2 3"lambda 
active2 2 delta 
2 F 2"lambda 
active3 error3 rho 
active2 error2 rho 
error3 3 p"epsilon 
error2 2 p"epsilon 
error3 F (l-p) "epsilon + 
error2 F (l-p) "epsilon + 
active3 F 3"lambda 
active2 F 2"lambda 
end 
end 

" top level 

ftree 3-exact 

3"lambda 
2"lambda 

basic CS cdf (2 faul t-exact) 
basic others cdf (Non_Computers) 
or TOP CS' others 
end 

expr value (10;3-exact) 
end 

Figure 14. Input for Multi-level Aircraft Example 

[11] Laprie, J., Dependable Computing and Fault-tolerance: 
Concepts and Terminology, Proposal to the IFIP WG 
10.4 Summer 1984 meeting, Kissimmee, Florida, June· 
16-19, 1984. 

[12] Reibman, A., and Trivedi, K.S., Transient Analysis of 
Markov Dependability Models, in preparation. 

[13] Sahner, R. SHARPE User's Guide, Duke University, 
Durham, NC, 27706 (Dec. 1985). 

[14] Sahner, R. and Trivedi, K.S., Performance and Relia
bility Analysis Using Directed Acyclic Graphs, 
accepted subject to revision, IEEE TSE. 

[15] Stiffler, J.J., and Bryant, L.A., CARE III Phase III 
Report - Mathematical Description, NASA Contractor 
Report 3566 (Nov 1982). 

825 

[16] Trivedi, KS., Probability and Statistics with Rel£ab£lity, 
Queuing and Computer Science Appl£cations, 
Prentice-Hall, Englewood Cliffs, N.J., 1982. 

[17] Trivedi, KS., Dugan, J. B., Geist R., and Smotherman, 
M., Modeling Imperfect Coverage in Fault- Tolerant 
Systems, Proc. of the Fourteenth Int. Conf. on 
Fault-Tolerant Computing (FTCS - 14), Orlando, 
FL., June 1984, 77-82. 

[18] Trivedi, K.S., Geist R., Smotherman, M., and Dugan, 
J. B., Hybrid Modeling of Fault-Tolerant Systems, 
Computers and Electrical Engineering, An Interna
tional Journal, Vol. 11, No.2 and 3 (1985), 87-108. 



DESIGN OF SYSTEMS WITH CONCURRENT ERROR DETECfION 
USING SOFIW ARE REDUNDANCY 

Kien A. Hua and Jacob A. Abraham 

Computer Srstems Group 
Coordinated SClence Laboratory 

University of Illinois 
Urbana. IL 61801 

ABsrRACT 

This paper describes a methodology for the design of 
systems with concurrent error detection through the use of 
software redundancy. We present a technique for the 
development of self-checking programs in which assertions are 
generated systematically from the design of the program. 
Software that is developed using this technique is guaranteed to 
be self-checking with respect to all software faults and can be 
shown in practice to detect most errors due to hardware faults. 
A less rigorous technique using data encoding is also described. 
The self-checking capabilities are evaluated using a fault 
simulation method that allows us to study the coverage of errors 
due to hardware and software faults. We also propose a dual 
processor technique that can improve the performance. 
reliability and availability of the self-checking system. 

1. INTRODUCfION 

Off-line circuit testing is one of the widely used techniques 
to detect physical failures and to ensure that a system is defect
free. Unfortunately. the decrease in geometries has increased the 
possibility of transient errors. Since these errors are usually 
nonrecurring and not reproducible. off-line testing (useful for 
permanent faults) will not reliably detect transients. 
Consequently. it is important that we incorporate concurrent 
error detection (CEO) capability into the design of digital 
systems in order to detect errors concurrently with normal 
operations. 

Depending on the level in a system at which we apply the 
checking mechanisms. concurrent error detection can be 
subdivided into three categories (Figure 1): 

• gate-level checking 
• functional level checking 
• system level checking. 

Gate-level techniques such as those using error detecting 
coding [11 usually assume the single or double stuck-at fault 
model. As the geometric features of integrated circuits become 
smaller. physical defects can affect a local area of a circuit. and 
stuck-at fault models are therefore not satisfactory. 
Functional-level techniques such as those used in algorithm
based fault tolerance [2. 3. 4] assume a more general model 
which allows any single module in the system to be faulty. 
These techniques can hence detect errors due to a block of faulty 
logic that is local to any single module. The third category of 
concurrent error detection assumes an even more general fault 
model that includes both design faults in software and physical 

Acknowledgment: This research was supported in part by a 
contract from IBM Corporation and in part by the Semiconduc
tor Research Corporation under Contract SRC RSCH 84-06-049-
4. 

CH2345-7/86/0000/0826$01.00 © 1986 IEEE 
826 

r I 
SYSTEM '_EVE ~HE ~KIN 

READB; 
A:-B+c n 2; 

rr 
'I<"VI<" 

r 
~ ~ ~ 

tJ 11 
~ 

Figure 1. Three categories of concurrent error detection. 

failures in hardware. These techniques introduce software 
redundancy in the form of executable assertions into the 
program to check for the correct operation of the system during 
its execution. Since the checking mechanism is placed at 
programming level. both software and hardware faults that 
affect the dynamic behavior of the program can be detected. 
Such computer programs that check their own dynamic behavior 
automatically during their execution are called self-checking 
programs (SCPs). 

In recent years. there have been several reports on self
checking programming. Depending on the aspects of the process 
which the assertions are checking. SCPs can be classified into 
three major categories: 

(a) Control flow checking [5. 6. 71: These techniques 
assume that malfunctions. such as processor failures. bus 
faults. or faults in the code being executed will cause 
errors in the control flow of the program. These 
techniques insert redundant code into the program so 
that the actual path traversed at run time can be 
recorded and checked against the precomputed path 
information. 

(b) Data structure checking [8. 91: These techniques use 
redundancy in data structures. such as additional 
po.inters. identifier fields. or counters to detect any 
fallures that change the data structure into a 
structurally incorrect one. The central idea in t~ese 



techniques is that if a data structure is designed such 
that at least (n+l) changes are needed to update the data 
structure. then any faults that cause n or fewer changes 
in the data structure can be detected. 

(c) Data value checking [10. 11. 12. 13]: These techniques 
assume that hardware or software faults will eventually 
corrupt the data and produce wrong results. They detect 
such faults by inserting into the programs assertions 
about the validity of the data values. 

Control flow checking is a powerful technique for 
detecting hardware faults that changes the control sequence of 
the programs. However. it does not perform well in case of data 
manipulation errors. For instance. control flow checking will not 
be able to detect the use of an incorrect algorithm. Data 
structure checking is suitable for the implementation of reliable 
data base systems [14]. For general programs. data value 
checking is the more powerful technique. Since the assertions 
used in this technique are based on the semantics of the program. 
control sequence faults or data manipulation errors will change 
the intended semantics of the program and therefore will be 
detected by the assertions at run time. Unfortunately. there has 
not been a systematic technique for generating the assertions for 
data value checking. A structured technique for the design of 
SCPs was presented in [13]. This technique derives the assertions 
from the functional specifications of the program by performing 
stepwise refinement. Nonetheless. the process of stepwise 
refinement relies on intuition and is therefore still very much 
ad-hoc. In this paper. we will present in Section 2 a 
methodology for the design of SCPs. in which the assertions for 
data value checking are systematically derived from the design 
of the program. Software developed using this methodology is 
guaranteed to be self checking with respect to all software 
faults. 

For some programming problems. checking the correctness 
of the outputs requires an additional copy of the input. This 
could be very inefficient if the number of inputs is large. A less 
rigorous self-checking programming technique for solving this 
class of problems will be discussed in Section 3. 

Although the distinguishing feature of SCPs is the ability 
to detect both software and hardware faults. hardware fault 
coverage· of SCPs has not been thoroughly studied hitherto. We 
propose in Section 4 a fault simulation technique that can be 
used to evaluate the affectiveness of SCPs against both hardware 
and software faults. This technique was used to study the 
coverage of errors. due to faults. of some popular programs. The 
empirical results of the experiments will be discussed 

One weakness of SCPs is that the addition of software 
redundancy will degrade system performance. We propose a 
dual redundancy architecture to be used for SCPs. The proposed 
technique can improve both performance and reliability. A 
comparison of this technique with the conventional dual 
redundancy approach for CED will be discussed in Section 5. 

2. DESIGN OF SELF-CHECKING PROGRAMS 

Depending on their scope. assertions can be global or local. 
A single assertion for a program is an example of a global 
assertion. Global assertions have the advantage of being checked 
only once for each execution of the program. Unfortunately for 
some programs. their global assertions are as complex as the code 
of the programs. Using global assertions for this class of 
programs is therefore very inefficient. For such programs. one 
should replace the global assertion by a set of appropriate 

827 

assertions inserted at appropriate locations throughout the 
program. 

In this section. we present a methodology for the design of 
SCPs. First. we discuss the generation of global and local 
assertions. We then describe a procedure for the design of large 
scale SCPs. Since assertions are simple. they can be easily 
verified for correctness. In this paper. we assume that the 
executable assertions are free of software bugs. 

2.1 Global Assertion Techniques 

Global assertions· are derived from the input/output 
specifications of the program. Since global assertions check the 
correctness of the final outputs. SCPs that use global assertions 
are always self-checking. The following are some examples of 
global assertions: . 

Problem: 
Inputs: 
Outputs: 
Assertion: 

Problem: 

Inputs: 
Outputs: 
Assertion: 

Problem: 
Inputs: 
Outputs: 
Assertion: 

Find the roots of a polynomial 
A polynomial 
Roots 
The roots must satisfy the polynomial 

Find the solution of N simultaneous linear 
equations 
A system of linear equations 
Solution of the equations 
The solution must satisfy all the equations 

Searching 
A key and a list of items 
Matched item 
The search field of the matched item must 
match the key 

Although global assertions can be easily derived from the 
functional specifications for many programs. some of the global 
assertions are very inefficient in terms of memory requirements. 
time requirements or complexity. This is discussed in [13]. As 
seen in the preceding examples. programs that are candidates for 
the global assertion technique are those which do not modify 
their inputs. Other good candidates are programs which have 
only a small set of inputs. 

2.2 Local Assertion Technique 

If the detailed design of a program is available. local 
assertions can be systematically generated from the semantics of 
the program design by symbolically -executing- [15] the design 
in the virtual machine environment (machine that supports the 
program design language). Since these assertions are derived 
directly from the design text. they rellect what is actually 
happening during the execution. These assertions therefore can 
be used to prove the correctness of the design with respect to the 
program specifications. 

Once the correctness has been verified. the design can be 
transformed into executable form by translating the statements 
in the design into statements written in the target language. 
Even though this translation process may introduce coding 
errors. they will be detected during run time because the design 
has already been proved to be correct and the assertions are 
derived from the design. not the program code. Programs 



developed using this methodology are therefore guaranteed to be 
self-checking with respect to software faults: free of design 
bugs. while coding errors are guaranteed to be detected during 
the execution. 

Conventional software verification techniques are not 
commonly used in practice due to the large size of software 
systems. The design of a program., however. is much smaller. 
The process of generating assertions and proving correctness is 
therefore much simpler in the proposed technique than in 
conventional program verification methods. Nevertheless many 
mechanical techniques for assertion generation intended for 
conventional program verification [16. 17. 18. 19] can be used in 
the proposed method as well. 

We have given an overview of the assertion generation 
technique. The proposed technique. however. is best explained 
by examples. For the remainder of this subsection. we will 
illustrate the application of the technique to two popular 
programs: 

• sorting (non-numeric) 
• finding the Eigenvalues and Eigenvectors of a real symmetric 

matrix (numeric) 

Example 1: This example illustrates our technique that 
systematically generates assertions from the design of a sorting 
program. For clarity. we choose a simple single-loop sorting 
program for the demonstration. The resulting assertions turn 
out to also be the global assertions for the program. In general. 
programs are more complex and we usually have mUltiple sets 
of assertions located throughout a program. 

Procedure SORT(A.n) 
k:-1 
Dowhile k<n 

Find At = min (At+l> ... , An). 
where k+1 ~ t ~ n 

If At > At Then exchange(At • At ) 
increment k 

enddo 
end: (* SORT *) 

The flow chart for the design is shown in Figure 2. The 
loop has two paths. Let us call the path with path condition 
At > At the right path. and the path with path condition At ~ 
At the left path. Also we denote by y/m! the value of y the 
(m+ 1)-st time the cutpoint N (Figure 2) is reached since the 
most recent entrance to the block. We then have the following: 

left path: 
[kim-II < nAAk1m _1I/m-ll ~ At 1m I] 

:> [At 1m! - min(Atlm-l/+1/m-1/ • ...• An Im-1f) A 
kim! - klm-1/ + 1] (1) 

right path: 
[klm-11 < nAAt1m - 1I/m-11 > At 1m I] 

:::> [At Iml - mine Atlm-l/+1/m -1/ • ...• An 1m -1/) A 

(Ak1m - 1IIm I. At Im/) +- (At 1m I. A k1m - 1IIm-1/) A 
klml = k/m-11 + 1] (2) 

Since the assignments to k and At are not affected by which path 
is used. the following equations are always true at cutpoint N: 

k/m/ == k/m-1/ + 1 (3) 

828 

H 

~ 
r---------l --------, 
: input specifications: : 

A is an array of n elements I 

I n ~ 1 : L __________________ J 

r--------------< 

r----- -----, 
I I 
I output specifications: I 
I I 

A is sorted I 
I 

L ___ ~ __ " 

Figure 2. Flowchart for the sort program. 

At 1m I = min (Aklm-l/+1/m -1/ ..... An 1m -If) (4) 

(3) --+ k/ml = k/OI + m = m + 1 (5) 
(4) & (5) --+ At 1m I = min (Am+1/m -II • .... An 1m -If) (6) 

Ignoring the exit test k<n. and the assignments to k and At. 
combining (1) a~d (2) gives the following: 

If Am 1m -1/>At 1m I 
then (Am 1m I. At 1m I) +- (At 1m I. Am 1m -II) (7) 

From (6) and (7) we have the following: 

m=l: 
At III = min (A 2/01 • .... An 101) 
If A 110/ > At III 

then (A 1/1/. At 11/) +- (At 11/. A dOf) 
m=2: 
At 12/ = min (A 3/1/ • .... An 11/) 
If A 2/11 > At 12/ 

then (A 2/2/. At 12/) +- (At 12/. A 2/1/) 

m=n-l: 
At In -1/ = min (An In -2/ • .... An In -2/) 
If An -lIn -2/ > At In -II 

then (An -l/n -1/. At In -1/) +- (At In -1/. An -lIn -2/) 



By induction. we therefore have the following loop invariants: 

AI: (A l' ...• AI; -1) is monotone 
A2: AI;-1 ~min(AI; •...• An) 
A3: Alk-l/ .. PERMUTATION(AlO/) 

The assertions at H therefore are: 

A4: Aln-lI is monotone 
AS: Aln-l1 os PERMUTATION(AlO/) 

Since A4 and AS imply the output specifications. the design of 
the program is correct with respect to the specifications. 

We can also prove the termination based on the classic 
Floyd's well-found set technique [20. 21]. We choose point A as 
the cutpoint which cuts both paths around the loop (Figure 2). 
Let us take the set N of all natural numbers. with regular < 
ordering. as the well-found set. Since uA = n -k is strictly 
monotonic. and are bounded (Le.. uA ~ 0). the resultant 
sequence is therefore well founded. Thus clearly no loop or 
combination of loops could be executed indefinitely because the 
no-infinitely-descending-chain condition would be violated. 

We see that the sets {A l' A 2' A 3} and {A 4' A s} are 
equivalent. Thus all five assertions are not required for self
checking. Since the set {A 4' A s} is more time-efficient. we choose 
it for the program. We might also want to add another 
assertion. AO: n>O. to check whether the input meets the input 
specifications. 

Although we have proved the termination of the program 
design. the self-checking program will fail if the program code 
causes the loop to execute indefinitely. To overcome this 
problem. we can have a convention that the program designers 
reserve the right to design the control structures and their 
termination conditions. and programmers may not alter these 
constructs. If the designers always prove the termination of the 
designs and if assertions are added to dynamically check the 
well founded properties. then this convention guarantees the 
termination of the final product. There are two kinds of loops: 
DO loop and WHILE loop. For a DO loop. if the designer proved 
the termination properties of the loop based on the loop index. 
then clearly the DO loop must eventually terminate if the 
programmers do not modify the loop construct and the loop 
index designed by the designer in any way. In the case of a 
WHILE loop. the function for proving the termination of the 
loop (i.e .• the function that maps elements of the program's data 
domain into a well-found set. e.g .• uA in Example 1) can be used 
as an executable assertion to dynamically check the termination 
condition. Since this function is monotone and is bounded. if the 
programmers do not modify this termination-checking function. 
then the WHILE loop must eventually terminate if the assertion 
is true for each iteration of the loop. 

The design of the sorting program with assertions AO. Al 
and A4 added is given in the following. Programmers now can 
take over and transform it into the target language. 

Procedure SORT _SCP(A.n) 
If not AO then ERROR 
k:= 1 
Dowhile k<n 

Find At = min (Ai +1> ••• , An). 
where i+l ~ t ~ n 

If Ak > At Then exchange(A i • At ) 
increment k 

enddo 

829 

If not A4 then ERROR 
If not AS then ERROR 

end: (* SORT *) 

Example 2: The following is the design of a SCP that finds the 
Eigenvalues and Eigenvectors of a real symmetric matrix. The 
program is based on the Jacobi method. The fundamental 
approach of this technique is to annihilate. in tum. selected off
diagonal elements of the symmetric matrix by ·elementary· 
orthogonal transformations. For more details on this method. 
interested readers are referred to [22]. 

Procedure EIGEN_SCP(A.S.N): 
AI- A: (* Save the input *) 
Generate an identity matrix S: 

Compute initial norm 'III =,JEAiJ: 
Initialize current norm '11='111: 
Compute final norm 'IIF = (elN )Vl: 

(* e represents zero off diagonal *) 
Repeat 

v=vIN; 
For Q:- 2 to N Do begin 

P:=l: 
Repeat 

OFFNOTZERO:= false: 
If A[P .Q] > v then begin 

OFFNOTZERO:- true: 
Compute Sin 0 and Cos 0: 
Compute the transformation matrix R: 
Perform the transformations: 

A- RT ·A·R and 
S .... S·R: 

end: (* if *) 
po. P + 1: (* goont\) next row *) 

until P > (Q-l): 
end: (* for Q *) 

until (V~VF) and (not OFFNOTZERO): 
Assertion: If not (A ... S ·AI ·ST) then ERROR: 

Eigenvalues- diagonal elements Au ·s: 
Eigenvectors- columns of S: 

end: (* EIGEN_SCP *) 

As we did in Example 1. we can derive the following loop 
invariants by symbolic execution: 

Alml= RlmfI'·A Im-1/'Rlml 
Slml= S Im-l/'Rlml 

Upon the completion of the repeat loops. we therefore have the 
following assertion: 

Alt I=Slf fI"Alil'Slf I (8) 
where Alfl is the final matrix A 

Alii is the initial matrix A 
S/fl is the final matrix S. 

Equating the elements of the matrices in (8). we obtain 

N N 
LA IUmJc·S If Il;i = LS If ImJc·A If Il;i 

k=1 1;=1 



Let us denote by X(i) the ith column of a matrix X. we then 
have: 

A Ii I'S If JCi} = S If I·A If JCi} 

Since the design of the control structure ensures that Alf/ is a 
diagonal matrix. the above equation can be written as: 

A Ii I·S If JCi} = A If lii'S If JCi) 

The diagonal elements of the matrix Alfl therefore must be the 
Eigenvalues. and the columns of the matrix S/f/ ~hen must. be 
the corresponding Eigenvectors. Since th~ assertion (equatlo~ 
(8)) generated implies the output specification of the program. it 
guarantees the self-checking properties of the program. 

2.3 Design of Large Self-Checking Programs 

In this subsection. we describe the procedure for the design 
of large SCPs. This is a three-phase pro~. ?iven a 
programming problem. we first do the system design usmg some 
hierarchical modular design technique: top-down. bottom-up or 
more often a mixture of the two. This process converts the 
functional requirements of the program into a hierarchy of 
program modules. For each module. we then do ~he detailed 
design using a procedural design language. The design language 
used should be precise and contain enough detail so that 
symbolic execution of the design is possible. In Exampl.e 1. we 
used a program design language similar to that presented m [20]. 

To make the program self-checking. we then apply the 
global assertion or local assertion techniques presented in Section 
2.1 and Section 2.2 respectively to each module. During this 
process. a procedure call is considered as an abstract executable 
instruction of a virtual machine implemented by the program 
modules in the lower levels of the. hierarchy. Since the called 
modules (procedures) are themselves self-checking. the calling 
modules can assume that the results returned from the called 
modules are correct. 

Since the assertions for each module are derived 
independently. the set of assertions generated thus far could be 
excessive. A final inspection is therefore needed to remove the 
redundant assertions. 

Definition 1: An assertion AI is said to dominate another 
assertion AJ if all the properties checked by AJ are also checked 
by AI. 

Definition 2: If an assertion AI dominates another assertion AJ. 
then AI is called the dominating assertion and AJ is called the 
dominated assertion. 

In a SCP. some of the assertions may be redundant and 
should be removed for better system performance. As an 
example. if a module that computes solutions of linear equations 
calls a different module to do the Gaussian elimination and it 
computes the solutions by back substitutions. then the assertion. 
in the calling module. that checks whether the solution satisfies 
all the equations dominates all the assertions in the called 
modules. The dominated assertions therefore can be removed 
without impairing the self-checking properties of the software 
system. Usually. we prefer to save the dominated assertions 
since they can help to identify faulty modules. and system 
malfunctions can be detected early. Nevertheless. in some cases 
the dominating assertions are preferred for the sake of better 
system performance. 

We summarize the three phases of the proposed self
checking programming methodology in the following: 

PHASE 1: Design 
• Use hierarchical modular design techniques to design a 

hierarchy of program modules. 
• Do the detailed design for each module in some computable 

program design language. 

PHASE 2: Make assertions 
• Generate assertions for each module using either global or 

local technique as appropriate. 

PHASE 3: Remove redundant assertions 

830 

• Identify dominating and dominated assertions 
• Remove the redundant oneS. 

Although we described the methodology as three separate 
processes. in practice PHASE 2 and,PHASE 3 can be overlapped 
to reduce design time. 

The proposed methodology is compatible with the 
traditional software development process in the sense that the 
process of making the program self -checking by adding 
assertions is a totally separate phase in the software 
development process. The job of making the program self
checking can be done by a specialist. and the program designers 
and the programmers need not change their traditional practicing 
styles. Nevertheless. the assertions can serve as a 
communication tool between the designers and the programmers. 
They provide additional information to guide the programmers 
in programming. They are also very useful for the programmers 
to informally verify their code quickly. 

3. ADDING ADDITIONAL PROPERTIES TO SCPs 

In Section 2. all the assertions generated imply the output 
specifications of the programs. If the assertions are true. the 
outputs computed must be correct. This class of assertions 
therefore guarantee the self-checking properties of the programs. 
In this section. we will present a less rigorous technique in which 
the assertions do not imply the output specifications. 
Nevertheless our experiments (to be described) show that this 
technique can also be very effective. 

Since some of the programming problems have their inputs 
and outputs share the same memory space. the outputs therefore 
"destroy" the input information. In order to check the 
correctness of the outputs we must save an extra copy of the 
inputs so that relationships between the inputs and outputs can 
be validated. Sorting is one such example. Since we need to 
check whether the sorted list is a permutation of the original list. 
the input list must be available for the validation. For this class 
of problems. if the size of the input data is large. then the 
assertions based on the input/output relationships are not very 
efficient. 

Alternatively. we may add to the input data some 
properties that are supposed to be preserved by the operations of 
the program. The correctness of the outputs can then be verified 
by checking whether the outputs meet those properties. 
Although an incorrect algorithm may also preserve the added 
properties. this is unlikely if the appropriate properties are used. 
Usually the properties used are those which are very sensitive to 
small changes in the program. Since programmers do not create 
their programs at random. it is reasonable to assume that if a 
program is incorrect. it is almost correct .. Assertions that are 



sensitive to simple coding errors therefore usually provide very 
good fault coverage. 

One technique that adds additional properties to data is 
data encoding. A program can be viewed as a function over an 
input domain with values in an output range. If a program is 
designed to process information encoded in some error detecting 
code. then we can detect faults by observing the program's coded 
output. This technique has been used in designing self-checking 
circuits [1]. In the remainder of this section. we will discuss its 
application to self-checking programs. 

A checksum technique is presented in [2] for detecting and 
correcting errors when matrix operations are performed on a 
multiple processor system. The checksum encoding is done as 
follows. given an n by m matrix A. we transform it into an 
(n+1) by (m+1) matrix. The elements ai.m+1 for l~i ~n and 
tIn +1.) for l~j~m are the row checksums and column 
checksums. respectively and they are computed as follows: 

m 
ai.m+1 = Lat.) for l~i~n 

)=1 
(row checksums) 

tIn+1.) = tai.) for l~j~m 
i=l 

(column checksums) 

The other elements are information elements and are the same as 
the corresponding elements in the original matrix. The strategy 
used in the checksum technique is to encode the input matrices; 
after manipulation. the output matrix is expected to be in the 
encoded format. otherwise. errors have occurred. 

This encoding scheme can be used to design SCPs for 
matrix operations. It is shown in [2. 3] that the encoding scheme 
is preserved by the following matrix operations: addition. 
multiplication. scalar product. LU-decomposition. transposition. 
Gaussian elimination and inversion. 

We show in the following a template for SCPs that use 
data encoding techniques: 

procedure codin8-scp( var input.output: data-type; 
var error: boolean); 

begin 
Reading input; 
Encoding input; 
output +- Data manipulation; 
if coded(output) 

then begin 
error:- false; 
output:- decoding(output) 

end (* then *) 
else error:= true 

end; (* coding-technique *) 

Depending on the error detecting code. the decoding of the output 
may not be necessary. A SCP for matrix multiplication that 
uses the checksum technique is given in the following. The SCPs 
for other matrix operations can be obtained similarly using the 
given template. 

program mat_mul; 
var A: array[1..l + l.1..m] of real; 

B: array[1..m.1..n+1] of real; 
P: array[1..l +1.1..n+1] of real; 
i.j.k: integer; 

831 

begin 
(* reading input *) 
for i:- 1 to l do 

for j:- 1 to m do read(A[i.j]); 
fori:-1 tomdo 

for j:- 1 to n do read(B[i.j]); 
(* encoding input *) 
call column_chksum(A.l .m); 

(* compute column checksums *) 
call row _chksum(B.m.n); 

(* compute row checksums *) 
(* matrix multiplication *) 
for i:- 1 to (l +1) do 

for j:- 1 to (n+1) do 
begin 

P[i.j]:- 0; 
fork:-1 tomdo 

P[i.j]:- P[i.j] + A[i.k] * B[k.j] 
end; 

(* check coded output *) 
if coded(P.l +1.n+1) 

then print P 
else print "faultS detected" 

end; (* mat-mul *) 

The data encoding technique can also be used in non
numeric problems. For instance. suppose we want to sort a list 
of n elements: 

We can encode the list L to get LC as followS: 

LC =- (Xl X2 ••. Xn -1 max C) 
where max - maximum(x 1 ••• Xn ) 

C = I.txi I mod max 
1=1 

Xi = x) for some i and j. 

Once the list is in its encoded form. we need to sort only the first 
n-1 elements of the encoded list because the nth element is 
already in its correct location. 

When the sorting process is done. we can check its 
correctness as follows: 

(a) Check the sorting relationship of the elements in the sorted 
list. 

(b) Compare C with [IDorted elements) mod max I 
The first check is to make sure that the sorted list is a monotone 
sequence. The second check ensures that the sorted list is a 
permutation of the original list. 

Since most. if not all. sorting algorithms use a loop 
structure to process the list. each list element is processed by the 
same set of instructions. If a software fault in the set affects a 
list element. then it likely affects most other list elements as 
well. The same is true for permanent hardware faults because 
the same set of hardware components are used for each iteration 
of the loop. Since the probability that most elements in the 
output list are incorrect yet the list satisfies the proposed 
assertions should be almost zero. the assertions are very 



effective for deiecting software faults and permanent hardware 
faults. Although a transient error· might affect only one list 
element. we can prove that it. will be detected by the assertions. 
The proof is given in the following. 

Let L be a list and i = sorted(L) = (x 1 ••• Xi ••• Xn )· 

Suppose that there is a change in the value of the element at 
position i due to a transient error that occurred during the sort. 
we then have: 

i = (Xl where Xi = Xi + e 

Xi is undetected <-> II kx, I+e mod X. = C 

<~> llitx • 1 mod x. + mod x.1J mod x. = C 

<-> Ic+le mod X. 11 mod x. =c 
<=> e=O' 

Comparing this technique with that of Example 1. we see 
that this technique does not require the inputs for the validation 
process. This is particularly important when the list is long. 

4. EMPIRICAL RESULTS 

4.1 Methodology 

In this subsection. we present a fault simulation technique 
for the evaluation of self-checking properties with respect to 
both software and· hardware faults. The central idea is to 
introduce simulated faults by applying mutation 
transformations to produce mutant programs. These mutants 
are then executed to measure the ability of the set of assertions 
to distinguish the program from its mutants. 

The technique of mutation transformation has been used 
in software testing [23]. A set of 25 mutant operators that 
represent common programming errors "are used in [24. 25]. 
These mutant operators can be used for our purposes to evaluate 
the effectiveness of the SCPs with respect to the software bugs. 

For the study of hardware fault coverage. we could write 
a program to simulate the system for which the SCPs were 
written. However. since hardware systems are designed 
differently. this approach would require'a different version of 
the simulator for each system. This is not very cost-effective. 
Alternatively. we can simply compile the source program to 
obtain the assembly code. Simulated physical faults are then 
introduced into the assembly code by applying appropriate 
hardware mutation transformations (to be described). The 
mutant programs are then executed and the effectiveness of the 
assertions against hardware faults can be determined. This 
technique is diagrammed in Figure 3. Since this scheme performs 
the simulation on the real system. it is therefore also more 
reliable than the former approach. 

The proposed fault simulation technique is an error-based 
testing method. It requires the definition of a set of mutation 
transformations and classes of faults that are considered. The 

832 

Inject 
simulated 

faults 

Figure 3. Strategy for evaluating SCPs with respect 
to hardware faults 

set of faults that constitute the fault model must correctly 
characterize possible physical failures in the hardware system. 
Our hardware fault model is based on the earlier functional 
fault models for complex processors [26.27]. We extend the 
existing fault model to include faults in the memory. 'The fault 
model is given in the following: 

(A) Addressing faults: Faulty decoding circuits can cause 
the following faults: 

• no storage location is selected 
• a wrong storage location is selected 
• more than one storage location is selected; 

(B) Instruction decoding faults: Failures in instruction 
decoding can cause the following faults: 

• no instruction is executed 
• a wrong instruction is executed 
• more than one instruction is executed. 

(C) Faults in storage elements: Some of the bits in the 
storage elements are stuck-at-O (s-a-O) or stuck-at-l (s
a-i). Transient failures can also change the contents of 
registers or memory locations arbitrarily. 

Definition 3: A storage element (a register or a memory 
location) is a sink for an instruction if the execution of the 
instruction modifies its contents. 

Definition 4: A storage element is a source for an instruction if 
it provides an operand for the execution of the instruction. 

We now describe in the following the mutation 
transformations for the three classes of hardware faults' 
described in the fault model: 



(A) Addressing error: 

a) No storage element is selected 
• Delete from the program the one address instructions 

(e.g .• LOAD. STORE •... ) that involve the affected storage 
element. 

• Delete from the program the instructions that have the 
affected storage element as their sinks. 

• If an instruction has the affected storage element as a 
source. replace the source with a constant zero. or a 
different storage element whose content is zero. 

b) Selection of a wrong storage element 
• Replace the correct operand by the incorrect one. 

c) More then one storage;elements..are selected 
• If the storage element is a sink. add instructions to copy 

its contents to the incorrectly selected storage elements. 
• If the storage element is a source. add before the affected 

instruction instructions to logically AND its contents 
with those of the incorrectly selected ones. 

(B) Instruction decoding errors: 

a) No instruction is selected 
• Remove the affected instructions. 

b) Wrong instruction is selected 
• Replace the affected instructions by the incorrectly 

selected one. 

c) More than one instruction is selected 
• Add instructions to logical AND the affected sources 

and/or sinks 

(C) Faults in storage elements: 

Stuck-at faults are simulated by setting or clearing the 
corresponding bits in the affected storage elements. 

'hIn .the experiments. we assumed that shorts between wires 
are equivalent to the wired AND of the affected lines. Although 
this is true in nMOS circuits. it is technology dependent. We 
also assumed that when more than one instruction is executed 
simultaneously. the individual. operations are perfor~ed 
correctly. and only the inputs and outputs of those operations 
are affected by the'wired-AND faults. This is not always true. 
Some of the operations may share parts of the circuitry and the 
interference can cause the operations to be unreliable. We. 
'however. believe that a more complex simulation will show that 
these faults will also be detected by our~technique. 

4.2 The Experiments 

The experiments were done on the VAX 11/780. They 
included hardware faults. transient faults and software faults. 
Four Pascal programs were selected for the experiments based on 
their popularity: 

(1) Sorting 
(2) LU decomposition 
(3) Solution of linear equations 
(4) Eigenvalues and Eigenvectors of a real symmetric 

matrix 

The first two programs use the data encoding technique described 
in Section 3. The third and fourth programs employ the 
techniques discussed in sections 2.1 and 2.2 respectively. 

833 

In order to be able to quickly perform the fault 
simulations reliably. we implemented a tool for the injection of 
simulated physical faults. For each test case. we specified a 
mutant operator. In response. the program asked for additio~al 
relevant information. and then, performed the mutation 
transformation automatically by scanning the assembly code and 
modifying the affected instructions accordingly. For transient 
faults. we used -the debugger ADB [28] available on the VAX. 
ADB is a general purpose debugging program. It provides 
capabilities to examine files and a control environment for the 
execution of UNIX programs. We ran the SCPs under the 
control of ADB. and transient faults were injected by setting 
break points and modifying the object files. For software faults. 
we manually modified the source code for each test case. The 
following relevant mutation transformations were studied in 
our experiments of software fault detection: 

• change operators 
• modify the indices of loops 
• change the loop termination conditions 
• change operands 
• alter control structures 
• modify predicates 

We tried about 12;000 test cases of permanent hardware 
faults. 3.600 test cases of transient faults and 220 test cases of 
software faults. The results of the experiments are summarized 
in Table 1. The tables in the Appendix give the types of faults 
and the resulting errors detected during the experiments. We 
found that essentially all errors that affected the data 
manipulation were detected. Undetected errors were due to 
permanent hardware faults that caused' infinite execution or 
which affected the execution of the assertions. For instance. if an 
instruction decoding fault changes the .incrementing of a loop 
index to a decrement. then the loop will be executed indefinitely. 
In this situation. if the assertions are located outside the loop. 
then the execution will never reach them and the errors will not 
be detected. For another example. if 'an 'addressing fault causes 
the assertion to compare the wrong values. then faulty results 
might not be detected. 

There were a few cases where the errors.due to hardware 
faults were detected by the operating system. for example. 

• tried to read pass end of file 
• illegal instruction 
• memory fault 
• bad data found on real read 
• floating exception 
• bus error. etc ... 

before the program had a chance to check its output (counted as 
,"detected"). Particularly. permanent s-a-1 faults. especially 
those at the more significant bits tend to cause floating exception. 
The errors due to this class ,of faults are generally detected by 
the operating system. 

Table 1. Coverages of errors due to faults 

Type of faults 
Program 

Hardware Transient Software 

Sort 94.47% 100% 100% 

LUdecomp 94.38% 100% 100% 

Linear eqtns 98.60% 100% 100% 

Eigen 99.11% 100% 100% 



There are few cases of errors due to transient and software. 
faults that are not detectable by the CEO technique. They are 
some of those faults that affect only the input/output operations 
of the programs. If a transient or software fault affects only the 
input operations. it effectively changes the input data and the 
SCP cannot recognize the faulty data. unless the data were 
originally stored in some encoded format. Nor can a SCP detect 
transient and software faults that affect the outputs after the 

'correctness of the outputs has been verified by the assertions. 
, These classes of faults are beyond the scope of the proposed CEO 

technique. and are not considered in the computation of the error 
coverages. In fact. most of transient faults that occur during the 
I/O operations are likely to cause memory faults. bus error. etc ... 
and will be detected by most operating systems. We also do not 
consider those faults (mostly transient) that have no effect on 
the outcomes of the computations. It is quite interesting to 
know that many errors. particularly due to transient and 
software faults. are primarily detected by the CEO technique. 

5. HARDW ARE SUPPORT 

Although added assertions can improve significantly the 
reliability of the computing systems. the software redundancy 
also degrades the system performance. The performance 
overhead is from 7.27% to 32.75% for the programs used in our 
experiments. However. this is the price paid for the added 
reliability. Other reliability techniques such as duplication [29]. 
RESO [30] or N-version programming [31] have much higher 
hardware or performance overhead. 

To improve the performance. a dual processor architecture 
an be used in conjunction with SCPs. This architecture can also 
improve the reliability of the CEO system. In a single processor 
system. if the processor is faulty. then the checks performed on 
the faulty processor may not be reliable. In our experiments. a 
large number of the undetected errors are of this class. The dual 
processor system can solve this problem by having each process 
and its checks executed on different processors. For instance. 
suppose we want to mUltiply two checksum encoded N by N 
matrices: every two rows of the product matrix can be computed 
simultaneously on the two processors. and each row checksum 
can also be checked in parallel on the other processor (i.e.. if 
processor 1 computes row i. then the checksum properties of row 
i should be checked by processor 2).' This scheme ensures that if 
one processor fails. the faulty results it computes will be 
detected by the good processor. 

Comparing this technique with the traditional dual 
redundancy systems. the traditional technique has the 
advantages of being simpler and having slightly better hardware 
fault coverage. The proposed .technique. however. has benefits 
not available in the traditional approach. Most noticeably. the 
traditional technique dose not detect software faults. Besides. if 
one of the processors fails. our experiments shows that the 
remaining processor of the proposed dual processor system can 
still rely on the self-checking capabilities of the software to 
perform considerably more reliable computations in a degraded 
manner. The performance overhead is also better in the 
proposed scheme. Extending this concept further. we see that 
the reliability of SCPs can also be improved by having the data 
manipulation and checks done on different processors of a 
distributed system. The proposed CEO technique is therefore 
very attractive for many critical applications. particularly those 
which demand highly reliable software. The scheme is thus a 
novel type of design diversity [32]. 

6. CONCLUSIONS 

In this paper. we presented a methodology for the design 
of self-checking programs in which the assertions are 
systematically generated from the design of the progra~. 
Software developed using the proposed methodology 1S 

guaranteed to be self-checking with respect to software faults. 
A less rigorous technique that adds additional properties to 
programs for the self-checking purposes was also disc~ssed. 
This technique is particularly useful when the number of mputs 
is large. 

We also described in this paper a fault simulation 
technique that can be use to study the hardware and software 
fault coverage of SCPs. This technique was used in our 
empirical study. The experimental results suggest that SCPs 
provide excellent coverage against both hardware and software 
faults. The effectiveness of higher level versus lower level error 
detection technique is a controversial issue. The proposed fault 
simulation technique allows us to study the effectiveness of the 
SCPs with respect to the whole spectrum of computing faults: 
low level faults such as stuck-at faults in the storage elements. 
functional level faults such as those that cause decoding errors. 
and system level faults such as bugs in the software. 

834 

We also proposed a dual processor technique for SCP 
processing. This scheme can improve both system performance 
and reliability. We believe that the proposed approach is 
superior in many aspects to the traditional redundancy methods 
such as duplication. N-version programming or signatured 
instruction streams. 

REFERENCES 

[1] J. Wakerly. Error Detecting Codes, Self-Checking Circuits 
and Applications, New York: North-Holland. 1978 

[2] K-H Huang and J. A. Abraham. "Algorithm-Based Fault 
Tolerance for Matrix Operations." IEEE Trans. on Comput., • 
vol. C-33. pp. 518-528. June 1984. 

[3] J-Y Jou and J. A. Abraham. "Fault-Tolerant Matrix 
Arithmetic and Signal Processing on Highly Concurrent 
Computing Structures." Proceedings of the IEEE Special 
Issue on Fault Tolerance in VLSI, vol. 74. no. 5. pp. 732-
741. May 1986. 

[4] P. Banerjee and J. A. Abraham. "Fault-Secure Algorithms 
for Multiple-Processor Systems." Proc. IEEE Int'l Symp. on 
Computer Architecture, pp. 279-287. June 1984. 

[5] S. S. Yau and F-C Chen. "An Approach to Concurrent 
Control Flow Checking." IEEE Trans. on Software 
Engineering, vol. SE-6. pp. 126-137. Mar. 1980. 

[6] T. Sridhar and S. M. Thatte. "Concurrent Checking of 
Program Flow in VLSI Processors." Proc. Int'l Test Conf., 
pp. 191-199. 1982. 

[7] J. P. Shen and M. A. Schuette. "On-Line Self-Monitoring 
Using Signatured Instruction Streams." Proc. Int'l Test 
Conf., pp. 275-282. 1983. 

[8] D. J. Taylor. D. E. Morgan and J. P. Black. "Redunpancy in 
Data Structures: Improving Software Fault Tolerance." 
IEEE Trans. on Software Engineering, vol. SE-6. pp. 585-
594. Nov. 1980. 

[9] D. J. Taylor. D. E. Morgan and J. P. Black. "Redundancy in 
Data Structures: Some Theoretical Results." IEEE Trans. on 
Software Engineering, vol. SE-6. pp. 595-602. Nov. 1980. 



S. S. Yau and R. C. Cheung. "Design of Self-Checking 
Software." Proc. Int'l Conf. on Reliability Software, pp. 
405-457. April 1975. 

[11] D. M. Andrews. "Using Executable Assertions for Testing 
and Fault Tolerance." Proc. 9th Int'l Symp. on Fault 
Tolerant Computing, pp. 102-105. June 1979. 

[12] A. Mahmood. E. J. McCluskey and D. J. Lu. "Concurrent 
Fault Detection Using A Watchdog Processor and 
Assertions." Proc. Int'l Test Conf., pp. 622-628. 1983. 

[13] A. Milli. Self-Checking Programs: An Axiomatic Approach 
to The Validation of Programs by The Use of Assertions. 
PH. D. dissertation. Dept. Compo Sci.. University of Illinois. 
Urbana. 1981. 

[14] J. P. Black et al.. "A Case Study in Fault Tolerant 
Software." Software - Practice and Experience, vol. 11. pp. 
145-157. 1981. 

[15] S. ~ ... Hantler and J. C. King. "An Introduction to Proving 
The Correctness of Programs." Computing Surveys,- vol. 8. 
pp.331-353.Sept.1976. 

[16] B. Elspas. "The Semiautomatic Generation of Inductive 
Assertions For Proving Program Correctness," (Interim 
Report. Project 2686). Stanford Research Institute. Menlo 
Park. California. July 1974. 

[17] S. M. German and B. Wegbreit. "A Synthesizer of In:ductive 
Assertions." IEEE Trans. On Software Eng., vol. SE-1. pp. 
68-75. 1975. 

[18] S. M. Katz and Z. Manna. "The Logical Analysis of 
Programs." CACM, 19 (4). 1976. pp. 188-206. 

[19] B. Weibreit. "The Synthesis of Loop Predicates." CACM, 16 
(2). 1974.pp. 102-112. 

[20] R. W. Floyd. "Assigning Meaning to Programs." Proc. of the 
American Math. Soc. Symp. in Applied Math. (vol. 19). 
Providence. R. I.: American Math. Soc .• 1967. pp. 19-31. 

[21] S. Katz and Z. Manna. "A Close Look at Termination." in 
Current Trends in Programming Methodology, vol. II. R. 
Yeh. Ed .• Englewood Cliffs. NJ: Prentice-Hall. 1977. Chap. 
10. 

[22] John Greenstadt. "The Determination of The Characteristic 
Roots of A Matrix by The Jacobi Method." in Mathematical 
Methods For Digital Computers, vol. I. A. Ralston and H. S. 
Wilf. Eds. New York. NY: John Wiley & Sons. Inc .• April. 
1967. pp. 84-91. 

[23] R. A. DeMillo and R. J. Lipton. "Hints on Test Data 
Selection: Help for the Practicing Programmer." IEEE 
Computer, April 1978. pp. 34-41. 

[24] T. A. Budd et al.. "The Design of A Prototype Mutation 
System for Program Testing." National Computer 
Conference,pp.623-627.1978. 

[25] T. A. Budd and F. Sayward. "Users Guide to The Pilot 
Mutation System." Yale University Rep. 114, Dept. of 
Compo Sci .• 1977. 

[26] S. P. Thatte and J. A. Abraham. "Test Generation for 
Microprocessors." IEEE Trans. Comput., vol. C-29. pp. 
429-441. June 1980. 

[27] D. Brahme and J. A. Abraham. "Functional Testing of 
Microprocessors." IEEE Trans. Comput., vol. C-33. pp. 
475-485. June 1984. 

[28] J. F. Maranzano and S. R. Bourne. "A Tutorial Introduction 
to ADB." in Unix Programmer's Manual, Seventh Edition. 
vol. 2A. Murray Hill. NJ: Bell Laboratories. Jan. 1979. 

[29] J. von Neumann. "Probabilistic Logics and The Synthesis of 
Reliable Organisms from Unreliable Components." in 
Automata Studies, C. E. Shannon and J. McCarthy .• Eds. 
Princeton. NJ: Princeton University Press. pp. 43-98. 1956. 

[30] J. H Patel and L. Y. Fung. "Concurrent Error Detection in 
ALU's by Recomputing with Shifted Operands." IEEE 
Trans. Comput., vol. C-31. pp. 589-595. July 1982. 

[31] L. Chen and A. Avizienis. liN-Version Programming: A 
Fault-Tolerance Approach to Reliability of Software 
Operation." Proc. 8th Int'l Sump. on Fault Tolerant 
Computing, pp. 3-9. June 1978. . 

[32] A. Avizienis and J. P. J. Kelly. "Fault Tolerance by Design 
Diversity: Concepts and Experiments." IEEE Computer, vol. 
17. no. 8. pp.67-80. Aug. 1984. 

APPENDIX 

The tables in this appendix give the types of faults 
considered in the experiments. 

Table 2. Faults and resulting errors in the sort program. 

Errors Errors Detected by Undetected 
Type of faults 

Detected by CEO Operating System Errors 

Faults In storags elements 310 (40.16'1» 419(54.27'1» 43 (5..:57'1» 

Hardware InstrucUon Decoding Faults 151 (30.26'1» 317 (63..:53'1» 31 (6.21'1» 

Addressing Faults 323 (39.10'1» 461(55.81'1» 42 (5.ll9'l1» 

Control Faults 28 (46.67'1» 32 (53.33'1» 0(0'1» 

Transient Instructlon Decodlng Faults 153 (60.00'1» 102 (40.00'1» 0(0'1» 

Addressing Faults 110 (68.75'1» 50(31.25'1» 0(0'1» 

Software Mutations 34 (89.47'1» 4(10..:53'1» o (0'1» 

Table 3. Faults and resulting errors in the LUdecompose 
program. 

Errors Errors Detected by Undetected 
Type of Faults 

Detected by CEO Operating System Errors 

Faults In storage elements 318 (37.86'1» 471 (56.07'1» 51 (6.07'1» 

Hardware Instruction Decodlng Faults 214 (42.35'1» 355 CS4.87'1» 18(2.78'1» 

Addressing Faults 412 (54.64'1» 285 (37.8O'lI» 57 (7..:56'1» 

Control Faults 23 (43.40'1» 30(56.60'1» 0(0'1» 

Transient InstrucUon Decodlng Faults 109 (74.15'1» 38 (25.85'1» o (0'1» 

Addressing Faults 89 (60.14'1» 59(39.86'1» o (0'1» 

Software Mutations 37 (94.87'1» 2 (5.22'1» o (0'1» 

Table 4. Faults and resulting errors in the linear equation 
program. 

Type oC Faults 
Errors Errors Detected by Undetected 

Detected by CEO Operating System Errors 

Faults In storage elements 154 (26.10'1» 432 (73.22'1» 4 (0.68'1» 

Hardware Instructlon Decodlng Faults 112 (31.28'1» 239 (66.76'1» 7 (1.96'1» 

Addressing Faults 272 (29.69'1» 629 (68.67'1» 15 (1.64'1» 

Control Faults 34 (66.67'1» 17(33.33'1» 0(0'1» 

Transient InstrucUon Decodlng Faults 88 (83.81'1» 17 (17.19'1» o (0'1» 

Addresslng Faults 58 (82.86'1» 12 (17.14'1» 0(0'1» 

Software MutaUons 43 (95.56'1» 2 (4.44'1» o (0'1» 

Table 5. Faults and resulting errors in the Eigen program. 

Type of Faults 
Errors Errors Detected by Undetected 

Detected by CEO Operating System Errors 

Faults In storage elements 752 (49.25'11) 771 (50.49'11) 4 (0.26'11) 

Hardware Instruction Decoding Faults 288 (37.11'11) 472 (60.82'11) 16 (2.07'11) 

Addressing Fa.ults 1.526 (59.63'11) 1010 (39.47'11) 23 (0.90'11) 

Control Faults .57 (78.08'11) 16 (21.92'11) o (0'11) 

Transient Instructlon Decoding Faults 187 (82.74'11) 39 (17.26'11) o (0'11) 

Addressing Faults 108 (81.82'11) 24 (18.18'11) o (0'11) 

Software Mutations 87 (96.67'11) 3 (3.33'11) o (0'11) 

835 



STUCK-AT FAULT DETECTION IN PARITY TREES 

Samiha Mourad*, Joseph L. A. Hughes, and Edward J. MCCluskey 

CENTER FOR RELIABLE COMPUTING 
Departments of Electrical Engineering and Computer Science 

Stanford University, Stanford, California 94305 

ABSTRACT 

Algori thms for the generation of test sets 
for a parity checker tree of 2-input EXCLUSIVE-OR 
(XOR) gates are described. A minimal test set (3 
patterns) detects all single stuck-at faults at the 
input leads of the XOR gates. Three test sets that 
guarantee 100S fault coverage for double stuck-at 
faults are developed. Their lengths increases 
logarithmically with the number of inputs of the 
tree. Two of these tests detect all single and 
double faults. 

IITRODUCTION 
There is general agreement that single faults 

do not represent the actual circuit failures, 
particularly in current IC technologies. The 
number of faults and the frequency with which some 
faul ts occur have been affected by two main 
changes: the reduction in s1 ze of the dev ices and 
the increase in circuit complexity. For example, 
during the fabrication process a single surface 
defect or a variation in processing parameters can 
cause multiple faults. As feature si ze decreases, 
this problem becomes more severe due to the larger 
relative size of surface defects. 

Experimental investigations to assess the 
goodness of single stuck-at fault test sets for 
detecting multiple stuck-at faults were carried out 
by [Hughes 84,85]. These simulation studies of 
the 14LS181 4-bit ALU, using 10 single stuck-at 
test sets and one toggle-only test set, 
demonstrated very high multiple stuck-at fault 
coverage. The actual fault coverage was 
significantly higher than the fault coverage bounds 
based on an analysis of the network structure 
[Agrawal 81]. In order to confirm the usefulness 
of single fault test sets in detecting multiple 
faults, there is a need to evaluate other circuits 
that are commonly used in digital systems. 

This paper analyzes the effectiveness of 
single stuck-at fault test sets in detecting 
multiple stuck-at faults in a very widely used 
circuit, a parity checker. First, an optimal 
single stuck-at test set that is sui table for any 
XOR gate implementation is presented. Then a 
reduced test set is developed to detect single 
stuck-at faults at the input pins of XOR gates. 

* Also, with the Computer Engineering Department 
San Jose State University, San Jose, CA 95192. 

CH2345-7/86/0000/0836$01.00 © 1986 IEEE 
836 

The circuit is simulated to determine the 
effectiveness of these tests for detecting multiple 
faults. Test sets that detects all double stuck-at 
faults are developed. 

2 PARITY NETWORKS 
Probably the most widely used encoding scheme 

is parity. Parity checkers are used with memory 
arrays, registers, and buses. Parity has been the 
most popular checking scheme in real computer 
systems such as the IBM 4341 [Ciacelli81], the 
Sperry Univac 1100/60 processor [Boone 80], and the 
VAX 111180 [Swarz 18]. Although parity may not be 
the most cost effective code for every situation, 
it is very widely used either by itself or in 
conjunction with duplication [Sedmak 80]. Self
checking parity checkers also are used in PLA 
testing [Khakbaz 82]. 

Since parity checkers are themselves circuit 
modules, they are also subject to circuit failures. 
Thus, not only should a parity checker be able to 
detect errors in its inputs, it also should be 
testable for faults within itself. 

3 STUCK AT FAULTS 
3.1 Single Stuck-At Faults 

The parity tree in Fig. 1 consists of 2-input 
XOR gates. It has been shown [Bossen 10] that such 
circuits are fully tested for Single stuck-at 
faults by an optimum test set that consists of only 
4 patterns. This result is based on the following 
assumptions: 1) no internal realization of the XOR 
gate is assumed, and 2) all 4 input patterns are 
needed to fully test the XOR gate. 

PII ROllO 

PI2 S 0101 

PI3 ROllO 

PI4 T 0011 

PIs 
PI6 S 0101 

PI7 T 0011 

PIa S 0101 

Figure 1. An 8-input parity tree. 



Three vectors, R, Sand T consisting each of 
two 'O's and two 'l's are used to develop the 
Bossen test. The addition mod(2) of the vectors is 
defined by the matrix in Table 1. 

Table 1. Addition table of the vectors R, Sand T. 

o 
R 
S 
T 

o 

o 
R 
S 
T 

R 

R 
o 
T 
S 

o is the all zeros vector. 

S 

S 
T 
o 
R 

T 

T 
S 
R 
o 

The test is developed by first assigning one 
of the 3 vectors to the output of the tree. For 
the B-input tree shown in Fig. 1, the output 
vector, T, at gate XOR1, is arbitrarily selected. 
Then employing the labeling procedure [Bossen 10 J 
shown in Fig. 2( a), the input pat terns for gate 
XOR1 are determined. They are the vectors Rand S 
shown in Fig. 2(b). The patterns Rand S are such 
that they form an exhaustive test set for XOR1. 
These two vectors are the outputs of gates XOR5 and 
XOR6, and the input vectors to these two gates are 
now determined in the same fashion. 

(e) 

Cb) 

Figure 2. Gate labeling procedure (a) and example 
of test generation (b) for Bossen test. 

The procedure is followed until all vectors 
have been generated. They are shown at the 
corresponding nodes in Fig. 1. The optimum test 
set thus generated (called Bossen throughout the 
rest of this paper) is formed by concatenating all 
vectors at the Primary Inputs (PI) 1 through 8. 
The test set is listed in Table 2. The labeling of 
an n-input tree may be generalized in the form of 
the following algorithm which is a variation of the 
algorithms developed by [Bossen 10J and [Seth 71J. 

Algorithm 1. 
1. Let Z = {R, S, T}. Assign any vector in Z to 
the output of the tree. 

2. Repeat until all leads are labeled: For each 
XOR gate whose output lead is labeled, 
assign to its inputs the two other vactors. 

3. The vectors at the primary inputs of the tree 
form the test set. 

837 

Table 2. Bossen test for 8-input parity tree. 

Primary Input 
Pattern 1/ 123 4 5 6 1 8 

1 o 1 0 o 1 1 
2 1 0 1 1 0 0 
3 11101101 
4 000 000 0 0 

Vector Name R S R T R S T S 

The test set listed above guarantees the 
detection of all single stuck-at faults at the 
input leads as well as at all internal nodes of the 
XOR gates for any gate implementation. If, 
however, only faults at the XOR gates input leads 
are to be detected, the first 3 patterns of the 
test shown in Table 1 are sufficient. Consider a 
Single XOR gate. All 6 single stuck-at faults can 
be detected with one of the following two tests, UV 
or U'V', where U = {011} and V = {101}. Note that 
U Q V = W, V i W = U, and W i U = V, where W = 
{110}, and that U, V and Ware obtained from the 
vectors R, Sand T by eliminating the last bit 
(which is 0 for all of them). Thus, using 
algorithm I and the set Z={U, V, W}, it is possible 
to generate a test that detects faults at the leads 
of the gates for any size tree. This test set will 
be called Mourad throughout the paper. 

3.2 Double Stuck-At Faults 
Although the generated test sets, Bossen and 

Mourad, detect all single stuck-at faults, they are 
not sufficient to detect all multiple stuck-at 
faults. This failure to detect double stuck-at 
faults will be explained next. For this we refer 
back to the circuit in Fig. 1. If node a and node 
b are both stuck-at-O, or both stuck-at-l, the sets 
of all tests that detect these multiple faults is 
given respectively by the Boolean functions [Breuer 
16J 

abed 2f / d{ab» + ab' (df/da) + a'b (df/db) 

a'b'(d 2f / d(ab» + a'b (df/da) + ab' (df/db) 

(1) 

(2) 

where df/dx, x=a or b, is the Boolean ,difference of 

f with respect to x, and d2f/d( ab) is the Boolean 
difference of f with respect to a and b. The first 
term of either equation represents a sensitizing 
path from a and b, and the other terms, paths from 
a and from b respectively. These Boolean functions 
are easily evaluated [McCluskey 86J with the 
following results: 

df/dx= 1 for x=a or b, 
df/d{ab) = o. 

(3) 
(4) 

substituting these values, expressions (1) and (2) 
reduce to the same expression: 

ab' + a'b (5) 

The corresponding test patterns are 10 or 01. 
In general form, the test vectors at node a and 
node b cannot be equal if either of these double 
stuck-at faults is to be detected. It can be shown 
in a similar fashion, that if node a Is stuck-at-l 
(or 0) and node b stuck-at-O (or 1), the set of 



test sets to detect these faults is given by the 
expression 

ab + a'b' (6) 

Here, the corresponding test patterns are 00 
and 11. The test vectors at node a and node b 
cannot be complements of each other if either of 
these double faults is to be detected. 

The constraints dictated by Eqs. (5) and (6) 
apply to any double stuck-at fault test. In the 
remainder of this section and in subsequent 
discussion regarding the effectiveness of single 
stuck-at faults tests to detect multiple faults, 
test Bossen will be used as an example. 

Pari ty tree nodes that have the same label 
receive identical values for all vectors in the 
Bossen test set. Thus, if two identically labeled 
nodes are both stuck-at 0 or both stuck-at 1, the 
multiple fault will not be detected by the Bossen 
test set. For the example in Fig. 1 nodes PI1, 
PI3, PI5, and the outputs of gates XOR5 and XOR4 
are all labeled with the vector R. Since no two of 
the Bossen's vectors are complements of each other, 
all double faults such that one node is stuck-at-1 
(or 0) and the other stuck-at-O (or 1) are detected 
by this same test. 

If the two faulty nodes are along the same 
sensitizing path, it can be easily shown by a 
similar analysis that the multiple stuck-at fault 
will be detected by the Bossen test set because 
this case reduces to the detection of Single stuck
at fault at one of the nodes. For the example in 
Fig. 1, the multiple fault PI1 stuck-at 0 and XOR5 
output stuck-at 0 will be equivalent to the single 
fault at the output of XOR5. 

Using these results, it is possible to 
calculate a lower bound on the fault coverage for 
double stuck-at faults in par i t Y trees. Thi s was 
found to be 83 .33~ {Mourad 86]. Comparison of 
these results with those reported in [Hughes84,85], 
shows that the multiple stuck-at fault coverage of 
single stuck-at fault test sets is significantly 
lower for the parity tree than for the 74LS181 4-
bit ALU. The next section describes the 
development of tests that detect all double stuck
at faults. 

4 DOUBLE FAULT TEST SETS 
In order to detect double stuck-at faults on 

identically labeled nodes, these nodes of the 
parity tree must be assigned different vectors. 
That is, the labels X and Y on any two nodes must 
satisfy the following two properties 

X oJ. Y and X oJ. Y' (8) 

First, tests that guarantee 100~ detection of 
all double stuck-at faults at the leads of the XOR 
gates will be developed. Then test sets Bossen and 
Mourad will be mod ified and augmented to assign 
different vectors at the identically labeled nodes 
and hence to detect all double stuck-at faults. 

From expressions (5) and (6) it is clear that 
a test set that detects double stuck-at faults on 
the nodes of a single XOR gate, should include a 
pattern holding both inputs at the same signal {OO 

838 

or 11} and another pattern holding the inputs at 
opposite values {10 or on. Thus there are four 
possible test sets to fully detect double stuck-at 
faults on the input leads of an XOR gate. In 
vector notation, these test sets are AB, AB', A'B 
and A' B', where A = {1 1} and B = {1 o}. Notice 
that Bossen vectors can be expressed as 
concatenations of these two vectors: R=B'B, S=BB 

and T=AA'. The 4 vectors form the group, G(Z22 , 

~), where Z22 is the a 2-bit, 2-symbols (0 and 1) 

code. 

For a 4-input tree, the vectors A and Band 
their complements are not sufficient to uniquely 
label all its internal nodes. ft~ extra bit can be 
appended to each vector in an effort to 
discriminate among them. There are 8 3-bit 
vectors, of these only 4 can be used because of the 
constraints given by Eq. (8). Hence, it is 
necessary to augment the bits in the vectors to 4. 

All 16 4-bit vectors form a group, G(Z24,~). Due 

to the constraint given by Eq. (8), any 8 of these 
vectors that form a subgroup could be used in 
labeling the tree. Arbitrary, vectors 0 through 7 
will be used. The set of these vectors will be 
denoted by Z4. In general, Zn is used to denote 

the set of all labeling vectors of an n-input tree. 
In a similar fashion it can be shown that at least 
5 bits will be needed to generate the labels for an 
8-input XOR tree. In gener al, an n-input tree 
(n)2) requires at least L bits, where 
L=(log2(n)+2). Note however, that if the all '0' 

(or all '1') vector is used, the node assigned such 
a vector will not be tested for single stuck-at-1 
(or at-Ole 

Next, the assignment of the vectors to the 
nodes will be explained. Assuming the output of an 
XOR gate is labeled, then the inputs to this gate 
can be labeled using elements of Zn. Now these 2 

labels can be used to label the inputs of their 
corresponding gates. However, in selecting the 
labels, care should be taken in order to avoid 
duplicating previously used labels. 

Algorithm .!!. 

1. Let Zn be the set of all labeling vectors. 

Assign any vector from Zn to the output of the 

tree. 

2. Repeat until all leads are labeled: 
For every XOR gate whose output is labeled with 
a vector, say x in Zn' assign to its inputs 

the 2 vectors y and z such x=y ~z and x and 
y ( {Zn-Zi), where Zi is the set of all labels 

that were already assigned to leads other than 
those in the same sentisising path. 

3. The vectors at the primary inputs of the tree 
form the test set. 

Algorithm II is used to generate test sets for 
4-and 8-input parity trees. The tests are 11 sted 
in Table 5. They guarantee 100~ fault coverage for 



double stuck-at faults. 
guarantee the detection 
faults. 

They do not, however ~ 
of all single stuck-at 

Table 3. Minimal tests to detect all 
double and some single stuck-at faults. 

Pattern 

II 

1 
2 
3 
4 
5 

Vector 

4-input 

234 

000 
o 100 
000 1 
000 0 

B B'A'A' 
A'A'A'B 

8-input 

2 3 4 5 6 1 a 
111 1101 
1000001 
010 100 0 
01100001 
o 0 0 0 0 0 0 0 

A B B A B B A'A 
A'A B'B B A'AtB' 
o 0 0 0 0 0 0 0 

It is desirable to develop tests that yield 
high coverage for both single and double stuok-at 
faults. The approach is as follow: start with the 
Bossen test (exhaustive test for every XOR gate) or 
the Hourad test (detection of faults at the input 
leads of the gates) then augment this test in such 
a way that all the nodes are assigned unique 
vectors. 

As was demonstrated earlier [Mourad 86], an n
input parity tree has at most J nodes labeled R, S 
or T, where J=k or k+1 and 2n-1=3k or 3k+1. 
Therefore, at least J distinct vectors that 
pairwise satisfy Eqs. (1) and (8) need to be 
appended to the Bossen (or the Hourad) vectors in 
order to distinguish between identically labeled 
nodes. To form the required J vectors at least 
:1og2 J1=10g2(n) bits are needed. Hence, the 

minimal test that detect all single stuck-at and 
all double stuck-at faults on a n-input tree is 
10g2 (n) + 4. 

Algorithm II is used to label the tree. Here, 
the vectors of the set Zn' are formed by 

concatenating the Bossen' s vectors and 

Algorithm II was used to generate test sets for the 
4-input and an a-input parity trees. The test sets 
are listed in Tables 4 and 5. 

Table 4. Tests to detect all Single and double 
faults at the input leads of the XOR gates. 

Pattern 4-input 

n 1 2 3 4 

1 o 1 o 1 
2 0 1 1 
3 1 1 0 
4 1 1 
5 0 0 
6 

Vector Name U V U W 
B'A A B' 

8-input 

2 3 4 5 6 1 8 

01010111 
10111110 
1 1 1 0 100 1 
1 1 0 10010 
1 0 1 001 
0 1 1 100 

U V U W U W W V 
A B B'B A'B'A Bt 
01110011 

839 

Table 5. Tests to deteot single and double faults 
at the input leads as well as 

the internal nodes of the XOR gates. 

Pattern 4-input 

123 4 

1 0 1 0 
2 1 0 1 1 
31110 
4 0 0 0 0 
5 1 1 1 1 
6 0 1 1 0 
1 

Vector Name R S R T 
B'A A B' 

a-input 

2 3 4 5 6 1 a 
o 1 0 1 0 1 1 1 
10111110 
1 1 101 001 
o 0 0 0 0 0 0 0 
11010010 
10100 1 1 1 
01110011 

R S R T R T T S 
A B B'B A'B'A B' 
o 1 1 100 1 1 

A summary of all test sets disoussed in this 
paper is given in Table 1. The fault type is 
listed in the first column. Then the number of 
patterns for parity trees with inputs ranging from 
2 to 16 are listed in the next columns. 

Table 6. Summary of all tests for the parity tree. 

Number of 
primary input leads 

Type of stuck-at fault 2 4 8 16 

Single at pins only 3 3 3 3 
Single at pins and internal 4 4 4 4 
Double mainly 2 4 5 6 
Double and single at pins 3 5 6 1 
Double at pins and single 
at pins and internal nodes 4 6 1 a 

5 SUMMARY AID CO.CLUSIONS 
This paper reports a study on the 

effectiveness of single stuck-at faults test sets 
in detecting double stuck-at faults for a parity 
tree, and the development of double stuck-at fault 
tests for this circuit. Such circuits are 
extensively used as code checkers in logic circuits 
and communication systems. The parity tree is 
completely tested for single stuck-at faults with a 
4-pattern test [Bossen 10]. However, this test 
yields unacceptable fault coverages for multiple 
stuck-at faults. For a more practical tree size, 
32-input, the coverage is 85%. The coverage is 
estimated to decrease with increased nurllber of 
primary inputs to 83.33%. 

The results reported here are significantly 
lower than those obtained for the 4 bit ALU 
[Hughes 84,85]. However, this is not surprising 
because the circuit is symmetric, has one output 
and, naturally, comprises many XOR gates. 

Although single stuck fault tests appear to 
provide adequate multiple fault coverage for some 
circuits, the analysis of the parity tree 
demonstrates that such high fault coverage is not 
guaranteed for all circuits. Thus, further 
experimentation is needed on other circuits in 
order to fully evaluate the effectiveness of single 
stuck-at fault test sets in detecting multiple 
stuck-at faults. 



Three test sets for double stuck-at faults are 
developed in this paper for parity trees. The 
first test set guarantees 100% detection of double 
stuck-at faults but misses some single stuck-at 
faul ts. The second test set fully detects single 
as well as double stuck-at faults but 'onlyat the 
input leads of the gates. Finally, The third test 
set detects all single stuck-at faults and double 
faults at the leads. Unlike the results reported 
in [Seth 77], the length of these test sets 
increases logarithmically with the number of inputs 
leads of th 

6 ACKNOWLEDGEMENTS 
This research was supported in part by the 

Innovative Science and Technology Office of the 
Strat.egic Defense Initiative Organization and was 
administered through the Office of Naval Research 
under contract no. N00014-85-K-0600. The authors 
wish to thank Laung-Terng Wang and Jon Udell for 
their suggestions. Thanks are also due to David 
and Joseph McCluskey for their assistance in 
preparation of this manuscript. 

7 REFERENCES 

[Agarwal 81] Agarwal, V.K. and A.S.F. Fung, 
"Multiple Fault Testing of Large Circuits by Single 
Fault Test Sets," IEEE Trans. Comp., Vol. C-30, 
No.1", pp. 855-865, November 1981. 

[Boone 80] Boone, L.A., H.L. Liebergot, and 
R. M. Sedmak, "Availability, reliability, and 
maintainability of the Sperry Univac 1100/60," 
Digest ,The 10th Annual International Symposium on 
Fauit-Toleranr--Computing (FTCS-10), pp. 3-8: 
Kyoto, Japan, October 1980. 

[Bossen 70] Bossen, D.C., D.L. Ostapko, and 
A.M. Patel, "Optimum Test Patterns for parity 
Networks," Proc. AFIPS Fall 1970 Joint Computer 
Conference, Vol. 37, pp.--63-38, Houston, Texas, 
November 1970. 

[Breuer 76] Breuer, M.A. and A.D. Friedman, 
Diagnosis and Reliable Design of Digita 
Systems,Computer Science Press~. 

[Ciacelli 81] Ciacelli, M.L., "Fault handling 
on the IBM 4341 processor," Digest, The 11th Annual 
International Symposium on Fault-Toleran~mputIng 
(FTCS-11), pp. 9-12, Portland, Maine, June 1981. 

[Hughes 84] Hughes, J.L.A., and E.J. 
McCluskey, "An Analysis of the Multiple Fault 
Detection Capabilites of Single Stuck-At Fault Test 
Sets," Proc. International Test Conference, pp. 
52-58, Philadelphia, Pennsylvania, October 1984. 

[Hughes 85] Hughes, J.L.A., S. Mourad, and 
E. J. McCluskey, "An Experimental Study Comparing 
74LS181 Test Sets," Digest, COMPCON Spring 85, pp. 
384-387, San Franci,sco, California, March 1985. 

[Khakbaz 82] Khakbaz, J. and E. J. McCluskey, 
"Concurrent error detection and testing for large 
PLA 's ," Joint Special Issue on VLSI Systems IEEE 
Journal of Solid State CirCUits, vol. SC-17 , 
no .• 2, pp. 386-394; and IEEE Trans. Electron 
Dev ices, vol. ED-29 , no. 4;"I)p .--m-7 64, Apr il 

.. 1982. 

[McCluskey 86] McCluskey. E.J., Logic Design 
Principles with Emphasis on Testable SeiTii--C'UstOiii 
Circuits, Prentice Hall,--Engelwood Cliffs, NJ, 
1986. 

[Mourad 86] Mourad, S., J.A.L. Hughes and E.J. 
McCluskey, "Multiple Faut Detection in Parity 
Trees," Digest, COMPCON Spring 86,pp. 441-444, San 
Francisco, March 1986. 

[Sedmak 80] Sedmak, R.M., and H.L. Liebergot, 
"Fault-tolerance of a -general. purpose computer 
implemented by very large scale integration," 
Special Issue on fault-tolerant computing, IEEE 
Trans. Comp., Vol. C-29., No.6, pp. 492-500. 
June 1980-.--

[Seth 77] Seth, S.C. and K.L. Kodandapani, 
"Diagnosis of Faults in Linear Tree Networks ," IEEE 
Trans. Comp., Vol. C-26 , No.1, pp. 29-33. 
January 1977. 

[Swarz 78] Swarz, R.S.. "Reliability and 
maintainability enhancements for the VAX-111780," 
Digest, '.!!!! 8th Annual International Symposium ~ 
Fault-Tolerant Computing (FTCS-8), pp. 24-28. 
Toulouse, France, June 1978. 

840 



A TWO LEVEL GUIDANCE HEURISTIC FOR ATPG 

Tom Kirkland 

MCC 
g430 Research Blvd. 

Austin, Tx 7875g 

ABSTRACT 

A heuristic for guiding ATPG algorithms is 
presented based on a two-level view of the circuit, func
tional and topological. The heuristic eliminates many 
of the drawbacks of previous guidance measures since it 
reduces the number of potential conflicts that may arise 
due to reconvergent fanout. The procedure for calculat
ing the guidance measure is explained and the selection 
rules are illustrated. 

INTRODUCTION 

The use of search algorithms for Automatic Test 
Pattern Generation (ATPG) raises questions concerning 
the most efficient way to organize the search to produce 

a test in the shortest possible time1,2,3 .• These ques
tions are usually answered, at. least. in part, by some 
type of guidance measure, such as controllability and/or 

observability2,4. However, most of the measures used 
to date have been derived by a single-'level algorithm 
which computes values based only on locally derived 

information such as the SCOAP measure5. This pro
cess is easy to program and executes rapidly, but misses 
many important details about the overall topology of 
the circuit. As we will show, the topology affects the 
potential for conflict in node assignments during ATPG 
and, therefore should be included in any heuristic meas
ure used for ATPG guidance. First, we must look at 
the types of error introduced by measures based only on 
local information. Then we describe a two-level meas
ure that eliminates or reduces the potential for conflict 
during the backdrive process of ATPG. 

We assume that a search algorithm is being used 
for ATPG that requires choices to be made during back
drive from the fault site. This algorithm could be the 
D-Algorithm, POD EM, FAN, or any similar method 
that searches a node space until a test is found or it is 
determined that none exists. Whenever more than one 

CH2345-7/86/0000/0841$01.00©1986 IEEE 
841 

M. Ray Mercer 

Univ. of Texas at Austin 
ENS 143 

Austin, TX 78712.;.1084 

node is a. candidate for inclusion in the search tree at a 
given point in the process,. a choice must be made. 
These choices can be made randomly, but the use of 
node- weights can provide much better choices, thereby 
reducing the computing time required to find a test. A 
node weight based on controllability is often used for 
this purpose, usually based on the SCOAP measure. 
We will assume that such a measure is used, although 
the errors we discuss are not specific to this particular 
choice, but rather exist in all measures that compute 
new weights only from local information. This measure 
will be the first level in the two-level heuristic and will 
be called the C measure in subsequent discussions. The 
C measure will attempt to measure the minimum 
number of inputs that must be set to control a given 
node. 

LOCAL INFORMATION ERRORS. 

Any weighting based on propagating local meas
ures fails to account for the presence of multiple paths 
in a circuit. These multiple paths introduce dependen
cies in the weights that are not accounted for by the 
local computation process. Consider the· circuit shown 
in Figure 1 which illustrates the computation of control
lability values for a partially uncontrollable network. 
The process begins by assigning to each input a zero 
and one controllability value of 1. This is denoted by 
the pair of numbers separated by a slash with the zero 
value before the slash and the one value after it. The 
process then computes the controllability of every other 
gate in the network on the basis of the values of its 
inputs. Of course, only those gates whose inputs are 
known are current candidates for computation. There
fore, propagating the 1/1 values from input A through 
inverter B is done by swapping the zero and one values~ 
However, when we attempt to compute the- controllabil
ity of AND gate C, we realize that the process will 
cause an error. Blindly using the input values of C, we 
compute a controllability of 1/2, but an examination of 
the circuit reveals that the output of C cannot be con
trolled to a one at all. 



The error illustrated in Figure 1 will be called Type 
1 error. This error results in a controllability figure 
that is overly optimisitic. The optimism is caused by 
the assumption that the input weights of a gate are 
independent. In the presence of reconvergent fanout, 
this assumption is not valid. Another type of error that 
also results from this independence assumption is illus
trated in Figure 2. Once again, the controllability 
weights are given for the same circuit but with the 
inverter removed. The method will compute the ·con
trollability of C to be 1/2, and once again it is wrong 
since it is just as easy to control C to a one as to a zero. 
This type of error, which causes a pessimistic value, will 
be called Type 2 error. 

A 1/1 ~1---~~~:....:.~ __ [DI--..:.:1'-=2--D 

Figure 1. Type 1 Error 

A ......:..:.1 '..:..1----t---~~:....:~~--~I---1 '_2 __ D 

Figure 2. Type 2 Error 

While the circuits used to illustrate the errors have 
been simplified to reveal the error in a graphic way, 
they are not contrived. Consider the circuit ·of Figure 3, 
which illustrates a more complex Type 1 error. The one 
controllability of gate L is computed to be 2, while in 
fact it should be 4. This error is due to the fact that 
the computation assumes that D can be a one and a 
zero at the same time. This can be seen more clearly by 
looking at Figure 4, which shows the assumptions made 
at each stage of the controllability calculation. Capital 
letters indicate an assumed true value for the variable 
while small letters indicate ·an assumed complemented 
value for the variable. As can be seen by examining the 
lists of assumptions at the inputs to L, both D and D
bar (d) are present. This means that along one path D 
was assumed to have a true value (1), while along the 
other path it was assumed to be false (0). Obviously, 
both assumptions cannot be true at the same time, and 
the result is a Type 1 error at L. 

842 

Figure 3. Non Local Type 1 Error 

Figure 4. Controllability Assumptions 

It is possible to correct for Type 1 error by a pro
cess illustrated in Figure 5. By carrying along the 
assumptions associated with each zero and one control
lability value, Type 1 error can be detected whenever an 
inconsistent set of assumptions is found. In Figure 4, 
for example, when the one controllability of L is about 
to be computed, the input assumption lists are com
pared. Since a one at L requires a one on every input, 
all the input assumptions must be consistent. As we 
have already seen; they are not. Therefore, one or more 
of the input assumptions must be changed before the 
one controllability of L is computed. To ehange an 
assumption requires backtracking in the circuit and 
selecting a different assumption at a previous node. For 
our example this backtracking carries us to J, where it 
was possible to choose either D or H as the source for 
controlling J to one. Previously we chose D, which 
caused the conflict. During backtracking we will choose 
the other alternative, H, since it does not contain any 
terms that conflict with the other input assumptions of 
gate L at which the conflict was detected. By carrying 
this new choice forward to L, we resolve the conflict by 
controlling L to a one with Hand D-bar. The conflict 
has been resolved and a consistent one controllability 
has been found for L. 



This backtracking process does introduce addi
tional complexity into the controllability computation, 

but, if efficiently implemented, does not consume much 
computer time for most circuits. In many systems, this 
information is at least partially available from other 
sources such as simulation of manually or randomly 
generated patterns. Since the elimination of Type 1 
error is so essential to the development of a good gui
dance heuristic it is worth the extra computation time. 
It must be realized that this backtracking must be done 
at some point, since, if left uncorrected, the ATPG algo
rithm will encounter the same conflict and backtrack 
itself. The difference is that the ATPG may backtrack 
many times from the same node because of the same 
conflict. It is better to resolve the conflict once and for 
all. If we assume that every stuck-fault in the circuit is 
to be tested, then the ATPG must find a way to control 
each node to both a zero and a one at some time. It is 
best to find at least one way to do this in a single com
putation rather than resolving it over and over again 
during ATPG. Later, we will give some rules for select
ing assumptions during the forward computation which 
reduce the need for backtracking and the burden of 
deciding which path to backtrack when a conflict is 
found. 

Figure 5. Correcting Type 1 Error 

If we carry the assumption lists along during the 
controllability calculation, we can also use them to 
correct for certain Type 2 errors. It should be realized 
that Type 2 errors do not cause as much trouble for 
ATPG guidance as Type 1 errors, and therefore their 
correction is useful, but not essential. Type 2 errors 
result from "double counting" during t,he controllability 
calculation when the same variable appears with the 
same parity in more than one input assumption list. If 
we simply add the input controllability values the sum 
will include the same variable more than once, resulting 
in a pessimistic value for controllability. This pessi
mism can be partially eliminated by taking the union of 
the input lists and then computing its length. This 
value includes each variable only once due to the union 
operation and thereby eliminates double counting. 

843 

It should be noted, however, that this process does 
not eliminate all Type 2 error. It is possible for some 
Type 2 error to remain which we call invisible Type 2 
error. This is illustrated in Figure 6. Because of the 
choice of K to control R to a zero, it is not possible to 
detect the Type 2 error that occurs at T. As can be 
seen, the zero controllability of T has been calculated as 
2. This is clearly an error since holding L to a zero will 
force T to a zero regardless of the values of any other 
inputs. Therefore, Type 2 error exists at T which is 
invisible to the process set out above. This invisible 
Type 2 error occurred because L was not used in both 

Figure 6. Invisible Type 2 Error 

path choices from L to T. If it had been, then the error 
would not have remained invisible. Due to the rules for 
selection of nodes which we will give later, it is possible 
for invisible Type 2 error to exist in the final result. 
This is not serious, however, since the presence of Type 
2 error only causes slight inefficiency when used to guide 
an ATPG algorithm. Let us examine the ATPG's use 
of values containing Type 2 error to see why this is so. 

Once again consider the circuit of Figure 6, and 
assume that the ATPG is trying to set T to a zero. 
Since both inputs to T must be set to zero, the ATPG 
will establish its goal of T-O and attempt to achieve it 
by trying each input path in turn. Assume that it first 
tries to set a zero on R. The guidance heuristic will 
cause it to do this by setting K-O. Since this is a pri
mary input, the backdrive will stop and check if K-O 
achieves the goal, which it does not. Therefore, assume 
that K-O remains and the ATPG tries along the path 
from S. To set S-O, the guidance heuristic will indicate 
that L must be zero. Once again we have reached a pri
mary input and the ATPG will now try to determine if 
K-O and L-O will achieve the goal. This time the goal is 
satisfied and a way to set T-O has been found. If the 
guidance heuristic had indicated that it would be better 
to backdrive along S to begin with, then the goal could 
have been satisfied with L-O alone. Therefore, our 
measure caused an extra input to be set to achieve the . 
goal. We will return to this point later, but for now it 
is sufficient to note that the ATPG was not misled by 
the invisible Type 2 error; the value was pessimistic but 
still achievable. The fact that a better way existed did 
not cause backtracking, merely a slight loss of efficiency. 



FREE LINES AND HEADLINES 

The second level of the heuristic is based on an 

extension of the concept of free lines and headlines3. A 
free line is a node in a circuit whose predecessors are 
fanout free. Obviously all primary inputs are free lines. 
Also, the output of any gate which has only free lines as 
inputs is also a free line. The free lines of a circuit form 
trees with only one path from any primary input to any 
point in the tree. Looking again at Figure 3, we can see 
that A, B, C, D, E, F, and G are free lines. Also, since 
all inputs to H and I are free lines, their outputs are 
also free lines. The outputs of J and K are not free 
lines since at least one of each of their inputs is a recon
vergent fanout branch. 

A headline is a free line that enters a reconvergent 
fanout loop. Input D in Figure 3 is a headline, as are H 
and 1. The importance of headlines can be appreciated 

when it is noted that outputs of a circuit can be com
pletely characterized on the basis of the values at the 
headlines of the circuit. Therefore, headlines can be 
thought of as a reduced but complete set of independent 
inputs to a circuit. Each headline can be assigned an 
arbitrary value, independent of all the other headlines, 
and a complete specification of headline values will com
pletely determine all output values of the circuit. 

Since the headlines of a circuit are independent, it 
is possible to terminate the backdrive process of ATPG 
at headlines with complete confidence that the value 
assigned can later be justified, regardless of any other 
values assigned later to another headline. This can 
reduce the computation in ATPG significantly if the 
headline "covers" many inputs. Headline H in Figure 3, 
for example, "covers" inputs A, B, and C. Therefore, 
once a value has been determined for H, the backdrive 
process can defer work along this path, thereby saving 
the cost of assigning values along the input paths of H. 
Later, after all other tasks have been resolved by the 
backdrive, these values can be justified by assigning 
values backward from their inputs without fear of 
conflict. The larger the cover of a headline, the larger 
the savings. Unfortunately, the cover of headlines is 
usually small. 

PSEUDO HEADLINES 

It is possible to extend the concept of headlines, 

however, to allow for larger covers6,7. Consider the cir
cuit of Figure 3 again, but assume that it is a subcircuit 
of a much larger circuit. If no fanout branches exist in 
this subcircuit other than the one shown, then.it is pos
sible to consider the output of L as a Pseudo Headline 
with respect to the part of the circuit driven by L, since 
L has all the salient properties of a headline with 
respect to the things it drives. Further, L covers all the 
inputs shown in Figure 3, a total of seven. The subtree 

844 

represented by these seven inputs contains 128· possible 
binary input combinations. Clearly, if an ATPG algo
rithm is atempting to find a way to justify a goal which 
requires L to assume a value, and it can stop as soon as 
L is reached, a great deal of search time is saved. If an 
efficient way can be found to identify pseudo headlines 
it could be used to greatly improve the guidance heuris
tic for an ATPG. We now illustrate such a procedure. 

Identifying Constrained Headlines 

A process similar to the computation of the C 
measure mentioned earlier can be used to identify con
strained headlines. To do this two pieces of 
information are needed: (1) which fanouts actually 
reconvergc, and (2) with respect to which outputs do 
they reconverge. The calculation of the number of 
reconvergent branches is done by means of a backward 
pass to propagate output tags as illustrated in Figure 7. 
Each output is assigned a unique tag; these tags are 
then propagated backward, computing the tags of each 
fanin, until the primary inputs are reached. When a 
fanout stem is encountered the union of all the branch 
tags is assigned to the stem. It can be seen that this 
will yield a measure of the number of reconvergent 
branches at each fanout stem, as well as the outputs 
with respect to which those fanouts reconverge. Deter
mination of these tags is called RFO analysis and is 
used in the calculation of the R measure which we will 
now describe. 

~ ..... ---....:....-y 

z 

Figure 7. RFO Measure 

1/2 Y 

Figure 8. R Measure Computation 



Once the RFO analysis is made for each fanout, it 
is possible to determine the R measure. This process is 
illustrated in Figure 8. The notation employed is similar 
to that used earlier where the figure before the / is the 
zero value and that after the / is the one value. To 
compute the R measure values, inputs are given an ini
tial assignment of % instead of the 1/1 of the C meas
ure. The same equations are used to compute the R 
measure of a gate as the C measure, except when 
fanouts are encountered. At each fanout, values are 
assigned to each branch based on the sum of the count 
on the stem plus the number of occurrences of reconver
gent output tags in the pairwise intersection of the 
branch of interest and every other branch. This yields 
an approximate measure of the potential conflict that 
this branch will encounter downstream, and is called 
the R measure. For example, fanout L in Figure 8 has 
two branches, which contain output tags for both Y 
and Z. The stem count of L is % and the intersection 
of the branch tags contain 2 entries (See Figure 7). 
Therefore, each branch is assigned a 2/2 value. This 
results in a 0/2 value on the output of R. 

In circuits with multiple outputs, the computation 
of the R measure requires that more attention be paid 
to the value assigned to a particular fanout branch. 
Consider fanout M in Figure 8; the value of 1/1 is 
assigned to each branch since only one potential conflict 
exists downstream, and that with respect only to out
put Z. This results in a 1/3 assignment to the output 
of S, based on its input values. The remainder of the 
calculation uses the same procedure as that for the C 
measure computation, with appropriate adjustment for 
the additional output values. As can be seen, the final 
R measure of a line is proportional to the potential 
conflict of that line and the number of outputs that the 

conflict affects. 

Once the R measure has been determined for each 
node in the circuit, it is possible to identify headlines by 
simply looking for nodes during backdrive that have a 0 
R-value. For example, in the circuit of Figure 8 if a 
value of zero is required by the ATPG backdrive at the 
output of gate R, the backdrive can immediately defer 
further work along this path since the R-zero value for 
that line is zero. Similarly, if back drive wished to set 
the output of gate U to a one, it could defer further 
work since its R-one value is zero. These points in a 
circuit where one logic value can be independently 
assigned but the other logic value cannot will be called 
constrained headlines. In Figure 8, R is a constrained 
zero headline while U is a constrained one headline. 
This concept allows us to move the headlines further 
into the circuit than previous methods. After the con
strained headlines have been determined we proceed to 
identify an additional property which we will call 
pseudo headlines. 

845 

Identifying Pseudo Headlines 

A pseudo headline is defined to be a line that can 
be treated as a headline during backdrive since it can be 
independently assigned with respect to all other pseudo 
headlines. Pseudo headlines contain headlines as a sub
set. The determination of pseudo headlines is similar to 

the concept of identifying dominators in flow graphs8,9. 
A similar idea has been used to identify points of maxi-

mal reconvergence in networkslO. Since the procedure 
was originally developed for single output graphs, it 
must be modified in our case to allow for the calculation 
of reconvergence with respect to each circuit primary 
output. The calculation is done by means of a set of 
counters associated with each fanout that potentially 
reconverges. One counter per output is used at each 
fanout. In the circuit of Figure 8, for example, two 
counters would be assigned to fanout L since two out
put tags appear there (See also Figure 7). One counter 
is for output Y and one counter is for Z. Similarly, 
only one counter is needed at M, since only Z is affected 
by M's reconvergence. This is known since the intersec
tion of M's branch tags contains only Z. Fanout T, on 
the other hand needs no counters since none of its 
branches reconverge. 

When the proper number of counters has been 
assigned each is initialized to the number of reconver
gent branches for the particular output. A forward pass 
is then begun from each reconvergent fanout, in level 
order, to propagate fanout tags and 
increment/decrement the counters until the primary 
outputs are reached or the counters reach zero. When a 
subsequent fanout is encountered, the counters are 
incremented by the number of fanout branches less one. 
When a point of reconvergence is reached, the counters 
are decremented by the number of inputs that contain 
the same fanout tag. When all counters associated with 
a given fanout reach zero, this tag is dropped from 
further propagation. The gate at which a particular 
counter reaches zero is the point of complete reconver
gence for that fanout with respect to that output. 
When all such counters at a node reach zero the R value 
for that node can be set to zero as shown in Figure 9. 
The propagation of the fanout tags for this process of 
identifying pseudo headlines is illustrated in Figure 10, 
and the actual counter manipulation is shown in Table 
1. As can be seen, gate T is the point of complete 
reconvergence for L with respect to Y and Z, while gate 
V is the same for M with respect to Z. 



0/0 y 

Figure 9. R Measure Adjustment 

Figure 10. Fanout Tag Propagation 

TABLE 1. Pseudo Headline Calculation 

STEP GATE I:rY L-Z M-Z 
Initialize - 2 2 2 

1 R 2 2 2 
2 S 2 2 2 
3 T 0 0 2 
4 U - - 2 
5 V - - 0 

Once the points of reconvergence are found for each 
output it is possible to determine if a node is a pseudo 
headline. To be a pseudo headline requires that the 
node be a point of complete reconvergence for all 
fanouts with respect to all outputs of interest. For 
example, in Figure 10, if the backdrive wished to know 
whether gate T is a pseudo headline, it needs to know if 
the backdrive arrived at T along the path from Y or Z, 
since T is a point of complete reconvergence for all 
fanouts with respect to Y but not with respect to Z. 
Thus, T with respect to Y is a pseudo headline, while V 
with respect to Z is a pseudo headline. When a node is 
found which is a pseudo headline with respect to all 
outputs, its R-value can be set to 0 for both zero and 
one guidance since that node must be independent of all 
other headlines and pseudo headlines that might be 
encountered in backdrive with respect to any possible 
backdrive path. 

846 

CHOOSING ASSUMPTIONS 

So far we have deferred discussion of the actual 
method of choosing which assumptions to propagate. 
Now that the C and R measures have been explained it 
is possible to state the rules for such choices. As we do, 
an attempt will be made to justify each rule on the 
basis of the effect on ATPG backdrive guidance. Obvi
ously, since headlines are completely independent nodes, 
they should be chosen over any other node when a 
choice is available. Similarly, pseudo headlines that are 
completely reconverged with respect to all outputs are 
almost as good as true headlines and should be given 
high priority. Also, constrained headlines should be 
chosen if no headline is available since they are an 
extension of a headline or pseudo headline. But what if 
a pseudo headline is not completely reconverged with 
respect to all outputs? In this case if a pseudo headline 
can be found that is reconverged with respect to a par
ticular path, then that one should be chosen. If no such 
pseudo headline can be found, then the pseudo headline 
with the fewest unreconverged outputs should be chosen 
on the assumption that it represents the smallest poten
tial for conflict downstream. Finally, if ties result from 
the rules as given, they are resolved on the basis of the 
C measure. 

Therefore, the priority of rules is: 

1. Choose a true headline. 
2. Choose a pseudo headline completely recon

verged with respect to all outputs. 
3. Choose a constrained headline for the 

value desired. 
4. Choose a pseudo headline with smallest 

unreconverged output list. 
5. Choose a node with smallest output list. 
6. Choose a node with smallest C measure. 

(Ties are broken on the basis of the C measure) 

It should be noted that rules 1, 2 and 3 all cause a node 
with an R value of zero to be chosen while rule 4 
chooses a node that is a pseudo headline with respect to 
the largest number of outputs and rule 5 chooses a node 
with the smallest number of reconvergent output paths. 
If all of these rules produce a tie, the C measure is used 
to break the tie by choosing the node with the smallest 
C measure. 

RESULTS 

The heuristic described has been programmed on a 
Symbolics 3600 in conjunction with an ATPG system 
using a modified version of the FAN algorithm. While 
the performance of a heuristic can only be truly meas
ured over a large number of examples, preliminary 
results with several combinational circuits indicates 
significant improvement over the traditional controlla
bility guided ATPG. The specific circuits used for this 



analysis include the 74181 ALU and seven of the circuits 
proposed at ISCAS 85 as benchmarks for ATPG. The 
characteristics of these example circuits are given in 
Table 2. The results of these experiments as well as 
theoretical analysis indicate that the two-level heuristic 
becomes more efficient as the size of the circuit grows 
since the depth of the search stack and thereby the 
number of remade decisions at each backtrack grows 
exponentially with circuit size. 

TABLE 2. Circuit Characteristics 

=11= CKT GATES PI's PO's FAULTS 
1 74181 63 14 8 212 
2 C432 160 36 7 524 
3 C499 202 41 32 758 
4 C880 383 60 26 942 
5 C1355 546 41 32 1574 
6 C1908 880 33 25 1879 
7 C3540 1669 50 22 3428 
8 C7552 3512 207 108 7550 

The results of using the new heuristic to guide 
ATPG are given in Table 3. While it should be stressed 
that these results are not completely representative since 
they represent a small sample of circuits, they are 
interesting. The number of backtracks is probably the 
better indicator of the value of the heuristic, but nor
malized run times on the 3600 are given for comparison 
as well. The run times should not be taken too 
literally, however, since overhead such as garbage collec
tion and paging greatly influences these figures, while 
the number of backtracks is machine independent. 

TABLE 3. Heuristic Performance 

C/O MEASURE C/R MEASURE 
=11= BKTRKS TIME BKTRKS TIME 
1 167 2.1 78 1 
2 355 1.7 126 1 
3 567 2.7 178 1 
4 714 3.1 223 1 
5 1283 3.7 327 1 
6 1526 3.8 390 1 
7 2774 4.1 693 1 
8 6374 4.2 1613 1 

847 

. REFERENCES 

1. J.P. Roth, "Diagnosis of Automata Failures: A 
Calculus and a Method," IBM Journal of Research 
and Development, Vol. 10, pp. 278:291, July 1966. 

2. P. Goel, "An Implicit Enumeration Algorithm to 
Generate Tests for Combinational Logic Circuits," 
IEEE Trans. on Computers, Vol. C-30, March 
1981, pp. 215-222. 

3. H. Fujiwara and T. Shimono, "On the Accelera
tion of Test Generation Algorithms," IEEE Trans. 
on Computers, Vol. C-32, December 1983, pp. 
1137-1144. 

4. F. Brglez, P. Pownall, and R. Hum, "Applica
tions of Testability Analysis: From ATPG to Criti
cal Path Tracing," Proc. 1984 Test Conf., pp. 
705-712, October 1984. 

5. L.H. Goldstein, "Controllability jObservability 
Analysis of Digital Circuits," IEEE Trans. on Cir
cuits and Systems, Vol. CAS-26, September 1979, 
pp. 685-691. 

6. M. Abramovici, J.J. Kullikowski, P.R. Menon, 
and D.T. Miller, "Test Generation in LAMP 2: 
Concepts and Algorithms," Proc. 1985 Test Conf., 
pp. 49-56, November 1985. 

7. V.D. Agrawal, S.C. Seth and C.C. Chuang, 
"Probabilistically Guided Test Generation," Proc. 
of ISCAS 85, pp. 687-690, June 1985. 

8. R. Tarjan, "Finding Dominators in Directed 
Graphs," SIAM Journal of Computing, Vol. 3, pp. 
62-89, 1974. 

9. T. Lengauer and R.E. Tarjan, "A Fast Algo
rithm for Finding Dominators in a Flowgraph," 
ACM Trans. on Prog. Lang. and Systems, Vol. 1, 
No.1, July 1979, pp. 121-141. 

10. K.S. Hwang and M.R. Mercer, "Derivation and 
Refinement of Fanout Constraints to Generate 
Tests in Combinational Logic Circuits," Proc. of 
ICCAD 85, pp. 10-12, November 1985. 



AUTOMATIC INTRA-DEVICE PIN & ELEMENT REASSIGNMENT (AIDPER) ALGORITHM 

• H. Alan Hers!tey and Tunde A. Onitiri 

AT&T Bell Laboratories 
Crawfords Corner Road 

Holmdel, New Jersey 07733 

ABSTRACT 

The completion. rate of printed circuit board (PCB) routing 
depends on the complexity of net interconnections presented to 
the router. The PCB layout flmctions before routing, namely, 
partitioning and placement, and the order that they ~re 
performed help simplify this problem. We took a constructIve 
approach, where partitioning is divided into two functions:' the 
assignment of elements to parts before placement; and 
repartitioning of elements within a part (or intra-device) 
following placement. This paper focuses on the intra-device 
reassignment and it describes our AIDPER algorithm for 
achieving this function. The innovation here is that AIDPER 
ensures not only that each element within a part is reassigned to 
its optimum position, but also that it constraints are satisfied. 
The algorithm has been incorporated in the IDS Design Station, 
AT&T Bell Laboratories internal PCB CAD system, and 
accrues these benefits: emphasizes horizontal and vertical 
connection, forces nesting of long connections, reduces cross
overs, and increases intra-device connections. The illustrative 
problem presented, shows the contributions of AIDPER 
algorithm in simplifying interconnection problems. 

1. INTRODUCTION 

The ability to obtain higher completion rate .of printed circuit 
board (PCB) routing dependS on the. complexity of net 
interconnections that are presented to the router. The PCB 
layout functions before routing are partitioning and placement. 
These functions help simplify the' interconnection problem, and 
the order that they are done is important. At AT&T Bell 
Laboratories, we have taken a constructive approach in the 
development. of these functions for our 'internal PCB CAD 
system, IDS Design. Station~ In the approach, we divided 
partitioning into two functions: the assignment of. elements to 
part instances before placement; andrepartitioning of elements 
to positions within a part instance (i.e., intra-device 
reassignment) following placement. As a result, we create 
synergism among element assignment,· placement, and 
repartitioning functions.. 

This paper focuses on the intra-device reassignment and it 
describes the AIDPER algorithm developed for this .function. 
The AIDPER algorithm consists of two assignment models: the 
c1assica1.linear assignment model, . applied to reassign elements, 
and a directional assignment model, based on sorting routines, 
to reassign pins of an element. The innovation. of AIDPER 
algorithm is that it accounts for the positional constraints 

imposed on the clements and their associated pins; and it 
considers the need for elements to co-exist based on the 
interconnection requirements. 

2. BACKGROUND 

Several alg,0rithms.2have been d.eveloped for ~J~~W (or .gate) 
assignmeniL1 , andLJ , and for pm aSSIgnment . It IS not 
our intent to dissect the algorithms developed by the above 
authors, rather, to briefly review a couple of them, to introduce 
the concepts used in our AIDPER algorithm. 

Leah Mory-Ranch developed a· pin assignment algorithm[3j that 
is invoked after placement. The objective of Mory-Ranch's 
algorithm is to reduce the amount of wire cross-overs. It is 
deficient in two areas. First, the algorithm does not account for 
the positional constraints imposed on the elements and their 
associated pins. Second, Mory-Ranch's algorithm does not 
consider the need for elements to co-exist based on 
interconnection requirements. 

Ikuo Nishioka et al developed a gate assignment algorithm[lj 
used before placement, and a pin assignment algorithm that is 
invoked after placement. Referring to their pin assignment 
algorithm, it is an application of the linear assignment model. 
The shortcomings of their algorithm are the same as that of 
Leah Mory-Ranch. In our approach (i.e., AIDPER algorithm), 
we not only addressed the above pin assignment shortcomings, 
we also reassign elements within a part. 

3. AIDPER ALGORITHM 

The automatic .. intra-device pin and element reassignment 
(AIDPER) algorithm is a combination of two models: element 
reassignment which is an application of the linear assignment 
algorithm, and pin reassignment that is a directional assignment 
model based on sorting routines. The assigIlIIlent al~erithm and 
its intricacies have been fully addressed- inL6 ,7,8,9, 01. For a 
thorough understanding. of the modified version of the linear 
assignment algorithm, let us briefly review its application to the 
machine assignment problem. This.· will show OUf' departure 
from the classic linear assignment algorithm. Consider the . 
assignment of m jobs (or workers) to n machines. A job 
i(=1,2, ... ,m) when assigned to machine j(=1,2 ... ,n) incurs a 
cost ell" The. assignment cost matrix shown in Table 1 provides 
the. general cost of· processing job i on machine j. The 
objective, then, is to assign the jobs to the machines. (one job 
per machine) to minimize total cost. 

• Now with AT&T InfonnationSy~tems, 60 Columbia Turnpike, Morristown, New Jersey 07960 
Telephone (201) 829-7294 

848 
CH2345:'7/86/0000/0848$01.00 © 1986 IEEE 



Machine 
1 2 n 

1 Cll C12 C1II 
2 Cll C22 C211 

Job 3 C31 C32 C311 

m C",l C",2 C"," 

Table 1: Cost Matrix 

The. linear assignment model is mathematically expressed as 
follows: 

Let XI} = 1, if job i is assigned to machine j 
= 0, otherwise. 

Objective function: 

subject to: 

minimize Xo = l: l: C l}XI} 
I } 

l:X1} = 1, j = 1,2, ... ,n 
I 

l:X1} S 1, i = 1,2, ... ,m 
} 

XI} = 1 or 0 

(n c:: m) 

, These constraints will assure that each machine is assigned no 
more than one job and all jobs will be assigned. They also 
require that the number of jobs not exceed the number of 
machines for a feasible solution. 

Now consider the assignment problem in Table 2, with three 
jobs 'and three:machines. 

Machine 
1 2 3 

1 5 8 10 
Job 2 6 4 9 

3 17 13 11 

Table 2: Cost Matrix 

. The optimal d~l solution is the XI} path where the reduced 
costs entries (Cl}) all equal zero. Our contrived example is 
simple with an optimum solution C 11 + C 22 + C 33 = 20 as 
depicted in Table 3. However, applying the linear assignment 
algorithm to reassign elements and their pins within a part is not 
that simple. The difficulties arise in constructing the assignment 
cost matrix and in determining the zero path for the optimum 
solution. The difficulties are attributed to the positional 
constraints applied to the part, and its elements with their 
associated pins. 

849 

Job 

1 
1 0 
2 2 
3 6 

Machine 
2 
3 
o 
2 

3 
5 
5 
o 

Table 3: Reduced Cost Matrix 

We developed the AIDPER algorithm to emphasize the intra
device reassignment of elements and pins to achieve as many 
horizontal and vertical connections as possible. Long 
connections are forced to nest with shorterandlor. assigned 
connections. As a result, AIDPER depends on the knowledge 
of the direction of each span (or edge) leaving a part. The 
AIDPER algorithm uses a "cellular" direction function for 
determining the spans' directions. Referring to· Figure 1, with a 
part at the center (Le., direction 9), a span will connect in one 
of nine directions. Note that direction '9' implies a connection 
within a part (i.e., intra-connection). 

We developed the following mathematical expression for 
determining the x- and y-directions of each span leaving a part: 

_ ( _ ) IX, - Xci + 0.58x 
CEU~ - X, Xc 8x 

where CEUz = cell count in x-direction 

X, = x-coord of target node 

Xc = x-coord of part body center 

8x = cell size (Le., mesh) in x-direction 

Note: 
a) Span length '= CEU~ + CEUy 

b) Span direction = (X, - Xc) + (Y, - YJ 

3.1 ELEMENT REASSIGNl\fENT 

Although the AIDPER algorithm is an -applied classical linear 
assignment model, the development of its cost matrix, and the 
determination of the optimum assignment differ from the 
classical approach. 

3.1.1 AIDPER Cost Matrix. The cost of reassigning element i 
to position j is the sum of two cost functions, namely, constraint 
and positional. Mathematically: 

If SI) = cost of spare element i in position j. 

F i} = cost offixed element i in position j. 

11~ = cost of connection k of element i in position j . 

For example, an intra-connection between an 
input and an output pin of two elements, within a 
part, may require that the pins of these two 
elements be adjacent or opposite to one another. 
Figure 2 depicts. the hierarchy and the priorities 
used by AIDPER to process interconnections. 



zone cost of span t, pin s, element i in position j. 

The penalty for a span not being in the ideal zone 
(or position). Note that there are four zones, 
generated by dividing the region around a part, 
about its center, into four quadrants. 

length cost span t, pin s, element i in position j. 

The distance penalty of a span, determined by its 
cell counts. 

D lln direction cost of span t, pin s, of element i in 
position j. 

The nine span directions (Figure 1) are weighted 
to penalize connections to the immediate regions 
that cannot be achieved in one wiring track, 
and/or penalize long connections that cannot nest 
to existing ones. 

CONI} = constraint cost of element i in position j. 

Related, but independent to the constraint cost is the 
formulation of a co-existence matrix for specifying 
co-existence requirement(s) amongst elements. For 
example, if an input pin element y has an intra
connection to an output pin of element z, for optimum 
reassignment, it may be required to assign the two 
elements such that their pins are adjacent to one 
another for horizontal connection. Therefore, if 
element y is in position '1' then element z must be 
(say) in position '2' to satisfy co-existence 
requirement. And this data is reflected in the co
existence matrix accordingly. 

POSI} = positional cost of element i in position j. 

The cost matrix is developed by first seeding it with the 
constraint costs, i.e., 

CONI} = SI} + F,} + ~ I,~ 
l 

The positional costs are then added to the cost matrix; i.e., 

POSI} = ~ ~ (ZI}11 + M'Jn + D IJn ) 
IJJ I} 

3.1.2 AIDPER Optimum Assignment. From the cost matrix 
we have to determine the optimum reassignment of the 
elements by minimizing the objective function: 

subject to: 

EFOMo = ~ ~XI} ~ ~ (Zlin + M'}n + DIJn ) 
I} I}J /} 

+ ~ ~ (SI) + FI}+ 2; II.>J;)Xi} 
I } l 

~XI} = 1, j = 1,2, ... ,n 
I 

~XI} = 1, i = 1,2, ... ,m 
} 

850 

XI} = 1 or 0 

(n=m) 

These constraints will assure that each element is assigned to 
one and only one position and the number of elements is equal 
to the number of positions. 

In the classical linear assignment algorithm, the optimal dual 
solution is when the reduced costs of the basic variables is zero. 
In contrast, our algorithm applies the co-existence requirements 
(or co-existence matrix) to the reduced cost matrix to determine 
the minimum reassignment cost. The co-existence matrix 
ensures that not only should each element be reassigned to its 
optimum position, but also that its constraints are satisfied. 
This matrix is necessary to properly handle the intra-device 
connections; particularly, the adjacent 110 condition with no 
external leads continuing the net. 

3.2 PIN REASSIGNMENT 

The objective here is to constructively refine the 
interconnections associated with pins from the element 
reassignment. TIle pin reassignment model is a series of four 
sorting routines that results in reassigning connections to pins to 
reduce cross-overs, and to promote connection nesting. First, 
the pins are sorted based on their x-coordinates and y
coordinates for x-oriented and y-oriented parts respectively. 
Second, the pin connections are sorted by their direction 
priorities. This sort ensures that spans in directions '1' and '5' 
(see Figure 1) are at the extreme LEFT and RIGHI' respectively. 
And the remaining spans' directions are between these 
extremes. Third, the pin connections in one direction are sorted 
by span length (in cell counts). This sorting routine also helps 
break ties in spans of the same direction. Lastly, the spans with 
the same direction and same span length are further sorted by 
the opposing pin location criterion which allows the 
reassignment of element pins that are in opposing sides of a 
part. 

4. AIDPER FLOW 

The AIDPER flow consists of three phases, namely, 
preparation, point source, and refinement. This flow helps 
simplify the net interconnection problem to achieve a higher 
percentage of final automatic routes. We will use an illustrative 
problem depicted in Appendix A to present AIDPER flow and 
its results. 

4.1 PREPARATION PHASE 

The preparation phase formulates the reassignment problem of 
interest. This involves: 1) scope definition, i.e., the entire PCB, 
a region of the PCB, specific parts within a region, or a single 
part; 2) determination of each part's relative position within a 
scope; 3) specification of each placed part's properties, i.e., is 
the part fixed, or are its terminals and/or elements fixed; and 4) 
determination of the order which the parts are to be processed. 
The part order is based on the degrees of freedom for each part 
and are processed most constrained to least constrained. 

For our illustrative problem, we are processing a 
single Quad 2-Input NAND gate, with swappable 
elements and input pins, see Figure A-i. 



4.2 POINT SOURCE PHASE 

The objective of this phase is to process each part as a pojnt 
source, where all the net interconnections emanating from a 
part are considered to be from the part's body center. The 
point source phase is necessary since we must assume that the 
element and pin assignment have been arbitrary to this stage of 
the layout process (i.e., element assignment assigned an element 
to a part instance; but not to a particular position within the 
part, and the placement algorithm treated the' part as a point 
source). The flow of the point source phase is as follows: 

1. Determine the spanning tree of all the nets in the 
realization scope. 

2. Based on the order which the parts are to be processed, 
derived in the preparation phase, each part is processed as 
follows: 

• Determine the direction(s) of all the spans leaving a pin 
of a part. Use the "cellular" directional function 
described in the previous section. 

Following our illustrative problem, the direction of the 
spans are shown in Figure A-I. 

• Reassign the elements within a part by applying the 
AIDPER algorithm. Note that both the elements and 
their associated pins are reassigned at this stage. 

Continuing with the problem, Figure A-2a shows element 
assignment only, with no regard to element positional 
constraints and co-existence requirements. Figure A-2b 
depicts the advantage of AlDPER's approach. 

• Reassign the pins of an element for refinement using 
the pin reassignment algorithm described in the 
previous section. 

Figure A-3a illustrates only pin reassignment condition,· 
without element reassignment, and no regard to 
positional constraints and co-existence requirements. On 
the other hand, Figure A-3b shows further simplification 
of the problem when AlDPER's pin reassignment is done 
in addition to element reassignment. 

• Store the results of the point source phase for use in the 
next phase. Note that the point source phase has 
reformulated the routing problem by performing a 
erode improvement of the interconnections. 

4.3 REFINEMENT PHASE 

The objective of this phase is to improve on the results of the 
point source phase. The refinement phase flow is similar to the 
point source with the following exceptions: 

• The exact direction and location of each span associated with 
a pin is determined. As a result, we can determine whether 
the direction suggested at the point source phase as RIGHT 
is actually going to the top of the part on the RIGHT, or the 
bottom of the target part. 

Following our illustrative problem, Figure A-4 shows the 
reduced interconnection problem presented to the refinement 
phase with exact direction of each span. Referring to the span 
directions in Figure 1, using 'T' and ' B' to designate the top 
and bottom edges of a part; an exact span direction of (say) 
· sr' implies connection going to the LEFl' and terminating at 
the TOP edge of the target part. 

851 

• The cellular size used for calculating the direction is finer. 

• Recalculate the spanning tree on completion of this phase. 

Figure A-5 shows the final simplified interconnection problem 
that will be presented to the router. 

5. FUTURE WORK 

Like any system, the automatic intra-device pin and element 
reassignment algorithm has its limitations. Therefore, the, 
following areas of further work surfaced during the design and 
implementation of the AIDPER algorithm. 

1. The algorithm can only handle components such as DIPs, 
RES, and CAPs. Therefore, there is need to investigate 
how the algorithm can be extended to process surface 
mounted components, connectors and bus bars. 

2. Finally, future work is needed for the automatic 
reassignment of pins and/or elements of parts considering 
internal connections. 

6. CONCLUSIONS 

A description of the algorithm used for automatic pin and 
element reassignment function that exists in the AT&T Dell 
Laboratories internal PCB CAD system, IDS Design Station, 
has been presented. lbe AIDPER algorithm provides the 
following benefits: 

• Improves the nesting of connections, thus, promoting more 
row connections that is particularly beneficial when row 
routers are employed. 

• Significantly reduces cross-over of nets, thus, reducing the 
number of vias for interconnections. 

• Improves intra-device connections, while considering inter-
device connections. 

As demonstrated in Appendix A the algorithm is producing 
expected results and it supports the synergism among element 
assignment, placement, and repartitioning functions. 

REFERENCES 

[1] Ileuo Nishioka, Takuji Kurimoto, Seiji Yamamoto, Toro 
Chiba, Isao Shirakawa and Hiroshi Ozaki, "An Approach 
to Gate Assignment and Module Placement for Printed 
Wiring Boards," IEEE Transaction On Computers, Vol. 
C-29, No.8, August 1980, pp.681·688 . 

[2] L. Mah, and L. Steinberg, "Techniques of Gate 
Assignment," Proceedings ofth~ Ninth Design Automation 
Workshop, June 1972, pp. 63-67. 

[3] Leah Mory-Ranch, "Pin Assignment on a Printed Circuit 
Board," The Fifteenth Design Automalion Conference 
Proceedings, Iune 1978, pp. 7~.73. 

[4] N. L. Koren, "Pin Assignment in Automatic Printed 
Circuit Board Design," Proceedings of the Ninth Design 
Automation Workshop, Iune 1972, pp. 72·79. 

[5] C. S. Hing, "Pin Assignment of Circuit Cards and the 
Routability of Multilayer Printed Wiring Backplanes," 
Proceeding of the Tenth Design Automation Workshop, 
June 1973, pp. 33·43. 



[6] E. A. Dinic and M. A. Kronrod, "An Algorithm for the 
Solution of the Assignment Problem," Soviet Math. Dokl., 
10, 1969, pp. 1324-1326. 

[7] M. Malek-Zavarei, "Application of Graph Theory to tl)e 
Solution of a Nonlinear Optimal Assignment Problem," 
The Bell System Technical Journal, Vol. 61, No.8, 
Oetober 1982, pp. 1863-1870. 

[8] R. Silver, "An Algorithm for the Assignment Problem," 
Commun. Assoc. Comput. Mach. 3, 1960, pp. 603-606. 

[9] Hamdy A. Taha, Operations Research An Introduction, 
Macmillam Publishing Co., Inc., New York, pp. 138. 

[10] Sheldon B. Akers, "On The Use of The Linear 
Assignment Algorithm in Module Placement," 
Proceedings of the 18th. Design Automation Conference, 
1981, pp. 137-144. 

14 I 3 121 

15 I 9 11 I 

16 I 7 181 

Flgure 1: Span Directions 

PAR T 

L1.2 / 

Intra-Connection 
within an element 

\ L1.1 

Intra-Connection 
between pair elements 

/ L2. 1 ' I L2. 2 

1-0 Connection I-I Connection 

L3.1 / 

Zero Track 

\ L3.1 

One Track 

I L3.2 

No. of External 
Connections I L4.1 I L4.1 

Adjacent 1-0 Opposing 1-0 

\ LS.1 / LS.1 

No. of External Connections 

L6.1 / 

Zero 

I L6.2 \ L6.3 

One >One 

L:~! !L7.~~:" D'ncti=. 
Direction Directions 

Flgure 2: merarchy and Priorities of Interconnections 
Key: 

Lx.1: 

C Interconnection Priority I: 

Hierarchical Level x 

852 

APPENDIX A: AIDPER mustratlve Problem 

pCB 

\ 
pCB 4 

\ 
\ /PCB 

A 
\ 
'--.-----..--' 

3 

GRD 

Figure A-I: Original Interconnections With Span Directions 

PWR 

pCB 3 

PCB 1 

GRD 

L: 
Figure A-2a: Element Reassignment Only, Without Positional 

Constraints and Co-existence Requirements 

PWR 

PCB 4 pes 3 

pes pes 2 

GRD 

Figure A-2b: AIDPER's Point Source Element Reassignment 



POB 

/POB 3 
/ 

2 

,/ 

GRD 

Figure A-3a: Pin Reassignment Only Without Element 
Reassignment, and No Regard to Positional 
Constraints and Co-existence Requirements 

PWR 

POB 4 POB 3 

POB POB 2 

Figure A-3b: AIDPER's Point Source Pin Reassignment After 
Element Reassignment 

2.l3 
lB 5.B 9 1.:5 ST 

PWR 

POB 

Figure A-4: 

r-
.1.8 

POB 4 POB 3 

POB 2 

GRD 

l.T 

T 

AIDPER's Refinement Phase Interconnection 
Problem With Exact Directions of Spans 

POB 4 POB 3 

pos POB 2 

GRD 

Figure A-5: Final Simplified Interconnxtion Problem. 

853 



A Knowledge Based TDM Selection System 

Xi-an Zhu and Melvin A. Breuer l 

Department of Electrical Engineering-Systems 
University of Southern California, Los Angeles, CA 90089-0781 

Abstract 

In designing a testable VLSI circuit, numerous testable design 
methodologies (TDMs) can be used, such as LSSD and BILBO. A 
designer is thus raced with the problem or selecting the appropriate 
TDM to match his goals and constraints. One way to aid the 
designer in this selection process is to employ a knowledge based 
system. In this paper we will describe a prototype or a knowledge 
based consultant system ror TDM selection, called PLA-TSS 
(Programmable Logic Array TDM Selection System), which emulates 
a human expert in assisting a designer in selecting a suitable TDM 
ror a given PLA and a set or requirements. Key rae tors arrecting 
selection are identiried. A knowledge base containing the TDMs ror 
PLAs has been constructed, where TDMs are represented by rrames. 
Based on this knowledge, ramification analysis is carried out, which 
reveals the relationship among requirements and TDM attribute 
values. A score function is defined to evaluate and compare TDMs. 
A. dynamic selection process is controlled by reason directed 
backtracking. The principles used in PLA-TSS are also applicable to 
other selection problems or a similar nature. 

1 Introduction 

In order to solve the VLSI test problem, many testable design 
methodologies (TDMs) ror dirrerent type or digital circuits have been 
developed l , 2, 3. As a typical example, we will mainly consider 
programmable logic arrays (PLAs). More than 30 TDMs ror PLAs 
have been proposed in the last decade. An exclusive survey can be 
round in4. Note that in making a circuit testable under given design 
constraints, a designer orten employ some well known technique ror 
design ror testability rather than create his own TDM. The ever
growing number or TDMs Cor PLAs introduces a new problem to 
PLA designers and users who want to make a PLA testable: how to 
select the most suitable TDM Cor a given PLA and application? 
Intensive study concerning the TDMs shows that they have multiple 
and conflicting attributes. The perCormance oC TDMs vary with a 
PLA's parameters. No TDM is absolutely better than others in every 
aspect Cor all PLAs and requirements. Simply applying one TDM to 
all PLAs will sometimes result in poor designs. Therefore in order to 
obtain a good testable design, dynamic selection oC TDMs Cor speciCic 
circuit and application is necessary. This kind selection problem will 
soon conCront most digital system designers, and the genetic version 
oC this problem can be Cound in everyday liCe. 

IThis work was supported in part by the National Science Foundation under 
Grand MCS-S203485, and by the Defense Advanced Research Projects Agency, 
and monitored by the Office of Naval Research under Contract No. N00014-84-
K-0640. 

CH2345-7j86jOOOOj0854$Ol.OO© 1986 IEEE 
854 

1.1 Me!n fectors affecting selection 

Usually a selection problem involves a selector, a receiver and a 
selection domain. 

The selector. A selector is an element which initiates and 
controls a selection. In TDM selection, the selector may be a 
designer or a synthesis program. The main Cunctions oC the selector 
are to speciCy a set oC requirements Cor the selection, search Cor a 
solution in the domain, and either decide which alternative to select 
or end the selection process with no solution .. A selector's personal 
preference and knowledge about the solution space greatly aCCects the 
result oC selection. 

The receiver. A receiver is the element Cor which the 
selection is made. In TDM selection the receiver is a digital circuit. 
A circuit inCluences selection because it may partially determine the 
goodness oC the TDMs, since many attribute values oC TDMs depend 
on a circuit's size, aspect ratio or personality. 

The domain of selection. The collection oC alternatives Crom 
which a choice can be made is called the domain D oC the selection. 
The domain Cor TDM selection is a set oC available TDMs. In 
addition to the large number oC alternatives, the size oC D is usually 
not Cixed. The size oC the TDM selection problem Cor PLAs is about 
30 and increasing each year. Without being known by every selector, 
new TDM may be added to the domain as they are created or made 
available. ThereCore the selector oCten does not have a complete 
knowledge oC the domain. 

The TDM domain is characterized by a set oC attributes which 
include the testability characteristics, eCCects on the original design, 
requirements on test environment, and design cost. The dimension 
of the solution space reCers to the number oC attributes oC the 
domain. 

Let A~T = (att l , att2, ... , attn) be a set oC attributes oC the 

TDM domain. Every TDM can be represented in terms oC the n 
attributes. An evaluation vector 

TOMi = (ViI' vi2' ... , vin) 
can be derived for every TOM Crom knowledge about the domain 
attributes and the TOM, where v ij is the value oC TDMi with respect 

to attj, and each v ij is either a constant or a Cunction oC the receiver's 

parameters. For a specific receiver, the value oC each v ij can be 
determined. 

Each attribute has a unit oC measurement, and all values Cor an 
attribute use the same unit. Most attributes have incommensurable 
units, hence their values are not directly comparable. Translating 
these attribute values into a comparable scale is an important step in 
making a selection. 



In an n-dimensional solution space, if the individual dimensions 
are mutually independent, a selection problem can be divided into n 
sub-selection problems in n unidimensional subspaces. Unfortunately, 
the multiple attributes orten interact and conflict with each other. 
Thus finding a globally optimal solution becomes a hard problem. 

RequIrements. Requirements represent the criteria for 
selection in terms of the desired attribute values of the selection 
domain, which contain both the goals and constraints of selection. 
The selection process is requirement-driven. There is no reason for a 
TDM to be good or bad unless a requirement is specified. Since the 
domain is multi-dimensional, the requirements consists of multiple 
subrequirements, each for a subdimension. A set of requirements can 
be represented by a requirement vector 

R = (r I' r2, ... , rn), 

where rj is the subrequirement for the ith attribute. In practice, not 

all attributes need to appear explicitly in R, and a requirement may 
be single valued or a value range rj = !rjl , rj21. However in the 

following we will mainly consider single valued requirements. 

Priorities of attributes. In general, attributes of TDMs do 
not have the same importance to all designers and applications. 
Priorities among attributes will greatly affect the result oC selection. 
To indicate these priorities, a weight vector 

W = (WI' w2' ... , wn ) 

should be specified by the designer, where Wj is the relative weight of 

the jth attribute. The Wj'S are non-negative numbers, and Wj > Wj 

implies that att j is more important than attj" The relative value of 

the weights wj's can be converted into normalized weights nw/s using 

the formula 

w. 
J 

nw.=---. 
J n 

LWj 
j=1 

Thus 0 < nw. < 1. 
- J-

1.2 The selection problem and selection process 

Given the TDM domain D, an initial requirement vector R, and 
a circuit C, a TDM

j 
is called a solution if TDMj satisfies R. A good 

solution is a TDMj E D such that TDM j satisfies R, and for any 

other TDMj E D such that TDMj satisfies R, TDM j is no worse than 

TDMj" The precise definitions of ·satisfy· and ·worse· require a 

deep discussion, and will be given in the next section. The selection 
problem S can be stated as follows: select a TDM j E D such that 

TDM
j 

satisfies Rand TDM j is a good solution for Rand C. If no 

solution exists, adjust R until a good solution is fou~d and as long as 
R remains acceptable to the selector. If no such R can be found, no 
solution exists. 

Selection is usually not a simple straightforward task, but rather 
a dynamic process which involves exploring the solution space, 
changing goals and constraints (requirements), and backtracking, 

We call this a selection process. Usually the 
selector first specifies an initial requirement vector Ro=(rol' ... ,roJ 

Search in the solution space is carried out using these requirements. 
If a satisfactory solution is found, the selection terminates with 
success. Otherwise, alternative solutions (if any exists) are examined 
by the selector. If there is no acceptable solution and the selector 
wants to continue, one or more of the requirement values must be 
changed, and the search restarts using the new requirement vector 
R

1
=(r

U
' ... ,rln). This process is repeated until a satisfactory 

solution is found or the selector decides to quit with no solution. 

855 

A selection process is mainly controlled by the selector and 
constrained by the requirements. There is no deterministic algorithm 
which guarantees finding the most satisfactory solution when 
conflicts exist. The general characteristics of a selection process are 
as follows. 

• The result of selection is dependent on the requirements 
specified by the selector, the characteristics of the receiver, and 
the alternatives in the domain. There is usually no universal or 
absolutely optimal solution. 

• Requirements are changeable. The initial requirements may 
often be too difficult to satisfy. However as we frequently 
experience in shopping, failing to satisfy initial requirements 
does not mean no selection can be made. A selector can modify 
the requirements until a satisfactory result is obtained. 
Intelligent decisions on how to change the requirements is 
crucial to the efficiency oC a selection. 

• In a multi-dimensional solution space, satisCying one 
requirement may invalidate another. TradeofCs between 
different requirements are often necessary. 

• Complete domain knowledge is required to make the best 
choice. However most selectors are not experts in the domain 
of selection. Therefore advice from expert consultants 
concerning the domain is oCten needed. 

• Human factors, such as a selector's preference, are important in 
a selection. 

These characteristics make the selection problem unique and 
non-trivial. It is difficult for a designer to make a good selection 
because oC his lack oC knowledge about TDMs and limited ability to 
handle a large amount of complicated inCormation involved in a 
selection. People usually solve such problems with the help from 
domain experts. UnCortunately, such experts are not always 
available. Our goal is to build a knowledge based expert consultant 
system, as shown in Figure 1. which helps to solve selection problems. 
By introducing the consultant, the function of the selector is greatly 
reduced, and a better result can be expected iC the knowledge based 
system is suitably constructed. 

EXPERT SOLUTIO. 
COISUL TAl! +-+ 

SISTEY SPACE 
+-+, _____ ~ 

Figure 1: Selection with help of an expert consultant system 

Basically, the consultant system has two kinds of knowledge. 

1. Domain spec1nc knowledge which includes knowledge 
about the attributes of the selection domain and the 
properties of the attributes, and knowledge about all 
alternatives in the domain of selection. 

2. Domain Independent knowledge such as knowledge 
about the art of controlling a selection process. 

Domain specific knowledge is contained in a knowledge base. 
Domain independent knowledge is incorporated in a controller. A 
prototype system, PLA-TSS has been built which helps a designer to 
select a TDM for a PLA. In the following we will discuss the main 



features of PLA-TSS. In section 2 we briefly describe the knowledge 
base of PLA-TSS. Then in the next three sections we will elaborate 
on the major runctions or PLA-TSS, namely how to evaluate TDMs, 
how to reason about the interactions among attribute values, and 
how to control backtracking. Finally we will give a overview or 
PLA-TSS. 

2 The knowledge base 

The knowledge base is an important part or an expert consultant 
system. The _ knowledge base should be designed in such a way that 
it contains all inrormation needed ror both the expert and the 
designer, and it is easily accessible, understandable and changeable. 

The knowledge base or PLA-TSS is a knowledge repository 
which contains all inrormation about the TDM domain. The main 
body of the knowledge base is the TDMs. It appears that TDMs are 
;most suitably represented by rrames. A rrame provides a number or 
slots·which:contain various pieces or inrormation concerning a TDM. 
The slots· cOTrespond to the generic concepts which define the 
domain. Every TDM in the domain can be characterized by the 
same set or concepts. The multi-dimensional domain or selection 
naturally matchs into a frame, in which-each attribute corresponds to 
a slot in the frame, and its value is the entry in the slot which may be 
C1 constant or 0. function or a PLA's parameters. The TDM rrame 
defines a general representation of a TDM.It may not be unique 
because slots can be organized into different hierarchies. It may not 
be fixed _because new slots can be added to therrame. However, once 
a rrame is defined, all TDMs should be represented in a uniform way. 
Each particular TDMj defines a specific instance of the general TDM 

frame. The number of instances is not limited. 

For a given PLA,the attribute values or each TDM can be 
determined. Thus a completely specified evaluation matrix 

EM = [a::: a:~: ~~~'l TDKI 

v 11 • • • V ij V ill TDlli 

val •. • Vllj van TDY. 

can be built in which rows correspond to TDMsand columns 
correspond to attributes. Each entry v ij is the value of TDMj which 

respects toattj for the given PLA; This evaluation matrix rorms the 

solution space for a specific selection process. 

3 'Evaluation functions 

-The general goal of TDM selection is to choose a • good· TDM 
for a set of given requirements and a given circuit. What is a • good· 
TDM? Given a set of TDMs with multiple attribute values, how does 
one judge which is better? To answer these questions, a function for 
evaluating TDMs in the solution space must be defined. 

3.1 Properties of attributes 

Since TDMs·have multiple attributes, to compare difCerent 
TDMs we must first define how to compare values ror each attribute 
which corresponds to one subdimension in the multi-dimensional 
solution space. The ordering relation in each subdimension is 
dependent on the properties or the corresponding attribute. In the 
TDM domain there are several different types of attributes. 

856 

An attribute is a simple attribute ir it only takes on single 
values. Non-simple attributes are called complex attributes, whose 
values are sets which may be a singleton. 

A simple attribute may be either numeric or binary. A simple 
attribute is numeric if its values are in the real domain R.. 
Attributes which only take binary values (YES or NO) are called 
logical attributes. 

A numeric attribute attj is an upper-bound attribute if the 

requirement rj specifies an upper bound for its value. - A .numeric 

attribute attj is a lower-bound attribute if the requirement rj specifies 

a lower bound for att.'s values. 
J 

The value of a logical attribute att j may be either YES or NO. 

One value is stronger than the another if the _ former is more 
favorable. A logical attribute attj is an upper-bound attribute, if for 

attj YES is stronger than NO. Similarly, a logical attribute attj is a 

lower-bound attribute, if ror attj NO is stronger than YES. 

A complex attribute attj is"an upper-bound attribute, if, ror any 

requirement rj' acceptable values of att j are all subsets of rj" A 

complex attribute attj is a lower-bound attribute, if, for any 

requirement rj , acceptable values of attj contain rj" 

3.2 The comparison function 

Knowing the properties of attributes, a partial ordering relation 
can be defined for each subdimension of the domain which indicates 
how to compare any two values of the same attribute. In a selection 
process, another type of comparison is more important, namely the 
comparison between a value and a requirement --ror an attribute, 
because the real goodness of a value is relative to the requirement. A 
function compare is defined which returns the distance between a 
value v jj and a requirement rj" Compare is a complex function due to 

the fact that attributes of a domain have various properties. 

Dennltion 1: Let Rj be a set of possible requirement values for 

attribute attj, and Vj be a set of -possible values of attjwhich the 

TDMs may possess. Compare is a function from Rj X Vj -+ R. 
defined as follows, where R. is the domain of real numbers. 

For any r E Rj' v E Vj and any j, 

compare(r, v) = 0, if r = don't care. 

Otherwise, 
compare(r, v) = r - v, if attj -is upper bound numeric; 

compare(r, v) = v - r, if attj is lower bound numeric; 

Ifattj is upper bound logical, 

{

-I, if r = YES, v = NO; 
compare(r, v) = 0, i.f r = v; 

1, If r = NO, v = YES; 
If attj is lower bound logical, 

{

-I, ir r = NO, v = YES; 
compare(r, v) = 0, if r = v; 

1, if r = YES, v = NO; 
If attj is upper bound complex, 

{

-I, if r n v = 0; 
compare(r, v) = 0, i.f r n v c v; 

1, If r n v = v. 
If attj is lower bound complex, 

{

-I, if r n v :;l: r; 
compare(r, v) = 0, if r = v; 

1, if rev. 



If compare(r. v .. ) > 0, we say v .. satisfies r .. If x < O,v .. does 
J' IJ - 1J J 1J 

not satisfy r.. A TDM. = (v' l ' v'2' ... , v. ) satisfies a set of 
J 1 1 1 In 

requirements (rl' r2, ... , rn) if for all 1 S j S n, compare(rj , vij) ~ 

0. 

3.3 The penalty-credit function 

The compare function determines the distance between a 
requirement and a value in a subdimension of the solution space. In 
many cases, however; not the magnitude of the distance but, the 
effect of the difference dictates the selection. The actual effect may 
not be proportional to the distance. 

A selection process is not simply matching the requirements and 
attribute values of TDMs. The key consideration in making a 
selection is how much each attribute value affects the final solution. 
Usually, if a value v just satisfies a requirement.r, it will be accepted. 
If v is better than r, it may' be accepted with extra credits. Such 
credits may increase witIi the positive distance between v and r" but 
saturate after some point. If v does not s,atisfy r, it may·o still be 
partially acceptable with some degree of penalty. ,However after 
certain point, v may become absolutely unacceptable. To describe 
the impact of an attribute value with respect to a requirement value, 
a penalty-credit function (PCF) should be established for every 
attribute. 

Dennltlon 2: Let, PCj denote the PCF for attr PCj is a 

function from Rj X Vj to R.. PCj(rj, xl) > PCj(rj, x2) if and only if 

xl is a more 'preferable value than x2 for attr 

Definition of PCFs are completely dependent on the selector and 
the application. There is no universal PCF that suits every case. 
However knowledge about the general forms of PCFs can be used to 
help designers in defining appropriate PCFs. In PLA-TSS, there are 
three ways for a designer to specify PCFs. 

1. Define own,PCFs. 
2. Modify the standard PCFs. 
3. Use the dcCault peFs; 

These methods differ in how to divide the possible values-into groups, 
and what functions are used in' each group to produce the desired 
penalty or' credit. 

3.3.1 Custom-denned PCFs 

The main features of a custom-designed PCF is that the value 
range of an attribute can be divided into any' number of regions, and 
any meaningful function can be used in each region. 

Example 1. Consider a PCF for fault models. Assume there 
are four fault models: a, b, c and d. It the' designer wants faults in 
class a to be definitely detected, and prefers faults in class band c to 
be detected as well" but does not care about faults in class d, the 
PCF for fault models can be defined as follows. 

f 
40, if {a, b, c } ~ v; 
30, if { a, b } ~ v or {a, c } ~ v; 

PCrm(r, v) =' 20, if aE v; 

-300, if { b, c } ~ v and a E v; 
-500, if b E v or c E v, but a E v; 
-2000, if v does not contain a or b or c. 

(1) 

Example, 2. The PCF for fault coverage can be deCined as 
follows. 

PCrc ={A + compare(r,v) x 10, if v ~ 97; 

A + compare(r,v) x 20, if v < 97. (2) 

857 

Note that a custom defined PCF may be independent of the 
requirement, although it should imply the requirement. It may 
include the weight factor in it, since the value of PC(r, v) is 
arbitrary. This provides a way of non-linear weighting. 

3.3.2 Standard PCFs 

Since there is usually some commonality in most PCFs, a 
parameterized standard form of a PCF is defined for each type of 
attribute. A designer can use his own parameters to modify these 
standard forms. For example, let us consider numeric attributes. 
Assume rj is the requirement for attr The designer should specify a 

saturation point (SP) and an unacceptable point (UP). The entire 
value range of attj is then divided into five segments, namely, 

1. the saturation segment consisting of values better than or 
equal to SP, 

2. the credit segment consisting of values from rj to SP, 

3. the acceptance segment defined by rj, 

4. the penalty segment consisting of values from rj to UP, 

5. the unacceptable segment consisting of values worse than or 
equal to UP. 

The designer can then choose' the function to be used in each 
segment, which can be a constant or a function of rj and values for 

att .. 
J 

Example 3. Assume SP = 10 and UP = 50. Using the 
standard PCF for numerical attributes; a PCF for area overhead can 
be defined as follows. 

SEGllEli VALUE RAIGE FUlCTIOI USEDIITHII THE SEGKEIT 

SATURATE [0, 10] C 
CREDIT [10, r] Axe1n(C/A) Xcoapan (r. y)/coapan (r .10) 

ACCEPT [r, r ] A 
PEIALTY [r, 50] - [compare(r,v)]2 
UIACCEPTABLE > 50 D 

C > A > 0, D « O. 

This function is plotted in Figure 2. 

C 

A 
'~ 

I I 
I I , 
, 

+--+------~------~------~------~------~------~---~~y 

-400 

o 

FlgureZ: 

3.3.3 Default PCF. 

10 0 

The PCF for area overhead. 

ana 
onrhead 

Being an expert consultant, default knowledge is necessary. 
PLA-TSS has a procedure for automatically defining default PCFs 
according to the user's requirements. The system defined PCFs are 
designed to accommodate general situations and be fair to all 
attributes. For numeric attributes, the default peF is'deCined below, 
where A, B, C and D are constants' and can be changed by the user 



or an expert. As an example the system's default PCF for the 
requirement -extra I/O pins is 5- is shown in Figure 3. 

c 

A 

B 

D 

E 

PCj (rj ,v) = C, if compare (rj ,v) >0.5rj . 

C-A 
PC. (r. ,v) = A + --x compare (r. ,v), 

J J 0.5r. J 
J 

if 0 < compare (rj ,v) S 0.5rr 
PCj (rj ,v) = A, if compare (rj ,v) = o. 

B-D 
PC. (r. ,v) = B - --x compare (r. ,v), 

J J 0.5r. J 
J 

if 0 > compare (rj ,v) ~ -0.5rr 
PCj (rj ,v) = E, E < < 0, if compare (rj ,v) < -0.5rr 

8 7 664 2 o • of Ixtra 
connlction. 

Figure 3: The PCF for extra connections 

For logical attributes, there are only four combinations of 
requirements and values. The differences among PCFs lie in the 
choices for penalty or credit for each of the four cases. For complex 
attributes, numerous combinations exist. However they can be 
classified into three cases, namely a value either exceeds, satisfies or 
fails a requirement. The default PCFs for logical and complex 
attributes are defined uniformly as follows. 

PCj(rj, v) = D, if compare(rj,v) < o. 
PCj(rj, v) = A, if compare(rj,v) = o. 
PC}rj' v) = C, if compare(rj,v) > o. 

Here A, C and D (D < 0) are the same as for the numeric attributes. 

Example 4. The default PCF for self-testing is shown in Table 
1. For this case a large credit is given to a value YES when r = NO. 
to increase the attractiveness of self-testing even when not specified 
as a requirement. 

Default PCFs do not imply any priorities among attributes. 
Priorities are specified via the weight vector. The three methods for 
defining PCFs provide enough capability and flexibility for a designer 
to conveniently specify most meaningful PCFs. 

requirement value credit 

YES 
YES 
10 
10 

YES 
10 

YES 
10 

A 

C 
A 

penalty 

D 

Table 1: The default PCF for self-testing 

PCFs define the tightness or looseness of the requirements, and 
play a multiple role in making a selection. 

858 

• PCFs convert incommensurable attribute values into a 
common measure - the resulting penalty-credit on the 
final solution. 

• PCFs translate attribute values of different magnitudes 
into a comparable scale. 

• PCFs specify the fuzziness of the requirements and 
provide more precise information about the criteria for 
selection which cannot be represented by the 
requirements alone. 

It is the combination of requirements and PCFs that completely 
defines the criteria for selection. It should also be noted that in 
defi~ing the PCFs we assume that each PCj can be assessed 

ind~pendent of other attribute values. 

3.4 The Bcore function 

So far we have only considered evaluation of values in individual 
dimensions. In practice, a solution space is multi-dimensional. 
Comparisons among TDMs and between TDMs and requirements 
take place in multiple dimensions. A problem then is how to combine 
n attributes with different characteristics, meanings and units. Our 
solution is to first convert each of the n attribute values of a TDM 
into a numeric value representing the contribution of that attribute 
to the global solution, then combine the n unitless values into a single 
numeric 8core representing the overall quality of the TDM. The rirst 

. problem is solved by the PCFs defined in the last subsection. The 
second problem is solved using a score function which should have 
the following properties. 

1. For any two TDMs, TDMi and TDMk, 8core(cJ S 
8core(ck) if and only if (vkl' vk2' ... , vkn) is more or 

equally preferable than (ViI' vi2'···' vin). 

2. The score should reflect precedences among attributes. 
The attributes with higher weights make more positive or 
negative contribution to the total score. 

3. The score should reflect tradeoffs in satisfying different 
requirements. Each TDM's advantages and 
disadvantages tend to cancel each other in the score 
function. The TDMs which offer more weighted credits 
than penalties should have higher scores. 

Using the normalized weights, the PCFs and the compare 
function, many evaluation functions can be derined to combine 
multiple features of a TDM into a single score. Two score functions 
are used in PLA-TSS. 

1. The total score is defined by the equation 
N 

8core(TDMi ) = E PCj (vij , r) X nWr 
j=1 

The total score reflects tradeoffs between different features of a 
TDM so as to represent the overall performance of the TDM. 

2. The loss score (LS) is defined by the equation 
N 

LS(TDMi ) = E 8(compare(ri'vij))X 
j=1 

!PCj (vij , r}-PCj (rj' rj)J Xnw j , 

where c(x) = 1 if x < 0, otherwise c(x) = o. 



The loss score of a TDM indicates the degree to which a TDM 
does not satisfy the requirements. It is the summation of the 
weighted negative distance between a TDM and the requirement 
vector. IC TDMj satisfies all requirements, LS(TDMj) = 0, otherwise, 

LS(:rDMj) < 0. The larger the value of LS(TDM j ), the closer the 

TDM is to the requirements. 

These two score functions have different properties. Under the 
assumption that the goal of selection is to choose a TDM with the 
best overall performance, the total score is used to compare and rate 
TDMs. The total score indicates a relative ranking of TDMs. It not 
only helps identify the -best- TDM, but provides a broad range of 
choices. In case a designer wants to make a minimal change to the 
requirements in order to obtain a solution, the loss score will suggest 
the best TDM. 

Example 5. Suppose there are five TDMs and five attributes as 
shown in Table 2. We will use the PCFs deCined in Table 1, equation 
(1) and (2), and Figures Z and 3, respectively. Let A = 20, C = 30, 
B = -5 and D = -2000. For the given requirements shown in row 
-Req. - of Table 3, and the relative weights given in row -R.W. -, the 
normalized weights (N.W.) and scores are as shown. Each entry 
corresponding to TDMj and attj is the value of PCj(rj , v ij)' The total 

scores for the TDMs are listed in the last column. 

TOWs self- fault fault area extra i/o 
testing .odel coverage overhead connections 

(st) (fa) (fc) (ao) (ec) 
-------------------------------------------------------

TOll1 no {a, b} 99 a a 
TOU2 yes {a, c} 95 35 2 
TOY3 yes {a,b,c} 100 42 4 
TOW4 yes {a, d} 98 17 7 
TOWS no {a,b,c,d} 100 300 5 

Table 2: A small fully specified evaluation matrix 

self- fault fault area extra i/o 
testing model coverage overhead connections 

total 
Req. yes {a} 97 30 6 

score 
R.I. 3 6 8 4 

----------------------------------------------------
1.1. 0.125 0.042 0.25 0.333 0.167 

----------------------------------------------------
TOYl -2000 30 40 60 20 -218.75 
TOU2* 20 30 -20 -25 20 -6.225 
TOY3 20 40 50 -144 15 -28.767 
TOY4 20 20 30 26.03 -2000 -314.49 
TOWS 30 40 50 -2000 10 -646.40 

Table 3: Calculation of scores [II 

These scores show that no TDM completely satisries the 
requirements, though TDM2 comes closest. Now if we change the 
weight of fault coverage and area overhead to 9 and 5, respectively, 
and ,re-calculate the scores as shown in the Table 4 (a), the score of 
TDM3 becomes the largest. This means that if fault coverage is 
more important than area overhead, TDM3 is the best. IC the 
constraint for extra connections is not very tight, and we change a 
part of the PCF for extra I/O connections to 

PCec = - (B * compare(r,v)), if v > 5, 

859 

TOW Total score 

TOll1 
TOW2 
TOW3. 
TOW4 
TOWS 

-200 
-5.6 

-4.517 
-313.996 
-390.16 

(a) 

TOW Total score 

TOll1 
IDW2 
IDW3 
IDW4. 
IDW5 

-200 
-5.6 

-4.517 
18.334 

-390.15 

(b) 

Table 4: Calculation of scores [III 

then the scores are as shown in Table 4 (b). In this case, TDM4 is 
the best. 

This example shows how the scores change with weights, 
requirements and PCFs, and aids in identifying the most suitable 
TDMs. In general, the better a TDM satisries a requirement vector, 
the higher will be its score. Scores are the main criteria used by the 
consultant system to evaluate a TDM, to sort the TDMs to identify 
potential solutions, and to select a TDM with optimal overall 
performance. 

4 Ramification analysis 

The domain of selection has multiple attributes with various 
relations existing among them. These interrelations cause connicts 
between requirements, which then lead to failures in rinding a 
solution. To be intelligent and efficient in selection, it is important 
to understand the relations among various attribute values. This is 
the task of ramification analysis. We developed a systematic method 
for finding interactions among attribute values in a given evaluation 
matrix. The basic concept can be illustrated by ramification trees. 

4.1 Ramification trees 

A ramification tree is a knowledge structure for representing 
relationships among attribute values upon which ramification analysis 
can be carried out. 

Definition 3: Let T = {TDM., TDM
2

, ... } be a set of TDMs 

where TDMj=(vil' ... , v jn), and (att, v) represent an attribute value 

pair where v is a value of att. The direct consequence of (att
j
, y) on 

attp is (attp' x), if (1) all Vjp'S are known, (2) y ~ unknown, and (3) 

• attp is logical, and V TDMj' TDMk E {TDMI I TDMI E T and y 

<= vlj }, Vjp = Vkp = x. 

• attp is numeric, and x = range{ Vjp I TDMj E T and y <= 
vij}' where range{nl, ... ,nx} = [min{nl, ... ,nx}' max{n., ... ,nx}j. 

• attp is complex and x = worst{ Vjp I TDMj E T and y <= 
vij}' 

Here for numeric and complex attributes x -<=- y if 
compare(x,y) ~ 0, while for logical attributes, - < = - stands for -=-. Otherwise, the direct consequence of (attj , y) on attp is (attp' 

unknown). 

Definition 4: Given a set of attributes ATT = {attl' ... , attn} 

and a set of TDMs T. A ramification bush (R-bush) for an attribute
attj , denoted by RB(attj ), is a two level directed tree in which 

• there is a root node attj which points to all internal nodes; 

• there are t (1 < t S k) internal nodes labeled (attj , Vj)' for 1 

SiS k, where k is the number of diCCerent known values v I' ... , vk 
which attj can take, i.e., VIS I S'k, VI = vij for some TDMj E T; 



• each internal node of the R-bush links to at most n leaf nodes 
corresponding to the n attributes in A TT; 

• each leaf node connecting to an internal node (attj' vi) is 

labeled (att , x. ), where (att ,x. ) is the direct consequence of (att., 
p ~ p ~ J 

v.) on att . In particular, (att., x .. ) is a leaf node if and only if x .. ::F 
I P J IJ IJ 

v .. 
I 

Example 8. For the evaluation matrix in Table 2, the 
complete R-bush for self-testing is given in Figure 4. The leaf nodes 
represent the direct consequences of the possible values of self-testing 
on other attributes. 

(f.,b,b}) (&0.[0,300» 
(&0, [17,42» (fe, [1111,100» (Ie, [0,6]) 

Figure 4: The complete R-bush for self-testing 

Definition 5: A conditional R-bush RB(attj' v) is an 

incomplete R-bush for attj which only contains one internal node 

(attj,v). 

Definition 8: Let RBl(attj , vI)' ... , RBt(attj, v t) be distinct 

conditional R-bushes for attj" The union of RBI' ... , RBt is the R

bush for attj , which has t internal nodes (attj, vI)' ... , (attj , v t). 

Conditional R-bushes are very useful when one is only interested 
in a particular value of an attribute. A complete R-bush is the union 
of all conditional R-bushes for the same attribute. Each internal 
node of an R-bush defines a branch of the R-bush. For the R-bush 
shown in Figure 4, the conditional R-bush RB(st, no) is the right 
branch of the R-bush defined by the internal node (st, no). 

A ramification bush indicates the impact of one attribute's value 
on others. Individual R-bushes for different attributes can be 
con!}atenated together into a ramification tree (R-tree) to show the 
ramification of multiple attribute values on remaining attribute 
values. 

Example 7. Again consider Table 2. Suppose we start with the 
attribute self-testing (st). Initially the R-tree is the complete R-bush 
for st as shown in Figure 4-. Since the complete R-tree is large, we 
only expand one branch of the R-tree. First expand the leaf node 
(fc,[95,100J) under (st,yes) in the left branch. Since under the 
condition that st = yes, fc has only three possible values 95, 98 and 
100, we replace the leaf node (fc,[95,100J) in Figure 4 by a 3-branch 
R-bush RB = RB(fc,95) U RB(fc,98) U RB(fc,IOO) which is for the 
TDM set TI = {TDM2, TDM3, TDM4} (since only these three TDM 
satisfies st = YES) and the attribute set {fm, fc, ao, ec} since st has 
been considered. In the similar way, we continue to expand the leaf 
node for ec under (fc,98) until no more expansion is possible along 
alone that branch of the R-tree. A fully expanded branch of the R
tree is shown in Figure 5. 

Definition 7: A stage of an R-tree is a two-level subtree of the 
R-tree which forms an R-bush. A branch of an R-tree is a subtree of 
the R-tree that (I) contains the root, (2) consists of no more than one 
branch of the R-bushes from each stage, and (3) has leaves all of 
which are leaf nodes of the R-tree. ' 

Every branch of a static R-tree defines a set of consistent 
requirements. A completely specified requirement vector R = (r l , ... , 

860 

(fa,{a,b,c}) (ao,42) (fa,{a,d}) (ao,17) 

Figure 5: A static R-tree 

rn) can be satisfied if there exists a branch in which there is no node 

(attj , x) such that Xj does not satisfy rj , for 1 S j S n. 

Static R-trees provide information concerning possible 
combinations of feasible requirements. In a real selection process, 
however, only one requirement vector is active at a time, and most 
parts of the complete R-tree may never be accessed, therefore there 
is no need to generate a complete R-tree. To represent the useful 
relations among attribute values in a dynamic selection process, 
dynamic ramification trees are defined. 

Definition 8: A dynamic R-bush (DRB) Cor a requirement r
j
, is 

an R-tree having only one internal node (att
j
, rj ). 

A dynamic ramification tree (DRT) corresponding to a 
requirement vector R=(rl , ... , rn) is a single-branch R-tree consisting 

of a cascade of DRBs in which internal nodes are in the set {(att , 
I 

r l ), ... , (attn' rn)}· 

Definition 9: A set of requirements is consistent if there exists 
a TDM which satisfies it, otherwise the requirements are inconsistent. 

Example 8. Consider the evaluation matrix in Table 2. Let 
the requirement vector be (st, fm, fc, ao, ec) = (yes, {a}, 97, 30,6). 
Two different dynamic R-trees are shown in Figure 6. The first stage 
of the dynamic R-tree in (a) corresponds to a dynamic R-bush 
DRB(fc, 97). At the third stage the R-tree has a node (ao, 42) which 
implies that if the requirements fc=97, st=yes and ec=6 are 
satisfied, area overhead must be 42%. This, however, is incompatible 
with the requirement ao=30. Both R-trees contain incompatible 
nodes, since this set of requirements is inconsistent. 

The size of a dynamic R-tree is a function of the order in which 
attributes are selected. Heuristics can be employed to generate 
dynamic R-trees having different attributes. For example, if 
satisfying some requirements is important, one can sort the attributes 
by their weights, and then expand the R-tree using the sorted 
attribute order. Thus the ramifications of the more important 
requirements will be processed first, and the less important 
requirements may be adjusted using the information from the 
dynamic R-tree. Several procedures for constructing various R-trees 

for any given evaluation matrix have been defined4
• Next, we will 

discuss some applications of ramification trees. 



o 
(fa, {a}) 

fc 

incoapatible 
(ec,4) (fa, {a,b,c}) (fc,100) (ao, 42) 

(a). A dynamic R-tree with 3 stages 

st 

incompatible 
(ao,17) (fc,9S) (fa, {a,d}) (ec,7) 

(b). A dynamic R-tree with 2 stages 

Figure 6: Two dynamic R-trees for a requirement vector 

4.2 Ramification analysis 

One problem in a selection process is that the consequences of 
the various requirements are not obvious, hence it is difficult to avoid 
inconsistent requirements or to determine the best way for making 
tradeoffs. Ramification analysis is aimed at revealing relationships 
among different attribute values and helping a selector in specifying 
and changing requirements. 

To test if the values in a requirement vector R = (rl' r2,···, rn) 

are consistent, a dynamic R-tree based on R can be built. For a 
domain of n attributes, an R-tree has at most n stages. There may be 
up to N! different dynamic R-trees for the same requirement vector, 
each corresponding to a permutation of the n attributes. An 
important question is: in order to detect consistencies among a set of 
requirements, does it matter which R-tree is generated? To answer 
this question, we present the following theorems. Proof for these 
theorems can be found in4. 

Theorem 10: Any dynamic R-tree DRT(R,T) contains 
incompatible node(s) or is empty if and only if the requirement vector 
R is inconsistent for the set of TDMs T. 

Definition 11: Let Level[nodel equal the length of the path 
from the node to the root in an R-tree DRT. Let SN be the set of 
nodes in the DRT. A node (attj, x) in a DRT is an essential node if 

Level[(attj, x)1 = max{ Level[(attj, x)11 (attj'x) E SN }. 

Definition 12: Let ENl and EN2 be the set of essential nodes 
for DRTl and DRT2, respectively. DRTl and DRT2 are said to be 
equivalent if ENl = EN2. 

Theorem 13: If R = (rl' r
2

, ... , rn) is a consistent requirement 

vector, all dynamic R-trees DRT(R,C,A) are equivalent. 

The above theorems indicate that although there are many 
dynamic R-trees for the same requirement vector, TDM set and 

861 

attribute set, it is sufficient to generate only one of the R-trees in 
order to detect inconsistency among requirements. If the R-tree has 
• incompatible· nodes, then these requirements are inconsistent, 
otherwise they are consistent. The ramifications of a requirement 
vector R = (rl' r2, ... , rn) can be specified by the set of essential 

nodes of a dynamic R-tree. When requirements are inconsistent, 
tradeoffs have to be made in order to obtain a solution. 

Ramification trees can also be used to predict the consequences 
of changing requirements, and to aid in incremental requirement 
specification, i.e. starting from the most important attribute and 
trying to infer as many other implied requirements as possible. In this 
way, some requirements can be automatically defined, inconsistency 
among requirements can be detected while the requirements are 
specified, and a set of totally qualified TDMs are found at the end of 
requirement specification, if any exists. 

5 Reason directed backtracking 

Selection is a process which often requires backtracking. In a 
selection process, failures are usually caused by one or more 
components of the requirement vector. Backtracking always involves 
modifying requirements. There are two primary kinds of failures: 

1. search failure: no solution is found in a search, 
2. confirmation failure: a solution is rejected by the 

designer. 

Example g. Consider the evaluation matrix in Table 2. If the 
requirements are (st, fm, fc, ao, ec) = (yes, {a}, 97, 3D, 6), no TDM 
is completely satisfied. Let 

FAIL(TDMi) = { (attj, vij) I TDMi fails to satisfy rj }. 

The FAIL lists associated with the five TDMs are shown in Table 5. 

TDY 

TDKI (self-testing, no) 
TDY2 (area overhead, 35), (fault coverage, 95) 
TDK3 (area overhead, 42) 
TDK4 (extra connections, 7) 
TDKS (self-testing, no), (area overhead, 300) 

Table 5: The FAIL lists 

Each row in Table 5 represents a reason for failure. For example, the 
third row indicates that the requirement for .area. overhead is too 
high. If it is changed to 42, TDM3 will be a solution. The fourth 
row implies that the requirement for extra connections causes the 
failure. If one more extra connection is possible, TDM4 will be a 
solution. However the first row suggests that if self-testing is not 
required, TDMl will be a solution without increasing the 
requirements on area overhead or extra I/O connections. 

This example shows that there usually many reasons for a 
failure, and the~·e are many ways to revise requirements. It is 
necessary to identify the most critical reason for failure, and find out 
how to backtrack such that a good solution can be found. In PLA
TSS, reason analysis is used to classify failures into a few 
categories and then identify the most critical failure category 
containing the current failure mode. For each failure category there 
is a pre-defined remedy. Once the main reason for a failure is 
understood, the system informs the designer of the reason, suggests 
possible ways to recover from the failure, then restarts a search 
process if the designer accepts the advice and/or adjusts the 
requirement values. We call this control structure reason directed 
backtracking. To demonstrate this method, we will show how search 
failures are handled next. 



5.1 Reason analysis for search failures 

A search failure occurs when no TOM completely satisfies a 
requirement vector R. Since TOM attribute values are fixed for a 
given circuit, the only way to resolve a search failure is to change R 
such that a solution can be obtained. How to change R depends on 
why the failure occurred. 

Five classes of search failures are defined, namely three types of 
critical conflicts, a single conflict and multiple conflicts. There is a 
s·pecific way for resolving each class of failure. 

Critical Connicts 

1. First class critical connlct: There is a requirement rj that 
no TDM can satisfy. 

Remedy: When such a critical conflict occurs, the only way to 
continue the selection process is to relax the corresponding 
requirement to below the best value for attr The system will request 

that the designer modify the critical requirements shown in a conflict 
table, and then restart the search process. If the designer does not 
change the requirements, the selection process ends with no solution. 

2. Second clus critical conniet: There is a requirement rj 

such that no TOMs which are close to the requirements can satisfy it. 

Given a circuit and a requirement vector R, the TOMs can be 
divided into the two sets 

TI = { TOMi !score(TOMi} > L }, and 

T2 = { TOMk Iscore(TOMk) S L }, 

where L is a preset lower bound for TOM scores. TI contains TDMs 
which we refer to as being relatively close to R, and therefore is 
referred to as the set of potential solutions. When Tl is not empty, a 
TDM will most probably be chosen from within TI, and TDMs in T2 
are very unlikely to be selected unless some requirements are 
significantly changed. The difference between first and second class 
critical conflicts is that the critical requirement rj can not be satisfied 

by any TDM in TI, although it can be met by some TDMs in T2. 

Remedy: In this case, there are two ways to solve the problem. 
First, relax the requirement on attj to below the best value in {v ij ! 

TDMi E TI}, such that it can be satisfied by some TDMs in TI and 

a solution may be found. Secondly, change other requirements such 
that some TDMs in T2 which satisfy rj will become close to the new 

requirements. However, since all TDMs in T2 have poor scores, any 
such TDM which satisfies rj must have some very bad or 

unacceptable value in at least one attribute other than attr 
Comparing these two choices, the second one requires radical changes 
in order to lead to a solution, while the first one may only involve 
small changes. The system will inform the user of these two ways of 
changing requirements, and suggest the user change rr 

3. Third class critical connlct: No TDM is close to R. 

Remedy: This is the case where every TDM has a very bad 
score. Major changes to some requirements are necessary, and these 
may involve changing an unacceptable value to an acceptable one. 
The system first determines the necessary changes which have to be 
made, and then suggests the easiest change in order to obtain a 
solution using information from reason analysis and the scores. 

Single connlct: There exists a TDM which meets all but one 
requirement. 

862 

Remedy: If a single conflict occurs, a solution can be obtained 
by changing a single rr In this case, a conflict table is displayed 

which shows which TDM fails which requirement. The designer is 
advised that if he is willing to change the value of a requirement to 
the extent shown in the table, a solution is obtained. If several single 
conflicts occur simultaneously, the system can suggest which change 
leads to the best solution. Since the designer can see how close he is 
to a solution, he may decide which requirement to change or which 
TDM to choose. 

Multiple connict: A TDM fails to satisfy at least two requirements. 

Remedy: If a multiple conflict occurs, many alternatives exist, 
especially when all TDMs have multiple conflicts. The designer is 
informed that tradeoffs must be made among the various attributes. 
A conflict table is presented which informs the designer as to what 
conflicts exist. Several TDMs with high scores are suggested as 
possible solutions. Advice about the most beneficial tradeorts is 
given, which is based on the TDM scores. The designer can select a 
TDM, or ask the system to select the best one, or change some 
requirements and let the system search again. 

5.1.1 Ordering of fallure classes 

It is not enough to only classify failures, because several classes 
of failures may be present at the same time and the failure classes 
may not be disjoint. Precedences among failure classes must be 
defined such that an intelligent decision about which failure to solve 
first can be automatically made. In PLA-TSS, the search failures are 
ordered and processed according to the following rules. 

1. Critical failures are dealt with first. Among them, the 
precedence is first class critical conflicts, followed by the 
second class, and finally third class. 

2. If there are no critical failures, single failures are handled 
before multiple failures. But if the failure class associated 
with the best (highest score) TDM is a multiple failure, it 
is treated together with single failures, since such a 
multiple failure may lead to a minimal degree of changes. 

Example 10. Consider the evaluation matrix in Table 2 and 
the requirements and weights specified in Table 3 and the PCFs used 
at the beginning of Example 5. In searching for a solution, four 
single failures and a multiple failure occur simultaneously. After 
reason analysis, the system will inform the user that he may change a 
single requirement on area overhead from 30 to 42 in order to obtain 
a solution. However if he can lower the requirement on fault 
coverage a little bit from 97 to 95 and relax the requirement on area 
overhaed from 30 to 35, the best solution can be obtained. At this 
point it is up to the user to decide which way to go. 

The prototype PLA-TSS has demonstrated that reason analysis 
directed backtracking is a suitable control strategy for the selection 
process. This is because a selection process is often failure-driven. 
Actions to take depend on what kind of failure has been encountered. 
Reason analysis, combined with scores and ramification analysis, 
provides intelligent inrormation on where and how to backtrack after 
a failure has occurred, and thus lead to a efricient selection process. 

6 PLA-TSS overview 

The basic structure of PLA-TSS is given in Figure 1. 



Knowledge Controller Menu 
base --------------- Driven 

----------- • Flow control Interface 
• rDIl dOlllain • Proble. solving --------

attributes routines • Multiple 0 

~ ~ choice ~-II 

• TDIl frames • Design history aenus I \ 
aanagellent • Various 

• Evaluation • Knowledge base display 
Ilatrix Ilanage.ent tables 

Figure 7: Overview of PLA-TSS 

The knowledge base 

An important part of PLA-TSS is a knowledge base which 
contains information about the domain of TDMs. To insure 
changeability and expandabiIity, the knowledge base is separated 
from the controller, and is relatively static. TDMs are represented 
by TDM frames. Currently, there are fifteen TDMs in the knowledge 
base. New TDMs or attributes can be readily added to the 
knowledge base without changing the program. 

The controller 

The controller of PLA-TSS gets information from the knowledge 
base, reasons with this knowledge, and interfaces with the user. It 
has four basic functions. 

1. Control a dynamic selection process. The controller is 
responsible for determining when to do what. The basic control now 
is shown in Figure 8. 

2. Make a selection. To simulate a human expert, the controller 
embodies the knowledge about the art of selection in a set of problem 
solving procedures, such as ramification analysis, search routines, and 
the comparison, PC and score functions for evaluating TDMs. These 
procedures are called at the appropriate time to allow the system to 
make a good decision or give intelligent suggestions. 

3. Keep track of design data and history. In order to allow 
backtracking in a selection process, the controller keeps a record of 
the entire design history. A history consists of a sequence of states in 
a selection process. Each state is represented by the values of global 
variables. At every decision point or when the system state is 
changed, the old state is recorded so that a designer can trace back 
(review) or back up to any earlier state and undo some actions. 

4. Manage the knowledge base. Tools are provided for 
maintaining the knowledge base, such as changing information, 
reviewing the contents of the knowledge base, deleting information or 
acquiring new TDMs. 

The interrace 

An important feature of PLA-TSS is that the consultant system 
and the designer act at the same functional level, i.e., the control of 
the selection process may switch between the two parties. This 
feature implies that the control flow in a selection process cannot be 
unidirectional. To implement such a system, PLA-TSS uses a 
combination of sequential control, reason directed control and 
multiple branching. Interaction between a designer and the system is 
through status report plus menu driven interface. Many different 
tables are used to display system states in various situations. Menus 
with multiple choices are shown which allow a designer to select his 
most preferable actions. 

863 

begin 

Un raa1fic&tion &l1&1J.b to help & dlsigner 0 

in ,plc1fJing .light., require.lnt. &l1d PCF.. .-...-. \I, , , 
aore th&n 1 ,-____ .....L __________ _ 

o 

'I' , , 

Figure 8: 

Chick 
'J.t .. 
infor
.&tion 

'I' , , 

Tr&cI 
d .. ign 
hbtorJ 

Basic control now in PLA-TSS 

7 Conclusion 

In this paper we described a knowledge based system for TDM 
sele~tion. Such a system contain two kinds of knowledge, namely 
knowledge about the alternatives to be selected and knowledge about 
how to make a selection. In our prototype system PLA-TSS, the 
domain specific knowledge is represented by frames, and the domain 
independent knowledge is represented by procedures. By loading in 
different domain specific information into the knowledge base, the 
same scheme can be used to select TDMs for other circuits, or select 
other objects for different purposes. PLA-TSS is implemented in 
LISP and runs on a TOPS-20 machine. This research shows that 
requirement constrained selection is a good field for applying 
knowledge based systems, because extensive knowledge and heuristic 
reasoning, which often fall beyond the capability of human selectors, 
are required to make a good selection. 

1. 

2. 

3. 

4. 

References 

Abadir, M.S. and M.A. Breuer, "A knowledge based system for 
designing testable VLSI chips", IEEE Design ff Test of 
Computers, Vol. 2, No.4, August 1985, pp. 56-68. 

Breuer, M. A., "A methodology (or the design of testable VLSI 
chips", Proc. IEEE Workshop on Test Environments, 1985, 
pp.7-38. 

Williams, T.W. and K.P. Parker, "Design for testability - A 
survey", IEEE Trans. on Computers, Vol. C-31, No.1, Jan 
1982, pp. 2-15. 

Zhu, X., A Knowledge Based System for Testable Design 
Methodology Selection, PhD dissertation, Dept. of EE
Systems, University of Southern California, August 1986. 



Deriving Module Interconnectivity from Behavioral Specifications. 

and Coupling a VLSI Layout Editor for Error-free Routing 

Ganesh C. Gopalakrishnan, N ai Chi Lee, David R. Smith, and Mandayam K. Srivus 

Depar.tment of Computer Science, State University of New York, Stony Brook, 

NY, U.S.A. 

ABSTRACT 

The problem of inconsistencies among multiple, and in
dependently originated manual specifications is a serious 
one in VLSI design. This paper proposes an integrated 
VLSI design system that solves this problem~ 

High~level behavioral specification is the major source 
of design information in. our system. We can infer from 
it many pieces of information needed for low-level tools, 
indudingmodule interconnectivity ("netlist") information 
forlayout routing. All manual input will be checked against 
the derived information; 

In this paper, we outline an. algorithm to infer mod
ule interconnectivity among the sub modules of a module 
from (a) the behavioral specifications of the module, and 
(b) knowledge of the names of the ports used by submodule
operations. We also describe a VLSI layout editor that is 
driven by the automatically generated netlist. 

1 Introduction 

Most current ·VLSI design methodologies are "tool-kit" 
based. Human designers are required to provide inputs 
to the -individual tools separately. The problem with this 
approach is that independently originated manun.l specifi
cations can have inconsistencies among them. For instance, 
using layout editors such as [S1.HIOS5] ~md. [~A:CN1, users 
can inadvertently create layouts that would behave quite 
differently from the original.high-Ievel behav.ior specifica
tions. Although complete design ".utomation using a "sili
con compiler" seems to be the long-term solution, v.a don't 
have any practically viable tool of that nature yet. 

With the tool-kit based approach, the above-mentioned 
errors would get discovered only' very late during the de
sign. Inconsistencies may even remain undetected because 
extensive (or exhaustiye) . simulation may be unacceptably 
expensive. 

We argue that all the activities of designing a circuit· 
module ought to stem from one high level specification 
written for it. In order to do this,. the traditional role of 
high-level specification languages must be extended beyond 

design documentation and high-level simulation to include 
the roles of (i) automatic control synthesis, (ii) providing 
information for low-Icvel simulation tools, (iii) providing' 
module interconnectivity information for layout tools, etc. 
:More importantly, the high-level specification language it
self (:.'>l1ght to be desjgned with formal verification of design 
correctness and extraction of information for low-level tools 
in mind. Unfortunately, most of today's high-level specifi
cation languages do not meet these objectives. 

,Ve have designed a high-level specification language 
with these objectives in mind. OUf language (called "Struc
ture and Behavior Language" (SBL)) supports viewing hard
ware modules as abstract da.ta types [GH78,GTW78j. Mod
ules are specified in a purely applicative language. SBL 
supports the formal verification of high-level specifications, 
and high-level simulation. In· addition, we have developed 
algorithms for extracting information from SBL specifica
tions and passing it on to low-level tools that perform con
troller synthesis and 'chip layout. In future; a switch-level 
simulator will also be driven (in part) by the information 
generated from SBL. 

In this paper, we present an algorithm to infer mod
ule interconnectivity and module hierarchy from behavioral 
specifications. We also describe a VLSllayout editor that is 
guided by the human designer, and that verifies the actions 
of the designer against the automatically generated hier
archy and interconnectiyity information. In addition,. our 
system operates hierarchically. This 1l1~ans several things: ' 

• Beh<:.vioral specifications are written and verified hi-
erarchically; ------

~ Module interconncctivity is generated hierarchically; 

• Routing is performed hierarchically. 

With these provisions, we hope to demonstrate a design 
system that guarantees correctness of both behavior and 
layout, as well as performing the complex task of routing 
efficiently, by operating hierarchically. 

Figure 1 illustrates our design approach. Assume. that 
a module M is to be designed. Two specifications are writ-

This research was supported in part by NSF via grants DCR-8:f01624 and DCR-8319066 

864 
CH2345-7/86/0000/0864$01.00© 1986 IEEE 



ten for it: (a) An abstract specification, that specifies the 
desired behavior of ltvf \I!,rithout af,8uming anything about its 
implementation; (b) A realization specification that speci
fies the submodules (MI andM2 in this case) and an al
gorithm to implement the operations of M using the oper
ations supported by Ml and M 2• All the interconnections 
needed to support the algorithm of the realization speci
fication in hardware-specifically, all the wires needed to 
support all the data movements between MI and }J2-will 
be automatically generated by the parser of the realization 
specification. (The boxes labeled 'C:r,' are controllers. In 
our system, these controllers will also be derived automati
cally from realization specifications. Once·synthesized, the 
controllers are similar to the other modules as far as routing 
goes.) 

The main advantages of this approach are the following. 
Assuming that All and A12 are correct, the structural cor
rectness of !v! depends only on the realization-specification 
of Af. (We have shown in [GSS86j how a realization specifi
cation may be shown with respect to an abstract specifica
tion. Once we show a realization specification to be correct, 
it can. be used as a basis.Jor deriving the interconnections 

. among J.H1 and M 2 • 

For example, consider a FIFO module. The abstract 
specification of the FIFO (not shown) specifies the invari
ants to be satisfied by any implementation of the FIFO. 
Figure 2 shows the realization architecture and the algo
rithms to implement the submodule operations, chosen by 
the designer. The realization specification will be verified 
against the abstract specification. 

In our approach to designing VLSI systems, we would 
refine a module's specification enough times so that. the leaf 
modules of the' hierarchy are present in a module library, 
or are simple enough to be built outside our framework. It 
is using these library modules that the circuit of A1 is con
structed. The actual routing would be carried out bottom
up in the hierarchy. 

Details of our research "have been reported in [GSS85,GSS86j 

Ol"gantznti~m 

The .algorithm to infer module connectivity will be il
lustrated on a simple .example. The human-interface to the 
layout editor is then explained. Finally, we present our 
concluding remarks. 

2 TbeConnectivity Inference Algorithm 

We' illustrate the connectivity inference algorithm with 
the aid of a simple example-that of the implementation 
of a First In First Out (FIFO) queue. Explanation will be 
simplified, and made at a high level, with emphasis only on 
the port and interconnection related details. 

The FIFO supports three operations: 

865 

1. ins, which enqueues a data item coming in via input
port FIFO.?d (input port ?d of module FIFO) and 
creates a new queue state (line 10); 

2. rem, which removes the front element and returns a 
new queue state (line 13); 

3. front, which reads the front element and brings it 
out via port FIFO. ! d (line 14). 

We will study the implementation of the ins operation, 
and derive a netlist for it. The implementation uses the 
submodule memoryMEM as a circular buffer into which two 
pointers (contents of WC and RC) point, indicating the loca
tion to be next written (when items arc inserted into the 
FIFO) and the location to be next read (when the front of 
FIFO is to be examined). The unit SB is a status block 
which (i) records whether the last operation performed on 
the fifo was ins or rem; (ii) compares the outputs oJ RC and 
WC; if these a.re equal, it sets status output ! full to true if 
the last. operation performed was ins, and ! empty to true 
if the last operation performed was rem. 

The meaning of ins as declared on lines 10 and 11 may 
be understood as follows: 

Given a state < < M, R, W, S > > (a tuple of the 
states of thesubmodules) of the FIFO.and given 
a value 'Val to be inserted, the ins operation 
creates a new state of the FIFO in which: 

• The memory's state .has advanced to one 
in which val has been written into it, at 
an address obtained by reading the write 
counter W. 

• The state of Wadvances to up(W). 

o The state of R is unaffected. 

e Information regarding the last operation is 
recorded in the status block. 

Port-Operation Association 

The key feature of SBL is that each module is charac
terized solely via its operations. This.means the following: l 

• The operations ("services") provided by a module are 
captured by associating one operation for each ser
vice. In the present example, ins. rem and front are 
some of the operations provided by the FIFO; 

~ The ports used by module operations for data I/O 
are associated with the operations. 

For example, the ins operation will have two pieces of 
information associated with it: 

ITiming characteristics are also assochted with modu!e operations 



~~ 
~~ 

M 

_ MODULE LIBRARY 

Figure 1: Hierarchical Design of Controllers and Datapaths 

MODULE 
mem 

mux21 
ctr 

1: REAL_MODULE FIFO (capacity, maxdata INTEGER) fifo 
2: CONST naddrbits = log2 (capacity) 
3: SUBMODULE 
4: 
5: 
6: 
7: 
8: 

MEN 
NUX 
RC, we 
SB 

STATE MEM, 

mem naddrbits, maxdata ) % creates an instan~a of 'memo 
mux21 naddrbits) 
ctr naddrbitn) % both fie and we are instances of 'ctr' 

sb naddrbits ) 
RC, WC, SB 

9: DEFUN " Error checking onitted for clarity 
10: ins ( « M, R. W, S » • v ) <== 
11: « \"/ritc (M, se12(NUX, re~d(W». v). R. upon. l;!.st_op_ins (S) » 
12: rem ( « N. R. W. S » ) 
13: <== «M. up(R). W, last_op_rem (S) » 
14: front ( « M, R. W, S » ) 
15: <::= read(M. sell0mX, readeR»~ ) 
16: END FIFO 

Figure 2: Schematic and Realization Specification of li'IFO 

OPERATION I-PORTS I-PORT-TYPES O-PORTS 0-PO RT -TYPES 
write mem.?addr addr-type none 

mem.?data data-type 
selw mux21.?w addr-type mux21.!o I addr-type 
read none ctr.!o I addr-type I 

Figure 3: Port-Operation Association for the Submodules of FIFO 

866 



• The way it is implemented: This is as given on line 
11 of figure 2j 

• The port(s), and the type or the port(s) that it uses: 
This information will be specified in the abstract spec
ification of the FIFO, as shown below: 

PORT 
7d : ARRAY [8] OF BIT 

OPERATION 
ins : FIFO, ?d ==> FIFO 

In this example, we assert that the port ?d of FIFO 
carries items of type ARRAY [8] of BIT, and further, 
the operation ins is associated with the physical mod
ule FIFO, and that it consumes a data item through 
the physical port ?d of FIFO and returns a new FIFO 
state. 

In general, the type of a port such as ?d would depend 
on the size-parameters of a module. For eXClmple, the size 
parameters of FIFO are datasize and capacity (figure 2, 
line 1). This helps us to resize an entire realization by 
changing the value of one or more size-parameters and de
riving a new netHst. 

\Ve now list the port-operation association for the oper
ations of all the submodules used in FIFO (figure 3). This 
will be the basis for the connectivity inference algorithm 
presented in the next section. 

Connectivity inference for ins 

The connectivity inference 'will be demonstrated for the 
expression on line 11 of figure 2, consulting figure 3 in the 
process. 

Let us consider the sub expression 
write(M. selw(MUX. read(W») . This expression 
uses specific instances of modules (the instantiation done 
on line 4, for example, says that MEM is a module that 
is of type mem tailored for sizes addrsize and datasize). 
We can convert the sub expression being considered into one 
in which the types of the modules (and not instances) are 
used. Doing so gives us the Bubexpression 
write(mem. selw(mux21. read(ctr») 

At this point, we can consult figure 3 and start deduc
ing connectivity. For instance, the expression read(ctr) 
produces its result on port W. ! o. This expression forms 
the argument to operation selw on module rnux21, which 
expects its input to come via port mux21. ?w. At this point 
we do the following: 

• Check that the type of the port W. ! 0 matches that 
of port MUX. ?Wj in this example, both of them are of 
type "addr-type", and hence the types agree; 

o Infer that port w. ! a must be connected to port MUX. ?w 

867 

In a similar fashion, we can infer the entire connectivity 
of FIFO· as illustrated in the schematic shown in figure 2. 
Notes: 

1. The user can (for documentation purposes) provide 
connectivity a.ssertions in a realization specification by pro
viding "CONNECT" declarations. These will be checked 
against the inferred connectivity, and only if these agree 
will the user-given connectivity be used for routing. 

2. The "CONNECT" construct also gives the user a 
facility to introduce sharings of busses-for instance, ports 
SUI. ! 0 and SU2. ! 0 of two submodules can be attached to 
a common bus by declaring that they arc both connected 
to an node "BUS". 

3. There are additional details involved in connectivity 
inference. They are: (a) Propagating connectivity asser
tions through "helping" functions and recursive definitions. 
(b) Detecting (rare) inconsistencies that a user can inadver
tently cause. \Ve have worked out (but do not present) such 
details. 

An excerpt from a terminal-session that shows the in
ference of module interconnectivity at a high level is shown 
in figure 4. 

3 Interface With Layout Editor 

In order to make use of the information in SBL's realiza
tion specification during the layout stage, a correspondence 
between SBL descriptions and the layout has to be estab
lished. The following relationships exist: 

• There is a one-to-one association maintained between 
its physical layout of a module and the module in
stance declared in an SBL specification (for example 
MEM, on line 4, figure 2); 

• The hierarchy of modules correspond in the layout 
and the SBL descriptions; 

• External ports in these realms also correspond. 

We generate an intermediate file, CELL. info from the 
SBL specification of a module, CELL.abs and CELL. real. 
This .info file contains essential information about submod
ules, ports, inter-module connections and hierarchy. The 
format of .info file is shown in figure 5. 

We are currently using magic [SMH085] version 4.1 
with the following local enchancements that help in inter
facing with SBL. 

Hierarchy enforcement 

In our modified layout system, any magic command that 
may cause changes in the current cell's hierarchy (such as 
:getcell and :array) are first verified against the .info file 
before execution. Checks are also performed at the end of 



each layout editing session to warn the user about miss
ing subcells, if any. By this, we ensure tha.t the current 
cell M.mag includes a subcell A.mag if and only if A is a 
submodule of M (as specified in M.info). 

Port labeling 

Magic by itself lacks the concept of porta. To map the 
SBL port specification of a module M onto its magic file, 
the user has to manually mark each port on the layout. 
Complex ports in SBL (such as arrays and records) are 
first converted into simple bit-ports. In general, the type
information associated with a module's port is uDed in de
termining the actual number of wires needed in hardware 
to convey objects of that type. 

We have added a :port command which makes use of the 
label construct in Magic to denote ports. This command en
sures that port names and indices (if any) marked on the 
layout agree with that specified in the .info file. By mod
ifying magic's :Iabel command, we can also avoid conflict 
between SBL port names and other user-defined labels. 

This port labeling scheme is utilized by magic's router. 
In future, we plan to make this infonnation available to 
other CAD tools such as crystal [SMH085] or rnl [Ter83], 
which at present require the user to provide the port-labels 
separately. 

Routing Assistance (currently being implemented) 

Magic comes with a powerful switchbox router, detour, 
that is suitable for hierarchical routing. What is currently 
missing is the capability to specify the net list required by 
this router in high-level description language. The process 
of generating a net list manually (either by writing a net list 
file or interactively marking it on the layout) is tedious and 
error-prone. In our layout system, we overcome all these 
shortcomings by using the inferred netlist in conjunction 
with the above mentioned port-labeling scheme. 

Routing involves a top-down phase and a bottom-up 
phase. During the top-down design stage, the interconnec
tions between the datapath submodules at each level of the 
hierarchy are generated. A magic-compatible netlist can 
be compiled from this. During the bottom-up phase, de
tour is used to perform routing. Routing would proceeds 
bottom-up over the hierarchy. 

Note that the controller is not one of the datapath sub
modules. In our system, the controller specification (in 
some FSM description language such as meg [SMH085]) 
is compiled from SBL realization specifications and timing 
requirements. The netlist involving the control path is also 
generated during this compilation process. A locally modi
fied version of mpla (SMH085] can then be used to produce 
the layout of the controller in PLA form. The resulting con
troller module is now ready to be used in the layout, just 
like one of the sub cells. 

868 

A Typical Routing Session 

In the following session, it is assumed that the user 1s 
attempting to layout the cell FIFO. We assume that all sub
cells of FIFO are available as library cells (since layouts are 
built bottom-up), and that all essential SBL information 
have been already extracted and stored in the FIFO. info 
file (since SBL specifications are top-down). 

Once the user loads FIFO. mag into magic, the connec
tivity information is extracted from FIFO. info. A magic
compatible net list file is then created as FIFO. net, which 
includes netlist for data-path, controller, clock and power. 
The user may now issue the command :netlist FIFO in magic 
to use this netlist. 

The user then has to perfonn manual placement of sub
cells in FIFO, and manually routes the power nets first 
before invoking magic's router (these may not be neces
sary in the future when tools for automatic cell placement 
and power net routing become available). OUf routing ap
proach is incremental and interactive. The user can selec
tively route groups of special nets, e.g. busses, or manually 
draw the wire for certain critical nets. 

When the user is ready to invokes the detour router 
via the :route command, our routing assistant has to first 
verify any existing layout connections against FIFO. net and 
construct a new netlist consisting of only those nets that 
are not yet connected. The assistant then call up detour to 
route the layout. 

As with any other router, there is a chance that detour 
may fail to complete some of the connections. Therefore 
the user should always examine the correctness of routing 
results by using the :verify command in magic. To an expe
rienced user, a visual inspection on the layout can usually 
suggest possible problem areas and means to improve rout
ing qudity. 

If the result of routing is not satisfactory, the user must 
either completely undo the preyious routing, or selectively 
remove some of the nets from layout (there is a :riplip com
mand in magic just for this purpose). The user must now 
offer some help to the router by 
- improving cell placement, 
- allocating larger routing area, and/or 
- manually routing some critical nets 
before invoking the :route command again. 

The cycle then continues until the user is satisfied with 
the layout of FIFO. mag 

4 Concluding Remarl~s 

We have presented a VLSI design system that infers con
nectivity from high-level behavior specifications. Its main 
features (combining type-checking, maintaining consistency 
with behavior and error-free routing) Vlere pointed out. In 
addition, the following features will also be present in our 
implementation: 



<> read "FIFO.rea1" ~ Compile the realization spec . 
... compi1ation messages ... 

<> inst FIFO (8.15) ~ supply size parameters to FIFO 
<> net1ist 

FIFO.?d --> MEM.?data 
WC.!o --> MUX.?w 
NUX. 10 --> MEM.?addr 
RC.!o --> MUX.?r 
MUX.!o --> MEM.?addr 

(SUBRANGE-TYPE (INT-TYPE 0) (INT-TYPE 15» 
(SUBRANGE-TYPE (INT-TYPE 0) (INT-TYPE 7» 
(SUBRANGE-TYPE (INT-TYPE 0) (INT-TYPE 7» 
(SUBRANGE-TYPE (INT-TYPE 0) (INT-TYPE 7» 
(SUBRANGE-TYPE (INT-TYPE 0) (INT-TYPE 7» 

~ The above interconnections and their types were inferred 
~ during compilation. This will be converted to Magic·s 
~ net1ist and used for routing. Type of data is 0 .. 16 
~ and address is 0 .. 7 (since first param of FIFO = capacity) 

<> 

Figure 4: Terminal session that demonstrates connectivity inference 

• Arrays of modules are ubiqu!tous in VLSI. Behavior 
specifications that use arrays of modules are written 
in 'SBL by using recurrence equations. We plan to in
fer connectivity among the arrays of modules directly 
from the recurrence equations. 

• It is a common practice in hardware systems to split 
a bus and connect it to two different modules. Al
though this may seem to be purely a structural oper
ation, it has an important bearing on behavior as well. 
For example, a connection shifted one by mistake will 
introduce an un-intended shift operation into the be
havior, undermining the behavioral correctness. 

Due to the above danger, we absolutely prohibit man
ual bus-splitting at the structural level. Instead, the 
user is required to ascribe a record type to the bus, 
and then use field selection operations on record val
ues conveyed to the module (via the bus). From the 
field selection operations in the behavioral specifica
tion, we will infer the necessary bus splittings re
quired. Thereby the interconnections and the behav
ioral specification would remain consistent. 

\Ve are at the moment able to run the SBL compiler on 
non-array modules, generate their net-list and route their 
submodules in accordance with this net-list. The main 
tasks that lie ahead of us include generating netlists for 
arrays of modules and the implementation of the controller 
synthesis procedure, which would allow us to route the gen
erated controllers also, to make complete chips. 

References 

[GH78] John V. Guttag and J . .T. Horning. The alge
braic specification of abstract data types. Acta 
Informatica, 10(1):27-52, 1978. 

869 

[GSS85] Ganesh C. Gopalakrishnan, David R. Smith, 
and Mandayam K. Srivas. An algebraic ap
proach to the specification and realization of 
VLSI designs. In C. J. Koomen and T. Moto
Oka, editors, Proc. Seventh International Sym
posium on Computer Hardware Description Lan
guages, pages 16-38, North Holland, 1985. 

[GSS86] Ganesh C. Gopalakrishnan, David R. Smith, 
and Mandayam K. Srivas. From Algebraic Spec
ifications to Correct VLSI Circuits. Technical 
Report 86-13, Department of Computer Science, 
State University of New York at Stony Brook, 
1986. An extended version of the paper to be 
published in the proceedings of the IFIP work
ing conference on "From HDL Descriptions to 
Guaranteed Correct Circuits, Grenoble, France", 
North-Holland (1986). 

[GT\V78] J. A. Goguen, J. W. Thatcher, and E. G. Wag
ner. An Initial Algebra Approach to the Spec
ification, Correctness, and Implementation 0/ 
Abstract Data Types. Volume 4, Prentice Hall, 
Englewood Cliffs, N.J., 1978. 

[MCN] MCNC. Vivid: a VLSI layout editor. Product 
of Micro-electronics Center of North Carolina. 

[SMH085] Walter S. Scott, Robert N. Mayo, Gordon 
Hamachi, and John K. Ousterhout. 1086 VLSI 
tools: Still Afore Works by the Original Artists. 
Technical Report UCB/CSD 86/272, Dept. of 
EECS, Univ. of California at Berkeley, Decem
ber 1985. 

[Ter83] Christopher J. Tennan. Simulation Tools for 
Digital LSI Design. Technical Report 
MIT/LCS/TR-304, Massachusetts Institute of 
Technology, 545 Technology Square, Cambridge, 
MA, September 1983. 



corner 1 

Pad81ank 

~uBed_l 

Pad81ank 

~uBed_B 

PadDut 

~Ifull 

corner! 

corner1-! 

% This is the simplified format of an info file. 
% Everything after a percentage sign is treated as a comment. 
% 
« MODULE » % this is the common name for .real/mag files. 
MODULE-NAME 
« PORT » % I/O port names, with array dimension declaration. 
PORT-NAMEl dimension 
PORT-NAME2 dimension 

« SUBMODULE » % submodule names, with array dimension delaration. 
SUBMODULE-NAMEl dimension 
SUBMODULE-NAME2 dimension 

« CONNECT » % connection list between ports, with dimension. 
PORT-A - PORT-B dimension 
PORT-l - PORT-2 - ... - PORT-N dimension 

% Port specifier has the general form: 
% sttbmodttle.portname" record( index] 
«END » 

~d 
inl 

In apl 
~ 
~In Bpi 

RC 
Re 

.. 

CNTRl 

CNTRl 

~ ~ ~ ~ ~ 
~In spl ~In spl ~In spl ~In spl PiaVdd 

-

we we 

po-

-

HEM 

HEM 

PadGND spl PadDut Bpi PadDut Bp! PadDut spl PadOut spl PadOut Bpi PadOut 

Figure 5: General Format of .info file; FIFO's signal-nets routed using Magic 

870 

cornor! 

PadIn~ 
?din_6 

PadIn~ 
phil 

Pad81a~ 
substrate 

PadDut~ 
Idout_6 

cornerl 



Recent Results In VLSI CAD at MIT 

Richard E. Zippell , Paul Penfield, Jr.l, Lance A. Glasserl , Charles E. Leisersonl 

John L. Wyatt, Jr.l, F. Thomson Leighton2, and Jonathan AlIenI 

I Department of Electrical Engineering and Computer Science 
2Department of Mathematics 

Massachusetts Institute of Technology 
Cambridge, MA 02139 

1. Introduction 

Before the mid 1970s, integrated-circuit designs were 
comparatively simple, and the limits to complexity of an 
integrated circuit were imposed by semiconductor technol
ogy. Advances in semiconductor technology, however, have 
made it possible to put more on a single chip than can be 
designed easily and simply by a small group of people. As a 
result, for the past ten years or so, as the complexity of the 
designs has increased, the construction of integrated sys
tems has been limited by both the fabrication technology 
and the cost of full custom design. As today's design cri- . 
sis is solved, it is expected that the complexity limits will 
also include our inability to envision the types of systems 
to deploY in integrated form. The field will become system
limited, as well as technology-limited and design-limited. 

MIT has responded to all this with a program of re
search and education in microsystems aimed at three prin
cipal areas: fabrication technology, design, and systems. 
This paper is devoted to a discussion of some of the recent 
results in the area of VLSI CAD. This work is carried out 
in the context of research in other areas of VLSI, and so 
interactions are both possible and desirable. 

This paper discusses only research carried out on the 
MIT campus. MIT Lincoln Laboratory has a strong pro
gram of research in VLSI which is separate. 

2. VLSI Research Program 

MIT recently opened a state-of-the-art VLSI fabrica
tion facility on campus. It includes a fully equipped 6800 
square-foot integrated-circuit laboratory, with about 2800 
square feet of class 10 clean space and all the equipment 
necessary to process wafers from starting material through 
to final packaging and testing. Its purpose is to provide a 
stable, base-line process to support research in processing 
and process control, and to fabricate systems that require 
unusual process steps. There is also a 3600 squar~foot class 
100 lab dedicated to novel process technology development, 
and a 2000 square-foot Submicron Structures Laboratory, 
including 1000 square feet of class 10 space. 

It is convenient to consider the MIT VLSI research pro
gram as being composed of seven interrelated parts: sub
micron technology, electronic materials, semiconductor pro
cessing, semiconductor devices, VLSI CAD, VLSI systems, 
and VLSI theory. The total program is, roughly half de
voted to the "electron-oriented" activities, and half to the 
"bit-oriented." 

Much of the research in semiconductor processing and 
devices could not even be attempted without the new fa-

. cilities mentioned above. This work includes a program, 
sponsored by the Semiconductor Research Corporation, on 
process technology for mixed analog and digital circuits. 
The research vehicle is a high-accuracy, high-speed AID 
converter. It also includes a plan to develop software con
trol systems for IC fabrication facilities. The purpose of 
the proposed Computer-Aided Fabrication system is to im
prove flexibility of fabrication, repeatability of processes 
and experiments, portability of processes, yield and effi
ciency of process development, thereby reducing overall 
cost and latency time in IC fabrication. These benefits 
arise from more complete documentation, elimination of 
paper in the clean environment, avoidance of human er
rors, optimal scheduling, environmental monitoring, inven
tory management, cost accounting, direct equipment drive, 
and convenient process-development and process -analysis 
environments-in short by management of all the data as
sociated with VLSI fabrication. This CAF work is part of 
the VLSI program and it is also part of a broader program 
of research in manufacturing. 

At the other end of the spectrum, there is interest at 
MIT in highly parallel architectures, since such architec
tures match the capabilities of VLSI to provide massive 
amounts of logic. This work includes the development of 
dataflow machines, and particularly the languages and soft
ware systems necessary to make effective use of highly par
allel systems, and of algorithms that are particularly well 
suited for such an environment. 

Although most of the VLSI research can be conve
niently classified as belonging to one of the seven areas men-

CH2345-7j86jOOOOj0871$01.00 © 1986 IEEE 
871 



tioned above, some of the more interesting projects seem 
to defy. such categorization and are truly interdisciplinary. 
One of the best examples is the development of a special 
content~addressable memory whose architecture has been 
,designed to be usable.in a wide variety of different applica
tions [24,29]. Making full use ofthis architecture is the sub
ject of continuing research. To achieve the desired density 
and performance goals, novel circuits and a low-resistance 
interconnect technique have been developed. This effort 
is funded by a consortium of eight industrial firms, and 
involves three faculty members from diverse areas, (L. R. 
Reif, processing; C. G. Sodini, circuits; and R.E. Zippel, 
architecture) . 

A paper this short cannot discuss research results from 
all these areas; instead, the focus is on recent results in 
VLSI CAD. 

3. Recent results in VLSI CAD 

Nine recent results or projects in VLSI CAD are dis
cussed. below. These include particular design tools, and 
also approaches that support the development of new tools. 

3.1 CAD Tool Frame 

SCHEMA [30] is an integrated design system for elec
tronic designs being developed by a group led by Richard 
Zippel. Also involved in SCHEMA's development is a group 
of researchers at Harris Corp. being led by George Clark. 
Building VLSI systems is very complex undertaking. The 
complexity of the task is manifest in two fashions. First, 
the designs themselves are quite complex and the designers 
need help managing ,the complexity of the design. Second, 
the design tools themselves are becoming more and more 
complex. SCHEMA has been developed to address both of 
these ty.pes .. of complexity. 

SCHEMA addresses the design complexity issue in three 
ways. First; SCHEMA provides a complete design structure 
in which the designer can store schematics, layouts, simu
lation results and all other artifacts of the design. Thus it 
,captures the complete design. In order to understand the 

impact of differentcdesign decisions, the designer needs to 
examine the design from different perspectives.' SCHEMA 
allows the designer to walk around the' design laterally 
(through the schematics, layouts and simulation results) 
'or vertically (from block diagram through logic and circuit 
schematics). Furthermore, SCHEMA maintains consistency 

, between the' different viewpoints of the design, if possible, 
and marks the different components incompatible if not. 

The second approach SCHEMA uses to simplify large 
designs is to encourage the development of a library of sim
ple tools. Simple tools perform a single, simple task to help 
,the designer. ,Some examples are a delay estimator that cal
culates the delay between two nodes in a circuit or a power 
estimator that ,computes the average power dissipated by 

872 

a set of devices. This information can be easily derived 
with a simulator or calculated by hand, but in either case 
requires enough effort on the designer's part that it is not 
often done. The purpose of the simple tools is to make this 
information available to the designer whenever and wher
ever it is needed so that design decisions can be' made in 
a confident fashion. Another simple tool would convert 
a boolean equation into, a pull-down or pull-up structure. 
Again an easy operation for a designer but somewhat time 
consuming. None of these tools is a major CAD advance 
in and of themselves but it is our belief that cumulatively 
they have a major impact on the designers productivity. 

Finally, the big tools:, simulators, routers and com
pactors, almost always have several variants. Simulations 
can be done using a ,switch level simulator, a logic simu
lator or a transient simulator. Routing can be done using 
any of a number of channel or switch box routers. Each 
of these techniques is· appropriate for a different segment 
of a design. They should be built to be interchangeable, 
so that the designer can choose which one to use at dif
ferent points in the design. The best example of this type 
of CAD tool currently in use is a mixed mode, simulator, 
though the decision process is controlled by the program 
not the designer. 

To support these types of tools, the components of 

SCHEMA must be more thoroughly integrated than is of 
true most other CAD environments. This is accomplished 
by having the entire design and most design tools coexist in 
a common address/namespace. To encourage interchange
ability in the software tools and to minimize the effort re
quired to build CAD tools, a "Layered Language" software 
organization is used. Finally, a fairly complete and uni
form toolbox of user interface tools is provided. Thus it is 
relatively rare that a tool designer need be concerned with 
developing a user interface to his or her tools. 

3.1.1 Software Organization 

The most common approach used in building a soft
ware system' is to use a structured design methodology. 
With this methodology, a' specification for the problem to 
be solved is given. Using this, specification, the problem is 
decomposed into sub-problems, which are ,solved indepen
dently to encourage modularity. This approach is then ap
plied recursively to each of the sub-problems. This leads to 
a tre~like decomposition of the problem into sub-problems. 
This ,modular resolution of the problem makes it relatively 
easy to measure progress on the orignal goal and provides 
accountability. for faults, important issues in developing 
large'software systems. 

We feel that this approach is weak for a number of 
reasons. First and most important, invariably the problem 
posed is not the problem that should be solved. Either the 
problem's specification is incomplete or i~accurate, or by 



the time the system is built the needs will have changed 
and a slightly different system is required. Second, the 
modularity imposed by structured design leads to dupli
cation of effort as each team builds the tools necessary to 
solve their problem. If they choose to share modules with 
groups working on other subproblems, then hidden depen
dencies will appear among the modules sharing code, reduc
ing their modularity. Finally, the accountability benefits of 
structured design are really illusory. Hard problems in the 
resulting system are more often due to poor decomposition 
of the problemj thus the responsibility for the problems is 

collective. 
In SCHEMA we have chosen to use what we call a "lay

ered language" approach to building systems. To solve a 
problem using this approach, one generalizes the problem to 
be solved into a class of related problems and then develops 
a "mini-language" for solving problems in this class. This 
new language'has two components: (1) new data types and 
operations on the data types and (2) new control structures 
(abstractions). Collectively these tools should make the so
lution of problems from the original class easy. The result
ing system consists of many language. layers, each providing 
narrower, semantically richer mechanisms for describing the 
solution to a problem. 

For instance, instead of building a single schematic 
entry system in SCHEMA, we have chosen to construct a 
language· that makes it easy to construct graphics editing 
systems. This language includes spatial management data 
structures, icons and connectivity structures. New control 
structures exist for tracking the mouse, moving objects and 
synchronizing screen updates. This language is then used 
not only to build the schematic entry system, but also is 
the basis for the layout and waveform entry systems' also. 

The new data structures are often built using the Lisp 
Machine's "flavor system" and the new operations using 
"flavor methods" [17]. The multiple inheritance and sophis
ticated method combination mechanisms allow for greater 
sharing than many other approaches. New control struc
tures are built using macros and functional arguments. A 
more detailed paper on this approach is in preparation. 

3.2 Optimal Sizing of Transistors 

Power consumption and signal delay are crucial to the 
design of high-performance VLSI circuits. Mark Matson 
and Lance Glasser have developed CAD tools for the mod
eling and optimization of digital M0Sdesigns [14]. The 
tools determine the transistor sizes that:: minimize circuit 
power consumption subject to constraint on signal path 
delays; If a signal path constraint is unachievable then the 
tool returns the fastest possible design. Computational effi-

ciency is obtained through macromodeling techniques and a 
specialized optimization algorithm. The macromodels are 
based on device equations and encapsulate logic gate' be-

873 

havior in a set of simple yet accurate formulas. The macro
models are valid for complex MOS gates with the limited 
use of pass transistors. Typical accuracies are in the 5-:-
10% range. The optimization. algorithm exploits properties 
of the digital MOS domain to convert the primal optimiza
tion problem into a dual form which is much easier to solve. 
It handles the case of multiple constraint paths and tran
sistor size constraints. Not all constraints need be active. 
The result of this research,is a pair of CAD tools that can 
optimize a circuit in roughly the amount of time needed to 
perform a transistor level simulation of the circuit. 

3.3 Reliability Simulation 

RELIC [2, 3] is a reliability simulator developed. to 
analyze stress and wear in MOS VLSI chips; Unlike its 
predecessors, RELIC is not designed around any particular 
failure phenomena or model but around the idea of reliabil
ity simulation in general. RELIC is the first reliability sim- . 
ulator to encompass several different failure mechanisms. 
RELIC is designed to be used in the circuit design phase 
to identify devices which are under excessive stress and to 
determine the worst-case reliability. of the circuit. It is als.o 
helpful in comparing the median time to fail (MTTF) of 
different circuits' and in determining whether or not a part 
can be effectively screened by accelerated· testing. 

RELIC uses a simple methodology for analyzing the 
stress caused by many different failure phenomena. A de
vice which is stressed over time accumulates wear. The 
probability of device failure at time t depends on. how much 
wear the device has collected by time t and the critical value 
of wear for that failure phenomenon or for that circuit. 
This critical value of wear might be the amount of trapped . 
charge a gate oxide can take before undergoing TDDBj it 
can also be the threshold shift of a transistor under hot 
electron stress which causes the circuit. to malfunction. 

RELIC provides a number of features to aid the user. 

in performing reliability analyses; A circuit device may be' 
analyzed for any number of failure mechanisms, and multi
pIe tests may be run with variations of model parameters. 
The circuit designer has the option of analyzing the entire 
circuit for reliability hazards, or concentrating on a few crit
ical devices. RELIC employs a circuit simulator so that the 
voltages and currents used in stress calculations are worst
case operating waveforms and not just the maximum volt
ages and currents. This feature will become increasingly 
important as devices scale to the sub micron regime. 

The present implementation of RELIC includes three 
failure phenomena: metal migration, hot electron trapping, 
and time dependent dielectric breakdown. The metal mi
gration model predicts and includes the effects of thermal 
transients in the wire. RELIC has been used to analyze 
several circuits. The most illustrative example is a boot
strapped superbuffer. The simulator successfully deter-



mined that one of the transistors in the circuit was being 
stressed at a rapid rate by both hot electrons and time de
pendent dielectric breakdown. RELIC also verified that a 
redesigned version of the superbuffer had a lower wear rate 
and hence larger MTTF. 

3.4 Waveform Bounding 

The purpose of this project· is to develop theoretical 
foundations and practical algorithms for a new approach 
to fast timing analysis and simulation of monolithic digital 
VLSI circuits. The method is based on easily computed 
bounds for transient node voltages and signal propagation 
delays. It is intended as an alternative to the two methods 
that are currently standard practice: "exact" numerical so
lution and approximate delay formulas. It· is an attractive 
alternative in many cases because exact numerical solution 
requires prohibitive amounts of computer time for VLSI cir
cuits, and approximate delay formulas can result in large 
uncontrolled errors for some practical circuits. , 

The starting point for this work is the original paper 
by Rubinstein et. al. [21]. That paper provided com
putationally convenient upper and lower bounds for the 

step response of linear RC tree networks, which are use
ful as network models for the branching interconnect lines 
in MOS IC's.We have extended the usefulness of these re
sults by generalizing them to include interconnect networks 
with closed loops [26], such as the gate electrodes for large 
driver transistors. And we have proved theorems on the 
dynamics of RC networks that reduce the region of uncer
tainty in the original bounds. Tighter bounds have been 
achieved for all interconnect networks by exploiting slew 
rate limits on the node voltages, and further improvement 
was obtained for tree networks by using the spatial con
vexity of interconnect voltage during transients in a novel 
way [28,22]. Both these bound improvements have been 
successfully incorporated in a commercial CAD system for 
MOS standard cell design [23]. 

A project currently underway aims to extend the orig
inal work, intended for MOS applications, to include ap
propriate models for bipolar circuits [18]. The base-emitter 
junction in, e.g., ECL logic, provides a d.c. path to ground, 
not present in MOS, that invalidates the original bound 
formulas. The entire effort has been unified by the dis
covery [27] that the mathematical foundation of waveform 
bounding resides in the properties of linear dynamical sys- . 
tems governed by a special class of matrices, called "M
matrices." 

A more broadly focussed and ambitious project is un
derway to develop a method for iterative bound relaxation, 
which will allow the user to flexibly trade off tightness of 
bounds for computer time as required at different stages in 
the design [31]. 

3.5 Network Extraction 

A network extractor is a program which accepts an IC 
layout as input, "and produces from it a machine-readable 
circuit representation, with sufficient information to per
form detailed circuit simulation. The network extractor 
must be told about the fabrication technology and the 
meaning of the various layers; typically this is done through 
a "technology file" which is also treated as input. The 
output is typically in a form directly' u~able by "~"circuit 
simulator such as SPICE, but can also be used for layout 
verification, circuit schematic drawing, and electrical rule 
checking. 

The network extractor EXCL has been developed by 
MIT by Steven P. McCormick and Jonathan Allen [15, 
16]. The program has general extraction algorithms ca
pable of accurate computations of interconnect resistance, 
inter-nodal capacitance, ground capacitance, and transis
tor size. However, where possible the general algorithms 
are replaced with simpler, faster techniques. 

First, non-:manhattan geometry is converted to stair
case orthogonal geometry, since EXCL does not deal with 
arbitrary angles. Then comes a geometric decomposition 
phase, during which intersecting rectangles are grouped to
gether, using technology-dependent intersection rules that 
are user-definable. Next is the extraction phase. Each tran
sistor is transformed into its lumped equivalent. Each in
terconnect is also given a lumped representation. Sepa
rate algorithms for extracting capacitances and resistances 
are used. Again the extraction phase is user-controllable 
through technology-dependent extraction descriptions. Fi
nally, the result is formatted for the desired use (logic simu-

" lation, timing simulation, circuit simulation, graphical pre
sentation, etc.). 

874 

To extract interconnect resistance, EXCL uses three 
techniques. The most general technique works for arbitrary 
shapes, and solves Laplace's equation in two dimensions. 
The numerical techniques used are Gaussian elimination 
and successive over-relaxation. The second technique is 
valid for long straight wires with right-angle corners. This 
uses the standard formulas involving length and width, and 
standard comer corrections. The third technique uses a 
table lookup to handle commonly encountered geometry, 
such as tees, crosses, or vias. 

To extract capacitance in the most general case is quite 
difficult. EXCL finds ground capacitance through calcula
tions of areas and perimeters in a standard way. Coupling 
(internode) capacitance is calculated when EXCL judges 

. that it will be significant. Three special techniqu~s are 
used. For overlapping areas, the parallel-plate formula is 
used, with fringe correction. Parallel runs in the same or 
different layer are handled with a capacitance proportional 
to l~ngth, the constant of proportionality being a pr~com-



puted function of layer, separation, and technology. The 
third technique uses a lookup library to handle frequently 
occurring shapes. Besides these three special techniq~es, 
EXCL uses a Green's theorem approach for arbitrary ge
ometry, if this is necessary. 

3.6 Regular Structure Generation 

A regular structure generator is a program which cre
ates a VLSI layout of circuits which are repetitions of 
smaller circuits. Examples are n-bit adders which might 
be implemented as n full adders placed adjacent and wired 
together. Other regular structures include systolic arrays, 
multipliers, PLAs, and register files. 

A regular structure generator has been developed at 
MIT by Cyrus S. Bamji and Jonathan Allen [BamjiRef]. 
This program does much more than merely place leaf cells 
adjacent to each other, since in practice regular structures 
always have special edge or end conditions, and for opti
mum performance the leaf cells should be personalized ac
cording to the size of the array. For example, in an n-bit 
adder, the LSB can be a half adder rather than a full adder 
because there is no carry in. 

The RSG uses previously defined cells to hierarchically 
build larger cells. It accepts a library of leaf cells, a param
eter file, and a design file, and produces a circuit layout. 
The design file is a parameterized, procedural description 
of the architecture. The parameter file contains the param
eters for the particular design desired. Hierarchy is used to 
enable the RSG to deal with macrocells, which are built 
up from sub cells using legal interfaces. RSG can effectively 
deal with reflections and rotations of layouts. The legal 
ways of placing, orienting, and connecting cells are repre
sented in an interface table. 

The RSG operates as follows. First, a sample layout 

is read. From this, the RSG determines the leaf cells and 
some of the legal interfaces. Then new cells are created 
by building a connectivity graph for the new cell, and the 
converting this into a layout. The result is a new cell. If this 
new cell is to be itself used in a larger cell, new interfaces 
must be created. This process is repeated as necessary to 
hierarchically build up the final layout. 

The RSG is written in the language CLU and consists 
of approximately 6000 lines of source code. It has been 
used to create a variety of layouts. 

The previous results have been proven feasible by im
plementation in the form of CAD programs, either within 
MIT or outside. The results mentioned in the remaining 
sections have not yet been incorporated into working code. 

875 

3.7 Retiming 

The goal of VLSI design automation is to speed the 
design of a system without sacrificing the quality of the im
plementation. A common means of achieving this goal is 
through the use of optimization tools that improve the qual
ity of a quickly designed circuit. A group of researchers led 
by Charles Leiserson have developed a class of optimization 
techniques for clocked circuits called retiming, that relocate 
registers so as to reduce combinational rippling [9, 10, 11]. -
Unlike pipelining, these techniques do not increase circuit 
latency. 

These techniques are most appropriate for circuits with 
a relatively large number of clocked stages such as signal 
processing systems. This sort of problem can be repre
sented as a weighted graph where the vertices are the com
putational elements, and the weights on the edges indicate 
the number of registers between computational elements. 
A delay associated with each computational element is in
cluded as a vertex weight. The minimum clock period is 
the maximum sum of vertex weights between any pair of 
registers. The usual ad hoc pipelining techniques insert 
additional registers between computational elements to de
crease the clock period. The re~iming techniques try to 

find an optimal placement of the registers by ph;~ing this 
problem as a particular integer programming problem that 
can be solved quickly. 

The general ideas behind retiming provide a broad 
framework in which clocked circuit optimization problems 
besides clock period minimization can be considered, and 
it allows one to bring the powerful combinatorial optimiza
tion techniques to bear on these problems. Retiming seems 
to be a valuable technique that could be incorporated into 
both circuit and compilers and interactive design tools. 

3.8 W~fer-Scale Wiring 

VLSI technologists are fast developing wafer-scale inte
gration. Rather than partitioning a silicon wafer into chips 
as is usually done, the idea behind wafer-scale integration 
is to assemble an entire system (or network of chips) on a 
wafer, thus avoiding the costs and performance loss associ
ated with individual packaging of chips. A major problem 
with assembling a large system of microprocessors on a sin
gle wafer, however, is that some of the processors are likely 
to be defective. Thus a practical procedure for integrat
ing wafer-scale systems must have the ability to configure 
networks around faults. 

Recently, a group headed by Tom Leighton has devel
oped improved and provably efficient algorithms for con
structing two-dimensional systolic arrays on a wafer [6, 7]. 
Systolic arrays are a desirable architecture for VLSI be
cause all communication is between the nearest neighbors. 



In a wafer-scale system, however, all the nearest neighbors 
of a processor may be dead, and thus the prime advantage 
of adopting a systolic array architecture may be lost if a 
long wire connects electrically adjacent processors. In gen
eral, the longest interconnection between processors will be 
a bottleneck in the system. Of the many possible ways in 
which the live cells on a wafer can be connected to form a 
systolic array, therefore, the one that minimizes the length 
of the longest wire is most desirable. 

The new algorithm for integrating two-dimensional ar
rays is based on a matching process. In particular, we find a 

matching between the func·tioning processors and points in 
an imaginary grid with evenly spaced rows and columns for 
which the length of the longest distance between matched 
points is minimized. Assuming independent cell failures, 
we prove that the longest matching length is O(log3/4 N) 
with very high probability. Initial experimental evidence 
confirms that the matching distances are quite small, and 
that the wire lengths in the resulting N x N array are within 
a factor of two of log3/4 N. 

The new algorithm is dramatically superior to row / 
column elimination approaches to wafer-scale integration 
(which fail for large N and/or high probability of cell fail
ure) , and moderately better than previously discovered 
divide and conquer algorithms. The algorithm requires 
roughly O(N2 ) time for N processors in the worst case, 
but appears to run much faster on average. 

3.9 Compaction 

An automatic compaction procedure is an effective tool 
for cutting production costs of a VLSI circuit at low cost 
to the designer, because the yield of fabricated chips is 
strongly dependent on the total circuit area. In order to 
perform any sort of compaction, the components of the lay
out must be differentiated into modules, which are fixed in 
size and shape, and wires, which are flexible. Common 
procedures for generating design rule constraints [4, 5, 12] 
assume that wires are simply rectangular regions of variable 
length, and otherwise identical to modules. A vertical wire, 
for example, would be assigned an x-coordinate during hor
izontal compaction, and could only be moved rigidly from 
side to side. But one would often like a previously straight 
wire bent around an obstacle during compaction, if the are 
of the circuit could thereby be reduced. 

This problem is not easily overcome. Many systems 
[4, 25] attempt to solve it by allowing the designer to spec
ify jog point at which wires my bend. Compaction then 
becomes an interactive procedure in which the designer re
peated examines the compacted layout, adds more potential 
jog points and retries the compaction. Miller Maley, a stu-

876 

dent of Charles Leiserson has developed a new polynomial
time compaction algorithm that automatic introduces jog 
points in an optimal fashion [13]. Automatic jog insertion 
is achieved by treating wires not as solid objects, but only 
as indicators of the topology of the layout. Constraints be
tween modules no longer express design rules directly; in
stead, they will ensure that there exist paths for the wires, 
having the given topology that satisfy the rules. The new 
constraints, called routability conditions, can be formulated 
as simple linear inequalities, and are easily solved. When 
the optimal placements have been established, the new wire 
paths are determined by a single-layer router [8]. This 
router does not generate "unnecessary U's," and therefore 
minimizes wire lengths, given that the layout topology is 
fixed. 

Earlier work by Ron Rivest and his students intro
duced a theoretical approach to placement and routing. 
This work was embodied in a demonstration system called 
PI [19, 20], and is now being transferred to industry for 
practical implementation. 

4. Conclusions 

As with the larger MIT VLSI effort, we have stressed 
interdisciplinary approaches to VLSI CAD. This can be 
seen from the work described here: SCHEMA, which applies 
novel software engineering techniques to building a CAD 
frame; retiming, where integer programming ideas are ap
plied to pipelined architectures; compaction, where we are 
using new combinatorial optimization techniques for jog in
sertion. The work on macromodels and reliabilty analysis is 
an example of tools that span the usual design boundaries. 
We are guided by the principle that the most challenging 
and needed work is that which crosses or even obliterates 
conventional design boundries. 

We have summarized our most important recents re
sults in VLSI CAD. Additional information on specific ef
forts may be found in the references. 

5. Acknowledgments 

This work was supported in part by the Air Force 

Office of Scientific Research, under contracts F2962D-81-

C-0054, OSR-82-0326 and F4962D-84-C-0004; in part by 
DARPA under contract NOOOI4-80-C-0004; in part by 
NSF grant ECS83-10941; in part by fellowships from the 
RCA Corporation, the office of Naval Research, National 
Science Foundation, IBM Corporation, Bantrell Founda
tion and Analog Devices; and in part by the Harris Corpo
ration. 



6. References 

1. C. S. Bamji, A Design by Example Regular Structure Gen
erator, M.S. thesis, Dept. of Electrical Engineering and 
Computer Science, Massachusetts Institute of Technology, 
February, 1985. 

2. T. S. Hohol, RELIC: A Reliability Simulator for Integrated 
Circuits, M.S. thesis, Dept. of Electrical Engineering and 
Computer Science, Massachusetts Institute of Technology, 
(1986). 

S. T. S. Hohol and L. A. Glasser, "RELIC: A Reliabil
ity Simulator for Integrated Circuits," IEEE International 
Conference on Computer-Aided Design, Santa Clara, CA, 
November, 1986. 

4. M. Y. Hsueh, Symbolic Layout and Compaction Of Inte
grated Circuits, Ph. D. thesis, Dept. of Electrical Engi
neering and Computer Science, University of California, 
Berkeley, CA, (1979). 

5. G. Kedem and H. Watanabe, Optimization Techniques 
for IC Layout and Compaction, Technical Report 117, 
Computer Science Department, University of Rochester, 
September, 1982 . 

6. F. T. Leighton and C. E. Leiserson, "Wafer-Scale Integra
tion of Systolic Arrays," IEEE TI-ans. on Computers, C
S4(5), (1984),448-461. 

1. F. T. Leighton and P. Shor, "Tight Bounds on the Com
plexity of Minimax Grid Matching with Applications to the 
Average Case Analysis of Algorithms," Proc. ACM Sym
posium on the Theory of Computing, (1986). 

8. C. E. Leiserson and F. M. Maley, "Algorithms for Rout
ing and Testing Routability of Planar VLSI Layouts," 17th 
Annual ACM Symposium on Theory of Computing, May, 
1985. 

9. C. E. Leiserson, F. M. Rose and J. B. Saxe, "Optimizing 
Synchronous Circuitry by Retiming," Third Caltech Con
ference on Very Large Scale Integration, date of publica
tion unknown, 87-116. 

10. C. E. Leiserson and J. B. Saxe, "Optimizing Synchronous 
Systems," Journal of VLSI and Computer Systems, 1(1), 
Spring, 1983, 41-67. 

11. C. E. Leiserson and J. B. Saxe, "Retiming Synchronous 
Systems," date of publication unknown. 

12. T. Lengauer, "Efficient Algorithms for Constraint Genera
tion for Integrated Circuit Layout Compaction," Proceed
ings of the 9th Workshop on Graph Theoretic Concepts in 
Computer Science, January, 1984. 

IS. F. M. Maley, "Compaction with Automatic Jog Introduc
tion," 1985 Chapel Hill Conference on Very Large Scale In
tegration, Computer Science Press, Rockville, MO, (1985), 
261-283. 

14. M. D. Matson and L. A. Glasser, "Macromodeling and Op
timization of Digital MOS VLSI Circuit," IEEE TI-ans. 
Computer-Aided Design of Integrated Circuits and Sys
tems., in preparation. 

877 

15. S. P. McCormick, Automated Circuit Extraction from 
Mask Descriptions of MOS Networks, M.S. thesis, Dept. 
of Electrical Engineering and Computer Science, Mas
sachusetts Institute of Technology, February, 1984. 

16. S. P. McCormick, "EXCL, A Circuit Extractor for IC De
signs," Proceedings of 21st Design Automation Conference, 
Albuquerque, NM, June, 1984, 616-623. 

11. D. A. Moon, R. M. Stallman, D. L. Weinreb, LISP Ma
chine Manual, Fifth Edition, MIT Artificial Intelligence 
Lab., Cambridge, MA, January, 1983. 

18. P. O'Brien and J .L. Wyatt, Jr., "Signal Delay in ECL In
terconnect," Proc. 1986 IEEE Int. Symp. on Circuits and 
Systems, San Jose, CA, May, 1986, 755-758. 

19. R. L. Rivest, "The PI (Placement and Interconnect) Sys
tem," Proc. 19th Design Automation Conference, Las Ve
gas, June, 1982, 475-481. 

20. R. L. Rivest and C. M. Fiduccia, "A Greedy Channel 
Router," Proc. 19th Design Automation Conference, Las 
Vegas, June, 1982, 418-424. 

21. J. Rubinstein, P. Penfield, Jr., and M.A. Horowitz, "Sig
nal Delay in RC Tree Networks," IEEE TI-ans. Computer
Aided Design, CAD-2(3), July, 1983, 202-211. 

22. D. Standley and J~L. Wyatt, Jr., Improved Signal Delay 
Bounds for RC TI-ee Networks, VLSI Memo No. 86-317, 
Microsystems Research Center, Room 39-321, MIT, Cam
bridge, MA 02139, May, 1986 . 

2S. S. Teig, R. Smith, and J. Seaton, "Timing Driven Layout of 
Cell-Based IC's," VLSI Systems Design, May, 1986, 63-73. 

24. J. P. Wade and C. G. Sodini, "Dynamic Cross-Coupled 
Bitline Content Addressable Memory Cell for High Density 
Arrays," Proceedings of IEDM, (1985). 

25. J. D. Williams, "STICKS-A Graphical Compiler for High 
Level LSI Design," National Computer Conference, (1978), 
289-295. 

26. J. L. Wyatt, Jr., "Signal Delay in RC Mesh Networks," 
IEEE TI-ans. Circuits and Systems, CAS-S2(5), May, 
1985, 507-510. 

21. J.L. Wyatt, Jr., C. Zukowski, and P. Penfield, Jr., "Step 
Response Bounds for Systems Described by M-Matrices, 
with Application to Timing Analysis of 'Digital MOS Cir
cuits," Proc. 24th IEEE Coni. on Decision and Control, 
Ft. Lauderdale, FL, December, 1985, 1552-1557. 

28. Q. Yu, J.L. Wyatt, Jr., C. Zukowski, H.N. Tan, and P. 
O'Brien, "Improved Bounds on Signal Delay in Linear RC 
Models for MOS Interconnect," Proc. IEEE 1985 Int. 
Symp. on Circuits and Systems, Kyoto, Japan, June, 1985, 
903-906. 

29. R. Zippel, The Database Accelerator: Architecture, Smart 
Memories Project, Report 1, (1985). 

SO. G.C. Clark, R. Zippel, "Schema: An Architecture for 
Knowledge Based CAD," Proceedings ofICCAD'85, (1985), 
50-52. 

SI. C.A. Zukowski, The Bounding Approach to VLSI Circuit 
Simulation, Kluwer Academic Publishers, July, 1986. 



Highlights of CMU Research on 
CAD, CAM and CAT of VLSI Circuits 

John Paul Shen 

SRC-CMU Research Center for Computer-Aided Design 
Department of Electrical and Computer Engineering 

Carnegie Mellon University 
Schenley Park, Pittsburgh, P A 15213 

The primary goal of the Semiconductor Research 
Corporation-Carnegie Mellon University Research Center 
for Computer-Aided Design is to carry out a comprehensive 
research program that will result in the development of an 
integrated methodology and associated computer aids for 
the design, manufacture, and test of VLSI circuits and 
systems. Currently the research center has ten faculty 
members associated with it. There are also about forty 
graduate students currently pursuing research in the center 
as well as a number of visiting researchers. This paper 
outlines the ongoing projects in the center and highlights a 
number of these projects. 

1. OVERVIEW 

Three disciplines are involved in the realization of a 
VLSI circuit: design, manufacture, and test. Each of these 
disciplines involves a number of activities and requires the 
use of various computer aids. Because Computer-Aided 
Design (CAD), Computer-Aided Manufacture (CAM), and 
Computer-Aided Test (CAT) traditionally have been viewed 
as separate disciplines, the aids that have been developed for 
them are by and large unrelated and noninteractive. In our 
view, it is essential that an integrated approach be used for 
the design and implementation of computer aids for these 
three disciplines. 

Taking into account the fabrication process, four major 
steps are involved in the realization of a VLSI circuit chip, 
namely process design, circuit design, nanufacture and test. 
Traditionally CAD tools are used to speed up the circuit 
design step and CAT tools are used during the test step to 
guarantee circuit performance. The SRC-CMU research 
center for CAD has a broad-based program aimed at 
developing an integrated approach to CAD, CAM and CAT. 
Our first step towards this integration involves the concepts 
of manufacturing-based CAD and manufacturing-based 
CAT; see Figure 1. Manufacturing-based CAD supports 
both process design and circuit design with the aim of 
achieving short design time, fast turn-around and high 
manufacturing yield. Manufacturing-based CAT utilizes 
technology and process information to effect accurate 
screening of defective chips during fabrication test. 

CH2345-7/86/0000/0878$Ol.OO© 1986 IEEE 
878 

r P'OC·leslgn 

Manufacturing -. Circuit Design Computer Aided 
Based CAD I Manufaclure 

Test ~ Manufacturing 
..;.. Based CAT 

Figure 1. Integrated CAD/CAM/CAT - First Step. 

Currently, the center has approximately forty ongoing 
projects, which are loosely grouped into the following areas: 

• Design 

o Synthesis 
o Verification 
o Simulation 

• Manufacturing 
• Testing 
• Design Environment 

A representative, though not comprehensive, set of projects 
is described in this paper. Some projects are described in 
more detail to highlight recent results and future directions. 
This paper represents an abridged and updated version of an 
earlier paper [1]. Only a sample of references appears in this 
paper; a comprehensive list of references can be found in [1]. 



2. DESIGN 

The goal of our CAD research is to develop a design 
automation system that involves a design methodology and a 
supporting set of computer aids that can take a behavioral 
description of the desired VLSI circuit, a description of the 
target technology, and a set of constraints, and then produce 
a set of masks that could be used to fabricate the circuit. 
The design produced should be testable and comparable in 
cost, speed, and reliability with manually produced designs. 
Availability of such a design automation system would 
significantly reduce the time required to design a VLSI 
system as well as produce designs which are correct the first 
time and manufacturable with acceptable yield. Figure 2 
illustrates this overall objective. 

Process 

Behavioral 
Description 

Interactive Design 
Automation 

System 

Masks 

Figure 2. CAD Research Objective. 

Our research activities have been aimed at developing 
new techniques to aid in a wide range of CAD tasks, and can 
be categorized around several main thrusts which include: 

• An investigation into the use of Knowledge-Based 
Expert Systems (KBES) as an aid in synthesis 
and analysis. 

• Development of top-down synthesis methods at 
the system and physical design levels which can 
make use of bottom-up information. 

879 

• Development of ' simulation tools to span all levels 
of the hierarchy. 

• Development of a consistent multilevel 
representation to provide a means for our 
programs to communicate and as a basis for 
multilevel analysis aids such .as multilevel 
simulation. 

• Development of special purpose hardware for 
CAD tasks. 

These research thrusts are being applied across the hierarchy 
of VLSI design. We view the design hierarchy to be 
composed of eight levels: 

1. Task level 
2. Architecture-definition level 
3. Behavioral level 
4. Functional-structure level 
5. Logic-structure level 
6. Transistor or switch level 
7. Mask layout level 
8. Process level 

These levels are described in detail in [1]. 
viewed as involving synthesis, verification 
Ongoing CAD research projects in these 
described. 

2.1. SYNTHESIS 

Design can be 
and simulation. 
three areas are 

A synthesis tool takes a description of a desired system 
at one level in the design hierarchy and generates a 
description at the next lower level in the hierarchy. A 
number of synthesis tools have been developed or are under 
development now. 

2.1.1. System Synthesis 

Design Representation and the System 

Architect's Workbench 

R.A. Walker, DE. Thomas 

The objective of this research is to develop a model of 
design representation, and then use that model to provide a 
designer's workbench that will allow manipulation of designs 

at high levels of abstraction. The model of design 
representation being developed is characterized by three 
separate but coordinated domains of description - the 
behavioral domain, the structural domain, and the physical 
domain - each characterized by a particular design decision. 
Using the SCS language, developed at CMU, we can 
coordinate these domains to represent the entire design. We 
are also developing a system architect's workbench that uses 
this model of design representation, and that will allow a 
designer to transform and analyze· the design, particularly in 
the behavioral and structural domains. This workbench will 
extend our current system to higher levels of abstraction, 
and will include such transformations as structural 
partitioning, process creation, and support for instruction
level pipelining. 



Interface Synthesis 

J.A. Nestor, D.E. Thomas 

This research investigates the description and synthesis 
of digital systems with complicated interface requirements. 
Previous work in high level synthesis has successfully 
developed tools that can automatically generate designs from 
an abstract specification. However, these tools have 
neglected the issues involved in designing interfaces. A 
method of describing systems with interfaces has been 
developed. A new system of tools building on previous 
research uses these extended descriptions to automatically 
generate designs with interfaces. The system of tools is 
nearly complete. Currently, we are evaluating its 
effectiveness with several examples of real interface 
specifications. 

Compilation of Interprocessor Communication 

for Multiple Processor Systems _ 

R.P. Bianchini Jr., J.P. Shen 

Recent research on parallel systems has clearly shown 
that the most difficult problem faced by the system designer 
is interprocessor connection and communication. A 
methodology for the automated design and implementation 
of interprocessor communication for special-purpose multiple 
processor systems has been developed. It is shown that for 
many special-purpose and mission-oriented systems the 
interprocessor communication- is deterministic and can be 
specified at system inception. This specification, identified 
as the target architecture, can then be automatically mapped 

or compiled onto a physical multiple processor system, 
identified as the host architecture, using a network traffic 
scheduler. Algorithms for such a scheduler have been 
implemented. It is shown that the order of complexity of 
network scheduler components is polynomial rather than 
exponential as in classical solutions. 

Towards . Knowledge-Based Synthesis 

of Analog Circuits 

R. Harjani, R.A. Rutenbar 

Although analog circuits do not exhibit the same rigid 
hierarchical structure as digital circuits, hierarchy maybe 
exploited by analog designers. Design still proceeds at 
different levels of abstraction, but the coupling between 
levels and between objects within a level is much stronger, 
and the interactions that must be planned for and designed 
(i.e., not logic values, but electrical, parasitic, 
electromagnetic and thermal considerations) are richer and 
more varied. Analog' designers rely strongly on experience 
with partial circuit topologies that meet classes of 
constraints, and knowledge-intensive strategies for choosing 
the parameters that define each module or primitive device. 
We are investigating design representations for a knowledge
based analog synthe~is tool in the restricted domain of 
CMOS analog-to-digital converters. The goal is to develop a 
representation that will not limit design to a set of fixed 
modules, but will help design fully custom analog circuits. 

880 

2.1.2. Logical Synthesis 

Synthesis by Delayed Binding of Decisions 

J. Rajan, D.E. Thomas 

A program called SUGAR is currently being developed 
to investigate the automatic synthesis of single chip 
microprogammed microprocessors from behavioral 
descriptions. Subtasks in complex problem solving activities 
li~e synthesis often interact. As a result, decisions made 
prematurely can lead to poor designs. A least-commitment 
style of binding decisions has been developed that allows 
better design choices to be made by postponing important 
decisions until adequate information is available to make 
them. This design style partitions the design task into a 
sequence of temporally ordered subtasks that cooperate 
during design. The subtasks consist of flow analysis, control 
flow transformations, control- flow partitioning,data path 

model selection, and hardware allocation. Most subtasks 
have been implemented and the project IS nearing 
completion. 

A Know ledge Source Based Synthesis System 

A Feasibility Study . 

D.L. Springer, D.E. Thomas 

This project investigates the organization of programs 
to automatically synthesize VLSI systems from the 
behavioral level to the register-transfer level. In particular 
we are exploring knowledge source based systems and an 
organization structuring language. Knowledge source based 
systems are composed of a set of independent knowledge 
sources which communicate via a software blackboard. 
Present knowledge source based systems include Hearsay-II 
which is a speech recognition program and ULYSSES 
(discussed below) which is a design environment for the 
logical and physical design of VLSI systems. Present 
synthesis systems for the upper levels of the design hierarchy 
do not allow the flexibility to: change knowledge, integrate 
different implementation styles, or deal with conflicting 
data, which a knowledge source based system would provide. 
This flexibility is highly desirable since this domain of the 
synthesis task is still largely in the research stage. 

Instruction Processor Pipeline, Design and Analysis 

R.J. Cloutier, D.E. Thomas 

The design of the stages and the control structures of a 
pipeline, for an instruction processor, are weakly supported 
by existing tools. The manual methods used, today are 
similar to those that were originally used to describe the 
IBM 360/91. This lack of tools is hindering the development 
of advanced pipelined processors. The major problem is the 
diversity of control structures and the inability to deal with 
them in computer aided tools. Take for example, the 
partitioning of a processor into stages. Stage boundaries are 
proposed by considering timing - relations and resource 
conflicts. A simulator is then written for that particular 
partitioning, and the proposed control structure. Potential 
instruction streams are then run -through the new pipeline 



model. The simulator is used to search for unexpected 
delays caused by specific combinations of instructions and 
external signals (such as interrupts) flushing the pipeline. 
Instead of simulation, analysis can be performed to find the 
combinations of instruction sequences and signals that will 

cause problems. Combining this analysis with synthesis 
tools avoids the problem of building a unique simulator for 
each proposed pipeline configuration. 

2.1.3. Physical Synthesis 

Logic Synthesis System 

M. Trick, S. W Director 

The purpose of this research is to develop a system that 
takes a structural level specifications of a system and 
generates the necessary layout. It is our intent that this 
synthesis system will allow a structural synthesis tool or the 
designer as much freedom as possible in specifying the 
structure of the circuit. It will be able to handle a variety of 
interconnection patterns, clocking schemes, and functional 
blocks. This freedom puts an additional burden on the 
synthesis system because it must analyze the connectivity 
and the shapes of the modules in the circuit and choose 
appropriate physical implementation for the modules. Many 
chips can be implemented very efficiently as a single row of 
modules of the data path connected to a logic array which 
implements the control of the data path as was done in 
Bristle Blocks and MacPitts. The layout synthesis system 
should recognize such designs and implement them in that 
style, but. if a design is specified that contains modules or 
interconnect not amenable to layout in a single row of 
modules, the system will be able to perform the layout of the 
IC using an appropriate style. 

A'Multiple Expert System Approach for Placement 

M. Hirsch, D.P. Siewiorek 

It is recognized that the activities performed during 
physical design fall into three main categories: partitioning, 
placement and routing. These three categories of activities 
are deeply interrelated in that if one considers any without 
considering the others, then the results will most likely be 
unacceptable. Existing tools approach the problem from a 
single point of view. For instance, min-cut will view physical 
design from a top-down point of view, whereas some graph
theoretic techniques which cluster components view the 
problem from the bottom up. It is believed that human 
designers attack the problem from a multiplicity of 
viewpoints. That is, the "viewpoint of the problem 
dynamically changes between bottom up, top down and 
middle out as the solution to a physical design problem is 

refined. It is also believed that while human designers use 
metrics such as congestion estimates, number of wire 
crossings between partitions and balance of area between 
partitions, these metrics are only guidelines. Human 
designers also look for recognizable design situations such as 
busses, locations of pads on the periphery of the chip and 
familiar interconnections of components and handle these 

881 

situations in a manner that their experience has shown to be 
most effective. A new approach will be investigated which 
combines a variety of metrics and viewpoints and will be 
implemented with a multiple expert system. 

Floorplanning Using Simulated Annealing 

on a Multiprocessor 

R. Jayaraman, R.A. Rutenbar 

The floorplanning task for VLSI chip layout determines 
the relative placement of circuit macro modules on a silicon 
surface. The basic objective is to optimize critical layout 
parameters, for example, interconnection· length, total chip 
area, and bus placement. This project studies simulated 
annealing algorithms as applied to floorplanning. Annealing 
algorithms applied to physical design problems have yielded 
excellent solutions, but they are computationally very 
intensive. In this research we are studying the 
implementation of an ·annealing-based floorplanner on a 
multiprocessor. Our goals include floorplanning for modules 
with a range of alternative shapes, modules with varying 
degrees of constraint on their final position in the floorplan, 
and explicit consideration of busses. After completing the 
serial version of the proposed floorplanner, this research will 
focus on identifying parallelism and multiprocessor 
partitioning strategies appropriate to speed up the execution 
times. 

" Multiprocessor-Based Placement by 

Simulated Annealing 

S.A. Kravitz, R.A. Rutenbar 

This project is developing multiprocessor-based standard 
cell placement tools based on simulated annealing 
algorithms. Placement of standard cell ICs by simulated 
annealing produces results of high quality, but at a very high 
cost. The goal of this research is to reduce the high cost of 
the iterative improvement phase of annealing-based 
placement by mapping the algorithm onto a shared-memory 
multiprocessor. The key issue III parallel tool 

implementation is the partitioning of an algorithm across 
communicating ·processors. We have developed a taxonomy 
of possible multiprocessor decompositions of simulated 
annealing algorithms. This provides a systematic framework 
for extracting parallelism in annealing-based layout 
algorithms. In particular, we have shown that the choice of 
multiprocessor annealing strategy is strongly influenced by 
the annealing temperature parameter. We introduce the idea 
of adaptive strategies which change dynamically as 
annealing proceeds through different temperature regimes to 
best exploit parallelism. Three implementations of 
multiprocessor standard cell placement have been completed 
and their performance evaluated. An adaptive strategy 
which switches from one parallel decomposition to another at 
the optimal temperature yields speedup significantly better 
than any single strategy approach. Practical speedups for 
benchmark problems have been achieved for a four processor 
machine. 



2.2. VERIFICATION 

Linking Design Representations 

R.L. Blackburn, D.E. Thomas 

This research is concerned with the development of a 
means for linking design representations at different levels of 
abstraction. The linkage should provide the means of 
identifying corresponding values and operators in two or 
more different representations. Linkage will be accomplished 
by adding additional information to design representations 
to describe how they relate to each other. This work has 
applications in interactive debugging and formal verification 
of synthesized data paths and controllers. 

A Data-Structure Processor for VLSI 

Geometry Checking 

E.C. Carlson, R.A. Rutenbar 

A critical step in the verification of VLSI chip designs is 
the geometric analysis of IC masks. This geometric analysis 
performs the functions of design rule checking, connectivity 
analysis, transistor identification and parasitic extraction 
from the integrated circuit mask geometry. Scanline 
algorithms are at the base of many geometric analysis 
functions, and appear to be the best available solution both 
in speed and memory requirements to the needs of these 
verification tasks. Bigger machines to run these compute-

intensive programs are an obvious solution, but are not 
necessarily the most cost effective. The design of special
purpose hardware is attractive since much of VLSI mask 
verification is based on similar scanline primitives. We have 
proposed an architecture that implements two fundamental 
scanline operations: boolean operations between mask layers, 
and region numbering within a mask layer. The proposed 
architecture is a pipeline that implements directly the basic 
operators needed to manipulate a scan line data structure. 
Using edges as its primitive operands, the architecture is 
capable of handling arbitrary polygon geometry. 
Preliminary simulations of the proposed hardware suggest 
that it is significantly faster than a VAX 11/780. 

A Localizing Circuit Extractor 

M. Chew, A.J. Strojwas 

Process disturbances during the fabrication of a digital 
integrated circuit might affect the equivalent electrical 
circuit of the resulting chip. Unfortunately, the circuit 
extraction of the complete layout of a digital circuit layout is 
too computation-intensive a task to perform if one wants to 
see the effects of a given set of process disturbances. The 
goal of this project is to develop an extractor which, given 
the disturbance region and the type of the disturbance, will 
extract from the altered layout only the electrical 
components which might have undergone a change. The 
results of this tool will then be used to update a previously 
extracted circuit of the undisturbed layout. 

882 

2.3. SIMULATION 

Simulators developed at CMU span most of the levels in 
the design hierarchy. One trend in the design of CMU's 
simulators is the use of abstractions for controlling detail. 
Abstraction can define a new level which approximates the 
details of a lower level but with simulation cost of a higher 
level. An example is WASIM, a waveform simulator that 
allows device and circuit properties at the cell level. 

Another trend is the use of hierarchy. Hierarchy can be 
used within a single design level by taking advantage of the 
natural hierarchy of the system under design. Hierarchy can 
also be used to mix two or more design levels. SAMSON, a 
mixed-level simulator, bridges the circuit and logic levels 
with more than two orders of magnitude performance 
increase over a traditional circuit simulator. 

A third trend is the increased use of statistical 
techniques. FABRICS uses statistics to model process 
variations. The Hierarchical Statistical Simulator 
summarizes detailed behavior with a probability distribution 
function. A fourth trend is the use of symbolic and compile
driven techniques. An example of this trend includes the 
switch level simulator COSMOS which is currently being 
developed at CMU. A number of simulation projects are 
described below in roughly the top-down order. 

2.3.1. Functional Level Simulation 

Functional Specification Simulation of Computers 

S. Bose, D.P. Siewiorek 

This project is concerned with the functional description 
of computers. All constructs of a computer system can be 
based on such functions, which can be written and 
incorporated into a general purpose language. Lisp has been 
used for this purpose. A pseudo language called the 
Functional Specification Language (FSL) was designed to 
incorporate the features of functional languages as well as 
special constructs for Hardware Description Languages 
(HDL). FSL is actually Lisp with an added set of functions. 
These functions are arranged in two layers. The upper layer 
functions build on the lower layer and capture the unique 
features of HDLs for describing target computer instruction 
sets. The development of a tool is the subject of the ongoing 
research. 

2.3.2. Switch-Level Simulation 

COSMOS: A New Switch-Level Simulator 

R.E. Bryant 

The COSMOS (COmpiled Simulator for MOS) project 
aims to produce a high quality switch-level simulator with at 
least an order of magnitude better performance than 
MOSSIM II. The program also includes additional 
capabilities such as concurrent fault simulation. 
Furthermore, it can easily be adapted for execution on any 
special purpose simulation accelerator that supports Boolean 



evaluation. Unlike programs that operate directly on the 
transistor level description during simulation, COSMOS 
transforms the transistor network into a Boolean descript'ion 
during a preprocessing step. This Boolean description, 
produced by a symbolic analyzer, captures all aspects of 

switch-level networks including bidirectional transistors, 
stored charge, different signal strengths, and indeterminate 
logic values. Unlike previous symbolic analyzers for MOS 
circuits, the COSMOS preprocessor produces very concise 
formulas, generally linear in the circuit size. 

Gaussian Elimination of Boolean Equations for 

Symbolic Simulation of MOS Transistor Networks 

TJ. Sheffler, R.E. Bryant 

This project is responsible for solving the network 
equations symbolically to arrive at Boolean equations which 
represent the behaviour of the network. A method closely 
related to Gaussian elimination seems promising. Instead of 
solving the equations in the domain of real numbers, the 
elimination and backsolving steps will be performed in the 
domain of Booleans. Much has been written on the relation 
between Gaussian elimination and solving systems of 
Boolean equations, however, there has been no clear 
discussion of this topic with respect to switching circuits. 
The systems of equations to be solved in this application are 
sparse in nature, thus sparse matrix techniques will be 
explored. 

Manipulation and Reduction of Boolean Expressions 

Represented as Directed Acyclic Graphs 

K.S. Brace, R.E. Bryant 

This project deals with the maintenance and 
simplification of structures which store representations of 
Boolean formulas. A formula is represented as a directed 
acyclic graph (dag). A dag resembles a parse tree except 
that a subgraph may be shared by more than one branch, 
yielding a more compact representation. When a new 
formula is defined simplifications must be made in a 
standardized way so that equivalent formulas may be 
recognized as such. The shared subgraphs of the dag 
structure complicate this. The primary concern of this 
project deals with the trade-off between the computation 
involved in simplification and the time and space saved by 
having an optimally simplified dag. 

2.3.3. Timing/Circuit Simulation 

SPECS2 : A Timing Simulator 

C. Visweswariah, R.A. Rohrer 

This project is aimed at the development of a timing 
simulator called SPECS2. The timing simulator is based on 
a tree/link analysis of the circuit. Table look up is used for 
model evaluation. An event-driven approach is employed for 
simulation. An event is the movement of a device from one 
region of its characteristics to the next. An event is 
processed, generating a new event for the time when the 
device is expected to move out of the present region of its 

883 

characteristics. This event is scheduled for the future. Time 
moves ahead to the next scheduled event and the process 
continues. A new modeling approach based on the 
conservation of charge and energy is used to build the table 
models. The simulator does not rely on complex models for 
good numerical conditioning or to guarantee reli~bility. 

Statistical Timing Analysis 

J. Benkoski, A.J. Strojwas 

The purpose of this project is to develop a tool that will 
provide the designer with a fast but accurate statistical 
estimate of the delays in VLSI circuits. At first the circuit is 
partitioned into logically meaningful blocks. Each block will 
then undergo several E-Iogic (Electrical Logical) simulations 
in order to fully characterize its delay as a function of the 
process parameters. The result of this analysis will be the 
input to output delays for this block and will be decomposed 
into three sub-delays: the input delay, the intrinsic delay, 
and the output delay. While the first is a function of the 
input slopes and the last depends on the loading conditions, 
the intrinsic delay is independent of the environment in 
which the block is placed. By using this technique, we can 
afford to analyze only unique blocks. The last part of our 
estimation process involves either an event driven simulation 
of the circuit at the block level or a longest path evaluation. 

A Macromodelling Approach for VLSI Simulation 

S.R. Nassif, S.W Director 

We have developed a methodology for the simulation of 
cell-based MOS designs. We attempt to exploit the 
regularity of such designs by building macromodels of the 
individual cells which are capable of predicting circuit-level 
electrical performance. In particular, we derive analytical 
approximations for waveforms that are generated by typical 
device-level output stage topologies, and fit these models to 
waveforms generated by circuit simulation. Macromodels are 
generated for these cells, such that the output of these 

macromodels are waveforms, and the inputs are design able 
parameters such as layout, as well as circuit parameters such 
as fan-out. An event-driven, waveform-based simulator, 
called W ASIM has been developed which employs these 
macromodelled cells. The basic events in this simulator are 
waveform transitions. W ASIM is capable of achieving near 
logic-simulator speeds, while accurately predicting 
waveforms, delays, and hazards [2]. 

Efficient Modeling of Small-Geometry MOSFETs 

M.J. Saccamango, A.J. Strojwas 

This project is concerned with developing more accurate 
models of small-geometry MOSFET's for circuit simulation 
purposes. We are currently deriving methods for 
determining device parameters (threshold voltage, body 
factor and channel-length modulation parameter) with 
efficient physically-based models. These methods will be a 
part of the device simulation portion of the statistical 
process/device simulator FABRICS II. This phase of the 
project is focused on the special modeling problems of 
modern MOSFET devices, i.e. those with small-geometries, 



nonuniformly-doped channels and/or lightly-doped 
source/drain regions. The next project phase will involve the 
use of the physically-based models to extend the FABRICS II 
device simulation to produce I-V characteristics. From these 
characteristics we hope to extract device models for circuit 
simulation which better reflect the bias dependencies of the 
device parameters. The availability of these I-V curves will 
also allow the extraction of device parameters to meet the 
modeling requirements of many circuit simulators presently 
in use. 

Tree/link Based Mixed-mode Circuit Simulator 

X. Huang, R.A. Rohrer 

This project aims at transcending the borders between 
switch level simulation and circuit level simulation of VLSI. 
A mixed mode capability will be accomplished by modeling 
the circuit devices on variable levels of accuracy. Spatial and 
temporal latency can be exploited by replacing dormant 
devices with the simplest models, which very often may be 
ideal switches. To accommodate these different models 
tree/link repartitioning will be employed to avoid ill~ 
conditioning and to effect fast convergence of iterative 
solution. 
Table Look-Up Device Modeling for a Charge and 

Energy Conserving VLSI Circuit Timing Simulator 

C. DellaTorre, R.A. Rohrer 

Conventional simulators violate basic laws of physics, 
such as the conservation of charge and energy. A new 
method of device modeling has been proposed that is aimed 
at charge and energy conservation in circuit simulation. 
This project involves the development of this modeling effort 
so that it could be incorporated into a simulator, the premise 
being that this simulator would, therefore, be more reliable 
and efficient than existing simulators. This modeling effort 
will incorporate table look-up methods of device modeling 
consistent with the above constraints. Thus, values entered 
into these tables will be derived in a manner that ensures 
that charge and energy are conserved. These tables will be 
built in the most memory-efficient manner possible. 

2.3.4. Yield Prediction and Maximization 

Yield Simulation for Integrated Circuits 

H. Walker, S. W. Director 

We have developed a catastrophic fault yield simulator 
VLASIC (VLSI LAyout Simulation for Integrated Circuits). 
VLASIC is a Monte Carlo simulator that uses defect models 
and statistics to place random catastrophic point defects on 
a chip layout and determine what circuit faults, if any, have 
occurred. The defect models are described in tables, and so 
are readily extended to new processes or defect types. The 
defect statistical model is based on actual fabrication line 
data, and has not appeared before in the literature. The 
output of VLASIC is a population of chip samples with the 
same distribution of circuit faults as observed in the 
fabrication line. This circuit fault information can be used 
to predict yield, optimize design rules, generate test vectors, 
evaluate redundancy, etc. We have also developed a simple 
redundancy analysis system as an example application. 

884 

A Realistic Yield Simulator for IC Failures 

1. Chen, A.J. Strojwas 

This research is aimed at developing a CAD tool to 
realistically estimate the yield losses due to IC structural 
failures. This tool extends the statistical design rule 
developer to an accurate and efficient yield simulator. The 
methodology adopted by the simulator accounts for most of 

the mechanisms which cause IC yield degradation due to 
structural failures. For computational efficiency, analytical 
method rather than Monte Carlo method is used. There are 
two main parts in this simulator: formulation of yield 
statistics in hierarchical levels and derivation of the 
Probability Of Failure (POF) for layout patterns. In the 
first part, VIC have successfully derived yield statistics which 
consider the effects of defect size sensitivity, globally 
nonuniform distribution (wafer level), and local clustering 
effects. In the second part, a theoretical method to find the 
POF for most of the simple patterns has been developed. 
Thus, given a set of layout design rules, this simulator will 
be able to predict yield in a hierarchical manner on the 
device level, chip level, or even wafer level. 

Statistical Integrated Circuit Design: 

Parametric Yield Maximization 

K.K. Low, S. W. Director 

The goal of this project is to develop an efficient way to 
optimize the production yield of VLSI circuits using 
statistical circuit design techniques. Specifically, we will 
address the parametric yield maximization problem using 
fabrication process control parameters (such as implantation 
dose and energy) and device geometries as design able 
parameters. Our approach differs from most previous work 
in this area in that we have chosen the space of process 
inputs instead of device parameters as part of our design 
space. This distinction is particularly relevant in integrated 
circuits since the device parameters are correlated. 
Moreover, previous methods require separate optimizations 
to be performed at the process and circuit levels which may 
result in suboptimal solutions. Two major obstacles can be 
identified in our effort. Firstly, accurate yield estimation is 
very computationally expensive due to the cost of 
simulations. Therefore, techniques must be found to reduce 
the cost without compromising accuracy. Secondly, the 
dimensionality of the problem must be brought down to a 
manageable level. This may be achieved by exploiting 
certain properties of integrated circuit design such as 
regularity and hierarchy. 

3. MANUFACTURING 

Minimizing cost-per-chip is the main objective in VLSI 
design, manufacturing and testing. Our research program in 
the area of manufacturing has this goal as its principal 
objective. We have recognized the fact that in VLSI circuit 
design, statistical characterization of the fabrication process 
is a necessity in order to describe the random fluctuations in 
processing conditions, material parameters and point defects 
that cause drops in production yield. This process level 



information can be abstracted into the higher levels, i.e. 
circuit, logic or functional levels, where it can be used to 
produce realistic IC designs or test programs. 

Towards this end the statistical process/ device 
simulator FABRICS II was developed to provide a common 
denominator for the integrated CAD/CAM [3] system with 
the capabilities shown in Figure 3. FABRICS II employs 
efficient (numerical or analytical) models of the fabrication 
steps and semiconductor devices manufactured in a number 
of technologies (NMOS, CMOS and bipolar). FABRICS 
simulation system accepts IC layout and process description, 
and generates model parameters for the active devices and 
parasitics. These parameters are compatible with the models 
implemented in such a popular circuit simulator, as SPICE. 

. The CPU time consumed 'by FABRICS for the process/device 
simulation is usually a small fraction of the time consumed 
in the circuit simulation stage. The accuracy of simulation 
is accomplished by tuning FABRICS to a particular 
fabrication process by a statistical optimization system 
called PROMETHEUS [3]. As a result of tuning, device 
parameters obtained from FABRICS are in good agreement 
with the parameters measured in the real fab lines. The 
current status of software in the CAM system is shown in 
Figure 4. 

Process 
synthesis 

Process 
diagnosis 

process 
control 

Yield 
maximization 

Figure 3. CAD/CAM System Capabilities. 

To facilitate synthesis of new fabrication processes, an 
interactive process interpreter/compiler PI/C [3] has been 
recently added to the simulation system. It employs a 
graphical process editor PED [3] and allows the user to 
specify the process by defining the lithographic masks and 
process conditions. The user can perform incremental 
simulations and view the simulation results which are 
displayed in the form of impurity profiles and device cross
sections. Extensive error checking is performed by the 

system to help in the synthesis. 

FABRICS II combined with a circuit simulator (SPICE 
or SAMSON) can be employed for a number of tasks ranging 
from the design verification/optimization to process 
diagnosis, to statistical process control. The design 
optimization tasks include: 

• Nominal design in terms of process parameters 
(e.g. minimization of power-delay product of a 
dynamic RAM in terms of gate oxidation 
parameters). 

• Worst-case design in terms of statistically 
independent process disturbances. 

• Parametric yield maximization III the space of 
layout and process parameters. 

A complete integrated system for process diagnosis 
PROD [4] has been developed and it uses FABRICS for 
efficient fault simulation. PROD identifies faults in the 
process that caused a drop in yield for a particular 
production run. The approach used in PROD is based on the 
analysis of distributions of IC performances and employs 
statistical pattern recognition techniques. 

Test 
Structure 
Measure

ments 

Process 
Controls 

& 
Mask 

Dimensions 

PED PIC FABRICS 

STATISTICAL 
PROCESS 
CONTROL 

SOFTWARE 

885 

SPICEI 
SAMSON 

Figure 4. CAD/CAM Software. 

To obtain realistic estimates of final production yield, 
the probability distribution of spot defects (e.g. shorts or 
breaks due to local lithographic errors) has to be taken into 
account together with the parametric' 'Variations. A yield 
simulator, called VLASIC, has been developed and can be 
used for prediction of the decrease in yield due to spot 
defects. For circuit design purposes, all the random factors 
affecting IC layout have to be translated into layout design 
rules. A statistical design rule developer STRUDEL [5] has 
been implemented to derive rules which maximize total yield. 
Two ongoing projects in this area are described below. 

Statistical Quality Control for VLSI 

Fabrication Processes 

PK. Mozumder, A.J. Strojwas 

Random fluctuations, which are inherent in any IC 
fabrication process, cause the production yield to drop 
significantly below 100%. The faults which cause the yield 
drop can be classified as catastrophic and parametric. This 
project deals with monitoring and controlling the IC 



fabrication process via statistical quality control. A cost 
optimization approach to the statistical quality control of IC 
fabrication processes has been taken. The project aims at 
creating a system which will, after every step in the 
fabrication sequence, make decisions as to whether the lot as 
a whole or in part is to be rejected from further processing. 
The system, given the constraints, is expected to develop 
selection criteria for the in-line measurements, which are 
then used by the system to make quality control decisions. 
The concept of process observability via in-line 
measurements, appropriate models necessary for process 
control, and algorithms for quality control based on yield 
maximization objectives have been developed. 

Adaptive Control of the IC Fabrication Process 

C.R. Shyamsundar, A.J. Strojwas 

This research deals with adaptive control of VLSI 
fabrication processes. Based on the in-line measurements that 
are made during the fabrication of integrated circuits, 
decisions will be made regarding the values of the future 
process parameters. Models relating the process parameters 
to in-lines and circuit performances, will be used for this 
purpose. These models were built using MULREG (MUlti
Layer REGression program), which has been specially 
developed for this purpose. An acceptability region in the 
space of process parameters is also used to arrive at the 
decisions. The aim will be to maximize the total profit from 
the fabrication line. With this in mind, a minimum 
acceptable yield will be determined at each stage. This will 
not be a constant but will depend on a number of factors 
including the current stage in the fabrication process. If at a 
particular stage in the IC fabrication process, the predicted 
yield is greater than this acceptable yield then the process 
parameters for the future stages will not be modified, 
otherwise one or more of these process parameters will be 
inodified so as to meet the yield criterion. 

4. TESTING 

We have started a research effort to develop a new 
methodology and associated software tools for the testing of 
MOS VLSI circuits. Most of the existing fault modeling and 
test generation techniques are based on the traditional 
scenario of putting many TTL SSI/MSI packages on a 

printed circuit board. It is believed that the efficient and 
effective testing of MOS VLSI circuits requires the 
development of new approaches and tools. We believe the 
following three problems associated with traditional testing 
must be addressed. 

1. Technology independent fault model. 
Regardless of the implementation technology, the 
single line stuck at fault model is the most widely 
used fault model. We believe that, for VLSI 
testing, the fault model should be based on the 
physical defects and should take into account the 
technology, layout, and process characteristics. 

886 

2. Unranked fault list. Traditionally, the 
relative importance of different faults is not 
considered. We believe that not all faults are 
equally likely or equally important. It may be 
more cost effective to rank the fault list and 
appropriately order the test set so as to detect 
the most likely to occur faults first. 

3. Single level approach. Most existing testing 
methodologies and tools assume the logic gate 
level model. Although MSI level macros are often 
used in logic simulators, most systematic test 
generation algorithms require the gate level 
representation. We believe, just as in design, a 
new testing methodology should involve a 
multiple level or hierarchical approach in order to 
ease the complexity burden. 

As part of our initial step towards the integration of 
CAD/CAM/CAT, the concept of a manufacturing-based 
methodology' for fabrication testing is being developed. This 
methodology addresses the above three problems in the 
following two ways: 

• A customized fault list is generated for each 
circuit being tested. Faults in the list take into 
account the technology, layout, and fabrication 
characteristics, and can be grouped into different 
types depending on the faulty behaviors. Each 
fault list can be ranked according to relative 
likelihood of occurrence of the faults. 

• Starting with likely defects at the physical level, 
faults are extracted to the transistor, logic or 
even functional levels. Test pattern generation is 
performed separately for different fault types, at 
possibly different levels. Test pattern 

composition is then performed to produce the 
final test set. 

The proposed manufacturing-based testing scenarIO IS 

illustrated in Figure 5. Two ongoing projects in this area are 
presented below. 

Inductive Fault Analysis 

F.J. Ferguson, J.P. Shen 

Our first project in this area addresses the problem of 
the inappropriateness of the traditional fault model. Our 
underlying assumption is that circuit level faults are caused 
by physical defects which are inherent in the IC fabrication 
process. A technique called Inductive Fault Analysis (IF A) 
has been developed which allows the transistor or logic level 
faulty behaviors of a given MOS integrated circuit to be 
extracted from the layout level using process level 
information concerning spot defects [6]. 

IF A is an example of crossing multiple levels of the 
design hierarchy and involving elements of CAD, CAM and 
OAT. It is a systematic fault extraction procedure that 
spans the process, layout, transistor, and logic levels. A 
higher level fault model is developed based on conclusions 



Defect 

Statistic 

Circuit 

Layout 

----~~--~----------
Extracted 

Fault Ust 

Rari<ed 

Fault Ust 

L-__ ---. ____ ..... __ - - - - - - --' 

----~----~----------~ 
Test Ordered 

Set Test 

Fault 

Coverage 

Figure 5. Manufacturing-Based Testing Scenario. 

drawn from examining particular defects at the lower level, 
hence the word "inductive". 

The four major steps of the IF A procedure are: (1) 
generation and placement, on the circuit layout, of physical 
defects using statistical data obtained from the fabrication 
process; (2) extraction of primitive (geometric) faults caused 
by these defects; (3) abstraction of these primitive faults to 
the transistor, logic or even the functional level; and (4) 
classification of fault types and ranking of faults based on 
the likelihood of occurrence. Hence, given the layout of an 
integrated circuit, a customized and very accurate fault 
model and an associated ranked fault list can be 
automatically generated which take into account the 
technology, layout, and process characteristics. A CMOS 
fault extractor has been implemented. Currently a number 
'of example circuits are being analyzed. The IF A 
implementation environment is as shown in Figure 6. 

Initial application of the IF A procedure to an example 
circuit led to a number of very interesting observations [6]. 

Only 64% of the extracted faults can be modeled by the 
traditional single and multiple line stuck-at fault model. 
Not all faults are equally likely, and unusual faults, such as 
the creation of new transistors, are possible. Only 3% of the 
faults involve transistors stuck at open, whereas 30% of the 
faults are bridging faults. The IF A procedure can be used to 
(1) characterize potential faults in a circuit; (2) e~aluate t~e 
true effectiveness of traditional test sets; (3) provIde a basIS 

887 

Technology File 

traditional 
test patterns 

Figure 6. Inductive Fault Analysis 
Implementation Environment. 

for more effective test generation; and (4) uncover likely 
faults that are very difficult to test. 

Switch-Level Test Generation 

S.H. Robinson, J.P. Shen 

This project focuses on automatic generation of test 
patterns to screen out defective CMOS integrated circuits 
during fabrication testing. The algorithm developed uses a 
switch-level model in a search, similar to the D-Algorithm, to 
find tests for a specified fault list. Backtracking is allowed 
at each step in the search where multiple alternatives exist, 
so that if a test exists, it will be found by the algorithm. At 
the switch-level, transistors are viewed as bilateral switches, 
and a composite-valued algebra is used to represent the node 
values within the good and faulty circuits. The switch-level 
representation of CMOS circuits provides enough detail to 
model the faults and the bidirectional nature of CMOS 
circuits while retaining enough abstraction to be 
computationally efficient [7]. 

We have implemented this test generation methodology 
and embedded it within a test generation and test evaluation 
environment. Using this system, switch-level test generation 
and fault simulation for several small example circutis has 
been performed. The fault coverage results are encouraging 
and suggest that test generation is feasible at the switch 
level and is a promising area of research. 



5. DESIGN ENVIRONMENT 

In order to achieve an interactive design automation 
system that is made up of a set of disparate tools, we must 
develop a computing environment that has 

• the ability to allow various programs that have 
incompatible input and output languages to 
communicate with each other; 

• the ability to manipulate a variety of hardware 
description languages and to be able to resolve 
incompatibilities that may result; 

• the ability to organize the flow of information 
between programs to realize a specified design 
task; 

• the ability to implement automatically a diverse 
set 'of design tasks and methodologies; 

,.the, ability to'allow the designer to arbitrarily 
"interrupt a design task (such as a specified 
program ;execution sequence) and restart or 
redirect the sequence of operations; 

• the ability to explain its sequence of design 
activities to the designer, and to explain the 
reasons for particular ,design decisions; 

• the capability of easily introducing new computer 
aids or tools or substituting newer tools for older 
ones; and 

• the ability to keep track of all design attempts 
for a particular VLSI chip, and to make some 
comparison of these attempts, based on 
quantitative measures. 

5~1. EXPERT-SYSTEM BASED ENVIRONMENT 

We refer to a computing environment which has the 
above capabilities as a VLSI design environment. Such an 
environment, called ULYSSES [8], has been developed and 

. employs AI concepts to achieve the flexibility which the 
above attributes require. 

ULYSSES -- An Expert-System Based VLSI 

Design Environment 

M.L. Bushnell, S. W Director 

The ULYSSES project has created a design environment 
appropriate for VLSI design. Conceptually, the environment 
may be viewed as . a knowledge-based expert system for 
choosing which CAD program to execute next. The 
emphasis here is on controlling existing CAD tools, rather 
than on writing new ones. Furthermore, the environment is 
designed so that it will be very easy to substitute new, and 
hopefully better, CAD tools for existing tools. The 
environment employs a blackboard architecture originally 
employed in the Hearsay-II speech understanding system. 
This architecture is particularly suited for the VLSI problem 
domain, where many independent CAD tools must be 
controlled in order to solve various design problems. The 
blackboard is a global data base used for communicating 
information among various VLSI CAD tools, which are called 
knowledge sources. A language was designed to conveniently 
describe VLSI design activities, which are called scripts. An 

888 

,archival file backup system and a'design space are part of 
ULYSSES. The design space supports comparisons among 
competing design points, and both the environment and the 
designer can switch design activities to a different design 
point when the current one no longer appears viable. 

Knowledge-Based Chip Planning 

A.M. Dewey, S. W Director 

The objective of this research is to develop computer
aided support for the task of chip planning by' utilizing the 
capabilities of the ULYSSES environment. The chip 
planning task will assist· in the incremental development of 
more accurate, complete, and consistent chip-level 
specifications. Chip planning activities can include defining 
initial functional specifications, studying feasibility issues, 
and determining realistic performance goals. The purpose of 
the chip planning activities is to produce a credible chip-level 
specification that can be used to more efficiently conduct the 
subsequent detailed IC design and implementation phases. 
Emphasizing chip planning is in contrast to current design 
practices where thechip-IeveLspecification either simply does 
not exist or is an informaJ description which serves 'Only as a 
'guideline for the implementers. Using the chip-level 
specification as a more formal part of the integrated circuit 
design process can lead to a more efficient design 
methodology because major design errors at the specification 
level are, in general, easier to detect and correct. Thus, chip 
planning can help to avoid costly redesigns when, halfway 
into an expensive design cycle, it is discovered that the 
initial specifications were incorrect, incomplete, or 
unrealistic. 

5.2. USER INTERFACE 

With the advent of a design environment such as 
ULYSSES, we may view the role of the IC designer ,as that 
of an intelligent advisor communicating with an 
II intelligent II design environment. In such a situation, it 
would become very difficult for the designer to express his 
intentions in a traditional manner. In order to allow the 
designer the greatest degree of flexibility in using the design 
automation system, we feel that a natural language interface 
is required. 

The task of building a natural language interface for 
CAD is not, unfortunately, simply one of applying an. 
existing AI technology to a new domain. Though the study 
of previous natural language interfaces is a rich source of 
ideas, it also underlines the imperfections of these interfaces, 
and the need for a fresh· approach. A key component of a 
natural language interface is the parser, which analyses a 
sentence or sentence fragment and produces some kind of 
structured representation for it. Previous natural language 
interfaces, in general, have addressed this issue of parsing in 
rather piecemeal ways. Their coverage of constructions in 
English (the natural language most interfaces have dealt 
with) has been motivated and dictated by the domain of 
application of these interfaces, and not by any systematic 
study of the structure of English. For the goals of some of 
these interfaces, these limitations have not been detTactions, 
but they have restricted the utility of the interfaces to other 
domains. Since most natural language interfaces have been 



II toy II ones, either restricted to simplified domains, or, by 
self-admission, never intended for· II real II use, their 
application to substantial problems has always been 
problematic. 

In contrast to the domains for which most natural 
language interfaces have been intended, the CAD domain is 
substantial and complex. Hence, we have developed a new 
approach to natural language understanding. Based on this 
approach, we have implemented an initial version of a 
natural language interface called CLEOPATRA [9] that 
deals with circuit simulation post-processing. 

While CLEOPATRA is currently limited to the sub
domain of circuit simulation post-processing, future 
extensions will gradually address other design tasks. Some 
of these tasks will not' require too much additional 
programming effort. These include post-processing for 
functional and behavioral simulators;.. and data-base query. 
Our· ultimate goal, however; is a natural language interface 
for our integrated CAD/CAM/CAT environment. A follow
on project to CLEOPATRA' is currently being pursued as 
described below. 

An Improved Natural Language Interface for CAD 

TF. Cobourn, S. W Director 

The purpose of this project is to functionally extend 
CLEOPATRA. Currently, CLEOPATRA is limited to 
operation in the domain of circuit simulation post-processing. 
We intend to extend it to handle circuit simulation 
preprocessing as well. Also, a more user-friendly 
environment will be developed by integrating the existing 
system with interactive graphics. The new interface will be 
tested on designers in industry. 

6. CONCLUSION 

The SRC-CMU research center for CAD has been in 
existence for four years under the directorship of S.W. 
Director, and has a broad-based program aimed at 

ill§.!.;. SllDlllulli' SlmulllllQo' 

Task Micon 

Behavioral DAA !.IlilU 1011UIIlI:II' ~ 

FACET 
VT 

EMUCS DELILAH· GKS 

CLEOPATRA DIF 
Functional MOBY CORAL 

FRAMSMITH 

r E:~~:;;OI"j Logic 

SAMSON PRIMO 

Circuit WASIII CINAMON 

MASON kAI.;. 
TALIB FRED VLASIC IFA Layout 
WEAVER CAM; 

QgllmlullQo" PROD 
Process 

PIC FABRICS' 
PROMISE. STRUDEL PED PROMETHEUS 

Table 1. Computer Aids Developed at CMU. 

889 

developing an integrated approach to CAD, CAM and CAT 
of VLSI circuits and systems. Special emphasis has been 
placed on the in.vestigation of appropriate AI techniques, and 
the development of manufacturing-based CAD and 
manufacturing-based CAT. A number of tools have already 
resulted from these activities; see Table 1. We anticipate the 
release of a number of additional tools in the near future as 
well as an environment in which these tools will 
communicate with each other. 

Approximately half of the $2.5 million operating budget 
for the center comes from the Semiconductor Research 
Corporation. The remaining funds, and technical guidance, 
come from the National Science Foundation, the Army 
Research Office, AT&T Bell Labs, Digital Equipment 
Corporation, General Electric, General Motors, Gould, GTE, 
Harris Semiconductor, Hewlett-Packard, Hughes Aircraft, 
IBM, Intel, ITT, MCC, Northern Telecom, Philips, 
Ray theon, and United Technologies. 

ACKNOWLEDGEMENT 

This paper is obviously the result of efforts by a large 
number of individuals. Two are especially appreciated. 
Gary York, assistant director of the center, compiled most of 
the project descriptions. Steve Director, director of the 
center, was responsible for the final editing. 

REFERENCES 

1. S.W. Director et al., IIIntegrated CAD, CAM, 
and CAT of VLSI Circuits and Systems: The 
CMU Perspective, II IEEE Design [3 Test of 
Computers, June 1985. 

2. S.R. Nassif and S.W. Director, IIWASIM: A 
Waveform Based Simulator for VLSICs, II Proc. 
Int. Conf. on CAD, ICCAD, November 1985. 

3. A.J. Strojwas, IICMU-CAM System, II IEEE 
Design [3 Test of Computers, February 1986. 

4. P. Odryna and A.J. Strojwas, II PROD: A VLSI 
Fault Diagnosis System, II IEEE Design [3 Test 
of Computers, December 1985. 

5. R. Razdan and A.J. Strojwas, IIA Statistical 
Design Rule Developer, II IEEE Trans. on CAD, 
October 1986. 

6. J.P. Shen et aL, IIInductive Fault Analysis of 
MOS Integrated Circuits, II IEEE Design £3 Test 
of Computers, December 1985. 

7. S.H. Robinson and J.P. Shen, II Towards. a 
Switch-Level Test Pattern Generation Program, II 
Proc. Int. Conf. on CAD, ICCAD, November 
1985. 

8. M.L. Bushnell and S.W. Director, IIVLSI CAD 
Tool Integration Using the ULYSSES 
Environment, II Proc. Design Automation Con!, 
DAC, July 1986. 

9. T. Samad and S.W. Director, II Natural Language 
Interaction for Computer-Aided Design -- A First 
Step, II IEEE Design [3 Test of Computers, 
August 1985. 



RESEARCH IN RELIABLE VLSI ARCIllTECTURES 
AT THE UNIVERSITY OF ILLINOIS 

Jacob A. Abraham 

Computer Systems Group 
Coordinated Science Laboratory 

University of Illinois at Urbana~hampCJ.ign 
1101 West Springfield Avenue 

Urbana,IL 61801 

ABSTRACf 

A major research program in the design of reliable 
VLSI architectures is underway at the University of Illi
nois. The program involves twelve faculty and over 
thirty graduate students, and addresses issues of testing 
and diagnosis, concurrent error detection, and fault toler
ance. This paper provides an overview of the research 
directions and describes selected research topics. 

INTRODUCTION 

Advances in Very Large Scale Integration (VLSI) 
technology are making possible the manufacture and use 
nf' ~70""'''' ,--"......." ..... 1.0." "'ht~r- "!III ..... ~ ~,:rt-+.ft'tl"'n~ T T .... ~n. ...... " .... "!II.+.ftl..... .I ... ~C" -- ._-J --.. • ... r--·· ---r- --- -J_ ... _ ....... _. _ ........ _ ..... _-_ ... _ ... J, ..... .... 

becoming increasingly difficult to ensure that the products 
are free from manufacturing defects and that they will 
operate reliably in the fteld. 

The University of Illinois has been active in the fteld 
of reliable systems for over 25 years. A major research 
program is now underway in the design of reliable VLSI 
architectures with funding from the Semiconductor 
Research Corporation (SRC) and its member companies. 
The goal is to ftnd innovative solutions to the problems of 
quality in integrated circuits. The research program is 
very broad, addressing areas of testing and diagnosis for 
both manufacturing defects and fteld failures, concurrent 
(on-line) error detection to ensure reliability of computa
tions, and fault tolerance and reconftguration for bypass
ing defective or failed modules in a system. 

TESTING AND DIAGNOSIS 

The complexity of VLSI is making it increasingly 
difficult to, derive high-quality test patterns which will 
expose defects and failures in chips and systems. Even the 
problem of grading the fault coverage of test patterns for 
today's complex chips, such as microprocessors, is beyond 
the capability of existing tools. The contradictory require
ments of addressing realistic failures at the circuit level 
and, at the same time, the ability to handle chips with 
hundreds of thousands of tranSistors, make it seem that it 
will be almost impossible to solve the testing problem. 

Acknowledgment: The research program in Reliable VLSI Architectures is 
funded by the Semiconductor Research Corporation (SRC) under contract 
number 84-06-049 and by grants from SRC member companies. 

CH2345-7/86/0000/0890$01.00 © 1986 IEEE 
890 

Our approach to this problem is two-pronged: the 
ftrst step is to develop techniques and tools which can 
derive accurate tests or grade test patterns for realistic 
failures in relatively small modules and cells. The second 
step is the development of techniques and tools which 
exploit the hierarchy present iD.' complex systems to derive 
tests for them, using the results of the accurate characteri
zation of the modules in the ftrst step. We believe that 
this will enable us to tackle the testing problems of the 
next generation of VLSI. 

We have developed techniques for generating tests for 
realistic failures (such as shorts and opens) in MOS cir
cuits [1]. Techniques for reducing the number of faults 
which need to be considered have also been derived [2]. 
These techniques produce a set of candidate tests for a 
TYlly:1H!~ T!!~~~ 1:~1:~ ':?!! ~ ,:!!~,:k~~ f0!' 1:!!~!!' ~ff~':1:!v~!!~~ 
under practical circuit operation (including effects of 
charge sharing, etc.) using a fault simulator. 

We have developed an MOS fault Simulator, FAUST, 
which produces output waveforms for circuits under real
istic physical failures [3]. This simulator can thus be used 
to check whether physical failures are, indeed, detected by 
tests generated by any of the proposed algorithms and to 
obtain fault coverage for realistic failures. This tool was 
used to identify some problems with testing CMOS cir
cuits. 

We have determined, using our tool, that tests for 
shorts or opens in CMOS circuits may be invalid if they 
were derived using only logic-level considerations [4]. 
Our approach was to attempt to derive tests using various 
proposed techniques and to use our fault simulator to 
determine whether the fault under consideration was, 
indeed, detected. Some examples of problems with tests 
are given below: 

(1) A logic-level test may not detect a failure because of 
its electrical behaVior. 

(2) A fault deemed undetectable because of assumptions 
r~garding resistances may actually be detectable. 

(3) A test may be· invalidated under variable delays in 
the circuit. 

(4) A test sequence may not detect a failure because of 
charge sharing in the circuit. 

(6) Faults in latch circuits may be detectable only with a 
long test time. 

(7) Faults in sequential circuits may be detectable only 
by carefully controlling the input timing. 



It was clear from the study that tests for the submo
dules must be carefully designed. In particular, detailed 
parameters such as transistor, sizes and node capacitances 
need to be used, since tests for some faults are critically 
dependent upon them. This was shown to be true even for 
simple failures such as shorts and opens. 

Current fault simulation techniques, such as parallel 
fault simulation, are not powerful enough for today's 
very large integrated circuit designs because simulation 
·algorithms show second-order effects. More powerful 
fault simulation techniques are needed to prevent a crisis 
in integrated circuit testing. Our research attempts to 
improve simulator performance through the use of new 
algorithms and data structures in order to overcome the 
current limiting factors in fault simulation. We have 
developed a new fault simulation technique which uses 
fault lists for primitives; these can be accurately produced 
by a transistor-level simulator such as FAUST. 

Our approach to improving simulator performance 
has focused on reducing both the space and computation 
reqUirements of fault simulation. We substantially 
reduce the space required by representing the circuit as the 
combination of a hierarchy and tree, and simulate directly 
from these structures without flattening the circuit. The 
hierarchy is used to store invariant information such as 
module name, number and order of inputs and outputs, 
and composition in terms of other modules (macromo
dules). The tree structure is used to store information 
which is unique to each instance of a module, such as state 
and undetected faults. As each fault is detected, it can be 
removed from consideration, which reduces the total 
number of faults under consideration and speeds up the 
simulation. While improving performance, this also 
allows the simulator to report the current fault coverage 
after every stimulus, if desired. The fault coverage can 
either be computed for each stimulus or cumulatively for 
a sequence of stimuli. 

These ideas resulted in the development of CHIEFS, a 
Concurrent, HIerarchical, and Extensible Fault Simulator 
[5]. A hierarchical partitioning scheme was incorporated 
to improve the performance; measurements show that it 
can dramatically speed up fault simulation (6000% on a 
24 x 24-bit multiplier). An analytical model which 
predicts speedup due to concurrent hierarchical fault 
simulation has been derived; the predictions closely follow 
experimental results. Figure I shows the major com
ponents of CHIEFS. The circuit description and fault 
library are maintained separately. The wrapper can be 
used to compress a set of interconnected primitives into a 
single, more complex primitive. This can drastically 
decrease fault simulation time by reducing the number of 
primitives. Work is now underway on the test generator 
which will also exploit the hierarchy in the circuit. 

We are also addressing the problem of deriving short 
but thorough tests for regular structures (useful for 
VLSI) such as iterative logic arrays and tree structures [6], 
as well as the design of circuits for easy testability. The 
problem of hardware support for fault simulation is being 
researched [7]. Methods for designing circuit structures 
for higher reliability, for example, to prevent single-event 
upsets [8], are also being studied. 

891 

FAULT 
COVERAGE 

UNDETECTED 
FAULTS 

TEXT EDITOR 

CIRCUIT 
LEVEL 
FAULT 
SIMULATOR 

USER DEFINED 
VECTORS 

Figure 1. Major components of CHIEFS. 

CONCURRENT ERROR DETECTION 

Reports from the field and, experimental studies indi
cate that the predominant failure mode in systems is due 
to transient rather than permanent failures. In these 
cases, systems should be designed with the capability for 
detection of errors in the computation concurrently with 
normal operation, since off-line testing will not necessarily 
detect transient faults. 

A method of Concurrent Error Detection (CED) 
through exploitation of highly structured VLSI hardware 
and software module design has been developed [9]. The 
complexity of current hardware and software systems has 
encouraged the design of systems that exhibit a high degree 
of structural regularity. Highly structured design pro
vides an opportunity for comprehensive CED through 
encoding algorithms that are designed to take into account 
the structural regularity of the hardware or software 
module. This method of encoding inputs and outputs of a 
module such that the module structure is included in the 
encoding is referred to as structure encoding. 

Specific forms of highly structured logic arrays have 
been shown to be strongly fault secure and strongly code 
disjoint if they were programmed to implement a novel 
form of input/output encoding developed in this research. 
This encoding approach allows the use of one checker to 
detect errors caused by faults on inputs, outputs, or 
within the array itself. The approach can be modifted to 
reduce the cost of the code-word checker by employing 
fault-avoidance techniques in the array design. Faults 
which cause Unidirectional errors in the outputs rather 
than single-bit address or data errors can be avoided by 
appropriate mask-level layout rules. Such a technique has 
been employed for PLAs and ROMs in the design of a 
low-cost approach to CED in these arrays. Figure 2 shows 
an application of this technique. 

Two classes of multistage interconnection networks 
have also been analyzed. Encoding schemes have been pro
posed for delta networks and centralized control networks 
that provide for comprehensive error detection. An exam
ple application of the proposed CED techniques to a 
mask-level design of an nMOS microprogram control unit 



~ 

AND I OR 
I 

plane I plane 

t--

Co -
Ii 

ir--l 
10 

ooac .. 
r--i OCCIID 

- - - - TI, c, - - -
I-

Figure 2. CED Technique for a Programmable Logic Array 
(PLA) 

has been completed and evaluated. Implementations exhi
biting a high degree of structural regularity were shown to 
result in cost-effective CED. These ideas have been 
extended to the use of structural encoding techniques to 
detect errors in the structural integrity of linked-data 
structures. Two techniques of distributed and appended 
checks, as well as signature access path checking, have 
been developed for concurrent detection of pointer errors. 

We have also developed a novel technique for CED 
which uses time redundancy, called Recomputing with 
Shifted Operands (RESO) [10]. Figure 3 shows the appli
cation to a general Iterative Logic Array (ILA). The array 
computes the result twice, once with the normal operands 
and once with shifted operands. It can be shown that, 
with the appropriateamount of shifts, any fault in the 

. array will affect different parts of the result in the two 
tries, causing the error to be detected by the checker. 

Ongoing research involves the design of CED capabil
ity in complex systems using both space and time redun
dancy, as appropriate. 

FAULT-TOLERANT SYSTEMS 

Classical approaches to fault tolerance use large 
amounts of redundancy to correct or mask errors; an 
example is triplication with voting. We have developed an 
exciting new concept which we call algorithm-based fault 
tolerance for obtaining reliable results when computations 
are performed using multiple computation units (such as 
array processors). In this scheme, algorithms have their 
output encoded in a system-level error-detecting or error
correcting code. The algorithms rearrange the computa
tions so that any failure in part of the system will only 
affect a portion of the result, enabling the correct result to 
be extracted from the encoding. This technique has been 
used to design low-cost fault-tolerant systems for matrix 
operations [11] and signal processing [12]. 

892 

EQUALITY 
CHECKER 

ERROR SIGNAL 

OPERAND 

(X) 

SHIFTER 

ILA 

REGISTER 

FUNCTION OUTPUT 
Figure 3. Recomputing with Shifted Operands (RESO). 

Figure 4 shows a one-dimensional processor array for 
matrix-vector multiplication, AX = B. A i •J is encoded 

4 

with a column checksum, where aSJ = L ai.J' The matrix 
i=l 

element ai.J is stored in the local memory of the i th pro
cessor at the j th time step, and x J is broadcast to each 
processor at the j th time step. Each processor multiplies 
n pairs of ai.J and xJ and accumulates the products in a 
register. Each processor thus calculates one element of the 
result vector and the faulty processor affects only one ele
ment. Any error can, therefore, be detected using the fact 
that there is a checksum on the result. The error can be 
corrected and the faulty processor identified by appropri
ately repeating the computation on the set of processors. 

Figure 4. Checksum matrix-vector multiplication 
performed in a linear array. 



Figure 5 shows the application of algorithm-based 
fault tolerance to an FFr processor [13]. The encoding 
uses the principles of superposition and circular shift, and 
it can be shown that errors due to any failure of one 
butterfly module will be detected by the comparator. The 
error can be corrected by repeating the erroneous 
computation with a different' encoding of the data. This' 
faulty module can also be identifted at this time. If spare 
modules and switches are incorporated in the design, the 
system can be reconftgured around the faulty module. 

x(O) 

2x(O}tx(1) 

2x(J)+x(2) 

2x(2}tx(3) 

2x(3}tx(4) 

2x(4)+x(S) 

2x(S}tx(6) 

2x(6}tx(7) 

2x(7}tx(O) 

OJ : Decoding multiplier 

[±] : Summation adder 

Error indication 

X(O) 

X(4) 

X(2) 

X(6) 

XCI) 

xeS) 

X(3) 

X(7) 

Figure 5. Algorithm-based fault tolerance 
in an FFr processor. 

The hardware and time overheads for algorithm
based fault tolerance are very small compared with con
ventional techniques. This scheme is being extended to 
achieve fault tolerance in other signal processing systems, 
including those for singular value decomposition and cal
culation of eigenvalues. Attempts are underway to apply 
these ideas to more general-purpose systems. 

Other work in fault tolerance involves the design of 
reconftgurable systems [14] and techniques for yield 
enhancement [15]. We feel that this research effort will 
result in the identiftcation of novel, low-cost fault toler
ance techniques for the next generation of VLSI. 

REFERENCES 

[1] H.-C. Shih and J. A. Abraham, "Transistor-Level 
Test Generation for Physical Failures in CMOS Cir
cuits," Proceedings, 23rd Design Automation Confer
ence, pp. 243-249, July 1986. 

[2] H.-C. Shih and J. A. Abraham, "Fault Collapsing 
Techniques for MOS VLSI Circuits," Proceedings, 
16th International Symposium on Fault-Tolerant 
Computing, pp. 370-375, July 1986. 

893 

[3] H.-C. Shih, J. T. Rahmeh, and J. A. Abraham, 
"FAUST: An MOS Fault Simulator with Timing In
formation," IEEE Transactions on Computer-Aided 
Design, 1986 (to appear). 

[4] J. A. Abraham and H.-C. Shih, "Testing of MOS 
VLSI Circuits," Proceedings, International Symposi
um on Circuits and Systems (invited paper), pp. 
1297-1300, June 1985. 

[5] W. A. Rogers and J. A. Abraham, "CHIEFS: A Con
current, Hierarchical and Extensible Fault Simula
tor," Proceedings, International Test Conference, 
pp. 710-716, November 1985. 

[6] W.-T. Cheng and J. H. Patel, "Testing in Two
DimenSional Iterative Logic Arrays," Proceedings, 
16th International Symposium on Fault-Tolerant 
Computing, pp. 76-81, July 1986. 

[7] A. J. Stein, D. G. Saab, and I. N. Hajj, "A Spectal
Purpose Architecture for Concurrent Fault Simula
tion," Proceedings, International Conference on 
Computer Design, October 1986 (to appear). 

[8] S. M. Kang and D. Chu, "CMOS Circuit Design for 
Prevention of Single-Event Upset," Proceedings, 
International Conference on Computer Design, Oc
tober 1986 (to appear). 

[9] W. K. Fuchs and J. A. Abraham, "A Unifted Ap
proach to Concurrent Error Detection in Highly 
Structured Logic Arrays," IEEE Journal of Solid
State Circuits, 1986 (to appear). 

[10] J. H. Patel and L.-Y. Fung, "Concurrent Error 
Detection in ALUs by Recomputing With Shifted 
Operands," IEEE Transactions on Computers, vol. 
C-31, pp. 589-595, July 1982. 

[11] K. H. Huang and J. A. Abraham, "Algorithm-Based 
Fault Tolerance for Matrix Operations," IEEE Tran
sactions on Computers, vol. C-33, pp. 518-528, June 
1984. 

[12] J.-Y. Jou and J. A. Abraham, "Fault-Tolerant Ma
trix Arithmetic and Signal Processing on Highly 
Concurrent Computing Structures," Proceedings of 
the IEEE, Special Issue on Fault Tolerance in VLSI, 
vol. 74, pp. 732-741, May 1986. 

[13] J.-Y. Jou and J. A. Abraham, "Fault Tolerant FFr 
Networks," Proceedings, 15th International Sympo
sium on Fault-Tolerant Computing, pp. 338-343, 
June 1985. 

[14] P. Banerjee, S.-Y. Kuo, and W. K. Fuchs, 
"Reconftgurable Cube-Connected Cycles Architec
tures," Proceedings, 16th International Symposium 
on Fault-Tolerant Computing, pp. 286-291, July 
1986. 

[15] S.-Y. Kuo and W. K. Fuchs, "EffiCient Spare Alloca
tion in Reconftgurable Arrays," Proceedings, 23rd 
Design Automation Conference, pp. 385-390, July 
1986. 



HIGHLIGHTS OF VLSI RESEARCH AT BERKELEY 

Carlo H. Sequin, A. Richard Newton, 
and Alberto L. Sangiovanni-Vincentelli 

Electrical Engineering and Computer Sciences 
University of California, Berkeley, CA g4720 

ABSTRACT 
'rhe broad spectrum of expertise in the Department 

of EECS at Berkeley provides a stimulating and fertile 
en~.{ronment for productive research in all aspects of 
vLSI. We report on a recent large-scale project that 
focussed on the development of a suite of synthesis tools 
in the context of the design of a chip set for a multipro
cessor workstation. 

INTRODUCTION 
For more than two decades the EECS department at 

U.C. Berkeley has had strong activities in the area of 
integrated circuits and CAD tools for Ie design and more 
recently also in VLSI architectures. Particularly exciting 
results are obtained when all of these areas start to 
interact. In the past, the RISCI, 2 and the SOAR3 pro
cessors developments were strong forcing functions for 
our CAD environment, leading to such crucial tools as 
fast circuit extractors, design rule checkers, timing 
verifiers, PLA optimizers, and interactive layout editors.4 

Often the development of these tools occurred in 
response to a crucial need of a design job already in pro
gress. This orientation towards getting real problems 
solved naturally shapes the nature of our tools. On the 
other hand, the available tools determine the scope of the 
designs we can hope to complete successfully. 

This paper focuses on the most recent and very 
exciting interaction of the aforementioned VLSI research 
areas. In recent years the attention given to synthesis 
tools has been growing steadily. During the academic 
year 1985/86 this activity culminated in a coordinated 
effort referred to as the 'Synthesis Project'. Organized 
around a few graduate courses, tbe "official" goal of the 
project was to automate the design of digital integrated 
circuits by enhancing and integrating the various existing 
synthesis tools into a cohesive framework, and to create 
first prototypes for the missing links. The final objective 
is to create tools t~at perform as well or even better than 

CH2345-7j86jOOOOj0894$01.00© 1986 IEEE 
894 

human designers in each phase of the design process, 
from behavioral specification, through logic synthesis, to 
module generation, automated place and route, and final 
layout generation for a particular fabrication process. 

PROJECT ORGANIZATION 

In our department there is a tradition of strongly 
integrating research and instruction at the graduate level. 
Some part of a long-term research project with a well 
defined sub goal is made the subject of a special project
oriented graduate course. The structure of formal lec
ture and meeting times, combined with the hard dead
lines for grades at the end of the term, often produce 
substantial results in a relatively short time. In the past, 
a lot of exploratory work has been carried out in that 
manner, and the best approaches were subsequently 
refined and implemented as MS or PhD work. 

The Synthesis Project mentioned above was organ
ized around several courses. It formally involved over 
forty graduate students, seven industrial visitors, and 
three regular faculty members. In addition many other 
students and faculties contributed in a substantial 
manner as guest lecturers or through technical discus
sions. The project had two distinct phases. 

A preparatory phase from August through December 
1985 used a regularly scheduled graduate course (EECS 
244) to prepare students for the actual tool development 
and chip design. All aspects of Ie synthesis from floor
planning, placement and routing, to automated logic 
design, and procedural layout were reviewed. Existing 
approaches to automating the design process in each area 
were presented, contrasted with other approaches, and 
classified. Data management techniques were introduced, 
and the students had to familiarize themselves with the 
OCT data manager.5 All students in the course had to 
develope working tools and interface them to this data 
management system. 

The second phase of the Synthesis Project took place 
from January through May 1986. Again, the project was 



embedded in our instructional schedule. Formally, a 
design-oriented graduate course (CS 292H) and a CAD 
tool-oriented course (EECS 290H) were used as .the 
organizational framework, and all participants had to 
enroll in both courses. In the design class, each student 
was a member of one of three chip design teams. In this 
capacity everybody was responsible for the design of a 
specific module on one chip and shared responsibility for 
the overall function of the chip. In the other course, the 

. CAD class, each student was a member of one of several 
CAD tool groups (e.g. logic synthesis, place and route, 
module generation) and was involved in developing a 
CAD tool suite that would be usable for all chips. This 
matrix organization exposed each student to the system 
aspects of the design process - developing a model and 
the detailed information flow for a given design style as 
well as the specific, algorithmic aspects of a particular 
class of tools. The students uniformly agreed that this 
organization was very useful in helping them gain an 
overview of the design process and in clarifying the func
tion each tool must perform. 

As in the past, we found it important to tie the 
development of new tools to a real design project; this 
helps to formulate realistic and practical specifications for 
each tool's function, interface, and performance targets. 
The obvious choice was to select the SPUR project6 that 
had been in progress for about a year. This project con
cerns the development of a multiprocessor workstation 
for 'Symbolic Processing Using RISCs'. It presented an 
honest challenge in terms of complexity, as the chip set 
to be developed consists of three chips with over 150,000 
transistors each: the central RISC processor chip (CPU), 
a cache controller chip (CCU), and an IEEE-standard 
floating-point chip (FPU). The main goal in teaming up 
with this project was that we had access to the architects 
and original implementors for consultation and that we 
hoped to obtain large parts of chip descriptions in a 
machine-readable form. 

OUR SYNTHESIS SYSTEM 

One of the basic requirements of our CAD environ
ment is that it be flexible and extensible. It must be use
ful for the design of a wide class of circuits, from opera
tional amplifiers to microcomputers, and the system 
should be able to respond do changing needs as our 
understanding of the VLSI design process matures. Our 
general approach is thus a modular set of tools, all inter
faced to a common database. In this section we give a 
brief overview over the database and the various groups 
of tools addressed in the Synthesis Project. 

Our automated synthesis process currently starts at 
the register-transfer level and converts a behavioral 
description into state machines, Boolean logic, and regis
ters. The final layout is created by iteration between two 

895 

groups of tools. Global placement and routing tools are 
used to outline the floorplan of the chip and produce 
desirable aspect ratios for the various modules of which 
the floorplan is composed. A variety of module genera
tion tools then create the individual. functional blocks, 
first at the symbolic level and then' as properly spaced 
dense layouts. These finished macro modules are then 
reinserted into the floorplan and properly interconnected. 
Some tools such as a general spacing program may playa 
role in both phases, first compacting transistors into a 
dense module, then compacting symbolically routed chan
nels to minimal physical width. 

Framework and Infrastructure 

To simplify the integration of our tools, we chose to 
use a single object-oriented data management system, 
OCT, the development of which had started some time 
ago.5 OCT has as its basic unit the cell which can have 
many views - physical, logical, symbolic, geometrical. 
A cell is a portion of a chip that a designer wishes to 
abstract and can vary in size from a simple transistor to 
the entire floorplan of a CPU. The system is hierarchi
cal, i.e., cells can contain instances of other cells. More
over, cells can have different abstract representations 
depending on the intended application, and these are 
represented in OCT by facets, the accessible units that 
can be edited. OCT provides powerful constructs for 
complex data structures but manages this complexity 
unseen by the user. 

A graphical CAD shell, VENI, was developed that 
permits the user to inspect and alter the contents of the 
various cells in the data base in a natural manner. OCT 
also provides project management support in the form of 
change-lists, time stamps, and search paths. All evolving 
synthesis tools were provided with interfaces to the OCT 
data manager. 

Logic Synthesis 

The high-level entry point to the design system is a 
register-transfer-level description of the chip. After 
evaluating a number of alternatives, we decided to use 
the ISP-based Behavioral Description Language (BDS) for 
this purpose. BDS is one of the languages used in the 
DECSIM mixed-level simulation system developed by 
Digital Equipment Corporation. Digital agreed to pro
vide access to DECSIM during the Synthesis Project 
which gave us the possibility to use the mixed-level 
features of the program (behavior, register, logic gate, 
and switch-level simulation modes) to refine our designs. 
(During the course we did not get far enough to use all 
these options.) 

In the logic synthesis tool suite? the DEC BDS 
description is mapped by a language translator into 
BDSYN, a subset of BDS developed to represent logic 



partitioned into combinational blocks and latches. From 
there, another translator maps the BDSYN description 
into BLIF, the Berkeley Logic Intermediate Format, by 
expanding high-level constructs into Boolean equations. 
The BDS to BDSYN translation determines from a BDS 
description a combinational logic network equivalent to 
the BDSdescription. 

MIS, a multilevel interactive logic synthesis pro
gram, then restructures the equations to minimize area 
and to attempt to satisfy timing constraints. :MIS first 
implements global optimization steps that involve the 
factoring or Boolean equations and multiple-level minimi
zation. Local optimization is then performed to 
transform locally each function into a set of implement
able gates. Finally, MIS includes a timing-optimization 
phase that includes delay approximation based on tech
nology data and critical-path analysis. 

Module' Generation, Topology Optimization 

Once the logic equations have been optimized and 
the floorplanning tools have provided first targets for 
optimal aspect ratios and. pin positions for the logic 
modules, the module generators are responsible for 
optimal packing of the logic into regular or irregular 
array-based structures.8 These tools must also consider 
slack times for critical paths. If any of the objective 
functions (area, aspect ratio, timing) cannot be met, the 
floorplanning and/or logic synthesis steps can be 
repeated. 

TOPOGEN generates a standard-cell-like layout at 
the symbolic level from a. description of a Boolean func
tion in the form of nested AND, OR, INVERT expres
sions.9 This form is converted in a straight-forward 
manner into a group of series / parallel blocks of FETs in 
a complex static CMOS gate. The transistor placement 
occurs in pairs on two strips' of diffusion of N- and P
type; respectively. The sequence of transistor pairs is 
optimized to minimize the length of the diffusion strips 
by maximizing the sharing of· source / drain areas 
between adjacent transistors,lO and to minimize' the 
width of the wiring required between them. The output 
from TOPOGEN can be inspected and modified with 
EDISTIX, a graphic editor using a symbolic. description 
on a virtual grid;9 The symbolic layout can then be sent 
to one of the compactors mentioned below. 

A more sophisticated module generator is the combi
nation of GENIE and MI<ARRAy.8 GENIE is. a fairly 
general software package using simulated annealing to 
optimize the topology of a wide range of array design 
styles, including PLAs, SLAs, Gate Matrix, and Wein
berger arrays. It handles nonuniform transistor dimen
sions, allows a variety of pin-position constraints, approx~ 
imates desired aspect ratios, by controlling the degree of 
column folding, and performs delay optimization. Its 

896 

output is sent to the array composition tool, MKARRA Y, 
which takes specifications of arrays of cells in a topologi
cal format. It then places the cells and aligns and inter
connects all the terminals. 

Layouts of existing cells, or cells where- there' is a 
special, optimized implementation that cannot be cap
tured properly at the behavioral level (e.g~ multi-ported 

register cells, barrel shifter), can be introduced into the 
system either via some adhoc disassembly tools, or 
directly through one of the editors VEM or EDISTIX. 

Layout Generation 

The modules at the symbolic level have to be spaced 
or compacted to a dense layout obeying a particular set 
of design rules. ll SP ARCS is a new.constraint-based IC 
compaction tool that provides an efficient graph-based 
solution to the spacing problem. It can deal with upper 
bounds, user constraints, even symmetry requirements. 
It detects of over-constrained elements, and permits adju
stable positioning of noncritical path elements 

Another symbolic compactor under .. development, 
ZORRO, works in two dimensions and is derived from 
the concept of zone refining used in the purification of 
crystal ingots. The crystal is slowly fed through a zone. 
of intense heat that 10cally melts the ingot. Since the 
generic crystal atoms recrystallize faster than other 
atoms, most impurities are swept out of the ingot with 
the molten zone. Similarly ZORRO passes an open zone 
across a precompacted layout. Circuit elements are 
taken from one side of this zone and are then reassem
bled at the other side in a denser layout. Early results 
obtained with ZORRO have shown reduction in layout 
area of up to 30% after the application of a' one-' 
dimensional compactor .12 

Floorplanning, Place, and Route 

These tools are first used. to plan the chip layout"and 
to produce optimum size and aspect ratios targets for all 
the modules. After the physical layouts of all. the 
modules have been generated, the tools are used again to 
assemble the complete chip. Various' tools have been ~ 

developed to perform module placement, channel 
definition and ordering, global routing, and finally 
detailed routing.13 These tools. can handle routing on 
multiple layers as well as over-the-cell wiring .. 

TIMBERWOLF-MC 14 performs the placement func
tion using the principle of simulated annealing. This pro
gram handles cells of arbitrary rectilinear' shape; it 
accommodates fixed· or variable shapes with optional 
bounds on aspect ratio, and accepts fixed, constrained, or 
freely variable pin locations. 

CHAMELEON15 is a new multi-Ievel.channel router 
that allows the specification of layer.,.dependent pitch and 



wire widths. It has as its primary objective the minimi
zation of channel area and as its secondary objective the 
minimization of the number of vias' and the length of 
each net. On two-layer problems it performs as well or 
better than traditional channel routers. 

MIGHTy16 is a 'rip-up and reroute' two-layer 
detailed switch-box router that can handle any rectagon
shaped routing region with obstructions and pins posi
tioned on the boundary as well as inside the routing 

,region. It outperforms all the known switch-box routers 
and even performs well as a channel router on problems 
with a simple rectangular routing region. 

'Analysis, Verification, and Testing 

Throughout the design process, tools for analyzing 
and verifying performance and function are essential. 
The Synthesis Project did not make a major push for 
new tools in this area and used mostly tools that were 
already available. 

With respect to testability we' tried at the beginning 
of the Spring. course to establish some clear~olicies about 
a design style that would, guarantee testable chips.17 The 
plan was to follow a scan-in / scan-out strategy.18 How
ever, some of the predesigned cells from the SPUR group, 
which we, wanted to reuse because of their compactness, 
did, not adhere to this philosophy. Other design teams 
did· not like the extra space taken up by the more compli
cated scan latches' and refused' to use them. No con
sensus was reached on this point during the duration of 
the course. This is clearly an area that needs more 
attention, better tools, and much more work. 

HARDWARE ENVIRONMENT 

When over forty CAD developers and chip designers 
are working jointly on a major tool and circuit develop
ment project, a tightly coupled, highly interactive "Com
puting environment is essential. To support this course, 
we used an extensive collection ,of ethernet-based works
tations and mainframe computers, running both the 
UNIX (Ultrix) and VMS operating systems. Our back
bone machine was a VAX 8650 CPU with approximately 
500 Mbytes of disc storage available to the course. This 
machine was our centraL design database~server, the 
repository for CAD tools, both new and old, and, the 
main electronic 'meeting place' for the participants in the 

. Synthesis Project. In addition, seven color 
V AXStationll/GPXworkstations and twelve mono
chrome V AXStationll machines were dedicated to this 
course. Two of these machines, used as DECSIM servers, 
ran the micro-VMS' operating system and were tied to 
the other workstations via DECNET. The network capa
bilities allowed us to run VEM on any particular 
machine, while the OCT data' management software 
could reside on any machine on the network. 

897 

RESULTS 

Fifteen weeks is not enough time to build a complete 
synthesis system (not even .at Berkeley). Thus we could 
not "press the button" on the last day of class and watch 
the layouts for the three SPUR chips: pop out of the com
puter. 

After the fifteen-week course period, all three chip 
designs had been converted from their original descrip
tions in 'N.2' or SLANG formats to BDS and inserted 
into our data management system. In the last weeks of 
the course, these· descriptions were then used to exercise 
the pipeline of tools that had, been cr.eated in parallel. 
Major parts of these designs have run through various 
tool groups and produced results of widely varying qual
ity. Improvements were quite visible as the tools were 
debugged and improved. 

The major benefit of· this course is a very good 
understanding of the bottlenecks and missing links in our 
system and concrete plans to overcome these deficiencies. 
Over all, the Synthesis Project of Spring, U186 must have 
been a positive :experience; the students polled at the end 
of the term voted strongly. in favor of continuing' the Syn
thesis Project in the. Fall term. 

CONCLUSIONS 

The EECS Department in Berkeley offers a very 
exciting environment for research in VLSI. Circuit 
wizards, experts on .IC processing, CAD tool builders, 
comp.uter architects, and theoreticians pointing out the 
fundamental limits, within which the solutions must lie, 
are all within the same department, and are strongly 
interacting in a cooperative manner. The quality of the 
chips and, tools being constructed at Berkeley would not 
be as high as it is without this cooperative interdisci
plinary interaction. 

ACKNOWLEDGEMENTS 

We' would· like to thank our colleagues who' helped 
us,· directly or 'indirectly, to create a powerful CAD 
,environment and thank .all the users for their patience 
with tools that are .still far from perfect. 

The development of our CAD tools is strongly sup
ported by the Semiconductor Research Corporation, by 
Digital Equipment Corporation, and by Tektronix. 

References 

1. D.A. Patterson ,and C.H. Sequin, "A VLSI RISC," 'Com
puter, vol. 15, no. 9, 'pp. 8-21, Sept.' 1982. 

2. M. G. H. Katevenis, Reduced Instruction Set Computer 
Architectures for VLSI, MIT Press, 1984. 



3. D. Ungar, R. Elau, P. Foley, D. Samples, and D. Patter
son, "Architecture of SOAR: Smalltalk on a RISC," Proc. 
11th Symp. on Computer Architecture, Ann Arbor, MI, 
June 1984. 

4. W.S. Scott , R.N. Mayo, G. Hamachi, and J.K. 
Ousterhout, "1986 VLSI Tools," CS Division Report No. 
UCB/CSD 86/272, University of California, Berkeley, CA, 
1985. 

5. D. Harrison, P. Moore, A.R. Newton, A.L. Sangiovanni
Vincentelli, and C.H. Sequin, "Data Management in the 
Berkeley Design Environment," submitted to ICCAD-86, 
Santa Clara, CA, Nov. 1986. 

6. M.D. Hill, S.J. Eggers, J.R. Larus, G.S. Taylor, G. 
Adams, B.K. Bose, G.A. Gibson, P.M. Hansen, J. Keller, 
S.1. Kong, C.G. Lee, D. Lee, J.M. Pendleton, S.A. Ritchie, 
D.A. Wood, B.G. Zorn, P.N. Hilfinger, D.A. Hodges, R.H. 
Katz, J.K. Ousterhout, and D.A. Patterson, "SPUR: A 
VLSI Multiprocessor Workstation," CS Division Report 
No. UCB/CSD 86/273, University of California, Berkeley, 
CA,1986. 

7. R. Brayton, A. Cagnola, E. Detjens, K. Eberhard, S. 
Krishna, P. McGeer, L.F. Pei, N. Phillips, R. Rudell, R. 
Segal, A. Wang, R. Yung, T. Villa, A.R. Newton, A.L. 
Sangiovanni-Vincentelli, and C.H. Sequin, "Multiple-Level 
Logic Optimization System," submitted to ICCAD-86, 
Santa Clara, CA, Nov.1986. 

8. G. Adams, S. Devadas, K. Eberhard, C. Kring, F. Ober
meier, P.S. Tzeng, A.R. Newton, A.L. Sangiovanni
Vincentelli, and C.H. Sequin, "Module Generation 
Systems," submitted to ICCAD-86, Santa Clara, CA, 
Nov. 1986. 

9. C.H. Sequin, "Design and Layout Generation at the Sym
bolic Level," in Proceedings of the Summer School on 
VLSI Tools and Applications, ed. W. Fichtner and M. 
Morf, Kluwer Acadmic Publishers, 1986. 

10. T. Uehara and W.M. VanCleemput, "Optimal Layout of 
CMOS Functional Arrays," Trans. Comp., vol. C-30, no. 
5, 1981. ' 

898 

11. J.L. Burns, T. Laidig, B. Lin, H. Shin, P.S. Tzeng, A.R. 
Newton, A.L. Sangiovanni-Vincentelli, and C.H. Sequin, 
"Symbolic Design Using the Berkeley Design Environ
ment," submitted to ICCAD-86, Santa Clara, CA, Nov. 
1986. 

12. H. Shin and C.H. Sequin, "Two-Dimensional Compaction 
by Zone Refining," Proc. Design Autom. Conf., Paper 
7.9, Las Vegas, July 1986. 

13. J. Burns, A. Casotto, G. Cheng, W. Dai, M. Igusa, M. 
Kubota, U. Lauther, F. Marron, F. Romeo, C. Sechen, H. 
Shin, G. Srinath, H. Yaghutiel, A.R. Newton, A.L. 
Sangiovanni-Vincentelli, and C.H. Sequin, "MOSAICO: 
An Integrated Macrocell Layout System," submitted to 
ICCAD-86, Santa Clara, CA, Nov. 1986. 

14. C. Sechen and A. Sangiovanni-Vincentelli, "TIM
BERWOLF 3.2: A New Standard Cell Placement and 
Global Routing Package," Proc. Design Autom. Con/., 
Paper 26.1, Las Vegas, July 1986. 

15. A. Sangiovanni-Vincentelli, D. Braun, J. Burns, S. Deva
das, H.K. Ma, K. Mayaram, and F. Romeo, 
"CHAMELEON: A New Multi-Layer Channel Router," 
Proc. Design Autom. Con/., Paper 28.4, Las Vegas, July 
1986. 

16. H. Shin and A. Sangiovanni-Vincentelli, "MIGHTY: A 
'Rip-up and Reroute' Detailed Router," submitted to 
ICCAD-86, Santa Clara, CA, Nov. 1986. 

17. R. Brayton, E. Detjens, S. Krishna, B. Lin, H.K. Ma, F. 
Obermeier, T. Quarles, L.F. Pei, R. Spickelmier, J. Tam, 
A. Wang, D. Webber, R.S. Wei, N. Weiner, A.R. Newton, 
A.L. Sangiovanni-VincentelIi, and C.H. Sequin, "Simula
tion, Timing Analysis, Verification and Testing in the 
Berkeley Synthesis Project," submitted to ICCAD-86, 
Santa Clara, CA, Nov. 1986. 

18. E.B. Eichelberger and T.W. 'Williams, "A Logic Design 
Structure for LSI Testability," Jour. Design Automation 
and Fault-Tolerant Computing, vol. 2, pp. 165-178, May 
1978. 



DEFT - A DESIGN-FOR-TESTABILITY EXPERT SYSTEM 

M. Arif Samad J. A. B. Fortes • 
School of Electrical Engineering 

Purdue University 
West Lafayette, IN 47907 

ABSTRACT 

DEFT is a knowledge-based program which uses 
Design for Testability (DFT) knowledge to modify cir
cuits into more easily testable circuits. This paper 
describes the DEFT system and gives an example of its 
operation. The paper begins with a review of previous 
research in automated design for testability and then 
presents an overview of the operation and organization of 
the DEFT system. This includes a discussion of the 
Prolog-based knowledge representation scheme used to 
describe DFT knowledge. The demon mechanism is 
described which allows DEFT to make use of Lisp func
tions to handle low-level implementation details. This 
mechanism allows DEFT to benefit from a high-level 
representation without sacrificing either efficiency or ease 
of implementation. An example is presented of an 8 X 8 
multiplier to which DEFT adds a scan path. The imple
mentation of the DEFT system is currently in progress. 
The last section of the paper reviews the stat us of the 
implementation effort. 

1. INTRODUCTION 

DEFT is a knowledge-based design for testability 
system which accepts as input the description of a circuit 
that has been designed without any testability features 
and modifies it into an easily testable circuit. DEFT is 
designed to work in conjunction with the mM MVISA 
Design Automation System recently installed at Purdue 
University [25]. The MVISA system allows for the design 
of integrated circuits using standard cells ranging from 
and/or gates to arithmetic logic units. The transforma
tion of a logical design using these standard cells into a 
physical design, i.e. a chip layout, is done largely 
automatically. DEFT takes as input a circuit description 
created using the MVISA system, adds hardware and 
makes other modifications to the circuit and then returns 
a description of the modified circuit to MVISA. In this 
way, design for testability is incorporated into the design 
cycle with little effort on the part of the circuit designer. 
DEFT is able to provide the user with an explanation. of 
its behavior and of related design for testability concepts. 
The knowledge that enables a program to exhibit expert 
problem-solving behavior is often not sufficient for the 
purpose of explanation. Generally, it is necessary to 
include extra "support" knowledge in the knowledge-base 
expressly for the purpose of explanation. The DEFT 
knowledge-base contains a representation of general testa
bility concepts and principles, in addition to specific 
design for testability schemes. This enables DEFT to pro-

• This work was supported in part by a grant Crom the AT&T 
Foundation 

CH2345-7j86jOOOOj0899$Ol.OO© 1986 IEEE 
899 

vide the user with meaningful explanations of its actions 
during the course of problem-solving. The DEFT expla
nation facility is described in greater detail in [27]. 

This paper begins with a discussion of the motiva
tion for using the knowledge-based systems approach for 
DEFT. This is followed by a review of previous research 
in automated design for testability. The architecture of 
the DEFT system and the knowledge representation 
scheme used are then examined. An example is then 
presented of a circuit to which DEFT adds a scan path. 
The paper concludes with a review of the implementation 
status of the system. 

2. KNOWLEDGE-BASED SYSTEMS IN 
DESIGN FOR TESTABILITY 

2.1. DESIGN FOR TESTABILITY 

Design for Testability refers to a collection of tech
niques that can be used to make integrated circuits easiell 
to test r2Q,Q,4,28]. There are a number of different classe!:l 
of DFT techniques which focus on different kinds of tes-. 
tability problems, e.g., memory test, PLA test etc. Many 
DFT techniques are concerned with controlling the 
memory elements of sequential circuits so that test pat
tern generation programs for combinational circuits such 
as those based on the D-Algorithm r26] can be used. 
Examples of such schemes include LSSD [8], Scan Path 
[10] and Random Access Scan [2]. 

There is increasing interest in designing circuits with 
additional test hardware so that they are able to test 
themselves. This capability is called Built-In Self-Test 
(BIST). Many of the ideas developed in connection with 
the DFT schemes mentioned earlier are relevant to BIST. 
For example, many BIST schemes make use of the scan 
path idea r20]. In general, BIST circuitry consists of 
hardware tor test pattern generation and response 
analysis [23,24J. The most common configurations use 
linear feedback shift registers to generate test patterns 
and capture the circuit response, e.g., BILBO [21,22]. 

2.2. MOTIVATION FOR USING A 
KNOWLEDGE-BASED SYSTEM 

Part of the motivation for designing DEFT as a 
knowledge-based system, i.e. a system with a distinct 
knowledge-base constructed using a formal knowledge 
representation language, came from the nature of design 
for testability knowledge. The DFT domain is character
ized by a large variety of problems, with several possible 
solutions to each problem. Moreover as technology 
develops, new testability problems arise. Since testability 
knowledge is dynamic, it is important that the knowledge 



in an automated DFT system be observable so that the 
system can be modified easily. 

A second motivating factor in using the knowledge
based approach was a desire to incorporate an explana
tion capability in DEFT. In order for a system to produce 
meaningful explanations, it must include not just the 
knowledge used to implement a DFT scheme but also 
some of the principles and motivations underlying these 
schemes. Since these motivations are often abstract and 
complex in nature, it was felt that the flexibility and 
power of AI-based knowledge representation schemes 
could be put to good use. 

A somewhat philosophical reason for using formal 
knowledge representation was the desire to codify DFT 
knowledge in a form that was meaningful to humans but 
was still rigorous enough for use by a computer system. 
The advantage of using a relatively high-level language to 
express knowledge is that the knowledge-base developed 
can conceivably be used by different programs. For exam
ple, the rules used by DEFT describing different DFT 
schemes could be used by a different program, say a sili
con compiler, that needed DFT knowledge. 

Recently a number of knowledge-based automated 
design for testability systems have been presented in the 
literature. The next section briefly reviews some of this 
work. 

2.3. PREVIOUS RESEARCH IN KNOWLEDGE
BASED DFT 

The pioneering effort in the field of knowledge-based 
DFT systems was the work done by Paul Horstmann as 
part of his doctoral research at Syracuse University 
lI4,15,16,17,18). Horstmann used Prolog to implement a 
system with testability rules that were able to detect and 
remove violations of the LSSD DFT methodology. 

Breuer and Zhu describe the PLA-ESS system that 
helps choose a DFT methodology for a PLA [5). The 
PLA-ESS system uses an evaluation matrix containing 
the tradeoffs for various DFT schemes for PLA's to 
choose an appropriate scheme. In case no scheme can be 
found that satisfies all the criteria specified by the user, 
the system uses a strategy called Reason Analysis 
Directed Backtracking to see if some of the criteria 
specified by the user can be relaxed in order to fit the 
capabilities of the existing DFT schemes known to the 
system. 

The Testable Design Expert System (TDES) was 
developed by Abadir and Breuer to work with the 
Advanced Design Automation System (ADAM) under 
development at the University of Southern California [I). 
The input to TDES consists of a register-transfer-Ievel 
description of a circuit as well as desi~ goals .and ~on
straints. The TDES knowledge-base 15 orgamzed mto 
Testable Design Methodologies (TDM's) that are imple
mented as frames. 

Fung, Hirschhorn and Kulkarni describe an 
automatic design for testability (ADFT) system that 
works in conjunction with the SHc silicon compiler being 
developed at GTE Laboratories 111,12). The Silc ADFT 
system consists of testability ru es which are built into 
Silc's parsing and logic synthesis software, the Testability 
Evaluator which identifies hard to test parts of the design 
being synthesized and the Testpert which proposes 
changes to the design. 

As the preceding description shows, significant pro
gress has been made in the area of knowledge-based 

900 

LOGIC 

DESIGN 

mMMVISA 

SYSTEM 

BDL/S DESCRIPTION 

OF cmCUIT WITHOUT 

TESTABILITY FEATURES 

DEFT 

SYSTEM 

BDL/S DESCRIPTION 

OF cmCUIT 

BDL/S DESCRIPTION 
OF cmCUIT WITH 

~ESTABILITY FEATURES 

Fig. 1. The liM MVISA System and DEFT 

design for testability. The following section presents the 
operation and organization of the DEFT system. 

3. THE DEFT SYSTEM - OPERATION 
AND ORGANIZATION 

3.1. SYSTEM OPERATION 
DEFT attempts to incorporate testability considera

tions into the integrated circuit design cycle without 
excessively burdening the chip designer. The prototype 
works in conjunction with the liM MVISA design auto
mation system recently installed at Purdue (Fig. I}. The 
MVISA system allows the integrated circuit designer to 
implement his design using standard logic elements such 
as arithmetic logic units, registers, etc. The designer is 
responsible mainly for the logical design of the circuit: 
the mapping of the logical design to a physical design 
(mask image) is performed with minimal desi~er int.er
vention. The MVISA system uses liM's BasIC DeSIgn 
Language for Structure (BDL IS) to describe the circuit 
being designed. The inputs to DEFT consists of a 
BDL/S descriptio~ .of the circuit which is to be mod~fi.ed 
to improve testabIlIty and a statement of the testabIlIty 
objectives such as fault coverage, hardware overhead, etc. 
DEFT uses these objectives to choose a DFT scheme and 
then modifies the circuit to improve testability. These 
modifications generally consist of the addition of 
hardware to facilitate test. The added hardware is purely 
for testability purposes and the circuit function remains 
unchanged. After DEFT has decided what modifications 
to the circuit are appropriate, it uses its knowledge of 
how to implement the chosen DFT scheme to modify the 
circuit. A new BDL/S description of the circuit is then 
produced which can be fed back to MVISA. In this way, 
design for testability is incorporated into the design cycle 
with minimal intervention from the designer. 

After DEFT has finished modifying the circuit, the 
user can request the system for an explanation of the rea
soning steps underlying the suggest~d changes. 1?E~T 
uses a mixture of text and graphICS to explam ItS 
behavior. The system user can not only query DEFT 
about the specific case that was being worked upon but 
also examine general testability information related to 
the case. The DEFT explanation facility makes use of 
dialogue and computer graphics to explain various testa
bility concepts. The explanation for a concept generally 
consists of sequences of images, some animated, that 
attempt to illustrate the concept. The graphics are 
presented on an AT&T 5620 bit-mapped display. The 
DEFT explanation facility is discussed at greater length 
in [27). 



The next section analyzes the characteristics oC 
knowledge in design Cor testability and other engineering 
domains. This analysis is used as a Coundation Cor the 
development oC an abstract problem-solving architecture 
which attempts to provide a Cramework Cor the expres
sion of knowledge in DFT. 

3.2. THE NATURE OF KNOWLEDGE IN DFT 

Most problem-solving systems for DFT (and other 
engineering domains) have the following kinds of 
knowledge associated with them: 
1. Heuristic know ledge 
2. Procedural knowledge (non-heuristic) 
3. Structural know ledge 

Heuristic knowledge often takes the form of 
advice on what to do given a particular set of cir
cumstances. Heuristic knowledge can be further categor
ized into strategic, meta-level knowledge (which 
guides the overall problem-solving process) and micro
level heuristics (which are useful in dealing with partic
ular steps during the course of solving a problem). In the 
DFT domain, the knowledge that is concerned with 
choosing a testability scheme falls under the category of 
strategic knowledge. An example of microlevel heuristics 
would be advice about the order in which hardware 
modifications should be made to a circuit during the 
course of implementing a DFT scheme. 

The non-heuristic, procedural knowledge consists 
of plans or sequences of actions that must be taken to 
achieve problem-solving goals. Like the heuristic 
knowledge described above, the procedural knowledge 
also appears at different levels of abstraction. A plan can 
be described at a high-level as a conjunction of abstract 
goals; each of these goals can then be refined into sub
goals at lower levels of abstraction, e.g., a scheme for 
adding a scan path to a circuit (the goal: make complete 
scan path) can be described at an abstract level as a con
junction of three goals. 

make complete scan path :-
replace all non-scannable memory elements 

by scannable memory elements, 
add hardware for scan path and 

scan clocks i/o, 
connect scannable memory elements to 

form scan path. 

The third category of knowledge is structural 
knowledge about the domain which could include a tax
onomy and causal models of behavior of objects in the 
domain. In the design for testability domain, the most 
important objects are circuit elements. Knowledge about 
how these circuit elements can be classified and how these 
classes relate to each other would fall in this category. 
For example, various latches and flip-flops might be 
classified under the generic term memory elements. Other 
structural knowledge might include fault-models and how 
they relate to each other, and how different DFT objec
tives are related. Circuit simulators and mathematical 
models describing the impact of increased hardware over
head on yield would fall under the category of causal 
models. 

While it is possible to categorize domain knowledge 
in DFT in this way, it is not as simple to describe the 
interaction of the various kinds of knowledge during 

901 

problem-solving. An ideal problem-solving architecture 
must allow for completely flexible invocation of the vari
ous categories of knowledge as they are needed. In the 
next section, an abstract problem-solving architecture is 
presented which allows the different kinds of knowledge 
discussed above to be represented and used in problem
solving. The organization of DEFT is patterned after 
this architecture. 

3.3. AN ABSTRACT PROBLEM-SOLVING 
ARCmTECTURE (Fig.2) 

The heuristic knowledge in a knowledge-based sys
tem is generally best represented using a rule-based 
scheme with a forward-chaining control scheme. Such 
an architecture is a good model for the data-directed way 
in which heuristic knowledge is used during the problem
solving process. For each cycle of the production system's 
operation, the antecedent of each rule in the system is 
matched against the global-database to see if the rule is 
applicable. In this way all the rules that are relevant to 
the situation at any particular time are applied[13]. 

In contrast, the non-heuristic, procedural knowledge 
in the system is most appropriately represented using a 
rule-based scheme with a backward-chaining control 
scheme. In a backward chaining system, a plan or pro
cedure to solve a problem can be represented using an 
AND lOR goal tree [3] which is traversed by the sys
tem from the root, which represents the goal to be solved, 
downwards towards the leaves, which represent various 
low-level steps needed to achieve the goal. 

The plan to solve the goal at the root of the 
AND/OR tree is represented in abstract terms on the lev
els of the tree close to the root and becomes more 
detailed towards the leaves of the tree. This ability to 
represent procedural knowledge at different levels of 
abstraction is one of the advantages of the goal tree 
representation and has important implications in terms of 
the efficiency of problem-solving, the quality of explana
tions produced by a system and the ease with which new 
knowledge can be added to the system. 

The structural knowledge in the problem-solving sys
tem can be represented using a frame-based represen
tation supporting inheritance of properties[6]. A 
frame network can be used to describe both the relation
ships between objects in the domain and a causal model 
for behavior in the domain. Other specialized modeling 
mechanisms such as circuit simulators, mathematical 
equations, etc, may also be used where appropriate. 

Many existing AI tools support one or the other of 
the knowledge-representation and inference schemes dis
cussed above. An ideal architecture would consist of an 
integrated package that allowed for the flexible interac
tion of the various types of knowledge in the system. 
This system would have the capability to use specialized 
representations for domain objects where appropriate. An 
example of such an architecture is shown in Fig.2. 

The system has the following components: 
1. A global data-base - this data-base contains a 

description of the current problem. 
2. The domain knowledge-base - this consists of the 

heuristic, procedural, and structural knowledge 
described earlier. 

3. The inference mechanisms - these use the global 
data-base and the domain knowledge-base to do the 
actual problem-solving. The architecture shown here 



DOMAIN KNOWLEDGE 

I HEurusTIC I I PROCEDURAL I I STRUCTURAL I 
T 
! 

GLOBAL UTILITY SPECIALIZED 
DATA-BASE ~ REPRESENTATIONS 

ROUTINES 

1 l 
INFERENCE MECHANISMS 

FORWARD- BACKWARD- CAUSAL 
CHAINING CHAINING REASONING 

Fig. 2. An Architecture for a Knowledge-Based 
Problem-Solver 

incorporates both forward and backward chaining 
inference. 

4. Specialized representations - these consist of 
efficient representations for domain objects. The 
term "specialized" is used to distinguish these 
representations from the knowledge representation 
scheme being used to represent information in the 
global data-base. The specialized representations 
cannot be directly used by the inference mechanisms. 
For example, DEFT uses a graph to represent the 
circuit. This graph is represented using a Lisp data
structure rather than Prolog clauses in the global 
database, allowing for far more efficient operations 
on the circuit graph. 

5. UtiUty routines - these consist of interface routines 
between· the global data-base and the specialized 
representations. These routines are implemented as 
demons that watch over the global data-base. When 
the problem-solving process requires a piece of infor
mation that is not present in the global data-base, 
the appropriate utility routine is triggered and 
extracts the required information from the special
ized representation and then adds it to the 
knowledge-base. Similarly, the specialized representa
tions are updated by the utility routines to reflect 
changes in the global data-base. In DEFT, there are 
a number of demons that use the circuit graph 
described above to extract any information about the 
circuit that may be needed during the problem-' 
solving process. 
The DEFT system attempts to incorporate many of 

the ideas presented in the discussion above. The next sec
tion presents the DEFT knowledge representation and 
the demon mechanism. 

3.4. DEFT KNOWLEDGE REPRESENTATION 
AND THE DEMON MECHANISM 

DEFT uses a Prolog-based knowledge representation 
schemer7]. The DEFT Prolog interpreter is written in 
Franz Lisp and incorporates a special demon mechan-

902 

ism which allows it to interface with Lisp. This makes it 
possible to use the flexibility of Lisp to enhance program 
efficiency where necessary. A set of Prolog rules implicitly 
define an AND/OR graph which is searched in a depth
first manner. DEFT uses Prolog to define ANDIOR trees 
corresponding to different DFT schemes. For example, 
Fig. 3 shows a set of rules for the DFT modification, 
make_complete_scan-path. These are the rules that 
are used by DEFT to add a scan path to the 8 X 8 multi
plier in the example in section 4. A fragment of the 
AND lOR tree implicit in these rules is shown in Fig.4. 

The rules shown in Fig.3 represent a high-level 
description of how to make a complete scan path. How
ever, so far we have said nothing about how DEFT actu
ally uses these rules to modify the data-structure 
representing the circuit under consideration. In the 
problem-solving model discussed earlier, it was proposed 
that specialized representations of domain objects be used 
whenever necessary in order to make an efficient system. 
In keeping with this philosophy, DEFT represents the cir
cuit under consideration as a graph implemented using a 
Lisp data-structure. Since DEFT works with actual cir
cuit descriptions from theffiM MVISA system, there is a 
large amount of information that must be stored and 
manipulated during the course of implementing a DFT 
scheme. It is easier and generally more efficient to use 
specialized data-structures and access routines for this 
purpose than to represent the entire circuit as clauses in 
the Prolog database. 

Each demon is a Lisp routine that is used by the 
interpreter as described below. When attempting to solve 
a goal, the DEFT Prolog interpreter first attempts to use 
the rules contained in the Prolog database; this is how 
conventional Prolog operates. However, if the DEFT Pro
log interpreter is unable to satisfy a goal using the rules 
that are contained in the database, it looks instead for a 
demon corresponding to the goal under consideration. 
These demons work by adding new clauses to the Prolog 
database which are then used by the interpreter to satisfy 
the goal. The demon mechanism can be thought of as a 
virtual extension to the Prolog database, i.e., demons can 
be used to access information that is not stored explicitly 
in rule form in the database whenever it is needed. 

The demon mechanism used in DEFT is very similar 
in intent and implementation to the language FProlog 
which attempts to combine functional and logic program
ming (19J. FProlog allows arbitrary Lisp functions to be 
accessed from Prolog. These functions can return infor
mation to the FProlog world by instantiating variables in 
the FProlog rule for which the function is called. In con
trast to this, the DEFT demon mechanism works by 
adding clauses to the Prolog database as discussed above. 

In the rules shown in Fig.3, many of the predicates 
used in the formulas have demons associated with them, 
e.g., the predicate "latch" used in the second rule in the 
set has a demon associated with it (Fig.5). The first time 
that the predicate "latch" is referenced in a rule the asso
ciated demon is triggered. This demon accesses the Lisp 
data-structure representing the circuit to get a list of 
latches and then adds a set of facts of the form shown 
below to the Prolog data-base, one for each latch in the 
circuit (the names AAI00AB and AAI00DE are arbi
trary). 

latch(AAlOOAB). 
latch(AAlOODE). 



make_complete_lIcan-JIath :
replace_non_lIcannable_latches_by_scannable_latches, 
connect_latcbu_to_uan_c1oekll, 
connect_scannable_latcbes_to_form_lIcan-paths. 

replace_non_lIcannable_latches_by _lIcannable_latches 1-

lateh(Latcb), 
not(lIcannable_latcb(Latcbl), 
replace_by _lIcannable_latch(Latch), 
fall. 

replace_non_lIeannable_latcbes_by_scannable_latcha. 

replace_by _lIeannable_latch(Latcb) I-
I, 
replace(Lateh,sc:annable_latch). 

conned_latches_to_lIcan_clocb 1-

connect_latches_to-A.clock. 

connect_latcha_to_lIC&D_c1oeb. 

conned_latches_to_A_cloclt :
add_recel.,era_for _scan_c1ocb,I, 
scannable_latcb(Latch), 
conneet_latcb_to_A_cloek(Latch}. 

connect_latches_to_A_cloelt. 

connect_lateh_to_A_clod:(Latch) :
a_clock_lnpat(Latch,A_c1oelt_lnpat), 
a_c1oek(A_eloelt), 
conneet{A_c1oelt,A_cloek_lnpat), 
I, 
fall. 

add_recel.,en_for _scan_clocks :-
choose_lo-pln_for _A_cloek(A_elock-JIln), 
add_recel.,er _for -pln(A_c1oek-pIn,A_c1oek_rn'1'), 
output_of_recelnr{A_elock_rcyr,A_cloelt), 
uaerta(a_c1oek(A_clock». 

choose_lo_pln_ror_A c1ock(Flrat):
l'ree_lo-JIlns([[FIra~_.RestJ), 
delete-pln_from_rree_lo_lIst(Flrat). 

conneet_lIcannable_latches_to_form_scaD-Jlaths :
cbOOlle_chlp_scan_ln-pln(ChlpScanlnPlnl, 
cboose_ehlp_lIcan_out-JIln(ChlpScanOatt>ln), 
form_lIcan-JIath. 

cboose_chlp_lIcan_ln-pln(ScanlnPID) .. 
l'ree_lo_pinll(FreeIoPlnll), 
latch_c1oseat_to_any _corner _oCchlp(Latch),I, 
10catlon_oCblock(Latch,Locatlon),I, 
l'ree_lo-JIln_closest_to_locatlon(FreeIoPlnll,Locatlon,scanlnPln),I, 
delete_pin_from_free_lo_IIst(ScanlnPIn), 
&IIIIerta(Brst_element_of_lIcan-path(Latch)}, 
uaerta( cblp_scan_1n-JI1n(ScanInPln». 

delete-pln_l'rom_l'ree_lo_IIst(Pln) 1-
l'ree_lo_plnll(FreeIoPlnll), 
delete_ullinLkey(PID,FreeIoPlns,NewFreeloPIns), 
retract(free_lo-JIIDII(FreeIoPlns)l, 
asaerta(l'ree_I0-JIlnll(NewFreeIoPlns». 

choose_chlp_lIcan_oat_pln(ScanOntPID) to 
l'ree_lo-plns(FreeIoPlnll), 
chlp_lIcan_ln-JIln(ScanlnPID), 
10catlon_of_lo_pln(ScanInPln,ScanInLocatlon),I, 
corner _c1011est_toJocatlon(ScanInLocatlon,Corner ),1, 
corner_oPPolllte_to_corner(Corner,OpPOlliteCorner),I, 
l'ree_lo_pin_c1011est_to_locatlon(FreeIoPlns,OpposlteCorner,ScanOutPln),I, 
delete_l'ln_l'rom_l'ree_lo_lIst(ScanOutPln), 
&IIIIertal chlp_lIcan_out-JIln(ScanOatPID». 

rorm_lIcan_path :
chlp_lIcan_ln_pln(Chl'p'Seanln), 
add_reeelnr Jor -Jllnl ChipS canln ,RecelnrId ),1 
output_oCreeelver(ReeeITerId,Recel.,erOutpatj,I, 
Brst_element_of_lIcan_path(FlrstLatch),I, 
lIean_ln_pln_oClateh(FlrstLateh,FlratLatehScanIn),I, 
eonnect(RcceITerOutput,FlrstLatchScanIn),I, 
delcte_rrom_uneonneeted_latch_llst(F1rstLatch,Rest), 
eonneet_latehes_toJorm_sean-JIath(FlrstLatch,Rest). 

connect_latches_toJorm_lIcan_path(FlrstLatch,m :
lIean_oat-JIln_oClatch(FlrstLatch,LatehScan()ut),I, 
ehlp_lIcan_out-JIln(ChipSeanOut),I, 
add_ofCchlp_drlTer_ror_pln(ChlpScanOut,OCDId),I, 
Input_oCofCchlp_drlver(OCDId,OCDInput),I, 
connect(LatehSeanOut,OCDInput). 

conneet_latehes_toJorm_lIcan-JIath(FlrstLateh,RcmalnlngLatches) :-

~o:::~~~~~d~,~~~L~~IC!::~f:;~~r:!!i~~{kema'n'ngLatehes, 
FlrstLoc,NextLateh),I, 

IIcan_out-pln_of_latch(FlrstLatch,FlratScanOut),I, 
IIcBD_ln_pln_oClatch(NestLatch,NextScanln),I, 
conneet(FlrstSeanOut,NextScanln),I, 
delcteJrom_uneonnccted_lateh_llst(NextLatch,Rest), 
connect_latches_to_rorm_lIcan-JIath(NextLatch,Rest). 

delete_l'rom_unconnected_latch_lIst(Latch,RemalnlnsLatches) Ie 

unconnected_latches(UnconnectedLatchesl' 
delete(Latch,UnconnectedLatches,Remaln ngLatehes), 
retract(unconnected_latches(UnconneetedLatches», 
asaerta(unconnected_latches(RemalnlngLatches». 

Fig. 3. DEFT Rules to Add a Scan-Path to a Circuit 

903 

make..complete...sc&U-path 

latch(Latch) not(acannable..latch(Latch» replace_by...scannable..latch(Latch) 

IIcannableJateh(Latch) replace(Latch,ScannableLatch) 

~ 

Fig. 4. A Fragment of the AND/OR tree 
make_complete_scan_path 

(defun latch(sent Itree) 
(prog(latches~ 

{

putprop latch t'inactive) 
setq latches (GetLatches» 
mapc 
(runction 

; deactivate demon 

(lambdaClatch) 
(Add Rule '((latch ,latch) nll» » 

latches) 
(return t))) 

Fig. 5. A demon for the Prolog clause latch 

for 

An interesting and important effect of the demon 
mechanism is that the it allows the rules used by DEFT 
to describe DFT schemes to be written in an abstract, 
technology independent way. For example, the second 
rule in Fig.3 uses the abstract term "latch". The demon 
mechanism knows which circuit elements actually used by 
the mM MVISA system correspond to the abstract latch. 
Since the rules themselves make no reference to MVISA 
circuit elements, they could presumably be used with a 
different design automation system with the demons 
appropriately modified. 

In addition to endowing the rules with a degree of 
technology independence, the demon mechanism allows 
for a description of DFT schemes that is not cluttered by 
details of how the circuit data-structure is actually mani
pulated. All that detail is hidden behind the demons. One 
way of thinking about the demons is that they are 
equivalent to the routines that would probably make up 
DEFT had it been developed as a conventional program 
rather than as a knowledge-based system. 

4. AN EXAMPLE - ADDING A SCAN 
PATH TO AN 8 BY 8 MULTIPLIER 

Fig. 6 shows a plot of the chip layout of an 8 X 8 
multiplier after it has been modified by DEFT. The 
modifications to the multiplier include the addition of a 
receiver for the scan in, a receiver for the A scan clock, a 
tri-state off chip driver for the scan out, the connection of 
the A clock to the A clock inputs of the SRL's and the 
interconnection of the registers to form a scan path. The 
added hardware is encircled in Fig. 6; the heavy black 
line represents the scan path wiring. Fig. 7 and 8 show 
close-ups of the added receivers and off chip driver. Fig. g 
shows a sheet of logic from the MVISA circuit description 
of the 8 X 8 multiplier before the modification of the cir
cuit by DEFT. Note that the scan in pin and the A clock 



A-CLOCK 

, 
i 

a"T' 

~11' 
~,I 

-,ll 
~.'}! 
~,! 

Fig. 6. 

"tiSA OCSI6N - I(V 

8x8 Multiplier with Added Hardware and Wiring 

lUll CHOOl CIIS 2lJ1H16 '~.II.25 

~t..$..I..IL,.,: u,·'r'II'~.~II: •• ~ ••• • •• r •• ,. ••• • •. • 'I!II'~ ..... ' ... r 9. ·0 

ill'" :: 
i:~'''': 

::J 
•• 1 .... __ --_I 

C~.Woq2 [Xlv-j 
RCVR i 
ll999A8 . I 

i--- ! 

I 
I 
i 

I FM007BK j '0. 

f 9.. It 
I I ~. 
I I i i o. 

YOQ3 [XI2~ 
RCVR 

I FM002A~ 

~Oqq [X12 ~ 
RCVR ~ 
FHOO2AQ 

I 
I 
! 

h.lOq, n171 i f 

n 
IfIt : 
1l1Jl[ i 

GB01 
F1t0·OER 
FfM007AK . 

! I 
i 1 

j I 
I ! 

I ~ 
! 

C ! 
CSA ! 

! r i 
i r I 
i 
1 

---L- .. 

'
I Ff7102 ! C$f·· 

ADDER I I 1 

.--=+-::1 ~F~fY1+i -+P_0_5_D+; -=H~-!:I =--lh' r 
FjB0 11 iCSfl i" ,., 

A;OOE[IR ' , 
FIMO¢q=,OK I ri i r 

Fig. 7. Receiver Added for A-CLOCK 

904 

SCAN-OUT 

SCAN-IN 



"YISA ({SIGN - I(V 
I r I I 

Fig. 8. Receiver Added for Chip SCAN-IN and Off Chip 
Driver Added for Chip SCAN-OUT 

~~------------------~-----------
----------~·I~--I~-·~--------------JI~·~··I-----------~----------

rtt-~:--------_.;;.t1UiUIlll----' 

1··"· .. I------t-~PI:..II------_;;.I'&.-------..... 
... , •• tI ........ llt ..... -------7.=--I'~_.;;=::___t_----<t__Ht_:;::;_-------

~~IR_I'-------_;;.~------

... , •• l ................ _______ ..:.:;.,::=---I' 

I .. ~""'" ... ...."".",.., ... .... .. "","" 
..-rtlItI •• ,... 

: ... tm"'''', 
'.. .... .. If." .. 

.., .-tOtlI"' .. , 

Sheet of Logic with A-CLOCK and SCAN':'IN 
Not Connected 

905 



--- .~.,-. 

.. -- ~~ lit .. , !c ....... 

..... ..a.IItI ... 

.. ~'~h ... ......... 
.,tt .... 1 •• -' 

l~a. f"' i]'-' 
~~:J'-

-I 
~ 

~~ 
'~' 
~'~ 

-~---
;;;,t;t:It,---

... f1\IQ1'4n~-

....:';i::;.------

... "';1:"----

"""~~h"~- ~1 ~~ ....... , 
~':r. ~ U!!., 

.. ",.~~" .. ~ ~llJ---- ;dl j ~~' ~ 

...... ~I, ..... ~- ~. ~ 

..... "i:.~. ----

._"';C,:-----

.,- f...1 ~ , ._";2:,,----

N '~"'4 -. ~~' :1,1., .1... ... - ..... ~h .... r .. ~,~" 
.--..0'" 

... "ir..'----

.. ~~~l ... 1 I~ .. -- lI'-.... J I Ir:- • ..:";11,----

JeJ!S; 

~ 
..... ," --

.. :C:' 
Fig. 10. Sheet of Logic with A-CLOCK and SCAN-IN 

Connected 

pin of the register are not connected yet. Fig. 10 shows 
the same sheet of logic after the scan path has been 
wired. 

The following steps were taken to produce the cir
cuit modifications shown here: 

1. A BDL/S description of the 8 X 8 multiplier without 
the scan path was produced by the MVISA system. 
The actual placement of cells making up of the 8 X 8 
multiplier on the master image had already been per
formed by the automatic placement routines on 
MVISA. 

2. The BDLS description' of the circuit was used to pro
duce an equivalent Lisp description by the 
MVISA/DEFT interface routines. These routines 
also do some additional processing to extract infor
mation anticipated to be useful to DEFT. 

3. This description was then given to DEFT and the 
rules shown in Fig. 3 and the associated demons were 
run to produce a modified circuit. 

4. A BDL/S description of the modified circuit was 
then produced and returned to the MVISA system. 

5. The automatic placement and wiring routines were 
then rerun to produce the final chip layout shown in 
Fig. 6. 

While the example demonstrated here is relatively 
simple, it serves to demonstrate the feasibility of our 
approach. Work is currently in progress on the rules and 
demons necessary to add a BILBO-like built-in self-test 
scheme to a circuit. 

906 

6. IMPLEMENTATION STATUS 
AND CONCLUSIONS 

At the time of this writing the following parts of the 
DEFT system have been implemented: 
1. The interface between DEFT and the MVISA Sys

tem - MVISA uses mM's Basic Design Language for 
Structure (BDL IS) to describe circuits. The 
DEFT /MVISA interface has two parts. The first part 
written using C and the Unix compiler writing tools 
Lex and Yacc, reads in a BDL/S description from 
MVISA and produces a Lisp description of the cir
cuit. In addition to producing a BDL/S equivalent 
Lisp description of the circuit, the BDL/S to Lisp 
interface software also does some processing on the 
circuit to extract additional information that is anti
cipated to be useful to DEFT regardless of the cir
cuit under consideration. Examples of such process
ing include the classification of all circuit elements 
by type and the generation of a Lisp arra~' 
representing the layout. The second part of the 
MVISA/DEFT interface generates a BDL/S descrip
tion of the circuit from the data-structures used by 
DEFT. This part of the interface is written in Lisp. 

2. The modified Prolog interpreter incorporating the 
demon mechanism has been implemented using 
Franz Lisp. A set of Prolog rules and associated 
demons that implement a scheme to add a scan path 
to a circuit have been developed. 

3. Part of the explanation mechanism has been imple
mented. Work is currently underway on the graphics 
routines to be used for this purpose. 



The various parts of DEFT described above consist 
of approximately 2500 lines of C and 3800 lines of Lisp. 

DEFT is a knowledge-based system that automati
cally modifies circuits to make them testable. The use of 
the. knowledge-based approach was motivated by the 
desIre to have a system that was easily modifiable and 
could provide the user with explanations. DEFT uses a 
Prolog-based knowledge representation scheme. The 
DEFT Prolog interpreter is written in Lisp and uses the 
demon mechanism to interface with Lisp data-structures 
and functions. The demon mechanism allows DEFT to 
benefit from a declarative knowledge representation 
s~heme w~thout p~ying a price in terms of efficiency. Ini
tIal experIences wIth DEFT have shown that this hybrid 
a~proach cO?lbining rule-base? and algorithmic program
mm!? has mdeed resulted m a modular and easily 
modIfiable system. The Prolog rules describing a DFT 
sche~e are w~itten at a high level and are uncluttered by 
d.etal~s regardmg how th~ data-structures representing the 
CIrCUIt are actually mampulated. The high-level represen
tation of DFT knowledge also has benefits related to 
deb,!gging knowledge during system development: by 
tracmg the rules that are being used to modify a circuit 
the behavior of the system can be observed at a level that 
is meaningful to a person familiar with testability but not 
necessarily with the details of the data-structures and low 
level functions needed to implement a working design 
automation system. 

The DEF'J'. ,Prototype described in this paper 
repre~ents our mltIal efforts towards the goal of imple
mentm.g a knowledge-based design for testability system. 
Work IS currently underway to expand the capabilities of 
the system. Rules are being developed to check for viola
tions of LSSD design rules and to modify circuits to 
remove t~e~e violations. Work is also underway on rules 
for a buIlt-m self-test scheme based on BILBO. Direc
ti.o~s for future re~ear~h inclu~e development of the capa
blhty to accept CIrCUIt deSCrIptions in VHDL. This will 
expand the range of circuits that DEFT can handle. 

ACKNO~EDGEMENTS 

The authors are indebted to Bill Carlson and Kirk 
Smith for letting us use and modify their Prolog inter
preter. 

REFERENCES 

[1] Abadir, ~. 3:nd M.A: Breuer," A Knowledge-Based Sys
tem for Deslgnmg Testable VLSI Chips." IEEE Design 
and Test of Computers, Vol. 2 , Number 4, August 
1985,pp.56-68 

12] Ando,H. "Testing VLSI with Random Access Scan" 
froceedings of .CO¥pCO~ Spr~ng '80, 1980,pp.50-52. in 

Selected Reprmts m LogIC DeSign for Testability." C.C. 
Timoc ed, IEEE Computer Society, 1984 

[3] Barr A. and E.A. Feigenbaum,"The Handbook of 
Artificial Intelligence." Vol. 1 , HeurisTech Press Stanford 
California William Kaufmann,Inc., Los Altos,' Californi~ 
1981, pp.38-40 

[4] ~ennetts, R.G., "Design of Testable Logic Circuits." 
AddIson-Wesley 1984 

907 

[5], Breuer, M.A. and X. Zhu, "A Knowledge-Based Sys
tem for Selecting a Test Methodology for a PLA." 
Proceedings of the 22nd Design Automation Conference 
1985,pp.259-265 

16] Brachman, R.J. and H.J. Levesque,"Readings In 
knowledge Representation." Morgan Kaufmann Publish
ers Inc, Los Altos, California 1985 

1
7] Clocksin, W.F. and, C.S. Mellish, "Programming in Pro
og," Springer-Verlag,Berlin Heidelberg New York 1981 

18] Eichelberger, E.B. and T.W. Williams," A Logic Design 
Str~cture for L~I Testability." Proceedings of the 14th 
DeSign AutomatIon Conference, 1977,pp.462-468· also in 
[35]. ' 

[9] Fujiwara,H. "Logic Testing and Design for Testabil
Ity." MIT Press, 1985 

110] Funatsu,S. et al. "Designing Digital Circuits with 
Eas.ily Testable Consideration." Proceedings of the Inter
natIOnal Test Conference 1978,pp.98-102; also in [35]. 

Ill] Fung,~:S., .S. Hir~c~horn and .R .. Kulkarni, "Design 
for Testablhty m a SIlIcon CompIlation Environment." 
Proceedings of the 22nd Design Automation Conference 
1985,pp.I90-lQ6 

112] Fung,H.S.,S. Hirschhorn," An Automatic DFT System 
for the Silc Silicon Compiler." IEEE Design and Test of 
Computers, Vol.3, No.1., Feb. 1986,pp.45-57 

113] Hayes-Roth,F .,D.A. Waterman and D.B. 
Lenat., "Principles of Pattern-directed Inference Systems " 
in D.A. Waterman and F. Hayes-Roth, eds.,"Patter~
directed Inference Systems," 1978 Academic Press, New 
York,pp.577-601 

[14] Horstmann,P.W., " Automat ion of the Design for Tes
tability Using Logic Programming." Doctoral Thesis 
Syracuse University, 1983. ' ' 

115] Horstmann,P.W., "Design for Testability Using Logic 
Programming" Proceedings of the 1983 International Test 
Conference,Phila.,PA.,pp.706-713 

[16] Horstmann,P.W., "Expert Systems and Logic Pro
gramming for CAD." VLSI Design Magazine, November 
1983,pp.37 -46 

117] Horstmann,P.W. and E. Stabler,"Computer Aided 
besign Using Logic Programming." Proceedings of the 
21st Design Automation Conference, 1984,pp.144-151 

118]. Horstmann,P.~.," A Knowledge-Based System Using 
beslgn ~or Testablhty Rules," Proceedings of the 14th 
InternatIonal Conference on Fault-Tolerant Computing 
Orlando, Florida, June 1984, pp.278-284 ' 

[19] Hutchinson,S.A. and A.C. Kak, "FProlog: A language 
to Integrate Logic and Functional Programming For 
Automated Assembly." Proceedings of the IEEE Interna
tional Conference on Robotics and Automation ,1986, 
pp.904-908 



r20] Komonytsky,D."LSI Self_Test Using Level-Sensitive 
Scan Design and Signature Analysis." Proceedings of the 
1982 International Test Conference, pp.441-424 

r21] Konemann,B., J. Mucha and G.Zwiehoff,"Built-In 
Logic Block Observation Techniques." Proceedings of the 
1979 International Test Conference,pp.37-41 

r22] Konemann,B., J. Mucha, and G. Zwiehoff,"Built-In 
Self-Test For Complex Digital Circuits." IEEE Journal of 
Solid-State Circuits, Vol.SC-15, No.3, June 1980 

r231 McCluskey, E.J.,"Built-In Self-Test Techniques." 
IEEE Design and Test of Computers, Vol. 2, No.2, April 
1985 

r241 McCluskey, E.J.,"Built-In Seli-Test Structures." 
IEEE Design and Test of Computers, Vo1.2, No.2, April 
1985 

908 

r25] mM Federal Systems Division," Overview, Logic 
Entry, Design for Testability. Master Image Designer's 
Guide." , Manassas, Virginia, 1985 

[26] Roth,J.P. "Diagnosis of Automata Failures: A Cal
culus and a Method." ffiM Journal of Research and 
Development No.10, Oct. 1966,pp.278-281 

r27] Samad,M.A. and J.A.B. Fortes, "Explanation Capa
bilities in DEFT - A Design-For-Testability Expert Sys
tem." Proceedings of the International Test Conference, 
1986 [to be published] 

r28] Timoc,C.C.,"Selected reprints on Logic Design for 
Testability." IEEE Computer Society 1984 

[2g1 Williams,T.W., K.P. Parker,"Design for Testability -
A ~urvey." Proceedings of the IEEE,Vo1.71,No.1,January 
1983,pp.98-112 



EXPERIENCES IN PROLOG-BASED DFT RULE CHECKING 

Gianpiero CABODI Paolo CAMURATI Paolo PRINETTO 

Dipartimento di Automatica e Informatica 
Politecnico di Torino 

Corso Duca degli Abruzzi 24, 1-10129 Torino Italy 

Abstract 

Since testing of VLSI is becoming 
increasingly important, many methodologies 
have been introduced to enhance Design For 
Testability (DFT). Manual verification is 
becoming more and more difficult as the size 
of designs increases and automation is thus 
essential. A method and a tool to check 
whether a given hardware design verifies or 
not a set of high level DFT rules (LSSD and 
BILBO) is presented. 

The work reported in this paper is 
based on Prolog. This logic programming 
language is used in many ways: as a basis 
for a predicative representation of 
hardware, as a means to encode the knowledge 
of DFT techniques, as an interpreter to 
support the implementation of a frame- and 
rule-based expert system kernel. Eventually 
conclusions are drawn on its effectiveness. 

1 INTRODUCTION 

The increasing complexity in VLSI 
challenges CAD tools designers, since more 
and more computer aid is necessary to take 
full advantage of technological 
improvements. 

A field in which CAD is essential is 
testing, not only because of the need for 
Automatic Test Equipments (ATE) and 
Automatic Test Pattern Generators (ATPG), 
but also because cost-effective testing 
requires VLSI circuits to be designed to 
guarantee testability. 

Many approaches to Design for 
Testability have been proposed in recent 
years [1] and are widely accepted in both 
the industrial and academic world. CAD tools 
designers are now moving in two major 
directions: they try to include such DFT 
techniques in their logic synthesis 
systems or they produce automatic compliance 
verification programs. As far as the first 
entry is concerned, a lot of work is going 
on, as reported in [2], [3], [4], [5], and 
[6]. This approach is being confronted by 

CH2345-7j86jOOOOj0909$01.00 © 1986 IEEE 
909 

the same problems of synthesis and silicon 
compilation. As far as verification is 
concerned, its goals seem to be more 
immediate. Algorithmic methods have already 
been introduced [7], but their main limit 
resides in the scarce flexibility of the 
system with respect to the knowledge it 
encodes. Since knowledge is rapidly varying, 
it seems useful to gather a large knowledge 
base and exploit it resorting to knowledge 
engineering techniques [4]. Most DFT 
techniques are already expressed in a rule 
form [1], therefore rules seem to be very 
suitable as a knowledge representation 
formalism. prolog [8] provides an easy way 
to express rules and clauses representing 
knowledge both about DFT methods and about 
hardware, and, moreover, puts at the user's 
disposal a built-in inference engine. This 
separation of inference and control 
strategies from the knowledge base allows 
the CAD tool designer to concentrate on the 
latter, leaving utilization problems apart, 
at least in the preliminary phase. 

This paper pr7sents a prototypical DFT 
rule verifier us~ng Level Sensitive Scan 
Design (LSSD) [9] and BILBO [10]. 

In the sequel, we shall cover the 
following topics: predicative representation 
of hardware, DFT rules in prolog form, the 
use of the prolog reasoning mechanism to 
verify designs, and a frame- and rule-based 
expert system kernel implemented in prolog. 
The project's current status and future 
plans are described. Conclusions are 
eventually drawn justifying the validity of 
this. choice, discussing its limits and 
possible improvements. 

2 HARDWARE REPRESENTATION FORMALISMS 

It is possible to describe hardware, 
i.e., the knowledge we have about the 
circuit in several ways, among which 
Hard~are Description Languages (HDLs) [11] 
and clauses are the most widely used. 

HDLs have been introduced to describe 
models to be used in simulation and test 
pattern generation. They describe hardware 
structurally and/or behaviourally, possibly 
resorting to different abstraction levels. 

Many efforts are currently directed to 
provide efficient and effective executable 



specification formalisms. 
specifications can be used 
well as verification 
formalisms are related 
predicate calculus and/or 
logic [12], [13], [14]. 

Such executable 
for simulation as 
purposes. Most 

to first-order 
to subsets of 

A very popular form of knowledge 
representation uses rules and Horn clauses 
[14], [15], [16] since they are prolog-like 
and Prolog provides a simple, yet effective 
inference mechanism. Some formalisms used to 
represent hardware in rule form are briefly 
illustrated in the sequel. A general 
classification is adopted to distinguish 
them according to their main characteristics 
into Functional, Extensional, and 
Definitional methods. 

2.1 The Functional Method 

The functional method [14] can easily 
represent combinational acyclic circuits in 
which a single output signal is function of 
several input signals. 

The function symbol together with its 
arguments identifies the output of the block 
itself. 

The connection relationship between 
blocks is pu:ely functional: the syntactic 
form of a g~ven term determines its 
connections. An example is shown in Fig. 1. 

I 

c 

D 

or(and(a,not(b),c),and(not(c),d),and(b,d» 

Fig. 1 

Input signals are named by a constant 
symbol. Blocks are named by the 
corresponding function symbols. Functions 
have an arbitrary number of inputs, but only 
one output. This formalism allows processing 
the circuit by recursive descents, 
transforming a given term in another one. 

There are two main disadvantages to 
this technique. First, only acyclic circuits 
can be described, and this precludes the 
specI~fcation of realistic sequential ones. 
Second, a separate expression must be used 
to represent each output of a circuit. 

910 

2.2 The Extensional Method 

The extensional method [15], [16] 
represents blocks and connections as clauses 
in which constants are used to indicate the 
connections between modules. 

In the example of Fig. 2 the "module" 
predicate has three arguments, describing 
its function, its input list, and its output 
list. Connections between modules are 
specified by the "connect" predicate. This 
predicate has two arguments, each indicating 
the module type and the connected port. 

module(and,[a,b1,[e]) 
module(latch,[D,C],[Q]) 
connect(latch(Q),z) 
connect(and(a),z) 
connect(and(e),latch(D» 
connect(clock,latch(C» 

Fig. 2 

The circuit is thus described as a set 
of module and connection predicates. 

It is usual to consider the module and 
connection relations as templates, and their 
arguments as variables standing for any 
instance of the template. 

This method can accommodate arbitrary 
types of circuits such as multiple output 
cyclic circuits. However, the main 
disadvantage stems from the fact that the 
modules are not represented by a single 
term, rather they are represented 
extensionally, with no syntactic 
relationship among them. 

Variations of this formalism are used 
in a number of systems. We shall now focus 
the attention on a particular one introduced 
in [15], [17]. 

The design description contains two 
general types of statements. The first kind 
of clauses describes the nodes' functions 
and their interconnections. Each clause 
contains a node name, a node function, a 
list of the come from nodes (and pin names), 
and a list of go=to nodes (and pin names). 



The second type of statements consists 
of clauses stating the special behaviour of 
the node itself. This is particularly useful 
when modelling clock inputs. 

A simple description with this method 
is shown in Fig. 3 [17]. 

data(p1,(),(connect(mblk1,data,_))). 
clk1(pi,(),(connect(mblk1,clock,_))). 

'clk2(pi,(),(connect(mblk2,clock,_))). 
clk1(clock). 
clk2(clock). 
mblk1(m-block,(connect(data,data, ), 

connect(clk1,clock~ )), 
(connect(mblk2,data, ))). 

mblk2(m-block,(connect(mblK1,data,_), 
connect(clk2,clock, )), 

(connect(po1, , ))). 
po1(po,(connect(mblK2~_,_)),()). 

Fig. 3 

Since every block has one output only, 
the output's name is the same as the block's 
one. It is possible to modify this formalism 
to include inputs and outputs of the block 
in its template. 

2.3 The Definitional Method 

In the definitional method [12], [18] 
blocks having n ports are represented as 
n_ary predicate symbols. 

Modules are described by Horn clauses 
whose head is the module to be defined, and 
whose body is a composition of either 
already defined or primitive modules. 

The ":-" operator is interpreted as "is 
defined by". The order of modules in the 
body of the clause is not important. 

A simple description with this method 
is shown in Fig. 4. 

911 

comb(A,B,C,D,E):-not(B,T1),and(A,T1,C,T2), 
not(C,T3), and(T3,D,T4), 
and(B,D,T5),or(T2,T4,T5,E). 

Fig. 4 

Primitive modules are a priori defined 
by rules describing their behaviours. 

2.4 

This method has numerous advantages: 

the circuits may be directly represented 
by Prolog clauses; 

the module's name is explicitly part of 
the specification and this allows easy 
modular decomposition; 

internal connections 
variables which do 
head of the clause. 

Our Approach 

are named by 
not appear in the 

The approach we adopted combines some 
features of the definitional and extensional 
methods. This approach is especially 
tailored to the representation of Finite 
State Machines, both in Moore and in Mealy 
form. 

The circuits we consider consist in 
combinational networks and registers as 
shown in Fig. 5. 

~ ATC 
C > 

[1J CD 
NET 

[OJ 

Fig. 5 

We are not concerned with the internal 
structure of the combinational networks, but 
only with their connection to, registe:s. 
This consideration leads to thelntroductlon 
of two simple predicates to describe the 
circuit in a definitional way: REGISTER() 



and NET(). "REGISTER" describes a block 
having a pulse input (C), a level input (0) 
and a level output (Q). 

The register is ~escribed by following 
predicate: 

register(O,C,Q) . 

"NET" describes logic networks with n level 
inputs (n>=O), m clock inputs (m>=O) and 
either a level output or a clock output. 

The network is described by following 
predicate: 

net ( [I], [C), LO, CO ) 

where: 

[I] is the level input list 
[C] is the pulse input list 
LO is the level output 
CO is the pulse output. 

Lists are used to represent networks 
with multiple inputs. Since each network has 
only one output, either CO or LO is missing. 

It is necessary to distinguish the 
input clocks of the circuit, hereinafter 
called Primary Input Clocks (PICs) from 
other inputs. An ad hoc predicate PIC(x) has 
therefore been introduced to define them. 

3 OFT RULES IN PROLOG FORM 

The Prolog clauses which represent LSSD 
and BILBO methodologies may be found in 
[19]. In this paragraph we present a flash 
on a particular rule, just to give the taste 
of how it is represented. All rules in 
Prolog form return true if and only if the 
corresponding DFT rule is violated. It would 
have been possible to rewrite all rules in 
order to have true returned only when the 
corresponding DFT rules were satisfied. Such 
alternative approach is much more complex 
and the readability of the system's output 
is reduced. 

We shall consider 
rule: 

the following 

"a latch X may gate a clock Ci to 
produce a gated clock Cig which 
drives another latch Y if, and 
only if, clock Cig does no.t clock 
latch X, where Cig is any clock 
produced from Ci." 

LSSD 

This rule may be violated if and only if the' 
following situation arises:. 

"there are two latches and one 
combinational network connected in 
such away that the input. clock of 
the second latch is fed by the 
output of the combinational. 
netwprk one o.f whose inputs is the 

912 

output of the first latch". 

This rule is effectively violated if the 
input clock of the first latch is equal to 
any of the input clocks of the combinational 
network. The structural situation is shown 
in Fig. 6, while Fig. 7 reports the 
corresponding prolog rule. 

T 
r-___ ..;.Y3~-I) 

Fig. 6 

Issd22(X1,X2) :- latch(X1,Y1,X2), 
network4(C,X2,Y3), 
latch( ,Y3, ), 
clock (Xl, Y1 ~C) . 

Fig.' 7 

The first three predicates on the right side 
check the applicability-of the rule itself. 
The fourth checks if the rule is violated. 
More in details, predicate "network4" 
searches for a net in the circuit 
description that is connected to the output 
of the latch(X1,Y1,X2): 

network4(C,X2,Y3) :- net(T,C, ,Y3), 
input(X2~T). 

The "clock" predicate tests for violation 
looking for equal or dependent clock inputs 
of the first latch and of the combinational 
network: 

clock(X1,Y1, []). 

clock (Xl, Y1, [H IT]) : - case (Xl, Y1, H) , 
clock(X1,Y1,T). 

Equality or 
clocks is 
[19] . 

functional dependency between 
encoded in the "case" predicate 

4 THE FRAME- AND RULE-BASED DFT EXPERT 
SYSTEM KERNEL 

, In the initial phase of this project we 
decl~e~ ,to use Prolog both as a 
speclflcatlon and as implementation language 
because of its simplicity, power, and 
availability of a built-in interpreter. All 
thes~ features allowed a rapid prototyping 
of the system. At the end of this phase, it 
contained approximately 60 clauses, 40 for 
LSSD and 20 for BILBO. The prototype was 
first developed on an IBM PC and later 



migrated to a VAX 11/780 running VMS. The 
only explanation facilities available were 
messages dispatched by the verifier and the 
prolog interpreter's tracing facilities. The 
main theoretical limits of this approach 
were that knowledge could be represented 
only under the form of rules and that the 
prolog interpreter has a fixed backward 
reasoning mechanism. These limits have been 
encountered by many researchers working on 
analogous fields and three directions have 
been proposed to overcome them [20]: 

to extend prolog both as a language and 
as an interpreter, 

to build a meta-interpreter over prolog, 

to define a new, higher level 
DFT knowledge representation 
implement a preprocessor 
translates it into executable 
clauses. 

form of 
and to 

which 
Prolog 

The first two approaches were difficult and 
complex, while, as far as the third is 
concerned, we could benefit from a 

.~preprocessor prototype developed at the 
University of Turin [20]. From the 
toolmaker's point of view, DFT knowledge may 
be represented as a hierarchical frame 
structure, where the body of each frame 
consists of a production system. This allows 
to structure DFT knowledge modularly and 
makes it easier to add new methodologies or 
to change rules. Moreover, the toolmaker may 
specify whether such rules must be 
interpreted either with forward or backward 
reasoning. The preprocessor translates such 
specifications and, adding appropriate 
control statements, generates the actual 
clauses for the prolog interpreter. Since we 

.; plan to integrate the DFT verifier into a 
"knowledge-based CAD tool, particular 
attention has been paid to make frame 
control strategies as general as possible, 
'supporting width-first, depth-first, and 
heuristic search. 

5 CONCLUSIONS 

The DFT rule checker we developed is 
-not. yet a full system, since it takes into 
account only 2 methodologies, it relies on a 
simplified formalism to ~escribe hardware, 
and it has a reduced user interface. We plan 
to extend it to other DFT methodologies and 
to. integrate it into a complete CAD system, 
comprehensive of synthesis, verification, 

and redesign facilities. This is why 
particular attention has been paid to the 
frame- and rule-based expert system which 
will represent the kernel of the overall CAD 
tool. 

In ~he preliminary phase, the prototype 
has been used to verify simple circuits, 
such as 2 bit binary counters and a systolic 
priority queue. 

We can conclude from our experience 

913 

that rules are adequate to represent LSSD 
and BILBO designs and that they may be 
easily expressed in prolog. Anyway, the 
direct description of designs in prolog 
yields rough results or needs an excessive 
number of clauses to represent hardware with 
.the same level of detail of an HDL. 
Therefore we plan to introduce a high-level 
language, possibly an already existing HDL, 
for hardware descriptions, while keeping 
prolog clauses as .the internal, executable 
form. 

Although it is difficult to produce 
figures of merit for the current prototype 
of the system, our experience demonstrates 
that the combined use of some Artificial 
Intelligence techniques and DFT 
methodologies is a good approach to the 
testability problem of VLSI devices. 

6 REFERENCES 

[1] T.W. Williams, K.P. Parker: "Design for 
Testability a Survey" IEEE 
Transactions on Computers, vol. C-31, 
no. 1, January 1982, pp 2-15. 

[2] V.D. Agrawal, S.K. Jail, D.M. Singer: 
"A CAD System for Design for 
Testability" VLSI Design, pp 46-54, 
October 1984. 

[3] V.D. Agrawal et al.: "Automation in 
Design for Testability" Proc. 1984 
Custom Integrated Circuits Conference, 
pp 159-163. 

[4] M.S. Abadir, M.A. Breuer: "A 
knowledge~based system for designing 
testable VLSI chips" IEEE Design & 
Test, August 1985, pp 56-68. 

[5] T.J. Kowalski, D.J. Geiger, W.H. Wolf, 
W. Fichtner: "The VLSI Design 
Automation Assistant: from algorithms 
to silicon" IEEE Design & Test, August 
1985, pp 33-43. 

[6] H.S. Fung, S. Hirschhorn: "An automatic 
DFT system for the Silc silicon 
compiler"IEEE Design & Test, February 
1986, pp 45-57. 

[7] H.C. Godoy, G.B. Franklin, 
P.S. Bottorff: "Automatic checking of 
logic design structures for compliance 
with test~bility ground rules" 14th 

Design Automation Conference, June 
20-22 1977, New Orleans, USA, pp 
469-478. 

[8] W.F. Clocksin, C.S. Mellish: 
"Programming in 
Springer-Verlag, 1981. 

Prolog" 

[9] T.W. Williams: "Design for Testability" 
NATO Advanced Study Institute on 
Computer Design Aids for VLSI Circuits, 



SOGESTA, Urbino, Italy, July 1980. 

[10] B. Koenemann, J. Mucha, 
"Built-in logic block 
techniques" Dig. 1979 Test 
October 1979, pp 37-41. 

G. Zwiehoff: 
observation 
Conference, 

[11] M.R. Barbacci, T. Uehara: "Computer 
Hardware Description Languages: the 
Bridge between Software and Hardware" 
IEEE Computer, vol -18, Number 2, 
February 1985, pp 6-8. 

[12] M.J.C. Gordon: "LCF-LSM: a system for 
specifying and verifying hardware" 
Technical Report 41, Computer 
Laboratory, University of Cambridge, 
UK, 1984. 

[13] D.O. Sidhu: "Logic programming Applied 
to Hardware Design Specification and 
Verification" 17th Annual 
Microprogramming Workshop, New Orleans, 
USA, November 1984, pp 309-313. 

[14] L. Wos, E. Lusk, R. Overbeek, J. Boyle: 
"Automated Reasoning" Prentice Hall, 
1984. 

[15] P.W. Horstmann: "A Knowledge-Based 
System Using Design For Testability 
Rules" 14th Int. Conf. on Fault 
Tolerant Computing, June 20-22 1984, 
Kissimmee, USA, pp 278-284. 

[16] H.G. Barrow: "VERIFY: a program for 
proving correctness of digital hardware 
designs" Artificial Intelligence, 
Vol.24, 1984, pp 437-491. 

[17] P.W. Horstmann: "Expert Systems and 
Logic Programming for CAD" VLSI Design, 
pp 37-46, November 1983. 

[18] B. Moszkowski: "A temporal Logic for 
multi-level reasoning about hardware" 
CHDL '83: IFIP 6th Int. Symposium on 
Computer Hardware Description Languages 
and their Applications, Pittsburgh, PA 
(USA), May 1983, pp 79-90. 

[19] GP. Cabodi, P. Camurati, P. Prinetto: 
"OFT Rules Verification" Internal 
Report DAI 14/85, Dipartimento di 
Automatica e Informatica, Politecnico 
di Torino, October 1985. 

[20] L. Console, G. Rossi: "Implementing 
inference strategies in Prolog-based 
expert systems" 8th European Meeting on 
Cybernetics and System Research, Vienna 
(Austria), 1986. 

914 



A RULE BASED SYSTEM FOR THE OPTIMAL STATE ASSIGNMENT OF CONTROLLERS 

E. DUPONT, J. IDT, G. SAUCIER 

Laboratoire "Circuits et Systemes" IMAG 
46, avenue F. Viallet 38031 GRENOBLE FRANCE 

ABSTRACT : 
We present a rule based system for choosing a state 
assignment which enables the layout of controllers 
on PLAs of minimal area. The knowledge base is 
built from the study of the elementary 

simplification mechanisms in the next state 
equations and in the output equations. The 
comparison between the state graph and the rule 
base yields a set of constraints between the codes 
of the states. Then the system solves the problem 
of finding a state assignment consistent with the 
constraints, and yields the simplified equations. 

INTRODUCTION 

Automatic synthesis of controllers has been 
extensively studied in the literature. 
The starting point is the description of the 
controller in an abstract form, in a high level 
language or through a classical flowchart. The 
final implementation may use different types of 
memory points and different types of logic (random 
1 ogi c, PLAs, ROMs ••. ). The 1 ogi c, es sent i ally for 
PLAs, may furthermore be partiti oned accordi ng to 
precise constraints (maximum size, regularity 
etc ••• ). In order to minimize the controller area, 
the crucial problem is the choice of the state 
assignment. 
The minimization of the next state equations or 
output equati ons has been extensively studi ed in 
the past [1 .. 8J. More recently, heuristics applied 

CH2345-7/86/0000/0915$Ol.OO © 1986 IEEE 
915 

to larger and more I rea1istic" controllers have 
been presented [9, 10J. Considered from a practical 
point of view, it is obvious that the optimization 
process depends a lot on the target structure 
(microprogrammed or PLA based controller, relative 
importance of the next state equation part and of 
the output equation part etc ••• ). Therefore, the 
optimization rules for the state encoding must be 
parameterized. This is obtained in our approach by 
applying an artificial intelligence technique. The 

constraints, on the state encoding are ex~ressed by 
a set of rules. These rules depend on the choice of 
the memory poi nts and are chosen by the des i gner 
among a set of rules. He can also create and add 
his own rules. An inference system applies these 
rules and leads to an optimal encoding. This 
software is a part of a larger software dealing 
with all the aspects of controller design. This 
software is organi zed around a hi gh-1 eve 1, object 
oriented language CADOC [14,15J and leads to 

several hardware implementations. 

I - CONTROLLER DESCRIPTION 

The controller may be described, as said before, in 
different manners (abstract descriptions like 
regular expressions, high level language, control 
flow graph). The example that we shall take 
throughout this paper is an arbiter circuit for MC 
68000 microprocessor : it is described by its 
control f10wgraph (figure 1). The circles are the 
states of a r"'ealy machine. The transitions of the 
machine are labelled with the input conditions 
1 eadi ng to the next states and wi th the output 
signals associated with the couples (state, 
inputs). The meaning of the graph is illustrated 
using state 3 of figure 1 : 



- Transition from state 3 to state 4 if dtak is 
true; the output signals bgak, as, uds, lds are 
emitted. 
- Transition frome state 3 to state 3 if dtak is 
false, the signals bgak, as, uds, lds are 
emitted. 

DiAK/ 5G~~, t.~. 
lD5, FC: 

L_, 
Figure 1 

II - SET OF RULES FOR THE STATE ASSIGNMENT 

The set of rules for the state assignment depends 
on the type of memory points (JK, RS, D flip-flops) 
and the designer's objective. We shall give as an 
example the set of rules for an implementation on 
D flip-flop and PLA. A first subset of rules 

concerns the next state equations, a second one the 
output equations. The wei ght gi ven to these two 
aspects depends on the designer's choi ce or on the 
relative importance of the logic blocks. 

916 

2.1 - Notations 

Let n denote the number of bits used for the state 
assignment. 

The code of state i is denoted C(i). 
tVi} denotes the set of state variables equal to 1 

in the code of state i. 

Example 

f(i) denotes the product term associated with the 
state i. 

The "always true" input condition is denoted by 1 

in the fi gures. 

Inclusion: C(i) is included in C(j) if {Vi} c {Vj } 
Notation: C(i1 c C(j). 

Adjacence : C(i) and C(j) are adjacent if they 
differ only by one bit. 

Notation: C(i) adj C(j). 
In this case, the sum f(i)+f(j) reduces to one 
minterm, denoted [f(i)+f(j)J. 

2.2 - Example of optimization rules for next 
state equations for an implementation on PLA with 0 
flip-flops 

The first two rules shown here deal with the "fork" 
and "join" situations in a flowchart and are based 
on the contribution of a node in the next state 
equations. It is well known that for 0 flip-flops 
the next state equations have the following form: 
{Vi} = L f(j) x (input condition of the arc j -> i) 

je(antecedent states of state i) 



Fi gure 2 

The contribution of state i in Figure 2 to the 

equations is : 

To minimize the contribution of a node, rules a and 

b may be applied. 

RULE a 
If a node is connected to p antecedents 

(2k - 1 < p <: 2k) with the same input condi tion on the 

arcs, 

Then: - assign to k out the n bits of the code of 

the antecedents a p-subset of the 2k codes. 

- do not use the (2 k_p) remaining codes in the 

state assignment. 

- let the other (n-k) bits be "invariant". 

Example : 6 states are connected to state i by 

arcs with transition "1", in a graph with 50 states 

(encoding on 6 bits) (Figure 3). 

917 

Figure 3 

A possible encoding is: 0 0 0 0 1 1 

o 0 101 1 

o 100 1 1 
1 000 1 1 

1 100 1 1 

o 1 101 1 

The codes : (101011) (111011) cannot be used for 

the state assigment. 

The contribution of state is: 1'4 Y5 Y6 

Remark: - This rule allows p product terms to be 

t"epl aced by one product term 

- The degrees of freedom are the position of the 

"invariant" bits and the code assignment within the 

set of k bits. 

RULE b 
If a node is connected to p successors (p = 2k) 

with a sum of input conditions appearing on the 

arcs equa 1 to 1 then : 

- assign to the successors an exhaustive encoding 

on k out of n bits 

- let the (n-k) remaining bits be· invariant or 

"replicate" one or several of the first k bits. 



Example : 

A possjble state assignment is (on 4 bits) 

Figure 4 

Equations Yi a.f(i) 

Y2 b.f(i) 

Y3 = n1) 
Y4 = a.f(i) 

o 0 1 0 

j 0 1 1 0 

k 101 1 

111 1 

Remark : we generate three product terms af(i), 

b (fi) and f( i) instead of four product terms. 

Remark: - This rule allows p = 2k product terms to 

be replaced by (k+l) product terms. Only k input 

conditions are appearing in the equations, instead 
of 2k. 

- The degrees of freedom are the position and value 

of the "non significant" bits. 

- In the case k = 1, the conclusion of rule b is 
C(j) c C(k) or C(k) c C(j), j and k being the 

successors. 

RULE c 
If p nodes are connected through a path with the 

same input conditions on the transitions, 
then for pi nodes (pi = 2k_1 < p) 

assign on k of the n bits an optimal sequence of 

codes (see (13}); the (n-k) remaining bits are 

invariant. 

This rule leads to 2(k-l) product terms ;nstead of 

2k-2. 

We can notice that, if k=2, 2(k-1} = 2k_2 = 2. Rule 

c must be restricted to k~3, ie p'>7 

The degrees of freedom are the positions and the 

values of the "non significant" (n-k) bits. As an 

example, let us consider the sequence of figure 5. 

918 

Fi yure 5 

A possible state ass I 9 nme II tis (u n 5 bit s ) 

1 10010 

2 0 101 U 

3 101 1 0 
4 110 1 0 

5 1 111 U 

G U 1 1 0 

7 U 0 1 U 

He have 4 I,,"oduc t terms IllS tead or G. 

OTIIER RULES 
Other' rules, \-(hich address lIIo,"e complex situations, 

have been defined. Some graphical examples aloe 

shown : 

Encoding constraints: 

C(u) adj C(x) 

C(z)cC(y) OR C(y)cC(z) 

J produc t terms : 

af(u), lJf(x), [r(u)+f(x)] 
OR af(u). uf(x), [f(U)-I-f(U)] 

Encoding constraints 

C( x) adJ C( x I ) 

C(y)cC(z) AND C(y' )cC(z') 

.. ~' a OR C( z)cC(y) AND C( z' )cC(y') 

V r.\ C(y) XOR C(z)=C(y') XOR C(z') 
y ~ 

a "3 product terms : 
v 8 a f( x), a f( x') [r( x) -I- r( x' )] Olt 

ar(x), ar<x') [r(x}+f(x'}] 

Encoding constraints 

C(x) auj C{u) 

C(z) c C(y) 

2 produc t terms 

af(x), [f(x)+r(u)] 

fi gure G 



All the rules are not listed here. They may address 
more complex s i tuati ons or dedi cated targets of the 
designer (for example, partitioned PLAs). 

2.3 - Rules for the output equations 

Two examples of basic rules will b~ given here. The 
second rul e shows the dependancy and the 
contradiction which may exist between two rules. 

RULE a' 

If p stdtes send (for the same input condition in a 
Mealy machine) one or more identical control 
signals then for 2k-1<p(2k 

- assign to k of the n bits the 2k possible values 

- assign to the (n-k) bits an invariant code. 

Remark 
The gai n is wei ghted by the number of i denti ca 1 

outputs associ ated wi th the nodes. 

RULE b' 
If one or several control signal s are sent by one 
and only one state then do not apply rul es a and b 
to this state. 
This last rule shows that the output rules may 
confl i ct wi th the next state equati ons rul es. 

III - GENERAL STRATEGY OF THE INFERENCE SYSTEM 

The flowchart of the system is given on Figure 7. 
The system is organi zed in modul es M) ... M

b
• The 

rule base is independent of the modules, so that 
the set of rules may be enlarged with new rules, 
and that only part of the rules may be used. 
The first module Ml asks for the designer's 

graph, strategy and "initial" constraints (for 
example, which state must be encoded (0 ••• 0)). Ml 

performs d selection of the suitable rules in the 
rul e base, accordi ng to the chosen target. The 

source code is 200 LISP lines. 
A second module M2 performs inferences between 
the selected rules and the graph. All selected 
rul es are tri ed, and incase of success, thei r 
consequences are memorized. 

919 

The heuristic is the following: try first the 

rules liable to yield a high gain (for example, 
rule c) ; compute the gains; if these gains are 
small (case of loose constraints), apply the more 
complex rules (figure 6). The module M2 also 

collects the "externa 111 constrai nts provi ded by the 
designer. Its output is a set of constraints 
(either between the codes of individual states, or 
between the encodings of groups of states) 
associated with gains and with symbolic simplified 
equations. 
The source code is 1000 LISP lines. 
The module M3 then analyses these resul ts : as 

a matter of fact, satisfying different constraints 
may lead to conflicts the effective state 
assignment is a complex problem and requires a high 

CPU time. 
M3 has to deal with two sorts of constraints : 
inclusions and adjacences between codes. Some 
constraints are incoherent, whatever the number of 
bits may be, others are related to the number of 
bits. Let us give two examples of such 
impossibilities: 
(C(O)cC(l), C(1)cC(2) ; C(2)cC(3) ; C(3)cC(4)) 
is impossible in the case of an encoding with 3 
bits, but possible on 4 bits. 

C(l) adjacent to C(2)-1 
C(2) adjacent to C(3) is impossible. 
C(l) adjacent to C(3)--

The result of M3 is a new set of constraints, rid 
of such impossibilities. 
The task of the following module M~ is to find 
a state assignment satisfying all the constraints, 
if there exists one. The procedure is not quite the 
same according to the size of the problem, but it 
is based on the same technique : try to encode the 
states the one after the other, while satisfying 
the constraints at each step; backtrack in case of 
failure, until either a solution is found or all 
combinations have been tried. The problem is to try 
all possible solutions as far as they are not 
equivalent. At each step equivalent choices are 
identified to avoid trials of equivalent encodings 
after backtracking. 



In the case of large size circuits, a two-level 
encoding and backtrack mechanism is used: first 
find a possible partial encoding of the different 

sets of states, then assign codes in each set. The 
source ~ode is about 1200 LISP Lines. 
If no solution is found, the program asks for the 
designer's advice: 
- try to code on n+1 bits, instead of n ? 

eliminate some constraints according to gains 
using module Ms 'and return to M4. 
The source code is about 500 LISP lines. 

A 1 ast module M6 collects the resul ts, fetches 

the simplified equations related to constraints 
which have been satisfied, and deduces the 
equations. The source code is about 700 LISP 
lines. 

Its resul tis an encodi n9 of the states and the 
equations to be implemented. These equations can be 
furthermore processed by a rule based boolean 
minimizer and lead to an automatic layout on PLAs, 

C.A.D 
,Data base and of a rul~ set 

inference system + set of constraints I 

elimination of incoherent constraints 
+ new set of constraints 

code assignment 

No 

gate arrays or 'Complex MOS gates [13J. Yes 

M5 elimination of low next state equations 
gain constraints output equations 

gate MOS 
PLA array Complex gates 

Figure 7 Flowchart 

920 



IV - EXANPlE : ENCODING (F TilE GRAPH (F AN 

ARB ITER CIRCUIT 

Tile state graph of the case study is given on 

figure 1 ; two solutions are"proposed. In section 

4.1 only the next state equations are optimized. 

In section 4.2 the output equations are also taken 

into account. 

4.1 - Next state equations optimization 

An external encod; ng cons tra.i nt is gi ven by the 

des i gner : the state 0 (ATT) must be encoded wi th 

(0 .• 0). The graph has 7 states, which will be 
denoted (O,l, .•• 6). 

We shall try to code on 3 bits. 

The application of rule b is yielding the 

constraints of table 1. 

The application of the complex rules described on 

figure 6 are yielding the constraints of table~ 2 

and 3. 

I\NTECEDEtH SUCCEssm COI/STRAINTS MINTE~NS GENE~ATED 

STATES STI\TES 

a 0 I cO) c C(O) OR (trf(O) and f(O)) 00 

C(O) c C(l) (trr(O) and [(0)) 

1 1 2 CO) c C(2) 00 (bgF(1) and f(1)) OR 

-
C(2) c CO) (bgf(l) and f(I)) 

3 4 3 C(3) c C(4) m ( dtak r(3) , f(3)) m 

C(4) c C(3) Ifotak r(3) , f(3) ) 

4 U 5 ClUj c C(5) m (b
l6 

f(4), f(4)) m 
C( 5) c C( 0) (~ f(4), f( 4 )) 

5 5 6 C( 5) c C(6) on (dtak f(5), f(5)) OR 

C( 6) c C( 5) (CItal< r( 5) , f(5) ) 

Table 1 

921 

ANTECEDENT SUCCESSOR CONSTRAINTS MINTERMS GENE~ATED 

STATE STATE 

3 , 5 (4 3) , C( 5) adj C( 3 ) 3 minterms : 

[C(3)cC(4) and (f(3), f(5)) AND 

C(5)cC(6)J OR dtak l f( 3) + f( 5) J OR 

(6 5) [C(4)cC(3) and f(3), f(5) AND 

C(6)cC(5)J dtak [f(3) + f(5)J 

C(3)XOR C(4) = 

C( 5 )XOR C( 6) 

Table 2 

ANTECEDENT SUCCESSOR CONSTRAINTS MINTERMS GENERATED 

STATE STATE 

2 m! nterms 

2 3 (3) and C( 2) adj C( 3 ) [f(2) + f(3)J 

(3 4) C(3) c C(4) dtak. f(3) 

Table 3 

The treatment of the list of constraints yields the 

fo 11 owl ng encodi ng (with 3 bits). 

STATE Yl Y2 Y3 

a 0 0 0 

1 0 1 1 

2 0 0 1 

3 1 0 1 

4 1 1 1 

5 1 0 0 

6 1 I 0 

Table 4 : encoding 

This symbolic next state equations are 
Yl [f(2) + f(3)J + 1576 f(4) + f(S) 

Y 2 bg. fO) + dtak [f(3) + f(5) J 
Y3 tr. frO) + f(l) + [f(2) + f(J)J 

There are 7 different product terms 

[f(2) + f(3)J ie Y2 Y3 

~6·f(4) ie ~6 Y1Y2Y3 

f(5) ie Y1Y2T;, 
bg.f(l) ie bg. Y1Y2Y3 
dtak [f(3)+f(S)J ie dtak Y1Y; 

tr. frO) ie tr. Y1Y2Y3 

f(l) ie V1Y2Y3 



Only 4 input conditions appear in the equations, 
though 8 input conditions are given in the graph. 

4.2 - Taking into account the output equations 

The strategy chosen here is to look for a 
minimization of the next state equations, while 
taking into account the output equations. 
The method is to prevent the applications of the 
next state assignment rules which would lead to the 
suppression, in the next state equations, of a 
product term which is a prime implicant of the 
output equations. 
The symbolic equations of the outputs are: 
fcm = b16 f(4) + f(6) 

br = tr f(O) + bg f(l) 
vad = bg fO) 
uds = f(2) + dtak f(3) + dtak f(3) 
bgak = b16 f(4)+f(6)+bg f(1)+f(2)+al:a'K f(3)+ 

dtak f(3)+~6 f(4)+ffiK f(5)+dtak f(5) 

as = f(2)+~ f(3)+dtak f(3)+dtak f(5)+dtak f(5) 
lds = f(2)+QtaK f(3)+dtak (f3)+QtaK f(5)+dtak f(S) 

pO = dtak f(5)+dtak f(S) 

Irreducible minterms in the output equations 
A simple algorithm enables them to be found 
f(6) ; b16 f(4) ; Dg f(1) ; tr f(O) ; bg f(1) f(S) 

In this case, we prevent the application of rule b 
to the pair of states (1,2), leading to the 
elimination of one of the product terms: bgf(l) or 
bgf(l) which are prime implicants of the output 
equations. 
The treatment of the both systems (next state 
equat ions, output equati ons) 1 eads to the fo 11 owi ng 
list of constraints: 
(C{ 0) c CO» ; (C{ 3) c C( 4» ; (C{ 0) c C( S) ) 
(C{ 3) adj C( S» ; (C( 2) adj C( 3» ; 
((C(3) c C(4» and (C(S) c C(6») OR 
((C(4) c C(3» and (C(6) c C(S») 
C(3) XOR C(4) = C(5) XOR C(6). 

922 

Thi s 1 eads in thi s case to the same encodi ng as 
previously, but the next state equations are 

different (for Y3) 

Resul ts 
Next state equations 

Y1 = If(2)+f(3)j + ~ f(4) + f(S) 

Y2 = bg f(l) + dtak[f(3) + f(S)J 
Y3 = tr f(O) + bg f(1) +bg f(1) + [f(2)+f(3)j 

Output equations 
fcm = b16 f(4) + f(6) 
br = tr f(O)+bg f(l) 
vad = bg. f( 1) 
uds = [f(2)+f(3)j 
bgak = [f(2)+f(3) J+f(6)+b 16 f(4}+D76 f(4} 

+bg f( 1)+f( S} 
as [f(2)+ f(3) j+f(S) 
lds = Lf(2)+f(3)J+f(S) 
pO = f(S} 

Set of product terms 
The encoding leads to 9 product terms 

[f(2)+f(3)j ie (Y2Y3) ; 
0 16 f(4} ie (~6 Y1Y2Y3) 
bg.f(1) ie (bg.Y 1Y2Y3) 

dtak[f(3)+f(5)j ie (dtak.Y{V2) ; 

tr f(O) ie (tr.Y1Y2Y3); 
Dg fO) ie (09 Y1Y2Y3 ) 

b16 f(4) 
f(6} 
f(5) 

Performance 

ie (b16Y1Y2Y3) 
ie (Y 1Y2Y3) 

ie (Y 1Y2Y3) 

The program is developed on Vax 11/780. The example 
presented here requires 22 sec CPU, 25 sec when the 
output equations are taken into account. 



Area gain 
The circuit is implemented on a PLA, the area of 
which is proportional on one hand to the number of 
product terms, on the other hand to the sum : 
ni+3 n+nO,where ni is the number of controller 
inputs, n is the number of encoding bits, rO is the 

number of outputs. 

The state assignment enables to obtain 9 product 
terms (instead of 11 in the worst case) and 5 
inputs (instead of 8). 

S'-S 
We shall choose g = --- as an estimate of the 

S' 
gain 
S' area in the worst case 
S area corresponding to the state assignment 

9 28 % 

Other examples have been treated and the 

characteristics of the Circuits, the state 
assignment and the gain estimate are presented in 
table 5. The circuits labelled 1,2,3,4 are 
presented in the references [12], [17J, [16J, [1~ 

worst case obtained results 

.... ,- ... 
Circuit ns rO n UPT nl UPT nl A r~a ga i n 

1 20 8 5 38 18 27 13 37'1, 

------- - ---
2 4 4 2 12 4' 0 3 38% 

-------~ ---- -
3 7 J 3 14 2 11 2 2l't 

f-----1--"---

4 11 0 4 17 6 9 4 53'1. 

Table 5 

In table 5, ns is the number of states, NPT the 

number of product terms, n the number of bits, 

ni the number of input conditions taken into 

account 
in the PLA, nO the number of outputs. 

923 

CONCLUSION 

We . have presented here a rule based system for 
optimal encoding of the states of a controller, 

taking into account the next state and output 
equation minimization. The rules imply constraints 
on the encoding such as adjacences, 
inclusions •.• The set of rules may be modified to 

take into account the target structure (types of 
flip-flops, type of combinatorial circuits). 

The exampl e presented here addresses only a small 
size circuit but it demonstrates the principle of 

the method. The system works fai rly well for such 

circuits, it is being improved for larger circuits, 
in order to reduce the CPU time. 

The system is very flexible, because of its 
organization with an independent rule base, which 
may be extended by addition of new rules. 

The encoding sytem is included in a complete design 
system, allowing a top down design, from the 
specification to the layout. 

ACKNOWLEDGMENTS • 

The authors thank C. Bellon for her helpfull 
cooperation. 



BIBLIOGRAPHY. 

(1) J.HARTMANIS, R.E.STEARNS, 
Algebraic Structure Theory of Sequential I~achines, 
Prentice Hall, 1966. 

(2) J.HARTMANIS, 
"On the State Assigment Problem for Sequential Machines" 
IRE Trans. Elect. Camp., Vol. EC-10, pp.157-165, June 1961. 

(3) D.B.ARMSTRONG, 
"A Programmed Algorithm for Assigning Internal Codes to 
Sequential Machines", 
IRE Trans. Camp., Vol. EC-l1, pp.466-472, August 1962. 

(4) R.KARP, 
"Some Techniques for State Assignment for Synchronous 
Sequential Machines", 
IEEE Trans. Elect. Camp., Vol.EC-13, pp.507-518, Oct.1964. 

(5) T.A.DOLOTTA, E.G.MC CLUSKEY, 
"The Coding of Internal States of Sequential Machines", 
IEEE Trans. Elect. Camp., Vol EC-13, pp.549-562. 

(6) G.SAUCIER, 
"Encoding of asynchronous Sequential Machines", 

IEEE Trans. on E.C., Vol.E.C.16, n03, pp.365-369, 1967. 

(7) G.SAUCIER, 
"State assigment of asynchronous Sequential Machines 
using Graph Techniques, 

IEEE Trans. on Comp., mars 1972. 

(8) G.SAUCIER, 
"Next state equations of asynchronous sequential 
machines", IEEE Trans. on Camp., mars 1972. 

(9) G.De MICHELI, A.SANGIOVANNI-VINCENTELLI, R.BRAYTON, 
'KISS: a Program for Optimal State Assignment of Finite 
State Machines", 
Int. Conf. on Comp.Aid. Design, Santa Clara, Nov.1984. 

(10) G.De MICIIELI, 
"Optimal Encoding of Control Logic", 
IEEE ICCD 1984, pp.16-22. 

(11) G.De MICHELI, A.SANGIOVANNI-VINCENTELLI, T.VILLA, 
"Computer Aided Synthesis of PlA-Based Finite State Machines", 
ICCAD, Santa Clara, pp.154-157, Sep.1983. 

(12) E.FLAMAND, 
"A Complete and Automatic System for Sequencer Design", 
IEEE ICeD 1984, pp.324-340. 

(13) S.HANRIAT, J.IDT, 
"Compilateur de Fonctlons Bool~ennes sur R~seaux Pr~diffus~s", 
Colloque National Conception de Circuits a la Demande, 
pp. 493-518, Grenoble, 1985. 

(14) P.AMBLARD, M.CRASTES de PAULET, J.RARIVOMANANA, G.SAUCIER, 
"CADOC : a functional Specification and Simulation Tool for 
VLSI",IEEE EDA 84, Warwick, march 1984, pp.147-151. 

(15) C.BELLON, M.CRAsTES de PAULET, S.HANRIAT, J.RARIVOMANANA, 
G.SAUCIER, 
"CADOC System: a Tool for 14ultllevel Description and Test 

Generation for VLSI Circuits", 
7th Int. Conf. CHDL 85, Tokyo, aug. 1985. 

(16) G. De MICHELI, 
"Optimal state assignment for finite maChines", 
Research Report, 1985. 

(17) C. MEAD, L.CONWAY, 
"Introduction to VLSI systems", 
Addison Wesl ey, 1981. 

(18) G. THUAU, 
"Conception logique et topologique en technologie MOS", 
These m 3eme cycle, Grenoble, 1983. 

924 



Constructive Solid Geometry: A Symbollc Computation 
Approach 

L. Lell 
David Y. Y. Yun 

Department or Computer Science and Engineering 
Southern Methodist University 

ABSTRACT 

A method or parameterizing an object that is 
represented by constructive solid geometry (CSG) is 
provided. A method is developed ror generating the 
constraint equations on the parameters which provide 
a sufficient condition so that the object remains 
geometrically similar as the parameters are varied. 
These constraints and the symbolic rorm or CSG are 
important to the problem or geometric optimization 
which is part or Computer Aided Engineering. 

1. Introduction 

Constructive Solid Geometry (CSG) is now the method or choice 
ror representing mechanical engineering objects such as machine 
parts inside a computer and is replacing other methods such as 
boundary representations in the CAD-CAM systems or the 80's. lSi 
In CSG, an object is represented as the boolean operations, union, 
dirrerence and intersection, as applied to regular sets such as the 
set or points enclosed by rectangles and circle in two dimensions 
or rectangular pyramid and right circular cylinder in three dimen
sions. 

Tilove lSI has shown how an object represented in Constructive 
Solid Geometry can be converted into its boundary representa
tion: Th,is is important ror displaying the object and determining 
the equivalence or two objects among other purposes. 

A method was developed to represent an object that has dimen
sions whose values are symbolic expressions based on the boun
dary representation. 111 Each point where two segments or the 
boundary representation intersect has symbolic values ror its coor
dinates. The connectivity or these points by means or races and 
edges are also stored. A method ror representing part ramilies and 
ror setting up CSG objects whose dimensions are variables is dis
cussed in the spirit or tolerancing in [31. In constructive solid 
geometry, as the dimensions or the primitives vary, the object 
changes shape. In a boundary representation, the races may inter
sect each other as the locations or the points or intersection vary 
when the parameters change. For CSG objects, we provide a 
method ror generating a set or equalities and inequalities, such 
that their satisraction provides a sufficient condition ror the object 
to be similar to the original one as the parameters are varied. 
Two objects constructed by parametric CSG are derined to be 
similar when their representation by means of the techniques or [II 
are equal. A more rormal definition rollows later in the paper. 

This set of inequalities can be put into a geometric optimization 
program. Geometric optimization programs are used to determine 
the structure of minimum weight or cost. The constraints include 
those relating to the partial difrerential equations, e. g. the stress. 

CH2345-7j86jOOOOj0925$Ol.OO© 1986 IEEE 
925 

in the object must not exceed a given value, the geometric con
straints insuring that varying the parameters do not change the 
rorm of tbe symbolic solution, as well as additional ones entered 
by the user. 

In this paper, we illustrate the techniques and concepts with the 
two dimensional case where the primitive used is a rectangle 
whose races are parallel to the x and y axis. For a discussion or 
arbitrary curved surraces, canonical rorms and other aspects or 
geometric optimization, see 121. 

Z. Constructive Solid Geometry 

In constructive solid geometry, we represent an object and the 
union, dirrerence or intersection or simple objects or or other 
objects so defined. The mechanical engineer doing constructive 
solid geometry can enter the location or two simple objects. He 
can then indicate that they should be combined into a new object 
by taking the intersection, union or dirrerence or the sets or points 
represented by the objects. 

This process can continue recursively, since the intersection, union 
and dirrerence operations can be applied to objects previously 
created and to additional simple objects. These operations can be 
expressed by an expression where the operands are primitives and 
the operators are union, dirrerence or intersection. We can define 
the syntax of this expression as rollows: 

E -> (E 0 E) Ip 
where E represents an expression, 0 an operator, and P a primi
tive. 

These expressions can be represented in the computer by the 
equivalent binary tree with the operators at the nodes and the 
primitives as leaves. Each primitive will be represented by a 
record with rour real numbers, the x and y position or the lower 
lert hand corner and the height and width. The operators will 
simply be tree elements with left and right sons and an indicator 
ror the type or operator ( union, intersection or deletion). 

Figure 1 shows rour different CSG trees corresponding to the 
same physical object. 

3. CSG Tree to boundary conversion algorithm 

A rrequent operation in mechanical engineering CAD-CAM is to 
convert the constructive solid geometry to a boundary representa
tion. This is needed ror drawing the object on a graphics device. 
In addition, it ill possible to tell whether two objects (e. g. A and 
B) represent the same by taking the symmetric dirference or A 
and B, (A-B)U(B-A). If the result or the symmetric dirrerence has 
no boundaries, then A represents the same object as B. 

We will use this later as the main part or our canonical simplifica
tion function ror CSG trees and in modiried rorm as part or the 
geometric constraint generator. 

The algorithm [41 takes each edge or each primitive and pro
pagates it down the CSG tree. When the edge reaches a primitive 
it ill divided into those segments on, orf or in the primitive. Then 



00 201· 4 5 

1 6 

r1bs 

1 . 6 

2~ 
U 4LJS 

1 6 

Figure 1 

at each node, the results of dividing the segment for each subtree 
are merged together to produce the classification of the edge for 
the object represented by the subtree ~t that node. 

We do this with the following algorithm: 

function edgelist (T) ; T is a CSG tree (returns list of edges 
on the boundary of the object 
represented) 

edgelist <- nil 
for each primitive PI 

for each edge E of PI 
(EinS, EonS, EoutS) <- M IE,TI 
merge (EinS,Eon,EoutS) with edgelist 

end Iforl 
end Iforl 

remove edges in or out of object leaving edges on 
end Iprocedurel 

Algorithm to Classify an edge against a primitive 

functlon M(Edge, T) ; T is a CSG Tree (returns edge divided into 
segments with on, off or in indicated plus for on whether shape is 
above or below) 
if T is a primitive then 

else 
perform a primitive classification 

classify the Edge with respect to the left hand and right 
hand sons of T by calling M recursively 
for each part of the edge after it is divided at any point 

926 

where it iniersects any primitive 
determine its classification using on, orr or in informa
tion, and neighborhoods as passed up from calling M 
on left and right hand subtrees 

end Ifunctionl 

This algorithm works by taking the edge of each primitive and 
determining whether or not it is on the object's perimeter. The 
union of these edges will be the boundary of the object. 

The working of the algorithm is illustrated with the object, 
Al U(A2UA~), which is illustrated by figure 2. Figures 3,4 and 5 
show the line segments generated when each of the four edges of 
AI' A2• and A~ are l'esptt:tively In the outer loop of the function 
edge list. 

I 

I 

Figure 2 

When we take the edges of A~ and find out which are in the 
object, we get: 

Figure 3 

For A2, we get 

I 
Figure 4 

For AI' we get 



~o 

Figure 5 

The union of these shapes form the perimeter of the total object. 

The algorithm M 151 classifies the edges. Each edge is classified 
against both the left and right hand subtrees of any node. The 
result coming back up will indicate what parts of the edge are on, 
. or orr the object represented by the subtree. These can be 
~:mbined by a complicated rule system which depends on the 
classification of the edge of each subtree, the type of operato~ and 
in the case of on segments which side the object the segment 180n. 
Figure 6 shows how the edge 1-2 is classified in A in the trees 
AUB, AnB and A-B 

A-B 

A§A Al A4SJAI 
B B2 B2 

As :42 As 

4 B I B4 BI 
EdgeA12 

From A From B AUB AnB A-B 

Figure 6 

4. Symbolic Constructive Solid Geometry 

In symbolic constructive solid geometry, each rectangle has the x 
and y position, height and depth represented both as an arbi
trary symbolic mathematical expression and as a constant. The 
constraints generated will insure that any value substituted for 
the parameters into the symbolic expressions will yield an object 
geometricly similar to the one given when the primitives have the 
dimensions given by the constants. The constant dimensions can 
also be used in displaying the object or as starting values for the 
iterations in geometric optimization. 

In additlf'n to the expression derining the CSG primitive, the user 
inputl> it table listing for each primitive both the symbolic and 
constant values for the x and y coordinates of the lower left hand 
corner as well as ~x and ~y, the width and height respectively. 
The user can also provide the symbolic location of a primitive by 
defining a vector whose components are expressions between a 
corner of another primitive and a corner of the new primitive. 
The graph formed by these connections should form a forest 
where the nodes are the primitives and an edge exists between two 
nodes when there is a connection between the corresponding prim
itives. 

(In the discussion that follows values that are symbolic will have a 
.s prefix while the values that are constants will not.) 

927 

Figure 7 illustrates a T-bar and the tree corresponding to the 
CSG expression entered with parametric CSG. Tables 1 and 2 
show the other information. 

Figure'7 

x y ~x ~y x.s y.s ~x.s 

Rl 0 0 1 3 0 0 A 
R2 -1 3 3 D 

Table 1: Rectangle Table for Figure 7 

RECTI RECT2 CORNER 1 
2 NE 

CORNER2 
SE 

Table 2: Connection Table for Figure 7 

~y.s 

B 
E 

~x.s 

C 
~y.s 

o 

Figure 8 illustrates a more complicated representation, a square 
with a hole in it Cormed by four rectangles. Notice the different 
methods of connecting juxtaposed rectangles. Rectangles 1 and 2 
are connected with a connection list item. The system determines 
that rectangles 2 and 3 are juxtaposed from the values of the con
stants, i. e. that G = 0 and H = B + E. The connections 
between rectangles 3 and 4 are determined in the same manner. 
Of course, the end of rectangle 4 is inside rectangle 1. 

x y ~x ~y x.s y.5 ~x.s ~y.s 

Rl 0 0 5 1 0 0 A B 
R2 Oil 3 F E 
Rs 0 4 5 1 G H J I 
R4 4 0.5 1 3.5 K L M N 

Table 3: Rectangle Table for Figure 8 

RECTI RECT2 CORNERl CORNER2 ~x.s 
2 nw sw 0 

Table 4: Connection Table for Figure 8 

~y.s' 
o 

5. Algorithm tor Generating Geometric Constraints 

We define similarity as mentioned in section 1. Let E2 be the 
object produced from the CSG tree for El by simply changing the 
values of the parameters in the symbolic CSG tree defining EI. 
Let Gl and G2 be graphs formed from El and E2 respectively. 
The nodes correspond to the positions in two dimensional space 
where a horizontal and a vertical boundary segment intersect. 
There will exist an edge between node i and node j of the graph if 
there is a primitive that has a corner at the point corresponding 
to node i and one node at the point corresponding to node j. Ie 
the new set of values for the parameters obeys the constraints, 
then Gl and G2 will be isomorphic and for all pairs of nodes 
mapped by the isomorphism, the two nodes will have the same 
expressions for x.s and y.s. 



R~' 
(O,B ~II--...>I<...-'~r-----t-+--t 

Figure 8a 

~-------4----J------------~>~1 
--.....,.---

H 

B+ +1 L+ +1 

F 

B 

Figure 8b , 
This algorithm uses as its principal component an adaptation of 
the Tilove algorithm for finding the boundary segments. In addi
tion to generating the boundary segments or the object, it gen
erates the constraints necessary to insure th3t tht>se are the boun
dary segments. There are. five steps. 

1. For each expression that appears in the .6x.s or the .6y.s 
field or the rectangle term, add the inequality that the 
expression is > 0 to the inequality list. 

2. Perform a depth-first search. of .the graph formed by the 
items on the connection list. Compute the symbolic valuEr: 
ror the x and y coordinates of the four corners of each rec
tangle: x.sw .s,y .sw .s,x.se .s,y .se.s,x.nw .s,y .nw .s,x.ne.s, and 
y.ne.s. 

3. Run a modiried version of the Tilove algorithm for finding 
the boundary segments of an object constructed with CSG. 
It generates the boundary segments as before. However, the 
end points or each· segment are labeled with the symbolic 
values ror the coordinates as well as the numeric values. In 
the classification or a segment against a primitive and in the 
M routine for two lists oC the same segment, we .generate 
equalities and inequalities needed to provide a sufficient con
dition that any classification done would remain the same as 
the parameters are varied. (See below Cor details.) 

4. Convert the equality list into. a set of substitutions. In the 
general case; this can be done with a Groebner basis algo- . 
rithm. If all the dimensions and locations were simply single 
variables (as is oCten the case in practice), then this can be 
done by reducing the coerricient matrix to a reduced row 
echelon form. Apply the set or substitutions to the inequali
ties. 

928 

5. Remove any redundant inequalities and make obvious sim
plifications by combinina terms such !lj replacing B< B + D 
... ·;ith 0 < D. . 

The resulting list of inequalities is the set of geometrical con
straints. 

The following is a detailed description or the part of theprimitiv.: 
classiCication routine that generates the inequalities and equalities: 
Only the part for classifying a horizontal segment is shown. The 
part for classifying vertical segments is analogous with the roles of 
x and y reversed. The notation Addl (blah) means add the ine
quality blah to the list of inequalities, AddE (blah!) means add 
the equality blah! to the list of equalities. The shorthand GI 
(blah2) means: if list = nil then list = blah2 else list = list or 
blah2. The routine receives as input a rectangle and a horizontal 
edge where the coordinates left and right end points are referred 
t.o be the subscripts 1 and 2 respectively and whose Y. value is 
referred to as Yo' 

List = nil 
If Yo> Y.nw or Yo<Y.sw or Xo>=X.se or X1sX.sw then 

If Yo> Y.nw then 
GI (Y.nw.s> Yo.s) 

If Yo < Y.sw then 
GI ( Yo.s<Y.sw.s) 

If Xo~X.se then 
GI ( Xo.s~X.se.s) 

If Xl < =X.sw then 
GI ( Xl.s <= X.sw.s ) 

.f list not = nil then AddI(list) 

If Xo<X.sw then 
AddI ( Xo.s<X.sw.s ) 

If Xo> X.sw then 
AddI (Xo.s>X.sw.s) 

If Xo=X.sw then 
AddE( Xo's=X.sw.s} 

If XI>X.se then 
AddI(X.se.s<XI·s) 

If Xl <X.se then 
AddI (X.se.s>XI.s ) 

If XI=X.se then 
AddE{X.se.s=XI·s) 

If Yo> Y.swand Yo<Y.nw then 
AddI(Yo's> Y.sw.s) 
AddI(Yo·s<Y.nw.s) 

If (Yo=Y.sw) then 
AddE(Yo's= Y .sw.s) 

If (Yo=Y.nw) then 
AddE(Yo's= Y .nw.s) 

end lifl 
When the M routine- is invoked at a given operator node, it'calls 
itself recursively for the left and right hand subtrees. -ACter con
trol is returned after these two calls, the routine has two chains of 
horizontal segments to be classified against each other. From 
these two chains, we generate additional equalities and inequalities 
that must be satisfied. 

Let ACAn and A1.s-An.s represent the list of x coordinates of the. 
segments returned from the call from the left hand subtree and 
their symbolic values respectively arranged in ascending order by 
numerical x value. BCBm and B1.s-Bm.s represent the x coordi
nates for the right hand subtree. 

We generate inequalities and equalities as follows: 

For all i 
If i < n then if ~ {BJ>A1 f\ (j=1 Y Bj-1<A1 )) f\ 
=\ {Bt<A1+1 f\ (k=m Y Bt+1>A1+1)) then 

AddI{ A1.s<BJ.s ) 
AddI{ A1+1.s>Bt .s ) 



For all i 
if i < m then if ~ (Aj>BI f\ (j=1 Y Aj_1<Bi)) f\ 
=\ (Ak<BI+1 f\ (k=n Y Ak+1>BI+1))then 

AddI( Blos<Ajos ) 
AddI( BI+1os>Akos ) 

if BI<Al f\ (i=m Y BI+1>A1) then 
AddI( Blos<A1os ) 

if AI<Bl f\ (i=n Y Al+l>A1)then 
AddI( Alos<Blos ) 

if BI> An f\ (i=m Y BI_1 <An) then 
AddI( Blos>Anos ) 

if AI> Bm f\ (i=n Y AI-I <Bml then 
AddI ( Alos>Bmos ) 

for each i and j such that AI=Bj AddI ( Alos=Bjos) 

Note that when we pass up the list of segments we insure that 
only one of the two symbolic expressions, Aios and Bjos that are 
equal is used as a coordinate value for an endpointo 
To illustrate these points, I will show how the inequalities are gen
erated for the parametric CSG objects in Figures 7 and 80 In step 
1, we generate the constraints: A > 0, B > 0, D > 0 and E > o. 
For the T-shaped object, step 1 computes that the southeast 
corner is at (A+C,B). xosW.s andyoswos are A+C-D and B respec
tively. All inequalities are generated by the primitive classification 
of the lower edge of rectangle 2 against rectangle 1. We generate 
the following line and- inequalities: 

O ____ o_(f __ -o on (below) 0 
(A+C-D,8) (O,B) (A,B) 

oCC 0 
(A+C,B) 

Figure 9 

A>O 
A<A+C 

A+C-D<O 

In f;/cP 5, th\" !"econd inequl.lity is simplified and this set is com
bined with the set generated in step 1. The resulting set oC ine
qualities is: 

A>O 
D>O 

C>O 
E>O 

B>O 
A+C-D<O 

When we apply the algorithm to the object in figure 2, step 1 gen
erates the following inequalities: A > 0, B > 0, F > 0, J > 0, I 
> 0 and M > 00 Step 2 assigns the x.s and Yos values for R2 as 0 
and B respectively. In step 3, we illustrate the algorithm as it 
'works on the upper edge oC R1, the lower edge oC R3, and the 
lower edge of R". These edges 'happen to be sufricient to generate 
all the applicable inequalitieso In Figure 11, we see _ the steps in 
classifying the top edge oC RIO Steps 1,2, 3 and 4 represent the 
classification oC the edge against the primitives R1, R2, R3 and R. 
respectively. In step 5 we ~ombine the results from Rl and R2 and 
in step 6,we combine the results Crom R3 and R4• Finally step 7 is 
the final combination of the edgeso In fi~ure 12, we see the 'lame 
steps Cor the lower edge of R30 
Lastly we illustrate 'the processing oC the lower edge of R". We 
only show the first Cour steps since no inequalities or equalities are 
added in the later steps. 

Going into step 4, we have the inequalities: 

H>B 
K>G 
L<B 
A>O 
J>O 
(K>F)or(L<B) 

F<G+J 
F<A 
K<A 
B>O 
1>0 
G<F 

K<G+J 
H>B 
F<K 
F>O 
M>O 

929 

and the equalities: 

B+E=H G=O L+N=H 
G+J=K+M K+M=A 

(093) (Ac;h) 

(093) 
on (below) 

(Ac;h) 

2 
on(above) ofC 

(093) (iB3) (Ac;h) F < A 

3 
(093) 

off 

(Ac;b) H> B 

4 ofC in 
(093) (1&) (Ac:B) L < B 

, K<A 
K+M=A 

5 
(093) 

in 
(F';B) 

on (below) 

(Ac;b) 

6 
(093) 

orr in 

(183) (Ac;h) 

in on (below) in 
(093) (F';B) -(8) (Ac;h) F<K 

Figure 10 

(ol) o ___ (~) 

(093) 
ofC 

(Ac;h) H>B 

2 on(above) ofC B+E=H 
(c8I) (f.H) (G+q,H) F < G+ J 

G=O 

on (above) G<F 
3 

(c8I) (G+q,H) 

4 
(c8i) 

ofC on(below) L+N =H 
(~'31) (G+9-,H) K < G+ J 

G+J= K+M 

on(below) oCC K>G 
5 

(c8I) (f.H) (G+9-,H) 

6 
(c8I) 

on(above) 

(1&) 
in 

(G+9-,H) 

7 in on (abov~ in 
(c8I) (F;H) (,) (G+q,H) F<K 

Figure 11 

off 
0 0 

K>O (K,L) (K+M,L) 
L<B 

2 off K+M=A 
0 0 

(K,L) (K+M,L) (K > F) or (L < B) 

3 ofC 
0 0 

(K,L) (K+MlL)< H 

4 0 
on(below) 

,. 0 
(K,L) (K+M,I;) 

Figure 12 



In step 4, the equalities are converted into a substitution list as 
follows: 

B -> L+N-E 
G-> 0 
H-> L+N 
J -> K+M 
A-> K+M 

In step 5, we apply the substitutions generating and eliminate 
redundancies getting as our final result for the constraints: 

K+M > 0 
K>O 
L<B 
F>O 

F<J 
F<K+M 
F<K 
1>0 

K<J 
H>B 
L+N-E>O 
M > 0 

8. Computational Complexity Issues 

e.l. Generating Geometric Constraints 

'Let N be the number or primitives. Then the number or edges in 
the boundary, n, must be 0(N2) 151. Also the number of points on 
the boundary where two segments intersect is O(n). k is the 
number or dirrerent types or terms in· the expressions ror distances. 
For example, if we had the expressions ror distances as n2, n, 3*n, 
2*n then we would have k = 4. We count variables raised to dif
·rerent powers separately but not terms with diUerent constant 
·(actors. 

In the conventional algorithm for finding the boundary segments, 
the number or times that a pair or line segments must be matched 
is O(NlI

). In our modified algorithm, each time we match a pair of 
line segments we generate 0(1) new inequalities. Since this gen
eration does not involve manipulating the expressions, this modifi
,::ation does not change the 0(N3) behavior. However, the total 
number of equalities and inequalities is 0(N2). For each edge of a 
primitive, we have up to four equalities or inequalities generated 
for each or the O(N) primitives .. Since there are O(N) edges, there 
;:lre OJN~\ inequalities . 

.Step Lis trivially O(N). Step 2 to go through the connection lists 
,'orresponds to depth rirst search on a graph. Since there is a 
maximum or one connection item per primitive which might 
invol~e adding polynomials where the result might become as 
large as O(k), this step is O(kN). 

In this subsection the times given will be ror the important practi
cal case or the dimensions being simple parameters. Equality con
straints are only generated when two rectangles have edges that 
~nd at the same place. Thus there can only be O(N) such con
~traints. In the special case where each dimension is a single vari
able, the number or variables, k, = O(N) so the time to convert 
the coefficient matrix to row echelon form is 0(N3). 

We perform up to N substitutions on each inequality, each of 
which can involve adding two k term polynomials so the total 
time ro·r this step is 0(N3k). 

Each simplification takes up to O(k) time per inequality. Elim
inating redundant inequalities, if we do this by using an O(z log z) 
sort first, will take 0(N2logNk + N2klogk). The k log k term comes 
from the time to put the expressions composing each inequality in 
lexicographic order so they can be compared in O(k) time. How
ever k = O(N) so the total time ror this step is 0(N3k). 

The actual evaluation or the inequalities which will occur once per 
iteration in geometric optimization will be 0(N2k) operations since 
we have 0(N2) inequalities with up to k terms apiece. 

930 

References 

1. C. Eastman, J. Lividini and D. Stoker, A Database for 
Designing Large Physical Systems, National Computer 
Conference ,U, (1975), 603-611. 

2. L. L. Lerr and D. Y. Y. Yun, Constructive Solid Geometry: A 
Symbolic Computation Approach, 86-CSE-14, Southern 
Methodist University, Department or Computer Science, 
1986. 

3. A. A. G. Requicha, Representation or Tolerances in Solid 
Modeling: Issues and Alternative Approaches, in Solid 
Modeling by Computers, M. S. Pickett and J. W. Boyse (ed.), 
Plenum Publishing Corporation, 1984, 3-22. 

4. R. B. Tilove, Set Membership Classification: A Unified 
Approach to Geometric Intersection Problems, IEEE 
Transactions on Computers C·29, 10 (Oct. 1980),874-883. 

5. R. B. Tilove, Exploiting Spatial and Structural Locality in 
Geometric Modelling, TM-38, Production Automation 
Project, University or Rochester, Rochester, New York, Oct. 
1981. 



CREATION AND SMOOTH-SHADING OF STEINER PATCH TESSELLATIONS 

David E. Breen 

Center for Interactive Computer Graphics 
Rensselaer Polytechnic Institute 

Troy, NY 12181 

Abstract 

Motivated by recent work with Steiner patches, 
a method has been developed to create CO tessella
tions of Steiner patches which approximate high 
order biparametric su rfaces. An accompanying 
technique has also been created to smooth-shade 
the tessellation in order to produce high quality 
color raster images. The whole process is an 
extension of the tessellation and rendering process 
using polygons. The Steiner patch method pro
vides a better approximation with fewer geometric 
elements and non-jagged silhouettes. 

The tessellation algorithm utilizes the proper
ties of the Bernstein-Bezier representation of 
Steiner patches. The algorithm fits Steiner patches 
to ordered surface point and normal data. The 
resulting tessellation is CO everywhere and C1 at 
the data points. The unique normal vectors at the 
data points are interpolated over the tessellation 
during rendering in order to produce a smooth 
looking surface. 

Introduction 

The tessellation of complex cu rved su rfaces 
into polygonal meshes is a common and successful 
method used to facilitate rendering. The method 
transforms a mathematically complex geometric 
description (e.g. bicubic patches) into a far sim
pler geometric approximation - a polygonal mesh 1. 

This transformation greatly simplifies the math
ematics and algorithms of rendering. With the sim
plification also comes significant increases in 
rendering speeds. Polygons are commonly used 
because of their mathematical simplicity. Many 
algorithms have been developed to create smooth 
shaded images of polygonal meshes 2' l' 4. These 
methods utilize some form of interpolation in order 
to blend the faceted surfaces of polygonal meshes. 

The work presented here is based on the ideas 
previously mentioned. Complex su rfaces are tes
sellated into a network of simpler components in 
order to simplify the mathematics and shorten ren
dering times. Once a tessellated mesh is created, a 
shading algorithm is applied to the mesh in order 
to produce a smooth shaded image of a tessellated 
surface. The simpler components being used are 
Steiner patches 5. The Steiner patch is the sim
plest biparametric patch. Therefore this applica-

CH2345-7j86jOOOOj0931$Ol.OO© 1986 IEEE 
931 

tion of it is a logical extension of current 
rendering techniques using polygons. 

This work has been motivated by the results 
and mathematics produced by Sederberg and 
Anderson Ii. They have presented a method for 
ray tracing Steiner patches. Their resultS are 
based on a parametric surface implicitization meth
od developed by Sederberg 7 • 

The implicitization and ray tracing algorithm 
was studied and implemented by the Computer 
Animation Group at RPI's Center for Interactive 
Computer Graphics. The software to ray trace 
Steiner patches was incorporated into the group's 
ray tracer, BART. One of the main goals of the 
group is to produce high quality ray traced com
puter animation. Because this task is so computa
tionally expensive and time consuming, the group 
investigated ways to save time and CPU cycles a . 
Creating meshes of approximating Steiner patches 
which are subsequently ray traced offers that pos
sibility. 

Geometry 

Before continuing, it is necessary to briefly 
describe the geometric entities which are discussed 
and utilized in this paper. The two most refer
enced are Steiner patches and superquadrics. 
The Steiner patch is the essential geometric ele
ment in the tessellation algorithm. The algorithm 
has been applied to a certain type of biparametric 
surface - the superquadric. 

Steiner Patches 
The Steiner patch receives its name from the 

German mathematician Jakob Steiner, who studied 
it extensively in 1844 during a stay in Rome 9

• 

The Steiner patch is easily visualized as a triangu
lar quadratic Bernstein-Bezier patch. I n this 
form, the patch can be represented by six control 
points and a triangular parameter space 
(domain) 10. See Figure 1. The six points form a 
triangular control net which contains and controls 
the patch. Three of the six points are on the 
patch surface at the corners, POD, P20, P02. The 
patch is bounded by three quadratic curves 
POO-P20, POO-P02, P02-P20. The most important 
feature, at least to this project, is that each cor
ner control point and its two neighboring interior 
control points define the tangent plane at the cor
ner control point. This feature of the Steiner 



patch is central to the approximation algorithm. 
A Steiner patch represented in the 

Bernstein- Bezier basis is written as: 

:9 (u v) = \' P. (_~-! -) ui vi (1-U-V)2-I-i ,. L.J LJ i! j! (2-j-j)! 
I+J <- 2 

(1 ) 

I, J >= 0 
U >= 0, v >= 0, U+T <= 1 

Note the bou nds of the pa rameters U, V. The edges 
of the patch are defined by the U=O, V=O, U+V=l 
curves and are parabolas. 

Poo 

Figure 1. Steiner Patch with Control Points 

Superquadrics 
Superquadrics are a generalization of the qua

dric su rfaces. The mathematics of this 
two-parameter family of geometric primitives was 
formalized by Barr 1 

1. He defines the parametric 
form of superellipsoids, superhyperboloids of one 
and two sheets and supertoroids. An implicit 
inside-outside function is also provided for each of 
them. Specifically our work applied the tessellation 
and smooth shading algorithm to superellipsoids. 
Exponentiating the sine and cosine terms in the 
parametric form of the ellipsoid gives a variety of 
curved, beveled and pinched shapes which is the 
superellipsoid. 

Tessellation and Smooth-Shading Algorithm 

In order to create a smooth-shaded rendering 
of a Steiner patch mesh, th ree steps are requi red. 

1. 

2. 

3. 

Create a CO continuous Steiner patch tessella
tion which approximates the original surface. 
Create it in such a way to guarantee tangent 
plane continuity at common patch vertices. 

Ray-trace, calculating ray inter~ections .and 
determining the u,v values of the intersection. 

I nstead of calcu lating the actual normal to the 
surface at the intersection, calculate the inte
rior normals as a linear combination of the 
normals at the vertices. 

932 

The tessellation algorithm can be summa rized as 
the followi ng . 

1. Triangulate the parameter space of the original 
surface. 

2. Calculate the points and tangent planes associ
ated with each u, v value at the triangle ver
tices. 

3. Using these points and tangent planes, an 
interpolating Steiner patch is fit to each trian
gular segment. 

Subdivision of Parameter Space 

The first step in the algorithm is to subdivide 
the parameter space of the patch which is being 
approximated by a network of Steiner patches. 
More accurately stated, the parameter space 
should be triangulated, because the Steiner patch 
is defined on a triangular domain. There are bas
ically two ways to subdivide the parameter space, 
recu rsively and iteratively. The recu rsive s ubdi
vision begins by breaking the parameter space into 
two or four triangles. At each level of subdivision, 
each triangle is split into four more triangles. The 
number of triangles grows as 4 raised to the nth 
power, where n is the number of subdivisions. 
The iterative subdivision splits the original param
eter space into n 2 squares. Each square is then 
split into two or fou r triangles. The same iterative 
and recursive techniques can be applied to a tri
angular parameter space. 

Subdivision of a spherical parameter space, Ii ke 
the superquadric's, can be a bit trickier. It can 
be split up like a triangular space. The parameters 
of the first octant can be mapped to a triangle. 
The top vertex will be the value n = '!T/2, where n 
is the angle of elevation. The left bottom vertex is 
the value w = 0, n = 0, where w is the azimuthal 
angle. The right bottom vertex is the value w = 
'!T/2, n = O. Another possible method would be to 
subdivide fi rst along isopa rametric lines and then 
split any rectangular subdivisions into two or four 
triangles. 

A particular subdivision method cannot be 
recommended at this point. The method must be 
chosen to meet the requirements of a specific sur
face, application and implementation. Factors, 
such as the growth of the number of triangles per 
subdivision, best approximation to original surface 
and ease of implementation, must be considered 
before a decision is reached. The iterative method 
is recommended if the growth of the number of the 
triangles is. a concern. It also offers a smoother 
transition between levels of approximation. The 
recur"sive technique is substantially easier to 
implement. 

I rregardless of the technique, one rule must be 
followed when subdividing. The subdivision must 
be uniform. All vertices of the triangles must only 
overlap vertices of adjacent triangles. A vertex of 
a triangle should never lie on an edge of a neigh
boring triangle. See Figure 2. Ignoring this pre
caution will undoubtedly lead to cracks in the 
composite surface. This result will become 
evident, as the algorithm is fu rther explained. 



Figure 2. Uniform & Non-Uniform Subdivisions 

How much should a surface be subdivided? 
Again, this is a question which does not have a 
single answer. The level of subdivision must be 
determined based on a number of factors, accuracy 
of approximation, visual effects and/or number of 
triangles. 

Determination of Bernstein-Bezier Control Points 

Once the parameter space has been 
triangulated, a Steiner patch is calculated for ea~h 
triangle. This is done by calculating SIX 

Bernstein-Bezier control points for each resultant 
triangle. If each triangle in parameter space is 
mapped into a Steiner patch, a CO tessellation of 
the original su rface is produced. 

Corner Points 
The three corner points are the easiest of the 

six to calculate. The parameter values at the 
three vertices of the triangle are plugged into the 
approximated su rface equation. Th is produces 
three points in 3-space. The points are the corner 
control points of the approximating Steiner patch. 
See Figu re 3. 

I nterior Poi nts 
To determine the interior mid-edge control 

points is a bit more difficult. To begin, recall the 
properties of the Bernstein-Bezier control points 
for a -Stei ner patch. The corner control point and 
its two adjacent interior control points define the 
tangent plane of the patch at the corner point. 

Now consider any of the interior control points. 
Each one lies on two tangent planes. They are the 
tangent planes of the patch at the two adjacent 
corner points. I ntersecting the two tangent planes 
gives a line on which the interior mid-edge control 
points are allowed to lie. See Figure 4. 

To determine a unique point on the line, 
requires a third plane. The third plane can. be 
created by picking th ree points on the appropriate 
edge of the approximated surface. The three 
points are defined in parameter space as two ver
tices on a triangle and the midpoint of the edge 
lying between them. See Figure 5. Mapping these 
th ree parameter values into 3-space gives the 
three points. These three points define the third 
plane needed to determine a unique interior control 
point. See Figu re 6. 

There are numerous ways to calculate the third 
intersecting plane. The previous method was cho
sen because it provides orthogonal boundaries 
between the octants of geometric objects defined in 
a spherical parameter space. This will aid in the 
implementation of the algorithm and will be further 
explained at a later point. 

The algorithm for calculating the interior con
trol points on an approximating Steiner patch is: 

933 

For each edge of the triangular parameter 
space. 

1. Calculate the points in 3-space which corre
spond to the two endpoints. 

2. Calculate the tangent plane of the approxi
mated surface at the two endpoints, by taking 
the cross-product of the tangent vectors ema
nating from an endpoint. 

3. Calculate the point in 3-space which corre
sponds to the midpoint of the edge common to 
the two endpoints in parameter space. 

4. Determine the plane which is defined by the 
three previously calculated points. 

5. I ntersect the th ree previously calculated 
planes. Thei r intersection point is the interior 
control point for that edge. 

The algorithm is summarized in Figure 3 through 
Figure 7. 

If followed, the algorithm will give three interi
or control points. With the th ree corner points 
previously calculated, the Steiner patch is 
defined. If the algorithm is performed for all tri
angles in the parameter space, the original surface 
will be approximated with Steiner patches. Dis
cussion of the accuracy of the approximation is 
presented in my thesis 8. 

Continuity Considerations 

The tessellation algorithm creates a CO mesh of 
Steiner patches which is C1 continuous at the data 
points, but is C1 discontinuous along Steiner 
patch boundaries. 

When the parameter space of an approximated 
surface is uniformly subdivided, the algorithm 
guarantees positional continuity. When adjacent 
triangles share an edge in parameter space, they 
also share the points and tangents planes in 
3-space which define the control points along thei r 
common edge. Since they have common control 
points along their border, there will be positional 
continuity along their common boundary edge 1 2. 

At any vertex where Steiner patches come 
together, a single tangent plane exists. The algo
rithm guarantees that all adjacent interior control 
points to a corner point all lie on one plane. This 
guarantees that all patches at the corner point 
share the same tangent plane. The common tangent 
plane is an important geometric by-product of the 
tessellation algorithm that is exploited by the 
smooth-shading algorithm. 

Smooth-Shading the Tessellation 

Normal vectors which give a smooth-shading 
over a C1 discontinuous tessellation must meet cer
tain criteria. They are 

1. A single normal vector must be assigned to 
each common vertex. 

2. The interior normals of one patch should be 
independent of other patches. 



T 

f 
J-. 

e 

• e 

_Figure 3. Calculate Corner Points 

T 

f 
J-. 

> 
o 

Figure 4. Calculate Tangent Planes at Corner Points 

T 

f 
J-. 

Figure 5. Determine Intersecting Plane for All Edges 

934 



T 

I 
f-. 

> 

Figure 6. Intersect All Planes To Give Interior Control Point 

T 

r 
f-. 

\, 

> -----77' 

Figure 7. Six Points Define a Steiner Patch 

3. The normal function should be continuous on 
,the patch. 

4. The normals along a boundary edge should 
only be a function of the normals at the end
points of the boundary, i. e. an interpolation. 

A normal vector function for each patch which 
meets these criteria has been developed and imple
mented for Steiner patch tessellations. It is based 
on the concept of normal vector interpolation pre
sented by Phong J, namely, 

N(u.v) = No * u + ill * v + N2 * (1 - u - v) (2) 

where NO is the Steiner patch normal at (1,0), N1 
is the normal at (0,1) and N2 is the normal at 
(0,0). 

935 

The first criteria is met by the tessallation 
algorithm itself. It guarantees that there is a 
unique tangent plane and therefore normal di rec
tion at each vertex of the tessellation. The formula 
explicitly states that the normals in the interior of 
the patch are a function of the normals at the ver
tices of the patch, making the normals independent 
of other patches. The function is continuous. It 
can also be noted that the normals along the boun
dary edges are a function only of the normals at 
the edge endpoints. This fact and the fi rst criteri
on guarantee that there will be smooth and contin
uous shading across patch boundaries. 

I n order to smooth s hade the CO tessellation, 
the Steiner patches are ray traced. When a patch 
is intersected by a ray, the u, v value of the 
intersection is determined. Rather than calculating 
the actual normal of the Steiner patch at the inter
section, the above formula is used during the 



shading calculation. The new normals provide a 
smooth· shading across the whole network of Stein
er patches. 

Implementation 

The tessellation and smooth shading algorithm 
has been implemented and incorporated into the 
CICG'·s animation system,· The Clockworks 13

' 14' 

15 The Clockworks is an object-oriented comput
er animation system implemented in C 1 

6. As pre
viously stated, the algorithm was implemented to 
approximate superellipsoids. The superellipsoid 
was the fi rst geometric primitive supported by the 
geometric modeling subsystem of The Clockworks, 
so it was a natural choice. 

The first step in the implementation was to 
subdiVide the parameter space of the superellip
soid. Because it is symmetric, Steiner patches are 
only calculated for the first octant and are 
,reflected into the the other seven. The first 
octant of a superellipsoid is bounded by n = 0 to n 
= tr/2 and til = 0 to til = -rr/2. n is the elevation 
.angle and til is the azimuthal angle. The octant was 
interpreted as a triangle and subdivided. 

After some initial investigation an iterative 
subdivision implementation was chosen over a 
recursive one. The iterative subdivision was more 
difficult to implement but offered a smoother tran
sition between levels of subdivision; therefore 
providing more subdivision options. For the itera
tive technique, the number of triangles per octant 
is n 2, where n is the level of the subdivision. 
Since the Steiner patches of the first octant are 
reflected into the other seven, the total number of 
Steiner patches for the whole superquadric is 8 * 
n 2

• 

Results 

The following pictures illustrate the preliminary 
-results of the superquadric implementation. 
Figure 8 is an image comprised of four superqua
drics ray-traced directly. Figure 9 is the same 
four superquadrics approximated by 72 Steiner 

. patches each. This is a level 3 subdivision. The 
patches are ray-traced directly. The Cl disconti
nuities of the tessellation are visible near the poles 
of all four surfaces. Figure 10 is the same as 
Figure 9 except that smooth-shading is applied in 
order to blend the apparent surface normals. 
Figure 11 displays one superquadric approximated 
with fou r different levels of subdivision. The 
Steiner patches are ray-traced directly. The bot
tom right shape is the original superquadric. 
Again Cl discontinuities are evident across most 
patch boundaries. Figure 12 is the same as 
Figure 11 except that smooth-shading has been 
applied toto the tessellations removing visual dis
continuities along patch boundaries. Figure 13 is 
two superquadrics ray traced directly. Figure 14 
is the smooth shaded tessellation of the same geom
etry. It is only subdivided to two levels, which 
produces 32 Steiner patches. 

Analysis 

Figure lQ, Figure 12, and Figure 14 provide 
visual evidence of the algorithm's capability. Still 

Figure 8. .Four .Superquadrics 

Figure 9. Four Tessellated Superquadrics 

Figure 10. Smooth-Shaded Tessellations 

936 



Figure 11. Four Levels of Tessellation 

Figure 12. Smooth-Shaded Tessellation 

Figure 13. Two Superquadrics 

937 

Figure 14. Smooth-Shaded Tessellations 

many· questions have to be answered. Do Steiner 
patches offer faster rendering speeds? Are Steiner 
patches worth the effort? Why use Steiner patches 
instead of polygons? 

Preliminary tests were run to determine if 
Steiner patches had fulfilled their promise. Steiner 
patches were first explored in the hope that they 
would offer the user a way to shorten rendering 
times. The following tests were conducted and 
showed that there are certain advantages to using 
Steiner patches over other geometric primitives. 

Steiner Patches Versus Superquadrics 
The first tests that were conducted ray-traced 

superquadrics directly and then their Steiner 
patch tessellations. I s it faster to ray trace a 
superquadric directly or its Steiner patch tessella
tion? The geometry of Figure 8 and Figure 13 was 
used to answer this question. The results are 
favorable with the superquadric ray-tracing times 
being 125 CPU-minutes and 90 CPU-minutes on a 
Data General MV /10000 for the images of fou rand 
two superquadrics respectively. Ray-tracing the 
tessellations of these superquadrics with 72 Stein-: 
er patches each took 70 CPU-minutes and 56 
CPU-minutes. Clearly there is a savings in time of 
44% and 38% when using the Steiner patchapproxi
mation. Examining Figure 10 and Figure 14 shows 
that acceptable visual results are also produced. 

Normalizing BART and STRAW 

The next question investigated was "Is it more 
time-efficient to tessellate and smooth-shade a 
polygonal approximation rather than a Steiner 
patch approximation when ray tracing curved sur
faces?". Even though the software atRPI prevents 
the forming of an outright conclusion, the results 
produced from benchmarking do give a strong. 
indication that using Steiner patches is more effi
cient for ray tracing curved surfaces than poly-' 
gons. 

Using a rough midpoint error estimation, it was 
determined that 32 Steiner patches can approxi
mate the· surface of a superquadric as well as 200 
triangles B • The method used to make the error 
estimation first calculates the midpoint along an 



edge of an approximating Steiner patch. Next the 
associated point in the approximated su rface' s 
parameter space is determined. It will be a mid
point on the edge of a parameter space triangle. 
That point i.s mapped into 3-space. The distance 
between the previous two points is calculated and 
avera"ged with the corresponding distance for each 
edge of the tessellation. The average value of 
these distances can be used to gauge the quality 
of the tessellation. A similar technique is applied 
to the approximating triangles. This is far from 
an exact error calculation y but is satisfactory for 
the scope of our initial investigations. 

Our results indicate that a Steiner patch tessel
lation of level 2 will provide the same level of 
approximation to a superquadric as a planar 
approximation of level 5. A level 2 tessell<ltion 
corresponds to 32 approximating entities, while 
level 5 translates to 200. It appears that 32 Stein
er patches can approximate a superquadric as well 
as 200 triangles. It is this 32 to 200 ratio that was 
used to determine if it is more time-efficient to 
tessellate and smooth-shade Steiner patches rather 
than triangles when ray tracing curved su rfaces. 

Unfortunately a common software system which 
ray-traces both triangles and Steiner patches is 
unavailable at RPI. BART, a ray-tracer developed 
at RPI's Center for I nteractive Computer 
Graphics, ray-traces superquadrics, Steiner 
patches, spheres, cubes and cylinders. STRAW, a 
ray-tracer developed at RPI's Image Processing 
Lab by Mi ke Potmesil, ray-traces spheres, poly
gons, quadric surfaces, and bicubic patches 17' 

1. These two programs were used to run a 
benchmarking time test of Steiner patches versus 
triangles. Another factor to be considered is that 
BART and STRAW reside on different machines. 
STRAW runs on a PRIME 500 and BART is on a 
DATA GENERAL MV/10000. 

Since conclusions are being drawn from the use 
of two different pieces of software running on two 
different machines, a method had to be found to 
normalize the performance of the two programs. 
Common geometric primitives were identified. Each 
program had two geometric entities in common, 
spheres and cubes. BART detects spheres and 
cubes as degenerate superquadrics. STRAW sup
ports spheres as a separate primitive. A cube can 
be constructed from six polygons in STRAW. 
Scenes with these two common primitives were con
structed and ray-traced. One scene contained six 
spheres of various sizes. The other contained six 
cubes of various sizes. The CPU time needed to 
generate the images was noted. The ratio of the 
time it took to render the same geometry on the 
different programs can be used as a normalization 
factor. BART, on the average, used 10 
CPU-minutes to generate the image of the spheres 
and 60 CPU-minutes to generate the cubes. STRAW 
needed an average of 45 CPU-minutes to render 
the spheres and 80 CPU minutes to render the 
cubes. From these rendering times a worst and 
best case normalization factor can be deduced. 
STRAW running on a PRIME 500 can take anywhere 
from 4.5 to 1.33 times longer to render a geometric 
scene than BART running on a DATA GENERAL 
MV/10000. These factors will be used in an attempt 
to normalize the results of the final test. 

938 

Steiner Patches Versus Triangular Polygons 
The superquadrics in Figure 13 were tessellat

ed with 32 Steiner patches and 200 triangular 
polygons each. The each set of the tessellated 
superquadrics was then ray-traced. These tessel
lations produced similar approximation error. On 
the average, BART used 42.5 CPU-minutes to ren
der the image. The same superquadric tessellated 
with triangles rendered by STRAW used 13.5 
CPU-hours. These are striking differences in ren
dering times. Even if the worst normalization fac
tor of 4.5 is applied to STRAW's time of 13.5 hours 
on a PRIME 500, the rendering time is normalized 
to 3 CPU-hours on an MV/10000. This time still far 
exceeds the 42.5 CPU-minutes of BART's image. 
Ray-tracing a Steiner patch tessellation appears to 
be significantly quicker than ray-tracing a compa
rable polygonal tessellation. 

I n order to understand what might be happen-
ing during the rendering of the two tessellations, 
the facts must be reviewed. Using the worst case 
normalization, the triangular tessellation takes 4 
times longer to render than the Steiner patch tes
sellation. There are 6.25 times more triangles 
being rendered than Steiner patches. It is 
assumed that the majority of the CPU-time of ray 
tracing an image without shadows, reflections and 
refractions (j. e. ray-casting) is spent calculating 
the intersections of a ray with the geometric primi
tives. This implies that it takes only 56% 
(1-6.25/4) more work to determine if and where a 
ray intersects a Steiner patch rather than a polyg
onal planar patch. The inverse statement is that 
the determination of the existence and position of a 
ray intersection on a triangular polygon is only 
36% less work than Steiner patches.' At first 
glance this is difficult to accept considering the 
complexity of Steiner patches and the simplicity of 
polygons. Examining the code of STRAW and BART 
provides further insight into the results. 

The next step taken was the actual counting of 
operations needed to determine the existence and 
calculate the intersection of a line with a Steiner 
patch and triangular polygon. To calculate the 
intersection of a line and a Steiner patch takes 

. approximately 450 multiplies/divisions and 400 
additions/subtractions 19. To calculate the inter
section for a triangular polygon takes approximate
ly 55 multiplies/divisions and . ~5 
additions/subtractions. These numbers were ini

tially deceiving, because it showed that Steiner 
patches took 820% more work than triangular poly
gons, not 56%. Further study of the code showed 
that 80 multiplies and 80 adds of the Steiner patch 
calculations were in bounding box and bounding 
hull checking. While no bounding surface calcu
lations were being made for any individual triangu
lar polygons. It is these last figures and the 
bounding surface structures in both renderers 
which gave the final insight into the results. 

In BART bounding boxes and convex hulls are 
computed for each Steiner patch. While in STRAW 
the triangular polygons for a single superquadric 
are grouped together into a polyhedron. A single 
bounding sphere is then placed around the whole 
tessellation, not around any particular polygon 20. 

Therefore when calculating a ray intersection with 
a Steiner patch, the ray intersections with the 



convex hull and bounding box are first computed. 
In most cases, there will be no intersections. 
Therefore the line-Steiner patch intersection oper
ation will only take 80 multiplies and 80 adds. On 
the other hand STRAW will have to attempt to 
intersect almost every triangular polygon for 
every ray because the polygons have no bounding 
box information. This operation takes 55 multi
plies and 55 adds. For the usual case it clearly 
makes sense to compare the triangular polygon 
intersection operations with the Steiner patch 
bounding box intersection operations. When that is 
done, the original result is produced. 80 / 55 = 
1.45. In words, the bounding box and bounding 
hull intersection takes 45% (approximately 56%) 
more operations than then the triangular polygon 
intersection. 

These results clearly show that the Steiner 
patch's greatest advantage is its convex hull. By 
exploiting the convex hull property of the patch, 
advances in rendering can be made. Steiner patch 
tessellations not only take up less space, but by 
utilizing their geometric properties wisely less time 
can be spent rendering comp'lex geometry. 

This experiment does not prove outright that 
using' Steiner patches when tessellating and ren
dering curved surfaces will always prove to be 
more time-efficient than other methods. It does 
though, give an indication that Steiner patches 
offer an improved method for rendering in some 
instances. An obvious example would be where 
the Steiner patches are relatively small and poly
gons cannot be reasonably bounded. It is in this 
situation where the convex hull property of the 
Steiner patches can be exploited. 

Conclusion 

The generation of images which consist of 
Steiner patches offer visual proof of the validity of 
the tessellation and smooth-shading algorithm. The 
algorithm provides a positionally continuous mesh 
of Steiner patches which approximate a surface of 
arbitrary order. The Steiner patches can then 
produce a smooth looking surface by simply apply
ing normal vector interpolation across each patch. 

Tessellating and smooth-shading Steiner patch
es offers an improved and quicker way to render 
curved surfaces. In the case of superquadrics, a 
significant improvement in calculation times is evi
dent. Ray tracing Steiner patches appears to be 
more efficient than ray tracing either superqua
drics directly or their polygonal tessellations. 
One of ou r major goals has been attained by Stein
er patches. They are time-savers during render
ing. 

The visual results of Steiner patch tessellations 
are good. With 3 levels of approximation (72 patch
es), a very good copy of a superquadric can be 
made with Steiner patches. There are visual dif
ferences though. Steiner patch tessellations can 
sometimes appear lumpy and the shading is not as 
evenly distributed as it could be. Even with this 
in mind, Steiner patches can offer a remarkable 
approximation to superquadrics. 

Steiner patch tessellations also offer clear-cut 
advantages over polygonal tessellations. They not 
only reduce rendering times, but also use less 
memory du ring processing because fewer Steiner 

939 

patches are needed to approximate a curved sur
face as compared to polygons. Also the silhouette 
of a S.teiner patch tessellation is curved, not jag
ged like a polygonal tessellation, making Steiner 
patches visually superior to polygonal patches. 
The one disadvantage of Steiner patches is the 
complexity of the code needed to intersect a Stein
er patch with a line. This is a one time cost that 
can p'ay for itself if the code is extensively used. 

Acknowledgements 

I would like to acknowledge the assistance of 
Dr. Michael Wozny, Dr. Harry McLaughlin, Mr. 
Phillip Getto and Mr. Douglas Lyon. The raster 
images of this paper were produced by software 
written by Phillip Getto and Gray Lorig. . 

This work was supported by NSF Grant No. 
I SP79-20240 and other industry grants. Any opin
ions, findings, conclusions or recommendations do 
not necessarily reflect the views of the National 
Science Foundation or the industrial sponsors. 

References 

[1] D. F. Rogers, PROCEDURAL ELEMENTS FOR 
COMPUTER GRAPHICS, McGraw-Hili Book 
Co., New York, NY, 1985, pp. 264-5. 

[2] H. Gouraud, "Continuous Shading of Curved 
Surfaces," I EEE TRANSACTIONS ON COM
PUTERS, Vol. C-20, No.6, June 1971, pp. 
623-628. 

[3] B. Phong, "Illumination for Computer Gener
ated Pictures," COMMUNICATIONS OF THE 
ACM, Vol. 18, No.6, June 1975, pp. 
311-317 . 

[4] J. D. Foley and A. Van Dam, FUNDAMENTALS 
OF INTERACTIVE COMPUTER GRAPHICS, 
Addison-Wesley Publishing Co., Reading, 
MA, 1982, pp. 580-584. 

[5] W. Sederberg and D. C. Anderson, "Steiner 
Surface Patches," IEEE COMPUTER GRAPH
ICS AND APPLICATIONS, Vol. 5, No.5, May 
1985, pp. 23-36. . . 

[6] T. W. Sederberg and D. C. Anderson, "Ray 
Tracing of Steiner Patches," SIGGRAPH '84 
PROCEEDINGS, published as COMPUTER 
GRAPHICS, Vol. 18, No.3, August 1984, pp. 
159-164. 

[7] T. W. Sederberg, "Implicit and Parametric 
Curves and Surfaces for Computer Aided 
Geometric Design," Ph.D. Thesis, Purdue 
University, 1983. 

[8] D. E. Breen, "Creation and Smooth Shading of 
Steiner Patch Tessellations," RPI CICG Tech
nical Report TR-85016, August 1985. (Also 
Master's Thesis) 

[9] "Jakob Steiner", DICTIONARY OF SCI ENTI FIC 
BIOGRAPHY, Charles Scribner's Sons, New 
York, Vol. XII I, 1976, pp. 12-22. 



[10] W. Bohm, G. Farin, J. Kahmann, "A Survey 
of Curve and Surface Methods in CAGD," 
"Triangular Patch Surfaces," COMPUTER 
AIDED GEOMETRIC DESIGN, Vol. 1, No.1, 
1984, pp. 38-48. 

[11] A. H . Barr, "Superquadrics and 
Angle- Preserving Transformations, " IEEE 
COMPUTER GRAPHICS AND APPLICATI~ 
Vol. 1, No.1, January 1981. 

[12] I. D. Faux and M. J. Pratt, COMPUTA
TIONAL GEOMETRY FOR DESIGN AND MAN
UFACTURE, Ellis Horwood Ltd., Chichester, 
UK, 1979, pp. 210-223. 

[13] D. R. McLachlan, "CORY: An Animation 
Scripting System," RPI CICG Technical 
Report TR-85006, May 1985. (Also Master's 
Thesis) 

[14] D. E. Breen, A. A. Apodaca, P. H. Getto, 
"The CLOCKWORKS: An Implementation of an 
Object-Oriented Computer Animation System 
in a Conventional Programming Environment," 
RPI CICG Technical Report TR-86013, May 
1986. 

[15] D. W. Shen, "CLOCKWORKS Animation Soft
ware Reference Manual," RPI CICG Technical 
Report TR-86016, May 1986. 

[16] B. W. Kernighan and D. M. Ritchie, THE C 
PROGRAMMING LANGUAGE, Prentice-Hall, 
Englewood Cliffs, NJ, 1978. 

[17] M. Potmesil and I. Chakravarty, "Synthetic 
Image Generation with a Lens and Aperture 
Camera Model,", ACM TRANSACTIONS ON 
GRAPHICS, Vol. 1, No.2, April 1982. 

[18] D. Lyon, STRAW USER'S MANUAL, RPI Image 
Processing Laboratory Report, December 
1984. 

[19] Mr. Phillip Getto, Private Conversations, 
August 1985. 

[20] Mr. Douglas Lyon, Private Conversations, 
August 1985. 

940 



An Algorithm for Normal Vector Interpolation on Polygonal Surfaces 

Phillip H. Getto 

Rensselaer Polytechnic Institute 
Center for Interactive Computer Graphics 

Troy, New York 

Abstract 

A new algorithm for the interpolation of "smoothed" nor
mals across a polygonal surface is presented. The algo
rithm produces surface normals which are invariant under 
rotation of the image plane about its normal. Different ver
sions are derived for use with visible surface algorithms 
which use scan line coherence or do not use any coherence, 
such as ray tracing. An analysis of the time complexity for 
each version of the algorithm is shown. 

Introduction 

Computer synthesized imagery of curved surfaces is often 
generated in three steps. First, the surfaces are approxi
mated by polygonal surfaces. Second, the visible polygons 
or parts of polygons are determined. Finally, the intensity 
of the visible polygon or polygons is calculated for each 
point on the image plane. The intensity is a function of 
many parameters, including the surface normal, material 
characteristics and light sources. The specific parameters 
and calculations vary from shading model to shading 
model. 1,2,3,4 However, all but a few, use the surface nor
mal extensively. To produce realistic images of curved sur
faces the polygonal normals must be massaged in some 
way. Otherwise, discontinuities of the normal across the 
surface will be visible. 

Gouraud 5 originally described a method to interpolate 
intensities across the surface to "smooth" out the resulting 
image. The intensity of each vertex of a polygon is calcu
lated from either the normal to the original surface at the 
vertex or the average of the normals to the polygons shar
ing the vertex, using any shading model desired. The 
intensity of a point on an edge is a weighted average of the 
in~ensities of the vertices on the edge. The intensity of an 
intel.L __ point is a weighted average of the intensities at the 
points of intersection of the scan line and the edges of the 
polygon. 

Phong6 described an improved algorithm, in which normals 
are interpolated across the edges and scan lines rather than 
intensities. The intensity of each pixel is computed using 
any desired shading model and the interpolated normal. 

Both Gouraud's and Phong's interpolation techniques have 
serious drawbacks. First, only local information is used to 

CH2345-7j86jOOOOj0941$Ol.OO© 1986 IEEE 
941 

compute the intensity of a pixel. That is, the intensity is a 
function of the intensities / normals only at the vertices of 
the edges intersecting the current scan line. Because of the 
locality of the information used to compute the intensities / 
normals, a vertex on an edge intersecting the current scan 
line will be used, even if there exists a closer vertex. If 
only a subset of the vertices on a polygon are used to inter
polate an intensity / normal, it would be desirable to use 
the closest ones, as they would presumably better represent 
the point in question. With these algorithms, it is not pos
sible for all of the vertices on a polygon to contribute to an 
interpolated intensity / normal. This can lead to some very 
undesirable artifacts. 

The second problem with the Gouraud and Phong tech
niques is the lack of rotation invariance. By rotation 
invariance, we mean the intensity / normal of a point on a 
polygon should remain the same when the image plane is 
rotated about its normal, (vis-a-vis, the eye is rotated), or 
alternatively, when the entire model, including lights, is 
rotated about the axis normal to the image plane. This is 
not the case in the Gouraud and Phong schemes. 

To illustrate, consider an octagon, as in Figure 1 below. 

y 

'-e3-
x 

Figure 1: Normal interpolation over an octagon, 
using Phong's algorithm 

x 

Without loss of generality, assume the current scan line 
passes through the central vertical edges. If we are to 
rotate the image plane about 90 degrees its normal, (turn 
the page on its side), we would note the current scan line 
would intersect the two central horizontal edges. Since the 
edges do not share end points the normals can be assumed 
to be different. Thus, at the intersection point of the two 
scan lines, the resulting interpolated intensity / normal 



would be different. 
The remainder of this paper describes an algorithm, which 
overcomes the problems described above. Variations of the 
algorithm are presented for point sampling, ray trac
ing,3,4,7,8 and scan line coherent visible surface algo
rithms. An analysis the complexity of the algorithm is 
made, for each version. 

Normal Vector Interpolation Algorithm 

The Gouraud and Phong schemes suffer from artifacts and 
lack rotation invariance, because they always interpolate 
along the current scan line, and they do not use global 
information about the polygon. If algorithms which always 
interpolated along a scan line, were to use a combination of 
the all of the normals the interpolated values would be rota
tion invariant. In fact, for triangles, the Gouraud and 
Phong interpolated normals are rotation invariant, because 
normals from all three vertices have a part in all interpola
tions. 

Alternatively, if the line along which the interpolations are 
, computed were to remain constant, relative to the polygon, 

under a rotation of the image plane about its normal, then 
the interpolated normals would be rotation invariant; even 
if only subset of the the polygon's normals are used in the 
computation. We will now present an algorithm which 
uses a combination of these two methods to be immune 
from scan line artifacts and be rotationally invariant. 

The question of interest is how to chose the line along 
which we will interpolate. For the sake of clarity in what 
follows immediately, we will restrict ourselves to convex 
polygons. An easy solution is to select the line of constant 
u or constant v in the plane of the polygon going through 
the point of interest as in Figure 2 below. 

v 

u 
Figure 2: Interpolation along lines of constant u or v 

One could use an interpolation scheme similar to Phong's, 
except the interpolation would be along the line u =u. or 
v =v. . This solution provides the desired rotation invari
ance. However, it is subject to the same artifacts as 
Phong's scheme, because it does not use the normals at 
vertices on the edges not intersecting the line of interpola
tion. A better solution which can use all of the normals 
follows. 

942 

Chose the line of interpolation, for a given point P., to the 
be line through the centroid of the polygon, fi;;, and P., as 
in Figure 3 below. 

v 

I , 

U 
Figure 3: Inte~olation aloEg the ray 

from Pc through P. 

Instead of interpolating the normal at P. by averaging the 
normals at Pel and Pe2, let it be the weighted average of the 
normals at Pc and ~l. If we define the normal at fi;; to be 
the average of the normals at all of the vertices, then Fi. is 
a function of all of the normals of the polygon. In effect 
we are interpolating along a ray from the centroid through 
the point of interest. As the point moves around the 
polygon different edges are used in the interpolation, in 
effect triangulating the polygon. 

The following presents the algorithm in a more formal 
manner, first comparing its results to that of a baricentric 
parameterization of a triangle. The algorithm is then 
extended to convex polygons and to non-convex polygons, 
possibly including holes. We will then derive a method for 
incrementally calculating the interpolation parameters. A 
time complexity analysis will be given for each version. 

Random Point Sampling Version 

Consider, for the moment a triangle, (for which the 
Gouraud and Phong techniques have the desired charac
teristics). If we represent a point on the triangle using a 
baricentric coordinate system we have the following, 

2 
L Ai = 1, Ai ~ o. 

i=-O 

Then, the optimal interpolated normal is expressed as, 

N(f.) = 'Arfio + AlNl + ~N2· 

(1) 

(2) 

The A's provide a natural weighting of all of the normals, 
and are rotation invariant, exactly fitting the desired charac
teristics. However, it is not possible, in general, to deter
mine the A's for a planar polygon with more than three ver
tices. One obvious solution is to limit the polygons, for 
which we will interpolate normals, to triangles; expression 
(1) could then be solved for the A's. If we are willing to 
restrict ourselves to triangles, we could use the Gouraud or 
Phong techniques which have the desired characteristics for 



triangles. This solution may be acceptable in certain situa
tions, especially when triangular data is given; however, it 
seems too limiting in general. Furthermore, triangulating 
complex polygons is slow and generates many more 
polygons. 

A better solution in most cases is to find some sort of 
extension to the baricentric coordinates, which still 
preserves the desired characteristics. Before we show our 
proposed extension on a general polygon, we first prove it 
is equivalent to the baricentric coordinate system for a tri
angle. The algorithm is then developed to handle convex 
polygons and finally non-convex polygons possibly contain
ing holes. 

Consider the triangle below. 

v 

PoL------~ eO U 
Figure 4: Representative triangle 

We define the origin of the plane containing the triangle to 
be at Po, and ull(Pl - Po). Note, (uo, vo) = (0, 0), V 1=0, 
U I;e(), and v2;tO. Let P* be the point of interest on the tri
angle. 

We can represent P* by a ray from Po through P* ; 

r; (u) = Po + u(P* - Po) = uP*, U ~ 0. (3) 

We claim this representation of the triangle is equivalent to 
the baricentric representation; further we can extend the 
definition to arbitrary polygons possibly containing holes. 
We will now show the two representations are equivalent. 

In baricentric coordinates we have 
p(A.) = AoPo + AlPl + ~P2 = AlPl + A2P 2' because 
Po = O. Thus, 

but VI = 0, 

substituting we get, 

u*v2 - v*u2 v* 
Al = , and A2 = -. 

U lV2 v2 

Now, define the equation of edge k as, 

~(/3) = P k + /3(Pk+l - P k ), 0::;; /3 ::;; 1. (4) 

943 

Define ~ as the intersection of;=; (u) and ~(/3). Then, 

Pe = r; (ue) = ~(/3e)' 
substituting and rearranging, 

ueP* - /3e(Pk +l - Pk ) =~. 

By Cramer's Rule, 

UlV* 
/3e = ----=----

u*v2 - v*(u2 - Ul)' 

At u e' r; (ue) = ~ = u e P., or P. = ~ IUe . Substituting 
into the equation for edge 1 and rearranging, 

- (1 - /3e) - /3e-
P* = PI + -P2, ue ue 

which has the same form as the expression in baricentric 
coordinates. We must now show the coefficients of PI and 
P2 are Al and ~ respectively. 

u*v2- v*u2 

1 - /3e u* v 2 - v* (u2 - U 1) 
---= 

Ue UIV 2 

u*v2 - V*(U2 - U1) 

U*V2 - V*U2 
----..;;.. =Al' 

UIV2 

Extension to Convex Polygons To extend the interpolation 
algorithm from triangles to arbitrary convex polygons is 
straight forward; but it provides an interesting insight. 
Given a convex polygon chose some point, denoted fi;;, 
then calculate the surface normal there. The choice of fi;; 
is arbitrary, but a good choice is the centroid of the 
polygon. it;; , the normal at fi;;, can be taken to be the 
average of the normal at each of the vertices, the normal to 
the original surface at fi;;, or something completely 
different. (The first choice will lead the following algo
rithm to make the normal at any point on the interior of the 
polygon a function of the normal at each of the vertices.) 
We then define the ray from fi;; through the point P. as, 

;=; (u) = fi;; + u(P* - fi;;), (5) 

in an analogous way to the definition of 1'; (u) for a trian
gle. We can now compute the intersection of the ;=; (u) and 
~(/3). 

implies, 

fi;; + ue(P* - fi;;) = Pk + /3e(Pk+1 - ~). 

Rearranging and applying Cramer's Rule, 



U'*V'k - V'*U'k 
~e = , t1 ' t1 ' U * Vk - V * Uk 

where P'* = P* - Pc, fi\ = Pk -~, and 
~ = Pk+l - Pk' It is interesting to note, the definition of 
equation _ (5) and the choice of ~ have the effect of tri
angulating the polygon, as shown' in Figure 5 below. 

v 

Figure 5: Triangulated polygon 

The nonnal at the point P* is given by an expression simi
lar to (5) 

(6) 

However, unlike the expression for P*, N* is unknown, in 
fact, it is the desired quantity. To solve for iii: we will 
write the expression for Ne , the nonnal at Pe , in tenns of 
N* (a). 

~ = N* (ae) = ~ + ae(N* - Fi;;). (7) 

But Ne along edge k at ~ is given, as in previous algo
rithms by, 

Ne = Nk(~e) = Nk + ~e(Nk+l - Nk). (8) 

Equating equations (7) and (8) and solving for N* gives, 

No = ~ + [~, JOY"'. + l3,m.), 

where N'k = Nk -~, and Mik = ~+1 -~. The inter
polated nonnals' from our algorithm are identical to those 
interpolated using the baricentric coordinate parameters, for 
a given triangle. 

Extension to Non-convex Polygons' The extension of the 
algorithm to handle non-convex polygons, possibly contain
ing holes, muddles the issue somewhat, and is· more of an 
engineering solution than a clean mathematical one. With 
that caveat, let us . consider Figure 6. below, a non-convex 
polygon containing a single hole. 

The basic idea is to remember the edges whose intersection 
with "* (a) are closest to P* on the positive and negative 
sides. That· is, the edges where' a e is the least positive and 

944 

v 

u 
Figure 6: Non-convex polygon with a hole, P"c inside 

the greatest negative are denoted e + and e _. In this case, 
e + and e_ are edges eo and e9 respectively, as they have 
the closest intersections to P*. The interpolation of N* is a 
weighted average of the nonnals at the intersection points. 
The nonnals at the intersection points are interpolated from 
the nonnals at the edges' vertices. This procedure is analo
gous to Phong's, except we interpolate along "* (a), rather 
than the current scan line. 

It should be noted that if ~ is inside the polygon, it must 
be considered when determining the closest points to P*. 
If Pc is, as shown in Figure 7, outside of the polygon, then 
the value of Nc is not important because it will not be 
used. When ~ is inside, as in Figure 6, Nc will be used 
and can be computed as in the convex case. For example, 
in Figure 6, the nonnal at P** would be a combination of 
Hc and ~l' as in the convex case. 

v 

Figure 7: Non-convex polygon with a hole, P"c outside 

Complexity The time and space complexity of our interpo
lation scheme is not significantly greater than that required 
to determine if' P* is inside the polygon. One well known 
method to determine if a point is inside a polygon is to 
intersect a ray, originating at the point, in a given direction, 
with each edge of the polygon. If the number of intersec
tions is odd the point is inside, otherwise it is outside. If 
we rewrite equation (5) as "* (a) = P* + a(~ - Pc), then 
we count intersections, for inside. / outside detennination, 
when a ~ O. However, the edges whose intersections with "* (a) have the least positive and greatest negative values of 



a, must be saved to use in the interpolation. If the greatest 
negative value of a is less than -1, then ~ is closer to ~ 
than any other edge's inside / outside test ray intersection 
point. In the original form of equation (5), we count inter
sections where a ~ 1 for inside / outside determination, and 
use if;; if the greatest value of a that is less than 1 is also 
less than O. 

The intersection of the 1'; (a) and et can be made robust by 
writing 1'; (a) as an implicit function of u and v. An inter
section occurs if the vertices of an edge are on opposite 
sides of the ray, or if one is on or near the ray, and the 
other is on a predetermined side, say positive. Edges with 
both vertices on the ray, or one on the ray and the other on 
the wrong side (negative), are not counted.9 

The calculations can be sped up by precomputing and stor
ing various values, such as fi\, N\, Mb and ~, for 
k = O, ... ,n. ,Note, it is not necessary to retain the original 
values of P k or N k for the interpolation scheme. 

Scan Line Coherent Version 

The previous development assumed the polygon was ran
domly sampled and .as such did not make use of any form 
of coherence from one point to the next. We will now 
present a development which uses the coherence of a 
polygon, along a scan line, so that the ray· inside / outside 
test is not required to determine the edge k. The values of 
a e and Pe will be computed incrementally, and the current 
edge k will be tracked around the polygon. The presenta
tion here is for convex polygons; the extension for non
convex polygons is analogous to that for the point sampling 
version. 

In the previous version the vertices of the polygons were 
represented in the (u ,v) coordinates of the plane containing 
the polygon. Here we assume the polygons have been pro
jected onto the image plane, and the vertices are 
represented in the (u ,v) space of the image plane. 

Define the inside / outside test ray in terms of the current 
pixel as, 

(9) 

where i ,j are the indices of the current pixel on the screen, 
and l(i,j) = (u(i),vU)) is the current point on the image 
plane. 

When IU ,j) is on et, 
~ = l(i ,j) = ~ + aei/Pe - ~), 

wh~ch implies aei,j = 1. 
at I (i ,j) for Pi ,j gives, 

rei,j) - ~ 
Pi,j = ,~J\ 

In that case, solving equation (4) 

u (i) - Uk 
, or 

for ~Uk't:O, and for ~vk~ respectively. As we step from 
pixel i to pixel i + 1 along scan line j we would like to 
incrementally calculate a eij and Peij' Solving for them at 
(i + 1 ,j) we have, 

945 

a ei+1j = u'(i+1)~vk _ V'U)~uk ' and (10) 

u'(i+1)v'k - V'U)U'k 

Pei<lj = u'(i+1)~vk -v'U)~Uk' (11) 

We can compute the difference ~ae;oj = ae;+lj - aeiJ , in 
general as the following. 

U 'k~Vk - V 'k~Uk 

U'(i)~vk - V'U)~uk . 

After some rearranging, 

[ ~Vk(U!(i)-U'(i+1)) ] 
~ae .. = 'C' l)A 'U)A a ejj · 

IJ U l+ uVk - v uUk 

(12) 

However, if we look at the difference of the numerators 
and denominators independently, we can do better. Let us 
denote the numerator of f as n if), and .likewise the 
denominator as d if ). By inspection of equation (12), 
~n(aei) = 0, and M(aei) = (u'(i+1) - u(i))~vk' We 
can . now write ae;+lJ as a function of the numerator and 
denominator of a eij , as follows. 

n(ae;) 

Recall, ae .. = 1 when TCi ,j) is on edge k, which occurs at 
IJ 

the beginning of the each span, and ~n (ae . . ) = O. There-
loJ 

fore, n (ae;) = 1, which implies, 

1 

Recalling equation (6), we note that ai,j is not required, 
only lIaeij is needed. Thus, let us define aei+1j as 1/aei,j' 

or 

aei+1J = aeij + ~u (i)~vk' 

Similarly, we will compute ~'s for the numerator and 
denominator of Pei+lj separately and combine the results at 
the end. 

~n(Pei) = (u'(i+1) - u'(i))V'k' 

Note d(Pe'.) = d(ae . .) = ae ... Finally, 
IJ IJ IJ 

n(Pe .. ) + ~U(i)V'k A __ ~IJ~ ______ _ 

Pei+lJ = a 
ei+lj 

The normal at I (i + 1 ,j) can then be calculated directly from 
equation (6). 

If Pe .. is not between 0 and 1, then Ii ,·(a) does not inter-
IJ • 

sect edge k. If Pe .. > 1 then proceed to edge k+1, other-
IJ 

wise to edge k-1, and recompute f!eij and Peij' It is possi-
ble to skip an edge entirely if it is very short compared to 
the step size. If aeij = 0 the ray is parallel to the edge, and 



computation must proceed to the next edge. 

Complexity The number of computations above Phong's 
algorithm is a small constant per pixel. Instead of incre
mentally . computing the interpolated normal from the 
interpolated edge normals, we incrementally compute aei+

1j 

and Bei+lj' Computing a. requires 1 add and 1 multiply, 
(u'(i+l) - u'(i) is assumed to be calculated elsewhere). 
Unfortunately, B requires, 1 add, 1 multiply and 1 divide. 
From a.e_ _ and Be- _, M+l}- is computed using 6 adds, and 

I+IJ I+IJ _, _ 

6 multiplies, given N'k and !iNk' Phong's algorithm 
requires 3 adds per pixel; a difference of 5 adds, 8 multi
plies, and 1 division per pixel. For an image with 256K 
pixels, this would require, at most, about 4M extra opera
tions. If not all of the pixels were covered the number 
would be further reduced. There is an additional cost when 
moving from one edge to the next, for which we have not 
accounted. However, even if it were to require a similar 
number of operations, current microprocessors could pro
cess the extra computations in about 10 to 15 seconds. 
Empirical studies are underway to quantify the differences. 

Conclusions 

We have examined two existing algorithms for the interpo
lation of intensities or normals across a polygonal surface. 
Both. algorithms will "smooth" out most visual discon
tinuities in the rendering of the surface. However, the 
algorithms have two primary shortcomings; the inability to 
use the normals at more than four of a polygon's vertices, 
and the lack of invariance under a rotation about the image 
plane normal. 

We have presented an algorithm which overcomes both of 
these objections. Rotation invariance is accomplished by 
always interpolating along a fixed ray, from a given point, 
Pe, through the point of interest. By selecting Ne as the 
average of the normals at all of the vertices on the polygon, 
the interpolated normal becomes a function of the normals 
at all of the vertices on the polygon. The algorithm is well 
suited for visible surface algorithms which use random 
point sampling, that is, do not use coherence, such as ray 
tracing. It is, in the authors· opinion, easier to implement 
and faster to execute, than a Phong model when using such 
a visible surface algorithm. 

A method of incrementally calculating the interpolation 
parameters, for use with visible surface algorithms which 
use scan line coherence, has been derived. Analysis indi
cates that it does not use significantly greater resources than 
previous algorithms. 

946 

References 

1. J. F. Blinn, "Models of Light Reflection for Computer 
Synthesized Pictures," Computer Graphics 11, 2 pp. 
192-198 (1977). 

2. R. L. Cook and K. E. Torrance, "A Reflectance 
Model for Computer Graphics," ACM Transactions on 
Graphics 1, 1 pp. 7-24 (January 1982). 

3. R. A. Hall and D. P. Greenberg, "A Testbed for Real
istic Image Synthesis," IEEE Computer Graphics and 
Applications 3, 8 pp. 10-20 (November 1983). 

4. T. Whitted, "An Improved Illumination Model for 
Shaded Display," Graphics and Image Processing 23, 
6 pp. 343-349 (June 1980). 

5. H. Gouraud, "Contiunuous Shading of Curved Sur
faces," IEEE Transactions on Computers c-20, 6 pp. 
623-629 (June 1971). 

6. B. T. Phong, "Illumination for Computer Generated 
Pictures," Graphics and Image Processing 18, 6 pp. 
311-317 (June 1975). 

7. H. Weghorst, G. Hooper, and D. P. Greenberg, "Im
proved Computational Methods for Ray Tracing," 
ACM Transactions on Graphics 3, 1 pp. 52-69 (Janu
ary 1984). 

8. A. Fujimoto, T. Tanaka, and K. Iwata, "ARTS: Ac
celerated Ray-Tracing System," IEEE Computer 
Graphics and Applications 6, 4 pp. 16-26 (April 
1986). 

9. B. A. Navsky, Polygon Clipping and Star Decomposi
tion for Rendering Solid Models, Rensselaer Polytech
nic Institute, Troy (May 1985). MS thesis and techni
cal report TR-85007 



INTERNATIONAL DEVELOPMENT ARENA 

Computer Developments in Japan 

TRACK CHAIR: Prof. Ryoichi Mori 
University of Tsukuba 

TRACK SECRETARIAT: Mr. Kenji N aemura 
NTT Electrical Communications Laboratories 



GUARDED HORN CLAUSES AND 
EXPERIENCES WITH PARALLEL LOGIC PROGRAMMING 

Jiro Tanaka, Kazunori U eda, Toshihiko Miyazaki, Akikazu Takeuchi, 
Yuji Matsumoto, and Koichi Furukawa 

ICOT Research Center 
Institute for New Generation Computer Technology 

1-4-28, Mita, Minato-ku, Tokyo 108 Japan 

This paper tries to overview the various activities of 
ICOT related to Guarded Horn Clauses (GHC). We de
scribe a new parallel logic language GHC, first proposed 
by Uedal ,2. The main features of this language are its 
simplicity and ease of implementation. The implemen
tation of GHC and programming efforts in the language 
are also described. We also summarize the current sta
tus of Kernel Language Version 1 (KL1). KLl is the 
language system for the PIM hardware3 • The overall 
structure of KL1 and the work on its distributed imple
mentation are described. 

1. INTRODUCTION 

The final goal of the Fifth Generation Computer 
Project is the development of a logic-based high-speed 
parallel computing system. Our objective is the design 
and development of a "logic programming language" 
which allows parallel execution. Kowalski4 has pointed 
out that a set of Horn clauses also allows "parallel" exe
cution as well as sequential execution. A lot of work has 
been devoted to the Or-parallel execution of Prolog pro
grams.We consider that this approach may be useful 
for uncontrolled all-solution-search problems. However, 
it may be inadequate for solving parallel programs in 
generaL What we want is a more expressive, general
,purpose parallel programming language which includes 
important concepts such as processes,communication 
and synchronization. 

2. PARALLEL LOGIC PROGRAMMING 
LANGUAGE 

2.1 Design goals 

The design requirements for our parallel logic pro
gramming language can be summarized as follows I : 

• Parallelism. It must express parallelism "by nature." 
Sequential languages with parallel constructs added are 
inadequate. It should have as little sequentiality as 
possible in order to preserve parallelism inherent in a 
Horn-clause program. 

CH2345-7/86/0000/0948$01.00 © 1986 IEEE 
948 

• Expressiveness. It must be an expressive, general
purpose parallel programming language. In particular, 
it must be able to express important concepts in parallel 
programming such as processes, communication, and 
synchronization. 

• Simplicity. We do not have much experience with 
parallel programming. Therefore, it must be a "simple" 
language and we must establish a foundation of parallel 
programming first. 

• Efficiency. There are various typical parallel problems 
to be described in the language. It is important that 
we can execute such programs as efficiently as compara
ble programs written in existing parallel programming 
languages. 

2.2 GHC 

The languages we are interested in are the par
allel logic languages such as Parloi' and Concurrent 
Prolog6 • These languages seem to come closest to sat
isfying the above requirements. Although there are dif
ferences, the basic computation mechanisms of these 
languages are quite similar: Horn clauses with guards 
are used for defining predicates, goals are executed in 
parallel, and they have some synchronization mecha
nisms between goals. 

In this section,. we describe the new parallel logic 
language GHC, which was proposed by Uedal ,2. It in
herits many features from Parlog and Concurrent Pro
log. What is most characteristic about this language is 
that the guard is the only syntactic construct added to 
Horn clauses. In GHC, synchronization is realized by 
the suspension mechanism of guards. 

A GHC program is a set of guarded Horn clauses 
of the following form: 

The operator I is called a commitment operator. The 
part of a clause before I is called a guard, and the part 
after I is called a body. Note that a clause head is 
included in a guard. 



A goal clause has the following fonn: 

:-B1, ... ,Bn • (n > 0) 

This can be regarded as a guarded Horn clause with an 
empty guard. 

The semantics of GHC is quite simple. Informally, 
to execute a program is to refute a given goal clause by 
means of input resolution using the clauses constitut
ing the program. This can be done in a fully parallel 
manner under the following rules. 

(a) Unification invoked in the guard of a clause can
not instantiate the caller of that clause. H this 
happens, unification suspends until that caller is 
instantiated by some other goal. This provides the 
basic synchronization mechanism of GHC. 

(b) When the guard of a clause succeeds, it is first 
checked that no other clause has been selected for 
the same goal. If confirmed, that clause is "com
mitted" exclusively for subsequent execution of the 
goal. 

(c) Unification invoked in the body of a clause can
not instantiate the guard of that clause until that 
clause is committed. 

It must be stressed that under the rules stated 
above, anything can be done in parallel: Conjunctive 
goals can be executed in parallel; candidate clauses for 
a goal can be tested in parallel; head unification can 
be done in parallel; head unification and the execution 
of guard goals can be done in parallel. However, it is 
even more important to stress the fact that we can also 
execute a set of tasks in an arbitrary order as long as 
it does· not change the meaning of the program. 

2.3 Program examples 

In . this section we give program examples showing 
how GHC programs are described. 

Binary Merge 

merge([AIXs]. Ys, Zs):- true 
Zs=[AIZsl], merge(Xs, Ys. Zsi). 

merge (Xs. [AIYs]. Zs) :- true I 
Zs=[AIZsl]. merge(Xs. Ys, Zsi). 

merge([]. Ys, Zs)·- true I 
Zs=Ys. 

merge(Xs. [J. Zs)·- true 
Zs=Xs. 

The goal merge (Xs, Ys. Zs) merges two streams 
Xs and Ys (implemented as lists) into one stream Zs. 
This is an example of a nondetenninistic program. Note 
that no binding can be exported from the guard; the 
binding to Zs must be done in the body. 

949 

Generating Primes 

primes(Max, Ps) :- true I 
gen(2. Max. Ns), sift(Ns. Ps). 

gen(N, Max. Ns) :- N =< Max I 
Ns=[NINsi]. Nl := N+i. 
gen(Nl. Max. Nsi). 

gen(N. Max, Ns) :- N > Max I Ns=[]. 
sift([PIXs]. Zs) :- true I 

Zs=[PIZsi]. filter(P. Xs. Ys). 
sift(Ys. Zsi). 

sift([], Zs):- true I Zs=[]. 

filter(P, [XIXs]. Ys) :- X mod P=:=O 
filter(P. Xs, Ys). 

filter(P. [XIXs]. Ys) :- X mod P=\=O I 
Ys=[XIYsi], filter(P. Xs. Ysi). 

filter(P. []. Ys):- true I Ys=[]. 

The goal primes (Max, Ps) returns through Ps a 
stream of primes up to Max. The stream of primes is 
generated from the stream of integers by filtering out 
the multiples of primes. For each prime P, a filter goal 
filter(P, Xs, Ys) is generated which filters out the 
multiples of P from the stream Xs, yielding Ys. 

3. SEQUENTIAL Il\fPLEMENTATION 

Even though our final target of GHC is parallel 
implementation, sequential implementation of GHC is 
nevertheless important. Our experience with Concur
rent Prolog shows that interpretive execution of this 
type of language can be very slow 7 • For this reason, we 
have concentrated our efforts on implementing GHC 
"compilers." 

GHC and Prolog have lots of similarities, so trans
lation of the former to the latter is much simpler than 
direct compilation to a machine language. We decided 
to compile GHC programs to DEC-lO Prolog programs 
since we already have a DEC-lO Prolog compiler which 
translates a Prolog program to the machine language. 
The GHC source programs are ultimately compiled into 
machine code. 

The basic technique for compiling a parallel logic 
programming language to Prolog is given in Ueda's 
papers. We have already developed two GHC compilers 
using that technique9

, one developed by Miyazaki and 
the other developed by Ueda. These compilers have the 
following features in common. 

(1) They both use techniques similar to Concurrent 
Prolog CompilerB which compiles a Concurrent 
Prolog program to DEC-IO Prolog. 

(2) Both systems evaluate the guards of candidate 
clauses sequentially. Or-parallel execution of can
didate clauses is not performed. The body of a 
clause is evaluated only after that clause is selected. 



(3) Since they are both implemented on top of Pro
log, there exists an interface to Prolog. The goal 
prolog (X) calls X as a Prolog goal. 

The differences between the two can be summa
rized as follows: 

(a) Ueda's Compilers. This compiler works on the 
subset of GHC containing no user-defined goals 
in guards of clauses. We call this subset "Flat 
GHC" (FGHC) since there are no nesting guards. 
In this case, run time check of variables is not 
needed. This compiler does not distinguish "fail
ure" from "suspension," i.e., "failures" are treated 
as "suspensions." These simplifications make the 
execution speed of this compiler very fast (approx
imately llKLIPS for "append" program on DEC-
2065). 

(b) Miyazaki's Compiler. This compiler works on the 
full set of GHC, i.e., we can call user-defined goals 
from the guard of a clause. In this case, we need 
run time check of variables. We have realized this 
by using the "address-comparison method." Exe
cution speed is slower than Ueda's compiler. This 
compiler distinguishes between "failure" and "sus
pension." 

Although compilation to Prolog provides an off
hand way to execute GHC programs, we also need more 
direct implementation for more realistic applications. 
Compilation of FGHC programs into the VAX-ll/780 
machine code has also been attempted. We have started 
to build a compiler of FGHC into the VAX machine 
code. Mock-up object code has been tested and timed. 
The full compiler system is being written in FGHC, C 
and VAX-ll/780 assembly languages. 

4. GHC PROGRAMMING 

At this stage, it is very important for us to gain ex
perience in parallel programming. Various application 
efforts based on GHC are currently under way. These 
works can be summarized as follows: 

(1) All-solution-search transformation 10 

We are developing a program transformation tech
nique to transform Horn cla.use programs into deter
ministic GHC programs. It can be viewed as a way to 
provide GHC with the all-solution-search ability. This 
technique is applicable to a non-trivial class of programs 
and the transformed program can be executed quite ef
ficiently. The technique is also important in that it 
exploits And-parallelism for parallel search as well as 
Codish's workll. 

(2) Process fusion 12 

950 

The language features of GHC encourages the 
stream-oriented programming where computation is ex
pressed as processes communicating with one another. 
In general, each process is designed to compute a rela
tively simple and small task. However, the resulting 
programs, if naively implemented, may generate too 
many small processes which may cause inefficiency be
cause of excessive interprocess communication. Process 
fusion aims to reduce the number of processes by fus
ing communicating processes. This is analogous to loop 
fusion in procedural languages. Development of the 
program transformation method is currently proceed
ing based on the fold/unfold method of Burstall and 
Darlington 13. 

(3) Parallel parser14 

The aim of this research is to develop a parsing sys
tem which is naturally implemented in a parallel logic 
programming language. In our framework, a grammar 
rule written in DCG 15 is compiled into a program of a 
parallel logic programming language such as Guarded 
Horn Clauses or Parlog. Words in a given sentence 
are defined as processes, consecutive pairs of which are 
connected by streams. Completed subtrees are also rep
resented as processes and partially constructed parse 
trees are expressed as data structures produced and 
put into streams by such processes. Parsing proceeds 
as dynamic construction of such processes and data. 
Although the construction of the parse trees proceeds 
from bottom to top, we also utilize top-down predic
tions implemented as filtering processes. these pro
cesses filter out subtrees that are inconsistent with the 
predicates. The system is most appropriately compared 
with Martin Kay's Chart Parsing, in that inactive arcs 
correspond to processes and active arcs are represented 
as data passed through streams. The important feature 
of our method is that the grammar rules and the dic
tionary are completely compiled into a program in the 
target parallel logic programming language and the sys
tem does not need an additional program to interpret 
the grammar and the dictionary. The derived program 
has neither side-effects nor duplicate computation. 

(4) Algorithmic debugging16 

Another research effort is devoted to the develop
ment of a debugger for GHC. It has been said that de
bugging parallel programs is a very hard task compared 
with debugging sequential programs. The reasons is 
that 1) conceptually several computations are executed 
in parallel, 2) these computations may interact with 
each other, and 3) there are new kinds of bugs such as 
deadlocks. Usually a program is debugged byexamin
ing its execution trace. The execution trace of a parallel 
program is, however, messy since traces of several com
putations are interleaved. Even if the execution trace is 
separated into several traces using, say windows, that is 

• 



not sufficient for debugging. In general, we must distin
guish between debugging and understanding program 
behavior. In the case of debugging, what is required is 
to find the location of the bug. Monitoring of program 
behavior will help finding a bug, but it forces a pro
grammer to understand the program behavior. It would 
be better if a programmer could debug a program only 
with more abstract knowledge such as input and output 
specifications of component modules. We have defined 
abstract semantics of GHC programs and are develop
ing an algorithmic debugger for GHC. The debugger is 
based on Shapiro's idea of algorithmic debuggingl1 and 
reduces the number of queries based on the "divide and 
query" strategy. Lloyd and. Takeuchi formally exam
ined the properties of the debuggerl8 . For simplicity 
the current version of our algorithmic debugger only 
deals with the body of GHC clauses 

(5) Propositional temporal logic prover19 

Temporal Logic is an extension of the first order 
logic including the notion of time. It deals with logi-: 
cal descriptions and reasoning on time. A propositional 
temporal logic prover based on the omega-graph refu
tation procedure has been developed in GHC. 

Omega-graph refutation is a procedure to decide 
the validity of a temporal formula. It negates a given 
formula, computes the initial node formula of the ne
gated formula, constructs the corresponding omega
graph, and checks the existence of a loop called an 
"omega-loop." If the loop is found, then the given for
mula is proved to be invalid. 

In our implementation, an omega-graph is con
structed incrementally from the initial node formula by 
successive node expansions. It is represented by the net
work of communicating processes which spawn brother 
processes as the graph is expanded .. New methods have 
also been implemented for the detection of an omega
.loop where the, network of processes finds loops by send
ing and receiving messages. 

We have implemented an appropriate mechanism 
which checks whether access to the unconstructedpart 
of the network is attempted and forces the process to 
suspend. Therefore, an omega-loop detection can be 
performed in parallel with omega-graph construction. 
It has helped to reduce execution time drastically. 

5. KERNEL LANGUAGE VERSION 1 

In this section we summarize the current status of 
Kernel Language Version 1 (KLl). KLI is originally 
the language for the PIM hardware. The prototype de
velopment of PIM-D (Parallel Inference Machine based 
on Dataflow mechanism) and PIM-R (Parallel Infer
ence Machine based on Reduction mechanism) has been 

951 

done3
• KLI is expected to operate as the interface be

tween PIM ha.rdware and software to be developed for 
the parallel high-speed logic-based system. 

The first conceptual specification of KLI was made 
in 198420

• We have stated that KLI should be based 
on Concurrent Prolog6 adding set-abstraction, meta
inference and module facilities. 

Based on this conceptual specification, lots of en
ergy has been put into the detailed specifications of KLI 
and implementation of Concurrent Prolog 7. This work 
clarified the problems existing in Concurrent Prolog re
garding semantics and parallel execution . It forced us 
to revise the conceptual specification of KLI 21. 

After extensive investigations, we have decided to 
adopt Flat GHC (FGHC) as the core of KLI. Dis
cussion on. the detailed specifications of KLI have also 
made it clear that we need to separate the language into 
several layers. Thus, KLl now consists of three layers. 
These are shown in Figure 1. 

KL1 Language System I 
--KL1~-U--(U-~~-~ )------------------------- -- -----------1 

*module structure 
*al I-solution-search 

I 

---------------------------------------------------------.! 
r-----------., r----------------- ____ .. 

KL1-c (core) 
*flat GHC 
*meta-cal I 

KL1-p (pragma): 
*a I I ocat ion 
*schedu ling 

'------_____ --J .. ____________________ _ 

KL1-b (base) 

*non-Iogical level 
*paral lei Warren code 
*include bui It-in predicates 

for message exchange 

Figure 1 KLI Language system 

KLl-c is the core language of KLI. We assume 
KLl-c to be FGHC with meta-call predicates. 

KLl-p is the pragma language which specifies how 
the program should be executed in a distributed/paral-



leI environment. KLl-pis not a language as it stands. 
It is attached to KL1-c to specify process allocation and 
scheduling information. 

KLl-u is the user language to be built on KLl
c. and KLl-p .. It has the module structure and all
solution-search predicates. KLl~u is in the design stage 
·right now. 

KLl-b is the machine language which hardware/ 
firmware will directly support. This level is not a logical 
level and it looks like the parallel version. of Warren's 
abstract machine instruction set22 • 

6. DISTRmUTED IMPLEMENTATION 

. Much research on PIMhardware has been carried 
out from the "architectural" view point. However, we 

. have noticed that there still exist lots of problems to 
be solved ,at the "software" or "firmware" level, such as 
(1) how to boot the system, (2) how to deliver object 
programs to each processing element (PE), (3) how to 
handle input/output and interrupts, and (4) how to 
balance the load between PEs. 

To address these software problems arising from 
distributed environment, we have decided to start a 
"Multi-PSI" project.' Multi-PSI hardware is simply 
built up by connecting 6 - 16 Personal .Sequential In
ference (PSI) machines23 by high speed grid-network. 

6.1 The multi-PE model 

We take the multi-PE system where dozens of PEs 
are grid-network connected as our.starting point. There 
are many design choices. Lots of intensive discussions 
on these issues have been held inside ICOT. The deci
sions we have made so' far are as follows: 

,(I) PEs must be connected in a way which allows easy 
expansion of·their number. Our system needs to work 
even if. we have hundreds of PEs. 

(2) Each Processing Element (PE) has its local memory. 
It has no shared memory nor -global address .space. In 
our system, PEs communicate by message exchange. 

(3) We have employed And-parallelism, since we believe 
that it plays a more basic role than Or-parallelism in the 
distributed environment. Each PE executes a program 
independently or cooperatively. 

The conceptual figure of themulti-PE model we 
assume is shown in Figure 2. 

This multi-PE model has the following features. 

952 

~'Network Router 

Schedul ing Queue 
~ 'Network 

---J. )'\,\:-____ ....(, 
::J) 

Network 

PE: processing element H: memory 

Figure 2 Multi-PE Model 

(1) The program,i.e., the collection of clauses! is loaded 
to every' PE at the beginning. A more realistic assump
tion such as "lazy" fetching of program code may be 
needed .at a later stage. 

(2) First, a goal is put jnto onePE. This automati
cally starts the computation. Each PE executes the 
goals sent from other PEs besides processing local goals. 
When there are no goals left to be processed on any PE, 
computation terminates. 

(3) Each"PE has one scheduling queue. Each PE re
~. peats dequeuing a goal from-the scheduling queue and 

reducing it to the resulting goals. These goals are en
queued to the scheduling queue or sent to an other PE. 

(4) Since each PE has ,an independent address space, 
unification of two variables existing in different PEs 
makes it necessary to span inter-PE reference chains. 
Each PE has a variable management table for that 
purpose. 

(5) Unification in one PE may generate various mes
sages to. be sent to other PEs. Examples of such mes
sages are "get.value," "unify," and "unify.channels." 

6.2 Multi~PE simulator 

We have implemented a software simulator of the 
multi-PE system 24. The- simulator is based on the 
work by Miyazaki and Murakami 25. Our system sim
ulates the execution of pre-processed FGHC programs 
in a multi-PE environment. It 'is written in Prolog and 



consists of processes and a network manager as shown 
in Figure 3. 

pe#1 pe#2 pe#·n 

Figure 3 Multi·PE·simulator 

Each PE checks whether there is a message from 
its input channel. If so, messages are added. to the 
scheduling queue. Then it executes theJirst goals in the 
queue. If there is a message to be sent,the message is 
put to the output channel. The network manager takes 
care of message exchange between PEs. Messages in
side output channels include the sender's address. The 
network manager delivers the message to the specified 
input channel. 

Since our system.does not have the global address 
space, sending a goal which includes variables to other 
PEs requires a somewhat complicated. mechanism. In 
our implementation,' each PE has a variable manage
ment table to keep track of. inter-PE references. 

6.3 Implementation on PSP6 

Implementation of FGHC on 'one RSI machine 
was a more realistk starting point to the ."Multi-PSI" 
project. The PSI is a personal workstation and its de
sign concept is very similar to a LISP machine. ,Con
ventional techniques have been adopted and ESP27 , the 
object-oriented extension of Prolog,' is ·firmware. sup
ported. 

The compiler which translates an FGHC program 
to Warren-like abstract machine instruction sequences22 

and the emulator of that. abstract machine instruc
tion set have already been implemented. Our Warren
like instruction set also includes the primitives for dis
tributed execution. The emulator was written in ESP 
and was realized using. "heap" on PSI machine. 

The current. version only· executes· a program .on 
one PSI. machine. The execution speed is approximately 
0.9 KLIPS on a naive reverse 'program. We are now 

953 

devoting a lots of energy to the extension of this work 
to the Multi-PSI system. ICOT has already finished 
the design of the connecting hardware. The actual 
hardware of Multi-PSI Version 1 will be completed by 
the end of April 1986. 

7. SU:MMARY 

We described the various activities at ICOT re
lated to Guarded Horn Clauses (GHC). The language' 
features of GHC, its implementation efforts and itsap
plications were described. We also summarized the cur.,. 
rent status of KL1 and efforts aimed at its distributed ' 
implementation. These are on-going activities and must 
be extended in various directions. 

8. ACKNOW·LEDGMENTS 

These research activities have. been' carried ·ou t as 
a part of the Fifth Generation Computer Project. We 
would like' to thank our colleagues, KaZllO Taki and 
Takashi Chikayama, for their useful comments and sug
gestions. We also would like to thank Kazuko Takahashi 
and. Tadashi Kanamori. at the Central Research Labo
ratory, Mitsubishi Electric Corp., for their GHC pro
gramming efforts. Thanks go also' to' Kazuhiro Fuchi, 
the Director of ICOT for giving us. the opportunity to 
pursue this research,. 

REFERENCES 

[1] Ueda, K.: Guarded Horn Clauses. ICOT Technieal 
Report TR-103; ICOT, 1985. 

[2] Ueda, K.: Guarded Horn Clauses. Doctoral The:
sis, Faculty of Engineering, University of Tokyo, 
March 1986. 

[3] Murakami, K. et al.: Research on Parallel Machine 
Architecture for F.G;C.S .. Computer, vol.18, No.6, 
June 1985. 

[4]- Kowalski, R.: Predicate Logic as Programming 
Language. In Proc. IFIP '74, North-Holland, Am
sterdam,. London, 1974, pp.569-574. 

[5] Clark, K.,Gregory, S.: PARLOG: Parallel Pro
gramming in Logic. Research Report· DOC, 84/4, 
Department of Computing, Imperial College of Sci
ence and Technology, Revised June 1985. 

[6] Shapiro, E.: A Subset of Concurrent Prolog and 
its Interpreter. ICOT Technical Report TR-003, 
ICOT,.1983 .. 

[7] Miyazaki, T. et a1.: A Sequential Implementation 
of Concurrent Prolog Based on Shallow Binding 
Scheme. Proceedings of 1985 Symposium on Logic 
Programming pp. 110 .. 118. 



[8] Ueda, K. and Chikayama, T.: Concurrent Prolog 
Compiler on Top of Prolog. Proc. of 1985 Sympo
sium on Logic Programming, pp.119-126, 1985. 

[9] Furukawa K. et al.: Kernel Language Version 1, 
explanation materials, ICOT, 1985, in Japanese. 

[10] Ueda, K.: Making Exhaustive Search Program 
Deterministic. ICOT Technical Report TR-145, 
ICOT, 1985. Also to be presented at the Third 
Int. Logic Programming Conf., London (1986). 

[11] Codish, M.: Compiling OR-parallelism into AND
paralelism, ?vLSc Thesis, \Veizmann Institute oi 
Science, December 1985. 

[12] Furukawa K., Ueda K.: GHC Process Fusion by 
Program Transformation. In Proc. Second N a
tional Conf. of Japan Society of Software Science 
and Technology, 1985, pp. 89-92. 

[13] Burstall,R. and Darlington, J.: A Transformation 
System for Developing Recursive Programs, JACM 
Vo1.24, No.1, pp.44-67. 

[14] Matsumoto, Y.: A Parallel Parsing System for 
Natural Language Analysis, to be presented at the 
Third Int. Logic Programming Conf., London, 
1986. 

[15] Pereira, F.C.N. and Warren, D.H.D.: Definite 
Clause Grammars for Language Analysis - A sur
vey of the Formalism and a Comparison with Aug
mented Transition Networks, Artificial Intelligence, 
13, pp. 231-278, 1980. 

[16] Takeuchi, A.: Algorithmic debugging of GHC pro
grams and its implementation in GHC, unpub
lished draft, 1986. 

[17] Shapiro, E.: Algorithmic Program Debugging, MIT 
Press, Cambridge, Mass, 1982. 

[18] Lloyd, J. and Takeuchi, A.: A Framework for De
bugging GHC. To appear ICOT TR, 1986. 

[19] Takahashi,K. and Kanamori,T.: On Parallel Pro
gramming Methodology in GHC. ICOT Technical 
Report, to appear. 

[20] Furukawa K. et al.: The Conceptual Specification 
of the Kernel Language Version 1. Technical Re
port TR-054 j ICOT, 1984. 

[21] Ueda, K.: Concurrent Prolog Re-Examined. ICOT 
Technical Report TR-102, ICOT, 1985. 

954 

[22] Warren, D. H.? An Abstract Prolog Instruction 
Set. Tech. Report 309, Artificial Intelligence Cen
ter, SRI International, CA, 1983. 

[23J Taki, K. et al.: Hardware Design and Implemen
tation of the Personal Sequential Inference Ma
chine (PSI). Proc. International Conference on 
Fifth Generation Computer Systems 1984, ICOT, 
pp.398-409. 

[24] Tanaka, J. et al.: Distributed Implementation of 
FGHC - Toward the realization of Multi-PSI sys
tem -. UnpUblished draft, 1986. 

[25] Murakami, K.: The study of unifier implementa
tion in multi-processor environment. Multi-SIM 
study group internal document, ICOT, 1985, in 
Japanese. 

[26] Miyazaki, T .. and Taki, K.:· The implementation 
method of Flat GHC on Multi-PSI system. The 
Logic Programming Conference '86, ICOT, June 
1986,pp.83-92, in Japanese. 

[27] Chikayama, T. : ESP Reference Manual. ICOT 
Technical Report TR-044, ICOT, 1984. 



"KABU-WAKE" PARALLEL INFERENCE MECHANISM AND ITS EVALUATION 

Hideo Masuzawa, Kouichi Kumon, Akihiro Itashiki, 
Ken Satoh, and Yukio Sohma 

FUJITSU LIMITED 
1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, JAPAN 

Abstract 
We have proposed a new parallel 

inference mechanism called the KABU-WAKE 
method, and have built an experimental 
OR parallel inference system based on 
this method. This paper evaluates use of 
the KABU-WAKE mechanism in practical ap
plications. Tests on our experimental 
system using a restricted bottom-up 
parser show that the KABU-WAK~ method is 
very effective for large problems that 
contain a lot of parallelism. This paper 
also describes two difficulties of the 
KABU-WAKE method made evident through 
analysis of the status of each processor 
element during the processing of a prob
lem with a low performance improvement 
ratio. We also estimated the performance 
improvement ratio expected with 100 pro
cessor elements. This research was spon
sored by MITI as a part of the FGCS pro
ject. 

1. Introduction 

AI research is now flourishing. 
In this field, a problem with one of the 
important features can be solved by 
traversing a search tree using trial and 
error methods. A logic program can also 
be executed using parallel processing, 
such as OR parallel, AND parallel, or 
AND-STREAM parallel processing. OR 
parallel processing is suitable for non
deterministic algorithms and we there
fore think it is well suited to a 
search-type problem described above. 

We proposed a new parallel 
inference mechanism, called the KABU
WAKE method. We built an experimental OR 
parallel inference system implementing 
this method [1], [2]. We ran a simple 
game problem, the N-Queen problem, on 
the experimental system to evaluate our 
method [3], [4]. At present, we are 
evaluating our method for two practical 
applications, both of which are parser 
programs with restricted grammars. We 
have already presented an evaluation of 
one of the applications-- a top-down 

CH2345-7/86/0000/0955$01.00 © 1986 IEEE 
955 

parser for the Japanese language. :he 
algorithm produced a top-down pars~ng 
tree from a sentence [6]. This paper 

evaluates the KABU-WAKE method using a 
bottom-up parser for the Japanese 
language. The algorithm makes a parsing 
tree from terminal symbols at the bottom 
[5]. By analyzing the status of each 
Processor Element (PE) during process
ing, we will explain 1) why the perfor
mance improvement ratio (how much per
formance improves over performance with 
1 PE) with fewer than 12 PEs was high 
using a large problem, 2) why the per
formance improvement ratio was low using 
a problem that cannot achieve a high 
performance improvement ratio with 12 
PEs and 3) estimate the performance im
pro~ement ratio expected with 100 PEs 
using a problem that achieved a high 
performance improvement ratio with fewer 
than 12 PEs. Chapter 2 discusses prob
lems in parallel inference processing, 
and explains the features and principles 
of operation of the KABU-WAKE method. 
Chapter 3 outlines our experimental sys
tem. Chapter 4 discusses the results of 
executing the bottom-up parser program 
on our experimental system. 

2. KABU-WAKE method 

2.1 Problems in Parallel Inference Pro
cessing 

Our original question is how to 
make an OR parallel processing inference 
system so that performance is propor
tional to the number of PEs. The fol
lowing problems need resolution: 

(1) Problems within each PE 
i. Reducing overhead for switching 

and scheduling tasks 
ii. Reducing the time for creating 

and dividing tasks 

(2) Problems between PEs 
i. Achieving dynamic load balancing, 
because we do not know how much 



processing a program requires be
fore it is executed. 

ii. Reducing the number of subtask 
transfers 

iii. Reducing the amount of time for 
each subtask transfer 

The KABU-WAKE method solves most 
of these problems for certain applica
tions, as we discuss in the next sec
tion. 

2.2 Principles of Operation 

This section discuss the opera
tion principles of the KABU-WAKE method. 
Fig~re 1-a is an example of a knowledge 
base written in Prolog. We have omitted 
the arguments of the predicates to sim
plify explanation. The arrows indicate 
the normal flow in a conventional 
sequential inference. Figure 1-b is a 
snapshot of processing using the KABU
WAKE method. The bold lines indicate the 
processing in PE 0, corresponding to the 
processing indicated by the arrows in 
Figure 1-a. If a request comes from PE 
1, PE 0 divides its task at the node 
closest to the root of the search tree 
and transfers a portion to PE 1. If a 
request then comes from PE 2, PE 0 again 
div~des a part of the task in the same 
way. This method enables several PEs to 
solve one problem. 

?-a. ---Ila :-bl, ci 

[ : ; = ~~: ~~: 
I b I : - p. 

b I : - q. 
bi : - r. 

Figure I-a 

Figure I-b 

Figure 1 Basic KABU-WAKE mechanism 

956 

2.3 Features 

The KABU-WAKE method has two 
principal features: 
-- Each PE uses the same search stra

tegy as is used by a conventional 
sequential processor to traverse a 
search tree, namely, a depth-first 
search. 

-- A PE divides its task and transfers 
a portion of it only when requested 
by another PE. 

These features have the follow
ing advantages: 

(1 ) Low overhead in each PE 
i. Each PE processes only one task. 

--> There is no overhead for switch
ing and scheduling tasks as in a 
multiple task environment. 

ii. A task is divided at the node 
closest to the root of the search 
tree. 

--> We think that each PE should 
divide a task into the largest pos
sible subtasks. 

iii. Each PE uses conventional sequen
tial processing. 

(2 ) 

(3) 

--> There is almost no overhead for 
parallel processing during execu
tion in each PE [4]. Also, this 
method can use the high-speed tech
niques developed for convention~l 
sequential processing, such as ~n 
compilers. 

Low overhead between PEs 
i. A busy PE divides its task and 
transfers a portion only when re
quested by another PE. 

--> When all the PEs are busy, there 
is no communication. 

ii. A distributed processing method 
is used in which only idle PEs re
ceive tasks. 

--> Effective dynamic load balancing 
is possible. 

Easy implementation 
i. The number of tasks does not 
exceed the number of PEs. 

--> No mechanism is required to tem
porarily hold extra tasks for PEs. 

3. Experimental System 

~.! System configuration 

Figure 2 shows the system 
hardware configuration. The experimen
tal system consists of 16 PEs (one for 
the man-machine interface) and two net
works. These networks are used for dif
ferent purposes, and were designed 
specifically for our method. 



(1) PE 
A PE performs inference process

ing. It gives part of it's task to 
another PE if a request comes during 
processing. A KABU-WAKE interpreter is 
installed in each PE. This interpreter 
is a conventional sequential interpreter 
with added control mechanisms [2],[4] to 
implement the KABU-WAKE method. Each PE 
has a copy of the entire database. 

(2) CONTROL NETWORK 
The control network is a com

munication route for requesting tasks. 
This network connects all PEs in a ring 
via control network adapters (CNAs). The 
clock frequency is 2 MHz. A packet, 
which indicates whether each PE is busy 
or idle, goes around the network [6] in 
8-microsecond cycles. 

(3) DATA NETWORK 
The data network is a communica

tion route for transferring tasks. It is 
a two-stage network made up of 4 x 4 
switches. The communication method is 
DMA transfer of 8 bits in parallel. The 
transmission rate of the network 
hardware without overhead is about 400 
KB/s, but it drops to 50 KB/s with the 
addition of the communication software 
overhead [6]. 

DATA 

NETWORK 

CONTROL NETWORK 

Figure 2 System configuration of 
experimental machine 

3.2 Implementation 

O:~ 

The following items need be im
plemented in our experimental system. 

(1) Unbinding of variables 
When a search tree is split, the 

status of the variables in the split 

957 

tree must be as if all the processes lo
cated below the split portion of the 
search tree had failed and backtracked, 
i.e., unbinding. To speed up this un
binding operation, we reserved an area 
for each variable in which was stored 
the time at which it was bounded. Each 
time a subgoal is reached, a new level 
number, corresponding to the depth of 
subgoal, is assigned. For variables 
bound during the processing of that 
subgoal, the same level number as that 
of the subgoal is flagged. When a tree 
is split, we can determine whether bind
ing should be released by comparing the 
level of the subgoal to be split with 
the variable's level number. In this 
method, the time required to release 
variables for splitting is proportional 
to the number of variables in the 
subgoal to be split. Using a trailing 
stack is another alternative, but we 
think the processing would take more 
time. 

(2) Use of rule numbers 
When a tree is split and 

transferred, it is transferred in the 
form of a subgoal. However, since some 
of the definitions for the subgoal are 
already being processed, the other PEs 
must start from subsequent definitions. 
We, therefore, we adopted a method in 
which a special predicate, called a rule 
number, is prepared and attached to the 
subgoal before transfer to indicate 
where to start execution. 

(3) Control of request 
Some tasks cannot be split when 

a request is received from another PE. 
If this is often the case, PE perfor
mance deteriorates. To handle this si
tuation, we used a request reception 
flag to indicate whether a task can be 
split. This enables a PE to concentrate 
on a task without being disturbed by 
other PEs. 

4. Evaluation 

Let us now consider the results 
obtained by running the bottom-up parser 
on our experimental system. We will 
first present the results, then discuss 
them. 

4.1 Results 

4.1.1 Test programs 

We entered three sentences into 
the bottom-up parser (44rules, 
103facts). The characteristics of the 
three bottom-up parser programs 
corresponding to the three sentences en
tered are shown in Table 1. Here, the 
bottom-up parser is a Japanese-language 



parser; the algorithm makes a parsing 
tree from terminal symbols at the bot
tom. We define a execution time with 1 
PE as the amount of processing time. The 
ratio of the amount of processing time . 
in Sentence 1 to that in Sentence 2 is 
1:8 and of Sentence 1 to Sentence 3 is 
1:60. The amount of processing time re
quired in Sentence 1 is about 1.3 times 
as much as in 7-Queen. 

Table 1 Logical characteristics of 
bottom-up parser programs 

ITEM 
Average number of Number of 
parallel degrees inference levels 

PROGRAM *1 

Sentence 1 45 1294 

Sentence 2 236 2081 

Sentence 3 1427 2388 

Notes * 1 : Average number of parallel degrees = 
( (total number of inferences) ~ 

(number of inference levels) * 2 : The three sen tences en tered are as b I ow : 
Sentence 1 

"wakai otoko wa kouen de akai boushi no 
onna no ko ga hon wo yomu nowo mi ta " 

(meaning) : 
A young man saw a girl with a red hat 

reading a book at a park. 
Sentence 2 

" aoi fuku no wakai otoko wa kouen no 
ki no benchi de akai boushi no onna no 
ko ga atarashii ryouri no hon wo yomu 
nowo mi ta " 

(meaning) : 
A man wearing blue clothes saw a girl 

with a red hat reading a new cookbook 
on a wood bench at a park. 

Sentence 3 
" akai fuku no wakai otoko wa watashi no 

machi no kouen no ki no benchi de akai 
boushi no onna no ko ga atarashii ryouri 
no hon wo yomu nowo mi ta " 

(meaning) : 
A young man wearing red clothes saw 

a girl with a red hat reading a new 
cookbook on a wood bench at a park in my 
town. 

4.1.2 Performance improvement ratio 

Figure 3 shows the relationship 
between the number of PEs and the per
formance improvement ratio due to paral
lel inference. It shows that in a large 
problem, such as Sentence 3, the perfor
mance improvement ratio is almost pro
portional to the number of PEs. As the 
amount of processing decreases (Sentence 
3 -> Sentence 2 -> sentence 1), the per
formance improvement ratio decreases. 

958 

The ratio of Sentence 1 increases only 
until the number of PEs reaches 8, then 
it levels off. 

4.2 Discussion 

This section discusses the fol
lowing three items. 

(1) Performance improvement ratio of 
Sentence 3 

Figure 3 shows that the perfor
mance improvement ratio of Sentence 3 is 
higher than that of Sentence 1 and 2. We 
will discuss the cause. 

(2) Performance improvement ratio of 
Sentence 1 

Figure 3 shows that the perfor
mance improvement ratio of Sentence 1 is 
low. We will discuss the cause, and 
describe several difficulties related to 
the KABU-WAKE method made evident 
through our analysis. 

(3) Estimated performance improvement 
ratio of Sentence 3 

One of the AI applications is a 
search problem; we think this type of 
problem requires a great deal of pro
cessing. We regard Sentence 3 as such a 
search-type problem and estimate the 
performance improvement ratio with 100 
PEs. 

.~ 15 
..... 
co 
~ 

..... 
c: 
Q.) 
I: 
Q.) 
;> 
o 
~ 

.~ 10 
Q.) 
u 
c: 
co 
I: 
~ 
o ..... 
~ 
Q.) 

0.. 

Ideal 
.' 

.' 

.···Sentence 3 

5~--------~k-~~----+---------~ 

Sentence 1 

o~·· ____________ ~ ____________ ~~ _________ ~ 
0510 15 

Number of PEs 
Figure 3 Performance improvement ratio 

due to parallel inference 

4.2.1 Performance improvement ratio of 
sentence ~ 

Figure 4 graphs the relationship 



between the processing time (with 1 PEs) 
and the number of subtask transfers 
(with 12 PEs). In Figure 4, the xcoordi
nate is a logarithm of the processing 
time. Figure 4 indicates that the number 
of subtask transfers is almost propor
tional to the logarithm of the process
ing time, but not to the processing time 
itself. This means that, as the prcess
ing time increases exponentially, the 
number of subtask transfers increases 
linearly. That is, for similar programs, 
the longer the processing time, the less 
communication overhead. This is why the 
performance improvement ratio of Sen
tence 3 is higher than that of Sentence 
1 and 2. 

~ 1000 ,-
Sentence 3 ..:; 

tr, 
C 
,"0 
;.... ...., 

..:.:: 
CIl 
III 
~ 

..c 
;::l 
CIl 

..... 
0 

h 
Q) 

..c 
E 
;::l 

z 

800 

600 

400 

200 

o 
1 10 

V· 
/ 

;Cntence 2 

V 

/ 
Isentence 1 

100 1000 10000 
Processing time (seconds) 

Figure 4 Relationship between processing time 
~nd number of sub task transfers (PEs = 12) 

4.2.2 Performance improvement ratio of 
sentence 1 

Table 1 shows that the average 
number of logical parallel degrees in 
processing by the KABU-WAKE method is 
45. However, the performance improvement 
ratio of Sentence 1 does not reach 4, 
even when Sentence 1 is processed with 
12 PEs. 

<1> Results 

The experimental results show 
that when the number of PEs is 12, the 
rate of processing items (busy, KABU
WAKE, idle) are as follows: 

busy time: 30.6%, 
KABU-WAKE time: 43%, 
idle time: 26.4% 

959 

Busy time includes all of the 
inference processings. KABU-WAKE time 
includes all of the KABU-WAKE process
ings (explained later). 

The ratio of processing time 
shows that KABU-WAKE time and idle time 
accounted for more than 70% of all the 
time used to process Sentence 1. These 
two factors (we call them overhead for 
parallel execution) prevent performance 
improvement. 

<2> Analysis 

To discover why the overhead for 
parallel execution such as both KABU-

WAKE time and idle time are large, we 
discuss some factors which may cause the 
overhead. 

There are two factors which may 
cause the overhead: 

Factor 1: KABU-WAKE processing time 
per transaction 

The time depends on what feature 
of KABU-WAKE processing is being 
used. 

Factor 2: number of KABU-WAKE process
ings 

The number depends on the nature 
of parallelism in the search tree of 
Sentence 1. 

(1) Features of KABU-WAKE processing 
Figure 5 details the KABU-WAKE 

processing time in the execution of Sen
tence 1. The KABU-WAKE processing time 
is 106 ms: 49 ms for Sender to transfer 
a subtask and 57 ms for Receiver to re
ceive the subtask. While Sender does 
Split processing in the KABU-WAKE pro
cessing, the Receiver is id~e (Wait in 
Figure 5), and the Wait time is 33 ms. 
This minimum time is needed for each 
KABU-WAKE processing. It takes 2 ms for 
the KABU-WAKE interpreter to process a 
inference, so the interpreter ·can pro
cess about 53 inferences during KABU
WAKE processing time and about 16 infer
ences during Wait time. The KABU-WAKE 
processing time per transaction was 
long. 

PE (Sender) I ¢=>- 49ms -----c:::> I r-- 33ms -t- 16ms -1 

PE 

-....-....--- -----------------
Inference i Spli t 

I 
Send Inference 

Request for task 
Transmission of task 

(Recei ver) : 1 Receive 
Infer-

Wait Store rence 

r--- 33ms ---l-- 29ms --j-- 28ms -l 
I ~ 57ms -----c:::> I 

Figure 5 Details of KABU-WAKE processing time 



(2) Nature of parallelism in the search 
tree of Sentence 1. 

Almost all the parallelisms are 
of the type shown in Figure 6, and al
most all branches, ( b, c, and d in Fig
ure 6) in the portions with such paral~ 
lelisms have a number of inferences 
smaller than 60. 

a c 

a b b 

c 

Almost all branches h. c. or d has 
a number of inferences smaller than 60. 

Figure 6 Characteristics of a sabtask that to can be 
processed in parallel by a bottom-up parser 

In the execution of Sentence 1 
with 12 PEs, the transferred subtasks, 
consisting of fewer inferences than 24, 
is about 36% of all the transferred sub
tasks, and consisting of fewer than 60 
is about 81%. It means that the number 
of KABU-WAKE processings was large be
cause the transferred subtasks consisted 
of a small number of inferences. Further 
the beginning and the ending of execu
tion was generally not good. Also be
cause of the long KABU-WAKE processing 
time and the large number of transferred' 
subtasks, there ,were many idle PEs that 
sometimes became busy. This cause a lot 
of idle time. Figure 7 shows the dynamic 

PEs 

12 00&11011110 I 111111000101101001018101111 I 10 

11 OOB 0001 I c::=J1O c:JUI OClI I 

10 I II 001111110001001101 1000 0c=:J1 0 

9 0 II 11110110 OUJDIII 101111 10DOOa II g 

8 I IIlI 010 1111· [JIIIIII I I I 1000 8100 0 

7 O. 0 0100 OOlBOIOIOIIIUc::JOIUOOBOO 01111 01 0 I I 

6 I 0 10 10.00011001 III no 10 001100 10 I 

5 II 110 10 001 111110 110010 0 

4 0101l8ll1l0001l01lc:JIOOIiOIOIIIOOO.IOIBOOIJ OeJ 

3 01 milD 11<-.11 '--___ -",1/ 00 100Ilmc::J.1I 0 

2 DUD 001 aUOfmO I !IUD 00 II 

01111111 I lOB 0 olin 10 II 10 

o 0.5 1.0 
Ti me (rela ti vel 

Figure 7 Change of status in eachPE' 
during processing of Sentence 1 

960 

change of status of each PE during the 
processing of Sentence 1. In Figure 7, 
busy, KABU-WAKE, and idle states have 
the following meanings: 

-- Much idle time occurred during the 
first and last thirds of the execu
tion. This accounted for more than 
90% of all idle time. 

-- Communication was distr~buted uni
formly from the beginning to the end 
of execution. In the first third, 
the number of subtask transfers was 
112, in the second third, 108, and in 
the last third, 125. 

-- All of the PEs processed the majori
ty of inferences during the middle 
third of execution. 

The KABU-WAKE processing and the 
search tree of Sentence 1 have the above 
characteristics. When we return to the 
factors which cause overhead in parallel 
execution, the KABU-WAKE processing time 
per transaction was long and the number 
of KABU-WAKE processings was large. So, 
the overhead (KABU-WAKE time and' idle 
time) took up more than 70% of all the 
time used to process Sentence 1. 

Two difficulties in the KABU
WAKE method were revealed during 
analysis of the above experiment. 

i. KABU-WAKE processing time per 
transaction is longer than it 
should be. 

ii. The number of. inferences which 
make up a. transferred, subtask have 
a large influence on the perfor
mance improvement ratio. 

4.2.3 Estimated performance improvement 
ratio of Sentence 3 - -

This section describes the es
timated performance improvement ratio 
expected if Sentence 3 is processed with 
100 PEs. 

The following expression shows 
how the performance improvement ratio 
with 100 PEs is obtained. 

performance improvement ratio = 
(execution time with 1 PE) 

(execution time with 100 PEs) 

The value of the execution time 
with 1 PE is based on actual measure
ment. During execution with 100 PEs~ 

each PE does inference processing, does. 
KABU-WAKE processing, .or is idle. So, 
the execution time with 100 PEs is 
determined by the following expression. 



execution time with 100 PEs = 
«busy time) + 

(KABU-WAKE time) + (idle time» 

(100) 

In the above expression, busy 
time is the Bum of inference processing 
time from PE 1 to PE 100: we can regard 
the busy time as the execution time with 
1 PE. The KABU~WAKE time is determined 
by the following expression. 

KABU-WAKE time 
«KABU-WAKE processing time 

per transaction) * 
(number of subtask transfers» 

Here, the value of the KABU-WAKE 
processing-time per transaction is based 
on actual measurement of the execution 
of Sentence 3 with less than 12 PEs. To 
estimate the number of previous subtask 
transfers when Sentence 3 is processed 
with 100 PEs, we used the relationship 
between the number of PEs and the number 
of subtask transfers obtained by actual
lymeasuring the execution of Sentence 3 
,with less than 12 PEs. (In the KABU-WAKE 
method, the relation is linear [4],[6].) 
We estimated the idle time from the re
lationship between the number of PEs and 
the amount of idle time (shown in Figure 
8) obtained by actually mesuring the ex
ecution of Sentence 3 with less than 12 
PEs. Figure 8 indicates that the rela
tionship is almost linear. 

The above computations give an 
estimated performance improvement ratio 
of about 50 when Sentence 3 is processed 
with 100 PEs. 

1000 

CIl 
"0 
C 
0 
u 

800 Il) 

3 

Il) 
E ..., 
Il) 600 ..... 

"0 -
400 

200 

/ 
V 

/ 
~ 

V 

/ 

II 
V 
2 4 6 8 10 

Number of PEs 
Figure 8 Relationship of number of PEs 

to idle time 

12 

961 

5. Conclusion 

We -evaluated the KABU-WAKE 
method by running a bottom-up parser 
program with restricted a grammar on our 
experimen.tal system. The results led us 
to the conclusions listed below. 

(1) With the KABU-WAKE method, we can 
obtain a performance improvement ra
tio proportional to the number of 
PEs for large problems with a lot of 
parallelism. The method has the ad
vantage for parallel inference that 
as' the amount of processing in~ 
creases exponentially, the number of 
subtask. transfers increases linear
ly. 

(2) Difficulties in 
method made "evident 
of the cause of the 
improvement ratio 
used is as follows: 

.theKABU-WAKE 
through analysis 
low p-erformance 
when 12 PEs were 

i. The KABU-WAKE processing time per 
transaction is longer than it 
shou'ld be. 

ii. The number of inferences which 
make up a transferred subtask 
greatly influences the performance 
improvement ratio. 

(3) The estimated performance improve
ment ratio is about 50, when a.prob
lem that achieved a high performance 
improvement ratio with fewer than 12 

'PEs is processed with 100 PEs. 

In our analysis described in 2, 
above, we saw that the KABU-WAKEpro
cessing time had a' great deal of influ-

.ence on the performance improvement ra
tio. We think it is. important to reduce 
the KABU-WAKEprocessing time per tran
saction. For 2 i, above, we ~ave built a 
KABU-WAKE compiler that reduces the 
KABU-WAKE processing time per transac
tion and are awaiting ,an evaluation of 
it. For 2 ii, as the KABU-WAKE process
ing time gets shorter, its influence on 
the performance improvement ratio be
comes smaller. We are investigating oth
er possible solutions to2 ii that re
late to the basic principLes of the 
KABU-WAKE method. 

We think that one of the practi
cal applications in AI, the searchprob
lem, requires a large amount of process
ing with a large number of subtasks that 
can be processed using OR parallel. The 
KABU~WAKE method is very suitable for 
this type of application. 

FGCS is attempting to develop an 
AND-STREAM parallel .inference machine, 
which executes the GHC (Guarded Horn 
Clause) Language [7]. From the point of 
view of GHC, OR parallel Prolog, that is 



pure Prolog, is a language that is used 
to describe special types of algorithms 
such as a search problem. Therefore, 
when we think of the GHC-oriented 
machine as a general purpose parallel 
inference machine, we can regard an OR 
parallel Prolog-oriented machine as a 
special-purpose parallel inference 
machine. As search problems appear in 
most AI applications, we -think the OR 
parallel Prolog-oriented machine is 
quite valuable. 

6. Acknowledgments 

The authors would like to thank 
Mr. Tanahashi, Section Manager, and Mr. 
Sato, General Manager, for their unfail
ing encouragement and Mr. Yamada, Manag
ing Director, for giving us the oppor
tunity to conduct this research. 

References 

[1] Itashiki, et al., "PARALLEL INFER
ENCE PROCESSING SYSTEM -- EXPERIMENT 
OF IMPROVED CLAUSE UNIT PROCESSING 
METHOD", 30th meeting of Information 
Processing Society, 7c-7, March 1985. 
Japanese. 

[2] Kumon, et al., "PARALLEL INFERENCE 
PROCESSING SYSTEM -- IMPROVED CLAUSE 
UNIT PROCESSING METHOD", 30th meeting 
of Information Processing Society, 
7c-8, March 1985. Japanese. 

[3] Kumon, et a!. , "EVALUATION OF 
KABU-WAKE PROCESSING", 31st meeting 
of Information Processing Society, 
2c-S, October. 1985. Japanese. 

[4] Sohma, et a1., "A NEW PARALLEL 
INFERENCE MECHANISM BASED ON SEQUEN
TIAL PROCESSING", IFIP TC-10 Working 
Conference On Fifth Generation Com
puter Architecture, July IS-18, 1985. 
Also, J.V.Woods, "A NE~ PARALLEL 
INFERENCE MECHANISM BASED ON SEQUEN
TIAL PROCESSING", Fifth Generation 
Computer Architecture, North-Holland, 
1986. 

[S] Mizoguchi,et al.,"Prolog and its 
applications", Sohken Syuppan Press, 
1985. Japanese. 

[6] Kumon, et al., "KABU-WAKE : A NEW 
PARALLEL INFERENCE METHOD AND ITS 
EVALUATION", COMPCON 86 Spring, March 
4-6, 1986. 

[7] Ueda,K., "Guarded Horn Clauses", 
TR-I03, 1985. 

962 



A Very Fast Prolog Compiler on Multiple Architectures 

Toshiaki Kurokawa N aoyuki Tamura 
Hideaki Komatsu 

Yasuo Asakawa" 

Science Institute, IBM Japan, Ltd. 

5-19 Sanban-cho, Chiyoda-ku, Tokyo 102, JAPAN 

Abstract 

In this paper, we report on our experiment on Prolog compiler 
technology. Targeted properties of the compiler are efficiency 
and portability. The generated code so far attained is so effi
cient to gain more than 1 MEGA LIPS on IBM 3090. 

One of the speciality of the compiler is in the intermediate 
Virtual Prolog Machine Code, which enhanced efficiency and 
portability. Another advantage of the compiler is to generate 
PL.8 code which can be used on multiple machines including 
the IBM 370 and IBM RT-PC. 

We introduce some declarative extensions to the Prolog lan
guage, which is compatible with the language and is powerful 
enough to produce efficient code. 

lOur Goals and Approaches 

The goals of our optimizing Prolog compiler technology 
development were the following: 

1. Development of the technology to produce one of the 
world's fastest Prolog compiler. 

2. Both efficiency and portability achieved in the same 
framework. 

3. Conducting the feasibility study of the compiler tech
nology in a reasonably short period. 

4. Evaluation of various machine architectures from the 
standpoint of the Prolog compilation. 

To achieve these goals we have employed the following 
techniques: 

1. Extension of the Prolog language for the generation 
of efficient code, while maintaining compatibility. 

2. Adoption of the Virtual Prolog Machine scheme as 
the intermediate stage of the compilation process for 
effective optimization. 

3. Use of the machine independent and efficient system 
programming language, PL.8[1], as the object code. 

In this paper, we present the newly introduced declara
tions, an overview of the compilation and an evaluation of 
the compiler. 

We have omitted arguments about Prolog such as in [6], 
and assumed the readers have some familiarity with Prolog 
language and programming[3]. 

CH2345-7j86jOOOOj0963$Ol.OO© 1986 IEEE 
963 

2 Prolog Language Extensions 

There are two extensions newly introduced to Prolog lan
guage: notrail and type. Both are declarations which can 
be attached to any predicate. So far, mode declaration in 
DEC-I0 Prolog[2] is the only declaration that is used for 
optimizing compilation. 

• N otrail declaration indicates that the annotated 
predicate actually behaves rather as a function so 
that there is neither backtracking nor ambiguous 
head selection. This declaration usually follows the 
usage declaration explained below. 

• Type is declared actually in part of the usage decla
ration where input/output mode is also declared for 
the predicate. With it, we can declare the data type 
of each argument, not of each variable. So far, we 
limit type categories among the built-in data types 
such as atom, nil, list, integer, structure, variable, 
and their combination. 

For example, we can define the list concatenation pro
gram, append, that is deterministic and accepts two input 
lists (possibly nil) and produces one output list. It is ac
tually the same as the well-known append predicate but is 
declared as Figure 1. 1 

<- usage append(in:(list+nil), 
in: (list+nil) , 
out: (list+nil». 

<- notrail append(*.*,*). 

append({},X,X). 
append({AIX},Y,{AIZ}) <- append(X,Y.Z). 

Figure 1: APPEND with declarations 

The introduction of type annotations is natural, in the 
sense that most contemporary high-level programming 
languages, even Lisp, have type declarations. However, 
the notrail declaration is special to the Prolog language, 
and may need some explanations. 

INote that we use VM/Prolog[4] syntax. In DEC-lO Prolog[2], 
square brackets ([]) would be used to indicate list data instead of 
curly braces ({, } ). 



This declaration is introduced mainly from the following 
two reasons: 

1. For the compiler writer, it helps the decision to elim
inate the trailing of variables. Without it, all vari
ables have to be trailed, or at least checked whether 
they must be trailed or not, even if the execution is 
deterministic. 

2. For the Prolog programmer, this declaration elimi
nates the use of the cut operation. It is commonly 
observed with a novice programmer that he either 
puts in too many cuts or forgets to puts in cuts at 
all. Most of the Prolog predicates tend to be deter
ministic, especially when Prolog is used for system 
programming. 

The benefit of the deterministic declaration varies with 
machine architectures. For the ordinary commercially 
available machines such as IBM 8/370 or IBM RT-PC[5], 
the gain is significant because the trailing operation re
quires more instructions compared with special Prolog 
machines such as Tick and Warren's Pipelined Prolog 
Machine[ll]. 

We have also introduced two auxiliary declarations: key 
and entry. Key declaration can be used to specify the ar
gument which will be indexed. Entry declaration is used 
to declare the entry point and an entry declaration is nec
essary for a compilation unit. 

More complicated examples of these declarations are 
shown in appendix A, which is really used for benchmark 
tests. That original version is defined in Prolog contest[IO]. 

3 Outline of The 
Process 

Compilation 

As noted in our goals, our emphasis lies in its optimization 
and portability. We adopt a virtual machine as an inter
mediate stage of our compilation so that we can enhance 
both the optimization and the portability. 

The virtual machine, which we have adopted, is based 
on Tick and Warren's machine[ll]. However, considering 
from the viewpoint of optimizing Prolog compiler, the level 
of its instructions is too high. For example, its instruction 
"get-list Ai" implies the following: 

test the tag of register A1 
if reference then 

do dereference 
and retry 

if unbound variable then 
create a list cell 
bind it to the variable 
check whether trailing is necessary or not 
if necessary then do trailing 
set the address of the list cell to register S 
set write mode 

if list then 
set the address of the list cell to register S 
set read mode 

otherwise 

964 

fail 

As far as "get-list Ai" is a primitive instruction and it can 
not be decomposed into lower level instructions, there is 
no opportunity for optimization even if it is known that Al 
is always a list. Therefore, in our virtual machine many 
low level instructions are introduced, which basically cor
respond to each statement in above example. The opti
mizer in our compiler eliminates redundant type-checking 
and mode-checking at this level. 

Another special point of our approach is the adoption 
of PL.8 as an object code. 

PL.8 compiler provides a low-level optimization. For 
example, we need not care about the register allocation. 
It also provides the portability among 8/370 and RT-PC. 

The compilation process 'can be summarized in the dia
gram in Figure 2. 

Prolog source code 

phase-I j 
Intermediate Language 

phase-2 j 
Optimized Intermediate Language 

phase-3 /~ 
PL.8 program 

for 8/370 

PL.8 compiler j 
Machine code 

for 8/370 

PL.8 program 
for RT-PC 

j 
Machine code 
for RT-PC 

Figure 2: The outline of our compilation process 

3.1 Phase-1 

In this phase, Prolog program is translated to intermedi
ate language, which is called WIL. This is considered as 
mapping process of Prolog language into the virtual ma
chine. From this point of view, some optimization is done. 
For example, 

• tail recursion optimization[12] 

• decision of unification order using mode information 

• detection of unsafe variable using type and mode in
formation 

• selection of the best code for builtin predicates using 
type information 

• variable classification 



Type and mode information is also generated so that op
timization can be done effectively in the following phase. 

In Figure 3, a part of output of phase-I, which is gener
ate from append, is shown. It corresponds to the indexing 
part and unification of the first argument of the second 
clause in Figure 1. This will be expanded to low-level 
code before optimization process. Expansion is very sim
ple and straightforward. An example of expanded code is 
shown in Figure 4. 

asa3: 
assertion(type(a(l» list + {} 

+ ref( \= undef»; 
select type(a(l» of { 

ref( \= undef) -> { 
deref(a(l»; 
goto(asa3) }; 

{} -> goto(asal); 
list -> goto(asa2); 
otherwise -> failure}; 

asa2: 
get_list(a(l» 

where trail = no & 
type(a(l» list + {} 

+ ref( \= undef) & 
deref = no; 

unify_variable(x(l).O); 
unify_variable(x(2).1); 

Figure 3: A part of output of phase-l for append 

3.2 Phase-2 

In this phase, the intermediate code is translated into a 
graph for optimization. The optimization consists of fol
lowing two steps: 

1. tracing the graph to infer the behavior of the inter
mediate code by semantic definition of the interme
diate language WIL 

2. modifying the graph by graph reduction rules 

This optimization process is repeated several times and 
after that the optimized graph is translated back to the 
intermediate code. Roughly speaking, by this optimiza
tion, 

• redundant case instructions 

• never-selected case entries 

• unreachable instructions 

are eliminated. Detailed discussions about this optimiza
tion techniques will be found in our accompanying paper 
[8], especially from the knowledge-based viewpoint. 

Figure 5 shows the result of optimization of the code 
shown in Figure 4. 

965 

asa3 : 
case type(a(l» of { 

ref( \= undef) -> 
goto(tn82); 

}; 

{} -> 
goto(asal); 

list -> 
goto(asa2); 

atom + int + struct + ref(undef) -> 
goto(tn81) 

tn82 : 
deref(a(l» ; 
goto(asa3); 

asa2 : 
case type(a(l» of { 

ref -> 
goto(tn64); 

list -> 
goto(tn62); 

}; 

{} + atom + int + struct -> 
goto(tn60) 

tn64 : 
get_list_w(a(l»; 
setmode(write); 

tn56 : 
case mode of { 

write -> 
goto(tn58); 

read -> 
goto(tn57) 

}; 
tn58 : 

unify_variable_w(x(l).O); 
tn53 : 

case mode of { 
write -> 

goto(tn55); 
read -> 

goto(tn54) 
}; 

tn55 : 
unify_variable_w(x(2).1); 

tn52 : 

tn54 : 
unify_variable_r(x(2).1); 
goto(tn52); 

tn57 : 
unify_variable_r(x(l).O); 
goto(tn53); 

tn62 : 
get_list_r(a(l»; 
setmode(read); 
goto(tn56); 

Figure 4: Example of expanded code 



asa3 : 
case type(a(i» of { 

ref( \= undef) -) 
goto(tn82); 

{} -) 

}; 

goto(tn77); 
list -) 

goto(tn62) 

tn82 : 
deref(a(1» ; 
goto(asa3); 

tn62 : 
get_list_r(a(l»; 
setmode(read); 
unify_variable_r(x(l).O); 
unify_variable_r(x(2).1); 

Figure 5: Output of phase-2 

3.3 Phase-3 

The code obtained in phase-2 is machine independent. In 
phase-3, the code is translated into PL.8 program. During 
this translation information which depends on the target 
machine is used to optimize the following: 

• design of tag 

• primitive operations 

• the order of case entries 

Figure 6 is an example of PL.8 code generated for 8/370 
from the code shown in Figure 5. 

3.4 PL.8 compiler 

AB described in [1], PL.8 compiler does many kinds of opti
mization. For example, register allocation, dead code elim
ination, code motion, value numbering, dead store elimi
nation, straightening, and so on. Off course, those are also 
effective in our case. These are done in global viewpoint. 

PL.8 compiler can also do optimization which is con
sidered in Warren's "Abstract Prolog Instruction 8et" [13] 
level. Value numbering and register allocation algorithm 
used in PL.8 compiler can do same optimization shown in 
Figure 72 • 

4 Evaluation 

The compiler itself is written entirely in high-level pro
gramming languages, namely, VM/Prolog and PL.8. 
Due to the quality of the debugging environment for 
VM/Prolog[9] and for PL.8, the prototype compiler has 
been developed in short term. 

The compiler itself runs on VM/CM8 on IBM 8/370, 
producing code both for IBM 8/370 and for IBM RT-PC. 

2This example is found in [111 and [131. 

966 

asa3: 
select; 
when( shiftr(al.28)=4 
goto tn62; 
when( ai= ('30000000'xb-('OFFFFFFF'xb kO» ) 
goto tn77; 
otherwise 
goto tn82; 
end; 
tn82: 

/*** DEREF(al)***/ 
ai = 
ptr( 
ai 
.memory)->w; 

goto asa3; 

tn62: 

/*** G_LIST_R(ai)***/ 
s = ('OOOOOOOO'xb-('OFFFFFFF'xb kai»; 

mode = rmode; 

Figure 6: Output of phase-3(for 8/370) 

Although full facilities of Prolog are not yet imple
mented, enough facilities are realized to handle list pro
cessing and arithmetics. With these functions, we can 
measure LIP83 values that are presented in Table 1. We 
also measured the performance by some more compli
cated programs such as the classical "eight-queen prob
lem", which is shown in appendix A. The measured exe
cution times are shown in Table 2. 

As our current prototype compiler have several points to 

3LIPS (Logical Inferences Per Second) is usually measured by a 
simple list manipulation program, i.e. a simple append or a naive 
reverse. 

unify_variable X4 
unify_variable X5 --) unify_variable Ai 
get_variable X6.A2 --) (deleted) 
get_list A3 
unify_value X4 
unify_variable X7 --) unify_variable A3 
put_value X5 --) (deleted) 
put_value X6 --) (deleted) 
put_value X7 --) (deleted) 
execute append/3 

Figure 7: Example of -Warren's Abstract Prolog Instruc
tions level optimization 



be tuned up, we can reasonably expect the final LIPS val
ues better than those presented in Table 1. Note that the 
speed on IBM 3090 has exceeded one MEGA-LIPS, which 
is a good intermediate step to achieve the goals raised in 
Fifth Generation Computer Project [7]. Also note that in 
the figures for the IBM RT-PC, all system overheads are 
included. In other words, we measured real time perfor
mance in IBM RT-PC. 

RT-PC 3081K 3090 
Without hints 56 611 1000 

With hints 87 827 1420 

Table 1: LIPS value measured on IBM S/370 and IBM RT 
PC. The unit is KLIPS. The benchmark program is simple 
append with 1000 elements. Hints mean mode, type, and 
notrail declarations. 

3081K RT-PC 
Without With Without With 

hints hints hints hints 
First 5 14 65 178 
All 92 232 1066 2860 

Table 2: Execution time of 8-queen problem. The unit is 
millisecond. Hints mean mode, type, and key declarations. 

Table 3 shows the effectiveness of the optimizations 
which are done in phase-2 and in PL.8 compiler. From 
this table it is found that the optimizer in PL.8 compiler 
does the optimization considered in Warren's Instruction 
level, shown in Figure 7. But it is also found that opti
mization in low-level virtual machine instructions is also 
effective and combination of these two level optimization 
is very effective. 

Table 4 shows the effectiveness of newly introduced dec
larations. According to this table, mode declaration, only 
itself is little useful for optimization. Combination of mode 
and type declaration, we call it usage declaration, is very 
effective. Notrail declaration is also effective, especially 
for RT-PC, which is the so-called workstation and which 
memory is much slower than host-class machines. 

5 Concluding Remarks 

It is not an easy task to conclude in this kind of evolution
ary activities. However, it should be noted that our main 
emphasis lies in the technology development, not in the 
product development. In other words, when one tries to 
make a product-level Prolog compiler based on our tech
nology, he or she may have to trade off efficiency for func
tionality. 

Our prototyping is, in analogy to physics, an experiment 
conducted only to prove the correctness or feasibility of our 

967 

3081K RT-PC 
Without With Without With 

hints hints hints hints 
No optimization 1 1.06 1 1.09 

Prolog only 1.68 1.92 1.62 1.86 
PL.8 only 1.64 1.85 1.68 1.74 

Prolog+ PL.8 3.30 4.47 2.80 4.35 

Table 3: Effect of optimization: relative values of LIPS in 
case of append. Hints mean mode, type, and key declara
tions. 

3081K RT-PC 
Without With Without With 
notrail notrail notrail notrail 

None 1 1.08 1 1.15 
Mode only 1.03 1.26 1.04 1.30 
Type only 1.07 1.16 1.23 1.36 

Mode+Type 1.24 1.40 1.47 1.97 

Table 4: Effect of declaration: relative values of LIPS in 
case of append. Optimization is done both in phase-2 and 
PL.8 compiler. 

approaches. We conducted an extensive review on similar 
works, and as far as we know, our compiler has achieved 
the highest performance for Prolog compilation. 

Acknowledgement 

Drs. Peter Y. Woon and Tetsunosuke Fujisaki have pro
vided us one of the best environment for this work. Ahmed 
Chi bib at IBM Austin, helped us to fix the usage of PL.8 
language. 

References 

[1] Auslander, M. and Hopkins, M., "An Overview of 
the PL.8 Compiler", Proceedings of the SIGPLAN 
'82 Symposium on Compiler Construction, Volume 
17, Number 6, June 1982. 

[2] Bowen, D.L., "DEC system-10 PROLOG USER'S 
MANUAL", Dept. of Artificial Intelligence, Univ. of 
Edinburgh, 1981. 

[3] Clocksin, W. F. and Mellish, C. S., "Programming 
in Prolog" , Springer-Verlag, 1981. 

[4] International Business Machines Corporation, "VM 
/ Programming in Logic, Program Description / Op
erations Manual", No.SH20-6541-0,1985. 

[5] International Business Machines Corporation, "RT 
Personal Computer Technology", No.SA23-1057, 
1986. 



[6] Kurokawa, T., "LOGIC 'PROGRAMMING - What 
. does it bring to' the software engineering" , Proceed
. ings of First International Oonference on Logic Pro
:,. gramming, pp.134-138, Marseille, 1982. 

[7} Moto-Oka, T., (ed.) "Fifth Generation Computer 
Systems", North-Holland, 1982. 

[8] Tamura, N. "Knowledge based optimization 'in Pro
'log compiler", to appear 'in Proc. of the 1986 
"ACM/IEEEComputer Society Fall Joint Computer 

Conference 

[9] Numao, M. and Fujisaki, T., "Visual Debugger for 
Prolog", Proc. of The Second Conference on Ar
tificial Intelligence Applications, pp.422-427, IEEE 
Computer Society, 1985. 

[10] Okuno, H., "The benchmarks for The Third Lisp 
Contest and The First Prolog Contest" , Information 
Processing Society of Japan, WGSYM No.20-4, 1984. 

[11] Tick, E. and Warren, D.H.D., "Towards a Pipelined 
Prolog Processor" , Proc. of 1984 International Sym
posium on Logic Programming, IEEE Computer So
ciety, 1984. 

[12] Warren, D.H.D., "An Improved Prolog Implementa
tion which Optimises Tail Recursion" , Proc. of Logic 
Programming Workshop, pp.1-11, 1980. 

[13] Warren, D.H.D., "An Abstract Prolog Instruction 
Set", SRI International Technical Note 309, October 
1983. 

Appendix 

A A program to find all solution 
of 8-queen problem 

<- entry'queen8. 

<- usage try(in:int,in:(list+nil), 
in: (list+nil),out:(list+nil), 
in: (list+nil) ,.in: (list+nil» . 

<- usage generate(in:int,out:(list+nil». 
<- usage selectx(in:(list+nil), 

out:int,out:list). 
<- usage notmem(in:int,in:(list+nil». 

<- key(try(*,*,*,*,*,*),2). 
<- key(notmem(*,*),2). 

queen8 <- start_timer k queen(8,L) k fail. 
queen8<- display_timer. 

queen(N, L) <- . 
generate(N,Ll) &try(N,Ll,{},L,{},{}). 

generate(O,{}). 
generate(N,N.L) <-

gt(N,O) & diff(N,l,Nl) & generate(Nl,L). 

try(*,{},L,L,*,*). 

968 

try(M,'S,Ll,L,C,D) <-
'selectx(S,A.Sl) & 
sum(M.A.Cl) & notmem(Cl.C) & 
diff(M.A.Dl) & notmem(Dl.D) & 
diff (M.l,Ml) & 
'try(Ml.S1.{AIL1}.L.{ClIC}.{DlID}). 

selectx({AIL}.A.L). 
selectx({AIL}.X.{AIL1}) <- selectx(L.X.Ll). 

notmem(*,{}) . 
notmem(A.{BIL}) <- ine(A.B) & notmem(A.L). 



A RELATIONAL DATABASE MACHINE BASED ON FUNCTIONAL PROGRAMMING CONCEPTS 

Yasushi KIYOKI, Kazuhiko KATO and Takashi MASUDA 

Institute of Information Sciences and Electronics 
University of Tsukuba 

Sakura, Niihari, Ibaraki 305, Japan 

ABSTRACT 

We present a novel approach to a relational 
database machine for processing knowledge bases. This 
approach, is based on functional programming concepts 
in order to manage processor resources and memory 
resources wi th the theoretical neatness of functional 
computation. By using demand-driven evaluation as a 
driving method of functional computation, parallelism 
can be exploited in executing relational operations 
(relational database operations) and inference opera
tions based on unification. -_ Furthermore, these opera
tions can be executed avoiding the complexity of 
resource management within a restricted resource 
environment. This approach is -. implemented under a 
multiprocessor architecture combined with a demand
driven evaluation mechanism. In this paper, we define 
the basic primitives which are used to implement 
demand-driven evaluation and function application. We 
also present a basic algorithm and' a system architec
ture for executing basic oper.ations for knowledge 
bases by using a demand-driven evaluation mechanism. 
To ascertain feasibility of our approach, a relational 
operation system has been implemented on the basis 
of the approach. 

I. Introduction 

The relational model [4] has received much at
tention as a promising data model for implementing 
database systems with theoretical basis. Furthermore, 
it has been recognized that the model is significant 
for implementing knowledge base systems based on 
mathematical logic, and it has been studied how rela
tional database concepts can' be applied to mathe
matical logic [6]. 

It is known that basic operations in such 
knowledge base systems are relational operations and' 
inference operations based on -unification. The impor
tant feature of these operations is that they deal 
with a vast amount of data represented as relations. 

We consider the basic operations wi thin the 
framework of functional programming concepts. Func
tional programming [2] include many attractive 
concepts, and its fundamental, concepts are sum
marized as follows: 

(1) The value, of a function expression depends only 
on its textual context,. not on computational history. 
This notion is referred to as referential transparency. 

(2) Functional computations. are free of, side effects. 
The parameter passing mechanisms. call-by-value, calL
by-name and call-by-need have the' same semantics. 

CH2345-7j86jOOOOj0969$Ol.OO@1986IEEE 
969 

(3) Functional programs often contain implicit and 
easily detected parallelism [5]. 

In this paper, we present a novel. approach to a 
relational database machine for processing knowledge. 
bases. In this approach, functional programming con
cepts are applied to both relational and inference
operations in order to exploit parallelism in a natural, 
way and to manage processor resources and memory,' 
resources with the theoretical neatness of functional 
computation. 

In [16], relational operations have been 
described in a dataflow language based on data-driven 
evaluation [1]. Processing of relational operations has 
been considered· as stream processing in the data
driven evaluation including the eager and lazy 
evaluations. Furthermore, in [17], an advanced stream
oriented algorithm which exploits parallelism inherent 
relational operations has been presented in detail; 

In the approach presented in· this paper, 
demand-driven evaluation is used in computing func
tions of relational and inference' operations.. A rela
tional operation, such as the selection operation or 
the join operation, is defined as a function, and 
operand, relations of the relational operation are 
manipulated as arguments of the function. The argu
ments corresponding" to operand relations are' 
evaluated as streams of tuples by using. the demand
driven evaluation mechanism. By using this evaluation' 
mechanism in functional computation, it becomes pos-:-. 
sible to execute both, relational and, inference opera
tions in parallel within restricted computing resources. 
In this approach, the stream-oriented algorithm [17] 
can also be realized within the framework of 
demand-driven evaluation. 

In this paper, we also discuss how relational 
database concepts can combine with inference opera
tions based on unification. In our approach, a set of 
fact clauses in Horn clauses is represented as a 
relation, and the' fact clauses are' manipulated by 
using functional computation. 

The relational database machine' proposed in 
this paper exploits parallelism inherent in knowledge 
base processing; and makes it possible. to execute 
basic operations for knowledge bases within a 
restricted resource environment. 

~ Approach to. Functional Computation 

In our approach, each process of relational and 
inference operations is described .. on the basis of 
functional programming concepts. In order to realize 
several driving methods of functional computation, 
basic primitives are defined. The basic primitives sup-



port various kinds of parameter passing mechanisms 
required in functional computation. 

2.1 Demand-driven Evaluation in Functional 
Computation 

The methods of driving functional computation are 
classified [20],[21] as follows: 

(1) Demand-Driven Evaluation, 
(2) Data-Driven Evaluation, and 
(3) Sequential Evaluation. 

We employ demand-driven evaluation in execut
ing relational operations and in executing inference 
operations, in order to execute those operations in 
parallel within a limited resource environment. 
Demand-driven evaluation generally introduces a fair 
amount of overhead in issuing demands. However, the 
demand-driven evaluation allows better control of 
parallelism, more selective evaluation, and a natural 
way of handling a large amount of data within a 
limited resource environment. The advantage of 
demand-driven evaluation includes the potential for 
eliminating a vast amount of computation by evaluat
ing only what is necessary for computing the result. 
Since relational operations and inference operations 
generally require to manipulate a large amount of 
data, the potential inherent in demand-driven evalua
tion is effectively utiliz.ed. In executing these 
operations, granularity of data which is transferred by 
a single demand can make large. Therefore, when 
compared with the total amount of data transferred 
by a single demand, the overhead caused by the 
demand transfer is insignificant. 

In this approach, the following parallelisms in
herent in functional computation are exploited: 

(1) parallel evaluation for arguments of a function, 
(2) parallel execution between a function which gen
erates its return value as a stream [10] and a func
tion which consumes the stream as an actual 
argument. That is to say; stream-oriented parallel 
processing between a function of stream-producer 
(producer function) and a function of a stream
consumer (consumer function). 

To exploit the parallelism of (1), demands are 
simultaneously issued from a consumer function to 
producer functions which generate actual arguments of 
the consumer function. Consequently, the independent 
operations can be executed in parallel. 

The parallelism of (2) is exploited between a 
producer function and a consumer function. In data
driven evaluation, to exploit the parallelism, it is 
necessary for the consumer function to begin the 
computation eagerly before the producer function 
completes producing all intermediate results [1]. To 
extract the parallelism in demand-driven evaluation, it 
is necessary for the producer to begin the computa
tion eagerly before the demand arrives from the 
consumer. In our approach, parallelism is exploited by 
pre-issuing a demand to the producer function before 
the consumer function begins computation. When the 
producer function receives a. demand pre-issued from 
the consumer function, the producer function begins 
computation. In producing a stream, the producer 
function does not produce every stream element by a 
single demand. The producer generates some fixed 

970 

amount of stream elements by a single demand. 
After the producer function completes . producing the 
fixed amount of stream elements, it suspends com
putation and waits for the subsequent demand. As a 
result, the stream-oriented parallel processing [17] be
tween the producer and consumer functions can be 
performed within the framework of demand-driven 
evaluation. 

In this approach, each relational operation or 
each inference operation is defined as a function. 
Several arguments of the function correspond to 
operand relations of an operation, and such a argu
ment is evaluated as a stream of tuples in a relation. 

To implement demand-driven evaluation, call-by
name or call-by-need is employed as a parameter 
passing mechanism. That is, an argument of a func
tion is not evaluated until a reference to the argu
ment is encountered in the execution of the function 
body. In call-by-name, if a formal argument is en
countered more than once, the corresponding actual 
argument is reevaluated each time it is encountered 
in the function body. In this case, the actual argu
ment can be deleted after a reference to it is 
completed. Therefore, if call-by-name is employed in 
evaluating the argument corresponding a stream of 
tuples, relational and inference operations can be per
formed within limited memory resources. However, 
when the same argument is encountered more than 
once in the function body, it must be reevaluated, 
that is, the function which generates the stream cor
responding to the actual argument must be 
recomputed. We call this parameter passing 
mechanism "recomputation mechanism." 

On the other hand, in call-by-need, a formal 
argument is evaluated only once when the first 
reference is encountered. The evaluated actual argu
ment is used in the other references to the 
argument. In this parameter passing mechanism, the 
actual argument must be retained until every 
reference to it completes. If the actual argument is 
huge like a stream of tuples in a relation, it seems 
that memory could be swamped. However, recomputa
tion of the same function is unnecessary. This 
mechanism is referred to as "caching mechanism"[1l]. 
The decision of a parameter passing mechanism is 
important in functional computation of relational 
operations or inference operations, because actual 
arguments of functions, which are relations, are 
generally very large. If recomputation mechanisms are 
used in evaluating every argument, computations may 
increase drastically. On the other hand, if caching 
mechanisms are used, the memory overflow may 
cause heavy overhead. In our approach, both recom
putation and caching mechanisms are supported and 
are used together. 

2.2 Basic Primitives 

Our approach to parallel processing for rela
tional and inference operations is based on the fol
lowing strategy: 

(1) Each operation for processing knowledge bases is 
defined as a function. A query is decomposed into 
several function applications. The relationship between 
operations, that is the relationship between a 
producer function of a stream and a consumer func
tion of the stream, can be decided at compile time 
for a query. 



(2) Referential transparency is ensured among 
functions. A function is allocated to one of the mul
tiple processors connected to a communication 
network. As a result, parallelisms based on demand
driven evaluation are exploited among functions. Inde
pendent functions are evaluated in parallel. 
Furthermore, stream-oriented parallelism between a 
producer function of a stream and a consumer func
tion of the stream is also exploited under demand
driven control. If another function is called in the 
function during computation of the function body, it 
can be allocated to another processor and these func
tions can be executed in parallel within the 
framework of demand-driven evaluation. 

(3) An individual function is compiled so as to max
imally extract the ability of the processor architec
ture to which the function is allocated. If a sequen
tial processor is used to compute the individual 
function, the function is compiled into the sequential 
object codes. For example, if data-driven-processor is 
used to compute the individual function, the function 
is compiled into single-assignment codes. 

In this subsection, the basic primitives for 
realizing demand-driven evaluation and for realizing 
function application are presented. The basic primi
tives are implemented at the architecture level of 
each processor in the relational database machine 
shown in Section 4. 

channel( type, granularity, parameter yassing_ inethod) 
The primitive "channel" specifies a channel 

betwee"n a producer function instance of a stream and 
a consumer function instance of the stream. This 
primitive returns the identifier "cid" of the channel 
as a return value. The channel is used to communi
cate a stream between two function instances. The 
channel corresponds to a buffer which stores elements 
of a stream. As the properties of a channel, "type," 
"granularity" and "parameter passing method" are 
specified. Here, "typell indicates the data type of an 
element of a stream, and "granularity" indicates a 
amount of data transferred by a single demand. The 
buffer size of the channel is decided according to 
granulari ty. And, "parameter _passing_method" indicates 
"recomputation" or "cachingll alternatively as the 
parameter-passing mechanism for a formal argument 
corresponding to a stream. 

new(f, pid, cid, parameters) 
This primitive creates a function instance of a 

function specified by Ilf." Here, "pid" is the identifier 
of the processor to which the function instance is 
allocated, and "cid" indicates the output channel for 
the stream returned from the function instance. The 
formal arguments (arguments. of input streams and the 
other arguments) of the function are specified in 
"parameters." The function instance does not begin 
computation until a demand is issued to it from the 
consumer function of its output stream. 

When a query is decomposed into relational 
operations or inference operations, function instances 
corresponding to those operations are created by using 
the primitive "new" and they are connected to chan
nels by using the primitive "channel." When a func
tion instance requires to call another function or the 
function itself (recursive call) during the execution of 

971 

the function body, these primitives are specified in 
the definition of the function body. 

pre-demand(cid) 
This primitive is used to issue a first demand 

from a consumer function of a stream to the 
producer function of the stream. The channel for 
passing stream elements is indicated as "cid." This 
primitive is one of the basic primitives which imple
ment demand-driven evaluation. By pre-issuing a first 
demand, the producer function can begin com
putation eagerly. As a result, parallelism is exploited 
between the consumer function and the producer 
function. 

get 1 (cid) 
This primitive accesses an element of a stream 

in the buffer of the input channel indicated by "cid" 
and returns the element as the return value. If the 
buffer is vacant, this primitive issues a demand to 
the producer function of the stream, then waits until 
the buffer is refilled with stream elements. Each 
element is deleted from a buffer once it is accessed 
by this primitive. 

get2(cid) 
When this primitive is used, the double buffer

ing mechanism must be supported in the channel in
dicated by "cid." While the producer function stores 
stream elements in one area of the buffer, the con
sumer function can access a stream element stored in 
the other area by using this primitive. When one area 
of the buffer is vacant, this primitive pre-issues a 
demand to the producer function to have the area 
refilled. Then, it begins to access a stream element 
in the other area. Each element is deleted from a 
buffer once it is accessed by this primitive. 

putl(d) 
This primitive stores a stream element, which 

is indicated by "d," as a return value of a function 
in the buffer of the output channel. When the 
buffer is filled with stream elements, that is, when 
the amount of data indicated as granularity is 
generated, the execution of this primitive is 
suspended until the subsequent demand arrives. 

put2(d) 
When this primitive is used, the double buffer

ing mechanism must be supported in the output 
channel. While the consumer function accesses a 
stream element stored in one area by using the 
primitive Ilget2(cid)," the producer function can simul
taneously stores a stream element indicated by "d" as 
a return value in the other area of the buffer by 
the primitive put2(d). When the area of the buffer is 
filled with stream elements and when the subsequent 
demand is received, this primitive begins to store a 
stream element in the other area of the buffer. 
Otherwise, it waits until the subsequent demand is 
received. 

The primitives "getl(cid)" and "put l(d)" are used 
when two function instances which communicate via 
the channel "cid" are allocated to the same 
processor. On the other hand, the primitIVeS 
"get2(cid)" and "put2(d)" are used when two function 
instances which communicate via the channel "cid" 
are allocated to different processors. When "get2" and 



"put2" are used between two function instances, the 
stream-oriented parallelism is exploited between these 
function instances. 

If another function is called in the function 
body, a new function instance is created by using the 
primitive "new" in the function body. Furthermore, 
new channels are specified by using the primitive 
"channel" to pass streams as actual arguments and to 
receive a stream as a return value . In this case, 
the stream elements are passed to the new instance 
via channel "cid" by primitive "sendl(cid)" or 
"send2(cid)." The primitives "send I " and "send2" are 
used as "putl" and "put2," respectively. However, in 
"send I" and "send2," the channel identifier ("cid") is 
explicitly specified to pass stream elements to the 
new function instance. The output stream of the new 
function instance, that is the return value, is 
received by a primitive "receivel(cid)" or 
"receive2(cid)." The primitives "receivel(cid)" and 
"receive2(cid)" are used as "get I" and "get2," 
respectively. 

mark end of streamO 
This primitive writes "EOS" into the end of an 

output stream as an identifier indicating the end of 
the stream. 

check end of stream(cid) 
-This primitive detects the end ("EOS") of a 

stream. It returns a logical value "TRUE" if the end 
of the stream is detected. Otherwise, it returns 
"FALSE." 

2.3 Functional Computation 

The amount of data propagated by a single 
demand is referred to as "granularity." As described 
in 2.2, granularity is indicated as a property of the 
channel. When a relational operation is described as a 
function, three kinds of granularity can be specified 
as follows: 

(1) tuple-level granularity 
(2) page-level granularity 
(3) relation-level granularity 

In tuple-level granularity, although the size of 
the buffer between the producer and the consumer 
can be minimized, many demands may be issued to 
the producer function. This may cause heavy com
munication overheads [3]. In relation-level granularity, 
the whole intermediate data, that is the complete in
termediate relation, is produced by a single demand. 
In this granularity, the buffer of a channel is 
required to store the whole intermediate relation. 
Furthermore, the stream-oriented parallelism between 
producer and the consumer functions is not exploited. 

In each granularity, it can be specified whether 
stream-oriented parallel processing is performed be
tween the producer function and the consumer 
function. When a formal argument corresponding to a 
stream is encountered more than once in a function 
body, one of the parameter passing mechanisms 
("recomputation" or "caching") is indicated as the 
property of the channel. 

In the following, several function definitions of 
relational operations are presented. The following 
programs abstractly show compiled object codes of 
functions by using the notation of the C language. In 

972 

our approach, if a sequential processor is used to ex
ecute a function, the function is compiled into 
sequential object codes including basic primitives. The 
basic primitives are implemented at the architecture 
level in the processor. 

(1) page-level granularity without stream-oriented 
parallelism 

Stream elements (tuples of a relation) can be 
transferred via the limited size of buffer. The size 
of buffer is referred to as "granularity" and it is 
equal to the "page size." When the program 'of a 
function "selection" receives a demand from another 
function, "getl(cid)" issues a demand to the producer 
function of a stream, and then waits for a page of 
stream elements. When the page of stream elements 
is stored in the input buffer, the "selection" function 
begins to compute the selection operation and stores 
the reSUlting elements in the output buffer of the 
output channel by the primitive "putl(d)" until the 
output buffer is filled. In this case, according to 
granularity, several demands are issued to the func
tion producing the stream elements. 

Program I 
define function selection(relation, a) 
stream-relation; 
item a; 
{ 

} 

tuple tu; 
while (!check end of stream(relation» 

tu = getl( rela tion) ; 

} 

if (selection_test(tu, a» 
putl(tu); 

mar~end_of_stream(); 

cl = channel(tuples, INPUT_BUFFER_SIZE, 
RECOMPUTATION or CACHING); 

/* specification of channel for output stream */ 
c2 = channel(tuples, OUTPUT_BUFFER_SIZE, 

RECOMPUTATION OR CACHING); 
/* specification of channel for input stream */ 
new(selection, pid, c2, cl, a); 
/* creation of function instance */ 

(2) page-level granularity with stream-oriented 
parallelism 

In demand-driven evaluation, a demand is issued 
to the producer function when the actual argument is 
encountered. However, in order to perform stream
oriented parallel processing between consumer and the 
producer functions, the demand must be pre-issued 
from the consumer function to producer function. It 
is achieved by using the primitives as shown Program 
2. In the function "selection," the primitive "pre
demand" pre-issues a first demand to the producer 
function of the input stream, and then the execution 
of the selection operation begins. At the same time, 
the producer function begins function computation by 
the pre-issued demand, and stores a reSUlting page 
into the output buffer. In function "selection," a 
demand is pre-issued again to the producer function 
by the primitive "get2(cid)," and begins computing the 
selection operation to the page. As the result of the 
pre-issued demand, the page is stored by the primi
tive "put2(d)" in the producer function. 

In this function, demands are always pre-issued 
by "pre-demand" or "get2(cid)." This stream-oriented 
parallelism is exploited by supporting the double buf
fering mechanism in the buffer of a channel between 



the consumer function and the producer function of 
its actual argument. 

Program 2 

define function selection(relation, a) 
stream-relation; 
item a; 
( 

} 

tuple tu; 
pre-demand(relation); /* pre-issuing a demand */ 
while (!check end of stream(relation)) ( 

tu = get'2(relation); 

} 

if (selection test(tu, a)) 
put2(tu) ;-

mark_end_of_stream(); 

cI = channel(tuple, INPUT_BUFFER_SIZE, 
RECOMPUTATION or CACHING); 

c2 = channel(tuple, OUTPUT_BUFFER_SIZE, 
RECOMPUTATION or CACHING); 

new(selection, pid, c2, cI, a); 

(3) page-level granularity with stream-oriented 
parallelism (Several references to same argument are 
encountered. ) 

In the function "selection," a reference to the 
input stream is encountered only once. When 
references to the input stream are encountered more 
than once in a function body, it is required to 
reproduce the same stream by recomputation or to 
retain the whole stream by caching. For example, bi
nary relational operations, such as the join or union 
operations, require to refer to the same input stream 
(the stream of the inner relation) more than once 
[17]. Therefore, recomputation or caching is specified 
alternatively as the property of a channel. In the 
case of recomputation, function computation can be 
performed within the limited memory resource. In the 
case of caching, the retained stream data may cause 
memory overflow. The function "join" is shown in 
Program 3. In this function, tuples in the outer
relation page are sorted on the joining attribute, and 
then each tuple in the inner-relation page is joined 
with tuples of the outer-relation page by using binary 
search algorithm. 

Program 3 

define_function join(relation_I, relation_2,pagesize) 
stream relation 1; /* stream of outer-relation */ 
stream relation-2; /* stream of inner-relation */ 
int pagesize; - /* size of outer-relation page */ 
( 

tuple inI[pagesize], in2; 
int i; 
pre-demand(relation 1); 
pre-demand(relation-2); 
while (!check end of stream(relation 1)) 

for (i = O;u"( pagesize) && -
!check end of stream(relation 1); i++) 
inI[i]~ get2(relation 1); -

sort(inI); /* sorting of ou~r-relation page */ 
while (!check_end_of_stream(relation_2)) 

in2 = get2(relation 2); 
if (!check end of stream(relation 1) && 

check end of stream(relation 2)) 
/* pre~iss~ing a demand to request 
re-reference to the stream of 
inner-relation */ 

pre-demand(relation_2); 

973 

} 

if (binary_search(inI, in2)) 
put2(concatenate(inI, in2)); 
/* comparing an inner-relation tuple 

(in2) with outer-relation tuples 
(inI) by binary search algorithm */ 

/* concatenating tuples if joining 
condition is satisfied */ 

mark_end_of_stream(); 

cI = channel(tuple, BUFFER_SIZE_I, 
RECOMPUTATION or CACHING); 

/* channel for input stream of outer-relation */ 
c2 = channel(tuple, BUFFER_SIZE_2, 

RECOMPUTATION or CACHING); 
/* channel for input stream of inner-relation */ 
c3 = channel(tuple, OUTPUT BUFFER SIZE, 

RECOMPUTATION;r CACHING); 
/* channnel for output stream */ 
new(join, pid, c3, cI, c2, BUFFER_SIZ~I); 

(4) relation-level granularity 
When the producer function is required to be 

red u c ed com pie t e ly by a sin g Ie de man d , 
"complete_reduction" is speCified as granularity. In 
this granularity, operand source relations or inter
mediate relations may overflow the limited size of 
buffer. Furthermore, stream-oriented parallelism is not 
exploited between producer and consumer functions. 
To realize relation-level granularity, the function 
"selection" shown in Program 2 is used, and 
"complete_reduction" i~ specified as granularity in the 
primitive "channel" as follows: 

cI = channel(tuple, COMPLETE_REDUCTION, RECOMPUTATION 
or CACHING); 
c2 = channel(tuple, COMPLETE_REDUCTION, RECOMPUTATION 
or CACHING); 
new(selection, pid, c2, cI, a); 

~ Relational Operations and Inference Operations 

Functional programming concepts can be applied 
to various kinds of applications. In this section, we 
discuss an approach to processing relational and in
ference operations in knowledge base systems. A basic 
algorithm of stream-oriented parallel processing for 
relational operations is discussed in [17] in detail. In 
this section, the algorithm for relational operations is 
briefly reviewed, and the stream-oriented algorithm 
for inference operations is presented. 

3.1 Relational Operations 

When a function of a relational operation 
receives a demand from the consumer function, it 
begins accessing tuples in its input buffer, then ex
ecutes the relational operation until it completes the 
production of one resulting page of tuples in the out
put buffer. The output buffer is then regarded as the 
input buffer for the consumer function. An individual 
function instance of a relational operation is not 
required to create a whole intermediate relation by a 
single demand. Each function instance creates only 
one page of tuples specified as granularity. Individual 
buffers do not require the capacity to store an entire 
intermediate relation. In this algorithm, if a producer 
function and a consumer function are allocated to 
different processors, it is assumed that the double 



buffering mechanism is supported in every buffer. 
That is, while the consumer function gets tuples in 
one area of its input buffer, the producer function 
can store tuples in the other area of the same 
buffer at the same time. 

Just before a consumer function begins access
ing tuples in one of two areas of its input buffer, it 
pre-issues a demand to the producer function to make 
the other area of the input buffer refilled with the 
subsequent page. 

As a result, stream-oriented parallel processing 
is performed between the producer and consumer 
functions. By using demand-driven evaluation, unary 
relational operations (the selection, restriction and 
projection operations), and binary relational operations 
(the join, union, intersection, difference and 
Cartesian-product operations) can be concurrently ex
ecuted within a limited memory resource environment. 
In particular, this algorithm shows attractive advan
tages in executing the join, union and Cartesian
product operations, which are the most time
consuming and the most memory-consuming operations. 

3.2 Inference Operations 

The combination of logic programming concepts 
with relational databases often appears as a promIsmg 
approach to knowledge base processing [6J,[18J. In our 
approach, sets of Horn clauses are combined with 
relational databases. Inference operations based on 
unification are executed within the framework of 
functional programming concepts. 

Three ways to combine logic programming con
cepts with relational databases can be considered as 
follows: 

( 1 ) A logic program is used as a 
a relational database system. In 
written in a logic program is 
sequence of relational operations 
operations), and the sequence of 
are executed by a relational 
system. 

high-level query for 
this way, a query 
translated into a 

(relational database 
relational operations 
database operation 

(2) Relations in a relational data base are regarded 
as sets of Horn clauses. An inference system operates 
unification for relations. That is, the relational 
database is regarded as a part of sets of Horn 
clauses, and inference operations are executed in 
relational databases. Such a database is generally 
referred to as a deductive database [6J. A relation is 
regarded not only as a set of tuples but also as a 
set of fact clauses. The relational database is 
regarded as the collection of relations and the collec
tion is defined as the extensional database [6J. Rela
tions are used to store fact clauses, and rule clauses 
are referred to as the intensional database [6J. That 
is, fact clauses are distinguished from rule clauses, 
and they are stored as relations. That is, elementary 
information is classified into rules and facts. Sets of 
facts are represented explicitly as a relational 
database. 

(3) As in (2), a relational database is also used to 
represent logic programs. However, not only a fact 
clause but also a rule clause are represented as a 
tuple [22J. Inference operations are executed in a 
relational database with the rule and fact clauses. 
This way is effective when the rule base is huge. 

974 

This is because the 
within the framework 
management. _ 

rule base can be 
of the relational 

managed 
database 

We realize two ways of (1) and (2). That of 
(3) is not supported. Usually, the size of a fact base 
determines the number of concurrent activities that 
can be carried out by the parallel machine. Hence, 
ways (1) and (2) are oriented toward knowledge base 
management applications. 

In way (1), a query described in a logic 
program is translated into a sequence of relational 
operations. The sequence is executed by using the 
parallel processing scheme based on the functional 
programming concepts as described in Subsection 3.1. 

To support way (2), the mechanism for execut
ing unification of a goal clause with fact clauses is 
also implemented on the basis of functional program
ming concepts. The resolutions . for rule clauses are 
perfor.med by a rule reduction system. A query repre
sented as a goal is reduced into AND-literals. Each 
AND-literal is referred to as a subgoal. A goal is 
reduced into AND-literals in the rule reduction sys
tem until each subgoal requires to be unified with 
fact clauses. A set of fact clauses are represented as 
a relation. A predicate name of a fact clause cor
responds to a relation name. The facts which have 
the same predicate name are represented as a set of 
tuples in a relation. AND-literals reduced from the 
goal clause are unified wi th fact clauses in 
relations. AND-literals can be processed independently 
as long as no variables are shared among literals. As 
a result, AND-parallelism is exploited. Between 
AND-literals sharing free variables, binding environ
ments of variable/value are transferred in the form 
of a stream. 

In our approach, each AND-literal inputs a 
binding environment and returns a new binding en
vironments as presented in [7J and [8J. In [7J and [8], 
binding environments are propagated within the 
framework of the data-driven evaluation. In [7J, the 
eager and lazy evaluations are used to control the 
stream of binding environments. In our approach, 
demand-driven evaluation is used for processing fact 
clauses. The process of solving each literal in AND
literals is regarded as a function that returns a 
stream of binding environments. Each binding en
vironment represents an alternative solution to the 
goal clause. Like relational operations, ' inference 
operations for a relational database are also per
formed on the basis of functional programming 
concepts. If AND-literals are sharing free variables, 
the input and output of binding environments among 
those AND-literals are performed using the stream
oriented scheme based on demand-driven evaluation. 

For example, a goal clause " <- Ll,L2,L3 " is 
constructed as three function nodes. The output of a 
function node is served as the input to another. It is 
clear that the activation of a literal does not have 
to wait for complete intermediate solutions to be 
generated by execution of the preceding function 
node. Therefore, stream-oriented parallel processing 
can be performed among these functions. In each 
function node, a literal is unified with fact clauses in 
a corresponding relation. Each function node is ex
ecuted on the basis of demand-driven evaluation by 
using the following algorithm. 

(1) When an inference function node receives a 



demand from the consumer node, it repeatedly ex
ecutes (2) and (3) until one page of new binding en
vironments is created and stored in the output buffer. 

(2) A single page of binding environments is 
accessed in one area of the input buffer. At this 
time, the other area of the input buffer becomes 
available and a demand is pre-issued to the producer 
node to refill the area with the subsequent page. As 
a result, stream-oriented parallel processing is per
formed between this node and the producer node. 

(3) The search and unification to fact clauses repre
sented in the operand relation are executed using the 
binding environments in the page that has just been 
accessed in (2), and new binding environments are 
created and stored in the output buffer. If the output 
buffer is filled with a page of new binding 
environments, execution is suspended and the node 
waits for the next demand from the consumer node, 
otherwise, (2) and (3) are executed repeatedly. If the 
page being manipulated is the last one of the binding 
environments served by the producer node, the execu
tion of this inference node is terminated. 

~ System Architecture 

ference operations on the basis of functional 
programming concepts. Each RKU supports the basic 
primitives for realizing demand-driven evaluation and 
function application, and executes relational or in
ference operations as functions discussed in Sections 2 
and 3. One or more operations can be allocated to 
each RKU by QRU. If several operations are allo
cated to a single RKU, they are executed as 
coroutines within the framework of demand-driven 
evaluation. This allocation enables the machine to ex
ecute a query within the limited number of 
processors. The execution sequence of the operations 
allocated to a single RKU is controlled by a 
scheduler. The scheduler gives control to one of the 
operations, when the operation has already received a 
demand and its operand pages have already been 
prepared in the internal memory. The function node 
to which control is given executes the operation to 
the data in the input buffer until the output buffer 
is filled (put-wait) or the operation to the data 
stored in the input buffer completes (get-wait). 
Then, the node suspends execution of function com
putation and returns control to the scheduler. 

Communication Network : Stream data (the sequence 
of tuples or the sequence of binding environments) 
and demands are transferred via the Communication 
Network. Information for allocating function instances 
and for specifying the channels among function in
stances is also transferred between QRU and RKU's. 
The transfers of stream data and demands between 
processors are managed by Communication Processing 
Units connected to every processor. 

Data Staging Network : Source relations are trans
ferred from disk devices to Staging Buffers via the 
Data Staging Network. A source relation is stored to 

Communication Network 

RelatIonal OperatIon Sequence t1I1tf Goal Trt1l1$fer Line 

In this section, a relational database machine 
architecture based on functional programming concepts 
is presented. In this architecture, a sequential proces
sor is used for computing an individual function. The 
overview of the multiprocessor architecture is shown 
in Fig. 1. Each processor (RKU or QRU) supports the 
basic primitives defined in Section 2. The processor 
includes an internal memory, and the processors are 
connected via a high-speed interconnection network. 
The relations in the database are distributedly stored 
in disk devices. The disk devices are connected to 
the processors via Staging Buffers. The three-level 
memory hierarchy employed in this architecture. As 
discussed in [9], [12], [13], [15] or [19], the three
level memory hierarchy is effective in manipulating --....... --------iiiiii'-t~----.... ~----..... ~ 
relational operations. 

Although a sequential processor is currently 
used to compute an individual function, advanced 
processors as discussed in [14] and [15] can be at
tached to each processor in future. 

The total internal memory of each processor is 
not large enough to store a whole source relation or 
a whole intermediate relation in general. In this 
architecture, an operand source relation is staged up 
into a staging buffer as a stream of tuples, using the 
demand-driven evaluation. 

The system consists of the following 
components: 

QRU : QRU decomposes a query into a sequence of 
relational operations or into a goal clause which con
sists of AND-literals. QRU is regarded as a rule 
reduction system. In manipulating a query as a goal 
clause, the query is reduced into AND-literals until 
each literal requires to be unified with fact clauses. 
A query is reduced by unifying with rule clauses in 
the rule base. QRU allocates each relational or in
ference operation as a function instance to one of 
RKU's, and specifies the channels between function 
instances. 

RKU : RKU's carry out relational operations and in-

975 

QRU: Query Reduction Unit for Manipulating Rule Bases 
RKU: Relational Operation Processing and Knowledge Processing Unit 

CP: Communication Processing Unit 

Fig. 1 System architecture 



one of the Staging Buffers which is connected to a 
single RKU. This network supports the allocation of 
source operand relations to the staging buffer. 

~ Experimental Implementation 

For simulation experiments of the relational 
database machine, we have implemented the basic 
primitives in software, and have developed a rela
tional operation system as described in Sections 2 and 
3 on the Sun-2 workstation [23]. Although this system 
is currently running on a single processor, it can 
simulate parallel processing environments based on. 
demand-driven evaluation. Each relational operation is 
defined as a function and executed within the 
framework of demand-driven evaluation. In this 
section, experimental results of query execution are 
shown. The relational operation system can realize 
various environments of demand-driven' evaluation. 

5.1 Environments of the Experiment 

The query chosen for presenting" several, en
vironments of ,demand-driven evaluation is shown in 
Fig. 2. The query' includes four selection, operations, 
three join operations and" a projection operation. The 
cardinality (the number of tuples) of each relation; 
the tuple length, selection selectivity factors and join 
selectivity factors are set as shown in Table L It 
is assumed that five processors (RKU's) are used to 
execute the quer,y. Relational operations are allocated 
to processors as shown in Fig 2. 

The following environments are assumed in the 
experiments. 

(1) The transfer of stream elements is exclusively 
performed between two processors. While two proces
sors are communicating via the Communication 
Network, no other processors can use it. The transfer 
of demands can be simultaneously performed among 
every processors. The' data transfer rate is set to 
16.6 milliseconds for a 2k-byte data. 

(2) The elements of a stream corresponding to each 
source operand relation have been already stored in 
Staging Buffers. Tuples of a source relation are 
staged up to the Staging, Buffer as a stream. Each 
operand relation is stored in the, Staging Buffer con
nected to the processor which manipulates the 
operand relation. 

~ Experimental Results 

The query was executed in four environments 
shown in Table 2. These environments are realized by 
using basic primitives and by specifying the properties 
of channels as discussed in Section 2. Experimental 
results of Environment-I, Environment-2, Environment-
3 and, Environment--4 are· shown in the time charts 'in -
Fig. 3, Fig; 4, Fig .. 5, and Fig.6, respectively. 

In Environment-I, stream -oriented parallelism is 
not exploited. On the other hand, in Environment-2, 
parallelism is exploited and performance of query 
processing is, improved. In Environment-3, recomputa
tion is performed in node-7 of the selection 
operation. In this environment, although recomputation 
causes', heavy overhead, it enables the relational 
operation system to perform a' query even in a case 
where the whole relation ,.to be processed is not 

976 

stored in the internal memory of the processor. In 
comparing Environment-2 with Environment-4, paral
lelism in Environment-2 is higher than that in 
Environment.,..4. In Environment-4, since the relation
level granularity is employed, the stream-oriented 
parallelism is not exploited. However, the parallelism 
is exploited by evaluating formal arguments of a 
function in parallel. 

Response times were measured by varying 
granularity settings in Environment-2 as shown in 
Fig. 7. In this experiment, only the sizes of inner 
relation pages in executing the join operations are 
varied, and the granularity for streams of outer rela
tions is set to the relation-level granularity. The 
granularity is set to the same value in every join 
operation in a query. For small granularity, response 
time is long. This is because demands are issued 
many times and the number of communication times 
of stream data increases in the small granularity 
case. For large granularity, the response time is long. 

buf-2 

staging 
buffer 

stream 

staging 
buffer 

/ staging staging 
buffer buffer 

oode-O: pro je::tion( without :duplicate elimination) 
node-I, node-3, node-5: join 
node-2 ,mde-4 ,node-6, node-7: sele::tion 
processor-O: node-O buf-I: operand page of proje::tion 
processor-I: node-l,node-2 buf-2,4,6: outer-relation p3ge of' 
processor-2: node-3,node-4 join 
processor-3: node-5,node-6 buf..:...3,5,7: inner-relation page of 
processor-4: node-7 join 

Fig. 2 Query 
Table I Parameter settings 

tu,Q.le size 64 bytes 
operand attribute (integer value) 4 bytes 
cardinality (number of tuples) of 
each source relation 10000; tuples 
cardinality of each intermediate 
relation 1000 tuples 
selection selectivity factor(ssf) 0.1 
join selectivity factor(jsf) 0.001 

(cardinality of result relation): 
ssf*Ccardinality of source rela~ion) in selection, 
;sf*(cardinality of outer relatlon) 
~(cardinality of inner relation) in join. 



Table 2 Query processing environments 

selection operations 

granularity (buffer size) for input stream: 
(number of tuples) 

join operations 

Experimental node-2 node-4 node-6 node-7 node-l node-3 node-s 
Environment (staging (staging 

buffer) buffer) 

page-level page-level 

Environment-l 
(1000) (1000) 

page-level page-level 

Environment-2 
(1000) (1000) 

page-level page-level 

Environment-3 
(1000) ( 1000) 

page-level page-level 
Environment-4 

(1000) (1000) 

0. 
executing state data transfer node 

~ 
number 

o 

1 

demand transfer 2 
suspended state 

3 

4 

5 

6 

.., 
I 

(staging (staging 
buffer) buffer) outer-

relation 
(buf-2) 

page-level page-level relation 
, -level 

(1000) (1000) (1000) 

page-level page-level relation 
-level 

(1000) (1000) (1000) 

page-level page-level relation 
-level 

(1000) (l000) (1000) 

page-level page-level relation 
-level 

(1000) (1000) (1000) 

10. 20. 

II II 

.. \ 11', .. , i , ~ , i " II , .. , i 

rlrI rI ~ rI • rI ~ rI 

inner- outer-
relation relation 
(buf-3) (buf-4) 

page-level relation 
without -level 
stream 
parallelism (1000) 

(.100) 

page-level relation 
with -level 
stream 
parallelism (1000) 

(100) 

page-level, r:elation 
with .-level 
stream 
parallelism (1000) 

(100) 

relation relarion 
-level -level 
(1000) ( 1000) 

(sec) 0. 
node 
number 

o 

1 

inner- outer- inner-
relation relation relation 
(buf-s) (buf-6) (buf-7) 

page-level relabion page-level 
without ".level without 
stream stream 
parallelism (1000) parallelism 

(100) (100) 

page-level relation page-level 
with -level with 
stream stream 
parallelism '(1000) parallelism 

(100) (100) 

page-level page-level page-level 
with with with 
stream stream stream 
parallelism parallelism parallelism 

(100) (500) (recomputa-
tion) (100) 

relation relation relation 
-level -level -level 
( 1000) (1000) (1000) 

10. 20. (sec) 

Fig. 3 Time chart (Environment-I) Fig. 4 Time chart (Environment-2) 

node 
number 

0. 10. 20. (sec) 

o .. ~ II II"I~· 

2 

3 

4 

Fig. 5 Time chart (Environment-3) 

977 

0. 10. 28. (sec) 
node ---,-
number 

0 

1 ~ ---' 

3 --
4 

5 
.. 

6 

.., 
I 

Fig~ 6 Time cha~t (Environment-4) 



-c 
IP 
II) -
(II 

E 
'M 
+' 
(II 
II) 
c 
0 
Q. 
1/1 
(II 

a: 

25 

20 

15 

10 

5 

0 

10 100 

Granularity 

1000 
(tuples) 

Fig. 7 Response time in various granularity settings 

This is because stream-oriented parallelism is not 
exploited. In the case of large granularity, larger 
memory space is required in order to store a larger 
page. Optimal granularity is dependent not only on 
hardware performance, such as communication speed 
of the Communication Network, the size of available 
memory space or processing power of each processor, 
but also on contents of manipulated data. The proper 
page-level granularity exploits the highly parallelism 
within a limited memory resource environment. 

5. Conclusions 

We have presented a novel approach to a rela
tional database machine for processing knowledge 
bases. The principle purpose of the approach is to 
concurrently perform both relational operations and 
inference operations within the limited resource en
vironment in knowledge base systems. This approach 
is based on functional programming concepts in order 
to manage computer resources with the theoretical 
neatness of functional computation. By using demand
driven evaluation as a driving method of the func
tional computation, parallelism can be exploited in 
knowledge base processing. In this paper, we have 
defined the basic primitives which are used to 
implement demand-driven evaluation and function 
application. We have also presented a basic algorithm 
and a system architecture for executing relational and 
inference operations by using a demand-driven evalua
tion mechanism. 

In this paper, we have also discussed how the 
relational database concepts are combined with logic 
programming concepts. For processing a set of fact 
clauses, we have presented an algorithm based on 
stream-oriented parallel processing. 

We have developed the relational operation sys
tem based on the proposed approach. Currently, we 
are designing the inference operation system for fact 
clauses, and also designing the architecture in more 
detail. 

Acknowledgements 

The authors would like to thank Dr. Makoto 
Amamiya and Ryuzo Hasegawa (NTT Electrical Com
munication Laboratories)· for their valuable discussions 
and suggestions. 

978 

References 

[1] M. Amamiya and R. Hasegawa, "Dataflow com2uting and 
eager . and lazy evaluations~" New Generation 
Com2ut1ng, vol. 2, no. 2, pp. 10J-129, 1984. 

[2] J. Backus, "Can programming be liberated from the von 
Neumann style? A functional style and its algebra its 
algebra programs.,," Comm. ACM, vol. 21, no. 8, pp. 
613-641 Aug. 19/8. 

[3] H. Borai and D. J. DeWitt, "Design considerations for 
data-flow database machines," in Proc. ACM SIGMOD 
1980 Int. Conf. Management of Data, pp. 94-104, May 
1980. 

[4] E. F. Codd" "A relational model of data for large 
shared data DanksA" Comm. ACM, vol. 13, no. 6, pp. 
377-387, June 197u. 

[5] D. P. Friedman and D. S. Wise, "Aspects ot; 
a2Qlicative programming for parallel processing, 
IEEE Trans. Comput., vol. C-27, pp. 289-296, Apr. 
1978. 

[6] H. Gallaire, J. Minker and J. M. Ni~olas, "Logic and 
databases: a deductive approach,' ACM Computing 
Surveys, vol. 16, no. 2, Jun 1984. 

[7] Z. Halim and 1. Watson, "An or-parallel data-driven 
model for logic programs," in Proc. Int. Workshop 
High-level Computer Architecture, pp. 1.26-1.36, May 
1984. 

[8] R. Hasegawa and M. Amamiya, "Parallel execution of 
logic programs based on dataflow concept," in Proc. 
1984 Int. Conf. Fifth Generation Computer Systems, 
pp. 507-516, 1984. 

[9] P. B. Hawthoron and D. J. DeWitt, "Performance 
analysis of alternative database machine 
archltectures," IEEE Trans. Softw. Eng., vol. SE-
8, no. I, pp. 61-76A.1982. 

[ 10] G. Kahn and D. Mactmeen, "Co routines and networks of . 
Q8rallel processes," in Information Processing 77: 
Proceedings of IFIP Congress 77, pp. 993-998, Aug. 
1977. 

[11] R. M. Keller and M. R. Sleel?, "Applicative caching," 
in Proc. ACM Conf. Functlonal Programming Lang. 
Comput. Arch., pp.·131-140, 1981. 

[12] N. Kamibayashi and K. Seo,"SPIRIT-III: an advanced 
relational database machine introducing a novel data
staging architecture with tURle stream filters to 
preprocess relational algebra, AFIP Proc. NOC 1982, 
1982. 

[13] M. Kitsuregawa, H. Tanaka and T. Moto-oka, 
Application of hash to data base machine and its 
architecture!" New Generation Computing, vol. 
1 ,pp.63-74 , 983. 

[14] Y. Kiyoki, K. Tanaka, N. Kamibayashi and H. Aiso, 
"Design and evaluation of a relational database 
machine employing advanced data structures and 
algorithms," in Proc. 8th Int. Symp. Computer 
Architecture,.pp. 407-428 May 1981. 

[15] Y. Kiyoki, MI. Isoda, K. Kojima, K. Tanaka, A. 
Minematsu and H. Aiso, "Performance analysis for 
parallel processing schemes of relational operations 
and a relational database machine architecture with 
optimal scheme selection mechanism," in Proc. 3rd 
Int. Conf. Distributed Computing Systems, Oct. 1982. 

[16] Y. Kiyoki, R. Hasegawa ana M. AmaIDiya, 'An execution 
scheme for relationa~ database Q2~rations with eager 
and lazy evaluations~' Trans. IPSJ~ vol. 26, no. 4, 
p~. 685-695, July 19~5 (in Japanese). 

[17] r. Kiyoki, R. Hasegawa and M. Amamiya, "A stream
oriented parallel prp,cessing scheme for relational 
database operations,' to appear in Proc. 1986 Int. 
Conf. Parallel Processing, 1986. 

[18] D. Li, "A Prolog Database System," Research Studies 
Press., 1984 . 

[19] K. Sea, N. Kamibayashi, A. Minematsu and H. Aiso, "A 
look-ahead data staging architecture for relational 
database machines," Proc. 8th Int. Symp. Computer 
Architecture, pp.389-406, May 1981. 

[20] P. C. Treleaven, D. R. Brownbridge and R. P. Hopkins, 
"Data-driven and demand-driven computer 
architecture," ACM Computing Surveys, vol. 14, no. 1, 
Mar. 1982. 

[21] S. R. Vegdahl, "A survey of proposed architf,ctures 
for the execution of functional languages ' IEEE 
Trans. Comput., vol. C-33, no. 12, pp. 1050-1071, 
Dec. 1984. 

[22] H. Yokota and H. Itoh "A model and an architecture 
for a relational knowiedge base," Proc 13th Int. 
Symp. Computer Architecture, June 1986. 

[23] Programmers Reference Manual for the Sun Workstation, 
Sun Micro System, Inc., 1982. 



KNOWLEDGE-BASED EXPERT SYSTEM 
FOR HARDWARE LOGIC DESIGN 

Tamio Mano, Fumihiro Maruyama, Kazushi Hayashi, Taeko Kakuda, 
Nobuaki Kawato, and Takao Uehara 

FUJITSU LIMITED 
1015 Kamikodanaka, Nakahara-ku 

Kawasaki 211, Japan 

ABSTRACT 

We have developed a knowledge-based expert 
system for hardware logic design that designs CMOS 
circuits from a concurrent algorithm written in the 
occam high-level programming language. This work 
was done as part of the activities of the Fifth Gener
ation Computer Systems (FGCS) Project of Japan. 
Our system aims at supporting the entire design pro
cess from a specification to completed CMOS cir
cuits by incorporating the designers' expertise into 
the computer and utilizing it effectively. Prolog was 
selected as the implementation/knowledge-represen
tation language. This paper gives examples of the 
knowledge provided for this system, emphasizing the 
functional design phase which is heavily dependent 
on the designers' expertise. This paper also describes 
how Prolog was used to express this knowledge, and 
how the inference engine was created. While con
structing this system, we also evaluated the effec
tiveness of Prolog as the implementation language 
for a new generation of CAD systems. 

1. INTRODUCTION 

The FGCS Project has been concerned with research 
into knowledge-based systems. We chose hardware logic 
design as an application for the following three reasons. 
First, the application must be an area in which human 
expertise plays a significant role. At present, reliable and 
efficient hardware logic design can only be done by skilled 
designers. Therefore, this area is a suitable testing ground 
for the use of expert knowledge. Secondly, because hard
ware logic design is synthesis-oriented, which is quite un
like any successfully developed analysis-oriented system 
such as MYCIN, there are many unknown factors to in
vestigate. Lastly, since much must be considered in hard
ware logic design, a wide range of knowledge is required. 

The implementation language is Prolog, which is 
also used as the underlying knowledge-representation lan
guage. Knowledge representation is an important issue. 
Hardware logic design employs various areas of know
ledge, and design data must be represented as well. In 
addition, human designers switch from one representa
tion to another in the course of their work. For these 
reasons, we have not adopted any particular existing tool 
for knowledge representation. 

CH2345-7j86jOOOOj0979$01.00© 1986 IEEE 
979 

2. SYSTEM OVERVIEW 

Our system aims at supporting the entire design pro
cess from a specification to completed CMOS circuits by 
incorporating the designers' expertise into the computer 
[1][2][3]. This system designs CMOS circuits that conform 
to the input specification through the interaction with the 
user, as shown in Figure 1. The input specification is a 
concurrent algorithm described in occam[4] which is a 
programming language characterized by its treatment of 
concurrency. The input specification is based on software 
concepts, such as variables and procedure calls, but not 
hardware concepts, such as registers and clocks. There
fore, with occam, a designer can create a concurrent al
gorithm without being familiar with hardware details. 

Concurrent Algorithm (OCCAM) 

Proc acc (CHAN lin, rin, din, lout, rout)= 
VAR d. I • r • f : 
SEQ 

PAR 
1:= FALSE 
r:= FALSE 
f:= FALSE 

WHILE TRUE 
SEQ 

IF 
I = TRUE 

SEQ 
r : = f 
f :=TRUE 

I = FALSE 

CMOS circuit 

Interaction 
1------ User 

Figure I. Input and output of the system 



Given a concurrent algorithm, the system performs 
functional design using designer's expertise and interact
ing with the user to determine the hardware behavior. 
The hardware concepts, such as registers and clocks, first 
emerge in this intermediate design stage. Next, the sys
tem designs CMOS circuits to achieve the hardware be
havior determined by the functional design process. The 
system outputs the CMOS cells in the library and CMOS 
functional cells, and their connections. Another program 
should be used for placement an'd routing of these cells on 
a chip. 

Our system consists of a functional design phase and 
a circuit design phase, as shown in Figure 2. Because 
the system is divided into these two phases, the system 
is able to flexibly cope with different semiconductor tech
nologies. The functional design phase, the first half of 
the design process, determines the application of hard
ware concepts in the implementation of a concurrent al
gorithm in occam, and produces the finite-state machine 
description in DDL[5] using designers' expertise related 
to the functional design for hardware. Although hard
ware behavior is determined at this step, it is indepen
dent of the semiconductor technology being employed. 
The circuit design phase, the second half of the design 
process, transforms the finite-state description into the 
desired CMOS circuits. To achieve this, the translator 
subsystem extracts and rearranges information required 
for the circuit design from DDL. The functional cell de
sign subsystem designs combinational circuits, and the 
functional block design subsystem allocates cells in the 
library to functional blocks such as registers and mem
ories. In the circuit design phase, technology-dependent 
knowledge related to circuit synthesis is used. 

Concurrent Algorithm (OCCAM) ----------r---
Functional 
Design 
Phose 

Finite-state Machine Description (DOL) ------- ---

CMOS Circuit 

Figure 2. System configuration 

Circuit 
Design 
Phose 

980 

3. DESIGN EXAMPLE 

This section discusses how the system works, tak
ing a pattern matcher proposed by M.J.Foster and 
H.T.Kung[6], as an example. Figures 3 and 4 show the 
outline of the pattern matcher. This pattern matcher 
checks whether a given pattern, which is a fixed length 
vector of characters, is embedded in a given text string, 
which is an endless string of characters, as shown in Fig
ure 3. 

Let us denote the input string stream as SOS1S2 ••• , 

the input finite pattern stream as POPIP2 ••• Pk , and the 
output result stream as TOTI T2 •••• Characters in the two 
input streams may be compared for equality, with the 
wild card character X matching any character in an input 

. stream. The output bit Ti is to be set to 1 if the substring 
Si-kSi-k+l ••• Si matches the pattern, and 0 otherwise. 
For example, in Figure 4 the pattern AXC matches sub
strings SOSI82, 838485, and 848586 (ABC, AAC, and ACC, 
respectively) . 

POTtern matcher 

AXC 
'--'-.::--~ pall ern 

. A8CAACC 
SIring -----'-'-'-

0010011 ... 
_----1 resull 

Figure 3. 0010 10 and from Ihe panern mOlc~,er 

Figure 4. Dataflow of the pall ern matcher 

3.1 Design Specification 

The concurrent algorithm of the pattern matcher, 
which is input to this system, is described in occam, as 
shown in Figure 6. 

The occam program consists of three declaration 
parts, (A),(B), and (C), and a description of parallel pro
cesses, (D). The declaration parts are as follows. 

(A) declares channel vectors. A channel vector is a set 
of channels, these being used for communication be
tween concurrent processes. For example, pattern[6] 
means that there are six channels named pattern, and 
they are numbered from 0 to 5, as shown in Figure 4. 

(B) declares a single comparator process. PROC gives 
the name comp to this process, and identifies five. 
formal parameters, the internal channels, pin, sin, 
pout, Bout, and dout, as shown in Figure 5. When 
the named process is substituted for the subsequent 
process (D), the formal parameters are replaced by 
the actual parameters. Process comp is a sequen
tial pro~~~~ ~hich consists of two processes. One is 
the initialization (B-1), and the other is an endless 



pin 

sout 

dout 
( oj 

pout 

sin 

din 

d 

lin lold 

xin 

rout 

{bJ 

Figure 5. Formal parameters and variables 

(a) Comparator (b) Accumulator 

CHAN pattern (6]: 
CHAN string (6 J: 
CHAN data (5]: 
CHAN end (6]: 
CHAN wild [6]: 
CHAN result (6]: 

PROC comp I CHAN pin, sin, pout, sout, dout) = 
VAR pnew, paid, snew, sold: 
SEQ 

PAR 
pold:"O 
sold:= 0 

WHILE TRUE 
SEQ 

PAR 

PAR 

pin ? pnew 
pout ! pold 
sin? snew 
sout ! SOld 

pold:= pnew 
sold:= snew 
dout I pnew = snew : 

:J IS- I ) 

J(8-2' 
JIS-3) 

PROC ace ICHAN xin, lin, rin, din, xout, lout, rout)= 
VAR d, xnew, xold, Inew, lold, rnew, rold , t : 
SEQ 

PAR 
xold:= FALSE 
lold := FALSE 
rold:= FALSE 
t := TRUE 

WHILE TRUE 
SEQ 

PAR 
xin ? xnew 
xout I xold 
lin? Inew 
lout ! lold 
rin ? rnew 
rout ! raid 
din? d 

PAR 
xold := xnew 
lold:= Inew 
IF 
Inew" TRUE 

SEQ r------------, 
I rold := t I 

I t = TRUE : L _____________ J 

Inew = FALSE 
PAR 

rold := rnew 
t := t / \ (xnew \ / d ) : 

PAR i = [I FOR- 5] 
PAR 

(C-3) 

comp (pattern [i - I] , string [5 - i J , pattern [i], 
string [6- i] , data (i - I ] ) 

ace (wild [i -I], end [i-I J, result [5-1 J, data [i-I], 
wild [i],end [iJ,result (6-i]) 

lout 

xout 

rin 

(8) 

(C) 

Figure 6. Algorithm for the pattern matcher in OCCAM 

iterative process, WHiLE TRUE. The iterative pro
cess contains a sequential process, which consists of 
two processes. The first two are output and input 
processes (B-2). The last process compares the char
acters in the pattern with those in the text string and 
outputs a Boolean value, TRUE or FALSE (B-3). 

981 

(C) declares a single accumulator process. The pro
cess named acc contains seven formal parameters, as 
shown in Figure 5. The variable d stands for the 
current comparison result of the compa;ator, xnew 
and xold for the don't care bit, lnew and lold for end 
of pattern, rnew and rold for final result of match
ing, and t for temporary result of matching. Process 
acc is a sequential process, which consists of two pro
cesses. One is the initialization of variables (C-1). 
The other is an iterative process, similar to process 
compo The iterative process includes a sequential 
process, which consists of two processes. The first 
includes output and input processes (C-2). The sec
ond is a conditional process (C-3). When the end 
of pattern is reached, an accumulator uses the value 
t (current temporary result) as the final result, and 
then resets t to TRUE. Otherwise, it maintains a 
temporary result t, which is set by the logical ex
pression t := t /\ (xnew V d). /\ and V stand for 
boolean AND and OR, respectively. Thus if the cur
rent temporary result t is TRUE, and xnew or the 
current comparison result d is TRUE, then the new 
temporary result will be set to TRUE. 

(D) indicates a 2x5 array of concurrent processes, as 
shown in Figure 4. The cells at the top are the com
parators; the pattern flows from left to right and the 
string flows from right to left. The bottom cells, accu
mulators, receive the results of the comparison from 
above. They maintain partial results, and shift com
pleted results from right to left. Two bits associated 
with the pattern flow through the accumulators from 
left to right. One bit is the end of pattern, L . The 
other is the wild card character, X. 

3.2 Functional Design Phase 

In the functional design phase, the finite-state ma
chine description in DDL is produced from a given con
current algorithm. Functional design can be thought of 
as that phase of the design that determines which hard
ware concepts to apply to the implementation of the con
current algorithm and describes how the hardware should 
behave. This phase is one of the most' knowledge-intensive 
parts, and its performance depends heavily on the know
ledge which is used. This phase continues with the fol
lowing procedures through the interaction with the user, 
as shown in Figure 7. 

(1) Analysis of the structure of the occam specification. 
Taking the concurrent descriptions into account, it 
analyzes the occam construct(WHILE, SEQ, IF, 
etc.) and creates an outline of the hardware control 
mechanism (state transitions). 

(2) Implementation of variables described in occam, us
ing hardware elements(registers, terminals, etc.). Be
cause the occam specification does not provide in
formation about the number of required bits, the sys
tem queries the user. However, the system automat
ically infers that the number of bits for a variable is 
one if all of its sources turn out to be Boolean val-

ues ("TRUE" ,"FALSE" , or the evaluation of a logical 
expression) . 

(3) Compression of the operation sequences. This is an 



yes 
I ?-functional_design. 

Parsing your specifications in OCCAM .... 

Implementing OCCAM variables .... 

Should variable rold have only one bit? yin 
'I: y 
How many bits should variable snew have? 

I:S 
Should variable pnew have as many bits as variable snew? yin 

I :y 
Should variable pold have as many bits as variable pnew?y/n 

I:y 
Should variable sold have as many bits as variable snew?y/n 

I :y 

Compressing a sequence of operations .... 

Implementing inter- process communication ..... 

Optimizing ...• 

Enter the name of the register for rnew and rold. 
I: r 

Generating partial DOL descriptions .... 

Constructing the final DOL code from partial DOL descriptions. 

yes 
I?-

Figure 7. Interaction with the user 

<system> pm. 
<time> cl k. 
<entrance> pln(S), sln(S), xin, Iln,rin,dln. 
<exit> pout(S), sout(S), dout, xout, lout, rout. 
<terminal> send 1;" 

<automaton> comp: elk: 
<register> p (S), s(SI. 
<states> 

Inlt: p-O, s-O, -Idle. 
Idle: pout=p, sout"s, 

\0 p-pin, s,",,;""""sin, -state2. 
state2: send I" I, dout = (p: =s), -Idle. 

<end >. 
<end> compo 
<automaton> acc: cl k: 

<register> d,x,l,r,t. 
<states> 

Inlt:x-O, 1-0, r-O, t-I,--Idle. 
Idle: send I : xout=x, 10ut=I, rout=r, 

x-xln, I-lin, r-rln, 
d-dln, -statel. 

statel : I * I * I [!::_-L~~C~IJ 
<end >. 

<end> acc. 
<end> pm. 

; t-(t a (x I d II., -Idle. 

Figure 8. Final DDL description 
attempt to transform some occam sequential pro
cesses into DDL register transfer operations executed 
in parallel, which improves the performance of the 
generated hardware. 

(4) Implementation of the communication between pro
cesses described in occam("?" for inputting a value 

from a channel, "!" for outputting a value to a chan
nel). Basically the communication is implemented 
by hand shaking. Signal lines through which data is 

982 

transferred and signal lines used for synchronization 
are provided. 

After implementing occam primitive operations as 
DDL hardware operations and generating partial DDL 
descriptions, the system puts these partial descriptions 
together to complete the final DDL description, as shown 
in Figure 8. 

3.3 Circuit Design Phase 

The translator subsystem transforms the DDL finite
state machine description into information to be used by 
the circuit design process. It gathers and edits condi
tions for terminal connection, register transfer, and state 
transition operations. Then the translator subsystem or
ganizes the data in frame-like structures, classified into 
twelve categories: system, clock, automaton, input signal, 
output signal, terminal, memory, register, state, decoder, 
arithmetic expression, and logical expression. 

The DDL code shown in Figure 8 contains three regis
ter transfer operations of register" r" in automaton" ace" . 
These operations provide the following information: 

1) I * acc_init * I r +- O. 

2) I * acc_idle & sendl * I r +- rin. 

3) I * acc_statel & 1 * I r +- t. 
where the states whose identifiers are modified by 

"acc" belong to the automaton" ace". "1 * * I ... " 
stands for an if-clause. Based on the above information, 
the input circuit of register" r" is designed, as shown in 
Figure 9. 

The automaton design subsystem implements autom
ata having the appropriate states using flip-flops. It de
signs a control circuit around these flip-flops according to 
information on state transitions provided by the trans
lator subsystem. Figure 10 shows the resulting circuit 
design for a pattern matcher that consists of a pair of the 
comparator and the accumulator. 

The size of a combinational circuit that can be cre
ated using a single CMOS cell is limited by CMOS tech
nology. Signal delay depends mainly on the number of 
FETs inserted in series between the power supply line and 
output line. Therefore, the circuit decomposition subsys
tem decomposes the combinational circuits so that the 
number of FETs in series does not exceed the limit im-
posed by signal delay considerations. The combinational 
circuit around register" r" is decomposed into four parts 
as shown in Figure 9. 

The functional cell design subsystem implements the 
decomposed combinational circuits as functional CMOS 
cells. The optimal layouts of the functional CMOS cells 
are obtained by a heuristic algorithm[7]. However, if the 
designer is required to use NAND or NOR gates, then 
the partial combinational circuit (iv) in Figure 9 results in 
mediocrity as shown in Figure l1(a). In this case, we take 
advantage of the property of CMOS functional cells that 
physically adjacent gates can be connected by a diffusion 
area. As a result, the optimal layout is obtained as shown 



[[=[send[O]] 1]]-----1....---... 
(acc_idlel 

[r [OJ] 

[[=[1 (oll Ill--'-........... 
(acc_statel] 

[ace....; initJ>--H-........ 

Figure 9 . .Input circuit of register r 

rout 

Figure 10. Logic diagram of pattern matcher 

9HFII 9AFII 9AFII 9HHHFII 
(a) NAND gates (b) Functional cell 

Figure II. Implementation of the circuit (iv) in Figure 9. 

in Figure l1(b). Note that the optimal array is almost 
50% smaller than the basic conventional array. 

The functional block subsystem allocates cells in the 
library to functional blocks, such as registers, memories, 
decoders, and adders. Since functional cells and cells in 
the library are of the same height and have the same 
power connections and standardized connection points, 
they can be laid out by an existing physical design CAD 
system. 

4. INFERENCE MECHANISM 
AND KNOWLEDGE 

983 

The functional design is heavily dependent on the 
designers' own expertise. It is difficult to automate the 
functional design by conventional algorithmic CAD tech
niques. We automated the functional design by. incorpo
rating the designers' expertise into the computer. 

This section discusses how the inference mechanisms 
were created and gives examples of the designer's exper
tise provided for the functional design phase. We also 
evaluate the effectiveness of Prolog as an implementa
tion/knowledge-representation language for a knowledge
based logic design system. 

4.1 Characteristics of 
Functional Design 

We must consider several points when performing 
functional design by a knowledge-based approach. The 
designer gradually refines the design while checking the 
specifications and clarifying the entire circuit. At each 
design step, the designer evaluates the design develop
ment and makes appropriate decisions. Therefore, it is 
extremely important in design to always have a clear un
derstanding of the relationship among design objects. The 
knowledge-representation framework should reflect this 
fact. A good method must be provided for referring to 
the relations among design objects. 

Another important issue is controlling the order of 
design jobs. With several similar jobs, which is placed 
first is significant, because one job may make another job 
unnecessary or at least make it easier. Therefore, the 
implementation language should be able to easily express 
the control of design jobs. 

4.2 Inference Mechanism 

4.2.1 Forward chaining 

Forward chaining is used as the basic inference mecha
nism. Logic design is a process of incremental refinement. 
Incremental refinement comes from successive design deci
sions; every time a decision is made, the current design de
velopment is changed. Design development is represented 
as the information in the working memory. Chainging the 
current design development is performed by updating the 
information in the working memory. 

Forward chaining seems to be able to simulate the 
incremental refinement design process. When the condi
tions set forth by the premise section of a forward chain
ing rule are satisfied, .the conclusion section is activated 
and the working memory is updated. Then another rule 
is activated, referring to the updated working memory. 
Processing continues in this manner. We use the as
sert(addition of fact) and retract(deletion of fact) pred
icates of Prolog for updating the working memory. The 
working memory consists of design information, which is 
represented by about 40 types of Prolog fact. As the de
sign process continues, the working memory is gradually 
filled with design information. 

Figure 12 shows the general format of the forward 
chaining rule. When conditions 1, ... , n are satisfied in 
the premise section, actions 1, ... , m are activated in the 



conclusion section. The working memory-is updated while 
causing side effects by the assert. and/or retract predi
cates. 

(Process): -

(Condition I), 

(Condition n), 

(Action I), 

(Action m). 

--------, , , 
r- Premise section , 
: _______ .J 

I 
I , r- Conclusion sec ion 

: ______ .J 

Figure 12. General format of the 
forward chaining rule 

. (Condition' 0):- ---------- Conclusion section 

(Condition I), 

(Condition n). 

------, , 
I 

~-- Premise section 
I 
I ______ -l 

-Figure 13. General format .of the 
.backward 'chaining rule 

.4.2.2 Backward chaining 

Backward chaining is used for checking various condi
tions. In checking the conditions.set forth in the premise 
section of a forward chaining rule, only. reference to the 
working ,memory is required "in some cases. In other cases 

. however, several inference steps are required. When a 
specified condition is checked, the backward chaining rule 
whose conclusion· section matches the specified condition 
is fired. Then, the various conditions set forth by the 
premise section of the fired rule are checked . .Backward 
chaining is already implemented as the execution mecha
nism of Prolog. 

Figure 13 shows the general format of the backward 
chaining rule. The head of the Prolog clause contains the 
conclusion, while the body contains the premise section. 
When conditions 1, ... , n are satisfied in the premise sec
'~ion, co.ndition 0 is concluded. In backward chaining, the 
.InVOcatlOn of rules does not affect the working memory. 

4.3' Knowledge Representation 

In· this section, specific knowledge examples of the 
functional design phase'are presented to show how Prolog 
is used. to express designer's expertise. Functional design 
can be regarded as the process that determines hardware 
concepts according to specifications iwoccam. Thus, the 
knowledge used in this process primarily associates. spec
,ifications described as software with hardware concepts. 

984 

4.3.1 Knowledge for implementing 
a variable with hardware elements 

Figure 14 shows the,knowledge used to implement a 
variable used in occam descriptions with hardware ele
ments. This is a ·forward chaining rule for implementing 
a occam variable Var and states that: 

IF: 

(1) There exists the input sources to the Var from 
the external processes through the channel, and 

(2) input sources are all Boolean values,and 

(3)' thereexists}assigned sources to the Var, and 

(4) . assigned sources are all Boolean values, and 

(5) other conditions are satisfied, 
THEN: 

,(6) Store in the working memory the information 
stating that variable Var'is to be .implemented 
.as al bit register . 

implement _ variable (Var, _ ) :-

input _ source (Nor" Input _sources), 
truth _ value '(-Input _sources), 

assigned _ source (Var, Assigned_"sources), 
truth _ value (Assigned _ sources), 

----- ( I ) 
----- ( 2 ) 
----- ( 3) 

----- (4) 

----- ( 5) 

assert (implementation (Var, I , register, ... ». ----- (6) 

Figure 14. Knowledge for implementing a variable with 
hardware . elfiments 
( Forward . .chaining rule) 

'This predicate is activated with the variable name 
used in ,occam as its first argument. If conditions(1)-(5) 
are all satisfied, fact (6) , stating that Var must be imp le
'mented as a 1 bit 'register, is written into the working 
. memory. This rule is used to implement, for example, 
variable t in Figure 6. 

input..source(Var, Input..sources) is a procedure call. 
What it means becomes clearer, according to thedeclar

. ativereading of Prolog clauses; it reads "input source of 
Var is Input..sources" . 

4.3.2 Knowledge for compressing 
sequential operations 

Figure 15 shows the knowledge ,used to check whether 
the sequential operations· described in occam can be 
transformed into hardware operations. executed in par
allel, which would improve the performance of the gen
erated hardware. This is a backward chaining rule and 
states that: 

IF: 

(1) (2) Both are store-type operations such as assign
ment processes, and 

(3) they are processed one after another, and 



(4) the variables into which the sources are to be 
stored are different, and, 

(5) (6) both variables are to. be implemented as regis
ters, and 

.(7) the variable in the first operation is not- referred 
to in the source of the second operation, 

THEN: 

two operations in a sequence are compatible, or 
can be executed simultaneously. 

This predicate is activated with two operations in oc
cam as its arguments. Backward chaining is performed as 
follows. The conditions store_operation and implementa
tion are resolved only by referring to the working memory, 
but the condition referred_to activates other rules. When 
conditions (1)-(7) are all satisfied, the compatibility check 
is successful. 

Using this rule, the occam sequential process within 
the dashed box in Figure 6 is compressed into parallel reg
ister transfer operations in DDL, shown within the.dashed 
box in Figure 8. Here, it is noted that the variables rold. 
and rnew are implemented as a single register r, using the 
knowledge related to merging two registers into one. 

The rule" compatible'.' expresses the relationship be
tween twooperations,and Prolog predicates provide a 
natural means of. expressing such. relations. 

compatible (Operation I , Operation 2):-
store_operation; (Operation I, Var I, assign, Source I , ... J ---- ( I ) 
store_operation (Operation 2, Var 2,assign, Source 2, .... ) ---- (2) 
followed_by (Operation I, Operation 2), ---- (3) 
Var I \ == Var 2, ---- (4) 
implementation (Var I, _, register, .... ), ---- (5) 

implementation (Var 2, _, register, .... J, ---- (6) 
not (refered _ to (Var I , Source 2». ---- (7) 

Figure 15~ Knowledg for' compressing sequential' operations 
(Backward chaining rule) 

4.3.3 Knowledge involving 
local job control 

Figure 16 illustrates another forward chaining rule 
for implementing a variable in occam with hardware ele
ments. In particular, this rule changes the order of design 
jobs locally. The idea of the predicate implemenLvariable 
is as follows;. when no clues are provided regarding the 
number of bits·for a variable, and a "similar" variable ex
ists, try to determine the'number of bits for the "similar" 
one first and- use the result. Here, a "similar'" variable is 
defined as one that stores the same type of data .. To pre
vent falling into a loop while a decision about' a specific 
variable is postponed, the list of all postponed variables' 
is stor.ed.as the second argument of the predicate, imple
menLvariable. This rule states that: 

IF: 

(1) There .exists a variable which looks similar to 
Var, and ~ 

985 

(2) the implementation of Another_var has not been 
postponed, and 

(3) Var is added· to the list of postponed variables 
and, Another_var is implemented first, and 

(4) the number- of bits of AnotheLvar, BiLwidth is 
confirmed, and 

(5) other conditions are satisfied, 
THEN: 

(6) Store in the working memory the information 
stating that the variable Var-is to be implement
ed as a BiLwidth bit register. 

mplement _variable (Var , Task_list ):
looks_similar (Var, Another _ var ), 
not (member ( Another _ var, Task_list»,. 
implement _ variable (Another _var, [Var I Task_list J), 
implementation (Another _var, Bit _width, .... ), 

--- ( I ) 
---- (2) 

--- (3)' 

---- (4) 

---- ( 5) 

assert (implementation (Var, Bit _width, register, .. ». ---- (6) 

Figure. 16. Knowledge involving local control 
(Forward chaining rule) 

For example, this rule is applicable to variables rold 
and t which appear in PROC acc in Figure 6. The fol-' 
lowing assignment processes concern variable rold and t. 

rold:= t 

t:= TRUE 

rold :=rnew 

t := t 1\ (xnewV d) 

The system attempts to.implement variable rold first, 
but this design job is postponed because there are no clues 
to the number of bits .. Next, the system tries to imple
ment the similar! variable t. In this case, t takes only 
Boolean values (TRUE: or FALSE). Therefore, the sys
tem implements variable t asa ollE~:;bit register. After the. 
implementation of variable' t, it becomes clear'that the 
variable rold should have only one bit, because rold has 
the same number of bits as t~ In this way, the regular flow 
of control is altered by changing· the order of jobs locally .. 

4.4 Effectiveness of Prolog 

We evaluated the effectiveness of Prolog as an imple
mentation/knowledge-representation language for a new 
generation of CAD systems. 

While constructing this system, we confirmed that 
the following Prolog characteristics are useful' in the- con- . 
struction of a knowledge,.based expert- system for logie 
design. 

(1) The "predicate represents, inter-object-relationship" 
characteristic of Prolog is very efficient. for expressing 



relationships among hardware concepts, and software 
concepts. 

(2) The characteristic that Prolog code can be declar
atively read gives us a better understanding of the 
rules represented in Prolog. 

(3) Controlling the order of design jobs, which requires 
complex operations for procedural programming lan
guages, is facilitated by using the Prolog execution 
mechanism. 

5. SYSTEM IMPLEMENTATION 
AND PERFORMANCE 

This system was developed using C-Prolog and runs 
on the VAX-ll/780. The C-Prolog interpreter of the 
VAX-ll/780 runs at approximately 1 kLIPS. Table 1 lists 
the program sizes of various subsystems and the execu
tion times of the two hardware design examples (CPU 
time of VAX-U/780).Design example 1 applies to the 
pattern matcher. Design example 2 applies to the .sim
pIe microprocessor. The input occam specifications were 
about 40 and 50 lines, respectively. The functional de
sign phase took 37 seconds of CPU time to generate the 
DDL description of the pattern matcher and 13 seconds 
for the microprocessor. The circuit design phase created 
the CMOS circuit of the pattern matcher in 11.6 minutes 
and that of the microprocessor in 13.3 minutes. These 
circuits correspond to approximately 350 gates for the 
pattern matcher and 1000 gates for the microprocessor. 

6. CONCLUSIONS 

We discussed a knowledge-based expert system for 
hardware logic design implemented in Prolog, with an 
emphasis on the inference mechanism and knowledge rep
resentation of the functional design phase. 

Areas requiring further research are as follows. 
First, the working memory needs to be appropriately 

structured. The working memory currently used in this 
system is a flat-type that consists only of Prolog facts. All 
procedure calls that deal with the working memory (Pro
log's assert and retract predicates are used to update the 
data) are contained in rules. As a result, the procedure 
calls makes rule expression too complicated. The use of 
ESP[8] is a possible solution to the problem of structuring 
the working memory and separating these procedure calls 
from rules. ESP provides us with time-dependent states 
and a frame-like" structure while retaining essential logic 
programming language features. 

Secondly, the current system does not have a rule
interpreter on Prolog. As previously mentioned, the local 
control flow can be modified by changing the local job 
sequence without a rule-interpreter. However, global job 
control seems to be required to avoid waste design jobs 
and to increase the performance of the system. We are 
planning to introduce a meta-rule interpreter to achieve 
global control. 

Lastly, expert system capability largely depends on 
the amount of stored knowledge. To improve this, expert 
knowledge must be repeatedly extracted and stored in the 
knowledge-base. Therefore, we believe that research into 
knowledge acquisition is necessary. 

986 

ACKNOWLEDGEMENTS 

This work is based on the results of the R&D activ~ 
ities of the Fifth Generation Computer Systems Project. 
The authors would like to thank Dr. K. Furukawa and 
Mr. Y. Iwashita of ICOT (Institute for New Generation 
Computer Technology) for their encouragement and sup
port. 

Table I. Program size and execution time 

~ 
Program Execution time (sec) 
size 
(K step) Example I Example 2 

Functional Design 1.9 37.0 13.0 

Circuit Design 
Translator 0.5 4.0 3.4 
Automaton Design 2.1 7.4 10.9 
Data Path Design 1.4 9.1 11.1 
I/O Pin Design 0.1 4.5 0.2 
Functional Block Design 0.2 0.1 1.0 
Flip_Flop .Design 0.2 5.4 15.0 
Circuit Decomposition 1.2 570.6 611.7 
Functional Cell Design 0.8 96.2 142.9 
CMOS Optimization 0.1 1.6 0.8 

Total 8.5 735.9 810.0 

REFERENCES 

[1] Maruyama,F., Mano,T., Hayashi,K., Kakuda,T., 
Kawato,N. and Uehara,T., "Prolog-Based Expert 
System for Logic Design," International Con
ference on Fifth Generation computer Systems 
1984(FGCS'84), pp.563-571, Nov. 1984. 

[2] Mano,T., Maruyama,F., Hayashi,K., Kakuda,T., 
Kawato,N. and Uehara,T., "occam to CMOS Ex
perimental Logic Design Support System," 7th Com
puter Hardware Description Languages and their Ap
plications (CHDL 85), pp.381-390, Aug. 1985. 

[3] Maruyama,F., Mano,T., Hayashi,K., Kakuda,T., 
Kawato,N. and Uehara,T., "Logic Design: Issues in 
Building Knowledge-Based Design Systems," Expert 
Systems(to appear). 

[4] Taylor,R. and Wilson,P., "occam: Process-oriented 
language meets demands of distributed processing," 
Electronics, Nov. 30, 1983. 

[5] Dietmeyer,D.L., "Logic Design of Digital Systems," 
Allyn and Bacon, 1971. 

[6] Foster,M.J. and Kung,H.T., "Design of Special-Pur
pose VLSI Chips: Example and Opinions," CMU-CS-
79-147, 1979. 

[7] "Uehara,T. and vanCleemput,W.M., "Optimal Layout 
of CMOS Functional Arrays," IEEE Transactions on 
Corp.puters, vol.C-30, no.5, May 1981. " 

[8] Chikayama,T., "Unique "Features of ESP", Interna
tional Conference on Fifth "Generation Computer 
Systems 1984(FGCS'84), pp.292-298, Nov. 1984. 



RESEARCH ACTIVITIES ON NATURAL LANGUAGE PROCESSING 
OF THE FGCS PROJECT 

Toshio Yokoi, Kuniaki Mukai, Hideo Miyoshi, Yuichi Tanaka 

Institute for New Generation Computer Technology(ICOT) 
Mitakokusai Building 21F. 

1-4-28, Mita, Minato-ku, Tokyo 108, Japan 

ABSTRACT 

The research activities on natural language 
process'ing of the FGCS Project are presented. 
Linguistic phenomena are formalized in terms of 
complex structures and constraints on them. 
The I"ogic programming paradigm is adopted for 
implementing natural language processing 
systems because the basic operation for the 
complex structures is isomorphic with respect 
to unification. DUALS (Discourse Understanding 
Aimed at Logic-based Systemr, CIL (Complex 
Indeterminate Language), and ·JPSG (Japanese 
Phrase Structure Grammar) are being developed 
using the unification-based approach. The 
large-scale machine readable and understandable 
dictionaries are also being developed. 

1. Introduc tion 

In our daily life, He communicate with one 
another mainly by means of speech and writing 
in natural languages. We get a lot of 
information from books and papers. 
Communication between human and computer should 
also be performed in the medium of natural 
language. The ability of computers to 
understand natural language will increase their 
accessibility and flexibility. The Japanese 
fifth generation computer project aims to 
develop such intelligent computer systems. 

The special characteristic of the Japanese 
language, i.e., the use of a great many Chinese 
characters, has made Japanese text input and 
processing difficult for a. long time. 
Recently, however, Japanese language processing 
technology has advanced a lot as evidenced by 
Japanese word processors and commercial machine 
translation systems. These technologies 

CH2345-7/86/0000/0987$01.00 © 1986 IEEE 
987 

combined with artificial intelligence are 
expected to provide new Japanese information 
processing technology and a new computer 
cuI ture. 

ICOT began research and development of the 
Fifth Generation Computer Systems (FGCS) in 
1982. Natural language processing technology 
is one of the most important research themes 
for the FGCS Project because it is a 
fundamental technology for knowledge 
information processing and it is used for the 
research and development of knowledge-base, 
intelligent-interface and various· basic 
application systems, such as machine 
translation systems. 

The results of research in the initial stage 
have led us to the conclusion that the logic 
programming framework is the most suitable for 
implementing natural language processing 
systems [6]. The linguistic phenomena in 
natural language can be formalized in terms of 
the complex structures of the grammatical 
features and the constraints on them, as is 
seen in the feature set of Generalized Phrase 
Structure Grammar (GPSG) [7], the functional 
structure of LexicalFunc tional Grammar (LFG) 
[11] and the "dags" of PATR-II [20]. The basic 
mechanism of logic programming is unification 
in Horn clause logic. Definite Clause Grammar 
(DCG) [18] is one of the bridges connecting the 
natural language processing and logic 
programming. Most of our research activities 
can be regarded as the improvement and the 
extension of DCG. GALOP (BUP) [12J is a 
bottom-up left corner parser which overcomes 
the drawbacks of top-down parser for DCG. A 
parallel model of DCG is also being developed 
[13]. CIL (Complex Indeterminate Language) 
[15,16] was developed to express and operate 
the complex features. CIL is an extension of 



Prolog. The newly introduced "partially 
speci fied term" of CIL is sui table for 
representing the comp'lex features because an 
extended unification is defined on two 
partially specified terms. The declarative 
constraints can be written using the freeze 
mechanism of CIL. Our approach for semantic 
analysis, which also deals with pragmatics, is 
based on situation semantics [1] theory. In 
this approach, the semantic analysis process 
corresponds to constructing the relations 
between situations, and it is implemented as an 
algebra of events. The merging of events is 
one of the basic operations and it has an 
isomorphic structure with respect to 
unification. Therefore, the basic operations 
in both syntactic and semantic analyses are 
isomorphic with respect to those of logic 
programming, which makes logic programming 
compatible with natural language processing. 
DUALS (Discourse Understanding Aimed at 
Logic-based Systems) is its application system 
for discourse understanding which reads stories 
and answers questions on the stories. JPSG 
(Japanese Phrase Structure Grammar) [9] is a 
GPSG-based grammar theory for Japanese language 
whose basic operation is unification. The 
unification-based parser for JPSG has been 
developed. We developed some application 
systems, in order to verify and evaluate this 
fundamental technology mentioned above. 
Finally, the processing of large-scale language 
data is another important aspect of natural 
language processing. Dictionaries include much 
information about syntax and semantics which 
will be utilized for designing the lexicon and 
the knowledge-base in natural language 
processing systems. The following three types 
of machine readable and understandable 
dictionaries will be developed in the 
subproject which started in April 1986: 

(1) Basic Word Dictionaries: 
Four machine readable master 
dictionaries with 200,000 entries in 
each dictionary. 

(2) Concept Classification Dictionary: 
A systematic dictionary for 400,000 
concepts including a general thesaurus. 

(3) Concept Description Dictionary: 
A knowledge database containing 
semantic descriptions of 400,000 
concepts. 

988 

These systems mentioned above are implemented 
on the personal sequential inference machine 
PSI [17]. The programs are written in its 
programming language ESP [4]. This paper 
describes the main research activities and 
plans for natural language processing of the 
FGCS Project -- CIL, DUALS, JPSG, and Machine 
Readable and Understandable Dictionaries. 

2. CIL (Complex Indeterminate language) 

2.1 Partially Specified Term 

CIL is an extension of Prolog which was 
designed for the system description language of 
DUALS. CIl has the freeze predicate, which was 
originally introduced in Prolog-II [5], as a 
primitive predicate for realizing various lazy 
evaluation controls. 

CIl introduces a new type of object called 
"partially specified term" ("partial term" for 
brief), which is influenced mainly by the 
notion of assignment developed in the situation 
theory of [2,3]. 

CIl = Prolog + Partial Term + Freeze. 

We understand partial term as an abstraction 
from the following data structures, which are 
widely seen in programming languages, grammar 
formalisms, etc.: 

-- Herbrand term in first order logic. 
-- Association list and property list in IISP. 
-- Frame and uni t in knOJ~ledge representation. 
-- Record in programming languages. 
-- Record in relational data base theory. 
-- Assignment in Barwise's situation theory. 
-- Category as complex feature in GPSG and 

functional structure of lFG. 

A partial term is written in CIL like this: 

tal/bl, ... , an/bnl n>= ° 
where each ai is a ground term and bi is any 
term, possibly a partial term. The ordinal 
unification is extended to the partial terms. 
F~r example the extended unifier works like 
tbis: 



uni fy({a/l, b/2}, {b/X, c/3}) 
= {all, b/2, c/3}, 

unifying X to be X = 2. 
CIL can represent a semantic network even 

including cycles by using partial terms. For 
instance, the CIL unifier solves the system of 
three equations A = B, A = {alB}, and B = 
{alA}, giving A = B = {alA}, a singleton graph 
with a self-loop with an edge labelled a. As 
is easily seen, CIL unification is close to 
that over infinite trees in Prolog-II. The 
domain of CIL can be defined formally to be a 
set of infini te trees. 

2.2 Reserved Forms in CIL 

The current CIL syntax is an extension of the 
syntax of DEC-IO Prolog. The following symbols 
. , '?' . , '@', 'tt', '??' .. , 

terms are 
follows: 

reserved for 
'!' appearing in 

the CIL system as 

0'> A term of the form X! a is equi valen t as a 
term to the value of the slot of X whose 
name is a. That is, 

{alibI, .•• , ai/bi, ..• , an/bn}!ai = bi. 

(2) A term of the form X:C with terms X and C 
is called a description. C should be an 
executable form. This term is read "X 
such that C". 

(3) A literal of the form p( ... X? .. ) is 
equivalent to the literal 
freeze(X,p( ... X ... ». 

(4) elL includes convenient forms of term 
which are defined as follows: 

@p <=> X:p(X?), where p is a predicate 
symbol of arity 1 and X is a new 
variable. 

V@p <=> V:p(V?), where p is like the 
above. 

VttT <=> V: (V=T). 
V?? <=> X: (X?=V) , where X is a new 

variable. 

2.3 Situation Semantics in elL 

Although the current CIL is not a full 
implementation of situation theory yet, it is 
already useful because of the introduction of 

989 

partial terms and extended unification over 
them. Partially specified terms have general 
and natural descriptive power to represent 
various data structures of objects necessary 
for si tuation theory. The mos.t difficul t and 
basic problem which remains open for CIL, 
however, is to develop some ideas for designing 
a control library for constraint description. 
We think that the problem corresponds directly 
to the implementation of the constraints of 
situation theory. 

3. DUALS (Discourse Understanding 
Aimed at Logic-based Systems) 

DUALS is an experimental discourse 
understanding system developed to build a 
computational model for discourse 
understanding. The semantic framework is 
situation semantics in which the sentence 
meanings are represented as relations between 
situations. DUALS aims at dealing with the 
following items within this framework. 

1) Primitives for discourse understanding 
(a) Anaphora 
(b) Speech act 
(c) Attitude verb 
(d) Tense 
(e) Quanti fier 
(f) Condi tions 
(g) Coordination 

2) Plan-goal 
3) Type description 
4) Predicates for manipulating situations 

The latest version of DUALS was implemented 
in CIL. It reads a story written in Japanese 
language and answers various type of questions 
about it. The system has the following 
char ac ter is tics: 

(1) The semantic structure is constructed with 
the objects used in situation theory, such 
as individuals, assignments, relations, 
locations, conditions, events, parameters, 
and so on. 

(2) Syntax analysis is performed by the parser 
based on the concurrent process model called 
SAX (Sequential Analyzer of syntaX and 
semantics) [13]. There are about 250 
grammar rules. Constraints between 



situations representing sentence meaning are 
generated in the form of partially specified 
terms of CIL by the syntax analysis module. 

(3) Anaphora processing algorithm, i.e. the 
identification of pronouns and zero-pronouns 
(ellipses) is based on Kameyama's model 
[10]. 

(4) Plan-goal-based discourse'structures are 
obtained by the discourse processing module. 
The rules to construct the discourse 
structures are described as constraints 
be tween even ts". 

(5) The sentence', generation module generates 
the surface sentences from internal meaning 
structures using grammar rules. 

Our technical approach to implementation is 
to build a package for extended unification in 
logic programming. An interesting problem, and 
a more theoretical challenge, is determining 
what kinds of unification are needed as 
primitives for implementing situation 
semantics. 

4. JPSG (Japanese Phrase structure Grammar) 

Grammar is an important component of a system 
for natural language understanding. JPSG is a 
new Japanese grammar theory for Japanese 
language based on GPSG. GPSG is suitable for 
implementation in the logic programming 
paradigm because it is a natural language 
syntax theory based on context free gra~mar 

(CFG) and its basic computational mechanism is 
unification. Besides, GPSG has the following 
features: 

(a) Syntactic categories are defined as a 
complex feature set. 

(b) Only phrase structure is used to represent 
grammatical information. 

(c) Metarules for phrase structure rules are 
introduced. 

(d) Constraints on features are described in 
the syntactic principles, which make phrase 
structure rules general. 

(e) Syntax and semantics are closely related. 

Since the Japanese language has a word order 
variation called "scrambling", GPSG cannot 
handle it feasibly. In order to handle the 
"scrambling", the subcategorizalion feature 

990 

(SUBCAT) whose value is a set of syntactic 
categories, is introduced in JPSG. This is an 
extension of HPSG [19]. 

Currently, the grammar formalism of JPSG is 
completed for basic Japanese syntax with the 
following characteristics: 

(1) Syntac tic 
feature set. 
follows: 

categories are defined as a 
Some feature examples are as 

PAS -- This indicates the passivizability of 
a verb. The value is 't' or '-'. 

POS -- This indicates a part of speech. The 
value is one of {V, N, P, ... }. 

GR -- This indicates a grammatical relation. 
The value is one of {SBJ, OBJ}. 

SUBCAT -- This is the set of syntactic 
categories which a head category 
demands as its complements. 

SLASH -- This is the set of the missing 
categories. This feature is used in 
the same way as in GPSG. 

(2) The following phrase structure rule is 
sufficient for basic Japanese syntax: 

(2.1) M --) D H 

Rule (2.1) states that mother category (M) 
dominates one daughter category (D) on the left 
and one head category (H) on the right. This 
simplification of the rule is achieved by 
describing the constraints on the features in 
syntactic principles. 

(3) Since a new SUB CAT feature is introduced, 
SUBCAT feature principle (SFP) is extended like 
that of HPSG. SFP describes the inheritance of 
SUB CAT values as follows: 

"The SUBCAT of M is identical to that of H 
minus D." 

For example, if the category of D is N[OBJ] and 
SUBCAT of H is {N[SBJ], N[OBJ]}, then SUBCAT of 
M will be {N[SBJ]t. N[OBJ] represents the 
object noun phrase. The absence of order 
between the elements of SUBCAT makes it easy to 
deal wi th "scrambling" [8]. 

(4) Most of the syntactic principles used in 
GPSG are also used in JPSG such as HEAD feature 



convention (HFC) and FOOT feature principle 
(FFP). A set of certain features is called 
"HEAD features", for example, the POS feature. 
HFC is a constraint stating that "HEAD features 
of M are identical to those of H in (2.1)". 
SUB CAT and SLASH are called FOOT features. FFP 
is a principle about the inheritance of FOOT 
features stating that "FOOT feature of M is 
identical to the union of that of D andH in 
(2.1)" • 

(5) A lot of grammatical information is 
contained in a dictionary. 

The basic operation used in JPSG is 
"unification" because in the syntactic 
principles mentioned above, the phrase "be 
identical to" can be replaced by "can be 
unified to". The parser for JPSG is being 
developed in CIL. JPSG and CIL are compatible 
because the syntactic category as feature set 
corresponds to a partially specified term and 
syntactic principles correspond to Horn 
clauses. 

5. Machine Readable and Understandable 
Dic tionar ies 

We presented the unification-based approach 
for natural language processing and its 
applications in previous sections. On the 
other hand, processing of large-scale language 
data is another important aspect of natural 
language processing. 

This research aims at developing a 
large-scale database for various natural 
language processing and speech processing 
application systems. The language database 
will be composed primarily of three 
machine-readable dictionaries: a large-scale 
basic dictionary as the master dictionary; a 
concept classification dictionary including a 
thesaurus; and a concept description dictionary 
containing descriptions of the meanings of 
concepts. Application systems utilizing these 
dictionaries will be developed including 
machine translation systems and speech 
recognition systems. 

5.1 Basic Word Dictionaries 

The term "basic word" means words used in 

991 

everyday speech, general' technical terms, 
proper nouns, and so on. Machine-readable 
master dictionaries will be developed 
con taining these bas ic words. Thes'e are the 
dictionary types: 

(1) .Japanese 
(2) English 
(3) Japanese-English 
(4) English-Japanese 

Each dictionary will include about 200,000 
entry words. These dictionaries will be 
developed in accordance with the specifications 
already established [14]. 

5.2 Concept Classification Dictionary 

This dictionary will contain specifications 
of the relations between concepts and indicate 
exactly how specific concepts are classified in 
the concept world. Classification bases for 
the concept world are 'super-sub', 
'whole-part', 'composition-element' and other 
similar relations. The multiple inheritance 
mechanism will be used as well. The standard 
thesaurus will form a part of this dictionary. 
At least 400,000 concepts will be included. 

5.3 Concept Description Dictionary 

Thisdic tionary will contain the meaning of 
each individual concept classified in the 
concept classification dictionary. The 
combination of the concept classification and 
the concept description will form the knowledge 
base for the "general world", and will be 
utilized in semantic and discourse analysis. 

5.4 Application systems 

Machine translation systems and speech 
recognition systems will be developed using 
these dictionaries. 

6. Conclusion 

This paper described the research activities 
on natural language processing within the 
Japanese Fifth Generation Computer System 
project. Having finished the initial stage, 
the project is now at the end of the first year 



in the four-year intermediate stage. Natural 
language understanding' includes a lot of 
di fficul t issues that remain unsolved, 
especially in discourse understanding. 
Nevertheless; frui tful resul ts' and new ideas' 
have been obtained over the four years of 
research to date by concentrating, on the logic 
programming framework as. discribed in., this 
paper. The las t four years has convinced us 
that the logic programming approach is very 
pr om i sing for imp 1 ementi ng na tur a I 1 anguage 
processing systems. In the intermediate stage, 
we. wi 11 continue this approach to bui ld the 
subsystems that will be integrated to form the 
tolal knowledge information processing system 
in the final stage. 

7. Acknowledgement 

This research is being car.ried.oul by the 
Second Research Laboratory of ICOT in very 
close cooperation with seven manufactures. 
Many frui tful discussions were held' in meetings 
of the following working groups -- NLS (Natural 
Language processing System, Head: Prof. Tanaka, 
of Tokyo Institute of Technology), JPS 
(Japanese Phrase Slructure grammar, Head:, Prof. 
Gunji of. Osaka Univ.), MRD (Machine Readable 
Dictionaries', Head: Prof. Ishiwata of Ibaraki 
Univ.). Finally, the authors· would like to 
thank the' director K. Fuchi, ICOT Research 
Center for providing us with the opportunity 
for this research .. 

[ReferencesJ 

[1J Barwise, J. and Perry, J., Si tualions and 
At ti tudes, MIT Press, 1983: 

[2J Barwise, J., The Si luation in Logic- I.I I: 
Situations, Sets and the Axiom of. Foundation' 
Center' for the Study' of Language and 
Information, CSLI~85-26, 1985. 

[3J Barwise, J., Recent D~velopments in 
Siluation Semantics, Proc. of International 
Symposium on Language' and Artificial 
Intelligence, .1986. 

[4J Chikayama, T., ESP Reference Manual, ICOT 
TR-044, 1984~ 

[5JColmerauer, A., Prolog-II: Reference Manual 
and Theoretical Model', Internal> Report, 

992 

Groupe Intelligence Artificielle, Universile 
d'Aix-Marseille II; 1982. 

[6J Furukawa, K. and YokoL T., Basic Software 
System. Proc. of FGCS'84, 1984. 

[7J Gazdar, G., Klein E., Pullum G., and Sag 
I., Generalized Phrase Struc ture' Grammar, 
Oxford. Basil Blackwell, 1985. 

[8J Gunji, T., Subcategorization and Word Oder, 
Proc.of Inlernational Symposium on Language 
and Artificial Intelligence, 1986. 

[9J Gunj i, T., Japanese Phrase Structure 
Grammar,. D. Reidel Publishing Company. (to 
appear). . 

[10] Kameyama, M., Zero Anaphora: The Case of 
Japanese, Draft of Ph.D Diss., Dept. of 
Linguis tics. Stanford Uni v., 1984. 

[11] Kaplan, R. and Bresnan, J., Lexical 
Functional Grammar: A Formal System for 
Grammatical Representation, in Mental 
Representation of Grammatical Relations 
(Bresnan eds.), MIT Press, 1982. 

[12J Matsumoto, Y., Tanaka, H., Hirakawa, H., 
Miyoshi, H. and Yasukawa', H. , BUP; A 
BoLtom-Up Parser Embedded in Prolog, New 
Generation Computing, OHMSHA, LTD. & 
Springer-Verlag, Vol.1, No.2, 1983. 

[13J Ma.tsumoto, Y., A Parallel Parsing System 
for Natura1 Language Analysis, Proc. of the. 
3rd tCLP, 1986 •. 

[141 Miyoshi, H. Tanaka, Y.,. Yokoi, T., 
Ishiwata, T .. , Tanaka, H., Amano, S.,. Uchida. 
H. and Ogino, T., Basic Specifications of 
the Machine-Readable Dictionary, ICOT 
TR-100, 1985. 

[15J Mukai~ K., Horn' Clause Logic w~th· 
Parameterized Types for Situation' Semantics 
Programming, ICOT TR-101, 19851

:' 

[16J Mukai, K., Unification over Complex 
Indeterminates' in Prolog, ICOT TR-113, 1985; 

[17J Nishikawa, H., Yokola, M~, Yamamoto, A., 
Taki ,. K., and Uchida, S. , The Personal 
Inference Machine (PSI): Its Design 
Ph i losophy and Mach ine Arch i tee lure, I COT 
TR-013, 1983. 

[18J Pereira, F. and Warren, D.;, Defini Le 
Clause Grammar for Language Analysis - A 
Survey of the Formalism and a Comparison· 
wilh Augmented Transition Networks; 
Artificial Intelligence, 13, 231-278~ 1980. 

[19J Pollard, C., Lecture on HPSG, Unpublished 
Lecture Notes. StanfordUnivers'i ty, 1985. 

[20J Shieber, S. M., Using Restriction to-
Extended Pars ing Algor i thms. for 



Complex-features-Based formalisms, Proc. of 
23rd ACL, 1985. 

993 



•. 
ARGUS/V: A SYSTEM FOR VERIFICATION OF PROLOG PROGRAMS 

Tadashi KANAMORI t, Hiroshi FUJITA*, Hirohisa SEKI*, Kenji HORIUCHIt, Machi MAEJIt 

* ICOT Research Center t Mitsubishi Electric Corporation 
Central Research Laboratory 

Amagasaki, Hyogo, JAPAN 661 
Institute for New Generation Computer Technology 

Mita 1-4-28, Minato-ku, Tokyo, JAPAN 108 

Abstract 

The verification system ArgusjV for proving properties 
of Prolog programs is outlined by contrasting verification 
with testing in logic programming. Specifications in ArgusjV 
are given by a class of first order formulas, including goals for 
normal execution. Contrary to the specifications considered 
in the usual framework of verification, our specification states 
a partial property of the program than states what the 
progrom does as a whole. Though verification in ArgusjV 
does not guarantee the correctness of the program at one 
stroke, the more properties of the program we prove, the 
closer the program is to what we intend. Verification in 
ArgusjV is done using inference rules devised for .verification, 
extension of these for usual execution. Execution· in Prolog, 
on which testing is based, is a special case of the inferences 
in our verification. These two features of ArgusjV show that 
both testing and verification are methods located on a con
tinuous axis to confirm that the program is as we intend it. 

Keywords : Verification, Testing, Theorem Proving, Prolog. 

Content!; 

1. Introduction - Testing and Verification -
2. Testing of Prolog Programs 
3. Logic Programming Paradigm Revisited 
4. Verification of Prolog Programs 

4.1. Specification of Prolog Programs 
4.2. Inference Rules for Verification 
4.3. Extended Execution 
4.4. Computational Induction 
4.5. ArgusjV Verification System 

5. Discussion - Testing and Verification -
6. Conclusions 
Acknowledgements 
References 

1. Introduction - Testing and VerUleatlon -

It is said that Prolog is a higher-level programming 
language than conventional languages, because operations 
in Prolog are further distanced from machine structure 
and closer to purely symbolic manipulation. Though such 
machine-independent human-oriented characteristics would 
seem to make programming easier,. we still write incorrect 

CH2345-7/86/0000/0994$Ol.OO© 1986 IEEE 
994 

Prolog program! quite frequently. For e:.amplc, 'We might 
write the following incorrect program to reverse a list. 

reverse([ ],[ )). 
reverse([XIL],M) :- reverse(L,N),append(N,X,M). 

figure 1. Ineorrect Program for Revenlng List. 

How can we determine whether the program is what we 
intend in our mind? There are two well-known approaches, 
which give completely different impressions. 

One approach is testing. Appropriate data is supplied 
to the program and it is run in order to see whether it 
shows unexpected responses or behavior. In general, the more 
data lor the program we test, the better we can determine 
how close the program· is to what we intend it to be. But 
testing is considered a rather naive and informal method, and 
troublesome to the human programmer. 

Another approach is verification. A specification, that. 
shows what the program does as a whole, is given and proved 
logically with respect to the program, that shows how the 
desired· resuls are computed. Verification is considered a 
rather formal method, to confirm the correctness of the pro
gram at one stroke, possibly mechanically. 

These approaches seem to be fundamentally separated 
in conventional programming. How· do things stand in logic 
programming? In order to answer the question and make 
the motivation of our· verification method understandable, 
we review what we are doing in testing in Section 2 and the 
paradigm of logic programming in Section 3. Then an outline 
of our verification system ArgusjV is given in Section 4. In 
particular, we emphasize the characteristics of specifications 
and the use of extended execution. In Section 5, we dis
cuss the similarities between testing and our verification with 
respect to two features, that is, both approaches confirm the 
correctness of programs gradually and both approaches are 
based on execution. 

2. Tettlng of Prolog Program. 

Let us test the reverse program in Figure 1. 71acer, one 
of the testing tools of DEClO Prolog system [23], responds 
as follows. 



I !- reverse([2,l],M). 
(1) 0 Call: reverse([2,ll,_40) ! 
(2) 1 Call: reverse([1I,_105) ! 
(3) 2 Call: reverse([ 1,_111) ! 
(3) 2 Exit: reverse([ 1,[ ]) 
(4) 2 Call: append([ 1,1,_105) ! 
(4) 2 Call: append([ 1,1,1) 

FigUJ'e 2.1. Example of A Testing of Prolog Program 

A goal in the trace holds, when the goals (with ·Call-) 
below the goal hold. By observing the behavior in the trace 
and finding the goal contradicting the programmer's inten
tion, the programmer can correct the program in Figure 1 as 
follows. 

reverse([ ],[ ]). 
reverse([XIL],M) :- reverse(L,N), append(N,[xI,M). 

figUJ'e 2.2. Corred Program for Revening Lists 

After all, testing is confirming whether there is any 
difference between the model the programmer has in his/her 
mind and the actual behavior of the program. 

3. Logie Programming Paradigm Revisited 

Now, let us recall the paradigm of logic programming, 
the central idea of the Japanese Fifth Generation Computer 
Systems project. The execution of a Prolog program is the 
construction of a logical proof ([11,[91,[101,[151,[20]). For ex
ample, the execution of !-reverse([2, II, M) is the construc
tion of a proof of 3Mreverse([2,ll, M). In general, we have 
the following inference rule for each definite clause • B :
BlI B2"'" Bm -, where (1 is an m.g.u. of A and B. (It is read 
the formula below the line holds when the formulas above 
the line hold.) 

execution 
A 

figUJ'e 3.1. Inferenee Rule tor Exeeutlon 

The proof of a given formula we would like to prove is 
constructed from the bottom. (See the Figure 3.2 below.) 
The tracer in Section 2 shows the proof upside-down from 
left to right. 

reverse([ 1,[ DAappend([ 1,1,1) 

reverse([I],l)Aappend(I,2,!) 

reverse([2,1],!) 

figUJ'e 3.2. Proof Tree Corresponding to Exeeution 

According to the paradigm, the behavior on which we 
focus our attention in testing is how the proof of formulas of 
the form 3Yl, Y2 , ••• , Ym (A1AA2 A" 'AA1) is constructed. 

4. Verifleation of Prolog Programs 

4.1. Speelfleation of Prolog Programs 

The most prominent feature of logic programming lan
guages is, of course, the close relation to logic, the origin of 

995 

the name. For example, Prolog is very close to, actually a 
sublogic of, flrst order logic, long used as one of the most 
common specification languages. This close relation between 
programming languages and specification languages prompts 
reexamination of the nature and the role of specifications and 
verification. 

SpeeiftcatioD and verlfleatloD are still Deces&lf. 

Some people think that Prolog programs are formulas 
of flrst order logic, rendering independent specification and 
veriflcation redundant. We agree that in some cases a 
specification can be a Prolog program as it is, and we can
not write any other simpler specifications of some programs. 
But, as can be easily seen, Prolog programs are not always 
specifications. Many computation mechanism have been 
devised to increase efficiency. Moreover, even if a Prolog pro
gram is a description of our intention in logical formulas, it 
is written from one point of view, which might be erroneous. 
Conflrmation that the program is what we intend must be 
effected from another point of view by testing or verification 
[1]. 

SpeciftcatloDs vertJled might be partIaL 

It has often been said that specifications are sometimes 
as large as programs themselves. The specifications con
sidered SO far are usually total, that is, they must contain 
all the information about what the program does as a whole. 
Such specifications are necessary for program synthesis, be
cause specifications for synthesis usually have to contain all 
the information for the program to be constructed. The 
close relation between Prolog and first order logic suggests 
the possibility of relaxing this restriction on verification. The 
specifications in our verification system might be partial, that 
is, they are not necessarily the total description of what the 
program does as a whole, because the program itself may be 
a part of its C?m specification. For example, the following 
property reverse-reverie 

V X,Y ( reverse(X,Y) :::>reverse(y,X) ) 
is also satisfied by the identity relation id defined by 

id(X,X). 
Hence, even if we have proved the reverse-reverse property 
with respect to the program at hand, we can't conclude that 
our program is the correct reverse. It is a fortuate situa
tion when we are able to write down the total specification. 
But we usually content ourselves with a set of partial 
specifications. The more properties of the program we verify, 
the closer the program is to what we intend. After all, 
verification is confirming whether there is any ditrerence be
tween the model the programmer has in his/her mind and tbe 
actual properties of the program. Our verification is much 
closer to testing in its nature and functioning. 

SpeeifteatioD formulas and Goal formulaa 

Now we introduce the class of first order formulas used 
for specification in Argus/V. 

We generalize the distinctions of positive and negative 
goals. The positive and negative Bubformulas of a formula 1 
are defined as follows (see [24],[21],[22],[25]). 

(a) 1 is a positive subformula of 1. 
(b) When -,9 is a positive (negative) subformula of 1, then 

9 is a negative (positive) subformula of 1. 
(c) When 9AN or 9VN is a positive (negative) subformula 



of " then Band JI are positive (negative) subformulas 
of 1. 

(d) When B:::>JI is a positive (negative) subformula of " then 
B is a negative (positive) subformula of 1 and JI is a 
positive (negative) subformula of 1. 

(e) When "IX B or 3X B is a positive (negative) subformula 
of " then Bx(t) is a positive (negative) subformula of 
1. 

Example 4.1.1. Let 1 be 
V B,U,At,V,A (reverse(B,[UIAt ])Aappend(A1,(V],A) :::> 

3 A2 (reverse(B,A2)Aappend(A2,(v],[UIA]))) 
Then 3A2(reverse(B, A2)Aappend(A2, [V], [UIA])) is a posi
tive subformula of 1, while rever,e(B, [UIA1]) is a negative 
subformula of 1. 

Let 1 be a closed first order formula. When "IX B is a 
positive subformula or 3X B is a negative subformula of 1, 
X is called a free variable of 1. When VY JI is a negative 
subformula or 3Y JI is a positive subformula of " Y is called 
an undecided variable of 1. In other words, free variables 
are variables quantified universally, and undecided variables 
are those quantified existentially when 1 is converted to its 
prenex normal form. 

Example 4.1.2. Let 1 be 
V B,U,At,V,A (reverse(B,[UIA1])Aappend(A1,(V],A) :::> 

3 A2 (reverse(B,A2)Aappend(A2,(V],[UIA]))) 
Then B, U,At, V and A are all free variables, while A2 is an 
undecided variable. 

A closed first order formula S is called a specincation 
formula (or S-formula for short) when 

(a) no free variable in S is quantified in the scope of 
quantification of an undecided variable in S and 

(b) each undecided variable appears only in some positive 
conjunction of atoms AtAA2A" 'AAl in S. 

is also an S-formula. 

A formula G obtained from an S-formula S by leaving 
free variable X as it is, replacing undecided variable Y with 
TY and deleting all quantifications is called a goallormuJa of 
S. Note that S can be uniquely restorable from G. In the 
following, we use goal formulas instead of original S-formulas. 
Goal formulas are denoted by F, G, H. 

Example 4.1.4. An S-formula 
V B,U,Al,V,A (reverse(B,[UIA1])Aappend(AlJ(V],A) :::> 

3 A2 (reverse(B,A2)Aappend(A2,[V],[UIA])) 
is represented by a goal formula 

reverse(B,[UIA1])Aappend(Al,(V],A) :::> 
reverse(B,TA2)Aappend(TA2,(V],[UIA]). 

An execution goal 
3 C append([l,2],[3],C) 

is represented by a goal formula 
append([l ,2], [3],TC). 

Let S be a specification in an S-formula, Mo be the 
minimum Herbrand model [10] of P and p. be the comple
tion [8] of P. We adopt a formulation as follows: Model
theoretically speaking, verification of S with respect to P is 
showing MopS. Proof-theoretically speaking, it is proving 
S from p. using first order inference and some induction. 
(Of course, the proof-theoretical formulation is weaker than 
the model-theoretical formulation. See Section 4.4 for induc
tion.) 

4.2. lDterence Rule. tor VerUlcatlon 

In other words, S-formulas are formulas convertible to prenex 
normal form VX1,X2, ... ,X" 3YlJ Y2, ... , Ym1 and each Yi 
appears only in some positive conjunction of atom in 1. Note 
that S-formulas include both universal formulas VX1,X2, ... ,X"' 
and usual execution goals 3Y1, Y2, ... , Ym (A1AA2 A·' ·AAl). 

Though we have pointed out the similarity between test
ing and our verification, it is meaningless to just rephrase the 
definition of verification. The current Prolog interpreter can't 
execute our S-formulas directly. Now we present the method 
and the mechanism of our verification (cf. [3],[13],[14],[28]). 
Our inference rules for verification consist of extended ex
ecution and computational induction. Extended excution is 
an extension of usual execution and consists of case split
tings (A-deletion, V-deletion and :::>-deletion), definite clause 
inference (DCI), -Negation as Failure- inference (NFl) and 
simplification. We omit discussion of the case splitting rules 
in what follows, because they are not used very frequently. 
See [Kanamori and Seki 1985], [Kanamori 1986] for details. Example 4.1.3. Let S be 

V B,U,At,V,A (reverse(B,[UIA1])Aappend(Al,(V],A) :::> 
3 A2 (reverse(B,A2)Aappend(A2,(V],[UIA]))) 

Then S is an S-formula, because free variables B, U,At, V 
and A are quantified outside 3A2, and A2 appears only in the 
positive conjunction reverse(B,A2)Aappend(A2, [V], [UIA]). 
An execution goal 

3 C append([1,2],[3],C) 

DCI 

NFl 

simplification 

Using intuitive notations, DCI, NFl and simplification 
are depicted as inference rules as follows. In the followings, 
we use '9(JI) for replacement of all occurrences of a formula 
B in a formula 1 with JI and 19 [JI] for replacement of an 
occurrence of a formula B in a formula 1 with JI. See the 
following explanation for the meaning of other notations. 

C7(GA[B1AB2A-' 'ABm ]) 

G+[A] 

rj;(GA[A~tBli]) 

G_[A] 

C7(G)A(true) C7(G)A(false) 
G 

figure 4.2. Main lDterence Rule. tor VerUlcatlon 

996 



4.3. Extended Execution 

The execution of positive goals is generalized using 
polarity. 

Definite Clause Inference(DCI) 
Let A be a positive atom in a goal formula G and • B 

:- B1 , B2, ... , Bm· be any definite clause in P. When A 
is unifiable with B by an m.g.u. u without instantiation 
of free variables, a new OR-goal u(GA[BlI'\B2A·· ·ABm )) is 
generated. (B1AB2A·· ·ABm is true when m = 0.) All new 
variables introduced are treated as fresh undecided variables. 

Example 4.3.1. Let S be 
V A,B,C,U ((reverse(C,B)~reverse(B,C))~ 

(reverse(A,[UIBj)~reverse([UIB],A»). 
Then the goal formula of S is 

(reverse(C,B) ~reverse(B,C» ~ 
(reverse(A,[UIBj) ~reverse{[UIB],A)) 

We can apply DCI to reuerse{[UIB], A) and it is replaced with 
reuerse(A, ?D)A append(?D, [U], B). Note that the variable 
in the body is treated as an undecided variable ?D. 

Example 4.3.2. When S is an existential formula of the form 
3Y1Y2 •• ·Ym (A1AA2A·· ·AAA;), Le., of the form of usual ex
ecution goals, the goal formula of Sis ?-AI,A2' ... ,AA;. (The 
juxtaposition delimited by·,· denotes conjunction and ?-G 
denotes the goal formula obtained by replacing every vari
able Y in G with ?Y.) Then usual execution is applied to 
?-AI,A2, ... ,AA;. The figure below shows an example, where 
common and reuerse are defined by 

common(X,L,M) :- member(X,L),member(X,M). 
member(X,[XILj). 
member(X,[YIL)) :- member(X,L). 

common(I,[1,2],[3,1]) 
I 

member(I, [1,2)),member(I,[3,1)) 
I 

member(I,[3,1)) 
I 

member(I,[I]) 

true 

figure 4.3.1. DCI tOI' Usual Posltive Goals 

We also generalize the execution of negative goals using 
polarity. 

-Negation as failurew Inferenc:e(NfI) 
Let A be a negative atom in a goal formula G. We 

generate new AND-goals T(GA[B1AB2A·· ·ABm )) for every 
definite clause ,. B :- BlJ B2, ... , Bmw in P, whose head B is 
unifiable with A, and an AND-goal GA[/alse]. (B1Aih.A·· ·ABm 

is true when m = 0.) All new variables introduced are 
treated as fresh free variables. (Note that A always includes 
only free variables and T may be any m.g.u. without restric
tion.) 

Example 4.3.3. Let S be 
V A,B,C,U ((reverse(A,C)~reverse(C,A))~ 

(reverse{[UIA],B) ~ reverse(B, [UIA]))). 
Then the goal formula of S is 

(reverse(A,C) ~reverse(C,A» ~ 
(reverse([UIA],B) ~reverse(B,[UIA])) 

997 

We can apply NFl to reuerse{[UIA],B). In the first goal,the 
atom is replaced with reuerse(A, D)Aappend(D, [U], B). Note 
that the variable in the body is treated as a free variable D. 
The last goal obtained by replacing the atom with false is 
trivially true. 

Example 4.3.4. Let S be a specification of the form ,A where 
A is a ground atom. Suppose there exist k definite clauses 
whOle heads are unifiable with A by m.g.u.s TI, T2, ... , TA;. 
When NFl is applied to A, we have k + 1 AND-goals 

'TI(Bu ABI2A·· ·ABlm1 ), 

'T2(B2IAB22A·· ·AB2m.), 

., 
'TA;(BuABuA·· ·ABA;mJc)' 
,/alse. 

The last goal formula is trivially true. Other goal formulas 
are olthe form VX1,X2, .. . ,X" ,(AIAA2A·· ·AAm ), because 
variables introduced from the bodies of the definite clauses 
are free variables in the generated goal formulas. We can 
continue applying NFl by selecting atoms in each body of 
the goal formula. When a selected atom has no unifiable 
head, the only goal formula generated is the last one, which is 
always true. When all goal formulas are reduced to true, ,A 
is proved. This is exactly the -Negation as Failurew rule in 
the usual sense [8],[15]. The figure below shows an example. 

, common(I,[I],[3)) 
I 

, (member(I,[I))Amember(I,[3])) 
/ \ 

, member(I,[3)) 
I 

, (member(I,[ ])Amember(I,[3])) 
I 

, member(I,[ )) 
I 

true 

true 

figure 4.3.2. Nfl tOI' Usual Negative Goals 

We sometimes simplify goal formulas by assuming that 
some atom is true or false (cf.[22)). 

SlmpUJlcatlon 
Let G be a goal formula. When AI, A 2 , • • • ,Am are 

positive atoms and Am+I,Am+ 2 , •• • ,A" are negative atoms 
unifiable to A by an m.g.u. u without instantiation of 
free variables (0 < m < n), we generate new AND-goals 
U(G)A(true) and u(G)AUalle). 

In the following examples, both u are < > and un
decided variables are not instantiated. For more general 
simplifications with instantiation of undecided variables, see 
Figure 4.3.3. 

Example 4.3.5. Let G be a goal formula 
(add(X,Y,Z) ~add(Y,X,Z)) ~ 

(add(X,Y,Z) ~add(Y,s(X),s(Z») 
of an S-formula 

V X,Y,Z ((add(X,Y,Z) ~add(Y,X,Z)) ~ 
(add(X,Y,Z) ~add(Y,s(X),s(Z»». 

Because u = < > is a substitution without instantiation of 
free variables and unifies the positive atom add(X, Y, Z) and 
the negative atom add(X, Y, Z), we generate new AND-goals 

(true ~add(Y,X,Z)) ~(true ~add(Y,s(X),s(Z») , 
(false ~add(Y,X,Z)) ~(false ~add(Y,s(X),s(Z») , 

Le., add(Y,X, Z)~add(Y, seX), s(Z» and true. This in-



ference corresponds to generating 
(Y+X)+I=Y+(X+l) 

from 
X+Y=Y+X :>(X+Y)+I=Y+(X+l) 

in functional programs. Le .• using the equation X + y = y + 
X in the premise and throwing it away. This is called cross
fertilization in the Boyer Moore Theorem Prover (BMTP) [5]. 

Example 4.3.6. Let G be a goal formula 
(reverse(A.C) :>reverse(B,A» :> 

(reverse(A.C) J\append(C.[U].B) :> reverse(B.[UIA])) 
of an S-formula 

V A.B.C.U «reverse(A.C) :>reverse(C.A» :> 
«reverse(A.C)J\append(C.[U].B»:> reverse(B. [UIA»». 

Because u = < > is a substitution without instantiation of 
free variables and unifies the positive atom reverse(A, C) and 
the negative atom rever se(A, e). we generate new AND-goals 

(true :>reverse(C.A)) :> 
(true J\append(C.[U].B) :>reverse(B,[UIA])) • 

(false :>reverse(C.A)) :> 
(false J\append(C.[U].B) :>reverse(B,[UIA))) • 

Le .• reverse(C. A):> (append(C, [U]. B):>reverse(B. [UIA])) and 
true. This inference corresponds to generating 

reverse(C)=A :>reverse(append(C.[U)))=[UIA] 
from 

reverse(reverse(A))=A :> 
reverse(append(reverse(A).[U)))=[UIA] 

in functional programs. Le .• replacement of the special term 
reverse(A) with a variable C. This is called generalization in 
BMTP [5]. 

The Figure 4.3.3. below is one of the sequences or the 
applications of extended execution. A goal in the sequence 
holds. when the goals below it hold. like the goals in Figure 
2.1. 

reverse(M.[XIL 1])J\append(L1.[y].L) :>reverse([yIM].[xIL]) 
JJ. DCI with <> 

reverse(M.[XIL 1))J\append(Ll/[y].L) :> 
reverse(M. ?L2)J\append(!L2 • [Y]. [xIL]) 

JJ. DCI with <!L2¢=[Xj?L3] > 
reverse(M.[XIL 1))J\append(Ll.[y].L) :> 

reverse(M.tXI?L3 )) J\append(?L3,[Y].L) 
JJ. simplification with <?L3 ¢=L1 > 

append(Ll,[Y].L) :>append(Ll.[Y].L) 
JJ. simplification with < > 

true 

rIgUl'e 4.3.3. Example of Verlfleatlon of Prolog Program. 

4.4. Computational Induetlon 

Because we have adopted the model-theoretical rormula
tion in 4.1. we need to use some kind of induction in order to 
make our proor system as strong as possible to approximate 
the model-theoretic formulation. 

The following induction scheme is used for induction on 
natural numbers [6]. 

Q(O) \IX (Q(X):>Q(X+l» 

\IX (number(X) :>Q(X» 

figUl'e 4.4.1. Induetlon Seheme for Natural Number 

Note that the number predicate is defined in Prolog al 
in Figure 4.4.2 and the induction rormulas above the line 

998 

in Figure 4.4.1 is exactly what are obtained by replacing 
number in Figure 4.4.2 with Q. 

number(O). 
number(X+l) :- number(X). 

figure 4.4.2. Prolog Program. DeflnIng Natural Number 

Similarly. the induction scheme ror reverie is obtained 
by replacing reverse in Figure 2.2. with Q. This is 
de Bakker and Scott's computational induction for Prolog 
([2].[9].[11].[12].[29]). 

Q([ ].[]) VL.M.N.X (Q(L.N)J\append(N.[X].M) :>Q([xIL].M» 
VL.M (reverse(L.M) :>Q(L.M» 

rIgUl'e 4.4.3. Induetlon Seheme for reverse 

Example 4.4. When the induction scheme above is applied 
to reverse-reverse. Le .• 

reverse(L .M) :> reverse(M,L) 
the following two induction formulas are generated. 

reverse([ ].[ ]) 
reverse(N.L)J\append(N.[X].M) :>reverse(M.[xIL]). 

In general. the goals we are going to prove are not neces
sarily or the form P(X1.X2 •...• X,,) :> Q(X1.X2 •.. .• X,,). 
Moreover. more than two induction schemes might be sug
gested. In order to manage such situations. we have a 
device to generate and manipulate induction schemes based 
on an equivalence-preserving program transrormation [21]. 
See [Kanamori and Fujita 1986] for details. 

4.5. ~us/V VerUleatlon Sy.tem 

The Argus/V verification system has the module struc
ture depicted below. A given specification is first converted 
to its goal formula. then passed through the rour modules in 
Figure 4.5. 

flgUl'e 4.5. ArgUI/V Module StruetUl'e 

Because we have additional and generalized inference 
rules for verification. we need a procedure to select the in
rerence rules to be applied. When and how extended execu
tion and computational induction are applied is controlled 
by many BMTP-like heuristics [5]. This can be considered a 
kind of meta-inference [4].[26]. See [Kanamori and Horiuchi 
1985] for the use of type inference in Argus/V. 

5. Dlseusslon - Testlq and VerUleatlon -

As shown in Section 4. verification in Argus/V is very 
close to testing not only in its nature and the role it plays 
but also in the methodology and its mechanism. In fact. 
testing is a special case or verification in Argus/V in which 
the specifications are ground goals or existentially quantified 



atoms. The difference is that verification in Argus/V is 
more general than testing. For example, testing can confirm 
rever se-rever se for only lists with specific lengths, while 
verification in ArgusjV proves it for lists of any length. In 
a sense, testing deals with the superficial observable directly, 
while verification penetrate the interior observable only in
directly. In other words, uour prover is a prober.· 

6. Conclusions 

We have given an outline of the Argus/V verification sys
tem for proving properties of Prolog programs by contrasting 
verification with testing in logic programming. The first ver
sion of Argus/V was developed between April 1984 and March 
1985. It consists of about 7000 lines in DEC-10 Prolog and 
takes about 9.5 seconds (CPU time of DEC2060 with 384 lew 
main memory) to prove reverse-reverse automatically. More 
than 50 theorems have already been proved automatically 
and the number is increasing. 

Aeknowledgementa 

The Argus/V verification system is a subproject of 
the Fifth Generation Computer System(FGCS) uIntelligent 
Programming System·. The authors would like to thank 
Dr.K.Fuchi (Director of ICOT) for the opportunity of doing 
this research and Dr.K.Furukawa (Chief of ICOT 1st Laboratory) 
and Dr.T.Yokoi (Chief of ICOT 2nd Laboratory) for their 
advice and encouragement. 

Referenees 

I1J Apt,K.R. and M.H.van Emden, uContribution to the 
Theory of Logic Programming-, J.ACM, Vo1.29, No.3, 
pp.841-862, 1982. 

[2J de Bakker,J.W. and D.Scott, uA Theory of Programs·, 
Unpublished Notes, IBM Seminar, Vienna, 1969. 

[3J Bowen,K.A., "Programming with Full First-Order Logic·, 
Machine Intelligence 10 (J.E.Hayes, D.Michie and Y
H.Pao Eds), ppA21-440, 1982. 

[4J Bowen,K.A. and R.A.Kowalski, -Amalgamating Language 
and Metalanguage in Logic Programming-, in Logic 
Programming (K.L.Clark and S-A.Tarnlund Eds), Academic 
Press, 1980. 

[5J Boyer,R.S. and J.S.Moore, -Computational Logic·, Academic 
Press, 1979. 

[6J Burstall,R., "Proving Properties of Programs by Structural 
I~duction", Comput.J., Vol.12, No.1., ppAl-48, 1969. 

[7J Clark,K.L. and S-A.Tarnlund, UA First Order Theory 
of Data and Programs", in Information Processing 77 
(B.Gilchrist Ed), pp.939-944, 1977. 

[8J Clark,K.L., '"Negation as Failure", in Logic and Database 
(H.Gallaire and J.Minker Eds),pp.293-302,1978. 

[9J Clark,K.L., '"Predicate Logic as a Computational Formalism· , 
ChapA, Research Monograph: 79/59, TOC, Imperial 
College, 1979. 

[10J van Emden,M.H. and R.A.Kowalski, uThe Semantics of 
Predicate Logic as a Programing Language·, J.ACM, 
Vo1.23, NoA, pp.733-742, 1976. 

[l1J Gordon,M.J.,A.J.Milner and C.P.Wadsworth, uEdinburgh 
LCF - A Mechanized Logic of Computation·, Lecture 
Notes in Computer Science 78, Springer, 1979. 

[12] Hagiya,M. and T.Sakurai, uFoundationofLogic Programming 
Based on Inductive Definition· , New Generation Computing, 
Vo1.2, pp.59-77, 1984. 

999 

[13J Hansson,A. and S-A.Tirnlund, uA Natural Programming 
Calculus· , Proc.of 6th International Joint Conference on 
Artificial Intelligence, pp.348-355,1979. 

[14J Haridi,S. and D.Sahlin, uEvaluation of Logic Programs 
Based on Natural Deduction·, Proc.of 2nd Workshop on 
Logic Programming, 1983. 

[15] Jaffar,J.,J-L.Lassez and J.Lloyd, uCompleteness of the 
Negation as Failure Rule·, Proc.of 8th International 
Joint Conference on Artificial Intelligence, Vol.1, pp.500-
506, 1983. 

[16] Kanamori, T . and H.Seki, -Verification of Prolog Programs 
Using An Extension of Execution·, ICOT Technical 
Report, TR-096, 1984. Also Proc.of of 3rd International 
Conference on Logic Programming, 1986. 

[17] Kanamori,T.and H.Fujita, uFormulation of Induction 
Formulas in Verification of Prolog Programs·, ICOT 
Technical Report, TR-094, 1984. Also Proc.of Conference 
on Automated Deduction, 1986. 

[18] Kanamori,T.and K.Horiuchi, UType Inference in Prolog 
and Its Applications·, ICOT Technical Report, TR-095, 
1984. Also Proc.of 9th International Joint Conference on 
Artificial Intelligence, pp.704-707, Los Angeles, 1985. 

[19] Kana;i'.ori,T.,uSoundness and Completeness of Extended 
Execution for Proving Properties of Prolog Programs·, 
ICOT Technical Report, to appear, 1986. 

[20] Kowalski,R.A., uLogic for Problem Solving-, Chap.10-
12, North Holland, 1980. 

[21] Manna,Z.and R.Waldinger, ·A Deductive Approach to 
Program Synthesis·, ACM Trans. on Programming 
Languages and Systems, Vo1.2, No.1, pp.90-121, 1980. 

[22] Murray,N.V., ·Completely Non-Clausal Theorem Proving
Artificial Intelligence, Vol.18, pp.67-85, 1982. 

[23] Pereira,L.M.,F.C.N.Pereira and D.H.D.Warren, "User's 
Guide to DECsystem-10 Prolog·, Occasional Paper 15, 
Dept.of Artificial Intelligence, Edinburgh,1979. 

[24] PraWitz,D., "Natural Deduction,A Proof Theoretical Study" 
Almqvist 8£. Wiksell, Stockholm, 1965. 

[25] Schiitte,K., ·Proof Theory" , (translated by J.N .Crossley), 
Springer Verlag, 1977. 

[26] Stering,L. and A.Bundy, "Meta-Level Inference and Program 
Verification·, in 6th Automated Deduction (W.Bibel Ed), 
Lecture Notes in Computer Science 138, pp.144-150, 
1982. 

[27] Tamaki,H. and T.Sato, "Unfold/Fold Transformation 
of Logic Programs·, Proc.of 2nd International Logic 
Programming Conference, pp.127-138, 1984. 

[28] Tirnlund,S-A., "Logic Programming Language Based 
on A Natural Deduction System·, UPMAIL Technical 
Report, No.6, 1981. 

[29] Weyrauch,R.W. and R.Milner, "Program Correctness in 
A Mechanized Logic·, Proc.of 1st USA-Japan Computer 
Conference, 1972. 



A J2-BIT'CHOS HICROPROCESSOR 
WITH SIX-STA6E,PIPELINE STRUCTURE 

II.Kaneko, Y.Miki, S.Nohara, K.Koya, and M.Araki 

Microcomputer Product Div. NEC corp. 
1753 Shimo-numabe, Nakahara, Kawasaki City, 211 JAPAN 

Abstract 
32-bit microprocessors are the key devices 

which .carry high data processing capability, that 
was obtained· by earlier general purpose computer 
systems and mini-computer systems, in much lower 
cost. Earlier 32-bit microprocessors were limited 
to adopt excellent -architecture and design using 
appropriate hardware by number of devices could be 
fabricated on a chip. Complex functions such as 
Virtual Memory management and Floating-Point 
operations had to be obtained by multi-chip 
configuration .in an earlier microcomputer system. 

V60 is a 32-bit CMOS microprocessor with the 
Virtual Memory management facility and 
Floating-Point arithmetic operations based on 
IEEE-754 Floating-Point standard on a single chip, 
and adopts six-stage pipeline structure constructed 
with six independent pipeline stages. 

We obtained a peak performance of 3.5 Million 
Instructions Per Second (MIPS) execution speed at 
l6MHz clock rate, and integrated 375,000 
transistors on a single chip using a state of the 
art double-metal layer CMOS process technology 
based.on 1.5um design rule. 

1. ·Introduction 
Advantages in VLSIfabrication technology have 

made it possible to design highly integrated VLSI 
·microprocessors. We are now in a technology region 
that some hundreds of thousands of circuit devices 
can f>e

2 
integrated on a tiny chip with reasonable 

cost '. The progress, in general, brings three 
benefits to general-purpose microprocessor 
designers; multiple 32-bit internal data paths; 
functionality integration such as pipelined 
structure; higher performance by short clock cycle. 

1.1 32-bit Microprocessors 
.Microprocessors have been used in a variety of 

application area, from small control systems to 
large computing systems, since they were introduced 
to marketplace in 1971.' 

The number of devices on a microprocessors have 
increased about one hundred-times in this 15 years. 
In addition, the speed of expansion in.application 
range 'does not seem to be decreased. Also the 
machine cycle of them have speeded up about 30 
times. 

The internal data-processing ability has been 
expanded from 4,8, and 16 to 32-bit, because of 
the requests to provide the strong data-processing 
power and large address space. 

CH2345-7/86/0000/1000$Ol.OO © 1986 IEEE 

For 32-bit microprocessors, the main 
application area seems to be in data-processing 
because of their excellent ability that obtained by 
general-purpose computer and mini-computer systems 
for information data-processing. Fundamental 
requests .from such application area will include 
high-level languages support, Operating-Systems 
support, and appli.cation programs support. 

To provide high-performance of the 32-bit 
microprocessors, they operate .at shorter operation 
clock rate (more than l2MHz) than earlier 
microprocessors. 

On the other hand, a large amount of the 
address space increases the main memory devices and 
goes to the expense the high-speed main memory 
systems (more than 1MB) fitted with the machine 
cycle of the 32-bit microprocessors. 

But, the real mission of the 32-bit 
microprocessors to supply the .low-cost information 

. processing systems but the high-ability of their 
data-processing. 

1000 

1.2 Design Limitations for Microprocessors 
There are two physical limitations to design 

the microprocessors. 
One of those is cost-performance trade-off 

problem. It decreases the yield of chips on a 
silicon wafer by throwing much number of the 
transistors into a chip. In the worst case, the 
chip designers can not get a properly working chip 
from a silicon wafer. It is given up to employ a 
large amount of hardware circuits or high-level 
hardware techniques for the reasonable chip cost. 
Consequently this problem limits an architecture 
designer for the microprocessors to .implement his 
ideal architecture on a chip. 

In other words, the functions of the 
microprocessors are. pre-determined and limi ted in 
the old-fashioned microprocessor design by number 
of transistors for employing .register set, 
instruction set, and something related his 
architecture on a chip. 

.The other limitation is regarding the operation 
speed of a fundamental logic element on a silicon 
wafer. The machine cycle and the timing design are 
expected by the operation speed of a transistor of 
silicon chip. The limitations holds down the 
performance of microprocessors. 

1.3 The V60 Microprocessor 
A 32-bit microprocessor V60 (uPD70616) is the 

newest member of NEC's V-series original 
microprocessor.s, and is the first implementation of 



the 32-bit microprocessor family6 
Philosophy that the processor functions must be 

included in a single chip as much as possible 
reflects the V60 architecture. The' bottle-neck 
problems regarding the data transfers between the 
CPU and external systems can be solved by reducing 
the number of times to access slow-speed external 
resources. 

G ... nl Pur, ••• R .... t.,.. 
1 •• ,rue'.I •• 
Ylrt •• 1 AllIIn .. 5,.n 
Rill AllIIn .. 5,.n 
Ylrt •• 1 l1I .. r, 11I ......... t 
HHU 
Tr ... I.U .. llOlt-A.IIII B.ffer 

TlB ""- R.U. 
nIOU .. -p.llt O,.ntl ... 
PI ,,11 .. st .. .. 
51 •• U.m .... [xlcutl ... 
Pnc ••• 
0 •• 1,. Rull 
Tr ..... t.,. 
OI,51z1 
Cleelt R.tl 
Piver 5.,,111 
Piver DI •• I,.U .. 
P.ck ... 
[xt,nIIAllllr ... Bu. 
[xt,nll D.tl "u. 
Perfer .. ee. 

3Z (3Z-",t) 
Z73 1 •• trucU ... ·I. 119 tv,'. 
.eGB ,.r •• , •• 
16HB 
0. ...... P •• I .. (4K8/, ... ) 
01-01, 
16-.. tr, hllA .. ecl.Uvl 
lYer 9B. 
Ol-CIII, "' .... 111[[[-754} 
6 

0.."'1- .... 1 I"er .CHOS 
1.5.H 
375,000 
13.9Z ... X 13.80 •• 
16HHz (6Z.5.5) 
+5Y 
1.5W 
68-,1. Pia Grill Arrl, 
Z4-"'t 
16-"'t 
3.5HIPS 

Table-\ Features of V60 

V60 has following 4 design goals and features 
to realize using t~e advantages of highly 
integrated CMOS devices . 

1) . Generality 
V60 has instruction and register architecture 

to support the high-level languages. V60 has 273 
instructions in 119 types, 21 addressing modes, and 
thirty-two 32-bit general purpose registers. 

Thirty-two 32-bit general purpose registers 
decrease data transfers of the operand data from/to 
the main memory system,' and reduce the bus-traffic. 

2) .Application Supports 
V60 employs high-level instructions, and 

various data types' such as Character-String, 
variable length Bit-Field, and Floating-Point data 
type based on IEEE-754 Floating-Point standard3 . 

Several high-level instructions shorten the 
total instruction code size and reduce the accesses 
for the instruction codes. 

To decrease the loading of the Operating-System 
for explodingly increased. amount of data and memory 
protection problems, V60 has on-chip Memory 
Management unit. (MMU) to supply 4GB virtual 
addressing space with the demand paging method. 

On-chip MMU and Floating-Point operations have 
the advantage to reduce the communications between 
the CPU and the other external functional chips. 

3) . Expandability 
It is considered to obtain expandability from 

the past that V60 has. Emulation Mode in which it 
can directly execute instruction set of NEC's 
16-bit CMOS microprocessors at object code level. 
On the other side, V60 has much transparency to 
expand with. the external functional devices such as 
Floating-Point Co-Processor for the future. 

4) . High-Performance 

1001 

V60 has a peak performance of 3.5MIPS by 
employing six-stage pipeline structure, operating 
at 16MHz clock rate, and. adopting the architecture 
such as employing high-level instructions that 
close almost data-processing in a chip. 

1.4 Pipeline Structure 
One of V60' s design goal is to supply 

high-performance to the· system designers. It can 
be obtained by high-speed execution using 
high-speed machine cycle. But there are two 
general reasons to disturb high-speed machine 
cycle. 

One is the limitation in the number of logic 
gates that are connected in series and operate in 
the same clock cycle. It is regarding. to the 
propagation delay time of a transistor. It means 
that operation clock cycle is determined by 
operation speed of complex or high-level functional 
hardware circuits like Arithmetic Logic Unit (ALU). 

Second is the limitation in the speed of main 
memory system connected to the CPU. The machine· 
cycle has been accelerated about 30 times, but the 
access time of main memory devices (Random Access 
Memory) has speeded up only a couple of times in 
this 15 years. It takes more expensive cost to 
employ the main memory devices matched to the 
microprocessor operating at high-speed machine 
cycle. 

To solve those problems, it is the best 
solution to employ pipeline structure to the 
microprocessor using in ~e sophisticated 
general-purpose computer systems . 

There are some problems to employ a pipeline 
structure; Increasing the registers to arbitrate 
the operation of each pipeline stage, hardware to 
solve the Pipeline Hazard problems related to the 
preceding execution of various instructions, 
independent hardware such as ALU in each pipeline 
stage, and complex control, etc. So much and 
complex hardware is needed to employ pipeline 
structure, hardware designers abandoned to a real 
pipeline structure into the earlier 
microprocessors. 

V60 is freed from the limitations concerned to 
a great number. of hardware by fine CMOS 
fabrication, and can employ a real pipeline 
structure and some high-level techniques to enhance 
the performance. 

2.Pipeline Structure of V60 
We describe implementation and features of the 

V60's pipeline structure in this section. 
V60 obtains well-balanced high-performance for 

both the simple instructions but frequently used 
such as the integer operations, and the complex 
instructions but infrequently used such as the 
Floating-Point arithmetic operations. V60 adopts 
six-stage pipeline structure to obtain 
high-performance for the simple instructions. 

2.1 Pipeline Stages 
The pipeline structure of V60 is constructed 

with six independent pipeline stages; Pre fetch Unit 
(PFU) , Instruction Decode Unit (IDU) , Effective 
Address Generator (EAG) , Memory Management unit 
(MMU) '0 Bus Control unit (BCU) ,and Execution Unit 



(EXU). An Unit is the hardware that corresponds to 
each pipeline stage. Each pipeline stage operates 
asynchronously and up to four instructions are 
processed in various pipeline stages. In following 
paragraphs, we describe constructions and functions 
for each unit. 

Fig.l shows the configuration of functional 
Units in V60. 

DATA nus 

ADDRESS nus 

Flg.1 V60 Functional Unit Diagram 

2.1.1 PFU (Pretetch Unit) 
PFU is the Unit takes charge of instruction 

code pre-fetch stage preceding to instruction 
decode and execution stages. PFU has 16B 
Instruction Code Queue registers (ICQ) and 
Instruction Code Aligner (ICA) . ICQ stores 
instruction codes transferred from BCU through 
l6-bit data bus (DBUS). 

PFU requires a data transfer request to BCU 
when PFU detects that more than 4B free area exist 
in ICQ. 

ICA separates instruction code in ICQ to the 
operation code field, the addressing field, and the 
displacement field, which are packed into an 
instruction code. 

Fig.2 shows the functional block diagram of 
PFU. 

Dnus 

JJ. 
I 
I 

ICQ 

fl:K'_'~' I 
CONTROL t. BCU a-_It

l 
x 16 

c .. tnla 

jJ. fr •• -te ID U 

cat a 

I ItA I 
Inus 

.u. 

Flg.2 PFU Functional Block Diagram 

2.1.2 IDU (Instruction Decode Unit) 
IDU is the Unit takes charge of the instruction 

decode stage. IDU decods the instruction code 

1002 

stored in PFU, and transfers results of the 
decoding to EAG and EXU. IDU also controls the 
basic sequence for the pipeline operation. 

The instruction decode operations are 
simultaneously performed for both operation code 
field and addressing field by the independent 
decoders. 

The results of the decoding transferred to EAG 
as about fifty output signals that include 
register, scaling and operand specifying 
information used for operand Effective Address (EA) 
calculation. When IDU detects that an instruction 
needs the EA(S) , IDU requests the operand EA 
calculation to EAG. 

In other side, the results of the decoding 
transferred through Instruction Decode Queue 
registers (IDQ) to EXU as about fifty output 
signals that include operand information, 
arithmetic operation information, and information 
specifying a microprogram executed for an 
instruction. When IDU detects that EXU terminates 
the actual instruction execution, it requests to 
start of executing of a next microprogram. 

Fig.3 shows the functional block diagram of 
IDU. 

fr •• -t. PfU 

(XU c .. tr.1 
t.fer_U .. 

Fig.3 IOU Functional Block Diagram 

!BUS 

EBUS 

(AG cent,.1 
hfenl8ti •• 

2.1.3 EAG (Effective Address Generator) 
EAG is the Unit takes charge of operand 

Effective Address (EA) calculation stage. To 
obtain high-speed EA calculation of 21 addressing 
modes, EAG adds 4 data stored in EA Temporary 
registers (EATRO-3) at the same time; base value, 
index value, displacement, and up-to-date data for 
pre-decrement or post-increment addressing mode. An 
adding operation uses high-speed four-inputs 32-bit 
adder combined with Carry Save Adder (CSA) and 
Carry Propagation Adder (CPA). 

The base and index value of EA stored into the 
General Purpose registers in EXU are asynchronously 
transferred through 32-bit data bus (EBUS) for the 



operation of EXU. 
EAG also has Program Counters (PC) to hold the 

leading address of the instructions corresponding 
to each pipeline stage. These PCs are up-to-dated 
~t every termination of operation in IDU and EXU, 
and the contents of PCs are used for EA calculation 
at PC relative addressing mode. 

If a request to calculate EA is transferred by 
IDU with issuing an external bus cycle, EAG 
requires the virtual-to-real address translation 
request to MMU and the access request to BCU. EAG 
has facility to detect that an access request 
extends over 2 memory pages (a page is 4KB region), 
and to calculate new page address and inform it to 
BCU automatically (Page Boundary processing). 

Fig.4 shows the functional block diagram of 
EAG. 

VI VI VI 
::I ::I ::I 
lEI lEI lEI 
101 C I-

Fig.4 EAG Functional Block Diagram 

2.1.4 MMU (Memory Management Unit) 
MMU is the Unit takes charge of 

translation stage from Virtual Address (VA) 
Address (RA). 

-. 
ee:;, 
1i:!:a 
a~. 
!i~ 

address 
to Real 

A 4GB VA space is constructed with 3 level 
hierarchies; Section, Area, and Page. Section is a 
hierarchy to define basic structure of VA space at 
construction of multiple-VA spaces, and a VA space 
has four 1GB-Sections. Area is hierarchy to have 
common address region privately between VA spaces, 
and a Section has 1,024 1MB-Areas. Page is 
hierarchy to realize the Virtual Memory mechanism 
with Demand Paging method, and an Area has 256 
4KB-Pages. 

Upper 20-bit of VA (it is called Virtual 
Page Number) transferred from EAG is translated to 

1003 

12-bit of upper RA (it is called Real Page number). 
This address translation is provided by the 

Full Associative type Translation Look-aside 
Buffer (TLB) wi th 16-entries for high-speed 
translation. Each TLB entry has 21-bit associative 
Memory part and 24-bit Data Memory part. 9-bit of 
the Data Memory part are used as memory protection 
information (3-bit are used for Page level 
protection and 6-bit are used for Area level 
protection), and access rights are checked at the 
translation. 

If no matching entry exists for the translation 
in TLB, MMU requests to start of a microprogram to 
replace one of the TLB entries. Pseudo Least 
Recently Used (LRU) algorithm is used fO_~TLB entry 
replacement. The TLB achieves about 10 miss hit 
ratio ( or equivalently 99% hit ratio) in tracing 
data by computer simulations. 

Fig.5 shows the functional block diagram of 
MMU. 

AHUS 

THUS 

tr ... 'etl .. 
re .... t 

ASSOCIATlYf 
HEt10RY 

llB .. t, .... tn .. 'etle • 
.rr.r 

Flg.S MMU Functional Block Diagram 

2.1.5 BCU (Bus Control Unit) 
BCU is the Unit takes charge of the external 

bus access stage for operand read/write and 
instruction code pre-fetch. BCU takes the 
interface between V60 and external memory systems 
or I/O devices regarding the data transfers and pin 
functions. The requests to issue an external bus 
cycle from PFU, EAG and EXU are arbitrated by BCU 
according to specifying of the bus cycle. A 
request for branch operation has the highest 
priority, a request for operand read or write 
operation has next priority, and the lowest 
priority gives to a request for instruction code 
pre-fetch operation. 

For one operand read/write operation, BCU 
automatically issue one-to-three external bus 
cycles according to specified data type and Real 
Address; 2 bus cycles are issued at a half-word 
data (16-bit) access for odd address and a word 
data (32-bit) access for even address, and 3 bus 
cycles are issued at a word data access for odd 
address. 

Operand Aligners (OWA and ORA) fitly arrange 
operand data from-and-to EAU. So, EAU can transfer 
an operand data without any consideration about 
data type and Real Address. 

Two Operand Read registers (OPR) hold data 



transferred from external data bus until EXU reads 
out them to reduce idle time in BCU. 

EXU transfers the data from OPRs through one of 
two 32-bit data bus (MBUS and SBUS), operand write 
to Operand Write register (OPW) through MBUS. 

BCU also has the Address Trap facility which is 
one of the strong software debugging facilities. 
The Address Trap facility is the mechanism that 
generates a trap and transfers the control from 
user's program to a debugging routine when BCU 
detects that the Virtual Address of an external bus 
cycle matches pre-determined values. It can select 
to specify operand read/write and execution 
(pre-fetch) bus cycle, and two-sets of target 
address for the Address Trap facility. 

Fig.6 shows the functional block diagram of 
BCU. 

DOUS CII:==::;;;:::=====:::::::;;;:======~==========::J 

MOUS~==~~======~======~~======~==~ 
sous~======================~======~==~ 
IOUS ~==============================:::::==~ 

AOUSca~==========~================:::::~ 
TOUS ~~==============================~ 

Ftg.6 BCU Functtonal Block Dtagram, 

2.1.6 EXU (Execution Unit) 
EXU is the Unit takes charge of actual 

execution stage. EXU has thirty-two 32-bit General 
Purpose registers (GR), sixteen 32-bit Scratch-Pad 
registers (SPR; parts of them are used for some 
privilege registers) , 32-bit full functional 
Arithmetic Logic Unit (ALU) with 4 Temporary 
registers (TEMP), 64-bit Barrel shifter, and some 
registers for the data processing including 
Processor Status Word (P~W). 

GRs are connected to three sets of 32-bit 
internal data bus (MBUS, SEUS, and EBUS), and those 
data buses can be read out the contents of various 
GRs simultaneously. MBUS and SBUS are used for 
data paths to transfer two data for ALU operation 
at the same time. This structure is well known as 
Dual Bus structure. EBUS is used for Effective 
Address calculation by EAG. The strong Carry Look 
Ahead (CLA) circuits are added to ALU to guarantee 
high-speed operation. 

1004 

EXU itself is a microprogram controlled 
machine. A vertical type microinstruction has 
32-bit width, and can control 4 control points 
simul taneously. Microcode is stored in Microcode 
ROM (MROM) which has S,184 steps capacity (it 
equals to 198,108-bit). MROM is addressed by one 
of Micro-~%dress registers (MAR). Four 16-bit MARs 
provide 2 words of addressing space and 4 level 
nesting structure of Micro-Subroutines. 

EXU starts to execute of the microprogram 
specified by IDU, when IDU terminates the decoding 
of next instruction. Also a microprogram is 
activated when EXU detects that an Exception or an 
Interrupt is requested. 

When the execution of a microprogram reaches to 
the microinstruction for terminating a 
microprogram, EXU waits its operations until IDU 
terminates the instruction decoding of next 
instruction. 

Fig.7 shows the functional block diagram of 
EXU. 

In In 
::) ::) 

51 ffi 
In 
::) 
ID 
C 

(XU c.ntro' 
.. fer_tj •• 
fr ... IDU 

Ftg.7 EXU Functional Block Diagr6m 

2.2 Parallel Operation 

tatern,t 
u r ..... t. 
i: 

The basic execution of an instruction in V60 is 
divided to 7-steps as shown in Fig.8. Fig.8 also 
shows the unit corresponding to each step. 

In those steps, step-l,S, and 7 are performed 
by BCU, and each step is sequentially opera ted. 
Because V60 reduces the access to slow-speed 
external resources by employing the General Purpose 
register architecture and several high-level 
instructions, the loading of BCU is not so heavy. 
So, it seldom occurs that BCU is requested to 
operate for step-l,S, and 7 at the same time. 

Also the address translation by MMU in step-4 
is always performed following the operand EA 
calculation by EAG in step-3. In V60 it can assume 
that the operation time of MMU is not concerned to 



ate, I !IJ(C(IJ a. IPIFIIl 

ate, 2 O[J)(l) 

ate, 5 ~ 

ate, 4 IiiIiilIl 

ate, 5 [IXCIJI 

ate, 6 II!JIIl 

ate, 1 [IXCIJI 

FIg.B Instruction Executton Flow In Pipeline 

the total execution time by employing the 
high-speed translation mechanism by TLB. 

At the some point of the time, step-2,3,6, and 
one of step-l,S, or 7 are simultaneously performed. 
So V60 can execute 4 instructions at the same time 
as shown in Fig.9. Each instruction is executed at 
every 2 operation clock cycles in the best case. 
Actually operation time in each pipeline stage 
changes depend on the instruction to be executed 
and its addressing mode. 

OCU .,er ... nM/vrUe. er I.atnetl .. eMe ,refetell 

PFU I" I Bel DIE 
IOU I " I B I c I DIE 
[AG 

MMU 

[XU " I B 

D I E 

D I E 

FIg.9 Beslc Pipeline Operetton 

2.3 Queueing Operation 
V60 employs the asynchronous pipeline structure 

considering confliction for the operation time of 
each pipeline stage. There are some instructions 
such as the Character-String manipulate 
instructions which access many operand data in the 
external memory. In other side, there are some 
instructions such as mUltiplication and division 
instructions which spend much time for their actual 
execution. In both cases, each pipeline stage 
might not operate equally; BCU has the heavy 
loading in the former case, and EXU has the heavy 
loading in the latter case. V60 avoids the problem 
that a pipeline stage can not operate depend on the 
state of other pipeline stages. 

To solve above problem, each pipeline stage has 
the Queueing facility for the next pipeline stage. 
Under circumstances that each pipeline stage needs 
different time to operate, V60 avoids the 

1005 

disturbances regarding to other pipeline stages by 
employing such Queueing facilities. 

We describe the Queueing facilities in this 
paragraph. 

1) • Instruction Code Queue 
PFU has l6B instruction Code Queue registers 

(ICQ). ICQ stores the instruction code transferred 
from BCU, when IOU is busy for the instruction 
decoding. So instruction code pre-fetch operations 
perform 8 times independent on the state of IOU. 

2) . Instruction Decode Queue 
IOU has the Queueing facili ty for EXU. 

Instruction Decode Queue registers (IDQ) stores the 
results of the instruction decode operation to be 
transferred for EXU. IDQ is constructed with two 
sets of the queueing register with about fifty-bit 
width. So IOU can decode 3 instructions even 
though EXU is in busy state for actual execution of 
an instruction. 

3) . Operand Read Queue 
BCU also has the Queueing facility for EXU. 

Operand Read registers (OPR) are two sets of 32-bit 
register that store the operand data transferred 
from the external data bus at an external operand 
read bus cycle. During actual execution in EXU 
without an operand read data, BCU can store two 
32-bit operand data to OPRs. 

2.4 Hazard Detection and Avoidance 
The Pipeline Hazard is the obstacle that 

processing for an instruction depends on the result 
of execution for preceding instructions in the 
computer systems with pipeline structure. 
Detection and avoidance for some types of the 
Pipeline Hazard regarding that plural instructions 
are simultaneously executed in various pipeline 
stages, are general and important problems in the 
pipeline structure. 

The Pipeline Hazard problems that may occur in 
V60 and the solutions for them are described as 
follows. 

1) .Register Hazard 
The Register Hazard occurs when preceding 

instruction uses the contents of General Purpose 
registers (GR), which are changed by the actual 
execution of an instruction in EXU, for operand 
Effective Address (EA) calculations in EAG as base 
or index value. 

Register Hazard detector (RHO) in IOU detects 
Register Hazard and controls each pipeline stage to 
avoid it. 

2) .Flag Hazard 
The Flag 

Conditional 
occurs when preceding 

instruction refers the 
which is changed by actual Conditional 

Hazard 
Branch 

flag(s) , 
execution in EXU, of PSW. 

Flag Hazard detector (FHD) in IOU detects Flag 
Hazard and controls each pipeline stage to avoid 
it. 

3) .Memory Hazard 
The Memory Hazard occurs when an operand read 

data or part of it is referred by preceding 



instruction is changed as the operand write data by 
actual execution in EXU. Memory Hazard detector 
(MHD) in BCU checks that the EA for the requested 
operand read operation has overlapped area with the 
EA of the expected operand write operation. When 
MHD detects existing of the overlapped area, BCU 
cancels the request for the external operand read 
bus cycle. 

Also BCU directly transfer the operand write 
data in Operand Write register (OPW) to Operand 
Read register (OPR) as the operand read data using 
Short-Path, after EXU performs the actual operand 
write operation. Then an extra operand read bus 
cycles are not issued. 

4).1/0 Hazard 
The I/O devices are usually connected to V60. 

They change their internal status through the 
reading operation by the CPU. In these case, read 
operations can not retry. If preceding operand 
read operation (I/O read bus cycle) occurs before 
the actual execution of an Input instruction 
(including the instruction which accesses the 
memory-mapped I/O) starts, an incovenience that it 
can not perform to retry for the I/O devices may 
happen. It is that even through an Input 
instruction is cancelled by requests of some 
Interrupts or occurring of some Exceptions, the 
internal status of an I/O device is already changed 
by the preceding operand read operations. 

I/O Hazard detector (IOHD) in EAG always check 
that the operand read operation for the I/O device 
is requested. If IOHD detects the request for the 
I/O devices, EAG instructs to hold the following 
requests for the operand read bus cycle until EXU 
starts to execute an Input instruction. 

2.5 Exception and Interrupt Handling 
The Exception and Interrupt handling are another 

general problems in the computer systems with 
pipeline structure and Virtual Memory mechanism. 

In the view point of pipeline structure, these 
are the problems what Unit detect them and when 
accept them. Basicly an Exception/Interrupt that 
is detected in earlier pipeline stage than actual 
execution stage is hold to accept until the actual 
execution begins. An Exception/Interrupt in the 
middle of actual execution is accepted only when 
the internal state of each pipeline stage are 
guaranteed to hold during execution of 
Exception/Interrupt processing. 

In the view point of Virtual Memory mechanism, 
these are the problems also what Unit detect them, 
when accept them, and how restart the instruction. 
An Exception regarding the Virtual Memory mechanism 
like Page-Fault is detected in MMU preceding actual 
execution. Actual execution for the instruction 
with the Exception is not performed. So, V60 can 
restart this instruction from top of it after 
execution of Exception processing. 

1) .Abort for Pipeline Processing 
Basicly an Interrupt request is accepted at the 

end of actual execution in EXU for an instruction. 
The Exceptions regarding an instruction, which are 
detected preceding the actual execution, are 
accepted just before the actual execution begins. 
In both cases, an instruction is not aborted in the 

1006 

middle of actual execution except the instructions 
with continual operand accesses such as String 
instructions. 

EXU checks Exception/Interrupt requests at the 
end of actual execution for an instruction, and 
activates a microprogram for them independ on the 
status of other Units. 

2).Suspend for Exceptions 
The Exceptions regarding an instruction, which 

are detected in the preceding pipeline stage, are 
suspended to accept until the instruction is 
guaranteed for the actual execution. Page-Fault at 
the pre-fetch operation and Memory Management 
Exceptions at operand read operation are good 
examples for them. 

Instruction Decode Queue (IDQ) has some 
information regarding the Exceptions detected in 
the preceding pipeline stages. EXU checks the 
exist of pre-detected Exceptions before the start 
of actual execution for an instruction. 

3) .Abort and Restart for TLB not-found 
If no match entry exists for the address 

translation of a memory operand (read/write) in 
TLB, actual execution sequence is basicly aborted 
by same manner as Exception/Interrupt. For some 
instructions such as String instructions, which 
follow the address translations for memory operands 
during the actual execution, the execution is 
aborted in the middle of actual execution. 

For both cases, the operations in each pipeline 
stage are frozen and can be restarted after the 
processing of the TLB entry replacement from 
original status. 

4).Abort for Executing Instruction 
There are two cases that an instruction is 

aborted in the middle of actual execution. First 
case is serious Exception like Reset. In this 
case, the state of each pipeline stage is not kept. 

The other case is an Interrupt during the 
execution for a complex instruction such as String 
instruction with longer actual execution time than 
that of basic instructions. In this case the 
aborted instruction can restart after the interrupt 
processing. EXU checks an interrupt request at 
some points of actual execution. 

2.6 Other Features 
V60 has some other features regarding the 

pipeline structure to obtain the high-performance. 

1) .Branch Instruction Processing 
The execution speed of a branch instruction is 

the most effectively for the computer with the 
pipeline structure, because such instruction avoids 
the advantages of preceding executions. Because a 
pipelined machine that executes a branch 
instruction seems as non-pipelined machine. In 
general, branch instruction must be detected and 
executed in earlier pipeline stage than the actual 
execution stage. , 

V60 executes branch instructions in IDU. IDU 
instructs PFU to cancel the validity of pre-fetched 
instruction codes in ICQ, EAG to calculate the 
target branch address and transfer the value to a 
PC in EAG, and BCU to restart the instruction code 



fetch operation, when IOU detects a branch 
instruction; EXU operates for the termination of 
the actual execution of a branch instruction. 

2) .Burst String Read Operation 
To increase the external bus traffic more 

effectively, BCU has a facility for the preceded 
operand reading. For such data structures located 
in memory space continuously and linearly as the 
Character-String data type, the next addressed data 
has high probability to be accessed as a data is 
accessed. 

BCU automatically issue the operand read bus 
cycle in the Burst String mode, as no data is in 
OPRs independently on the request from EXU. BCU 
also up-to-dates the address in a RAR for the next 
operand. 

EXU can get the next operand read data during 
the data processing for the current operand read 
data. 

3).Floating-Point Operation Support 
To obtain the excellent performance for 

Floating-Point arithmetic operations, several 
hardware supports are provided in EXU. 

The 64-bit Barrel shifter does not only shift 
and rotate a 32-bit data in one operation clock 
cycle (including logical-shift, arithmetic-shift, 
and extended rotate operation), but extracts a 
32-bit data started from any bit-position in a 
64-bit data. The Barrel shifter is used for the 
scaling operation of a Floating-Point data 
processing. 

The Leading-One detector finds the 
bit-position, which is the first bit has 
logical-one value leading from LSB or MSB in a 
32-bit data, with high-speed. This Leading-One 
detector is used for the normalizing operation of a 
Floating-Point data processing. 

The Second-Order Booth's algori thm is 
implemented for the high-speed multiplication 
operation. Then the multiplication operation for 
32-bit integer is executed in 16 operation clock 
cycles. 

3.Conclusion 
In this paper, we described the internal 

structure of the 32-bi t CMOS microprocessor V60, 
focusing on the pipeline structure and related 
issues. 

Integration of Memory Management unit and 
Floating-Point operation on a single chip decreased 
unnecessary overheads that were typical by 
multi-chip configuration in earlier generation of 
32-bit microprocessors. The pipeline structure is 
an asynchronous type, i.e., execution time of each 
pipeline stage may vary, depending on instruction 
set function. Smooth operation in the pipeline was 
achieved by designing queueing interfaces among 
pipeline stages. 

The structure was realized by an advantaged 
VLSI technology, based on 1.5um design rule, 
double-metal layer CMOS process. It provided not 
only high-integration density, but higher clock 
speed due to the shortened propagation delay. 
Table-2 shows the number of transistors for each 
pipeline Unit, and Table-3 shows the operation 

1007 

u.n Tr ... iltlra (XI ODD) 

PfU .. 
IDU 35 
EAG 15 
MHU 17 
BtU 39 
EXU 65 "xu,t I-cod. ROM) 

200 c.-c .. ROM) 

,.tll 375 

Table-2 TranSIstors In Each. Unit 

' .. cU ... 1 c\rnU .,.raU ... ped U'plcln 
AlU (32-.U) 15.5 
"nil .Illftu (6 ..... 32-.U) 13.5 
_Icrec" ROM U7-.tt. 518 ... ,.,.) 2 ... 5 
TlB (16 .. 'rl • ., 36.5 

Table-3 CIrcuit .Operat1on Speed 

speed of typical 
The V60 chip 

equivalent to 
13. 92mmx13 .80mm 
clock rate. 

circuits. 
integrates 375,000 transistors (or 

45,000 logic gates) on 
die size. It operates at l6MHz 

Acknowledgements 
The limited space does not allow the authors to 

list all of the project members to design and 
implement V60. Instead, they would like to thank 
M.Suzuki, J.lwasaki, Y.Sato, T.lwata, and Y.Yano 
for their helpful suggestions. They are also 
indebted to H.Sasaki, K.Kani, J.Takashima, and 
K. Shimamura for their support throughout the 
project. 

References 
[1] C.H.Sequin, "Managing VLSI Complexity: An 

Outlook", Proceedings of IEEE, Vol.7l, No.1, 
Jan.1983. 

[2] C.A.Mead and L.A.Conway, "Introduction to the 
VLSI Systems", Addison-Welsy, Reading MA, 1980. 

[3] "IEEE Standard for Binary Floating-Point 
Arithmetic", IEEE, Aug.1985. 

[4] N.Weste and K.Eshraghian, "Principles of CMOS 
VLSI Design", Addison-Welsy, Reading MA, 1985. 

[5] P.M.Kogge , "The Architecture of Pipelined 
Computers", McGrow-Hill Advanced Computer 
Series, 1981. 

[6] Y.Yano, et.al., "A 32-bit Microprosessor with 
On-Chip Virtual Memory Management", ISSCC 
Digest of techinical papers, p.36-37; Feb.1986. 



ADVANCED SUPER INTEGRATION 

Tomotaka SAITO*, Tetsuya YAMAMOTO*, Tomohisa SHIGEMATSU*, 
Ken-ichi NAGAO**, Sumio TAKEDA* and Yasoji SUZUKI* 

* Integrated Circuit Division, Toshiba Corp. 
** Toshiba Microcomputer Engineering Corp. 

Abstract 

A new ASICs (Application Specific ICs) design 
methodology, called Advanced Super Integration, is 
presented which allows short-time, one-chip inte
gration of user-built systems created utilizing 
general-purpose LSI products as cores. Advanced 
Super Integration uses.a hierarchical automatic 
layout system, a real chip simulator as a system 
verification method, advanced double-level alumi
num CMOS technology, and an enriched CMOS cell 
library. 

[1] Introduction 

Continuing progress in device miniaturization 
is driving LSI packing density to a true "system
on-a-chip" level, where customization for a parti
cular application becomes crucial in order to 
realize a miximum cost-performance ratio. 

To meet the emerging demands for Application 
Specific ICs (ASICs) in a way that is easily ac
cessible to the system designer, the authors de
veloped a kind of core-based design method which was 
called Super Integration[l]. Super Integration 
(SI) has been aimed at reducing design cycle times, 
costs and risks. Double-level aluminum CMOS tech
nology and a series of CAD software units are the 
major driving forces for SI implementation. CAD 
software includes TAPLAS[2],[3] (Toshiba Automatic 
Pattern Layout and Analysis System) as an automatic 
layout system; EMAP[4] (Extended Mask Analysis Pro~ 
gram) as DRC (Design' Rule Checker), and MACLOS[5],[6] 
(Mask Check Logic Simulator) as a logic simulator. 

Furthermore, a new design methodology, called 
Advanced Super Integration, has been developed 
which is more progressive than conventional SI. 
Advanced SI is achieved owing to the introduction 
of the following new technology factors: 

(i) Hierarchical aTAPLAS (aTAPLAS-II: advanced 
Toshiba Automatic Pattern Layout and Analy
sis System II), which can be used as an 
automatic tool to generate the layout of a 
whole chip. 

(ii) Real chip simulator, which enables a design
er to simulate a whole chip, including 
large-scale function blocks, such as an 8-
bit microprocessor (MPU). 

(iii) More advanced double-level aluminum CMOS 
process, which realizes high packing density 
and high speed performance. 

CH2345-7/86/0000/1008$Ol.00(g) 1986 IEEE 
1008 

Advanced Super Integration, whose scheme is 
shown in Fig. 1, has the following key features. 
(1) Standard products, such as microprocessors, 

peripheral. LSls, RAMs, and AID converters can 
be utilized as super macrocells. 

(2) The super macrocells and custom circuit blocks, 
which provide a customer with .design flexibili
ty, are designed hierarchically with aTAPLAS-II, 
using a super macrocell library and a standard 
logic library. 

(3) They are incorporated on the same, chip and 
interconnected by double-level aluminum_tech
nology. 

An example of an Advanced SI chip is given in 
Fig. 2. The chip functions as a hard disk con-

Standard 
Lagle 

B~ 
OW 
LJ~ 

Chlp-A,B,C are 
super macrocells 

Figure 1 

Super Integration 

Super Integration Scheme 

Figure 2 Hard Disk Controller Microphotograph 



troller (HDC) and includes the authors' CMOS version 
of an 8~bit MPU, l28-Byte Timing RAM (TRAM), and 
7 k gates for standard logic. It was fabricated 
with double-level aluminum technology and the 2.0 
~m design rule CMOS process. Die size is 95.1 mm2 • 

Only 3 man-weeks were spent in designing this 
chip, from the circuit design to the mask data 
generation. This fact proves the advantage of us
ing Advanced SI technology. 

[2] Design Methodology 

The design procedure for an Advanced SI chip 
is described in. this section. Figure 3 shows the 
general flow in Advanced SI, in comparison with a 
conventional SI. 

2.1 System Design 
Advanced SI allows a designer to define a VLSI 

chip in a hierarchical net-list form of predefined 
CMOS cells. There. are two kinds of cells in Ad
vanced SI. The first category, called macrocells 
or polycells, implements SSI/MSI-level function. 
The. second category, called super macrocells, is a 
cell for a large-scale function. Super macrocells 
implement a high~clegree of function, such as micro
processors and "other peripheral LSI parts. 

The designer can design an Advanced SI chip 

User Specification }-----------, 

System Simulation 

Automatic Layout 
floor planning 
layout planning 

polycell block layout 

Interactive Edit 
( if necessary) 

Design Verification 

Mask Data Compile 

Fabrication 

(a) Advanced Super Integration 

User Specification }----------, 

Logic Simulation 
BB Model Simulation 

Floor Planning 
without CAD support 

Automatic Layout 
Custom Circuit Block 

Manual Interconnection 

Design Verification 
(simulate the custom 
circuit block only) 

Mask Data Compile 

Fabrication 

(b) Conventional Super Integration 

Figure 3 Design Method Overview 

1009 

on an engineering workstation (EWS) and create a 
TDL (TEGAS Design Language) file. This file is up
loaded to the mainframe. Figure 4 shows an example 
of a system-level schematic, designed on an EWS. 

2.2 System Simulation 
When developing a conventional LSI, logic 

simulation is carried out for the entire system. 
However, since a Super Integration chip includes 
super macrocel1s as large-scale function blocks, a 
simple simulation method is not applicable to the 
SI chip. 

One possible method is the gate-level soft
ware modeling which works so well for super macro
cells embedded in the SI chip. The gate-level 
modeling normally becomes unsatisfactory for the 
SIchip, mainly because of the computing time need
ed to simulate the functions of microprocessors and 
other peripheral LSIs. 

The solution for simulating the entire SI chip 
is to let super macrocells model themselves, which 
is called a real chip simulator. This real chip 
simulator is usable on several kinds of EWSs. 
Advanced SI allows a designer to implement the 
system verification with the real chip simulator. 
The real chip simulator does not need detailed 
gate-level modeling for super macrocells, but re
quires only their pin descriptions. Since the de
signer needs to see only the pin information for 

Figure 4 An Example Showing System-level 
Schematic on an EWS 



super macrocells, as shown in Fig. 4, the access 
level is limited only to the information displayed 
on the EWS. 

Figure 5 shows an example of a simulation out
put result obtained by the real chip simulator, 
corresponding to the waveforms from an 8-bit micro
processor. 

2.3 Automatic Layout 
In a conventional SI, the custom circuit block 

layout is generated automatically with TAPLAS. The 
generated custom circuit block can be treated as 
one of several super macrocells. Interconnection 
among super macrocells, including the custom cir
cuit block, is performed manually using the graphic 
editing system. 

In the advanced SI, the whole chip layout 
design is achieved hierarchically using a hierar
chical automatic layout system, aTAPLAS-II[7] 
This layout system can be divided into three parts: 
floor planning, automatic layout planning, and 
polycell block layout. 

In floor planning, with the support of the 
mainframe computer, an engineer can pre-define the 
following items: 1) the method to partition the 
system into blocks, defined as clusters of poly
cells, 2) the global placement of blocks, and 3) 
the wiring routes for principal signals (e.g. 
power lines). 

In automatic layout planning,[7] the polycell 
block dimensions can be estimated. Also, the 
global router attempts to minimize the die size, 
both by optimally assigning interconnection require
ments to channels and by allocating block terminals 
not only on the block's boundary, but also in its 
internal area. 

Polycell block layout proceeds after the de
termination of terminal positions, in the same 
manner as in TAPLAS. Then detailed inter-block 
routes proceeds. Finally, the detailed over-block 
routes are also laid out by aTAPLAS-II. 

As shown in Fig. 6, layout for a HDC chip is 
performed automatically, after which part of the 
layout is modified manually. Some·pin locations 
and related wiring were changed, due to the physi
cal technology and area saving requirements. The 
result of these modifications was about 5 % reduc
tion in die size. 

SCALE 1:1 

"'111 

"'"t1'lLT 

eLK 

"'"RF5-t 

"'1ofI1T 

~INT 

""1'111 j 

~ ~r----~--~--~--~~~~--~--~--~~~ 

~igure 5 An Example Showing Real Chip 
Simulation Results 

1010 

2.4 Design Verification 
Design Verification need not be performed in 

case all the databases of an Advanced Super Inte
gration. chip are generated automatically. 

However, if parts of the laout are carried 
out on the mask layout level, as in the case of the 
HDC chip, or if interconnections are altered manual-· 
ly, design verification tools have to be run. 
These tools include DRC (Design Rule Checker), ERC 
(Electrical Rule Checker), and a logic simulator. 

For logic simulation, MACLOS (Mask Check Logic 
Simulator), unit delay switch level simulator, is 
applied to the transistor network extracted from 
the final mask database by EMAP (Extended Mask 
Analysis Program). In the near future, Toshiba is 
going to introduce an after-layout simulation using 
estimated routing capacitance and loading. 

[3] Cell Library 

Since Advanced Super Integration is generally 
used in a large-scale system, it is essential that 
a cell library be designed with CMOS technology, 
both to prevent too much of an increase in power 
consumption and to promote. device miniaturization. 
The two kinds of cell libraries advocated, macro
cell library and super macrocell library, use C2MOS 
(Clocked CMOS) circuitry[8]. Thus each cell li~ 
brary has electrical characteristics of low power 
consumption, high-speed performance, and high pack
ing density. 

Each standard product is designed according to 
the same drawing rule. Its mask data is to be lin
early shrunk on the drawn-level data in order to 
obtain reasonable die size and high performance. 
Utilizing the drawn-level data for a standard prod
uct as drawn-level data for a super macrocell in 
Advanced SI, the global and most updated shrinkage 
rate can be selected; even if the actual shrinkage 
rate for the standard product is different from 
others. 

Figure 6 HDC Chip Layout Result 



The authors macrocell library includes SC li
brary and SI library. The two are functiona~ 
equivalent, but not electrically. In regard to 
gate propagation delay time, the SI library is 
inferior by at worst 20 % to SC library according 
to SPICE simulation results. However, in regard to 
packing density, the SI library is about 1.5 times 
as much. as the SC library. The reason is that the 
SI library has smaller dimensions than the SC li
brary and allows over-block routes, as shown in 
Fig. 7. These libraries allow a designer to select 
and use either of the two, considering a trade-off 
between die size and AC performance. 

In the above real chip simulation, the per
formance data for each macrocell, which includes 
TpHLand TpLH equation with variables for fan-out 
and capacitive load, is needed in order to perform 
timing verification. Figure 8 shows an overview 
of the procedure to extract performance data for 
macrocells automatically from the mask level lay
out. Transistor network and load information are 
generated from the layout data and then transformed 
into SPICE format, based upon the process parame
ters. SPICE simulation results are compiled in the 
LDDL (Library Data Description Language) format. 
The LDDL file is uploaded to the mainframe computer 
and the EWS. This file is used as performance data 
for logic simulator and timing verifier. 

The super macrocell library includes the com
plete 8-bit MPU family, DMA controller, UART, I/O 
controller, VDP, FDC, CRT controller and other 
peripheral controllers. In addition, l6k/8k/2k/ 
lk-bit RAMs and 8-bit A/D converters are included 
in the library. 28 super macrocells are availa
ble at 1. 5 llm / 2.0 llm design rules. These super 
macrocells are functionally compatible with the 
corresponding standard LSls. They have a large AC 
margin to specification and conform very well with 
Advanced SI approach. The authors have been de
signing these super macrocells, without stripping 
away the bonding pads and large output buffers, 
considering compatibility with existing standard 
LSI parts. 

[4] Testability Design 

In an Advanced SI chip comprising several 
super macrocells, testability, especially for em
bedded super macrocells, is one of the major con
cerns. As shown in reference [1], a conventional 
SI can gain direct access to each of embedded 
super macro cells with "cutset circuitry", which 
includes multiplexers, transceiver logic and other 
circuits modifying the peripheral circuits around 
the terminals. In testing a conventional SI chip, 
entire chip tests follow testing individual super 
macrocell by a developed test program and testing 
custom circuit block by a newly-developed test 
program. 

The new test method described in the follow
ing has been considered and adopted. This new cut
set logic includes additional circuits, which let 
embedded input signals to the embedded MPU lead to 
the outside. Connecting the led signals to the 
corresponding terminals of an existing standard 
MPU allows a user to emulate the embedded MPU us
ing the standard MPU. 

Test efficiency for both user and vendor is 
achieved with this cutset logic. 

1011 

-1 0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 

19 1 B 17 16 15 14 

Figure 7 

r------, 
: Process : 
: Parameters I _______ J 

(a) SI Library 

109 B 4 3 2 1 0 -1 -2 -3 -4 

~I 

(b) SC Library 

Complex Gate Polycell Layout 

LDDL: Library Data 
Description 
Language 

Figure 8 Procedure to Extract Macrocell Library 
Performance Data 

CD 

N 

:n 

CJ 

n 



· [5] Advanced Super Integration Performance 

As described in Section 3, the cells and all 
the standard products for logic LSIs are designed 
according to the same drawing rule, each of which 
has a different design rule in the fabrication pro
cess. So, it is possible for all standard procucts 
to be used as super macrocells. The standard prod
ucts are released after they are evaluated in the 
same fabrication process as Advanced SI. 

Since an Advanced SI chip normally uses data
bases whose design has been finished and whose per
formance data has been guaranteed, the Advanced SI 
chip performance greatly depends on that of the 
super macrocells. Generally, the LSI performance 
is determined by both its fabrication process and 
design level. Since the design level for super 
macrocells has been fixed, the Advanced SI chip 
performance mainly depends on its fabrication 
process. 

The relationship between performance and fab
rication process will be explained in the following. 
The progress in the fabrication process has covered 
the range from 3.5 ~m to 1.5 ~m design rule. The 
authors' consistent scaling philosophy allows these 
processes to be applied to all the super macro cells 
and Advanced SI chips. Figure 9 illustrates the 
progress by an example of an 8-bit MPU which is the 
authors' CMOS version. In 2.5 ~m, 2.0 ~m and 1.5 
~m design rule processes, respectively, the maximum 
operation frequency is obtained at around 1.3, 2.8, 
3.4 times as many as in 3.5 ~m process. The power 
supply current is reduced by around 30 %, 45 %, 50 
%, compared with that in the 3.5 ~m process. 

Individual 2.5 ~m, 2.0 ~m and 1.5 ~m design 
rule processes allow developing an SI chip embed
ding 4 MHz, 6 MHz, and 8 MHz version, respectively, 
of the MPU. 

[6] Estimation Results 

A design procedure for Advanced Super Inte
gration has satisfied the purpose of reducing the 
design cycle times, costs and risks, through design 
automation. As an example of an HDC chip design, 
the results of an Advanced SI chip design are dis
cussed in the following. 

(1) Design cycle time 
As shown in Fig. 10, it took only 3 man-weeks 

to complete the design, from starting the circuit 
design to making up the EBMT (Electron Beam Mag
netic Tape) for mask fabrication. As mentioned 
before, the layout on the chip corner was accom
plished manually at the mask layout level. Also, 
parts of the interconnections were manually al
tered, so that an extra 4 man-days were expended 
on interactive editing. 

It is estimated to take nearly one year, for 
three or four talented engineers, when design is 
performed by conventional hand-craft method. The 
approach by SC (Standard Cell) or SOG (Sea of Gate) 
seems close to the same time as in the Advanced 
SI approach. However, since it is impossible to 
describe super macrocells, e.g. and 8-bit MPU, by 
gate-level modeling, neither the SC nor the SOG 
approach is generally practical in this case. Ad
vanced SI design method and a conventional SI de
sign method are a practical way to realize a chip 

1012 

which include existing standard LSIs. In the con
ventional SI, it took 4 man-weeks to complete the 
design, according to reference [1]. Advanced SI 
realized 25 % reduction in design cycle time. 

(2) Die Size 
Automatic layout on the HDC chip took around 

1.4 CPU-Hours (on a 7-MIPS computer). The die size 
obtained by it was 5 % larger than the final die 
size, which was 95.1 mm2, as before. Figure 11 
shows the die size prediction for the HDC chip with 
several design methods at both the 2.0 ~m and 1.5 
~m design rule levels, where SOG is available for 
the HDC chip only in the 1.5 ~m design rule pro
cess. It is clear, in Fig. 11, that Advanced Super 
Integration is superior to SC and SOG, although it 
is inferior to the hand-craft design in the die
size point of view. This high density comes from 
usage of super macrocells, which had been manually 
designed, in order to minimize the number of tran
sistors and to integrate with high packing density. 

Yo -5V To-25t 
N 

~ 20 0-0 fo 20 
0-0 Icc (at 4MH/a 

0 
<{ - E 

c 
0 

~ 0 0 u 
15 

~c 
15~ 

Q) 
0. 

C 0 - ~ 0 :3 
>- U u 
c 10 10~ Q) 
:3 
c- o. 
Q) :3 

It C/) 

~o L. 

E 
Q) 

:3 ~ 

E 
0 0 

5 5 a. ·x 
0 

:::?! T T I I I I I 

3.5 3.0 2.5 2.0 1.5 

Design Rule [JLml 

Figure 9 An 8-bit Microprocessor Performance 

TDL 

1st week I 2nd week I 3rd week 

f2J 
I 

Circuit design I 

for testability I 
I 

~ 
I 

Floor planning I 
I 

~ 
I 

Layout I 
I 

Interactive edit ~ 
Data processing ~ 
Design rule checking ~ 
MAC LOS simulation ~ 

I 

~ EBMT making I 
I 

EBMT 

Figure 10 HDC Chip Design Cycle Time 



a£.2 

Q) 
2 f-

.~ 
en -go >-

0 
~ 

Q) 

0 

"'0 
Q) -0 
"3 
C) 
Q) 

a: 

~ 

W 0 
~6 

Q) -0 

),&,0 (!) 

u; - --
"0 

en a; Q) - 0 -- c 0 
0 0 '1:J '1:J 0' 
~ 

+= Q) u 0 
~ -c 0 I Q) C '1:J 0 

'1:J > 0 c c c > 0 0 
0 0 '1:J - Q) 

J: U <t en en 
o 

Design Method 

Figure 11 Die Size Comparison 

Conclusion 

A design method, called Advanced Super Inte
gration, that utilizes high performance microcom
puters as cores and that is particularly suitable 
for ASICs, is proposed and discussed. Advanced SI 
advantages are discussed in comparison with a Con
ventional SI. Some of them, especially in regard 
to the design methodology, are a whole chip simula
tion on an EWS and an automatic layout by hierar
chical aTAPLAS, which realizes both very short de
sign cycle time and high packing density. High 
speed performance is also achieved, using 1.5 ~m 
double-level aluminum CMOS technology. This design 
method seems to provide a new field for VLSls. 

1013 

Acknowledgement 

The authors would like to acknowledge the con
tinuing guidance and encouragement of H. Egawa, 
Dr. T. Tarui, K. Suzuki, S. Takisawa, K. Yoshida, 
M. Ishibashi and M. Hirasa~a. 

References 

[1] K. Nagao et al. "Super Integration," IEEE 1985 
CICC, pp. 267-271. 

[2] Y. Shiotari et al. "New TAPLAS for Full Custom 
C2MOS LSI Design," IEEE 1982 CICC, pp. 111-114. 

[3] Y. Nakada et al. "High Packing Density LSI 
with Interactive Facilities," ISSCC Digest of 
Tech. Papers, pp. 41-46, 1974. 

[4] T. Mitsuhashi et al. "An Integrated Mask Art
work Analysis System," Proc. of 17th DA Conf., 
pp. 277-284, June, 1980. 

[5] M. Takashima et al. "Programs for Verifying 
Circuit Connectivity of MaS/LSI Mask Artwork," 
Proc. of 19th DA Conf., pp. 544-550, June, 
1982. 

[6] M. Kawamura et al. "Logical Verification of 
LSI Mask Artwork by Mixed Level Simulation," 
Proc. of IEEE International Syrnp. on Circuit 
and System, pp. 1021-1024, May, 1982. 

[7] M. Yamada et al. "A Multi-layer Router for 
Standard Cell LSls," Proc. of ISCAS 85, 
pp. 191-194, 1985. 

[8] Y. Suzuki et al. "Clocked CMOS Calculator 
Circuitry," ISSCC Digest of Tech. Papers, 
pp. 58-59, 1973. 



A l6-BIT MICROPROCESSOR WITH MULTI-REGISTER BANK ARCHITECTURE 

Hideo MAEJIMA*, Hiroyuki KIDA*, Tan WATANABE**, 
Shiro BABA*** and Keiichi KURAKAZU*** 

* Hitachi Research Laboratory, Hitachi,Ltd. 
4026 Kuji-cho, Hitachi-shi, Ibaraki 319-12, Japan 

** Systems Development Laboratory, Hitachi,Ltd. 
*** Musashi Works, Hitachi ,Ltd. 

ABSTRACT 

This paper describes a newly develp
ed microprocessor architecture, which we 
call a multi-register bank architecture. 
To accelerate a task switching speed, a 
microprocessor includes multi-register 
banks, each of which consists of sixteen 
general purpose registers. 

In the multi-register banks, there 
are two types of banks. One is a global 
register bank assigned to an individual 
task and the other is a ring register bank 
asigned to a task called by a procedure 
call like subroutines. 

The microprocessor incorporates an 
orthogonal instruction set with complex 
and reduced formats to achieve high code 
efficiency for high-level languages. 

INTRODUCTION 

Rapid progress in semiconductor tech
nology, in particular, MOS technology, has 
made it possible to fabricate highly inte
grated microcomputers that exceed 100 
thousand MOS transistors. Microcomputers 
with many peripheral functions are appear
ing on the market which reduce system cost 
and increase system performance. Present
ly, 8-bit machines are the most popular 
because of their excellent cost/perform
ance ratio. 

However, many applications are begin
ning to require new generation micropro
cessors with higher performance which ad
vanced semiconductor technology helps to 
provide. Several 16-bit microprocessors 
have been utilized in high-end applica
tions for controllers, and development fo
cus is moving to 16~bit machines. 

A real time processing capability is 
vital for microprocessors serving as con
trollers. In the real time processing, 
tasks are switched frequently according to 
events, e.g., interruptions from I/O de
vices and software interruption. In mi
croprocessors, not only execution speed of 
instructions, but the speed of task 
switching must be improved to achieve high 
performance at the system level. Addi-

CH2345-7/86/0000/1014$Ol.OO © 1986 IEEE 
1014 

tionally, software productivity must be 
improved. To do this, application pro
grams should be described using popular, 
high level languages and microprocessor 
architecture should help in their effec
tive execution. 

In this paper, descriptions are given 
of an architectural concept, and an archi
tecture for real time processing and for a 
high level language support of a 16-bit 
microprocessor. 

ARCHITECTURAL CONCEPT 

HIGH SPEED TASK SWITCHES 

One of the main jobs of the conrol
ler is control for I/O devices. Inter
ruptions from I/O devices drive the corre
sponding tasks. They occur frequently and 
new tasks are then driven each time. 
There are many cases in which switching 
time of the tasks dominates system per
formance, even though instructions are ex
ecuted at high speed. Thus, breakthroughs 
in microprocessor archiecture are re
quired. 

SOFTWARE PRODUCTIVITY 

Another consideration in micropro
cessor architecture is software produciv
ity. In the past, mainly assembling lan
guages have been used to describe programs 
in control applications, as only they made 
it possible to achieve the maximum per
formance through their machine dependent 
functions. As control applications have 
now gone on to a higher level, software 
productivity becomes more important. In
stead of the assembling languages, high 
level languages are becoming popular among 
many software designers. 

PROCESSOR ARCHITECTURE 

BASIC ARCHITECTURE 

Our 16-bit microprocessor is based on 
a general register machine with a multi
register bank architecture. No distinc
tion between address registers and data 



registers exists in the general purpose 
registers. A set of general registers 
composes a register bank, and plural banks 
exist in the microprocessor. The address
able memory space of the microprocessor is 
linear and currently 16M bytes with 4G 
bytes anticipated in the future. Byte
oriented instructions based on orthogonal 
and variable length concepts include com
plex and reduced formats, in order to 
achieve both high level functions and sim
ple operations. Memory to memory opera
tion is available in most of the instruc
tions. 

REGISTERS 

The microprocessor registers are 
shown in Fig.l. It consists of sixteen 
32-bit general purpose registers and six 
32-bit special purpose registers, a 16-
bit status register and three a-bit spe
cial purpose registers. The 32-bit spe
cial purpose registers include a program 
counter (PC), a supervisor stack pointer 
(SSP), an exception vector base register 
(EVBR), a RAM relocation base register 
(RRBR), a bank stack pointer (BSP) and a 
current bank number register (CBNR). The 
a-bit special purpose registers include a 
bank mode register (BMR), a global bank 
number register (GBNR) and a valid bank 
number register (VBNR). 

.... .... 

GENERAL PURPOSB 
REGISTERS 

32 BITS 
R15 
R14 
RI3 
R12 
R 1 I 
RIO 
R 9 
R 8 

: 

: 

R 2 
R I 
R 0 

.. .. - .... 

SPECIAL PURPOSB 
REGISTERS 

32 BITS .. -
P C 
SSP 
BVBR 
RRBR 
B S P 
CBNR 

16BITS~ 
CIIJ 
8 BITS 

t----t 
GBNR 
BMR 
VBNR 

Fig.l: Microprocessor Registers 

1015 

MICROCHIP ARCHITECTURE 

The microprocessor is a microcoded 
processor and its general purpose regis
ters are implemented in a centralized RAM, 
which we call a RAM-based architecture. 
The microprocessor (Fig.2) consists of a 
memory access processor (MAP), an instruc
tion execution processor (lEP) and a RAM. 
Each processor consists of an execution 
unit and a control unit that includes a 
microprogram memory (ROM). The internal 
buses are 32 bits wide to ensure high per
formance. 

NAP 
MEMORY ACCESS 

PROCESSOR 

IRP 
INSTRUCI' ION 

EXECUTION PROCESSOR 

HA AI 

(REGISTER BANKS/MBMORY) 

ADDRESS BUS DATA BUS 

Fig.2: Microprocessor Architecture 

MULTI-REGISTER BANK ARCHITECTURE 

CONCEPT OF NEW ARCHI'rECTURE 

To achieve high speed task switching, 
one problem encountered is overhead time 
for saving contents of the general purpose 
registers in a main memory and resuming 
them. In a microprocessor with a single 
register bank architecture (a conventional 
architecture), the sequence shown in Fig.3 
is performed when one task i switches to 
another task j. In this case, the micro
processor 

Saves the contents of the general 
purpose registers for task i in the 
main memory. 
Loads new data from the main memory 
to the general purpose registers for 
task j. 
Executes task j. 
Resumes the data for task i, which 
were saved in the memory before task 
j started to execute, and returns 
them to the general purpose regis-



terse 
Starts task i again. 

When the microprocessor executes 
multi-tasks, task switches occur fre
quently. These reduce system performance, 
even if execution speed of instructions is 
fast. To cut the task switching time, the 
volume of data transferred between the 
general purpose registers and the memory 
should be minimized. To realize this, a 
multi-register bank architecture has been 
developed. A register bank, which con
sists of sixteen 32-bit general purpose 
registers, is given to each task. Saving 
and resuming the registers disappear. 
Thus, the switch between tasks i and j can 
be performed immediately. 

MICROPROCESSOR 
REGISTERS 

TASK i 1~1jmjmmmmmj~ 

~~ 

MEMORY 

,.' 
REGISTERS 

TASK j j: : : : : : : : : : : ~ .. ~l...I--L_O_AD __ '_· -----f ~ ~ ~ ~ ~ ~ ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

REGISTERS 

TASK i I~mmmmmmmjr 

// RESUME 
... (RETURN) 

(a) CONVENTIONAL SEQUENCE 
(SINGLE-REGISTER BANK) 

MICROPROCESSOR 
REGISTER BANKS 

TASK i m~m~mmmmm 

rtjj 

MEMORY 

................. i~::· 

NO SAVE/RESUME 
'::U' 00 ••••• • •• 0 ••••• 

(b) NEW SEQUENCE (MULTI-REGISTER BANK) 

Fig.3: Task Switching Mechanism 

PROGRAMMABLE REGISTER BANK 

The number of register banks differs 
with the applications. So, it should be 
large enough and also programmable by 
software. The number of register banks 
can be set to 2, 4, 8, or 16. Therefore, 
the register banks are implemented in a 
RAM. When the number is small, for exam
ple, in a single task, the rest of the RAM 
is available to be used as an on-chip high 
speed memory, as shown in Fig.4. 

RAM 

INTERNAL 
MEMORY / 

8 REGISTER BANKS 
I 

Fig.4: Multi-Register Bank Architecture 

GLOBAL REGISTER BANK 

One event driven task is independent 
of others in many cases. One register 
bank is given to each task. The register 
bank is designated a Global Register Bank 
(GRB). In order to switch from one reg
ister bank to another, the Global Bank 
Number Register (GBNR) must be updated by 
the software (a special instruction). 

The register bank switching mecha
nism is as follows. When a certain event 
caused by a software interruption (e.g. 
macro instruction call) or a hardware in
terruption (e.g. interruption from I/O de
'vices) occurs, an operating system is 
called and task switching is performed. 
In Fig.5, GRB #1 is given to the current 

GLOBAL RBGISTER BANKS 

INTERRUPT 

f...L..o:..~.L.::'-I.~~ [;!~~~ 
GRB4 ~ 

1016 

GRB 3 

GRB 0 
r RESUME PSW 

GBNR=l 

GBNR 

GRB 1 
GRB 0 

Fig.5: Operation of the Global Register 
Banks (GRBs) 



task #1 and GRB #3 is given to the next 
task #3. A switch from the current task 
#1 to the next task #3 is performed by 
saving the current PSW (Program status 
Word; a program counter and a status reg
ister) in a predetermined area of the main 
memory and updating the contents of the 
GBNR from 1 to 3. It is unnecessary to 
save the contents of the current GRB, so 
task switching time is minimized. To re
turn from task #3 to task #1, the contents 
of the GBNR are updated from 3 to 1 and 
the old PSW is resumed. 

RING REGISTER BANK 

In programs described with high level 
languages, procedure calls and returns of
ten occur. In this case, a stacking mech
anism is required. The multi-register 
bank architecture can be applied to this 
mechanism, as shown in Fig.6. The top 
part of the stacks (on the main memory) 
should be maintained in the multi~register 
banks, like an on-chip stack memory. 
These register banks are called Ring 
Register Banks (RRBs). 

When one of the GRBs requires a new 
register bank via a procedure call, the 
lowest part of the RRBs is given to the 
called task. The rest of the RRBs is giv
en to the following tasks. Addressing 
modes of the microprocessor support three 
types of register accesses, the GRB, the 
current RRB and the previous RRB. 

The maximum number of RRBs is eight. 
When an overflow occurs in them, the con
tents of the least recently used RRB are 
saved in the main memory and data for the 
new task are loaded in the open RRB. When 
an underflow occurs, all of the RRBs are 
open. In this case, the most recently 
used data in the memory are loaded in one 
of the RRBs. In execution of some bench-

MULTI -REGISTER 
BANKS 

(MICROPROCFSSOR) 
RING 

RING BANK 
STACK 

(MEMORY) 

BOTTON 

Fig.6: Operation of the Ring Register 
Banks (RRBs) 

1017 

mark programs, the occurrence ratio of 
overflows or underflows is less than 10%. 

ORTHOGONAL INSTRUCTION SET 

BYTE ORIENTED INSTRUCTION FORMAT 

The instruction format is designed on 
an orthogonal and variable length con
cepts. A basic instruction is availble to 
specify two memory operands. As shown in 
Fig.7, basic instructions are composed of 
four fields. The first is an operation 
code (OP) which specifies the processing 
function. The second is an operand size 
(sz) field which specifies the size of the 
processed operand. The third is an effec
tive address (EA) field which consists of 
seven bits and specifies the location of 
the processed operand. An accumulator bit 
(A) is used to specify an accumulator (RO) 
as the implied second operand. When this 
bit is one, the accu- mulator becomes the 
second operand and the second EA field is 
omitted. 

r- 8 BITS ., 
I 

o P 
S2 I (6 BITS) j4 ................... 8 BITS I n ·········· .. ··.1 

I AI 
BAO I~~~~~ (7 BITS) 

101 
BAI I~~~£§~ (7 BITS) 

Fig.7: Orthogonal Instruction Format 

ADDRESSING MODES 

Table 1 shows the thirteen address
ing modes of the microprocessor, which in
clude a current bank mode and a previous 
bank mode for the RRBs. Both of them be
come prefixes of the following EA fields. 
The EA field with the prefix makes it pos
sible to specify a register which belongs 
to the current task or the previous task. 

Other addressing modes are for the 
GRBs. In the addressing modes, sizes of 
displacement, absolute address and immedi
ate data are defined freely by Sd, Sa and 
Si fields, respectively. Each field con~ 
sists of two bits, and one size of 8-
bits, 16-bits or 32-bits which is selected 
by the compilers to optimize object codes. 

COMPLEX INSTRUCTIONS· 

As shown in Fig.8, basic instrucions 
consist of three formats, a-operand, 1-



Table 1: Addressing Modes of the Microprocessor 

No. ADDRESSING MODES EA CODES EXTENDED EA CODES 
1 REGISTER DIRECT 100 Rn NOTHING 
2 REGISTER INDIRECT OSd Rn DISPLACEMENT (0,8,16,32) 

3 REGISTER INDIRECT WITH AUTO-INCREMENT 101 Rn NOTHING 
4 REGISTER INDIRECT WITH AUTO-DECREMENT 110 Rn NOTHING 
5 IMMEDIATE 11100Si IMMEDIATE (8,16,32) 
6 ABSOLUTE ADDRESS 11101Sa ADDRESS (8,16,32) 
7 SCALED REGISTER INDIRECT 11110Sd Scale Rn DISP 
8 INDEXED REGISTER INDIRECf 1111100 OLSd Rn Scale Rn DISP 
9 PROGRAM COUNTER RELATIVE WITH INDEX 1111101 OLSd Scale Rn DISP 
10 PROGRAM COUNTER RELATIVE 1111101 10Sd Rn DISP 
II REGISTER INDIRECT DOUBLE 1111110 SdSd Rn DISP DISP 
12 CURRENT BANK 1110000 ARBITRARY EA CODES I-II 
13 PREVIOUS BANK 1110100 ARBITRARY EA CODES 1-11 

1. O-OPERAND INSTRUCTION 
I OPO I < OPO) 

2. I-OPERAND I NSTRUCf ION 

o P 1 I sz II '--o--'-I __ E_A_O_----' (EAO) < OPI ) -) (EAO) 

3. 2-0PERAND INSTRUCTION 

3 -1 lop 2 I sz I 11 I E A 0 (EAO) < OP2 > RO -> RO 

3-21 0 P 2 I sz II 0 I E A 0 II.-I o...,L.I __ E A_I ---I (EAO) (OP2 > (EAl) -> (EAl) 

4. REGISTER INSTRUCTION (REDUCED) 

lop 3 I sz 1.1 Ri I Rj (Bi) ( OP.J ) (Bi) -) (Bi) 

Fig.8: Complex and Reduced Instructions 

operand and 2-operand instructions. The 
O-operand instruction consists of one byte 
with no sz field. The I-operand instruc
tion consists of a minimum of two bytes, 
one byte for OP-code and sz field and the 
other byte for an EA field. The 2-operand 
instruction consists of a minimum of two 
or three bytes. If the MSB of the first EA 
field, which is an accumulator bit, is 
one, the second EA field is not needed, 
because the acumulator (RO) is implicitly 
specified. If the MSB of the first EA 
field is zero, the second EA field is 
needed. 

1018 

REDUCED INSTRUCTIONS 

Although the basic instructions are 
orthogonal, the microprocessor has a re
duced instruction format as for register
to-register operations. This feature ef
fectively ensures high code efficiency in 
object codes and also high performance. 



CONCLUSION 

A newly developed architecture for a 
l6-bit microprocessor has been described. 
Its multi-register bank architecture 
should be effective for executing event 
driven tasks and procedure calls, by 
through a combination of global register 
banks and ring register banks. The micro
processor can be fabricated with advanced 
CMOS technology to operate at a 16 MHz ma
chine cycle. It should be the nucleus of 
a l6-bit single-chip or system integrated 
microcomputer with many peipheral I/O 
functions included in the same chip. 

ACKNOWLEDGEMENTS 

The authors would like to extend 
their sincere thanks to Y. Hatsukano, H. 
Yasuda, J. Nakajima and I. Masuda for 
giving them the opportunity to develop 
this microprocessor and for useful sugges
tions during the work. 

REFERENCES 

[1] Dave Bursky, liMOS/digital/Analog mix= 
low-cost, high performance single chip 
UCS,II Electronic Design, Vol.27, 
No.13, pp.43-48, Jun. 1979 

[2] H. Maejima, K. Katsura, et al., liThe 
VLSI Control Structure of a CMOS Mi
crocomputer,1I IEEE Micro, Vol.3, 
No.6, pp.9-l6, Dec. 1983 

[3] David A.Patterson and Carlo H.Sequin, 
IIA VLSI RISC,II IEEE Computer, Vol.lS, 
No.9, pp.8-l8, Sept. 1982 

1019 



SOFTWARE ORIENTED APPROACH FOR SUPERCOMPUTER DESIGN 

* ** ** Kenichi MIURA, Yoshiyuki TANAKURA, and Sachio KAMIYA 

* FUJITSU AMERICA INC., Computational Research Dept., 
3055 Orchard Drive, San Jose, California, 95134-2017, USA 

** FUJITSU LIMITED, Software Division, 
104 Miyamoto, Numazu-shi, Shizuoka, 410-03, JAPAN 

ABSTRACT 

The most important point in the design of 
supercomputers that achieve high-speed 
execution by parallel processing is to make 
efficient use of the inherent parallelism 
in the programs. This means the software
oriented approach is very crucial. 
Fuj itsu t s vector processors, the FACOM VP 
systems, are supercomputers that are de
signed along this line of approach. Our 
approach to development and its effective
ness is presented in this paper. Future 
design trends are also discussed. 

1. INTRODUCTION 

Recently, in the scientific and engi
neering fields, the demands for faster and 
easier to use computer systems is rising 
because of increased computation needs. 
This demand for higher performance has no 
ceiling. 

General-purpose computers adopt the con
cept of serial processing. As we are close 
to the basic limitations in the device and 
circuit technology, no drastic improvement 
in performance is expected in this approach 
alone. It is therefore necessary to incor
porate some kind of parallel processing 
techniques to obtain increased performance. 
This is the basis for the development of 
vector processors. 

Powerful parallel processing, however, 
cannot be achieved by hardware alone. Vari
ous techniques in the architectural design 
are required to exploit the maximum amount 
of parallelism. This indicates that the 
previous hardware-oriented approach is not 
sufficient and that a software-oriented 
approach is also necessary. We believe this 
trend becomes more manifest as programs 
contain higher and higher degree of paral
lelism. 

This paper first presents the problems 
that must'be solved to achieve high speed 
execution by parallel processing. Next; the 
actual approaches taken in the development 
of Fuj i tsu t s vector processors, the FACOM 

, CH2345-7/86/0000/1020$01.00 © 1986 IEEE 
1020 

VP systems, in order to cope with these 
problems is introduced as an example. Fi
nally, the future of high-speed execution 
by parallel processing is briefly discussed 
together with the results of our 
experiments. 

2. FASTER EXECUTION BY PARALLEL PROCESSING 

The two kinds of parallelism that scien
tific and engineering programs have are: 
array operations executable in parallel 
(SIMD type), and different procedures exe
cutable in parallel (MIMD type). In addi
tion, there are various levels of oper
ations and procedures. 

Execution performance, P, obtained by 
parallelization is expressed by the fol
lowing formula: 

1 
P=-------- ( 1 ) 

where i indicates each part of a program 
which can execute in parallel and ri indi
cates the ratio of the relative computation 
time of each part to the total time when 
parallelization is not applied. ai indi
cates the effect of parallelization for 
each part. 

The ideal value of ai is the ratio of 
the peak performance inherent in the hard
ware for parallel processing to that for 
non-parallel processing. Unfortunately, ai 
usually contains various kinds of degrading 
factors. For example, if an initialization 
or termination process is involved in par
allel execution, ai contains a factor 
caused by that process which degrades the 
execution performance. If data transfer is 
involved, ai will also be affected by the 
side-effect of that data transfer. If each 
part of a program can do parallel process
ing in two ways at the same time, ai will 
reflect the effect of such parallel proc
essings. 

The values of ri and a i largely depend 
on the types of parallel processing as well 



as the specif ic features in architecture 
and software. 

As shown in (1), to get high performance 
by parallel processing, it is necessary to 
maximize R= ~ ri and each a i. In vector 

i 

processors, R is the vector ization ratio, 
and each ai is the performance improvement 
factor in each vectorizable part. In a 
multiprocessor system, R is the paral
lelization ratio, and each a i is the ap
proximate value of the number of processors 
which do parallel execution. (The actual 
value is smaller than this because of over
head in task distribution and synchroniza-
tion.) Performance degradation by other 
factors such as overhead caused by data 
transfer may also have to be considered, 
depending on the hardware configuration of 
processor interconnection. 

The following are necessary to increase 
R and each a i: 

(a) high speed circuit and packaging 
technology 

(b) incorporation of parallelism in the 
architecture 

(c) system software to extract the 
maximum amount of parallelism 

Cd) an efficient algorithm for parallel 
execution 

As far as the architectural design of a 
supercomputer is concerned, items (b) and 
(c) are the most important. In other words, 
to what degree parallelism can be extracted 
from actual application programs and how 
efficiently the extracted parallelism can 
be executed. To maximize these factors, it 
is necessary to survey actual application 
programs, then design architecture and soft 
ware based on the survey. We define this 
approach as 'software-oriented approach' 
throughout this paper. 

3. DESIGN OF VECTOR PROCESSORS 

This section discusses the approach to 
the design of processors which efficiently 
execute the parallelism of the SIMD (vec
tor) type, using as an example the method 
we adopted in designing the FACOM VP sys
tems. 

3.1 Actual method 
As is evident from (1), in vector proc

essors, it is important 
(a) to increase the vectorization ratio as 

much as possible, and 
(b) to design architecture which can exe

cute array type parallelism as fast as 
possible. 

With regard to point (a), it is impor
tant to increase the range of operations 
executable as vector operations, not to 
mention simple operations such as Ai=Bi+Ci, 
i=l, .. ,N. At the same time, software must 

1021 

be able to detect all corresponding vector 
operations, and to confirm that vector
ization has a positive effect on perform
ance. 

With regard to point (b), it is impor
tant to identify the bottlenecks in actual 
application programs and to des,ign an ar
chitecture which eliminates them. 

3.2 Survey results of application programs 
We thoroughly examined actual FORTRAN 

programs from the point of view of vector
ization, according to the ideas mentioned 
above. Over 1000 programs were examined. 
See Ref. [1] for details of the results. 

We will now discuss the results of these 
analyses from several points of view: 

- vectorizable operations 
- ratios of operations 
- patterns and ratios of memory accesses 
- vector length and number of active 

vectors 

a) Vectorizable operations 
Besides simple arithmetic operations in 

a simple DO loop, vectorizable operations 
include operations that contain complicated 
control structures like IF statements, and 
operations expressed in several statements 
which can be changed into one vector macro 
operation. Operations containing IF state
ments appear in about 30% of DO loops. In 
some cases, these consume as high as 90% of 
CPU time. This indicates a need to somehow 
provide an effective means to speed up the 
conditional operations. 

b) Ratios of operations 
In arithmetic operations, the number of 

addition/subtraction, and multiplication 
operations is about equal. Other operations 
like division, comparing(logical) opera
tions, vector macro operations, and intrin
sic functions occur at almost the same 
rate. The linked operations are frequently 
performed for addition/subtraction and 
multiplication, or in most other cases they 
can be executed concurrently. 

c) Patterns and ratios of memory accesses 
The number of data movement operations 

required per arithmetic operation is about 
0.8. In other words, 8 data movement opera
tions are required to execute 10 arithmetic 
operations. In vector data, there are con
tiguous data (73%), constantly strided data 
(19%), and data located at random positions 
(8%, which is also significant). 

d) Vector length and number of active 
vectors 
The vector length widely varied among 

programs. The number of active vectors at 
anyone time is usually 3 to 4, and seldom 
exceeds 30. But in very rare cases, it ex
ceeds 70. 



3.3 Requirements and the architecture 
adopted in the FACOM VP systems 

The results described in 3.2 clearly 
indicate certain requirements for the 
design of efficient vector processors. This 
section describes the requirements and an 
outline of the architecture adopted in the 
FACOM VP systems. For further details, see 
Ref. [2,3]. 

a) Types of operations 
The basic requirements are to provide 

all instructions that correspond to recog
nizable vector operations and to make sure 
that these instructions operate efficient
ly. 

To 'realize this, the FACOM VP system 
provides not only instructions for simple 
arithmetic operations and vector macros, 
such as summation operations, but also in
structions for manipulating various types 
of vector data, such as data editing and 
data retrieving. 

In addition, for greater efficiency, the 
FACOM VP provides mask bits and mask func
tions which enable or disable the execution 
of operations on individual vector ele
ments. The total number of vector instruc
tions is 83. 

b) Balance of computational devices and 
parallel execution 
The basic requirements are that there be 

a good balance between addition-related 
devices and multiplication-related devices, 
and that these devices can be executed in 
parallel.' It is also essential to employ an 
architecture which processes multiple 
vector elements simultaneously at high 
speed. 

Two alternatives meet these require
ments: the pipeline type and the processor 
array type. We have chosen the pipeline 
type because it has a good affinity with 
the architecture of general-purpose comput
ers. Four pipelines are provided as compu
tational devices: add/subtract , multiply, 
divide, and mask. Any two pipelines of 
arithmetic operations and the mask pipeline 
are executable concurrently. Since the mask 
operation is an auxiliary one, it is exe
cuted behind other arithmetic operations to 
obtain higher performance. 

c) Access to memory.and parallel operation 
The Basic requirements are to ensure 

sufficient data for full operation of 
ari thmetic and logical pipelines, and to 
allow a wide variety of functions in load/ 
store instructions for the various patterns 
of data accesses that occur in application 
programs. 

In the FACOM VP systems, there are two 
memory access pipelines that continuously 
feed data to two arithmetic/logical pipe-

1022 

lines that can be executed in parallel. 
These two memory access pipelines are also 
executable in parallel. When these pipe
lines are executed in parallel, the order 
of access to memory data must be consistent 
with the scalar processing. To realize 
this, the FACOM VP systems have two serial
ization functions: 

- pipeline identification (pipeline ID) 
- POST/WAIT instruction insertion 

The pipeline ID function assures the order 
of vector instruction execution by assign
ing the same ID to the instructions whose 
execution order must be maintained. In
structions without an ID are executable in 
parallel, except for those restricted by 
hardware register reservation mechanism. 
This drastically lessens the overhead 
caused by serialization. The POST/WAIT 
instruction insertion has the same function 
as in an operating system. It is mainly 
used for synchronization between the scalar 
unit and the vector unit. 

The software can achieve the optimal 
serialization by using these functions. 

d) Vector register capacity and configu
ration 
It is desirable to have as large a reg

ister capacity as possible and as many reg
isters as possible. Of course, there are 
limitations in actual hardware i~plementa

tions. 
The vector registers in the FACOM VP 

systems are dynamically configurable, al
though total capacity stays the same. The 
vector register may be reconfigured when 
vector length is changed, that is, for each 
DO loop execution. The VP-200, for example, 
takes the following configurations: 32 
(length of a vector register in a 64-
bitword) x 256 (number of vector regis
ters), 64 x 128, .. , 1024 x 8. This recon
figurable feature of the vector registers 
enables efficient execution of programs for 
various vector lengths. 

The software automatically selects the 
optimum vector register configuration for 
each DO loop. 

3.4 Effectiveness of the FACOM VP system~ 
The previous section discussed several 

architectural features in the FACOM VP 
systems. This section discusses the effect 
of this architecture on actual application 
programs. 

Table 1 shows the results of our meas
urements. The numbers in each row are the 
execution times, measured in seconds, for 
three different levels of parallel proc
essing. These three cases are described in 
Table 2. The numbers in parentheses are the 
performance ratios of the execution with 
full parallel processing to that without 
parallel processing, and the performance 



ratios of. execution with full parallel 
processing to that with restricted parallel 
processing, respectively. All the measure
ments were made on the VP-200. The vector 
peak performance of the VP-200 is 570 
MFLOPS, and the average scalar performance 
is 8 to 9 MFLOPS. 

From Table 1, it is clear that the tech
niques used in the architecture have great 
effect. Case 3 is faster than Case 2 by the 
factor of 1.2 to 3.7. For details concern
ing the effect of each function, refer to 
Ref. [4]. Refs. [5] and [6] evaluate per
formance of other actual application pro
grams. 

4. FUTURE OF HIGH-SPEED EXECUTION BY 
PARALLEL PROCESSING 

As stated in Section 2, application 
programs inherently contain MIMD type 
parallelism as well as SIMD type paral
lelism. 

The MIMD type parallelism is not easily 
detectable with the techniques for the 
current system software, because they are 
mainly based on the data dependence analy
sis of the programs at the local level. 
However, detection of the MIMD type paral
lelism is essential for higher speed exe
cution. It is natural to enlarge the target 
range from the parallelism of the SIMD type 
to that of the MIMD type. 

4.1 Requirements for MIMD-oriented high
speed execution 

It is obvious that multiple processors 
are required for the execution of the 
programs with MIMD type parallelism. The 
problem is how to configure the multiple 
processors and how to allocate the data 
among them. The latter is especially re
lated to programming languages. That is, 
data allocation differs l greatly depending 
on the problems to be solved over all 
spheres of the scientific and engineering 
fields. For example, a shared-type memory 
accessible from multiple processors will be 
best for a program which involves frequent 
access to all array data. In contrast, 
small pieces of local memory will be most 
effective for a program containing many 
small procedures. There are also many 
programs like the structure analysis which 
combine both frequent access to the array 
data as well as many small procedures. 
. The optimal configuration and allocation 
1S determined by the specific program. This 
means the software-or iented approach, 
again, is very essential. 

From the software point of view there 
is a problem of granularity. This depends 
on the ratio between the overhead time of 
procedure (task) distribution/synchroniza
tion caused by program fragmentation and 

Table 1: Effec~iveness of various 
vector processing techniques 

Program Case 1 Case 2 Case 3 Effect Primary 
No fields T1 T2 T3 (T2/T3) effective 

(T1/T3) architecture 
1 Fluid model 855.56 68.72 35.93 (1. 9) IF 

(23.8) 
2 Fluid model 607.25 189.53 112.26 (1. 7) Vector 

( 5.4) register 
3 High energy 209.48 33.83 26.83 ( 1.3) IF, Vector 

( 7.8) register 
4 High energy 31.22 4.12 2.41 (1. 7) IF 

(13.0) 
5 Particle in 168.04 37.69 32.32 (1. 2) IF, Indirect 

cell ( 5.2) access 
6 Plasma 101. 79 70.40 42.93 (1. 6) Indirect 

( 2.4) access 
7 Plasma 96.15 96.60 25.81 (3.7) IF, Vector 

( 3.7) register 
8 Weather 413.80 192.65 109.52 (1.8) IF 

forecast ( 3.8) 
9 Nuclear 25.71 4.74 3.53 ( 1.3) Macro 

( 7.3) operation 
10 Energy 76.13 6.31 3.82 (1. 7) IF 

1023 

transform (19.9) 
Unit=secoods, l J=ratio 

Table 2: Description of three different 
levels of parallel processing 

Case 1 Execution time without parallel 
processing 

Case 2 Execution time when the following 
functions are restricted 
- Vectorization of DO loops contain

ing complex control structures such 
as IF statements 

- Parallel execution of vector compu
tational. pipelines 

- Parallel execution of memory access
related pipelines 

- Dynamic register reconfiguration 
(fixed at 32 registers of 256 elem
ents each) 

Case 3 EXecution time with full parallel 
proceSSing 

the net computation time in the procedures 
to be executed in parallel. For a given 
application program, granularity and paral
lelism are strongly coupled: if parallelism 
increases, granularity decr.eases, and vice 
versa. There is an optimal point where the 
parallelism and granularity are balanced. 
This ·point varies according to the problem 
characteristics. 

4.2 Multitasking with a multiprocessor 
system 

We have experimented the multitasking in 
October, 1979, using the FACOM M-200 
tightly-coupled 4-multiprocessor sys.tem, 
the highest performance general-purpose 
computer at that time. This was reported in 
newspapers, nation-wide. An outline of the 
experiment follows. 

a) Problem 
The problem is to solve the 2-dimen

sional Laplace equation as givert in (2) and 
(3) by SOR (Successive Over Relaxation), 
after approximating (2) by the finite 
difference scheme (size: 320x320) as given 
in (4). 



--- + = o (2) 

Boundary condition: 

U (x,y) = sin (x) * sinh (y) (3) 

Finite difference scheme: 

To perform multi-tasking, an array U is 
divided into four rectangular domains as 
shown in Figure 1, and each domain is 
assigned to one of four CPUs for parallel 
execution. To assure the same execution 
order as would be executed by one CPU and 
one task, the tasks are synchronized when
ever tnere is an operation on data at a 
boundary of the four domains. 

b) Program for multitasking 
Multitask programs are written in 

FORTRAN. For controlling tasks, the fol
lowing basic subroutines are provided. 
Figure 2 outlines the program for multi
tasking. 

CALL FORK subtask generation 

CALL JOIN subtask termination 

CALL QGET synchronization of 
operation on data at 
boundary (synchronization 

CALL QPUT between subtasks) 

CALL POST synchronization between 
CALL WAIT task and subtask 

To obtain larger granularity, the con
vergence check was made as follows: 

Step one: Main program 
Initialization 

c) Results 
In executing our multitask program, we 

found that convergence took place at the 
2150th iteration. We obtained the follow~ng 
timing results: 

System Wall clock ratio 

M200-1CPU 7 min 44 sec 1 

M200-4CPU 2 min 6 sec 3.68 

4.3 Survey on multiprocessing 
We believe that MIMD type parallel proc

essing should be the next target; since it 
is a more generalized concept. We are 
conducting a survey of actual application 
programs from this point of view. 

Various kinds of levels being considered 
as the target for MIMD type parallelization 
are: 

- multiple DO's (DO loop slicing) 
- procedure blocks in a subroutine 
- subroutines 

Synchro
nization 

!l 

Synchro
nization 

!l 

Synchro
nization 

!l 
- j -+ 81 80 - j -+ 161 160 - j-+ 241 240 - j -+ 320 

~ 

320 n n n n 

I 
.. 

I· task task task task 

... ... ... ... 
BlliJ lCPU BlliJ lCPU BlliJ lCPU BlliJ lCPU 

Figure 1: Dividing array U .into .4 domains 

Subtask 1 Subtask n 

Subtask generat ion .: ............................................ : Check the convergence every 200 
iterations until the value be
comes 1.5 times as large as the 
convergence criterion. 

:! ! 
CALL FORK (SUBl. ARGl. ••• l····~ SUBROUTI NE SUBI(ARGl •••• ) SUBROUST

I 
01 NNEUS(U

3
B20n (A

8
R
1

)Gl •••• ) 
CALL FORK (SUB2. ARGl.... . ... : DIMENSION U (320.81) DIllEN • 
CALL FORK (SUB3. ARG 1. • .. . ... : ~CALL QGET CALL FORK (SUB4. ARGl ••••...• : CALL QGET _ ......... ; ;....... -

Step two: 

Check the convergence every 10 
iterations after the first step 
is completed. 

r Operation of Ul :";"; Operation of Un 
CALL WAIT (ECBl. ECB2. ECB3. ECB4)-'~:.~... CALL QPUT .. .•. CALL QPUT 

.•..............• ..... ···CALL POST (ECBn) 
···CALL POST(ECBl) .•..........•.. -CALL WAIT(ECBnn) 

Yes. " -CALL WAIT (ECBll) .....•....•...• 

C'ALL JOIN _·········································RETURN ········RETURN 
: END ~ END 

STOP : ........•••••..•..•.•..•.•..•.........•••...........•....••.....•............ 
END 

Figure 2: Outline of multi tas'k program 

1024 



The granularity increases in this order. 
Table 3 shows part of the survey of two 

processor systems. The comments in the 
column "parallelization level" in Table 3 
refer to the combined levels described 
above. Execution times are the simulated 
values by hand-parallelization. 

4.4 Future of using parallel processing to 
get high,performance 

At present, the pipeline architecture 
for the SIMD type parallelism and the mul
tiprocessor architecture fo~ the MIMD type 

. paralle lism are the common combinations. 
Full utilization of these two types of 
parallelism is necessary to achieve the 
maximum performance for wide range of 
application programs. Any system that 
targets only one of the two types will soon 
reach its limit; the best system is a well
balanced one that utilizes both types of 
parallelism. 

As for the ease of use, however, there 
already exists a vast amount of software in 
actual use that employs the automatic 
vectorization technique. Systems for the 
SIMD type have become very easy to use. 
Yet, there is little software that exploits 
the MIMD type parallelism. As indicated in 
the previous section, implementation of the 
MIMD type parallelism requires a great deal 
of program modification. In the previous 
example, a program with ten steps for a 
general-purpose computer was recoded into a 
program with seve.ral hundred steps for 
parallel processing and took three weeks 
just to run this program. This indicates 
the challengirig nature of developing the 
parallelizing software. But, because use of 
the MIMD type parallelism is inevitable to 
obtain higher execution performance, more 
software will be developed that aims at 
applicati'ons in MIMD type parallelism. 

5. CONCLUSION 

The effectiveness of a software-oriented 
approach to achieve high performance in 
parallel processing has been discussed in 
this paper, using the Fuj i tsu' s FACOM VP 
systems as an example. In addition, the 
importance of MIMD-type parallel processing 
as a future trend has been pointed out. For 
very high-speed execution, however, circuit 
and packaging technology, programming 
languages, and parallel processing algo
rithms are also important and will continue 
to be so. 

"Ease of use" is .also a very important 
factor in a high-performance system. 

We will continue our systems development 
based on the primary goals of higher per
formance and ease of use. 

1025 

Table 3: Effectiveness of parallel processing 
by two processors 

Program Paralleli- Execution 
field zation time ratio Parallelization 

ratio 
Energy 
transform 99.9 %; 2.0 routine + 

procedure 
Weather 
forecast 99.9 %; 1.9 multiple DO's 

Plasma 92.3 %; 1.8 multiple DO's + 
procedure 

Plasma 88.9 %; 1.7 multiple DO's + 
procedure 
multiple DO's + 

Plasma 46.4 % 1.3 routine + 
procedure 

Fluid 
model 33.9 % 1.2 routine + 

procedure 

Nuclear 60.9 % 1.2 routine + 
procedure 

Nuclear 1.0 % 1.0 multiple DO's + 
procedure 

ACKNOWLEDGMENTS 

level 

The authors would like to express their 
thanks to Mr. S. Suzuki, Mr. K. Uchida, Dr. 
T. Matsuura, Mr. F. Isobe, and many other 
colleagues at Fuj itsu Ltd. for valuable 
discussions, comments, and contributions on 
many occasions. 

REFERENCES 

[1] Kamiya,S., Isobe,F., Takashima,H. and 
Takiuchi,M.: Practical Vectorization 
Techniques for the 'FACOM VP', 
Information Processing, (Edited by 
Mason, R.F.A), IFIP, 1983, pp.389-394 

[2] Miura,K., Fujitsu's Supercomputer: 
FACOM Vector Processor System, in 
Supercomputers, ( Edited by S. 
Fernbach), North-Holland, 1986, pp. 
137-151 

[3] Tamura,H., Kamiya,S. and Ishigai,T., 
rACOM VP-100/200: Supercomputer with 
Ease of Use, Parallel Computing 2, 
North-Holland, 1985, pp.87-107 

[4] Matsuura,T., Kamiya,S. and Takiuchi,M.: 
Design Concept of FACOM VP Based on 
Extensive Analysis of Applications, in 
Proc. IEEE Int. Conf. on Computer 
Design (ICCD '84) (October 1984), 
pp.232-237 

[5] Matsuura,T., Miura,k. and Makino,M., 
Supervector Performance without Toil 
-FORTRAN Implemented Vector Algorithm 
on VP-100/VP-200, Computer Physics 
Communications 37, North-Holland, 1985, 
pp.101-107 

[6] R.H.Mendez: Supercomputer Benchmarks 
Give Edge to Fujitsu, SIAM NEWS 3, 1984 



"ADVANCED IMPLICIT SOLUTION FUNCTION OF DEQSOL AND ITS EVALUATION" 

Chisato Kon'no, Miyuki Saji, Nobutoshi Sagawa, Yukio Umetani 

Central Research Laboratory, Hitachi Ltd. Kokubunji, Tokyo 185, Japan 

ABSTRACT 

OEQSOL is a programming language specially designed to 

describe POE problems in a quite natural way for numerical 

analyses. This language has two design targets. One is to 

enhance programming productivity by establishing a new 

architecture-independent language interface between numerical 

analysts, and vector/parallel processors. The other is to 

automatically generate highly vectorizable FORTRAN codes from 

OEQSOL descriptions, thus realizing efficient execution. An 

advanced function has been introduced, so that the descriptive 

capability of OEQSOL for practical and complex problems has 

been highly elevated. 

1. Introduction 

Recently, demand for "numerical routines which simulate 

physical phenomena has been rapidly increasing. The hardware 

used for such numerical simulation has made remarkable 

advances through innovations in LSI technology and computer 

architecture, such as vector and parallel processors. However, the 

programming itself still remains at a relatively elementary level. 

The development of simulation programs" by such 

conventional languages as FORTRAN faces the following 

problems. A long period of time is necessary to develop even a 

simple simulator, and special knowledge of numerical analysis 

methods like discretization is needed. In addition a specialized 

programming technique is required to exploit the performance 

of vector/parallel processors. Moreover, such programs are so 

CH2345-7/86/0000/1026$01.00 © 1986 IEEE 
1026 

lengthy and complicated that they are unfeasible to extend. 

One approach for coping with these problems is the use of 

mathematical libraries or software packages designed for the 

special application fields. However, there are distinct limitations 

in applicable fields and the adopted numerical algorithms. 

Additionally, users can not control the numerical scheme in 

detail, and they frequently can not understand or utilize the 

complicated functions and interfaces. 

To address these limitations, several simulation language 

systems has been developed, such as SALEMI11, POELI21, and 

ELLPACKI3.41. ELLPACK especially seems to be a powerful system. 

ELLPACK has ample problem solving capabilities due to its 

extensive library, which is still expanding in response to the 

demands of the interactive and distributed system 

environmentl41. However, the new solver architecture which has 

been proposed for ELLPACK is not for enhancing its application 

to practical complex simulation problems. 

On the other hand, the present study proposes a high level 

programming language system OEQSOL(Differential EQuation 

SOLver)15,61 by which the numerical models can be described 

flexibly and which can automatically generate efficient 

simulation programs from the high level descriptions. This system 

has two main targets: 

(l)To enhance programming productivity by establishing a new 

architecture-independent language interface between numerical 

analyst and computer. 

(2)To generate highly vectorizable FORTRAN codes from DEQSOL 



descriptions using its intrinsic parallelism. 

The structure of the previously developed DEQ50L system and 

its processing flow are shown in Fig.1. The DEQ50L description is 

automatically translated into the FORTRAN simulation program 

by the DEQ50L translator. The results of several benchmark tests, 

which indicate that the programming productivity has been 

improved by almost an order of magnitude over FORTRAN, are 

shown in Table 1. The table also shows that most of the 

generated codes have extremely high vectorization ratios(91 %-

98%) on the Hitachi 5-810 vector processor. 

Both the Finite Difference Method(FDM) and the Finite Element 

Method(FEM) are available as discretization method. The key 

feature of DEQ50L is that users can describe various numerical 

schemes for a wide range of problems quite naturally by using 

fundamental DEQ50L statements. 

One of the principal functions in DEQ50L is the implicit solution 

function. Here, this function acts to discretize the objective linear 

POE into a system of linear equations. It then obtains a discrete 

POE solution by solving this linear equation system. The 

restriction on the former DEQ50L implicit solution function has 

been that only one POE in a rectangular region is permitted for a 

single implicit solution function. As a result, tightly coupled 

simultaneous PDEs, or PDEs defined in non-rectangular regions, 

have not been accepted. Because practical problems are 

sometimes formulated as described above, this restriction must 

be eliminated in order to make DEQ50L a practical solver. 

In this paper, an advanced implicit solution function is 

presented for removing these restrictions. Consequently, the 

tightly coupled simultaneous PDEs defined in regions described 

by unions or by differences in rectangular subregions can be 

solved by DEQ50L. In addition, a block-iteration scheme aimed at 

reducing the region size needed to execute large-scale problems 

can be developed. 

problem Description 
(DEQSOL) 

::·····jii;;;i;::;;;uIO. ......................... I.' UFD"' 

I." 1.1 • t'U:' I. 
,.- '.1 lUI.' tI 

I_C"0IUllt."."72 
'.' .... IJI •. JI .... '.'I 

Output Presentation 

FORTRAN 
Compiler· Linker 

Genarated 
Simulation 
Code 
(FORTRAN) 

DE Q SOL : Diffe:renUal EQuatim Sll.ver 

5 - G R A F : ScientirlC GRAphintl: Facilities 

F D M : Finite Oiffercnat Uethod 
F EM : finite E1fment Uethod 

Fig. 1 Processing Flow of DEQSOL Program 

Tab. 1 Evaluation of DE Q SOL (FDM/FEM) 
(Productivity & Vectorization Ratio) 

Program Name CVD PCAD wa JJD 

Discretization FDM FDM FDM FEA 
Method (Dim.) (3) (2) (2) (2) 

DEOSOL 127 79 67 96 

Lines-of -code Gen~~ 1,361 1,312 1,091 l078 
FORTRAN 

(Ratio) (10.n (16.6) (16.3) (11.2) 

Vectorization Ratio 91. 0 96.4 94.1 92. 7 
(S-810) 00 

Accelera1lon ~~_8vector 
Proces...c:or( - 10) 3.8 8.2 9.4 5.2 

CVD : Flow Analysis of Chemical Vapour Deposition 
PCAD: Impurity Distribution Analysis m LSI Precess CAD 
wa : Device Simulation of I'la Layer in LSI 

UHD 

FEA 
(3) 

904 

11.558 

(12.8) 

93.9 

7.7 

JJD : Magnetic Field Analysis of Josephson Junction Device 
MDH : Magnetic Field Analysis of Disc Head 
EBT : Field Potential Analysis of Electron Beam Tube 

EBT 

FBI 
(2) 

239 

2,476 

(10.4) 

"93.7 

5.5 

In the following sections, the implicit solution function is first 

outlined. Then, the method for processing the advanced 

function is presented. Finally, the results of the benchmark test 

are shown. 

1027 



2. DEQSOL scheme description and the implicit solution function 

A sample of the DEQSOL scheme description is shown briefly[6] 

for a simple diffusion problem in Fig.2. Statement (2) indicates 

the discretization method chosen by the user. Statements (3) to 

(10) indicate the structure of the numerical model respectively: 

domain(DOM), time domain(TDOM), FDM meshes(MESH), 

unknown physical variables(VAR), known physical 

constants(CONST), subregions(REGION), initial condition(lNIT), 

and boundary conditions(BOUND). 

Between 'SCHEME' statement(11) and 'END SCHEME' 

statement(17), a numerical algorithm is described. To develop a 

numerical algorithm .for this .problem, the time differentiation is 

replaced by the forward difference and the left term is estimated 

according to either an explicit or implicit method. For the explicit 

method, statement(14) is used, which assigns the evaluated value 

of the right terms to the left variable. Statements (12) to (17) 

represent a numerical algorithm by Euler's explicit method, 

where the statements between 'ITER'ation and 'END ITER'ation 

Thermal Diffusion Problem 

are executed until the specified condition is satisfied. For the 

implicit method, the 'SOLVE' statement is used, which solves the 

PDE for the indicated variable. If the implicit method is selected, 

such as the backward Euler's method, statement(14) should be 

replaced by 'SOLVE' statement(19). 'SOLVE' statement can be 

applied not only for the implicit method in transient problems, 

but also for any PDEs. 

The method of translation for the 'SOLVE' statement is 

described in Fig.3. First, the region is broken down into several 

subregions according to the given PDE, boundary conditions, and 

discretization rule, such that each subregion is dominated by a 

unique equation and discretization rule. For example, the 

domain in the figure is broken into 6 subregions: 5 boundary and 

1 inner point subregions. Each subregion is a unit where the same 

pattern of linear equations is formed by discretization onto every 

mesh point. As a result, the generated FORTRAN codes which 

calculate portions of the total matrix and constant vector can be 

combined into a single DO-loop. 

(1 ) PROG THERIA: 
(2) UETHOD FDU: 
(3) DOU X= (0: 1). Y= (0: 1.2) : 
(4) TDOM T= (0: 1) : 
(5) lIESH X= (0: 1: O. 2) • 

Y = (0: 1. 2: O. 2) • 
T= (0: 1: O. 02) : 

(6) VAR TEMP. TOLD: 
(7) CONST A=0.62. lU=0.8, UYU=50: 
(8) REGION RIGHT= (1. *) • 

lEFT = (0. *) • 
UP= (*,1.2) , 
BOTTOM= (*. 1) , 
TOTAl= (*,*); 

(9) INIT TEMP=100 AT TOTAL: 
(10) BOUND DXCTEUP)=O AT RIGHTtlEFT, 

TEUP=200 AT BOTTOU, 
TEUP-TOLD =A* \1~ CTOLD) DYCTEUP)=lU*TEUPt UYU AT TOP 

DLT L(ll) SCHEME; 
(12) ITER NT UNTIL NT GT 50; 

~ (13) rT=O=LD::.....=..:,:.TE=U:.:,-'P:'--::-:-==--:--:-:-=:---C=---=:70 
=A* \1 CTEUP) (14) L!..@fIQlDtDlT*A*lAPLCTOlD):1 

n (15) DISP TEUP EVERY 10 TIUES: 
r--------- ~ (16) END ITER: 

(19) SOLVE lEUP OF CTEUP-TOLD)/OlT=A*lAPlCTEUP) <17> END SCHEUE: 
BY 'IlUCR'· ( 18) END: 

~----------------------~ 

Fig. 2 A Simple Example of Description by DEQSOL 

1028 



For each subregion, the DEQSOL translator discretizes the 

equation according to the discretization rule. It then generates a 

part of the linear equations, and creates the FORTRAN codes 

which calculate the corresponding part of the total matrix and 

constant vector elements of the linear equation system. After the 

total '!latrix is completed, it is linked to the efficient matrix 

solution library which has been prepared beforehand. A portion 

of the generated FORTRAN codes consisting of the matrix 

generation and the linkage to the matrix solution library is shown 

in Fig.4. 

The intrinsic parallelism in processing the 'SOLVE' statement is 

classified into two categories. The first category is the mesh 

point parallelism which appears when generating a matrix and 

constant vector from the discretized equations. The other is the 

algorithm which is dependent on parallelism to solve the linear 

equations. The first type parallelism is ensured by creating the 

codes so that the elements of the matrix and constant vector can 

be uniformly calculated within each subregion by using a single 

DO-loop, as stated above. The latter parallelism is accomplished 

by using the efficient matrix solvers in the DEQSOL library. 

3. Advanced implicit solution function 

3.1 Implicit solution function for simultaneous PDEs 

The numerical scheme for simultaneous PDEs, F(A,8,C) 

= 0,G(A,8,C} = 0,H(A,8,C} = 0, using the former implicit function, is 

shown in Fig.S(a). Each equation is solved successively and 

iteratively until a convergent condition is met. If the coupling 

relationship among the variables is not tight, this scheme can 

successfully attain to an appropriate solution within a reasonable 

period of time. However, when the coupling relationship is tight 

and the dominating variable in each PDE is not clear, this 

iteration loop takes a lot of time for convergence, or does not 

converge at all. To solve such a problem, the implicit solution 

function can be extended such that any coupled variables and 

Break Down 
of 

Region 

For each region 

Generation 
of 

Matrix 

I BCS I BC4
1 

]CEJ:: °1 
IN BC3~ uu:er 

BC 1 I '----V" pomts 

LBC2~ 
{ 

divCgradCU))tV •• grad(U)-A 

. ngradCu). ).loU+ p. 

U • U. 

on IN 

on BCltBC4tBCS 
on BC2tBC3 

Ci,j): Ui_, ;-2 Ui ; + Ui.,.J 

dlx>o*2 

+ UI.j_1-2 Ui.J + Ui.i" +'" • Ai.j 
dly**2 

Fig.3 Automatic Discretization Method 

SOLVE U OF 
DIVCD*GRADCU» + V .. GRADCU) • A 

---,r.----- BY 
'ILUCR': B: 

DO 36 J-IOXP3,IOXP8 
DO 36 I-IOXP3, Ioxpa 
¥CONS (I.IOX?l O-J I.- (+A (I. J) I 
HNA"E CI'IOX?l OoJ I •• (0 (1+1, J l+D (I ,J II J2. O/DlI (1+111 «DlI CI+l1 .DlI ( 

&11112.01 '(O(I.J 1+0 (1-1. J 11/2 .0/0lX (Ill «OlX lI+l1 +DlX (Il )/2. OI+(OCI 
'.J"1'0(I.J 11/2. 0/0lYCJ',11 «DLY (J"l+0lY (JllJ2 .01 +(O(I.J 1,0 (I .J-l 
&1112.0/0lYCJ II «OLYCJ',1'OLYCJ ll/2. 01- (Vl II.J 1/2 .01 «OlX (I+ll+0LX ( 
&111/2. OIl ,Vl (I.J 112.01 «OLX (1+11 +OlX (111/2. 01-(V2 (I.J 1/2.01 «OlYCJ 
&+ll+DlYCJ 11/2. OIl +V2 (I.J 112 .01 «OLYCJ',l+0lY (J11/2 .01 

,~~~~~~g:~m~~;g ~o~ ~~ Ux ~ ~:~: ;ii~x ~ g ~~2 ?~~lX m I « OLI lI+l) 'OlX (l 

,~~~~~~ ~~;~~~~~ ~~~ ~ ;;~ ~ g~ ~;~L~: i~g ;~~~ ~~i ~W~:~"11 «DLX (1,,) +OlX 

,~~~~~~g:~m~ ~;g :o~ ~~ ~t y ~~:~ :;D~Y:~ ~ ~~2 ?~~LY (J) I « Ol YCJ+l) +Dl YCJ 
HN"YPCI+ICXP10oJ 1.-( (0 (I .J"l+0(I.J) 1/2 .0/0lY(J+l) I «OlYCJ,') +OlY 

36' ~~~H~U~II-("12 (I. J 112. 01 «OlY (J',l+0lY (J 1112 .011 

J·IOXP9 
DO 31 I.IOXP3.IDXP8 
HONS (I.IDXPl O-J).- (- « 0 (I .J+l1 +0 (I, J 11l2. 0-2. OoDl Y (J I- (0. Ol/DlY (J 

&+111 «OlY (J+l1'OlYlJII/2 .011-(V2(I.J )02. O-DlYlJ I- (0. 01/2.01 «OlY (J 
&+11.0l YCJ 11l2.011.A(I.J II 

HNAHE (I'IOlPl OoJ 10+ (D (1+1 .J I +0 II. J 11/2. O/OlX lI+lll « DlX (I+ll.Dll ( 
&111/2. 0l+(0(1.J I +0(1-1. J 11/2 .0/0lX (III «OLX lI+l1'Oll (111/2.01 + (D (I 
&.J+l1+0CI.J 11/2. O/DL YCJ+l11 «OLYCJ+ll'Ol YCJ 11/2. OI+(D(I.J 1+01I. J-l 
'11/2 .0/0LY(J II «OlYCJ"1 .OL YlJ 11/2.01- (Vl II.J 1/2 .01 «Oll (1+11 +OlX( 
&111/2. OIl+Vl (I.J 1/2. 01 (COLI (I+ll.0LX (111/2. OI-(V2(I.J 1/2.01 «OLYlJ 
&+ll+DL YlJ 11/2.011 +V2 (I.J 1/2.01 «OlY (J',l+0lYCJ 11/2.01 

'NAHEX (I+IOXPl O-J I.- «0 (I. J 1.0 (1-1. J 11/2. O/OlX (I II (C OlX (1., I .0lX (I 
'1112 .011,Vl (I.J 1/2.01 «OlX (I"1.0LX (IlI/2. 01 

HN"XPII+IOXPI OoJ 1.-( (0 (1., .Jl.O (I. J 1112 .0/0lX (1+111 «OLX (1.11 +OlX 
'(IlI/2.011-(Vl (I .JI/2.01 «OLX(I"1'OLX(IIl/2.0ll 

'NA"EY (I+IOXP10oJ 1.-( (0(1 .J.,1.0 (I. J 11/2 .0/0lY (J+ll1 «OlYCJ+ll+0lY 
'(J 11/2 .011-( (0(1 .JI'O(I .J-l 11/2. O/OLYlJII «OlY (J+l1 +OlY (J I) 12 .011-
'(V2(I. J1/2.01 «OlY (J.,1 .0lY (JII/2. OIl 'V2 (I.J 1/2.01 «OlY (J.,1 .0lYlJ 
'lll2.01 

UN"lP (I'IOXPI OoJ 1.0.0 
37 CONTINU~ 

DO 41 I-IOXP2. IDXP9 
HANS II.IDXPI OoJ I-U (I, J I 

41 CONTINUE 

i DO 41 JaIOXP2.IOXP9 

I CALL OILUCR (2. IDXP9. IOXP9. IDXP1. UNA"E. nN"XP. 'NA"EX, UN"YP, UA"EY 

t;' :-1.."~e to Matrix] ,.llN"XP.lUAMEX.lCOIlS.HANS.nA,nB.nC.nO,nCl.HB1.HA1.HR.np. 
L.U"""O 'nQ.nQl.H~.1.0E-a.IERRl 

Solu~oll_ Ubrary ! ~~ gE~!i~ipg~ Igg~EC6· 01 ' RETURN-CODE· '. 1m 

1029 

L 
DO 42 I-IOXP2.IOXPO 
U (I .JI.nANS (hIDXPl OoJ I 

42 CONTINUE 
RETURN 
END 

Fig. 4 Generated FORTRAN Cede 



PDEs are specifiable in a simple 'SOLVE' statement with 

appropriate boundary conditions specified using the 'UNDER' 

clause. This is shown in Fig.S(b). By using this clause, the coupled 

boundary conditions can definitely be assigned to each 'SOLVE' 

statement. 

The extended, advanced implicit solution function discretizes 

the coupled PDEs, regards them as one system of linear equations 

for coupled variables, and generates a large matrix for them. In 

this case, the form of the generated matrix depends on the order 

in which the linear equations and discrete variables are arranged. 

For example, suppose F,G,H are PDEs and A,B,C are variables of 

these PDEs. In addition, Fi,Gi,Hi and Ai,Bi,Ci are discretized 

equations and variables at point i. The forms of the matrices 

generated for typical arrangements of Fi,Gi,Hi,Ai,Bi, and Ci are 

shown in Tab.2. In this table, the solid lines in the matrix indicate 

the position where non-zero elements may appear. From the 

viewpoint of solving the linear equations, a band matrix is 

desirable for the direct method, such as GAUSS elimination. In 

addition, the dominance of diagonal elements is necessary for 

iterative methods, such as Conjugate Gradient(CG) or Bi-

Conjugate Gradient(BCG), to converge. Therefore, the DEQSOL 

translator generates the matrix in the form shown by case.1 of 

Table 2. Furthermore, the generated matrix is manipulated into 

the compressed form which retains only non-zero elements. 

The BCG algorithm for the advanced DEQSOL implicit solution 

function is described as follows. If the small block matrix 

consisting of elements for each discrete point is regarded as an 

element of the matrix in Fig.G, the matrix form coincides with 

that of the conventional FDM matrix. As a result, the BCG 

algorithm for this block matrix can be constructed in similar way 

to conventional ones if the operation between the elements is 

carefully defined. Here, the product corresponds to the matrix 

product, and the quotient corresponds to the product of the 

inverse matrix, where these operations are non-commutative. 

1030 

SCHEME; 
AOlD=AO; I*INITIAl SETTING*I 
BOlD=BO; I*INITIAl SETTING*I 
COlD=CO; I*INITIAl SETTING*I 
ITER Nl UNTIL NORM IT eps; 

SOLVE A OF F(A.B.C) = 0 
BY • IlUBCG'; 

SOLVE B OF G(A.B.C) .. a 
BY • IlUBCG' ; 

SOLVE C OF H(A.B.C) = a 
BY 'IlUBCG'; 

CAll NORM2(A. B. C. AOlD. BOLD. COLD. NORU); 
AOlD=A; 
BOlD=B; 
COlD=C; 

END ITER: 
END SCHEME; 
(a). Iteration scheme using the 
former function 

SCHEME; 
SOLVE A.B.C OF 

HA.B.C) = a 
• G(A. B. C) =·0 
• H(A. B. C) = 0 

UNDER BCSl 
BY · IlUBCG' ; 

END SCHEME; 
(b). Scheme using the new function 

Fig. 5 Numerical Schemes for Simultaneous PDEs 

Tab.2 Forms of the Generated Matrix 

CASE. 1 CASE.2 
( {Ai. Bi. Ci} ) I ( {Ai} {Bi } {Ci}) 
( {Fi. Gi. Hi} ) ( {Fi, Gi. Hi} ) 

Ai Bi Ci A B C 
..-

\\\ Fi , Fi 
Gi Gi 
Hi Hi 

CASE.3 CASE.4 
( {Ai, Bi, Ci} ) ( {Ai} {Bi } {Ci}) 

( {Fi} {Gi } {Hi}) ( {Fi} {Gi } {Hi}) 

Ai Bi Ci A B C 

F 

~ 
F 

'" G ~ G 

'" H ~ H '" (note). ( {Ai} {Bi} {Ci} ) .. (Al. A2 ooBl. B2' 'Cl, C2') 
({Ai.Bi.Ci} )=(AI.BI.CI,A2,B2.C2···) 



F1 
G1 
H1 
F2 
G2 
H2 

A1 
81 
C1 
A2 
82 
C2 

Fig. 6 Matrix Form Representing Discretized 
Simultaneous PDEs 

R 

The OEQSOL translator calculates the necessary matrix size. 

This size depends on the number of coupled systems involved for 

each 'SOLVE' statement in the given numerical algorithm. Only 

the maximum region is secured and it is shared alternatively 

among all 'SOLVE' statements. 

3.2 Implicit solution function for partial regions 

It is desirable that the implicit solution function can be applied 

to not only rectangular region, but also to the unions or 

differences of rectangular regions. Furthermore, this function 

should be applied to partial regions for processing problems 

which have inner boundaries. It is also beneficial for block 

iteration schemes to be developed for large-scale problems in 

order to reduce the region size needed for computations. To 

accommodate these requirements, the implicit solution function 

is expanded so that it can be applied to any region or regions 

which can be expressed by unions or differences of sub-

rectangular regions. 

An extended form of the statements 'SOLVE' and 'BOUND' is 

shown in Fig.7. The 'AT' specification is introduced into the 

'SOLVE' statement to express such partial regions. For the 

boundary conditions, four types are allowed: 'equation', 'discrete 

equation', 'GIVEN' and 'NOC'. Here 'equation' specifies the 

ordinary conditions(first,second,and third types of boundary 

1031 

condition}. Next, 'discrete equation' specifies the discretized 

form, and 'GIVEN' specifies that the point on the boundary of the 

partial region takes the value which,'Nas already calculated as the 

first type of boundary condition. Finally 'NOC' specifies that the 

POE given on the inner point is also adopted and discretized on 

the boundary point. On this boundary point, the referred points 

outside of the designated partial region take previously 

calculated values. 

The specification of 'GIVEN' and 'NOC' mainly aim at 

constituting the block iteration scheme for large-scaled or multi-

block problems. On the other hand, 'equation' and 'discretized 

equation' aim at setting ordinary conditions and also at 

developing schemes for inner boundary problems. 

The translation method for this function is basically similar to 

that explained in Section 2. 

BOUND [<BC-list) 

rBCSm 
L<BC-list) 

SOLVE V1. V2. ". Vn OF 
FlCV1. V2 •• ')=W1 

• F2(V 1. V2 •• ')=W2 

• Fn(V1. V2. ")=Wn 
UNDER BCSm 
AT REG1+REG2+····· 
BY • LIBRARY' WITH 

(noteD. 

] 

] 

Objective variables 
Objective PDEs 

Boundary conditions 
Objective regions 
Matrix solution library 

<BC-list):: = equation AT sub-reg +'" 
discrete equation AT sub-reg + ••• 
NOC AT sub-reg + •• , 
GIVEN AT sub-reg +, •• 

(note2). Example of 
'equation U=UO. 

'discrete 
equation 

A*DX(U)+B*DY(U)+' '=0. 

Fig. 7 Statement Form of Advanced • SOL VEt 



4. Evaluation 

As the physical models increase in complexity, an advanced 

implicit solution function becomes necessary for simultaneous 

PDEs. 'Such a model can be found in the fields of fluid analysis, LSI 

device .. simulation, etc .. The results of a benchmark test for the 

analysis of Stokes flow in a non-rectangular region are now 

given. Stokes flow in the 2-dimensional domain is expressed 

using three equations for pressure P, velocity of flow U and V, 

and external forces Fx and Fy for each coordinate direction. This 

benchmark test utilizes both facilities as stated in the above 

section. 

The physical model is shown in Fig.8(a}. An iteration scheme 

for this model in which each equation is solved for one specific 

variable can not obtain a convergent solution. Two numerical 

schemes which utilize the advanced implicit solution function for 

simultaneous equations are shown in Fig.9. Fig.9(a} represents a 

scheme in which block iteration is applied. The simultaneous PDEs 

are iteratively solved by the implicit solution function in each 

partial region REG 1 and REG2, until the norm of the difference of 

the new and old values becomes less than the specified value 

"eps". In Fig.9(b), the simultaneous PDEs are solved in the total 

f U-g 
l Y-O 

(a). Physical model 

~ ~-.-,- .... -
~~--- --
~~~:::: ::: :: ~ -)~~ ........ .....,.-

~------~ ~ ~ :::: ::: :::

Fig. 8

\, -...
'" --
\, "'"

::: - - - -

(b). Numerical Result
(vector of velocity)

Problem 'for Benchmark Test

.ill!. -0 an
M.. -0 an
p-o

region REG1 + REG2. The generated FORTRAN program from

scheme (a) uses far less memory during execution than that from

(b), but setting of the initial value for the iteration in (a) is quite

critical. From either of these schemes, however, a good

approximate solution can be obtained.

Tab.3 Evaluation of the Advanced Function

Program Name STOKES

Discretization FDIA
Methcd (Dim.) (2)

DEQSOL 43

Lines-of-code Generated 866 FORTRAN

(Ratio) (20. 1)

Vectorization Ratio 91. 5 (S-810) 00

Translation CPU Time 29.4
(M-200H) (sec)

STOKES: Analysis of Stokes Flow
in the Duct

BOUND BCSl BOUND BCS3

1032

U-g AT Ll.
Y-O AT Ll.
U-NOC AT L2.
V-NOC AT L2.

BCS2
U·NOC AT L2.
Y.NOC AT L2.
DXCU)-O AT L3.
DXCY)-O· AT L3.
P·O AT L3.

SCHEIIE:
UDLD-UO: "INITIAL SETTING"
YOLD.YO: "INITIAL SETTING"
POLD·PO: '.INITIAL SETTING"

U-g AT Ll.
Y-O AT Ll.

.DXCU)·O AT L3.
DX(Y)·O AT L3.
p·O AT L3.

SCHEIIE:
SOLYE U. Y. P OF

DXCP) - IIYU.LAPLCU) - FX.
DYCP) - IIYU'LAPLCV) - FY.
DXCU) + DYCY) - 0
UNDER BCS3
AT REGl + REG2
BY • ILUBCG' :

END SCHEIIE:
ITER Nl UNTIL NORII LT eps: Cb) Scheme Applying Advanced

SOLYE U. V. P OF
DXCP) - IIYU'LAPLCU) - FX.
DYCP) - IIYU'LAPL(Y) • FY.
DXCU) + DYCY) - 0
UNDER BCSl
AT REGl
BY • ILUBCG' :

SOLYE U. V. P OF
DX(P) - IIYU'LAPL(U) - FX.
DY(P) - IIYU'LAPL(Y) • FY.
DXCU) + DY(V> • 0
UNDER BCS2
AT REG2
BY • ILUBCG' :

Implicit Solution Function

Ll

REG2

CALL NORII2(U. Y. P. UOLD. YOLO. POLO. NORII):
END ITER:

END SCHEIIE:
(a) Scheme Using Block Iteration

. Fig. 9 Numerical Scheme for Stokes Flow

L3

The flow velocity for the calculated results of the program

generated from scheme (a) in Fig.9 is shown in Fig.8(b).

Furthermore, the results of the DEQSOL translation and the

execution of the generated FORTRAN program are shown in

Table.3. The descriptive efficiency of DEQSOL still attains more

than 10 times that of FORTRAN, and the vectorization ratio of the

generated FORTRAN has marked over 90 %.

5. Conclusion

The advanced implicit solution functions in FDM schemes

concerning simultaneous PDEs and partial regions have been

developed. Due to these functions, the fields of application have

been extended and the descriptive capability of the numerical

algorithms have been greatly improved. The problems

formulated by tightly coupled PDEs - those involving inner

boundaries and those defined in non-rectangular regions - have

become solvable by DEQSOL. Aside from these extensions in

capability, DEQSOL has maintained a high descriptive efficiency

versus FORTRAN, and the. created FORTRAN program has

demonstrated an extremely high vectorization ratio.

6. Acknowledgements

The authors would like to express their appreciation to Dr.

Sakae Takahasi and Dr. Toru Toyabe of Hitachi Ltd. for their

helpful technical discussions. Thanks are also due to Dr. Tsuneyo

Chiba, Dr. Hisasi Horikosi and Dr. Yasutsugu Takeda of Hitachi

Ltd. for their continuous encouragement.

< References >

[1] S.M.Morris and W.E.Sciesser : "SALEM - A Programming

System for the Simulation of Systems Described by Partial

Differential Equations", Proc. Fall Joint Computer Conference,

Vol. 33, 1968, pp. 353-357

1033

[2] A.F.Cardenas and W.J.Karplus : "PDEL - A Language· for

Partial Differential Equations", Com.ACM, March, 1970, pp.184-

191

[3] J.R.Rice and R.F.Boisvert : "Solving Elliptic Problem Using

ELLPACK", CSD-TR414, Computer Science Department, Purdue

University, September, 1982(Revised May, 1983)

[4] J.R.Rice :" ELLPACK: An Evolving Problems Solving

Environment" Proc. of IFIP WG 2.5 Working Conference on

Problem Solving Environments for Scientific Computing, 1985, to

be published

[5] Y.Umetani et al : "Numerical Simulation Language DEQSOL

(Japanese)", Transaction of Information Processing Society of

Japan, 26, 1985, pp.168-180

[6] Y.Umetani et al : "DEQSOL - A Numerical Simulation

Language for Vector/Parallel Processors", Proc. of IFIP WG 2.5

Working Conference on Problem Solving Environments for

Scientific Computing, 1985, to be published

FORTRAN AND TUNING UTILITIES AIMING AT EASE OF USE OF A SUPERCOMPUTER

Hiroshi Katayama Makoto Tsukagoshi

Basic Software Development Division
NEC Corporation

10. l-chome, Nisshin-cho, Fuchu-city
Tokyo 183, Japan

ABSTRACT
The supercomputer SX system is an ultra

high-speed, large-scale computer system with a
large capacity of main memory and extended memory.
CXle of its main design objectives was to offer an
easy-to-use environment to users as well as high
speed vector and scalar computation capabilities.
This paper outlines an optimizing FORTRAN compiler
with automatic vectorization functions and some
tuning utilities to enhance vectorization ratio,
which we developed to attain these goals.

INTROOOCTION

Early supercomputers were mainly used by
profeSSional people in big laboratories or
companies. Though the main prograrnning language
was FORTRAN, it was necessary to use spec ial
vector extension added to FORTRAN or an assembly
language to make full use of their capabilities.

Today, with the advance in computer
technology, supercomputers have come to be able to
provide far more computational power at lower
cost. They are being brought into COlllIlOll use, for
example, in universities and in industry. Non
profeSSional people have begun to use them. Under
these Circumstances, ease of use has become very
important, as well as computational speed. To meet
this requirement, recent supercomputers provide a
standard FORTRAN77 compiler with a sophisticated
automatic vectorization function. FORTRAN77/VP of
Fujitsu VP series, FORT77/HAP of Hitachi S810
series and FORTRAN77/SX of our SX system are
examples. Cray Research enhanced an automatic
vectorization function of their CFT compiler.
Furthermore, they also provide some compiler
functions or utilities for program tuning to get
more performance easily. CFT's flow-trace function,
VP's Interactive Vectorizer, S810's VECTlZER, SX's
ANALYZER/SX and VECTORlZER/SX are examples.

In designing our supercomputer SX system,
the first design objective was, of course, to
realize high-speed vector and scalar computation
capabilities. We attained this goal by the
following hardware features:

- fast machine cycle (6 nanoseconds)
- multiple parallel vector pipelines consisting

of four identical sets of four arithmetic
pipelines

- a fast main memory of up to 256 million bytes
and a semiconductor extended memory unit of
up to 2 billion bytes

CH2345-7/86/0000/1034$01.00 © 1986 IEEE
1034

- the control processor (CP) integrated into
the system to perform supervisorY functions
and cooperating with the arithmetic processor
(AP) which takes charge of high-speed
scientific computations.

Wi th these features, the SX system has a peak
performance of 1.3 gigaflops in vector operations.
In scalar operations, it is about 1.5 ttmes as
fast as our current fastest mainframe computer
ACOS S1500. The configuration of the SX system is
shown in Fig.!.

SPU

MMU XMU

lOP

SPU SCIENTIFIC PROCESSING UNIT
AP ARITHMETIC PROCESSOR
CP CONTROL PROCESSOR
MMU MAIN MEMORY UNIT
lOP INPUT OUTPUT PROCESSOR
XMU EXTENDED MEMORY UNIT

Fig.l SX System Configuration

Consider ing the above requirements, our
next design objective was to offer an easy-to-use
environment both in programming and in operation.
To meet this goal. we developed the following
software products.

- SX system control program (SXCP) which was
developed on the basis of the ACOS mainframe
operating system and has abundant functions
including a TSS function

- FORTRAN77/SX with automatic vectorization
functions and . optimization functions

- various utilities including ANALYZER/SX and
VECTORIZER/SX to assist program preparation,
debugging, tuning and maintenance.

All these programs run on the CP using its own
memory. Thus programs running on the AP are not
affected by them.

In this paper. we descr ibe the outlines of
FORTRAN77/SX: mainly its vectorization and
optimization functions. and also the outlines of
tuning utilities to improve vectorization ratio.

FORTRAN77/SX

In the SX system. there are two FORTRAN
systems: FORTRAN77 and FORTRAN77 / SX. FORTRAN77
generates object codes for the CP and is used. for
debugging with the interactive debugging support
program IDSP. FORTRAN77/SX generates vectorized.
object codes for the M? and is used. for actual
computations. Their language specifications
conform to the standard FORTRAN. that is. the
ANSI FORTRAN 77. As a result. users can make full
use of the SX system through standard FORTRAN
programs.

Automatic Vectorization Functions

FORTRAN77/SX compiler has sophisticated.
automatic vectorization fmctions. The outlines
are shown in Table 1. Extended automatic
vectorization functions here are the features to
vectorize loops wholly or partially which are
very hard or almost impossible to vectorize as
they are. To increase vectorization effect by
loop transformation is also one of its features.
Some examples of vectorizable loops are shown in
Fig.2.

DO 10 I=l.N Vectorize using masked
IF(A(I) .GE.O.O)1HEN => vector operations and

X(I)=SIN(B(I)+C(I» compress/expand oper-
END IF ations for SIN

10 carrINUE
(1) A loop including an IF statement

DO 10 I=1,N Vectorize using
A(IX(I))=B(IX(I))+T*C(IX(l» => gather/scatter

10 carrINUE operations
(2) A loop including indirectly addressed vectors

DO 10 I=1,N
IF(A(I).GT.AMAX)1HEN

AMAX=A(I)
M<IDX=I

END IF
10 CDrrIN' 'E

Vectorize using
=> vector operations

for MAX/MIN

(3) A loop finding the maximum value and its index

DO 10 I=l,N
IF(A(I).EQ.X) GOTO 20

10 carrINUE
20 CCNl'INUE

Vectorize using a
=> vector operation

to find the 1st on
bit of the mask

(4) A loop searching for
value

the element which has the specific

DO 10 I=l,N Vectorize by inserting
A(I)=R(I)+S(I) => W(I)=A(I+l) before the
S(l)=X(l)+Y(I) A(I)=R(l)+S(l) and sub-

10 X(I)=A(I+1)+B(I) stituting A(I+1) by Wei)
(5) A loop including unsuitable array references

DO 10 I=1.N
A(I)=B(I)+C(I)
DO 20 J=1.N =>

X(I.J)=A(I)*Y(I.J)+Z(I,J)
20 carrINUE
10 CCNl'INUE

(6) Nested DO Loops

Vectorize the outer
loop as well as the
innermost loop

Fig.2 Examples of Vectorizable Loops

1035

The compiler analyzes global data flows of
all variables and arrays in a program mit and
uses this information in automatic vectorization.
For example. in the case that a variable is
defined. in a loop. it does not generate codes to
ensure the final value for the variable. if it is
not alive on the exi t of the loop.

Table 1 Summary of FORTRAN77/SX Automatic Vectorization

(1) Basic Conditions for Automatic Vectorization

Vectorizable Loop DO loop

Types of Vectorizable Integer. Logical
Data Real (Single, Double)

Complex (Single. Double)

Vectorizable Statements Assigrurent. CCNl'INUE
IF(Arithmetic. Logical. Block)
ELSE IF, ELSE. END IF
Unconditional GO TO

Vectorizable Operations Add. Subtract, Multiply, Divide
Power, Type Ccnversicn
IntrinsiC Functions
Inner Product. SUnmaticn
Continued Product, Iteraticn
MaxiJrum. MiniIIUD
search

Vectorizable Vector Ccntiguous Vector
Equal Distance Vector
Indirectly Addressed Vector
Index Variable

(2) Extended Automatic Vectorization Functions
(a) Exta1Sim of Vectorizable Loops

A loop including Vectorize by splitting it
unvectorizable parts into vectorizable parts and

unvectorizable parts

Nested loops Vectorize the outer loop by
dividing it before and after
the innermost loop

A loop including user Vectorize by putting a system
function calls subroutine between an object

code and the functions to
invoke than as many times as
the number of loop iterations

A loop including array Vectorize by exchanging
references that have statements or substituting
dependencies unsuitable the references by a work
for vectorization vector

A loop that the compiler Vectorize under specifica-
cannot decide whether it tions of a vectorizaticn
may be vectorized or not directive

(b) Increase of Vectorization Effect

I Tightly neste<! loops Exchange an outer loop and
the innermost one or make
some of them into a single
loop to expand the vector
length or to avoid access to
the same memory bank

A loop including a special Eliminate IF's by moving them
processing for boundary out of the loop
conditions

With the vectorization fmctions. together
with the multiple parallel vector pipelines,
the compiler generates efficient object codes for
the DO loops ranging from simple loops to
complicated loops. We show the results of the
Livermore 14 kernels in Table 2 as an example.

Table 2 The Performance of the SX-2 Measured
by the Livermore 14 Kernels

Loop Number MFLOPS

1 757.5
2 423.5
3 559.3
4 122.9
5 14.6
6 15.6
7 810.1
8 156.6
9 724.6

10 163.8
11 24.4
12 255.2
13 8.3
14 25.2

Average 290.1

Optimization Functions

In addition to the automatic vectorization
functions, FORTRAN77/SX compiler uses all sorts
of optimization techniques to obtain full
performance from the SX system. Some of the
conventional ones such as common subexpression
elimination, code motion and strength reduction
were extended to apply to vectorized codes. A
register assignment optimization was also
extended to make full use of 128 scalar registers
and 80 K byte vector registers. Besides them, an
instruction scheduling optimization was newly
introduced to minimize pipeline interlocks and
functional unit interlocks.

In an instruction scheduling, the compiler
makes reordering at three levels: a source
expression level, an intermediate code level and
an object code level. This is because more than
one instruction is generated from an intermediate
code, though the first two hold more information
about a source program.

In determining which instruction is to be
scheduled next, the compiler uses the following
information :

- the number of instructions waiting for their
completion

- the duration of each instruction
- the busy time of each vector functional unit.

A large number of scalar registers ease this
optimization and increase its effect. This
optimization has more effect on scalar codes than
on vectorized codes and can reduce the execution
time by about 200/0-40% for an average program.

1036

Table 3 shows the effect of an instruction
scheduling for the Livermore 14 kernels.

Let us show a small example of reordering.
The SX system has four sets of independent vector
pipelines: add, multiply, logical and shift, which
can work concurrently. Suppose a vectorized part
contains an expression, A(I)*B(I) +C(1) *D(1) +E(I).
The compiler evaluates it in the following order
to fully utilize vector pipelines:

(A(I)*B(I)+E(I»+C(I)*D(I)
Let us show another small example of optimization.
Suppose a loop includes a vector addition in the
form of A(I)+A(I). The compiler generates a
vector addition, vector multiplication or vector
double instruction for it depending on which
pipeline is free. Note that a vector double
instructi~~ is executed by a shift pipeline.

Table 3 The Effect of the Instruction Scheduling Measured
by the Scalar Codes for the Livermore 14 Kernels

Loop No. Not Scheduled Partially Fully
Scheduled Scheduled

(MFLOPS) (MFLOPS) (MFLOPS)

1 17.3 18.4(6.4%) 18.1(4.6%)
2 17.9 26.8(49.7%) 31.4(75.4J~)

3 13.3 13.9(4.5%) 15.9(19.5%)
4 11.5 11.5(0.0"/0) 11.5(0.0"/0)
5 12.0 16.4(36.7%) 15.9(32.5%)
6 12.0 14.9(24.2%) 16.7(39.2%)
7 20.0 33.8(69.0"/0) 32.2(61.0%)
8 24.7 43.9(77.7%) 46.2(87.0%)
9 20.5 29.3(42.9%) 32.0(56.1%)

10 13.7 13.6(-0.7%) 18.5(35.0"/0)
11 8.3 8.2(-1.2%) 8.3(0.0%)
12 8.3 8.3(0.0%) 8.3(0.0%)
13 6.3 7.2(14.3%) 9.3(47.6%)
14 11.6 12.0(3.4%) 14.3(23.3%)

Average 14.1 18.4(30.5%) 19.9(41.1%)

Note: (1) Parenthesized figures show the effects of the
instruction scheduling.

(2) "Partially scheduled" means reordering at an
object code level is not performed.

(3) "Fully scheduled" means full reordering is performed.

High-speed Input/output Functions

As the speed of a c~puter becomes faster,
the size of an application program for it becomes
larger. Though the main memory of the $X system
has a capacity of up to 256 million bytes, it
sometimes cannot accommodate its data. In this
case, the disk I/O time may become a system
bot tleneck. To avoid this, FORTRAN 77 /SX provides
high-speed input/output functions such as:

- Asynchronous input/output function which
allows unformatted input/output operation to
proceed on the CP in parallel with program
execution on the AP

- Parallel input/output function which allows
parallel data transfer between a file and a
main memory where the file is subdivided and
distributed among multiple disk units

- Asynchronous output editing fmction which
allows editing and output processing to
proceed on the CP in parallel with program
execution on the AP.

The asynchronous input/output function makes full
use of a distributed configuration of the SX
system and is useful to reduce the turnaround time.
However, the program must be modified to use it.
The parallel input/output function. on the
contrary. can be used simply by changing the JCL
specification. No program modification is
necessary. The asynchronous output editing
function is very similar to the asynchronous
input/output function, but it is to speed up a
formatted output statement, whereas the latter is
to speed up an unformatted input/output statement
that transfers a large amount of data. Fig.3
shows these functions.

Besides them, the extended memory uni t
(XMJ) can be used as a high-speed secondary
storage. Users can use it through FOR'IRAN READ
or WRITE statements simply by assigning a file to
the XMU in a JCL. It achieves a drastic reduction
of data transfer time.

Parallel transfer Parallel transfer

"c::::=;::-----;-A

i i

I 2 3 I 4 I 5 I 6 I 7 I 8 9

~lock~

(a) The Parallel Input/OUtput Function

t1ain Process on the ;p

D!MENSION A(1000.1000)

READ(!, 10=3) A

(Computations

WAIT(1.10=3) A

I/O Process on the CP

Wait~
(I/O Processing)

TermjtlOO I

(b) The Asynchronous Input/OUtput Function

Main Process on the AP

WRITE(6.10)A.B 1
WRITE(6.10)C.D 2

WRITE(6.10)U.V ••• n
WR1TE(6.10)Y.Z ••• n+1

Buffer A Buffer B

Editing and I/O Process
on the CP

Edit and
OUtput

(cl The Asynchronous OUtput Editing Function

Fig.3 High-Speed Input/OUtput FUnctions

1037

High-speed Libraries

FORTRAN77/SX provides high-speed intrinsic
functions both in scalar and vector. Some
performance data is shown in Table 4. Besides
them. the Advanced Scientific Library SX (ASL/SX)
is provided including an FFT subroutine using a
vector bit reversal instruction, a simultaneous
linear equation solving subroutine and an eigen
value calculating subroutine. For example, a one
dimensional complex FFT of data length 1024 can be
solved in 133 microseconds (462 MFLOPS). Two
dimensional complex FFT of data length 256 x 256
can be solved in 9.41 milliseconds (557 MFLOPS).
Simultaneous linear equations of order 1000 can be
solved in 429 milliseconds (792 MFLOPS).

Table 4 The Performance of Some Intrinsic Functions

Function Scalar(S) Vector(Vl Ratio (S/V)
(rnicrosec.) (rnicrosec.)

SQRT 0.79 0.05 16
DSQRT 1.09 0.05 22

EX? 0.76 0.03 25
DEXP 1.44 0.04 36

ALOO 1.10 0.04 28
DLOO 1. 30 0.06 22

SIN 0.89 0.03 30
DSIN 1. 37 0.03 46

Linkage With Other Languages

In the SX system, FOR'IRAN is the only
language available for the AP. Because the CP has
the same architecture with the ACOS mainframe
computers, all the language processors for them
are available on the CP. In addition, subroutines
on the CP and FOR'IRAN subroutines on the AP can
intermix freely. For example, a PASCAL subroutine
can call a FORTRAN subroutine with the normal CALL
statement whether it is for the CP or the AP. The
linker, which makes up a load module, judges
whether each object module is for the CP or the
AP, and set the last bit of the pointer to the
callee's entry point to 1 if a CP subroutine calls
the AP subroutine or vice versa. When a CP
subroutine calls an AP subroutine, the CP firmware
knows it by the last bit of the pointer and gives
control to the AP subroutine. When an AP sub
routine calls a CP subroutine, a CP-call exception
is caused by the bit and the exception handler
gives control to the CP subroutine.

lUNING UTILITIES

The key factor to obtain a high performance
from the SX system is to increase the vectorizable
part of a program as much as possible. Another
important factor is to make generated codes more
efficient: for example, to lengthen the vector
length, avoid the memory bank conflict, and so on.
In order to make these tuning activities easier,
the SX system provides two utilities named
ANALY2ER/SX and VECTORIZER/SX.

ANAL'YZER/SX analyzes and reports the dynamic
characteristics of source programs. The informa
tion reported is as follows.

• For a whole program:
- its vectorization ratio indicating whether

it is already vectorized enough or not
• For each program unit:

the ntmlber of times it is called
- its vectorization ratio
- its "cost" which is an approximated index of

the time spent by it
- the total ntmlber of the DO loops processed •

the ntmlber of the vector ized DO loops and the
ratio of their costs

• For each DO loop:
- its cost
- the average loop length

- vectorization diagnostic messages which
indicate why it is not vectorized

• For each statement:
- its execution frequency

its cost
a mark indicating whether it is vectorized
or not

ANAL'YZER/SX can get these data by inserting some
statements for measuring them in the source
program. executing the program on the CP or
optionally on the AP and collecting them after
execution. Fig.4 shows an output listing by
ANAL'YZER/SX. The cost and vectorization ratio is
calculated by accumulating execution frequencies
of each statement weighted by the ntmlber of
instructions generated for it.

"'''''''''''''''*******'''**'''**'''****''''''****'''*'''''''''*******************"'******"'**"'''''''''''''''''''*'''**'''*'''''''''*'''*'''*'''**'''*'''''''''*'''''''''**'''**'''****"'********"''''''''''** *"'*******"''''''''''*'''***'''''''''**''''''''''''*'''****'''''''''***''''''*''''''*'''*'''''''''*'''''''''''''''"''''''''''''''''***''''''***''''''**'''**'''** ****1\J\:****.***********J1t*********1tIc**

*** * * * * *** **** * * * * *'" ** *'" "'* * * '" '" '" * * * * '" * * * * * * * * * *** * * * * * * * * ***'" '" '" * * * **"'*'" '" '" * '" '" '" * '" '" '" '" '"

"'''''''''''''''' "''''*''''''''''''*''''''''''''**'''**''''''*'''''''''**'''**********'''***''''''''''''''''''*''' "''''''''''*'''*'''** .. *'''**'''**'''*'''**********'''**'''*'''***********'''***''''''*"'**"'**"'*"'***"''''*** *****"****************lu**********Ic**********,,**'II**************"**
"''''''''''''''''*'''*'''*'''***'''**''''''*''''''*''''''*'''*''''''**''' .. **** .. *''''''**'''''''''**''''''"'**"''''*''''''''''''*''''''*'''''''''''''''*'''*''''''''' * *"'''''''*'''''' .. ''''''''' "''''*''' .. ''' .. ''' ** **"''''*'''* "'*"'***"'******"'*"'**

"'''' "'*u'" TOTAL EXECUTION I CPU) TI ... E • o : 0 o .. 269 269 "'SEC) ** *u",,,, TOTAL EXECUTION FREOUENCY 920201 * .. ***
"'"'''' TOTAL VEC-rORIZATION RATIO . 48.54" **"'*'" "''''*''''''

ATR PROGRAM FREOUENCY EXEC COSH::) V.RATIO LOOP V.LOOP V. LOOP RAT 10

--> ... AIN I 1.21 91.93 100.00
SUB RCRTF 2 93.96 50.29 52.62
SUB RCRTIlI 2 2.92 0.00 0.00
SIlB RMPnM 2 0.24 0.00 0.00
SUB PRTlnR 2 0.20 0.00 0.00
SUB PRIPVT 2 0.01 61.40 100.00
SUB I NOlITA 2 1.31 0.00 0.00
SUB IMPUTB 2 O.OT 11 .16 100.00
SIlB PRTIME 8 0.01 0.00 0.00
SUB TTIMER 17 0.00 0.00 0.00
SUB CPTIME 0 0.00 0.00 0.00

(a) A SUrrmary Listing

'ELN ILN EXECUTION COSTI") LOOP FORTRAN STATE ... ENT

000960 I SUIlROUTI NE RCRTF I A.N.IA.EPS.IT .INI))
000990 2 REAL A.EPS. TOL.A ... AX.G ... AX.W. WI .WSI .WS2
001000 3 INTEGER IA.INO.IT .IPIVOT .N. I. J.K I 2
001010 4 OI ... ENSION AI IA.N) .ITI N)
001020 5 21 0.00) INO-O
001030 6 21 0.00) IF I I A • L T. N) GO TO 100
001040 7 21 0.00) IFI N.LE.O) GO TO 110
001050 6 21 0.00) IF I N.LE.I) GO TO 120
OOIOGO 9 21 0.00) A ... AX-O.O
001070 10 21 0.00) DO 20 I-I.N
001080 11 1501 0.04) 1-----------> I DO 10 J·I.N
001090 12 125001 1.55) I V---------> I I WSI'ABSIAI I. J))
001100 13 125001 0.78) I I I I IF I WSI .GT .AMAX) AMAX'WSI
001110 14 125001 1.94) I V---------- 10 I CONTINUE
001120 15 1501 0.011 1------------ 20 CONTINUE
001130 16 21 0.00) TOl'EPS*AMAX
001140 17 21 0.00) WRITE 16.3000) TOL
001150 18 3000 FORMATIIH 11120X.41lTOL·.EI5.6)
001160 19 21 0.00) DO 90 M-I.N
001 ITO 20 1501 0.01) 3-----------> I IF I M.LE.I) GO TO 50
001180 21 1481 0.011 I ... 1· ... -1
001190 22 1481 0.05) I DO 40 I·M.N
001191 23 I I "'VDIR NOOEPIA)
001200 24 61T51 1.92) 4---------> I I 00 30 K-1.MI
001210 25 1874T51 34.90) I V-------> I I I AlI.l.tI·AI I .1.4) -All .K) "'AIK.M)
001220 26 1674751 5.82) I V-------- 30 I I CONTINUE
001230 27 61T51 0.571 4---------- 40 I CONTINUE
001240 28 1461 0.02) CALL OVERFL IJ)
001250 29 1461 0.01) IF I J.EO.II GO TO 130
001260 30 1501 0.03) 50 GMAX·ABSIAI M))
001270 31 1501 0.011 IPIVOT· ...
001280 32 1501 0.01) ... 2· ... ·1
001290 33 1501 0.01) IF I M.GE .N) GO TO 65
001300 34 1461 0.06) 0060 1="'2.N
001310 35 61751 0.77) V---------> I WI-ADSIA".M))
001320 36 61751 0.38) I I IFIWI.LE.GMAX) GO TO 60
001330 37 01 0.00) I I GMAX·WI
001340 38 01 0.001 I I IPIVOT'I
001350 39 61751 0.511 V---------- 60 CONTINUE
001360 40 1501 0.011 65 IF I GMAX.LE. TOU GO TO 140
001310 41 1501 0.01) I F I IPIVOT .EO.M) GO TO 75
001360 42 01 0.00) 00 70 I·I.N
001390 43 01 0.00) V---------> ! W=AIM.I)
001400 44 01 0.00) I AIM.II=AIIPIVOT.II
001410 45 01 0.00) I i AIIPIVOT.II=W
001420 46 01 0.00) V---------- 70 CONTINUE

(b) A Format Listing

Fig.4 ANALY.ZER/SX OUtput Listing

1038

ANALY.ZER/SX has a special feature to
measure and report only the execution time for
each program unit. Users can see real effect of
vectorization by comparing execution time in
scalar mode and vector mode for each program unit
by using this function. When executed on the PP ,
the vectorized operation ratio is measured by
using hardware counters and also output in the
listing.

ANALY.ZER/SX has another features to analyze
static characteristics of a source program, such
as a tree diagram depicting a module structure of
a program, a COMMON data cross reference listing.
a module cross reference listing and a listing
shOWing the correspondence between actual
arguments and durrmy argLUIlel1ts. This information
is useful when considerable modification is
necessary.

VECTORlZER/SX is the utility program to
help users tune their programs to get higher
vectorization ratio. It works in a screen mode of
the TSS environment. The dynamic characteristic
information of the program to be tuned is passed
from ANALY.ZER/SX through a file so that users can
see it through a terminal screen. Vectorization
diagnostiC messages are also passed from
FORTRAN77/SX compiler so that they can know why
00 loops are not vectorized. In addition,
VECTORIZER/SX has screen editor functions in it,
and the above information is merged with source
program lines in an edit buffer. Consequently,
users can modify their source programs directly
while referring to necessary information. 1m.
operational flow of VECTORIZER/SX is shown in
Fig.5. Its program editing panel is also shown in
Fig.6.

Select
program
edit

a

Parameter Setting Panel

A panel to input the file name
containing the dynamic char
acteristic information output
by ANALY2ER/SX

SEND Key

Program SUIIJnary Panel

Yectorization ratio for the
program is displayed

SEND Key

Program Unit List Panel

unit to The following information is
displayed for each program unit

• reference count
r--f • cost

• vectorization ratio

Select a program
unit

~
00 Loop List Panel

The followong information is
displayed for each 00 loop

• cost
• average loop length
• vectorizability

Select a 00 loop

~
Program Editing Panel

The following information is
displayed along with the source

'--- statements
• execution count and cost
• true ratiO for logical IF's
• marks indicating if they are

vectorized or not
• vectorization diagnostics

Source statements can be edited
directly on this screen

Invoke
FORTRAN77/
to confinn
vectorizat

Fig.5 1m. Operational Flow of VECTORIZER/SX

1039

SX

ion

VEI:r
---'-s(;l!1J ==>

1I03UI/
1I031U
UU30U
OU39U

00~1I0

Sl(PRUL:EUr) FURl RAN 1.INf.: 32~

__ ---,-_,.--:---;;----:---=_--=-~sc~Lm!!L
•••• t •••• 1 •••• t •••• 2 •••• t •••• :1 •••• t •••• ~ •••• t ••

I U.UO
I r,o 0.110
Ir.1I 0.00
IGO 0.110

113~5 U.II Y

VO 110 I=(.N
.'1
1=0.0

VO 20 I=I.N
VEe I: VECTUR I ZEU Dr IIU I NUEX I

If(AnS(A(I.I».I.E.l) GU TO 21/
(TRUE nil. 05)

UOWI
OU12U
OU~3U

UUHU

UU~GU

UU~OU

H1 U.UU Y
HI U.UU Y

linG 11.11 Y
lIiU U.UU

(TRUE 1.33)
UO U.UU

rn91G U.IU

I=AOS(AU.I»
.=1

20 CUNIINUE
1F(M.EO.k) GU TO 6U

IIU lfoll J=I.I-I
YEe 2: UHYECllIRIZEII VU LUlIP

YE(I. J'I)=YI(J.I'I)-ItYE(I. k)
3U : UNSUITAOI.E vm REFERENCE REWIUN
30 : RELAJIUN UF ARRAYY[IS UHIHUIN.

SPECIfY 'tYUII NUVEr ••• •• IF AtrRurRI AJE.
-'!!!!1J!-----.II!:!J~-----.lli!LJ;l!~WfUILE _______ _

Fig.6 A Program Editing Panel of VECTORlZER/SX

COOCLUSICN

The outlines of FORTRAN77/SX and some
tuning utilities of the SX system have been
described. Now the use of supercomputers has
become very corrmon, and the prograrrmers who have
no special knowledge on them have begun to use
them. As we have mentioned, we think that the ease
of use is essential to today's supercomputers.
Furthennore, high perfonnance must be attainable
at the same time. We believe we could achieve
these goals with above software products.

REFERENCES

[1] NEe: "NEe Supercomputer SX-1E/SX-1/SX-2
General Description". Pub. No. GAZ01E-2. 1985.

[2] T. Furukatsu, T. Watanabe and R. Kondo:
"SUpercomputer SX system with a vector peak·
performance of 1.3 Gflops and 6 nanosecond
cycle time", Nikkei Electronics, 1984.11.19,
No. 356, pp 237-272 (in Japanese).

[3] T. Watanabe: "Archi tecture of Supercomputers
- NEe Supercomputer SX System", NEe Research
& Development, No.73. pp 1-6. April 1984.

1040

THE IX SUPERCOMPUTER FOR KNOWLEDGE BASED SYSTEMS

Tetsuya HIGUCHI, Tatsumi FURUYA, Hiroyuki KUSUMOTO,
Ken'ichi HANDA, and Akio KOKUBU

Electrotechnical Laboratory
1-1-4 Umezono, Sakura-mura, Niihari-gun, Ibaraki 305, Japan

Abstract. This paper describes an IXM machine for
the parallel processing of large knowledge based
systems written ina semantic network language,
IXL. The potential performance of IXM is
thousands faster than conventional machines, as
IXM can find all the solutions of the query
simultaneously. IXM consists of a pyramid-shaped
network (PYN) and one thousand proccesing
elements(PEs}. IXM utilizes two thousand
associative memories in order to exploit the
concurrencies in the fundamental operations of
semantic network: association, set operation, and
marker propagation. A network processor at each
node of the PYN has an associative memory for
parallel marker propagation. A PE also has two
types of associative memories; one for the
parallel processing of association and set
operation, the other for exploiting the
parallelism in IXL language interpreter described
in non-procedural instructions.

1. INTRODUCTION
The,semantic network is one of the most

important representation schemes to develop
knowledge based systems~.2

The authors are developing the IX[iks] system
which includes a semantic network language for
knowledge representation (IXL}3. 4 and a massively
parallel hardware (IXM}5. The objective of the IX
system is to support all the processes of semantic
network processing in an integrated fashion: from
using IXL in the modeling and description of
knowledge based systems to their parallel
execution on an IXM machine.

This paper focuses on the architecture of
IXM. IXM is a high performance multiprocessor
thousands of times 'faster than current machines
used for semantic network ':processing. IXM
consists of a pyramid-shaped network and one
thousand processing elements.

It is very important for the design of the
semantic network machines6.7 to utilize the
parallelism in three fundamental operations in the
semantic network: marker propagation, association,
and set operation.

Therefore, the network 'processor located at
every node of the pyramid-shaped network employs
an associative memory in order to exploit the
concurrency in marker propagation.

Furthermore, the processing element also
includes two kinds of associative memory; one to
perform association and set operations in the SIMD
manner, and the other to exploit the concurrency
in .an IXL language interpreter.

CH2345-7j86jOOOOj1041$Ol.OO© 1986 IEEE
1041

Section 2 describes the background of the
semantic network and the programming language IXL
since the IXM architecture design is IXL oriented.
Section 3 is an overview of IXM. The design
features are discussed in Section 4. Section 5
describes the processing element and Section 6
describes the pyramid-shaped network.

2. BACKGROUND
2.1 Semantic network

The advantage of the semantic network is the
representation of declarative knowledge.
Taxonomical knowledge and inheritance can be
represented more naturally than predicate logic.
Inheritance of properties from the super class is
very useful to describe especially large knowledge
bases because it can save memory spaces. Compared
with frame systems, the meaning of the relation
between concepts can be defined more flexibly.
Procedural knowledge, however, can not be
expressed well using only the semantic network.
Therefore, semantic network languages have to
include methods for procedure addition.

The semantic network can be processed
efficiently by assigning marker bits to each node
of the network2. A.marker bit is a one-bit flag
on which the result of processing is stored.
Fundamental operations in the. semantic network are
performed using maker bits. For example, the
question, "Which member belongs to both A-group
and B-group 1" is asked in the semantic network of
Figure 1.

In order to find the solution, the
association operation is executed firstly to set
the marker bit No.1 of the A-group node. Then the
marker propagation is executed to set the marker
bits No.1 of the nodes which belong to the lower
hierarchy of the A-group along the 'isa' links,
starting from the A-group node going downward.
These nodes represent members of the A-group. As
well as the A-group members, the marker bits No.2
of the B-groupmembers are set using association'

Figure 1. A Semantic Network

and marker propagation. Finally, the set
operation is executed to find the intersection of
the A-group and the B-group; marker bits No. 1 and
No.2 of each node is ANDed.

Parallelism in marker propagation can be
utilized to greatly reduce the execution time in
large knowledge bases. This is because marker
propagation can find all the members of a set in
the length of time proportional to the depth of
the tree. Therefore, if the set is represented as
a binary tree of a million nodes, only 20 steps
are required to mark all the members. Association
includes as many con currencies as there are nodes
in the semantic network. This also applies to set
operations. As will be mentioned later, the IXM
machine can exploit these parallelisms fully by
using associative memories.

2.2 IXL
IXL is a semantic network language for

knowledge representation. The design philosophy
of IXL is to solve the problems of existing
semantic network languages: the description
capability of relations themselves, the method of
procedure addition, and the treatment of negative
knowledge.

As shown in Figure 2, IXL is a command
language which looks like a logic predicate. IXL
can perform (1) modifications, (2) inquiries, (3)
descriptions of knowledge bases. For example, an
IXL command for knowledge description, 'link(
is a, penguin, bird)', is used to state that a
penguin is a bird. Once this knowledge is stored
and an IXL command for inquiry, 'isa(penguin,X), ,
is issued, the answer becomes bird.

The main features of IXL are:
1) User-defined relation represented not by a

link but by a network of nodes in order to define
the meaning of the relation precisely and
flexibly.
2) Procedural knowledge described in logic-based

expressions.
3) Negative knowledge explicitly described.

A problem with the semantic network is the
expression of procedural knowledge which is used
to describe complicated inference rules for
knowledge bases. IXL defines procedural knowledge
in the form of a clause in Prolog. For example,

To connect nodes by a link:
link(is a, X, Y).
link(not isa, X, Y).
link(instance of, X, Y).
link(a kind of, [X,Y, ..], Z).
link(source~ R, X).
link(destination, R, Y).
link(rule, X, «

asst(R, X, Y):
prop (R, X, Y):
isa(X, Y):-
instance (X, Y): - ».

To construct a relation:
assertion(R, X, Y).
property(R, X, Y).

the following procedural knowledge represents an
inference rule to determine whether a restaurant
is classified as high-class or not:

isa(X, high_class_restaurant):-
asst(entree, X, Y),
asst(main_dish, X, Z),
Z + Y > 100.

This rule classifies a restaurant, X, as a
high-class restaurant if the sum total of the
entree and the main dish exceeds 100 dollars. The
predicates in the above clause are all IXL
commands. Arithmetic and logical expressions are
also allowed to appear in the body of the clause.
Notice that IXL commands can be used to describe
both declarative and procedural knowledge.
Therefore, once the IXM machine is designed to
execute IXL commands efficiently, the IXM can
process both types of knowledge uniformly.

3. IXM SYSTEM ARCHITECTURE
3.1 Overall structure

IXM operates under the control of the host
computer. IXM consists of the pyramid-shaped
network and processing elements (PEs) as shown in
Figure 3.

The pyramid-shaped network has a network
processor at each node of the network. One
network processor at the bottom layer of the
pyramid-shaped network connects four PEs. Each
upper network processor is connected to four lower
network processors. In addition, a network
processor is connected to four adjacent network
processors of the same layer. A network processor
includes message routing logic and an associative
memory to exploit the concurrency in marker
propagation.

The PE includes two kinds of associative
memories. The first one is for the storage and
the processing of the partitioned semantic
networks, for a large semantic network for
knowledge bases is partitioned into sub-semantic
networks and distributed among the PEs.
Association and set operations are executed using
the function of the associative memory in parallel
and equal to the number of the memory words.

The second one is to store the IXL language

To inquire about a link:
isa(X, Y).
instance(X, Y).
ako(X, Y).
source(R, X).
destination(R, Y).

To inquire about a relation
asst(R, X, Y).
prop (R, X, Y) •

System-supported primitive links;
is_a, not_isa, instance of
not instanceof, a kind of,
source, destination -

X,Y: concept node
R: relational node

Figure 2. The list of IXL commands

1042

HOST COMPUTER

4

16

64

256

• • 1024 • •

Pyramid
shaped
Network

Figure 3. System organization

interpreter. The interpreter is described in the
IXM machine instruction set of which the execution
is asynchronous; the associative memory is used to
fetch asynchronous IXM machine instructions.

A microprogrammed control unit is also
included in the PE to execute IXL commands and
arithmetic operations specified in procedural
knowledge.

3.2 Instruction levels
There are three instruction levels in the

IXM; (1) IXL commands, (2)IXM machine
instructions, and (3) IXM micro instructions.

The interface between the IXM and its user is
an IXL command. For example, user inputs an IXL
command, 'is_a(penguin, X)' into the host
computer in order to find out what a penguin is.
The host computer accepts the IXL command and
broadcasts it to each PE via the pyramid-shaped
network, as shown in Figure 4. The IXL command is
input into the IXM one at a time from the host
computer; synchronization is needed each time a
new IXL command is input into IXM. All the PEs
execute the same IXL command in parallel because
each PE stores the IXL language interpreter and
the sub-semantic network in two associative
memories.

The IXL language interpreter consists of
subroutines; a subroutine is a non-procedual
program and executes an IXL command
asynchronously. Because subroutines are written
in IXM machine instructions, an IXL command is
executed in IXM by the IXM machine instructions.

Execution of IXM machine instructions are
asynchronous to exploit the parallelism existing
in IXL commands. During the execution of an IXL
command, PEs require no synchronization with each
other; a processing element can return the answer
to the host computer as soon as the solution of
the IXL instruction is found in the PEe This
concurrency speeds up the IXL interpreter. Notice
here the difference in execution modes; the IXM

1043

machine instructions are executed asynchronously (
MIMD mode) • while the IXL commands are executed
synchronously (SIMD mode).

IXM micro instructions are used mainly for
the emulation of the IXM machine instructions.

4. DESIGN FEATURES
4.1 Nodes of equivalence for parallel marker

propagation
Marker propagation can mark all the members

of a set with O(log N) if the set is represented
in a tree-shaped semantic network of N nodes. It
seems to be very effective in speeding up large
semantic network processing. However, it is not
necessarily true when many links concentrate on
one node, since such a node would have to repeat
propagations as many times as the number of the
links connected to it and would become a
bottleneck in marker propagation. Nodes with
hundreds of links appear frequently in semantic

•

PE

! IXL COMMAND

e. g . 1 SA (X, y)

• • •

PE

subsemantic
network

IXL
interpreter

Figure 4. Execution of an IXL command

network applications because semantic networks are
useful to represent taxonomical knowledge.

The authors introduced the idea of 'nodes of
equivalence' in order to solve this problem and
exploit concurrency in marker propagation. The
idea is to partition the bottleneck node into
nodes with a smaller number of connecting links
and to distribute them among the PEs. A
partitioned node is called a node of equivalence.
For example, the student node in Figure 5(a) is
the bottleneck of marker propagation, because it
must repeat propagations 26 times. Therefore, the
student node is divided,for example,in this case,
into three nodes of equivalence as shown in Figure
5 (b). If the bottleneck node is partitioned into
N nodes of equivalence, the parallelism increases
N times.

If a message is sent to one of the nodes of
equivalence, the message hasto be duplicated and
sent to the other nodes of equivalence. For

A

(0)

(b)

Figure 5. The nodes of equivalence

8 c o

Figure 6. Message transfer using nodes
of equivalence

1044

example, the hatched PEs in Figure 6 (i.e. B,C,D)
contain the nodes of equivalence. If a message
comes from the PE A and the destination is B, the
message is duplicated and sent to C and D by the
network processors of the pyramid-shaped network.
The details are described in Section 6.

4.2 Asynchronous IXM machine instructions
The authors have proposed an asynchronous

execution mechanism of IXM machine instructions in
order to utilize the parallelism in the IXL
interpreter. As mentioned earlier, the IXL
interpreter consists of subroutines written in IXM
machine instructions; a subroutine corresponds to
an IXM command. The parallelism in the IXL
interpreter can reduce considerably the total
execution time of the IXM.

For example, suppose the IXL command,
'is_a(X,animal), , is entered in order to find the
solutions which come under the heading of animal.
In Figure 7, the solutions are bird, penguin, and
robin. Marker propagation marks these solutions,
starting from the animal node. Therefore, the
bird node is marked earlier than any other node.

So, if the bird node is returned immediately
to the host computer as a solution (without
waiting for the completion of marker propagation),
the turn around time can be reduced to a large
extent. In order to realize this, IXM machine
instructions must be asynchronous.

Now we shall explain the asynchronous
execution mechanism. Here it is assumed that each
node has a subroutine for an IXL command to be
executed; the hatched rectangular in Figure 7
represents a subroutine. The subroutine is
written in asynchronous IXM machine instructions.
An IXM machine instruction in the subroutine
specifies a marker bit in the input marker field
of the instruction format; as soon as the marker
bit of a node is set, the IXM machine instruction
can be started to the node, independent of the
other nodes.

In Figure 7, if the marker bit No.1 of the
bird node is set by marker propagation from the
animal node, the bird node searches its subroutine
for the IXM machine instruction which specifies
the marker bit No.1 as the input marker. If there
are two such IXM machine instructions in the
subroutine and if they are the return and the
marker propagation instructions, the bird node can
immediately return its identifier to the host
controller and then mark the marker bit No.1 of
the penguin node. Thus,the asynchronous execution
of the IXM machine instructions utilizes the
parallelisms existing in the IXL interpreter.

The PE employs an associative memory to find

Figure 7. Taxonomical knowledge

executable IXM machine instructions quickly. The
details are described in Section 5.

4.3 Associative memory to store and process
semantic networks
The association operation and the set

operation are very important in the IXM design
because they appear in semantic network processing
very frequently as well as marker propagation.
The IXM employs an associative memory for each PE
to utilize the parallelism in these operations.

The large semantic network of the knowledge
base is partitioned into sub-semantic networks.
Each sub-semantic network is stored in the
associative memory of a PE. Therefore, multiple
nodes are stored in a PE. For these nodes, the
association operation and the set operation are
executed in the SIMD manner, using the function of
the associative memory.

Because the IXM consists of one thousand PEs,
it is an advantage that the IXM design highly
utilizes the associative memories suitable for
VLSI implementation.

5. PROCESSING ELEMENT
As shown in Figure 8, the PE of the IXM

consists of three components: an associative
memory for semantic networks (SNAM) , an
associative memory for the IXL interpreter (IRAM) ,
and a microprogrammed control unit (CU).

SNAM stores a sub-semantic network which is a
partition of the large semantic network. Each
word of SNAM contains not only a node but also the
marker bit field where the processing results to
the node are stored. Using its association
function, the set operation and the association
operation are executed simultaneously for all the
data in the memory.

IRAM stores the IXL interpreter described in
the IXM machine instructions. If a marker bit of
a node in an SNAM word is set by the semantic
network operation, then it causes the execution of
another IXM machine instruction. Therefore, IXM
machine instructions are asynchronous just like
dataflow instructions8 . IRAM finds executable IXM
machine instructions by its associative function.

CU is a microprogrammed processor and it
controls SNAM and IRAM to perform three functions:
the execution of IXL commands, arithmetic and
logical operations, and the processing of
communication packets sent from either the host
controller or other PE's. CU executes the IXM
micro instructions.

I SNAM I ~ I RAM

MS

::;:;::;:;:::;:;:;:::;:;:;:::;:::;:;:;:;:;:;:;:;:;:;:;::::::::::::::::::::::.:.

IR : instruction reg.
MS : marker stack
PIC: pipeline control
I OC: 110 control
RF comprises of
mask reg., control reg.,
data reg., and address
reg. for the associative
memory.

Figure 8. PE block diagram

1045

5.1 Execution cycles of an IXM machine instruction
The microprogrammed control unit (CU)

controls the fetch and the execution of an IXM
machine instruction, as shown in Figure 9.
Firstly, an IXM machine instruction is fetched
from IRAM. Secondly, the IXM machine instruction
is executed by CU, using SNAM. The marker bit of
SNAM is updated as the result of the execution.

SNAM

Figure 9. The execution mechar.ism of
an IXM machine instruction

When the marker is updated, the marker bit number
is also stored into the marker stack (MS).
Thirdly, CU searches IRAM for the next executable
IXM machine instruction, using the marker bit
number in the marker stack, since the update of a
marker bit enables the execution of another IXM
machine instruction. These cycles are repeated to
find the solutions of an IXL command.

5.2 SNAM
Figure 10 shows the organization of SNAM and

how the partitioned semantic networks are stored
in SNAMs. The semantic network in the figure is
partitioned into two sub-networks and stored
separately in two SNAMs.

SNAM is 2K-word associative memory with a
width of 64 bits. One word consists of four
fields: the identifier field (21 bits), the
destination field (21 bits), the link name field
(4 bits), and the marker bit field (18 bits).

An SNAM word represents a link and the node
which is connected to the link. A link occupies
two SNAM words ,since a link has two nodes on
both edges. For example, as shown in Figure 10,
the 'isa' link between the animal node and the
bird node occupies the two words: the first word
of SNAMl and the first word of SNAM2. The
identifier field distinguishes between the two
million links stored in the IXM. The link name
field indicates a system-support link such as
'isa' and 'instance of' ; four bits are required
to distinguish between the system-support links (
a user-defined link is translated into
system-support links). The destination field
consists of the PE number and the displacement
within SNAM where the node is stored; for example,
the destination of the robin node at the first
word of SNAM2 is represented as 'PE1(l}', because
the animal node, which is the destination of the
robin node, is located at the first word of SNAMl
in PEl.

The marker bit field contains 18 marker bits
(numbered from 0 to 17). Each marker bit holds
the result of the semantic network processing such
as association and set ope~ations. For example,

IDF(21 bit) DSF(21bit)

BIRD PE2(1) ANIMAL
BIRD PEH4) PENGUIN
BIRD PE2(2) ROBIN

PENGUIN PEH1) BIRD
::::::::::.::::;"::':::::':::(}:~ :::::::::::::::::::::::(\:::: :t SN A M 1 (PE 1

LN (4b) MBF(18b)

ISA
RISA
RISA
I SA

LEGEND IDF: identifier field LN:I i nk name
DSF: destination field -> PE No.(displacement)
MBF: marker bit field RISA: reverse isa

Figure 10. SNAM organization and the
partition of a semantic network

suppose an IXM machine instruction, 'ASSOC(bird,
2)', is executed in the IXL interpreter program,
this instruction is for the association operation.
It searches for the SNAM words which contain the
bird node. If it exists, each marker bit No.2 of
the corresponding words is set: in this example,
the No.2 marker bits of the three words in SNAMl
are set.

When the marker bit is set in SNAM, the
marker bit number is also stored in the marker
stack. The marker stack is accessed by IRAM to
find IXM machine instructions which have become
executable.

Using SNAM has two advantages. The first one
is the parallel processing of the association and
the set operations. The IXM can process both of
them in O(c) steps, while the algorithms for them
on a sequential machine take O(n) and O(n*log n)
steps respectively. The second advantage is that
the establishment of new links is relatively easy.
The two new words of SNAM are added in order to
establish a new link between the two concepts.

5.3 IRAM
Figure 11 shows the organization of IRAM.

Each word consists of the operation code field (3
bits), the input marker field (5 bits), the
argument field (21 bits) and the resulting marker
field (5 bits). The input marker field specifies
a marker bit of SNAM. If an IXM machine
instruction specifies a marker bit in the input
marker field, the IXM machine instruction becomes
executable as soon as the marker bit is set. The
resulting marker field specifies the marker bit
which is to be set as the result of the execution.

The IXL interpreter consists of subroutines
for IXL commands and each subroutine is written
with these IXM machine instructions. Figure 12
shows an IXL command, 'isa(penguin,X), ,and its

1046

op- input argument resulting
code marker marker
field) field fi e I d

(iebd) (3 bit (5bit) (21 bit) 5 ,it
ASSOC * PEN GU IN 0
MARK 0 I S A 0

Figure 11. IRAM organization

subroutine written with IXM machine instructions.
This IXL command searches for the higher-class
concepts of the penguin. In order to find the
solution, two steps are required. First, the
penguin node is determined. Then, lisa' links are
traversed starting from the penguin node. The
nodes on the traversed lisa' links become the
solutions of 'isa(penguin,X}'; they are the bird
node and the animal node.

IXL command: ISA (penguin , X}

IXM machine instruction:
ASSOC(penguin,O}
MARK(O, isa, O}

Figure 12. An IXL command and
the subroutine for it

The subroutine to implement this IXL command
is stored in IRAM as shown in Figure 11. At
first, 'ASSOC (penguin , O}' is selected from IRAM.
After the execution, the marker bit No.O of the
fourth word of SNAM1 in Figure 10 is set because
it is the penguin node. After the marker bit No.O
is set, IRAM is searched to find the IXM machine
instruction which has the marker bit No.O in the
input marker field. Then, 'MARK(O,is_a,O), is
selected.

Figure 13 explains the MARK instruction.
Suppose 'MARK(n1,is_a,n2), is to be executed. If
node A has the marker bit No.nl which is set and
if an lisa' link emerges from node A, the MARK
instruction becomes executable. As the result of
the MARK instruction, the marker bit No.n2 of node
B which is connected to node A with the lisa' link
is set.

Therefore, if MARK(O,is a,O) is executed to
the example of Figure 6, the marker bit No.O of
the bird node is set. Then, MARK(O,is_a,O} is
selected once again from IRAM and is executed.
So, the marker bit No.O of the animal node is set.
Thus, the execution of the IXM machine instruction
proceeds asynchronously.

NODE A NODE B

Figure 13. MARK instruction

5.4 Control unit (CU)
Processing by CU is roughly classified into

the following two types. The first type is the
emulation of IXL machine instructions. The IXM
machine instruction such as MARK is executed in
terms of IXM micro instructions. As mentioned in
Section 5.1, read and write operations to SNAM and
IRAM are frequently done in order to fetch and
execute IXM machine instructions. These
associative memories are controlled with IXM micro
instructions.

The second type of CU processing is the
arithmetic and logical operations which appear in
the description of procedural knowledge; the
inference rule mentioned in Section 2.2 is shown
again as an example.

isa(X, high class restaurant):-
- - asst(entree, X, Y),

asst(main_dish, X, Z),
Z + Y > 100.

The first IXL command in the body,
'asst(entree,X,Y)', looks up the price of the
entree,'Y'. The second looks up the price of the
main dish, 'Z'. The third calculates the sum and
decides whether the sum exceeds 100 dollars or
not.

Although the rule looks like a clause in
Prolog, notice that all the solutions of an IXL
command can be determined simultaneously.
Solutions of a predicate in Prolog are determined
sequentially. Therefore, the IXM can be regarded
as a parallel logic machine taking this viewpoint.

UL: upward link flag
DL: downward link flag

PE 1 PE2 'I:,! PE3
equivalent equivalent

1047

6. PYRAMID SHAPED NETWORK
The structure of the pyramid-shaped network

(PYN) is shown in Figure 3. Network processors
are connected in the shape of a pyramid. However,
the connection path between the PEs of the same
layer of the network is not used in the first
version of the IXM for the convenience of
implementation.

PYN is used for the following three types of
packet communication.

(1) Host computer-to-PE: Broadcast of an IXM
command.

(2) PE-to-PE Marker, value, and (or), node
identifier are transferred from PE to PE.

(3) PE-to-Host computer Collection of
computation results.

The destination of the packet in the PE-to-PE
communication is the node identifier to which the
packet is sent. The node identifier consists of
the PE number and the displacement in the SNAM
where the node is stored. The network processor
routes the packet according to the node
identifier. The network processor always watches
the node identifier to distinguish whether the
node is the member of the particular nodes of
equivalence or not. If the packet is sent to a
member of the nodes of equivalence, the network
processor copies the packet and send the copies to
all the members of the nodes of equivalence. For
this operation, a table for nodes of equivalence
is stored in an associative memory of each network
processor.

6.1 The node of equivalence
Figure 14 shows the marker propagation to the

node of equivalence. It shows the case of the
university node in PE No.1 sending a packet to the

PE7

Figure 14. Marker propagation using
nodes of equivalence

nodes of equivalence,' s tuden t' . The's tuden t '
nodes are distributed in processing elements No.2,
No.3, and No.7. Therefore, the packet has to be
copied.and ·the copied packets have to be sent to
these PE's by the network processor No.1, No.2,
and No.3.

The network processor has a table for nodes
of.equivalence (EQNT). Each item ofEQNT consists
of the node identifier of .the node of equivalence
and the routing information to deliver the copied
packets.

The routing information is in five flags
indicating the distribution of the nodes of
equivalence among PEs. Four bits correspond to
four downward links to four lower network
processors or PE' s , ,and the rema1n1ng one bi t
corresponds to one upward link to an upper network
processor in the network hierarchy.

It is required to determine which network
processors have the EQNT items for a particular
node of euivalence. For example, network
processors No.1, No.2, and No.3 have the EQNT
items for 'student' node as shown in Figure 14.

The algorithm to select the network
processors where the EQNTs are to be located is as
follows:

(Ai) Select the PEs which contain the nodes of
equivalence.

(A2) Find a root network processor of the minimum
sub-tree which has all the PEs selected in (Ai) as
its leaf.

(A3) Traverse the connection path starting from
each PE of (Ai) to the root network processor
selected in (A2).

(A4) Select the network processors traversed in
(A3) .

The routing information of each EQNT item is
determined as follows:

(Bl) If a network processor has downward links
which are connected to either the network
processors of (A4) or the PEs of (Ai), then the
downward link flags corresponding to the downward
links are set.

(B2) If a network processor has an upward link
which is connected to the network processor of
either (A2) or (A4), then the upward link flag is
set.

For example, the downward link flags No.2 and
No.3 of the 'student' item in the network
processor No.1 are, set as shown in Figure 14.

6.2 Structure of network processor
The network processor consists

following components:
of

(1) Input/output buffer queues

the

for
asynchronous communications between network
processror and a PE, or between two network
processors

(2) decision logic for packet routing
(3) the associative memory to store the table

for nodes of equivalence (EQNT)
(4) the control processor
Figure 15 shows the block diagram of the

network processor. A packet arriving at a network
processor is queued into input buffer registers.
Then, the destination of the packet is examined
using the associative memory in order to identify
whether the destination is a node of equivalence
or not. If it is identified, the packet is copied

from lower
NP's (PE's)

EONT
associative

memory

I SO input buffer queue
o SO output buffer queue
PA packet code analysis
OM output multiplexer

Figure 15. Network processor
block diagram

to lower
NP's (PE 's)

and sent to the other member of the node ~f
euivalence according to the routing .information in
EQNT. If the destination is not a node of
equivalence, the packet is delivered using simple
routing logic.

7. PERFORMANCE
We show here the simulation results of the

IXM machine., and discuss its performance. At
first, the· execution. time of semantic network
processing on a conventional computer (Micro VAX
II) is shown for the comparison with IXM.

We developed the IXL interpreter in K-Prolog
on Micro VAX II. A French wine knowledge base has
been written in IXL.A user can issue an IXL
command to get various knowledge about wine.
Table 1 shows the execution time of two types of
queries to three knowledge bases of different
size.

The query (1) asks the knowledge base whether
:aparticular fact holds or not. For example, an
IXLcommand, "prop(rate, 'chablis wine', '**')",is
issued to ,ask whether the chablis-wine is rated as
two-starred or not. As shown in Table 1, a user
can get an answer (yes or no) in about two second,
although the execution time depends on where the
fact is located in the knowledge base.

1048

The query (2) asks the knowledge base all the
solutions of the query. For example, "bagof(X,
prop (rate , X, '**'),L)" command replies all the
wines rated as .two-starred in the variable L. The
execution time of this type of query increases
abruptly as the knowlede base grows larger. A
user have to wait fifteen minutes for the query to
the knowledge base of 4500 links which is far from
practical knowledge base. This is because of the
exponential explosion of the search space. Even

Table 1. Execution time of the knowledge base(KB)
search by IXL language processor on Micro VAX II

KB size 1600 links 3300 links 4500 links

query 66 - 600 66 - 1183 66 - 1633
(1) msec msec msec

query 2.1 min. 8.7 min. 14.6 min.
(2)

Table 2. IXMmachine cycles for the knowledge
base search

KB size

query
(1)

query
(2)

1600 links

1560

2452

3300 links 4500 links

2112 2404

2756 3556

if the IXL interpre.ter is implemented not in
Prolog but in Lisp, the result. will show the same
tendency as in Table 1.

On the other hand, as shown in Table 2, the
result of IXM machine simulation shows that the
total of IXM machine cycles required for query (2)
does not increase abruptly even if the knowledge
base grows. The potential performance of IXM is
thousands faster than conventional computers.
This is because IXM machine can find all the
solutions in parallel using the procedures written
in asynchronous IXM machine instructions.

We are currently designing the details of the
IXM machine of which machine cycle is 100 nano
second, assuming the associative memory of which
access time is 300 nano second and 6 mega byte/sec
transfer rate between network processors.

8. CONCLUSION
Knowledge bases of a few million nodes

described in the semantic network will be used in
practical applications within a decade. The
authors have proposed a massively parallel
architecture which highly utilizes associative
memories to exploit the parallelism in semantic
network processing.

The 'associative memories in IXM are used for
three purposes. The first is the utilization of
parallel structure in association and set
operation. The second is the parallel marker
propagation. The third is the exploitation of
the parallelism in IXL interpreter.

The IXM machine is also a language (IXL)
oriented machine. IXL gives a method to treat
declarative and procedural knowledge uniformly.
IXM machine can process both declarative and
procedural knowledge efficiently by adopting the
IXL oriented approach.

The simulation result shows that the
potential performance of IXM. machine is thousands
faster than conventional machines. In order to
utilize IXM fully for large knowledge based

1049

systems, it is also very important to develop an
optimizing allocator which partitions a large
semantic network and allocates each sub-semantic
network onto a PE. This is because the throughput
of IXM is greatly influenced according to the
allocation algorithms; the communication pattern
in IXM, the parallelism in marker propagation, and
the conflicts on the pyramid-shaped network change
considerably.

Associative memories can be implemented with
a high integration density because of its regular
cell structure. The authors have started the VLSI
implementation of IXM9. Though associative
memories of large capacity are not in practical
use at present, the associative memory approach
will lead to one of the most prom1s1ng
architectures for large knowledge based systems.

ACKNOWLEDGEMENT
The authors thank Dr. Hiroshi Kashiwagi for

providing the opportunity to pursue this research.

REFERENCES

[1] J.R.Carbonell: "AI in CAl: An artificial
intelligence approach to
instruction", IEEE Trans.
Systems, MMS-11:190-202,1970.

computer-assisted
on Man-Machine,

[2] S.E.Fahlman: "Design sketch for a million NETL
machine", Proc. of First Annual National
Conf. on AI, 1980.

[3] K.Handa, T.Higuchi, A.Kokubu and T.Furuya:
"Flexible Semantic Network for knowledage
Representation", to appear in Journal of
Information Processing Society of Japan.

[4] K.Handa, T.Higuchi, A.Kokubu and T.Furuya:
"Semantic Memory System IX Knowledge
Representation in IXL" , WGAI Rep. of IPSJ,
Mar. 1985. (in Japanese)

[5] T.Higuchi,K.Handa,T.Furuya and A.Kokubu: "A
Semantic Network Language Machine", Proc. of
EUROMICRO, 1985.

[6] G.E.Hillis "Connection machine~', TR-646,
MIT, 1981.

[7] D.I.Moldovan et al: "Semantic Network Array
Processor",Univ. of Southern California,
Tech. Rep. ppp-84-2,1984.

[8] J.B.Dennis : "Data Flow Schemas", Lecture note
in computer science, Vol.15,1972.

[9] A.Kokubuet al: "Orthogonal Memory- A Step
Toward Realization of large Capacity
Associative Memory", Proc. of VLSI85, 1985.

METHODS FOR ACHIEVING INTEGRATED OPERATION IN A HIGH PERFORMANCE

OPTICAL LOOP INTER-COMPUTER COMMUNICATIONS SYSTEM

Masahiro KURATA, Seishiro TSURUHO, Takafumi ISOGAWA, and Hisao NAKASHIMA

NTT Electrical Communications Laboratories
P.O. Box.8, YOKOSUKA POST OFFICE, KANAGAWA, JAPAN

Abstract

This paper describes high-performance optical
loops for main-frame coupling and its application
to complex, large-scale computer systems.
Emphasis is placed on problems concerning altera
tion of the system configuration, system operation
and rapid system recommencement in the event of
break-down. A communications method using the op
tical loop and the "Global Manager" (GM) concept in
the "System Control Processor" (SCP) are proposed.
The rapid system recovery method using total
integration via optical loops along with the GM

_concept are discussed and evaluated in terms of
enhanced reliability.

1. Introduction

NTT has developed and furnished nation-wide data
communications and processing systems for banking,
national and municipal government and many other
public services. [1] Enhancing the expandability
of these large-scale systems became a crucial
theme, because the rapid expansion of services and
system scale, such as nation-wide information-base
access, was needed with this movement toward on
informar.ion society.

To achieve such large-scale systems, a method
for loosely-coupled multi-processor construction
is appropriate from the view points of performance
and reliability. This, in turn, requires develop
ment of a high speed inter-processor communications
method which allows for easy alteration of a multi
processor construction. Such development will
simplify system operations and improve reliability.

In light of the above, high-performance optical
loops, consisting of Processor-Processor Communi
cations Interface equipment (PCI) and optical fiber
cables, has been developed. A System Control
Processor (SCP) has also been developed, which cen
tralized and simplified the command and control
functions in a loosely-coupled multi-processor
construction. PCI and SCP development led to
creation-of the Denden Information Processing
System (DIPS) Computer Complex with Optical Loops
(CCOL) offered for nationwide commercial services.
Even though the DIPS-CCOL system consists of a
number of subsystems, operation is smooth. In the
event of trouble in a given subsystem, the immedi
ate switch-over of processing to another (standby)
subsystem serves to enhance the reliability of the
whole system.

CH2345-7/86/0000/1050$Ol.OO© 1986 IEEE
1050

This paper describes the characteristics of the
optical loops used in the DIPS. Additionlly, it
outlines the DIPS-CCOL and technology employed, and
provides an evaluation of this highly reliable
system.

2. High-performance Optical Loops for Coupling

Processors

NTT's optical fiber loops have a token-passing
ring consisting of PCls and dual optical cables.
The objectives involved in achieving a complete
subsystem integration using optical fiber loops are
as follows.

1) Reduction of the required CPU load for
inter-subsystem communications processing

2) Simplification of subsystem addition and
alteration

3) Enhancing optical loop reliability

Inter-subsystem Communication Processing

Multiple data-links for inter-subsystem
communications are used in the optical loop
communications method to achieve co~plete subsystem
integration. The method to dynamically establish
data-links for every message[2] is not suitable
because of the excessive overhead in real-time
processing systems and the complexity of a sub
channel assignment mechanism. Consequently, a
method for statically holding data-links was
adopted. The data-link maintenance capability was
developed using the PCI subchannels to enable the
followings:

1) Maintaining the predetermined data-link
control information between processors for
each subchannel.

2) Control of data-link information by any
processor in the PCI loop.

Figure 1 outlines an inter-subsystem communi
cations processing method. To achieve a full
duplex path, a logical path with two one-way data
links was constructed to avoid retranmission due to
conflict and associated transmissions rights
control. Another feature of this system is that,
by permanently setting the data-receiving end of a
data-link on Read Command, Attention Interruption
requiring the reading of transmitted data can also
be reduced.

PCIl

OPTICAL
LOOPS

FEP

SCH#r-0+-~~-+_-~l_n;-n+_l~
OJ
>

'"0 Ow
C u
OJ OJ
VI 0:::

OJ
>

"C Ow
C u
OJ OJ
VI 0:::

HOST '-..... ~ ~~ .. SCH#: SUBCHANNEL NUMBER
~ : DATA LINK PAIR

LP: LOGICAL PATH

Figure 1. lnter-Sub-System Communications Processing

System Expansion

Information concerning configuration status,
including the data-link control information of all
PCls, must be simultaneously altered with the
addition of a new subsystem. A related difficulty
concerns the method of load balancing to multiple
PCls.

The DIPS-CCOL Global Manager (GM) function
maintains unified control of all data, including
the configuration status information. It deter
mines data-link control information for each PCI,
and distributes this to each subsystem. The GM
uses a specified subchannel pair as a "control
data-link" in order to distribute information
before establishing a data-link.

Two methods were considered to distribute data
to multiple PCls: dynamic and static routing. A
logical path allocation method based on the latter
was developed because of the necessity for a high
performance facility. In a real-time processing
system required to satisfy specific response-time,
the maximum subsystem loads must be smaller than
the total PCI performance potential which is found
in the linked subsystem. As a result, the follow
ing mehtod was proposed to determine the route
automatically and simplify the equipment plan.

1) Logical path classification
2) Allocation of PCI data-links for each

classification at initial use
3) Making uniform the number of opened paths

belonging to the same class in all the PCls
of a given subsystem.

4) Making possible path allocate to any PCI by
control of the initial use.

1051

Implementation of the methods described above,
as well as utilization of the developed components
resulted in the achievement of high-performance,
computer-to-computer communications to which extra
subsystems could be easily added.

Enhancing the High Reliability of Optical Loops

Both optical cable and PCI breakdown may occur
in optical loops, and this reflects badly on system
reliability. Figure 2 illustrates an automatic
loop back, using a dual path, which can be carried
out by PCls when such breakdown occur.[3] With PCI
breakdowns, message processing can also be con
tinued by the reallocation of other PCI data-links
to the damaged logical paths. It should be noted
that this is possible only when the subsystem has
more than one PCI. Reserve PCls, shared by the
whole system, can also be set up and with automatic
integration executed by the SCPo As a result,
continued operation is possible despite optical
loop breakdown, thereby enhancing the overall
reliability of the system.

PCIO PCIO

pcn

PCI2 PCI2

Figure 2. Safety mechanism in the event of
Optical loop breakdown

pcr3

3. An Outline of the DIPS-CCOL

The configuration of a highly reliable, DIPS
Computer Complex with Optical Loops is given in
Fig.3. The special features of this system are
that optical loops have been used to join the
subsystems and that a System Control Processor
(SCP) has been installed. It should be noted that
use of the term subsystem, within the contex of the
system outline, refers to the Host and Front End
Processors (FEP).

SCP is the actualization of the Global Manager
(GM) for governing operation of the whole system.
It also supervises other subsystems and controls
overall system structure. In addition to a data
base containing the knowledge required for system
operation, the GM concept, at the core of the SCP,
contains the functions enabling management and
control of inter-subsystem links as well as the
handling of console messages transmitted via the
optical loop to other processors. Each subsystem
has the ability both to send messages concerning
the whole system to the SCP and to process messages
from the SCP as console commands. The SCP exchages
messages with each subsystem and carries out
hardware reconfiguration based on the knowledge
base. Two SCPs can also be utilized, one on a
standby basis, to create a redundant system
structure offering high reliability.

As part of the attempt to ensure high reliabili
ty in the system p one "reserve" subsystem is
installed for n subsystem units. As all subsystems
share the magnetic storage units, the reserve unit
can either remain on standby or execute other jobs.

Figure 3.

pcr I
I
I
I
I
I
\ ,

'- .-
...... _--' *:SPARE

DIPS Computer Complex with Optical
Loops

1052

4. DIPS-CCOL Developmental Topics

The installation of extra hardware and modified
software and the enhancement of system reliability
have become major goals in order to provide in
creased system capability and more comprehensive
user services. This is especially true in regard
to the current trend toward a wider range of
services in computer systems. One current proposal
for achieving these goals concerns utilization of
the distributed processing method, in which the
system is constructed by a number of sybsystems.[4]
[5], [6]

However, system alteration and operation is
not so easily achieved when dealing with large-scale
distributed processing systems which employ main
frame computers. There are two main difficulties.
The first lies in the greatly complicated inter
face between subsystems made necessary by the
increase in overall system size. The second con
cerns the more complex operations which arise in
conjunction with the increase in component numbers.

In light of these problems, technological
development was chosen in two areas as means to
achieve the goals mentioned above. The first area
concentrated on Global Manager development for
smooth operation of the overall system. The second
sought continuous transaction processing capability
at times of Host breakdown.

Global Management of the system

An increase in the number of subsystems not
only causes an increase in the operations required
to manage the system but also complicates the
operations of the whole system because of associ
ated complex operations for the joint use of
peripheral devices between subsystems. The concept
of a Global Manager for the SCP has been proposed
as a mean of solving these problems. The main
features of this Global Manager are:

1) Unified management and control of all
subsystems. Status responsibility includes
all device connections as well as execution
of operations in response to messages.

2) Substitution for human operators as regards
operating instructions.

3) Harmonious global system management in
conjunction with operators.

Enhancement of System Reliability

The larger the system scale, the greater the
effect of service suspension on society becomes.
Consequently, the recommencement of service after
a subsystem breakdown, before the user is even
aware of any interruption, is most effective from
the dual viewpoints of MTBF (Mean Time Between
Failure) extension and MTTR (Mean Time To Repair)
reduction. Through use of an optical-loop-based,
complete integration, quick service recommencement
can be achieved. In times of Host breakdown, this
function puts messages on hold in the FEPs,
switches over to a stand-by Host and then carries
out high-speed file recovery.

5. Global Management

In a CCOL system, the following conditions
must be satisfied in order to facilitate system
operations:

1) Each subsystem can be individually control
ed.

2) Inter-subsystem control can be either
automatic or by a single operation.

3) Various system operating conditions can be
achieved o

Thus, noting that system operation centers on
console interation, the basic fuctions of the GM
were identified as automatic console response and
response procedure creation, as well as a console
message transmission function.
Figure 4 diagrams the Global Manager of an entire
system.

Automatic Console Response Function
A function which invokes procedures describing

the automatic response process is the most primi
tive function in terms of achieving an automatic
response. Two cases, either the arrival of a
console message or a specified time, were selected
as triggers for procedure invocation. The follow
ing functions were developed in order to simplify
this definition.

1) Registration of both the procedure and the
console message invoking it.

2) Registration of both the procedure and the
time at which it is invoked.

3) Invoking the procedure when the required
conditions are satisfied.

This function is designed to be present in
both the SCP and each subsystem, and renders

SCP

OCT

cJ-~·
CONSOLE ,---...a

<==: MESSAGE
-: COMMAND

<==

automatic response processing hierarchical and
distributed.

Automatic Response Procedure Creation Function

Because automatic response procedures vary
from one system to another, a simple language
function has been provided to describe the response
process. This allows a new command definition due
to the function's ability to input console commands
from the procedure.

Console Message Transmission Function

Transmission of console messages to the GM has
been achieved in order to permit exclusive resource
control and processing synchronization spanning
multiple subsystems. An example of these functions
would be the necessity for simultaneous alteration
of line control information in multiple subsystems
which are sharing line switchs, when these line
switchs are modified. In a case like this, the
console message controlling the hardware switch can
be transmitted to the SCP, from where a command
affecting the reconfiguration of the whole system
can be issued.

It is additionally necessary that reprocessing
of console messages, given the possibility of
various abnormalities, be done accurately and
rapidly, for function reliability in commercial
systems. In this regard the function is accom
panied by the following.

1) Console message loss prevention
2) A check-point which makes the global

parameters maintain these values at system
restart.

HOST/FEP

UT

CP

ARP: AUTOMATIC RESPONSE PROCESSING
RCP: RECONFIGURATION PROCESSING

OCT: OPERATOR CONSOLE TASK
GMT: GLOBAL MANAGER TASK

PC: PROGRAMMED CONSOLE
CP: COMMAND PROCESSOR
UT: USER TASK

Figure 4. The Mechanism of Global Manager Processing

1053

The system presented in this paper is superior
to conventional system,[7] which employ a pseudo
console device, for the following reasons.

3) The alteration response in system operating
conditions is simplified.

4) Because operations knowledge is distributed
to the subsystems, autonomous operation by
each subsystem is simplified. This
feature also enables prevention of exces
sive loads being placed on the SCPo

5) Because console messages are transmitted by
optical loops, transfer is rapid and does
not require separate hardware for connec
tions.

6. Rapid Operation Recommencement

System reliability can be greatly enhanced by
making possible the rapid recommencement of
processing, that is, before most users are even
aware of trouble in their subsystems. This calls
for early detection of any abnormality in subsystem
operating conditions automatic reconfiguration, and
increased speed in message recommencement
processing on standby.

Early Detection of Abnormal Conditions in the

Subsystem

This is of vital importance in the reduction
of both user trouble and the need for recovery,
but the problem lies in the incidence of no
response events in loops due to software bugs.
In order to speed detection and increase its
accuracy, a "health checks" was programed, to
mutually supervise in both Host and FEP, addition
to a "self check" hardware of whether a timer
extension operation had been carried out within a
specified time.

Automatic Reconfiguration

When the GM contained the SCP is notified of
a malfunction, it invokes appropriate reconfigura
tion action according to the information received.
When a malfunction occurs in the Host, the GM
selects a substitute Host, checks that this
substitite is on Final Standby and then commands
it to take over operations. So that system
designers can re-edit the reconfiguration procedur
es to match each individual system, they were given
a hierarchical structure using an automatic res
ponse procedure creation function.

Continuous Reception of Messages

When it takes too much time to get the standby
Host ready, the time supervisor at the users
terminal cuts the circuits. If, however, the
switch-over and Host recommencement are completed
in a shorter time, and messages can be stored in
the FEP, the user can remain completely unaware of
the fact that the Host went down. The method chosen
for this was to use an optical loop to preset the
logical path between processors as an integrated
configuration, and to execute a switch-over of
message transmission merely by having the FEP's
communication processing program alter the logical
path.

1054

Intial Setting of the Reserve System

To achieve faster processing of messages
retransmitted from the FEP, the proposed design
calls for the reserve Host to be on standby, having
both joint use of the present file and also the
ability to operate as a load sharing system.
This particular Final Standby method eliminates the
need for intial system setting during service
recommencement processing.

Quick System Recovery

During an on-line, system recommencement
following system shutdown, both file restoration
and transaction recovery are essential because file
storing is accomplished by message processing.
Thus, executing data restoration simultaneous with
on-line services makes recovery time far shorter
than that found in conventional methods. In the
latter, services are recommenced only after the
damaged transactions have been re-processed or
abandoned following data recovery.

Services are able to be quickly recommenced in
a file-sharing system because the files which need
restoring are excluded by a suspended subsystem in
use as a Serial Reusable Resource (SRR). However,
extreme requests to the SRRs indicates that the
services are barely recommenced. The effect of
this conflict must be lessened, and this is done by
retrieving the data under commencement from the
journal file, prohibiting access to the damaged
data in the file, and then releasing the SRR.
In this way access is given to almost all files,
making quick service recommencement possible.
The data to which access was prohibited can be
restored to present status with journal information.
It then can be used in service.

Continuous job Execution when on Standby

If jobs that were being processed continue to
be processed even when the system is on standby,
there is a very real danger of a Host switch-over.
This could lead to an excessive on-line system
load. To avoid this hazard, a CPU has been
utilized, along with a memory and I/O resource
schedule. These allocate remaining resources
according to high or low-priority jobs. This
method suits the Final Standby method due to the
fact that jobs to be executed that are currently
on standby are usually processed in the background
of real time operations.

Conditions
Communication
Recovery

(a) Terminal number
(b) Traffic

15000
700,00 Transactions/Hour
2KB/Transaction

Fil e Recovery
(c) Journal record length
(d) Multiprocessing amount 100

IPL
• L e"ss than 10% of

conventional recovery time
• Wi thi n termi na 1 watch

time
Detection and
Analysis

Strategies for Rapid Recommencement
1. Lack of necessity for IPL processing due to FEP's independent

operation.
2. No need for operator assistance in recovery processing and

high-performance equipment.
3. Introduction of a Final Standby method, making IPL unnecessary

for reserve switch-over
4. Avoidance of delayed detection and analysis through

program supervision

Figure 5. Rapid Service Recommencement

7. Conclusion

In this paper, two major features of high
performance optical loops for inter-computer
communications and the computer complex have been
described. The first, global management, is con
structed by centralizing the data-link control,
moving the physical console interface from each
subsystem and programing system operations. The
second, rapid operation recommencement, enhances
system reliability by switching FEP message transfer
and actualizing the Final Standby method.

These technologies have made large-scale on
line systems far more reliabile than previously
possible. In the system example shown in Fig.5,
more than 95% of messages which would have been
damaged in the past can now be continuously
processed even under the maximum load condition.
Its message abnormality results from excessive
loads associated with recovery.

1055

Acknowledgement

The authors would like to thank Mr. Arai and
Mr. Murata, Information Processing Department,
NTT Electrical Communication Laboratory, for thier
valuable suggestions.

References

[1] T. Kawai, et ai, "Large Scale Data
Communication System for Nation-wide Bank
ing Activities and Development of its
Software, "ICCC-78, 1978.

[2] Katsuo IKEDA, et ale "Computer Network
coupled by 100 MBPS Optical Fiber Ring Bus,
"COMPCON 80 FALL pp.159-165

[3] J. J. Wolf, et ale "Design of a Distributed
Fault Tolerant Loop Network, "ISFTC, June
1979, pp.17-24

[4] Hiroaki I KUTA , et ale "Super minicomputer
Complex System, "I.P.S. of Japan, Vol.23,
No.1, Jan. 1982

[5] P.H. Enslow, Jr., et ale "What is a
Distributed Data Processing System 7"
COMPUTER, Jan. 1978, pp.13-21

[6] J. F. Bartiett, "A NonStop Operating
System, "Proc. Hawaii International
Conference on System Sience, 1978, pp.103-
117

[7] Itujiro ARITA, "An application of the
intelligent console to the operation
management system for a computer center,
" LP.S. of Japan, Vol.23, No.5 Sep. 1982,
pp.472-479

Autonomous Decentralized Software Structure and Its Application

Kinji Mori *,
Minoru Koizumi * ,

Hirokazu Ihara *, Yasuo Suzuki *, Katsumi Kawano *,
Masayuki Orimo*, Kozo Nakai ** and Hiroaki Nakanishi **

* Systems Development Laboratory, Hitachi, Ltd.
1099 Ohzenji, Asao-ku, Kawasaki 215, Japan

** Ohmika Works, Hitachi, Ltd.
5-2-1 Ohmika, Hitachi, Ibaraki 319-12, Japan

Abstract

An autonomous decentralized software structure
has been developed to achieve software on-line
expansion and on-line maintenance and fault-tolerance.
In this structure, a software subsystem installed in each
of the distributed computers has an autonomous
operating function for selfmanagement and coordination
with the subsystems without external direction and/or
execution. The data field(DF) concept is introduced in
order to realize autonomy in each software subsystem.
Every data is broadcasted, with the attached content
code corresponding to its meaning, into the. DF without
specifying the receiver. Each module in the software
subsystem is connected only to the DF and judges
whether to receive the data, or not, from the DF on the
basis of its attached content code. The module runs
independently from all the other modules after receiving
all the necessary data from the DF. This autonomous
data-driven mechanism and DF structure ensure that an
application software module can be independentlY
produced, loaded through the DF, tested by the data in
the DF and begin execution while the other modules are
operating. Every subsystem checks the consistency of
the received data. Hence, fault tolerance .. of the
software system in event of the software subsystem's
failure is attained. Evidence of the effectiveness of this
software system is provided by its application to real
time control systems for steel production process
control.

1. Introduction

Distributed computer systems have developed
rapidly based on the cost reduction of microelectronics
and the advancement of communication .techniques. On
the other hand, the relative cost of software has
increased in comparison with the hardware cost. Hence
in the distributed system, production, expansion,
maintainance and fault tolerance of the application
software itself rather than economical sharing of the
hardware resources have become important.

Recently distributed operating systems have been
discussed but most of them are experimental systems 0).
Some of them are network operating systems and others
are only extensions, which manage to communicate and
share resources and are added to the existing operating
system. HYDRA (2) and Medusa (3), the distributed
operating systems of the Carnegie-Mellon University
C.mmp and Cm * multi microprocessor systems, are
aimed at not only efficient resource sharing but also

CH2345-7/86/0000/1056$01.00 © 1986 IEEE.
1056

system reliability. COCANET UNIX (4) developed at the
University of California, Berkeley, a network operating
system, modifies UNIX so that the eXisting programs can
share remote resources using the standard UNIX
interprocess communication mechanism. A language
concept, communication port, is proposed to support
communication between modules in distributed
processors(5), but this concept is limited to one-to-one
communication. This communication relation cannot be
changed during system operation. CONIC, a language
and support system, has been developed for dynamic
configuration of distributed systems. However, in this
system a specific configuration manager exsists to
translate requests to change the system, expressed in
CONIC language(6) ..

In these conventional operating systems and
languages,. every software subsystem or specific manager
is assumed to know the partial and/or total system
structure represented by the communication relation
between software subsystems. But in a large and
complex system in which the structure frequently
changes and partially fails and/or recovers, this
assumption can not be easily satisfied and it becomes
difficult to manage the system in a centralized manner.

Therefore Autonomous Decentralized Software
Structure is proposed here to meet the requirements of
on-line expansion, on-line maintenance and fault
tolerance of the software system. This software
structure has the feature that every software subsystem
has autonomy to manage itself and coordinate with the
other software subsystems. Coordination is attained by
communicating with the other subsystems through a
proposed data field(DF), in which the data circulates and
the software subsystem selects whether to receive the
data on the basis of its content. In this system, there
exists no specific manager and no master/slave relation
among the software subsystems. This software system
structure is proposed on the basis of the Autonomous
Decentralized System Concept (7)-(9). This concept has
already been realized in the hardware systems of a local
area network: ADL and a multi-microprocessor system:
FMPA and these hardware. systems have operated
successfully (7)-(9).

2. Design Concept - Autonomous Decentralized
System Concept

2.1 Software Features and System Requirements
Previously, computing system hardware has been

expensive in comparison: with software. The software
structure has been mainly designed under the constraints

of the predetermined hardware structure. But the
recent advancement of LSI technology and the reduced
cost of LSI have gradually made the software structure
design flexible and substantially reducing the dependency
on the hardware structure. Moreover there have been
increasing demands for the software system to satisfy
the following objectives.

(1) On-Line Expansion
As system size increases; step by step construction

is required. Open-ended system construction during
partial operation should be made possible. Even after
completion of the construction, the system may be
improved. Hence on-line expandability of not only
hardware but also software is required.

(2) On-Line Maintenance
In the large system, the frequency of fault

occurence somewhere in the system increases. It should
be ensured that the maintenance and the test procedures
can be carried out without suspending system operation,
especially in the case of on-line and real-time systems.

(3) Fault-Tolerance
The reliability of the hardware has been

sufficiently improved in comparison with the software.
But even if the software includes some bugs, the system
is not required to stop its entire operation to prevent the
fault.

(4) Performance
Of course, high system performance is needed. For

attaining high performance, reducing the peak of the
computer load and making the load smooth by improving
the software processing mechanisms are required.

All these criteria should be met in the construction
and operation of large-scale systems. However the
conventional centralized and distributed systems are
developed from standpoint that the total system must be
previously determined. Thus the hardware and software
structures are fixed and have little flexibility. It is
therefore difficult to satisfy these requirements.

2.2 Autonomous. Decentralized System Concept
The Autonomous Decentralized System Concept

has been proposed to attain on-line expandability, on-line
maintainability and fault tolerance of not only the
hardware but also the software system.

This concept, based on biological analogy, has the
perspective that a system almost always has faulty parts
and undergoes modifications. That is, a total system
cannot be previously defined. A system is defined as the
result of the integration of subsystems. A system is
called an autonomous decentralized system, if the
following two properties are satisfied.

(1) Autonomous Controllability
If any subsystem fails, the other subsystems can

continue to manage themselves.

(2) Autonomous Coordinability
If any subsystem fails, the other subsystems can

coordinate their individual objectives among themselves.

In these properties, only subsystem failure is
considered. But they can be applied to subsystem
addition and repair. Hence, these properties assure fault
tolerance, on-line expandability and on-line

1057

. maintainability of the system. They suggest that every
subsystem requires an intelligence to manage itself and
to coordinate with the other subsystems. The software
subsystem in the subsystem is called the Atom. The
Atom consists of not only the application software but
also its own management system software. This system
software in each Atom is called the ACP (Autonomous
Control Processor).

To realize an autonomous decentralized software
system with autonomous controllability and autonomous
coordinability, each ACP is required to satisfy the
following three conditions.

(1) Uniformity
Each ACP must be uniform. That is, every ACP

functions are self-contained. The ACP can manage its
own application software modules without being
dependent on the other ACPs functions. This condition
means that even if the ACPs in some Atoms stop their
operation, the other Atoms can contiune their operation.

(2) Equality
Each ACP must be equal. Hence, every ACP can

manage its own application software modules without
being directed by or giving directions to the other ACPs.
That is, there is never a master-slave relation among the
ACPs. This condition assures that each ACP can
continue its operation even if the other ACPs fail.

(3) Locality
Each ACP must be able to manage its own Atom

and to coordinate with the other Atoms based only on
local information. This condition means that every ACP
can continue its operation even if the ACP cannot
collect the global information because of the other
subsystems' failures. . The locality condition excludes a
common global information file.

It is difficult to satisfy these three conditions
under the conventional. software structure and its
management techniques. . ' Hence the Autonomous
Decentralized Software System has been proposed.

3. Software .structure

3.1 Data Field
The basic feature introduced in the Autonomous

Decentralized Software Structure is the OataField (DF)
where the data circulates among the modules in the
Atom and moreover among the Atoms. The OF in the
Atom is called the Atom Data Field (ADF). In the DF,
each data has a content code which indicates its
meaning.

This feature means that the software module
broadcasts all data with its content code into the DF and
it judges whether or not to receive the data from the DF
on the basis of its content code. Here not every
software module uses the destination address of the
data. The message format is shown in Fig. 3.1.

In the OF concept, there is no distinction regarding
broadcast among the data, the parameter, the file and
the program. All of them, attaching their corresponding

. content codes, are broadcasted in the DF in the same
message format. Moreover no message in the OF has
priority. Each Atom independently judges what data,
parameters, programs in the OF to accept and how to
process them on the basis of their attached cotent codes.
Moreover each Atom broadcasts every processed result

data, parameter, file or produced program into the OF
without knowing how to process them or which modules
to receive.

F
CC
SA
C
CRC

Data

: Flag
: Con ten t Code
: Sender Address
: Control Code

CRC F

: Cyclic Redundancy Check

Fig. 3.1 IvIessage Format Including Content Code

In this software structure, every Atom is
connected to the OF (Fig. 3.2). This feature indicates
the autonomous data-driven mechanism of the module in
the sense that no module ever drives the others nor
directs them to receive and process the data. This
mechanism makes the modules loosely coupled. No
module controls the others but each independently
controls itself. Moreover any module can communicate
with any other module connected to the OF. The module
can collect all information necessary to coordinate with
the others according to its situation since all information
is broadcasted without specifying the destination
modules.

Application
Modules

Broadcast Data with Content Code

DF (Data Field)

ACP: Autonomous Decentralized
Control Processor

Fig. 3.2 Autonomous Decentralized Software Structure

This communication protocol using the content
code makes it possible for every Atom to control itself
and coordinate with the others without having global
information on the entire system but having local
information on the content codes necessary for the
modules in the Atom itself. The content code protocol is
not designed for the sender and receiver modules, but for
the data itself. _

For example, physically, the OF among the Atoms
corresponds to a computer network. Each Atom is
installed in one computer unit. For example, the AOF
corresponds to FIFO memory which is divided into every
software module and can be locally accessed only by its
module (Fig. 3.3).

1058

ADF(Atom

Data Field)

ADF

Computer Network

DF

(Data Field)

Software

Module

DF

Fig.3.3 Data Flow in Software Subsystem (Atom)

3.2 Modular Software Structure in System Software and
Application Software

Not only the autonomous data-driven mechanism
but also the modular structure of the system software:
ACP and application software are derived from the OF
concept. That is, every software module in the ACP and
the application software is a unit of function which
receives data from the OF and sends out data into the
OF (Fig. 3.4).

Excution
Management

Module

BIT

Application
Module

1

2

• •

Management
Module

• .. •

ACP

Data Consistency
Management

Module

Construction
Management

Module

n

•
•

Application Software

Fig.3.4 Modular Software Structure in System
and Application Software

Each ACP has the functions of managing the data
flow route checking the data, supporting the test and
diagnosis ~nd so on. The func~ion of the applicat~on
software module is characterized by the relation
between the content codes of the input data and those of
the output data. .

Each application software module can be Installed
in any distributed computer without kn?wing where. t~e
other application software modules are Installed. thIS IS

because all modules anywhere are connected only to the
DF and driven by the data in the DF. Moreover the
application software module can be moved from
computer to computer without informing the ot~ers. of
its movement. Hence, portability of the applIcatIOn
software modules is attained.

The ACP is installed in every computer.

4. ACP Functions

4.1 Data-Driven Mechanism
The autonomous data-driven mechanism of the

application software modules is realized by the following
two management modules of the ACP.

(1) DF management
The DF management module acts as the interface

between the DF and the ADF. The ADF includes the
table of the relationship between the application
software module in the Atom and the content codes
necessary to execute this application software module
(Fig. 4.1). According to these registered content codes,
the DF management module receives the data from the
DF and stores it in the corresponding area in the ADF.
The data originating within the Atom is broadcasted into
the DF by this management module.

CC Data CC

CCI CC2

CC3 ~
CC4 CCI

• • • • • •

Data

• •

Application
Module

AND •• MI
--.. Execution

L------I

•• M2

•• M3
L-__ ---I

• •

AND
--.. Execution

CC : Content Code

Fig.4.1 ADF Format

The same data may be used by the different
application software modules in one Atom and then it is
stored in all the corresponding areas in the ADF.

The DF management module may be installed in a
separate communication I/o processer to improve
computer performance.

(2) Execution Management
The execution management module monitors the

ADF. As soon as all the data necessary to the
application software module is received in the ADF by
the DF management module, the execution management
module drives the application software module. The
number of data necessary to execute the application
software module is one or more (Fig. 4.1). With this
execution management module, the application software

modules run asynchronously and freely. This autonomous
execution property ensures that the application software
module cannot be directed to execute by any other
application software module. In addition it ensures that
the application software module can continue its
operation even in the event of fault occurence,
expansion and maintenance of the -other application
software modules.

4.2 Data Consistency
The asynchronous and free run mechanism of the

application software modules makes it possible to
replicate the same application software module to be
stored in the Atoms and to independently execute these
software modules. The number of replications of the
module can be arbitrarily settled according to the fault
tolerance level required. The replicated application
software module runs independently and sends the
processed result data into the DF. But some of them
may be faulty because of the failures of their
corresponding ADF memory and the computers
themselves.

Thus, the first problem is for each ACP to check
the replicated data received from the DF and select the
correct one.

The second problem arises in the case of "AND
execution condition", which means that an application
software module needs more than two data to execute
(Fig. 4.1). The application software modules
independently process and they send their result data
into the DF. Hence these multiple data are
asynchronously received from the DF by the Atom. The
second problem is for each ACP to logically synchronize
these multiple data which are asynchronously received
from the DF for the AND execution condition.

The data consistency management function for the
first problem is to select the correct data from among
"the same data", which are sent out from the replicated
application software modules. A threshold-voting
technique is proposed. The data consistency
management module identifies "the same data" not only
by the content code but also the event number attached
to the data. The event number is originally set at the
module that received the information from an external
source via input devices such as sensors and terminals.
Although the data is successively processed by the
modules, the original event number is preserved. "The
same data" with the same content code and the event
number is collected from the DF within a predetermined
interval or up to a predetermined number. The correct
data is selected from among "the same data" through the
majority voting logic which can be flexibly adapted
corresponding to the total number of received data or
the minimum time interval. By this logic, the fault
occurence is detected and each application software
module can avoid being affected by fault propagation.
This data consistency management module in the Atom
can detect a fault that occured in the Atom itself by
making a comparison with data that originated from the
Atom itself and the other Atoms. The thresholds of the
predetermined interval and number for the majority
voting logic are applied to the systems aiming at high
responsibility and reliability.

The second problem resulting from the "AND
execution condition" is resolved by using the event
number. The data consistency management module
selects all of the multiple data with the content codes
satisfying the "AND execution condition" of the
application software module and it arranges the data in

1059

the order of the event number set by the original
module. With this arrangement mechanism, the data
consistency management module can detect whether all
of the necessary multiple data have been completely
received and whether some data is missing.

Through data consistency management, every
Atom can independently check the correctness of the
data and logically synchronize multiple data that
originated from the other Atoms. Hence, in data
consistency the autonomous controllability and
coordinability properties are satisfied.

This data consistency mechanism to assure fault
tolerance is easily adopted to system reconfiguration
while the system is operating.

4.3 Test and Maintenance
The autonomous execution mechanism of the Atom

and the OF concept make it easy for the application
software modules to be debugged and tested while the
system is operating. This on-line maintenance is
supported by the BIT(Bilt-In Tester module) in each ACP
and by the EXT(External Tester module) as the
application software.

The BIT in each ACP has the functions of setting
the application software module into the test mode,
generating test data, and checking test results
independently of the other modules.

After the installation of the application software
module into the Atom and the recovery from the fault of
the application software module in the Atom, the BIT in
the Atom determines to begin the start-up test for this
application software module and sets the application
software module into the test mode. The application
software module being in the test mode receives only
test data with the attached test flag from the OF and
processes them. It broadcasts the test result data
attaching the test flag into the OF. However, it is
prohibited to output the signal to output devices such as
controllers. The EXT monitors the test data and the test
result data in the OF. By collating the test data with
the test result data, the EXT can check for fault
occurence in the application software module in the test
mode and broadcasts the fault detection. The BIT
independently decides whether to start the operation of
the application software module on the basis of the test
result by the BIT itself and/or its check by the EXT.

The test data can be generated by the EXT or the
BIT itself. The test data for the start-up test is
previously stored in the BIT. The EXT can successively
generate the test data according to the fault occurence
situation in the system.

It is possible to drive the application software
module while it is in the normal mode by the test data.
This module broadcasts the test result data into the OF,
but it prohibits sending the signal to the output devices.
The test result data is successively used to test the other
application software modules. With this mechanism, the
application software modules can be successively tested
while they are operating. The EXT monitors the test
data and the test result data successively output from
the application software modules and it detects any
failed application software module in this test process.

The BIT independently tests the application
software modules. The EXT does not direct the other
modules to test and diagnose them. Hence the
autonomous controllability and coordinability properties
in test and fault diagnosis are obtained.

4.4 Program Loading and Expansion

1060

In the OF, the program as well as the data
circulates with its corresponding content code. The
application software module including the relation
between the content codes of the input and the output
data is produced on the conventional OS in the software
development subsystem and by using the conventional
language. This produced application software module is
broadcasted with its content code. The construction
management module in the ACP, in which the content.
codes of the necessary application software modules
have been previously registered, judges whether or not to
receive the application software module from the OF on
the basis of the registered content codes. This
management module stores the application software
module into the program area, makes the table of the
relation between the content codes of the input and the
output data for the application software in the AOF and
sets the application software module into the test mode
for the start-up test.

The AOF corresponding to the application software
module is generated whenever this module is loaded in
the computer. The construction management module
does not need to know about the expansion and the
replacement of the application software modules in the
other Atoms. That is, the ~onstruction management
module can independently install the application
software module into the Atom without interrupting the
other Atoms. Hence, the autonomous controllability and
coordinability properties in software construction are
attained.

5. System Design Criteria

In the autonomous decentralized system, the data
originating within the computer is broad casted at the
time of its generation. The data is not stored in the
memory of its originating computer or in the global
common memory. Therefore, the module need not
access the data in the memory of the other subsystems
and the global common memory. The application
software module can use the data received from the OF
as needed without any time lag or concern for the
condition of other subsystems.

The computer in this system executes the modules
whenever the necessary data for the modules originates
within itself or from the other computers. The computer
is not directed to execute at any specific time by the
others. Thus, the performance of the system is
substantially improved by the reduction of the peak load
of the computer. In this system, the computer load is
normally high and almost always smooth. That is, in the
autonomous decentralized system design, lower
performance computers is sufficient compared with
those required by the conventional system.

6. Application

One of the applications of the autonomous
decentralized software system is a steel production
process control system. As an example, the cold mill
process control system is explained below (Fig. 6.1).

The computerization of steel production process
control has already reached an advanced level. Recently
the requirement for integrating the steel production
subprocesses, which have been separately computerized,
in order to reduce the stocks between the production
subprocesses and improve the steel quality has gradually

On-Line Information Management , ~r

\) Loop Network

Sensor,
Controll:~ _ _ _ _ _ _ _ _________ -,

- - - - -: : - Skin Path Mill Flying Shear ~ I

:--+:~m~-8~·,.aT~T~- ~ :~
: : Cold Mill Electric L.c::JJ r<\ :
I 1 Cleaning Cooling W Coil 1

_____ J L ___ - - - -- - - - -- __ I
Hot mill Cold Mill

Fig. 6.1 Steel Production Process Control System

increased. Hence, the on-line expandability, on-line
maintainability and fault tolerance of not only the
hardware system but also the software system have
become indispensable.

In this system, there are three major subsystems
for real-time process control, on-line information
management and software development. The functions
in each major subsystem are distributed into several
mini-computers HIDIC V90/5 series. These computers
are connected by the loop local area network
ADL(Autonomous Decentralized Loop Network) using
optical fiber cable(8).

In the software development subsystem computers,
the application software modules are produced, partially
revised, and remotely loaded into the computers for
real-time process control and on-line information
management.

The main application software modules in the on
line information management subsystem are the steel
production scheduling, the process data logging, the
linkage to the large-scale business computer system, the
EXT and the man-machine communication modules. The
steel production scheduling module makes the detailed
schedule for the production process on the basis of the
rough production schedule transmitted via the linkage
module from the business computer. This scheduling
module dynamically revises it according to ,the current
condition of the process. The condition is recognized
from the current process data broadcasted from the
real-time process control subsystems into the DF.

1061

The production schedule data broadcasted from the
steel production scheduling module is recevied by the
real-time process control subsystem. The real-time
process control subsystem consists of the cold mill
process, the electric cleaning process, the cooling
process, the skin path mill process, the flying shear
process and so on. One or more computers are
distributed to every process and each computer has its
own responsible control region. The real-time process
control software subsystem installed in each computer
includes the application software modul~s for tracking
and controling the iron slabs in its own control region.
The tracking module receives the signal upon the
detection of the iron slab from the detector in its own
control region. This module identifies the iron slab by
consulting the production schedule for this region and
then generates the tracking information.

This tracking information is broadcasted from this
module and is received at the controlling module in the
same real-time process control subsystem. It is also
received by the tracking module in its adjacent
subsystems on the downstream process, the process data
logging module and the man-machine communication
module. The control module driven by the tracking
information controls the apparatus for processing the
iron slab in its own control region. The tracking
information received by the adjacent subsystem is used
to check the production schedule and, if necessary, to
revise its own production schedule. The process data
logging module driven by the tracking information edits

Fig. 6.2 Display of Tracking Information on Cold Mill process

and stores this information. The man-machine
communication module is driven by the tracking
information to display that information (Fig. 6.2).

The EXT is driven by the test data and the test
result data, and it can detect faults in the software
modules.

In this system, these application software modules
are replicated according to their level of importance.
This system has been gradually expanded function by
function in the same process. Expansion has continued
process by process in the cold mill process control
system and from the cold mill process control system to
the upperstream and downstream process control
systems.

As the byproduct of development of this
autonomous d~centralized steel production process
control system, software productivity has been much
improved. In this system development, only the protocol
of the content codes is previously determined. Then
each application software module can be designed in a
closed form being independent from the others. Each
module is independently produced, loaded, tested, begins
operation and is modified. Even when the system
expands module by module, the existing system need not
be modified. Therefore, in particular, the load for each
software module debug and for total software module
linkage tests decreases.

1062

7. Conclusions

Autonomous Decentralized Software Structure
aimed at software on-line expansion and on-line
maintenance together with fault tolerance has been
developed. Each software subsystem consisting of the
system software ACP and the application software has
autonomy through the ACP functions and the data
field(DF) concept. Every data with the attached content
code corresponding to its meaning is broadcasted. The
ACP has the functions of receiving the data from the DF
on the basis of its content code and checking the
correctness of the received data. The application
software module is driven only by the correct and
necessary data received by the ACP. The process result
data is also broadcasted with its content code. This
autonomous data-driven mechanism makes it possible to
test and repair the application software module during
the operation of the other modules since the module can
be independently set in the test mode. The program as
well as the data is broadcasted into the DF together with
its content code. Each application software module is
produced by the software production subsystem and can
be remotely loaded into one or more computers while the
other application software modules are operating.

The autonomous decentralized software structure
has been applied to the steel production process control
system and so on, and its validity has been verified.

Acknowledgements

We would like to thank Mr. Hiroshi Kuwahara,
general manager of Ohmika Works, Hitachi Ltd. for his
continuous support and many helpful suggestions with
this development. We are also grateful to Dr. Takeo
Miura, board director, Group Exective of Computer
Group, Hitachi Ltd. and Dr. Jun Kawasaki, general
manager of Systems Development Laboratory, Hitachi
Ltd. for giving us the opportunity for this research.

References

(1) J. A. Stankovic, "A Perspective on Distributed
Computer Systems," IEEE Trans. on Comput., vol.C-33,
no.12, 1102-1115, Dec. 1984
(2) W. Wulf, et al., "HYDRA: The Kernel of
Multiprocessor Operating System," Communication of
the ACM, vol.17, no.6, 337-345, June 1974
(3) J. K. Ousterhout, et al., "Medusa: An Experiment in
Distributed Operating System Structure,"
Communication of the ACM, vol.23, no.2, 92-105,
Feb.1980
(4) L. A. Rowe and K. P. Birman, "A Local Network
Based on the Unix Operating System," IEEE Trans. on
Soft. Eng., vol.SE-8, no.2, 13 7 -146, March 1982
(5) T. W. Mao and R. T. Yeh, "Communication Port: A
Language Concept for Concurrent Programing," IEEE
Trans. on Soft. Eng., vol.SE-6, no.2, 194-204, March
1980
(6) J. Kramer and J. Magee, "Dynamic Configuration for
Distributed Systems," IEEE Trans. on Soft. Eng., vol.SE-
11, no.4, 424-436, Apr. 1985
(7) H. Ihara and K. Mori, "Autonomous Decentralized
Computer Control Systems," IEEE Computer, vol.17,
no.8, 57-66, Aug. 1984
(8) K. Mori and H. Ihara, "Autonomous Decentralized
Loop Network," COMPCON Spring '82, 192-195, 1982
(9) K. Mori, et al., "On-Line Maintenance in Autonomous
Decentralized Loop Network : ADL," COMPCON Fall
'84, 323-332, 1984

1063

APPROACHES TO AN INTEGRATED OFFICE ENVIRONMENT

MAKOTO YOSHIDA, MAKOTO KOTERA, KYOKO YOKOYAMA, SADAYUKI HIKITA

Computer Systems R&D Division, OKI Electric Industry Co.,Ltd.
11-22 Shibaura 4-chome, Mlnato-ku, Tokyo 108, Japan.

ABSTRACT

There has been ··a rapid improvement in the
technology of local networks and offtce equipment.
Unfortunately, our current understanding of office
equipment is only for a single machine, operated in
a separate 'stand alone' environment.

Nowdays, It is required to have a methodology for
extending these environments over many machines
wlthout being hampered by any new problems of
integrating remote processes. This paper describes
our approaches to integrate the office environment,
in which several pieces of equipment such as
database servers, file servers, personal computers,
workstations, and minicomputers, jointly work
through a local area network. The transaction
concept is explolted and defined as the
network-wide transact ion to integrate various
environments. The resources Integrated in this
paper are. the flle server, the database server, and
several applfcationprograms. New efficient
implementation techniques for network-wide
transaction processing are proposed.

1. INTROPUCTION

The development. of network technology allows us
to use several distributed resources. Distributed
database systems . make It possible to access
remotely located databases

"
•14. The same benefits

arise in distributed fl1e systems2.4.5.7.8. The
development of office automation equipment on
local networks has also Increased the demand for
using Remote Procedure Calls for distributed
appllcations3. It is the tendency of a distributed
system to. treat everything attached to the network
as a network resource 13.

In a highly integr;ated environment, the key point
is the effective use of network resources. One
defines the integration as "glue"'. The resources

CH2345-7/86/0000/1064$01.00© 1986 IEEE
1064

may be servers, appl1catlon programs, personal
computers, workstations, mini-computers and so on.
Taking Into account the Integration of these
resources, we are developing the "Integrated
Information network system", as Is shown In Fig. 1.

In this paper, only the "Integrated LAN system" 1s
focused on and discussed, in which a file server, a
database server and dispersed appl1catlon programs,
those connected by local networks, are treated as
network resources '2. The rationales and some
techniques appl1ed for Integration are described.

This paper describes the integration constraints
imposed in an integrated offtce enVironment, and
some techniques to solve these constraints. Some
novel Integration techniques of several servers and
the dispersed appl1catlon programs through a local
network are presented. In section 2, the transaction
in an integrated environment Is modeled and. defined.
In section 3, implementation techniques for the
transaction are described. Section 4 describes the
experimental dev.elopment of multi-blt-map
oriented file server system, In which the proposed
extended transaction model Is Implemented.

2. THE ENVIRONMENT

2.1 TRANSACTION
A transaction is a unit of atomic actions, and the

transaction itself constitutes an atomic action. An
atomic action has the property of either being
completely done or nothing being done. Also, the
atomic action must Inherit the above property,
called atomicity, even In cases of failure or
concurrent execution9•14. This means .the
transaction is closely related to recovery and
concurrency control. We expl1citly deftne the
network-wide transaction's behavior as follows.

Communication
Satellite

Di~ital PBX IDigital
Multiplexer

Fi Ie
Server

Figurel. Integrated Information Network System

(1) ATOMICITY --- In all cases, including node
fallure, the atomicity of a transaction must be
guaranteed.

(11) CONSISTENCY--The transaction must be
processed consistently. Namely, atomic actions
defined in the transaction must have serial
execution on it's order without affecting it's
environmental factors such as communication delay
or existing concurrency control. Communication
delay or concurrency control must not cause atomic
actions within a transaction to be executed other
than sequentially.

To maintain the above constraints in an
integrated enVironment, we introduce the
traditional transaction concept to the application
itself. Introducing the transaction concept to the
application program is equivalent to defining
n-party transaction contro1. Any resources
accessed by the application are integrated into one
transaction. This transaction is called the
"network-wide transaction". One application might
consist of several transactions, in which all of
these are affiliated with the network-wide
transact ion.

2.2 APPLICATION ENVIRONMENT
The construction of an integrated system must be

based on either of two types of external
environments. One environment bases the
integrated environment on previous existing

1065

systems, and is called the bottom up approach. In
this enVironment, the restrictions on existing
systems, such as imposed on transact ion processing
and concurrency control, must be inherited. The
other environment does not have any restrictions on
it's construction, and this is called the top down
approach. Efficiency is the whole purpose of the top
down approach.

Our approach assumes the bottom up approach in
an office environment. For components in our
integrated enVironment, a file server, a database
server, and several dispersed application programs,
which are distributed throughout the network, are
assumed12. Each server is basically a traditional
transaction oriented system, and can only perform
transaction processing over it's own resources9.

Our step-Wise approaches· toward the integrated
system are as follows. The first step focuses the
integration of one server and several dispersed
appllcations(see Fig.2-1). N co-related application
programs and one transaction based server, all
connected by a local network, are integrated as a
network-wide transaction. The second step expands
the first step to several servers(see Fig. 2-2).

~

~

API AP2

Server
(F i I e Server)

A.C. :Atomlc Action

--7 :Access Path

......) :Remote Procedure
Call

Flgure2-1 Step I : Single Server - MUltiple Applications

.... 1------··---I A.C --1-' I··c. I i •. c .
___ J . . .

~-I··c. "f r- I··c. t -

---1 I 1'''""'''--
Server " Server

(Fil. S"'~
/

~
(Database Server)

'-'-

'-

...... _ .. I~WIol_I __ IoIMWIoM~-..,I

Figure2-2. Step2:Multiple Servers

-Multiple Applications

For the construction of an integrated system in
our environment based on the network-wide
transaction, the following are assumed.

• Concerning the appllcation program, the
serialized execution of atomic actions must be
guaranteed. (The implementation being based on
the process model makes this assumption
reasonab 1 e.)
• Each server is a transaction based closed
system in terms of accessing a single kind of
resource.

2.3 PROBLEM ANALYSIS
There are a lot of problems to be solved in

constructing an integrated system based on the
bottom up approach. One problem is affiliated with
the concurrency control. In a closed environment, as
the transaction is defined in it's single environment,
concurrency control is inevitably affected by the
life time of the transaction. There has been
proposed many concurrency control techniques10.

These algorithms usually assume that concurrently
accessed data is inaccessible to other transactions
until the end of transaction. At commit time, every
resource accessed in the transaction is released for
other transactions to access. From the view of the
bottom up approach, this causes the problem of
inaccessibility of the shared data from the
network-wide transaction. In a traditional
transact ion system, transact ions are prevented
from interfering with one another if they access
shared data concurrently. This leads to the deadlock
phenomenon of the network-wide transaction.

The other problem is commitment control. The
data committed by one of the members of a
transaction, which belongs to a network-wide
transact ion, can never be ro llbacked from other
members.

The rationale of solving the above problem is to
propagate the committed data of each transaction to
the network-wide transaction. In a later section,
we call the techniques which solve the above
problems the "nested commitment control".

For the integration of several existing transaction
oriented systems into one integrated transaction
system, we insist that the following problems must
be reso lved.

• Communication delay should be transparent to

1066

the application program. The serial1zation of
atomic actions in a transaction must be
guaranteed across the network.
• Different transactions might be grouped
together into one transaction without conflicts,
in which the data may be shared.

3 IMPLEMENTATION TECHNIQUES

3.1 APPROACHES TO THE NETWORK-WIDE
TRANSACTION

Two types of models are given to support the
network-wide transaction in a serv'er, which We call
the "multi-bit-map oriented model". One is the
model which inherits the accessed data from the
previous transaction, and makes the committed data
accessible(see Fig.3). This model makes possible
the recovery of inherited data in case of faflure.
The other is the model which makes the non-shared
data for cooperative transactions in a network-wide
transaction to be safely committed(see Fig.4). Both
models make the data accessed by the transactions
recoverable to the consistent state one at a time.

... i··· j ~
I I' .# ~
I i~ ~
~-----. Updated: J, by T1 .

IT··· ·····ii·TI jSt .. LT,. ... euo.

I ~ I I ~ ~ I I Commitment
j ~ • , Updated ~ ~ I L; :J,. ~X ... !.\ ~ I
I I -. -----, : I
Ii I~I
i i i i....'
1 I : J;; ~ .. ~~d~~ed ... 1

I-r;';~r- ··-T····r·····1
I L __ I_Updated by ! n
i ~ The Trasaction

l
l LJ Interllediate state

i SAil

I D ! D s .. ", "",
I I • •••••• _. __ ••••• _._ •••• _._._ •• _ ••••••••••••• _ •• .1

Figure 3. Nested Commitment Model for Shared Data

Ap,lIutlen pr.9r::-..... -..·', ittilt.

U
~~~~-~:1~2~; ... ;:~:;~;::::;-... -1 ~~ L __ :::::~ ___ ::::::::: __ m ________ m..J 1 I rT12 I I-TI4-, , 

i !.' ! [--------] ___ : ___________________________ ~-:_:-::::::_:-_:L_J 1 T ran sac t ion 
......... ___ - .... II--....... llMfM1 •• ' ......... M .... ''''''"11111 -•• -••• 

1·_························································································1 

I 
U,ht~. IIf U,hto4 IIf U,4.tocl IIf 

1111 111Z T113 . r::--l-7 i!i r::--] I 
L--l .----~../I -

*-~~ 
GO""," 1 '" .=~ ... " .. "" ... " ... " 

J I r UPI-~~~~~-~~-~··l 1~~~~~~JT13 
,.--+-1-------. ..1 1 

ill 
i i TAM ! TAM 

::-;;:j ".}"-.;"J 1,--
. f11--- -"'''~ 
I I I SAM/COM ]1 I 
, . I' I I ... ·············.J,·.J,·U'.!hclllf ! 
! I ,- TI I 
iii COM I I ! i I I j,/ . ~.- --+ -U'~.to4I1f-··r r----·-I Intermediate 

EJAM TIwA:J~.;~.. ~ state 

~ Stable state 

I ! 
--_ .. __ .. _---_ ........ -_ .... _------_ .. _--.... _-...... _----------.... ! 

Figure 4. Nested Commitment Model for Non- Shared Data 

].1,1 Rules For CommUment 
The fo11owing regulates the rules of the models. 

For integrated appllcations, either of these two 
models are applled on demand depending upon the 
ordered sequences of atomic actions in the server. 

A) Rules For Shared Data In Nested Commitment 
For Network-wide Transaction 

<Assumption> 
1) The transaction's commit requests in a 

network-wide transaction must be ordered as 
presented by the appllcation program, when these 
arrived at the server. 

2) There exists some mechanisms which identify 
the network-wide transaction. 

<Rules For Commitment> 
When one of the members of the network-wide 

transaction commits the updated data, these data 
are inheritated to the next transaction step by step 
using the intermediate table until the network-wide 
transaction is committed(see Ffg.3). The 
intermediate table is sequentially propagated to the 
next intermediate table from transaction to 
transact ion. 

1067 

B) Rules For Non-Shared Data Access For 
Network-wide Transaction 

<Assumption> 
1) Member transactions of a network-wide 

transaction may commit at any time during the 11fe 
time of the network-wide transaction. 

2) Member transactions of a network-wide 
transaction access data which are not shared by 
the same group of transactions in the network-wide 
transact ion. 

<Rules For Commitment> 
The data accessed by the transactions in a 

network-wide transaction would not be committed 
until all of the members of the network-wide 
transaction commit. Iff all of the members of the 
network-wide transaction commit, the data 
committed might be propagated to the next group of 
transactions, in which the same analogy of the 
shared data in nested commitment is appJ1ed to the 
propagated data(see Fig.4). 

In the above, two types of commftment control 
for the network-wide transaction were described. 
In a real enVironment, these two types of 
commitment controls are combined depending upon 
the serlal1zed execution of the appJ1cation program. 
In either case, alJ of the above mentioned properties 
are maintained. 

The advantages of muJti-bit-map oriented 
commitment control are summarized as foJJows. 

• Transactions grouped in a network-wide 
transaction may commit or rollback at any time 
during the network-wide transaction's llfetjme. 
• Shared data can be accessed without 
interfering with other members of the 
transact ion. 

3.2 MULTI-BIT-MAP ORIENTED COMMITMENT 
CONTROL ALGORITHM 

The algorithm which uses the multi-bit-map 
based boolean operatlons for commitment control is 
presented. 

The basic multi-blt-map algorithm, indicated in 
Ffg.5, uses three tables. The first COM(Common 
Table) fndicates the intermediate state, and can be 
referenced from all transactions. The SAM(Stable 
Table) represents the committed area of the COM 



c;;J~;J g 
+~ 'i~-----I 
[-~~~-""'-'] 

~~~ 

B
l' Transaction InItiation

~ Commitment

~ Updated by Transaction

FigureS. Basic Multi-Bit-Map oriented Commitment Model

table. The T AMCTransaction Table) 1s defined for
each transact10n and 1ndicates the transact10n
states. Several boolean operat1ons on these three
tables are defined, as illustrated in Table 1. TAM 1s
created from SAM whenever the new transact10n
emerges(see Table 1-0. When the transact10n 1s
committed, the operation shown in Table 1-2 is
performed and SAM is updated and the disk is also
updated.

Fig.6 displays one example performed using
these operations. In this figure, it is assumed that
there are only nine areas, and one area has already
been committed. The stepwise explanation is as
follows.

When transact10n 1 1s initiated, TAM 1 is
generated by copy1ng SAM (0. If transact10n 1
acquires four data areas, the COM table is searched
and the empty areas are assigned (2)' After this, if
transact10n 2 is initiated, T AM2 is generated from
SAM(3). If transaction 1 releases one area and
commits, that area is assigned to empty areas and
the operations in Table 1-2 are performed, and the
area indicated by SAM table are updated(4). After
this 1f transaction 2 acqu1res three areas, COM is
searched again, and empty areas are assigned (5). If
transaction 2 commits after this, the operations in
Table 1-2 are performed and the areas indicated by
SAM table are permanented(S) .

This algorithm guarantees the freedom from
failure in transaction processing.

1068

SAM COM

1 0 0 A B ci 1 0 0

0 0 0 0 E FI 0 0 0

0 0 0 G H I I 0 0 0

1 [l]m 1 [l]m

[l][l] 0 [l][l] 0

0 0 0 0

A-I .. ·storage address of pre-allocated
(1) ···Initiation of Transaction!

0 0
TAM2

(2) '''4 areas request by Transaction!
(3) ·"Initiation of Transaction2
(4) .. ·Release request by Transaction! (B:data area)
(5) .. ·3 areas request by Transaction2

FigureS.Example

Tablel. BIT MAP operations

rablel-l rablel-2

SAil COli TAli SAil TAli COli

0 0 0 0 0 0

0 1 0 0 0 1

1 0 1 0 1 0

1 1 1 0 1 1

1 0 0

1 0 1

Tablel .. ·Transaction Initiation 1 1 0

Table2 .. ·Trasaction Commitment 1 1 1

SAil

0

0

0

1

0

1

1

1

The multi-bit-map can be extended to the nested
commitment by replacing the SAM to COM of the
above algorithm. By replacing stable state with
common state, nested commitment is easily
supported. Stable state can be replaced with the
common state propagate lly according to the depth of
nest, as offered. And only one lowest stable table is
affected by the committed action. The
correspondence of this algorithm with the
conceptual model is shown in Fig.4.

4 FILE SERVER SYSTEM

The experimental development of a multi-bit-map
oriented file server system which reflects the
nested commitment processing Is described.

integrated layer integrates the office environment
util1zing the basic functions and applied functions.
The explanation of each sub-systems in the model,
and techniques applied to each one Is shown in Table
2.

4.1 OVERVIEW OF THE FILE SERVER SYSTEM
We developed the network-based file server

system with the fo11owing in mind,

• be able to store and access a large amount of
data whose size is variable.
• include basic functions for shared data.

I
<COIiIiUlIICA-
TIOll>
r-.---.
IIiASS I R I

[APPLICATION},

l J
COIiUND INTERFACE ~

Ii

r:l I t~~==~- <UTIL
ITY>

APPLIED

• support mechanisms for an integrated office
envl ronment.

I AGE I ~ I
I I

l __ J
rDEF~ExEcUl I' "moo. I
l~~TION_:~

Based on the requirements above, we constructed
a three layered system model. It consists of a basic
layer, an applied layer, and an integrated layer.
Fig.7 indicates the system model designed.

The basic layer includes the functions which are
commonly required for general appl1cations.
Included functions are concurrency control,
commitment control, and directory services. The
applted layer includes those functions which are
specifiC to special appltcations. It also includes
general functions which can be constructed by
utilizing the basic layer. Functions include remote
procedure call or message transmission. The

-
(b) rf7P~l

I I

U

Table-2 SYSTEM'S CONFIGURATION

LAYER SUBSYSTEM NAME FUNCI'ION

INTEGRATED COMMAND INTEBF ACE Query interpretation

CATALOG PROCEDURE Command file definition and its execution

APPLIED COMMUNI- RPC Remote Procedure Call of Catalog File
CATION

MESSAGE Message transmission among application processes

:
I :

PROC- CONTROL Transaction Processing
ESSING (CoDllli tment & concurrency)

EXECUTION Execution of each command
BASIC

ALLQ- PREALLQ- Virtual allocation management by pre-allocating
CATION CATED staic data
MANAGE-
MENT ALLOCATION Actual disk allocation and deal location

DISK ACCESS Actual disk access and atomicity of each call

COMMUNICATION Protocol processing of F.AP

1069

- "---_._._._-_.-
r- • GAR-

<PROCESSllIG> < ALLO- BAGE
CATION

COll- EXECUTION IIANAGE- • SHUT
TROL

f--y-- R W C .-('rl
!

R 0 P
I P
T Y
E

A

'--

IIENT) DOlli

RE- • AVAI
ALLO- RABI

CArED LITY

LLO-
CATED

<DISX ACCESS>
• CACHE
• LOGGlliG. RECOVERY
• DISK ACCESS

OPERATING SYsn:1I

(a) ···Distributed Processing
(b) .. ·Data Communication
(c) .. ·Concurrency
(d) "'Colllli tment

Figure7. System Model

TECHNIQUES DEVELOPED

BASIC

High Level Language embeded interface

Command definition language

SEND. RECEIVE

Multi-Bit-Map based commitment control

Extended hashing to Concurrency Control
appl ied

Multi-Bit-Map Control

Applied Buddy System for efficient
continuous allocation management

atomicity of each call

F. A. P

l

4.2 OVERVIEW OF THE FUNCTIONS
• INTERFACE

. Two interfaces for the basic layer and two
mterfaces for the applied layer are supported. As
for the basic layer interface, file access protocol
which can be used from remotely located
appl1catlons residing on the same node as the file
server are supported. As for the applied layer
interface, the remote procedure call and
synchronous message transmission among
applications are supported for integration.

. • TRANSACTION
A transaction is supported by the specii1c

command, START -TR and TR-END. By enclosing
access commands with those commands, atomicity
of a transaction is guaranteed. The method used for
commitment is shadow management of file
directory, in which the multi-bit-map technique is
applied.

• REMOTE PROCEDURE CALL AND MESSAGE
TRANSMISSION

The system supports a synchronized message
transmission mechanism using SEND and RECEI VE
commands that are used as a tool for integrated
processing management in an office environment.
These commands are implemented on the UD(user
defined)command when transmitted to the network.
The remote procedure call Is an extension of
message transmission.

The remote procedure call is supported as an
appl1ed layer command. To provide n-party
conversat lon, and to support distributed
applications, synchronous message transmission
among applications, using SEND and RECEIVE
commands, is supported.

5 CONCLUSION

This paper described the approaches to an
integrated office environment.

Several cooperating application programs which
use traditional atomic transaction systems, such as
file servers and database servers, are operated
conSistently within a local network. The atomicity
and the serialization problem of network-wide
transactions are solved by Introducing the
transaction concept on the application itself, and by
introducing the multl-bit-map techniques to the
servers. The proposed mult i-bit-map oriented
commitment control solved the problem of
concurrency control in a traditional atomic
transaction system. It made possible the sharing of

1070

data from several transactions .
The experimental development of a

multi-bit-map oriented file server system was also
described to verify the correctness of our model.
The current system is now operating in our company.

REfERENCE

[1] J. Donahue, "Integration Mechanisms In Ceder,"
SIGPLAN Notices, vo1.20, no.7, 1985.

[2] M. R. Brown, K. N. Kolling, and E. A. Taft, "The
Alpine File System," ACM Trans. on Computer
Systems, vo1.3, no.4, Nov. 1985.

[3] A. D. Birrell, B. J. Nelson, "Implementing Remote
Procedure Call," ACM Trans. on Computer
Systems, vo1.2, no.1, Feb. 1984

[4] L. Svobodva, "File Servers for Network-Based
Distributed Systems," ACM Computing Surveys,
vo 1. 16, no.4, 1984

[5] H. Stugis, J. Mitchell, and J. Israel, "Issues In
the Design and Use of a Distributed File
Systems," ACM SlOOPS Oper. Syst. Rev, 14, 3,
July, 1980

[6] J. L. Peterson, T. A. Norman, "Buddy Systems,"
CACM, vo1.20, no.6, June, 1977

[7] L. Lampson, "Atomic Transaction, in Distributed
File Systems: Principles and DeSign, " 10th.
Operating Systems PrinCiples, Dec. 1985.

[8] M. Satyanarayanan, J. H. Howard, etc, "The ITC
Distributed File Systems: Principles and
DeSign," 10th. Operating Systems Principles,
Dec. 1985.

[9] J. Gray, "The transaction concepts: Virtues and
Limitations," VLDB, Sep.1981.

[10] P. A. Bernstaln, N. Goodman, "Approaches to
concurrency control in distributed Database"
NCC 1979. '

[11] M. Yoshida, K. Yokoyama, etc., "Time and Cost
Evaluation Schemes of Multiple Copies for Data
in Distributed Database Systems," Trans. on
Software Engineering, vol SE-11, no.9,
September, 1985.

[12] S. Hikita, S. Kawakami, K. Sano, "Extended
Functions of the Database Machine FREND for
Interactive Systems," IEEE-1984 Workshop on
Visual Languages, Dec. 1984 ..

[13] J. H. Morres, M. Satyanarayanan, etc, "ANDREW:
A Distributed Personal Computing
Environment," CACM, MAR. 1986, vol.29, Num.3.

[t 4] S. Ceri, G. Pelagatti, "Distributed Databases:
Principles and Systems," McGraw-Hill, 1984.

OPERATING SYSTEMS AND DATA BASE ARENA

Operating Systems

TRACK CHAIR: Dr. James Peterson
MCC

Distributed Operating Systems

TRACK CHAIR: Dr. Jack Stankovic
Carnegie Mellon University

Data Bases

TRACK CHAIR: Dr. Anil Nigam
IBM T. J . Watson Research Center

USE OF PETRI NET INVARIANTS
TO DETECT STATIC DEADLOCKS IN ADA PROGRAMS

B. Shenker, T. Murata, S.M. Shatz

Department of EECS
University of Illinois at Chicago

Chicago, Ill. 60680

ABSTRACT

This paper presents a method for detecting
static deadlocks in Ada tasking programs using
structural and dynamic analysis of Petri nets.
Automatic translation of the Ada programs into
Petri nets which preserve control flow and
message flow properties is described. Proper
ties of these, Petri nets are discussed and
algorithms are. given to analyze the, nets to
obtain information about static deadlocks that
can occur in the original programs. Petri net
invariants are used by the algorithms to reduce
the time and space complexities associated with
dynamic Petri net analysis (i.e'., reachability
graph generation).

1. INTRODUCTION

Over the past few years, a few techniques
have been proposed for use in validation of
Ada tasking programs. Taylor [1] has presented
a general static analysis technique for Ada
tasking and has shown that such analysis has an
exponential time complexity (in terms of the
number of tasks). German [2] has described an
approach for detecting deadlocks in Ada tasking
programs using dynamic analysis. Since the
approach uses dynamic analysis, results are
dependent on the supporting environment, espe
cially on the scheduler characteristics. In
this paper, we propose the use of a Petri net
invariant method for detecting static deadlocks
in Ada tasking programs. Our technique reduces
to some extent the time and space complexities
associated with the general state enumeration
method used by Taylor.

Our deadlock analysis technique starts with
translation of Ada tasking programs into Petri
net models [3] and uses structural and dynamic
analyses of these specific Petri nets, which we
call Ada nets. Ada nets are abstract models of
the source programs since an Ada net only models
the Ada source program's control flow and mes
sage flow. As such, only those Ada statements
which can alter the control flow (such as If,
Loop, and Select statements) or which constitute
a rendezvous (Entry calls and Accepts) contrib
ute to the Petri net translation. Further
details on the translation of Ada programs into
Ada nets. will be given in Section 2.

CH2345-7/86/0000/1072$01.00 © 1986 IEEE
1072

Unlike the previously reported techniques
of Shatz and Cheng [4], which are concerned with
both deadlock and general, tasking analysis, our
method is not entirely based on generation of the
complete Ada net's reachability graph. Instead,
we have been able to combine the specific prop
erties of Ada nets with the Petri net concepts
of place and transition invariants in order to
reduce the complexity associated with generating
the complete reachability graph.

Since the intuitive concepts and definitions
of Petri nets are well known and to save space,
we will follow the terminology and notations of
Petri nets as defined in [5], unless otherwise
stated. Since the concepts of Petri net invari
ants are not so widely known and since they play
a key role in our subsequent discussion, we
briefly discuss them now. In particular, we de
fine an ~-invariant (I-invariant) as an integer
solution y (x) of the homogeneous equation,

T
Ay = 0 (A x = 0), where A is the transition-to-
place incidence matrix of a Petri net [5]. The
subset of places (transitions) corresponding to
nonzero entries of an m-vector y (ann-vector x)
is called the support and is denoted by I Iyl I

(I Ixl I), where m is the number of places and n
is the number of transitions in a Petri net. A
support is said to be minimal if no proper non
empty subset of the support is another support.
An S-invariant (T-invariant) whose support is
minimal is called a minimal S-invariant (T-in
variant). We use only non-negative invariants.

2. OVERVIEW OF ADA TRANSLATION BY EXAMPLE

Automated translation from Ada programs into
Petri net models produces what we call Ada nets.
The process of Ada net generation can be simply
described as follows. Whenever the right-hand
side of any Ada syntactic construct is recognized
during parsing, the Ada actions associated with
the construct are invoked. These actions generate
a part of the Ada net - the part that models the
given construct. Control then passes to the syn
tactic parent of the translated construct. The
translation process continues until the root of
the parse tree is reached. At that point, the
input Ada program is then either recognized or
rejected. If it is recognized, the Ada net cor
responding to the program will have been success-

fully constructed. The parts of the net that
are generated are linked together into an Ada
net that preserves the behavior of the input
program. Consider the following fragment from
an Ada program (statement numbers are for later
reference only):

TASK BODY task1 IS
1) WHILE cond1 LOOP
2) task2.entry2;
3) END LOOP;
END; -- task1

TASK task2 IS
0) ENTRY entry2;
END;
TASK BODY task2 IS
4) ACCEPT entry2;
END; -- task2

The Ada translation maps the program fragment
into the Ada subnet illustrated in Fig. lao
The dashed places, transitions and arcs repre
sent connections to the parts of the program
not shown. Place p6 represents a Loop state
ment. The Entry call statement 2 is repre
sented by t3, t4, pS, p2, p3, and p4. The
Accept statement 4 is represented by tS, t6,
p7, p2, p3, and p4. Places p2, p3, and p4 repre
sent the communication channel of entry2 in
task2. In general, every entry in any Ada pro
gram is represented by three unique places

(Pmep, Psend, Pack) in the corresponding Ada

net. Thus, for this example, the three places
for entry "entry2" are p2, p3, and p4 respec
tively. Place p2 is initially marked and
belongs to the set of mutual exclusion places.
Such a place is referred to as P Execution mep.
of statement 2 is represented by firing tran
sition t3. This firing is possible only if
p of entry 2 (place p2) is marked. When p2

mep
is not marked, some Entry call of entry2 must
be currently involved in a rendezvous with an
Accept statement of entry2. When t3 success
fully fires, places p3 and p5 become marked.
This submarking of the Ada subnet represents
the situation when the Entry call (statement 2)
is trying to rendezvous with an.Accept statement
of entry2. When the Accept statement (statement
4) is ready to rendezvous, t5 fires and removes
the~oken from p3. Note that if there exists
more than one Accept statement for entry2, then
p3 serves as an input place to multiple tran
sitions. The place p3 is referred to as a
sending place (Psend). Firing t6 represents

the control of task2 exiting the Accept state
ment. After the Accept statement ends, place
p4 enables transition t4. This means that the
control of taskl may exit from the suspended
state (due to the Entry call). Place p4 is
referred to as an acknowledging place (Pack).

When t4 fires, p2 ,becomes marked. This means
that no Entry call is now rendezvousing with
any Accept statement of entry2.

The details of translation from an Ada
program into an Ada net are fairly complicated
and require syntactic analysis as well as some
semantic analysis (for example, to distinguish
package function calls from task entry calls).

1073

The major technique is to generate pieces of the
net during each production rule reduction during
parsing. We briefly describe the idea on the
previous example. Since it is assumed that Ada
task specifications precede task bodies, state
ment 0 is reduced first. Three communication
places (p2, p3, and p4) for entry2 in task2 are
generated, as illustrated in Fig. lb. Statement
2 is reduced next. It causes t3, t4, and p5 to
be generated and linked with the communication
places of entry2, as illustrated in Fig. lc. The
dashed places and arcs are not yet generated.
The reduction of the Loop statement in taskl cre
ates the Ada subnet illustrated in Fig. ld. Place
p6 is .substituted for both dashed places in Fig.
lc. Finally, statement 4 is reduced. Two new
transitions, t5 and t6, are linked to the places
p3 and p4 of entry2. The Ada subnet for the prog
ram fragment is then complete and is illustrated
in Fig. lao A detailed discussion of the general
Ada translation technique used here is found in
[3]. Another approach to automated translation
of Ada tasks into Petri net equivalent models is
discussed in [4].

3. PROPERTIES OF ADA NETS

3.1. Definitions and Characteristics

Definition: A process-subnet is a state machine
that models one of the processes (Ada tasks) in
a distributed environment when communication be
tween processes is ignored.

Fig. 2a illustrates two separate process
subnets. Note that each begins with a place and
ends with a place. At translation time, we intro
duce two transitions into the Ada net - tl (par
begin transition) and t2 (par-end transition) in
order to give a cycle in the Petri net graph.
These two transitions are connected through a
place pI (cycle place). In Fig. 2b, we have the
two process-subnets of Fig. 2a structured as a
distributed program with no communication. How
ever, most useful distributed programs are char
acterized by some communication between the proc
esses. In Ada, processes communicate through
communication statements (i.e., Accept statements
~nd Entry call statements). As discussed in
Section 2, every communication statement is rep
resented by two transitions and at least four
places. Fig. 2c illustrates the distributed
program of Fig. 2b with some communication.

A transition that represents a communication
statement is referred to as an AE transition
(Accept or Entry transition). Since every commu
nication statement is represented by exactly two
AE transitions in an Ada net, we will refer to
one of them as "first" (e.g ... t5 in Fig. 2c) and
the other one as "last" (e.g.

J
t6 in Fig. 2c),

based on the-order of their occurrences in a tran
sition firing sequence starting with tl. A place
in a process-subnet that is either an output place
of some first AE transition and/or an input place
of some last AE transition is referred to as an
AE place (e.g., place p7 in Fig. 2c). The places
generated by the translation of an entry speci-

fication are referred to as communication places
(e.g.) p2, p3, p4 in Fig. 2c). They are not con
sidered to be a part of any process-subnet. All
non-communication places are referred to as
sequential places. Any arc connecting an AE
transition and a communication place is referred
to as a communication arc. A communication arc
is not considered to be part of any process
subnet. All non-communication arcs are referred
to as sequential arcs. Three communication
places, p p d and p k (p2, p3, and p4 in mep, sen, ac
Fig. 2c, respectively), are required for token
(information) exchange between two or more
process-subnets. The places may be thought of
as a communication channel between potential
"senders" and "receivers". The mutual exclusion
place p guarantees that only one process-mep
subnet may send a token at any time to the
receiving process-subnet. No other process
subnet will send a token to that receiver until
the current sender is acknowledged by Pack.

Definition: An Ada net is a strongly connected
Petri net, APN, composed of process-subnets
possibly interconnected with communications arcs
and places. The strong connectiveness of APN
is provided by pi (cycle place~ tl (par-begin
transition), and t2 (par-end transition).

3.2. Safeness of Ada Nets ------
The initial marking MO for an Ada net

represents the situation when a program modeled
by the net is ready to start executing. The
marking MO consists of places pi and every p mep
initially marked with one token. No other places
have tokens initially. MO for the Petri net in

Fig. 2c is (I I 0 0 0 0 0 0 0 O)T.

Theorem I: An Ada net APN < P, T> is safe for MO,

i.e. M(p)~ I for each place p in P and for any
marking M reachable from the initial marking MO.

Proof: Consider first an Ada net APN<P,. T>
consisting of n process-subnets with no commu
nication involved. Since each process-subnet is
a state machine, the sequential places of each
process-subnet together with the cycle place pi
constitute the support of an S-invariant having
exactly one token. There are n such S-invariants,
and each place p in P belongs to one of these
n S-invariant supports. Since the token content
of each S-invariant support remains the same
and is one for any marking M reachable from MO'

we have M(p)~ I for each place p in P and for
marking M reachable from MO. Next, when there

are communications between process-subnets of APN,
by the construction of an Ada net, there are S
invariants whose supports consists of communi-
cation places, p PdP k and some mep, sen, ac,
sequential places. Each of the supports of these
s-~nvariants contains exactly one token (ini-

1074

tially in p). Thus every place p in P is in mep
the support of at least one S-invariant having one
token. Therefore, M(p)~ I for each p in APN and
for any marking M reachable from MO. Thus, APN

is safe for MO.
q.e.d.

4. DETECTION OF STATIC DEADLOCKS IN ADA PROGRAMS

There is no commonly accepted definition of
a static deadlock in a distributed programming
environment. Traditional deadlock detection
techniques (reachability tree or state graph anal
ysis), using exhaustive search, label every po
tcntially rcachable deadlock as a "static dead
lock". However, such techniques can generate some
extra information. For example, .a variable index
loop containing communication statements always
creates a potentially reachable deadlock. Since
the number of times the loop executes is deter
mined at execution time, any number of the loop
iterations is assumed possible in this paper.
Therefore, here we do not consider such a deadlock
to be a static deadlock. Since Ada nets do not
distinguish between the loops with variable and
constant indices, potentially reachable deadlocks
caused by Loop statements would not be reported
by our static deadlock detection system. We would
report any other deadlocks that can be predicted
by static analysis of a program's source code.
In the following sections, we define two classes
of static deadlocks: inconsistency deadlocks
and circular deadlocks.

4.1. Inconsistency Deadlocks

Some potentially reachable Ada program
static deadlocks can be easily detected using only
structural analysis of Ada nets. We call these
deadlocks inconsistency deadlocks. In this sec
tion, we present an algorithm to detect such dead
locks.

An Ada program is called static executable
when its corresponding Ada net has t2 (par-end
transition) potentially enabled for MO. We will

refer to a set of linearly-independent T-invariants
x of an Ada net such that x(t)~ 0 for each t
in the net and x(tl) = x(t2) = I, where tl is the
par-begin transition and t2 is the par-end tran
sition, as a set of Ada I-invariants of the net.

Theorem 2: A necessary condition for an Ada pro
gram Ap to be static executable is that its corre
sponding Ada net APN <P, T> has at least one Ada
T-invariant.

The proof is obvious since there is always an Ada
T-invariant in APN corresponding to the static
execution path of Ap.

By Theorem 2, if an Ada net APN <P, T> modeling an
Ada program Ap does not have an Ada T-invariant,
then Ap is not static executable. Moreover, if
some transition does not belong to the support of
the linear combination of all Ada T-invariants of

APN, then the statement of Ap represented by the
transition does not belong to any successful exe
cution path. Such a situation indicates that Ap
has at least one static deadlock, caused by a
communication statement (or a group of commu
nication statements). For example consider the
following program fragment:

taskl:

task2.entry2;
task2.entryl;

~ask2:

IF condl
THEN ACCEPT entry2;
ELSE ACCEPT entryl;

The net corresponding to this Ada program would
not have Ada T-invariants. Thus, the program is
not static executable (it has a static deadlock)
as can be easily checked. Note that removal of
some communication statements (e.g.~ "task2.entry
1" and "ACCEPT entry1") could make the fragment
static Jexecutable, since then every statement
in the modified program would belong to at least
one static execution path. Then, the support of
a linear combination x' of all Ada T-invariants
of the Ada net (for the modified program) would
cover every transition in the net. Since the
detection of these deadlocks depends on a test
for T-invariants, we refer to them as inconsis
tency deadlocks. Now we present an algorithm
that detects inconsistency deadlocks in an Ada
program Ap (with its corresponding Ada net APN)
and reports the minimal number of communication
statements that need to be removed in order to
remove the deadlock potential.

ALGORITHM INCONSISTENCY_DETECT

Input:
A - the incidence matrix of the net APN;
k - the number of communication

statements in the program Ap;
S - the set of all possible subsets of

communication statements in Ap.

Output:
The set of communication statements
"causing" inconsistency deadlocks

Method:
1) LOOPl: For i = 0 to k do
2) LOOP2: For each element s of S such

that lsi = i do
3) A' .- A'
4) Upd~~e A' to reflect the removal of

all communication arcs associated
with communication statements in S;

For any entry, if the three columns of
A' corresponding to Pmep,Psend, and

Pack each have all zero entries,

then remove the columns from A';
Else if not every column of A' has
both positive and negative entries,
then return to Step 2;

1075

(* Some communication channels have *)
(* lost all Accepts or Entry calls *)
(* but not both *)

5) Find the support I Ix'i \ of a linear
combination of Ada T-invariants of the
net APN' corresponding to A';

6) If every transition of APN' belongs to
I Ix'i I, report the set s and exit.

End LOOP2;
End LOOPI.

END ALGORITHM INCONSISTENCY_DETECT

As an example, consider a modified version of the
classical consumer-producer problem:

Producer:
BEGIN
WHILE condl LOOP
Buffer.produce;
Buffer.msg_send;
ACCEPT msg_ack;
ACCEPT msg_ack;
END LOOP;
END;

Consumer:
BEGIN
WHILE cond3 LOOP
Buffer.consume;
END LOOP;
END;

Buffer:
BEGIN
WHILE cond2 LOOP
SELECT
WHEN
buffer not full =>
ACCEPT produce;
Producer.msg ack;
ACCEPT msg_send;

OR
WHEN

buffer not empty =>
ACCEPT consume;

END SELECT;
END LOOP;
END;

Note that after Producer supplies an item to Buff
e.r, both tasks intend to exchange messages (msg_
send and msg_ack). Unfortunately, the programmer
made a mistake in coding this exchange. The re
sult is such that whenever Producer sends an item
to Buffer, the program deadlocks.

The Ada net for the program is shown in Fig.3.
The first iteration of Loop1 in the algorithm
INCONSISTENCY DETECT reveals two Ada T-invariants:
xl = (1 1 0)
and
x2 = (1 1 1 1 000 0 0 0 1 1 1 0 000 000 0).
Since some transitions do not belong to I lx' I I,
where x' = xl + x2, the program has an inconsis
tency deadlock. During the second iteration of
LOOP1 (with lsi = 1), we are trying to remove the
deadlock. After we remove the communication arcs
associated with the producer's first Accept state
ment, the algorithm reports three Ada T-invariants:
xl = (1 1 0),
x2 = (1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0),
and
x3 = (1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1).
Let x' = xl + x2 + x3. Now, I Ix'i I includes every
transition of the net. Therefore, the Accept
statement is reported as a "cause" of the incon
sistency deadlock. Presumably, the programmer
would then update the program by removing the
extra Accept statement. The reader may note that

the new version would still suffer from a dead
lock. This deadlock, however, is not an inconsis
tency deadlock; it is a circular deadlock and will
be treated in the next section. The Ada net for
the new program is illustrated in Fig. 4.

Algorithm INCONSISTENCY_DETECT is designed to
find inconsistency deadlocks. In the best case
(i.e., the program has no inconsistency dead
locks), when all the AE transitions belong to the
support of a linear combination of the Ada T
invariants, only one execution of LOOP2 (LOOPI) is
needed. Thus, the time complexity in this case is

bounded by the time complexity of an integer prog-

gramming algorithm (denote it by Cmn , where m and

n are the dimensions of the incidence matrix).
which has been shown to be polynomial in the num
ber of matrix columns (Petri net places) [6]. In
the worst case, when all communication statements
must be removed, Step 2 ("LOOP2") may execute
upto 2k times, where k is the number of communi
cation statements. In a general case, when only
two or three communication statements are causing
the deadlock, the time complexity of INCONSIS-

TENCY DETECT is 0{k2xC) or 0{k3xCmn) respec-- mn
tively. Note that a general state enumeration

technique would always require O{nT) time, where
n is the number of concurrency related statements
and T is the number of Ada tasks [1].

4.2. Circular Deadlocks

Even if an Ada program is free of inconsis
tency deadlocks, some statements may not belong
to any static execution path of the program. In
this section we discuss potentially reachable
static deadlocks in Ada programs free of inconsis
tency deadlocks.

Definition: A circular deadlock is a deadlock (in
a program free of inconsistency deadlocks) due to
a set of communication statements, each in sepa
rate tasks, mutually suspending each other and,
thus, also the control of flows of their respec
tive tasks.

An Ada net dicircuit (directed circuit) which
represents a circular deadlock is referred to as
a ~-~ dicircuit (dicircuit of circular type).
For example, the only circular deadlock for the
program of Fig. 4 is represented by the C-type
dicircuit (tI8, tI9, t20, t9, tIO, tIl). A C-type
dicircuit possesses the following properties:
1) The dicircuit is composed of process-subnets'
segments which start and end with communication
transitions {e.g., [tI8, tI9, t20] and [t9, tIO,
tIl] in Fig. 4. The starting transition of such a
segment is referred to as a ready transition, and
the ending transition as a last-executable tran
sition. The last-executable transition of one
segment is connected to the ready transition of
another segment through a communication place
(e.g., in Fig. 4, last-executable transitions t20
and tIl are attached to ready transitions t9 and
tI8, respectively). Thus, a C-type dicircuit has

1076

a set of ready transitions and a set of last
executable transitions.
2) A set of communication places representing at
least two Ada entries belongs to the C-type di
circuit (e.g., piO represents entry msg ack and
p7 represents entry msg send in Fig.4).- Other~
wise, the dicircuit is called a single-entry di
circuit and is not a C-type dicircuit.
3) If more than one segment of a process-subnet
belongs to the same dicircuit, such a dicircuit
is called a multi-sequential-part dicircuit and is
not considered a C-type dicircuit. It is easy to
show that such a dicircuit does not represent any
circular deadlock; for if it did, then in order
to "enable such a dicircuit", we would need to
have a marking which would enable all the ready
transitions of the dicircuit. Since one of the
process-subnets has more than one ready transi
tion, reachability of such a marking would contra
dict to the safeness of Ada nets (Theorem 1).

Theorem 3: A sufficient condition for an Ada net
to have a C-type dicircuit is that there is a
minimal S-invariant y such that the places of its
support I Iyl I have no tokens at MO and do not form

either a single-entry or multi-sequential-part
dicircuit.

Proof: If the support I Iyl I does not have any
tokens at MO' then the number of tokens in I Iyl I
is 0 for any marking reachable from MO [5]. If

the places of I Iyl I do not form either a single
entry or a multi-sequential-part dicircuit, then
the places in I Iyl I form a C-type dicircuit.
q.e.d.

The condition of Theorem 3 can be used to detect
every circular deadlock in a program that has only
one Entry call and one Accept statement per entry.
The example of Fig. 4 shows an Ada net for which
reporting of S-invariants provides complete in
formation about is C-type dicircuits.

Finding circular deadlocks in general is a
more complicated task. We attempt to detect C
type dicircuits by isolating them from any other
possible dicircuits. It is important to first
remove the dicircuits representing iterative
statements, such as Loop statements. The proce
dure for that is illustrated in Fig. 5. We remove
a dicircuit representing a Loop statement by re
placing place pI (representing the Loop statement)
by two places pk and pm.

ALGORITHM CIRCULAR_DETECT

Input:
A - The incidence matrix of net APN.

Output:
The set of minimal supports of
submarkings enabling all C-type di
circuits in APN. Communication places
are not included in the supports.

Method:
1) Disconnect the dicircuits representing

Loop statements;
2) Remove all initially marked places

from A. The result is a new matrix A'
for a new net APN'. Perform procedure
PRUNE TREE;

3) Perform procedure ALL IN DICIRCUITS;
4) Trace all dicircuits in A' and place

them into a set C. Remove all single
entry and multi-sequential-part di
circuits from C. For each dicircuit
in C, find the support of the minimal
submarking enabling the dicircuit and
place it into a set R (if not there).

END ALGORITHM CIRCULAR_DETECT

PROCEDURE PRUNE TREE
(* Makes a Petri net connected *)

Repeat the following step until every
place and transition of APN' has at least
one input and at least one output arc;

If any place or transition of APN' has no
input or output arcs, then remove it from
APN'. The new incidence matrix of APN' is
still denoted by A'.
END PROCEDURE PRUNE_TREE

PROCEDURE ALL IN DICIRCUITS
(* Makes a net strongly connected *)

If APN' has n transitions and m places,
create a (m+n)x(m+n) matrix L for all
vertices of APN'. Initially L has all
entries set to O. If there exists an arc
from a transition t to a place p in APN',
set L(t,p) to 1. By symmetry, an arc from
a place p to a transition t implies that
we set L(p,t) to 1;

For each entry of L, perform Dijkstra's
shortest path algorithm [7] to derive a
new matrix L;

For all vertices vi, if there is no
vertex vj such that L(vi,vj) > 0 and
L(vj,vi) > 0, and APN' has more than four
transitions and four places, then remove
vi from A' (from APN'), perform Procedure
PRUNE_TREE and go to the first step of
this procedure;

Return the resulting Ada net APN'.
END PROCEDURE ALL_IN_DICIRCUITS

A detailed stepwise discussion and analysis of the
algorithm can be found in [3]. The time complex
ity of the algorithm can be shown to be polynomial
in the number of places of an input Ada net. The
following example illustrates the algorithm
CIRCULAR DETECT.

Consider the Ada net illustrated in Fig. 4. Step
(1) disconnects Loop statements represented by

1077

places p25, p16, and p14. Step (2) removes all
original places and transitions of the net,
except for the ones with thickly drawn arcs (in
Fig. 4) as their inputs and outputs. Step (3)
has no effect in this example, since every place
(transition) left has at least one input and at
least one output thickly drawn arc. Step (4)
traces the only C-type dicircuit of the net: (t18,
t19, t20, t9, tlO, tIl). When the algorithm ter
minates, set R has only one element, the set {p28
and p20} (representing the communication state
ments that would block if the deadlock is reached).

In general not every circular deadlock is of
interest to a programmer. Only the ones which
are actually reachable by static execution paths
should be detected and reported. Such circular
deadlocks are referred to as potentially reach
able circular deadlocks. Structural analysis
(using structural restrictions anrl Petri net
invariants) is necessary but not sufficient for
detecting potentially reachable circular dead
locks. Dynamic (reachability tree) analysis must
be used too. Algorithm CIRCULAR REACHABLE, pre
sented next, reports only the potentially reach
able C-type dicircuits of an Ada net.

ALGORITHM CIRCULAR_REACHABLE

Input:
Ap - An Ada program;
APN The Ada net corresponding to Ap;
X The set of Ada T-invariants of APN;
R The set of the minimal supports of

submarkings enabling the C-type di
circuit of APN.

Output:
The set R' of minimal supports of reach
able submarkings enabling the C-type di
circuits of APN.

Method:
(* T-invariant directed reachability *)
(* graph generation *)

If R is empty, report that Ap is cir
cular deadlock-free and exit.

LOOPl: For each x in X perform
(* Select T-invariant as a firing *)
(* count vector *)
M:=MO; x':=x; R':=~; STACK:=~;

LOOP2: Repeat
(* Perform selective reachability *)
(* graph generation *)
If no tj with x'(tj) > 0 is enabled at M,
then do

(* if x'=O a static execution *)
(* path in Ap is found *)
If STACK is empty exit LOOP2;
Retrieve the last saved marking of
APN, firing count vector, and transi
tion in conflict, and store them into
M, x', and tk, respectively;

Else if more than one transition is
enabled at M then do

Assign one of those transitions to tk;
For every other transition in con
flict, push current values of M and x'
onto STACK;

Else assign the enabled transition of APN
to tk;

Fire transition tk to get new marking M;
Let x'(tk) := x'(tk) - 1;
If the current M was considered before,
then do

If STACK is empty exit LOOP2;
Retrieve the last saved marking of
APN, firing count vector, and tran
sition in conflict, and store them
into M, x', and tk, respectively;

Else if any element of R is a subset of
the support of M and the element does
not belong to R', then add the element
to R';

END LOOP2;
END LOOP1.
END ALGORITHM CIRCULAR_REACHABLE
An Ada program that is free of inconsistency dead
locks and free of potentially reachable circular
deadlocks is referred to as a static dead10ck
free program. Even though the program in Example
1 has a circular deadlock, it is a static dead
lock-free program, since the circular deadlock
reported by Algorithm CIRCULAR_DETECT is not
reachable (as would be reported by Algorithm
CIRCULAR_REACHABLE).

Algorithm CIRCULAR REACHABLE is more effi
cient than "blind" tracing of the Petri net's
reachabi1ity graph. CIRCULAR REACHABLE uses the
knowledge of Petri net's Ada I-invariants in order
to reduce the time complexity of Petri net dynamic
(reachabi1ity) analysis. As an example, consider
the Ada net illustrated in Fig. 4. As noted
earlier, the Ada net is free of inconsistency
deadlocks and has three Ada T-invariants.
xl = (1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0),
x2 = (1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0),
and
x3 = (1 00111 1 1 1 100 1 1 1 1 1 1).
T-invariant xl indicates that the program may
terminate (i.e., the Petri net may cycle) without
any communication between the tasks Producer,
Buffer, and Consumer. Ada T-invariants x2 and
x3 correspond to the nets shown in Figs. 6a and
6b respectively. Generating the reachabi1ity
graph for the net in Fig. 4 using xl or x2 as a
guiding firing count vector does not lead to a
marking whose support would include both p28 and
p20, the places previously identified by Algo
rithm CIRCULAR DETECT. On the other hand, when
the algorithm generates the reachabi1ity graph
using x3 as the guiding firing count vector,
we eventually reach marking M = (0 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0).
Since M's support includes both p28 and p20,
CIRCULAR REACHABLE reports the potentially reach-

1078

able C-type dicircuit. Presumably, the user would
then eliminate this deadlock by interchanging the
order of the statements "Producer. msg ack" and
"ACCEPT msg send" in task Buffer. If;e were to
use blind reachabi1ity graph analysis for the Ada
net in Fig. 4, then we would generate a reach
ability graph of eighty two vertices. In con
trast, our algorithm generates a two-node reach
ability graph when using xl as the guiding T
invariant, a nineteen-node graph when using x2 as
the guiding T-invariant, and a sixteen-node graph
when using x3 as a guiding T-invariant. Thus,
the static deadlock detection system is more time
and space-efficient than unrestricted reachabi1ity
graph analysis. In fact, for an Ada program Ap
modeled by an Ada net APN, the more Ada T-in
variants APN has, the more efficient the analysis
of APN by CIRCULAR REACHABLE. The number of
T-invariants of APN depends on the number of con
flict statements (IF, Select, and Case) that have
nested communication statements.

The analysis can also be considered to be
modular since a user interested in some particular
statements may not have to deal with the whole
reachabi1ity graph of the Ada net modeling his
system. Only the Ada T-invariants whose supports
include the transitions which represent the state
ments of interest need to be used in the algo
rithm CIRCULAR REACHABLE.

5. SUMMARY

In this paper, we described a static dead
lock detection method for Ada tasking programs.
First, an Ada program is translated into a Petri
net, called an Ada net, which properly models the
communication patterns and control flow of the
source program. Then, the Ada net is analyzed for
existence of static deadlocks based on structural
analysis and dynamic analysis (using the reach
ability graph). Here static deadlocks are consid
ered to be either inconsistency or circular dead
locks. Algorithms for detection of both classes
were presented and illustrated by examples. Due
to the use of both structural and dynamic Petri
net techniques, our static deadlock detection
method is relatively time(space)-efficient and
can support modular analysis of Ada tasks.

ACKNOWLEDGMENT

This work was supported by the National
Science Foundation under Grants ECS83-10719 and
DMC85-10208.

REFERENCES

[1] R. Taylor, "A General Purpose Algorithm for
Analyzing Concurrent Programs", Communica
tions of the ACM, Vol. 26, No.5, May 1983,
pp. 362-376.

[2] S. German, "Monitoring for Deadlocks and
Blocking in Ada Tasking", IEEE Transactions
on Software Engineering, Vol. SE-10, No.6,
November 1984.

[3] B. Shenker, Using Petri Nets for Automated
Detection of Static Deadlocks in Ada Prog
rams, Master's Thesis, Department of Elec
trical Engineering and Computer Science,Univ
ersity of Illinois, Chicago, September 1985.

[4] S. M. Shatz and W. K. Cheng, "An Approach to
Automated Static Analysis of Distributed
Software", Proceedings of the First Inter
national Conference on Supercomputing ~
tems, Dec. 1985~ pp. 377~385.

[5] T. Murata, "Modeling and Analysis of Con-

o~

o~

b)

a)

Fig. 1. Stepwise Translation of an Ada Program
Into an Ada Net

d)

1079

current Systems", Handbook of Software Engi
neering, C.R. Vick and C.V. Ramamoorthy
(eds.), Chapter 3, Van Nostrand Reinhold,
New York, 1983.

[6] N.K. Karmarkar, "A New Polynomial-time Algo
rithm for Linear Programming", Proceedings of
16th Annual ACM Symposium of the Theory of
Computing, Washington DC, 1984.

[7] E. Horowitz and S. Sahni, Fundamentals of
Data Structures, Computer Science Press,
Potomac, Md., 1977.

a)

Fig. 2. Process Subnets in a Distributed
Environment

b)

Fig. 3. Ada Net for a Producer-Consumer Program
With Inconsistency Deadlocks

1080

Fig. 4. Ada Net for Producer-Consumer Program
With No Inconsistency Deadlocks

---I _

I /' 6:,
, \
I" -j-

_l. '-;,

Fig. 5. Loop Transformation

a)

Fig. 6. Ada Net Determined by the Ada
T-Invariants

b)

108t

A CA 0 Tool for Stochastic Petri Nets

hy
Michael K. Molloy

I)cparlment of Computer Science
4212 Wean Hall

Carnegie-Mellon University
Pitt.;;hurgh, PA, 15213

Abstract

This paper provides a description of a new CAD tool for Sto
chastic Pctri Nets. The primary philosophy for the software is to
maintain a flexible design environment while providing support tools
to quickly and easily evaluate different aspects of the design. Several
components of the software arc innovative and are described in some
detail. The user interface is graphical with highly interactive layout
and editing features. The most significant feature is the inherent sup
port for hierarchical modeling of systems.

Introduction

Over the last two decades, Petri Net [12] models have been
used in a wide area of applications. More recently, Petri Net models
have been extended to include the concept of time. These models fall
into two basic classes, Timed Petri Nets (TPN) [14, 15, 18] and Sto
chastic Petri Nets (SPN) [7, 11, 8]. The TPN model has the concept
of an underlying clock that clicks off time and can have synchronous
transition firings. The Stochastic Petri Net model has the underlying
notion of time as a random variable where events are asynchronous.
The bridge between the two models is the discrete time Stochastic
Petri Net model [9] with unit probabilities.

Several application areas have adopted one or more of these
models. Research in flexible manufacturing, PERT analysis, computer
architectures, system reliability, and network protocols are the most
familiar examples.

There have been several modifications of these basic models,
in addition to the the various semantic interpretations of firing rules.
First, the Generalized Stochastic Petri Nets [6] extend Stochastic Petri
Nets by adding the concept of instantaneous transitions. Second, the
Extended Stochastic Petri Nets [2] add features to relax the exponen
~al assumption on the transition firing rates. Third; the Generalized
Timed Pctri Net 151 adds a sckclion prolialiiiily ·to groups of transi
tions but mailltains the discrete time concept. Fourth, Stochastic Petri
Net" with 'new better than used' distributions for firing· times. are
bdng lIsed to specifY regenerative sill1u1at.ion models 14]. All of these
models have had analysis software written to support their application.

CH2345-7/86/0000/1082$01.00 © 1986 IEEE
1082

All of these software packages provide similar features for
general Markov analysis which were previollsly available for queueing
network models, withollt the need to directly specify all of the possible
states and state transitions. These include, analytical solutions where
possible, and simulations when necessary. Since many new design
problems arc difficult or impossible to cast into a queueing network
model, the need for user friendly Markov analysis tools, based upon a
SPN representation, is dear. Unfortunately, tlle widespread use of
such tools will require an improved user interface.

Stochastic Petri Nets

Recall the formal description of Petri Nets [13] wh~re tlle
model PN has places P, transitions T, input and output arcs A and
an initial marking M.

PN ~ (P,T,A,M)
P = {Pl,P2> ••• ,Pn}

T = {tlh, ... ,1m}

A C {PXT}U{TXP}

M = {JLl,JL2> •••• JLn}

The marking may be viewed as a mapping from the set of
places P to the natural numbers N.

M:P-N where M(P;)=JLi for i =1,2. ...• n (1)

Define for a Petri Net PN the set function 1 of input places
for a transition t.

I(t)~{P I (P,t)EA} (2)

Define for a Petri Net PN the set function 0 of output places
f(lr a transition 1.

O(l)~{p I (f,p)EA} (3)

As is common in practice. a Petri Net can be drawn using cir

cles to represent places and bars (or boxes) to represent transitions.

Tokens, to denote a marking, are represented as dots inside the circles

(places). A five place, five transition Petri Net could look like the one

shown in figure 1.

The continuous time stochastic Petri Net

SPN g(P,T,A,M,A} is extended from the Petri Net

PN g(P ,T,A ,M} by adding the set of average, possibly marking

dependent, transition rates A= {AloAp ... ,Am} for the exponentially

distributed transition firing times. These models are equivalent to

continuous time homogeneous Markov chains. So, the SPN model

may be considered as a concise representation, or generator, of the

Markov representation a system.

The SPN model, by the nature of its being a generator, is

very useful in the verification of the state space of the system. It has

all of the fonnal mechanisms to verify that the model correctly

represents the the system, before the perfonnance analysis is

attempted. Since the entire verification and analysis phase is

automated, no errors are introduced as would be if a new model was

described for the perfonnance analysis phase.

Tool Description

This section describes the tool in some detail. The basic

model of the Stochastic Petri is augmented with a new· transition,

called a subnet transition. This transition is used to represent an
entire subnet defined (or about to be defined) in the library of nets on

disk. The basic goal of the hierarchical model is to keep the size of

the current net under design (representing some component at some

level of abstraction) to a manageable size. We anticipate that a SPN
model would be made up of a very high level description with lots of

subnet transitions. Then, at the next level of abstraction, a successive

refinement of those transitions would associate another net structure to

that transition.

The following subsections dl!scrib(~ each of the three major

features of the tool that arc unique and innovative. The first subsec

tion describes the user interface. its philosophy. function. and usc.

"111e second subsectioil describes some of the special design features of

the analysis components. The last subsection describes the current

approach to hierarchical modeling along with some of the problems

~ncountered with the approach.

The User Interface

The basic philosophy of tlle user interface is simple. The user

interface should be flexible enough to let the designer be creative

(even artistic) while removing any tedium from the activity. This is

accomplished by adopting the following goals.

1. The user interface should provide very rapid, easily

selectable options.

2. Anything that is repetitious or algorithmic should be

done by the tool.

1083

Figure 1.

3. All of the rules should be gently enforced by the tool.

4. Do not try to he smarter than the designer.

5. Anything that can be done, can be unclone.

6. Options should be split into logical categories with

different access for each.

7. Graphical representations of options are the best for the

visually oriented human.

8. Both a top down and bottom up approach must be sup

ported.

The user interface is constructed as a tool under the SUN

TOOLS ® window management software. 'The tool has all of the

features of a nonnal window. It can be moved, modified in size or

shape, closed into icon fonn, and exist in multiple copies on the

screen. The mouse is the plimary input device. All drawing, menu

selection, and analysis activities are initiated by mouse key clicks. The

keyboard is used only in those cases when arbitrary text input is

necoed. The basic layolil of IJ1C tool. the icolls. and all example draw

illg can he seen in figure 2. The 1001 has three bask subwindows

which make lip three of the five functional user interface components.

® SUNTOOLS is a registered trademark of Sun Microsystems Inc.

paper provides a description of a
ri N,ts.
primary philosophy for the software

ign 'nvi ronment while providing suppor

cd
cd span
ls
imit chiola
mv .. /src/span/src/sys.·
ls
imit 'Kampl, .out

'Kampl, .pic
sys .approKB

sys.approK
sys .,xact
sys.,xact.

Figure 2.

1. The menu subwindow (it can be on the left or right hand

side) is a collection (If icons representing drawing and

editing features.

a. Create a Place

b. Create a Transition

c. Create a Subnet Transition (a transition

representing a subnet)

d. Create an Arc

e. Annotate a Transition (specify firing rate,

etc.)

t: Tag a Node (Place, Transition, or Subnet)

with an ASCII string

g. Add a Token

h. Delete a Token (add an 'anti-token')

i. Move a portion of the Net

j. Delete an Arc

k. Delete a Node

1. Manually Fire a Transition or Subnet

2. The message subwindow on the top of the tool window

which is used for error messages, comments, and text

input to selections.

3. The canvas subwindow where all the actual drawing is

done. The canvas subwindow represen~ a window into

the drawing space. It may not show all of a particular

SPN, but can be moved around or scaled to do so.

'111<: basic idea of thc tool is similar 10 the popular MacPaillt

f()1' the Macintosh computer. The menu icons are used to select an

action. Tl1e selection is performed by pointing at Ule icon, and click

ing the left mouse button. Once Utc selection is made, the cursor can

be moved back to the drawing canvas, where it changes to represent

the action selected. In the case ofcrealing places, transitions, and sub

net transitions. the cursor looks like the objcct to be created. Once a

location is determined (pointed to by the cursor) the left mouse button,

is clicked to create an instantiation of the object. In a similar fashion,

1084

tokens can be added or removed from places, ASCII tags can be

modified, and transition firing rates can be changed. In all cases, the

user selects an option from the menu and activates the option by

pointing and clicking the left mouse button; An English description

of the option is displayed in the message subwindow and the icon is

displayed in reverse video.

Since many drawing options are not semantically correct for

Stochastic Petri Nets (such as connecting transitions to transitions), the

tool enforces the rules. The user gets an error message in the message

subwindow when an illegal action is taken, and the action is not be

allowed to occur. There are several such rules.

1. An object can not be placed on top of another object

2. Transitions and subnet transitions can only be connected

to places.

3. Deleting a place, transition, or sub net transition deletes

all the arcs associated with that node.

4. All locations are lined up with an invisible grid so that

being close to lining up becomes exactly lined up.

5. Tokens and Anti-tokens can only be put into places.

6. Anti-tokens have no effect when there are no tokens

present

7. Only transitions and subnet transitions can be annotated

with firing rates.

8. Clear - clear the screen and destroy the current net A

confirmation is required if any modifications have been

made.

Second, a popup menu (textual), ~ctivated by the middle

mouse button, provides analysis options for studying the network

currently designed.

1. Save - save the current design in a disk file. The file for

mat is PIC compatible for inclusion in DITROFF docu

ments.

2. Load - load the current design from a disk file.

3. Solve - generate the reachability set, construct the Mar

kov matrix, solve the matrix for the steady state solution,

and display the average number of tokens in each place.

4. Reachahility - generat.e the reachability set, and send a

prinlable copy of Ole reachability tree to th\! sGmdard

output

5. Print - generate the reachability set, construct the Mar

kov matrix, solve the matrix for the steady state solution,

and display the average number of t.okens in each place.

Send a copy of the token probability densities for each

place to the sGll1dard output.

6. Limit - solve for bounds on the throughput of the SPN

using the bottleneck analysis technique [10].

7. Simulate - nm a Monte Carlo simulation to animate the

display of the SPN using a mouse controlled throttle for
There are two additional functional components of the tool. the clock rate.

These can be seen in figure 3. Firsl, a popup menu (textual). activated

by the right mOllse button, provides options for Ole manipulation of

the drawing environinent. These include several commands (agaill

activated by pointing).

1. Undo - undo the last drawing action (icon menu only)

2. Refresh - clear and redisplaY' the net.

3. Zoom In - magnify the image in the canvas sub window

with the cursor location as the new center.

4. Zoom Out - reduce the image in the canvas subwindow

with tile cursor location as the new center.

5. Clean Up - align a coarse drawing onto the imaginary

grid points. (This is for files generated by other pro

grams.)

6. Quit - abort the current session. A confirmation is

required if any modifications have been made.

7. Exit - end the current session writing out the current net

to the edit file defined when the tool was staned.

1085

Special Data Structures

Because maintaining infonnation about the graphical

representation needs to be flexible for ease of editing, it is not

appropriate for analysis. Since analysis requires speed and compact
size, an entirely different structure was used for nets when the analysis

phase is initiated. Each of the basic stl1lctures are described below.

The result of carefully selecting each of these data structures is the

superior performance of the tool. Most of the design time went into

selecting and coding these structures. All of the structures are allo
cated dynamically to increase the range of the tool. The allocation of

the reachability set and Markovian structures is only done when an

analysis is requested, and deallocated when it is complete. This philo

sophy has made it possible for this system to draw, edit and analyze

SPN with a large number of nodes and at least 5000 states in the

reachability set, in an interactive environment

o -
dt In'
ditt 10gt ~
du 1.
e •• tl
echo •• ke
ed
e.pr
tal ..
c,.e~

he.ttd DRAW Commands
ho.tn SPN Commands Undo t"t.
kill Save
ld

Load
Solve
Reachability
Print
Umit
Simulate

Figure 3.

Graphical Data Stmctures

The data structures for drawing are object oriented. A SPN
is simply· a collection of pointers to lists of objects. The lists of

objects include, places,· transitions. sub net transitions, arcs, and com

pound objects. Each clement in the lists are data structures of a type

for that list. All structures for places have infonnation about the loca

tion of the place. its ASCII label, the number of tokens, etc. All

struclUrcs for transitions have infilJ"mation ah(lut the iocalior: (If tlli::

transition. ito; ASCII label. it<; riring rate. ele. All strtlctures l'llr suhnet

transitions have infonnation about the location of the ~uhnet transi

tion. its ASCII label, its firing rate, the filename where the complete

subnet description is (if any). etc. /\11 structures for arcs have infor~

mati on about the sequence of points (arcs can he segmented) which

make up the arc. the direction of the arc (to or from a place) and

pointers to the specific place, transition. or suhnet tldnsition the arc

connects. In addition to all of these. there is ::1 bJckup net structure to

save deletions for t11C undo of a deletion.

1086

Refresh
Zoom In
Zoom Out
Clean up
Quit
Exit
Clear

Hcachability Data Structures

To speed up the response time for the analysis phase. a flexi
ble structure for the net was not selected. Instead. the object oriented

structure is translated into a packed structure for the generation of'the

reachability set

The reachability set is maintained as a tree structure following

the nonnal algorithms [13]. but because of the significant lookup time

in this graph structure. a second data stlUcture was added. After the

generation of a new marking from a current leaf in the reachability

graph, the new marking is dropped into a binary search tree (which

only contains pointers) to check for duplication. If it is found. it is

not included in the reachability set. If it is not found. it is added to

both the binary search tree and the reachability set

Markov Data Structure

The end result of the analysis is the generation of the

equivalent Markov chain. Since this tool is cUJTentiy restricted to con

tinuous time Stochastic Petri Nets. the resulting matrix tends to be

very sparse. Therefore. the data structure· used for the matrix is the

uncompressed pointer storage structure defined for the Yale Sparse

Matrix software package [3].

Place Object Place Object

Name Name

(* Tokens > * Tokens 1\ Position Position

Trans Object Trans Object

Name I(Name

SPN Object Orient. Orient. i.-

NW corner Fire Rate Fire Rate

SE corner Predicate Predicate

Tran Ht. Function

J
Function

Tran Wd.

Vi
Position Position

Place Rd.

Subnet Object Subnet Object

~
Name Name

Orient. Orient.

Filename Filename

Fire Rate Fire Rate

Predicate Predicate

Function Function

Position Position
Arc Object

-- Direction

Type
Arc Object Arc Object

Direction Directioll

Type Type

7

1087

Fig. 5 Packed Data Structure Cor a SPN

Approximations for Hierarchical Models

In order to facilitate the top-down and bottom-up design con

cepts, a hierarchical model is needed. It is clear that the state space

explosion makes large models intractable. The idea is a simple one,

and a heuristic. The addition of a sub net transition allows us to

postpolle the dl!scription of a dctail~d sectioll of the net. This section

is then described antI :tnalY/.ed separatdy. The load dependent

behavior of the subsystem is then includcd as the behavior of the sub

net transition in the highcr levc1model.

In figure 8. we sec an example of such a model. The drawing

in the upper left is the complete model without a hierarchical descrip

tion. The drawing in the lower left is the high level model for this

complicated system. where each subnet transition represents the

behavior of the subsystem models, one of which is shown in the upper

right hand corner. The solution would not be even close if we just

approximated the throughput of the subnet as a single transition.

There are several reasons for this. First, the routing probabilities in a
SPN depend on the relative firing rates of the contending transitions.

Second, the throughput of a SPN is load dependent. Therefore, a

pair of transitions and a holding place are used to model the subsys-·

tern in this approximation. The first transition fires at precisely the

same rate as the selection transition would in the exact model. That

means that the transition at the entry to the subsystem is simply dupli

cated. The second transition models the load dependent behavior of

the actual subsystem. The firing rate of the that transition depends on

how many tokens are in the subsystem (equivalently, the holding

place).

1088

lmaWw~-.. 1I1I1I11 11I111I11i1

struct
childlist

Fig. 6Reachability Graph Data Structure
struct

Fig. 7 Binary Tree Cor Lookup

to
reach ability
,rapb

Although this is clearly a heuristic approximation, it is similar

to the techniques used in Non-Product Form Queuingnetworks [16].
111e results so far are very promising, and we will continue to investi

gate this approximation, as well as others.

An Example· A Token Ring

In order to clearly demonstrate the use of the SPAN tool, a

token ring was analyzed as an example. Token rings have been

analyzed by others [1, 17] using other techniques, so this example can

be compared to the other alternatives.

A token ring is a network for local communication which has

a physical topology in the shape of a ring. The· perimeter of the ring

may follow some funny path rather than a direct line to the next sta

tion, but is still a direct physical connection. l11e access (Le. permis

sion to transmit) is controlled by circulating a single token which

enables the station who possesses it to transmiL This gives access to

the communication medium 10 stations ill a round-robin tlshiol1.

Several token ring designs an~ currently availab!(' or ~oon to be avail
ahle. IBM Corporation and Proteon CorporaLion have token ring

designs fhr 10<':(11 area networks.

Annotat. Transit ions/Subnets.

o o

~R

~~

Jw
~

o

Manually fire transitions.

o o

0 •
IIIiII'EZI '.!J

-i !-
/1'

Figure 8

One of the perfonnance measures for a token ring is the

token latency time. That is thl' time it takes the token to return to a

stltion since it was last torwarded. This . latency has an fixed upper

bound, since in heavy load, at most one message can be sent by each

station. What the solution gives is the average value of the latency for

a system under various, non-saturating loads.

The load parameters for this model are the S<1me as used in

the analysis given in Sethi's paper [17]. The time to pass a token is 50
microseconds. The time to send a packet is exponentially distributed

with a mean of 400 microseconds. Messages arrive as a Poisson pro

cess if the station is idle with means 50, 100, 150, 175, 200. JOO, and

1000 messages per second. Messages arc assumed to be rescheduled if

they arrive to a station with a message waiting.

The Stochastic Petri Net model for the token ring is shown in

figure 9. The valious places represent whether a message is waiting to

be sent (Msg), the message buffer is available (But), or the token is

being passed to the next station (Pass). The various transitions

represent the events of forwarding a token (Idle), sending a message

followed by the token (Send), or having a message anive (Arr). 111is

particular model is for five stations spaced around the ring.

1089

The model is then solved by SPAN to give the steady state

probabilities of the number of tokens in each place. That gives the

probability that each station is either idle or has a message to send

Knowing the average time to send a message or token, the average

token latency (rotation time) can be calculated. In addition, since the

Pois!}on arrival process is effectively turned off during the period of

time a message is waiting, the actual offered load is the original rate

times the probability the station is in the idle state.

The results of the analysis are shown graphically in figure 10.
The curve starts at the minimum time to circulate a token around the

five stations and increases as the rate of message arrivals increase. The

curve shows the expected convexity, and would show the abrupt

upper-bound at 2 milliseconds, if the system were pushed that far.

Conclusions

'111e CAD tool. SPAN. for the analysis of Stochastic Petri

Models has proven to be very useful. The design goals of a highly

intemctive, user fJicndly. and high pCrf{lIl11anCC dc:;ign aid havc bcen

altaincd. The system can handle large nets by breaking them down in

a hierarchical manner and can ~olve medium size net') in a relatively

short time (given the t:1Ct that the SUN 2/120 ® is poor at JIoating

point). A summary of the timings fl)r the standard example net with
increasing rcachability set size is given below.

•

cd . . /bln
1.

rtarcp shar
cd
logout

10n closed.
1" cd
1" cd span
1" .pan
tlal1z1ng SPAN 0.5 ...

Figure 9

1.5 Five Station Token Ring

1.2

-...
0

0.9 0
fJ'.I

S
'-"
>-g 0.6
0
~
.....l

0.3

00 100 400 500

Figure 10

The sudden increase in processing time for the cases above

500 states is not completely understood. At this time, we believe that

at 500 states, paging becomes a significant factor on our SUN 21120
® workstation since we have only 2meg of memory. This belief is

supported by the timings on a 3meg SUN 21120 ® which are shown

in parentheses. The lack of data for the time on the ~'1arkovian

analysis for large systems is due to the fact that those routines are

currently in FORTRAN and can not do dynamic memory allocation.

Therefore, if SPAN does not allocate enough space for the Yale pack

age, the program aborts the Markovian analysis. This is currently

under conversion to avoid the problem.

Tokens States Reachability Markovian
(#) (#) (sec) (sec)

1 5 <1 <1
2 14 <1 <1
3 30 <1 1
4 55 <1 4
5 91 1 6
6 140 3 19

7 204 6 45

8 285 10 110
9 385 18 (14) 283

10 506 27 (21) ---
n 2212 270 (130) ---
12 5322 1300 (862) ---

® SUN is a registered trademark of Sun Microsystmes Inc.

1090

It is clear from even the small <.tmounl of usc the package has

seen. that several changes are needed. The human interface for

reachability analysis must be changed to support some type of query

response dialogue railler than a long listing. In a similar vein, the

Markovian result') need to be represented differently. It would be

much better to point at an arc. and get the throughput for that arc.

Similarly, pointing at a transition would trigger the display of the util

ity of that transition. Finally. pointing at a place could give you the

mean time until a token returns to that place.

Some of the drawing features need to updated. It would be

nice to select and duplicate sections of a SPN in a fashion similar to

the way we move sections of a net The addition of a mouse activated

keypad would further minimize the number of keyboard actions

required.

Acknowledgements

This software could not have been written without the help of

two outstanding individuals. First, a graduate student, Supoj

Sutanthavibul, spearheaded all of our efforts by creating several tools

on the SUN with such great style, that several sections of the SPAN

code still bear his name. Second. Prentiss Riddle actually wrote half

of the code with the author and provided exactly the right balance for

the completion of this project in only 3 man-month!l.

[1]

[2]

[3]

[4]

[5)

References

Bux, W. "Local-Area Subnetworks: A Performance

Comparison" IEEE Transactions on Communica

tions, Vol. COM-29, No. 10,1465-1473, Oct 1981

Dugan, J.B.; Trivedi, K.S.; Geist, R.M.; Nicola,

V.F. "Extended Stochastic Petri Nets: Applications

and Analysis" Per/onnance 84. pp. 507-519, Paris

France, Dec. 1984

Eisenstat, S.C.; Schultz, M.H.; Sherman, A.H.

"Considerations in the Design of Software for

Sparse Gaussian Elimination" Sparse Matrix Com

putations Ed 1F. Bu~ch, DJ. Rose. pp. 26~-273,

Academic Press 1976- also in Proceedings of
SympIHlul11 on Spares' Matrix CompllWtions at

Argonnc National Laboratory, Sept 1975

Haas, P.; Shedler. G. "Regenerative Simulation of
Stochastic Petri Nets" Proceedings of the Workshop

011 Tinle" Petri Nets. Torino, Jwly, July 1985

Holliday. M.A.; Vemon. l\,LK. "/\ Gcneralized

Timed Petri Net Madel for Performance Analysis"

Proceedings of lhe Workshop 011 Timed Petri Nets.

Torino, Italy, July 1985

[6]

[7]

[8]

[9]

'[IOJ

[11]

[12]

[131

[14]

[15]

[16]

[17]

[18]

109J

Marsan. M.: Balbo, G.; Conte, G. "A Class of

Generalized Stochastic Petri Nets" ACM Transac

tions Oil Computer Systems Vol 2, pp. 93-122, May
1984

Molloy, M.K. "On the Integration of Throughput

and Delay Measures in Distributed Processing

Models" Report CSD-810921, University of Califor

nia. Los Angeles, 1981

Molloy, M.K. "Performance Analysis Using Sto

chastic Petri Nets" IEEE Transactions on Comput

ers Vol. C-31, No.9, Sept 1982, pp. 913-917

Molloy, M.K. "Discrete Time Stochastic Petri Nets"

IEEE Transactions on Software Engineering Vol.

SE-ll, No.4, Apri11985, pp 417-423

Molloy, M.K. "Fast Bounds for Stochastic Petri

Nets" Proceedillgs of The Workshop on Timed Petri

Nets, Torino Italy, July 1985

Natkin, S.O. "Les Reseaux de Petri Stochastiques et

leur Application a L'Evaluation des Systemes Infor

matiques" Doctoral Thesis, Conseratoire National

des Arts et Metiers, 1980

Petri, C.A. "Communication with. Automata" PhD

Thesis, Translated by c.F. Green, Information Sys

tem Theory Project, Applied Data Research Inc.,

Princeton NJ., 1966

l·ctcrsOIl, 1.1.. "Peu; Nets" COlI/pu~il1g Surveys

"eM Sept 1977 Vol 9 No 3 PI> 223--:'52

Ramchamlani, C. "Analysis of Asynchronous Con

current systems by Timed Petri NeL,," PhD Thesis,

MIT 1974 Project Mac report #MAC-TR-120

Ramamoorthy, C.V.; Ho, G.S. "Pcrfimnance

Evaluation of Asynchronous Concurrent Systems

using Petri Nets" 1 BEE Transactions 011 Software

Engineering Vol SE-6 No.5 Sept]9~0 pp. 440-449

Sauer, C.H.; Chandy, K.M. Computer Systems Per

jonnatlce Modeling Prentice Hall, 1981

Sethi, A.S.; Saydam. T. "Performance Analysis of

Token Ring Local Area Networks" Proceedings of

the 9th Con/frena on Local Computer Networks

Oct 1985, pp. 26-31

Zuberck, W.M. "Timed Petri Nets and Preliminary

Performance Evaluation" Proceedings of the 7th

annual Symposium on Computer Architecture 1980,

pp.88-96

petri - A UNIXl Tool for the Analysis of Petri Nets

Ira R. Forman

Microelectronics and Computer Technology Corporation
Austin, Texas 78759

ABSTRACT

An analyzer of Petri nets is described. Petri nets are a
tool for modeling concurrent systems. The program
supports three forms of analysis: simulation, reachability
analysis, and invariant analysis. Simulation allows one to
follow the behavior of the net in order to develop
intuitions and correct the net. Reachability analysis
computes all possible simulations and thus allows one to
verify net properties. Reachability analysis is specialized
for three forms of Petri nets (i.e., safe, bounded, and
place/transition). Invariant analysis derives properties of
nets by analyzing the incidence matrix, which implies
larger nets can be analyzed. The combination of these
forms of analysis yields an engineering tool that should be
useful in many software engineering environments.

1. Introduction

The modeling of concurrent systems is becoming
increasingly important; Petri nets are a excellent way of
doing such modeling. The reader who is not familiar with
Petri nets should consult Peterson [13] or Agerwala [1].
Greater detail is available in the texts by Brauer [5],
Peterson [14], or Reisig [16]. Once the model is built,
computer analysis is important in order to insure that
desired system properties are achieved. This is especially
true in those environments where the model must be
modified intermittantly during development or
maintenance in response to changing customer or market
requirements. Computer analysis uncovers errors due to
modification quickly and at a lower cost.

petri is a tool for manipulating and analyzing Petri
nets. petri has a flexible interface that makes it usable in
learning situations. In addition, petri provides reasonably
rapid computations and has no storage limitations (other
than operating system limits). Thus petri is a tool for
doing serious analyses. Other tools for the display and
analysis of Petri nets are also finding their way into
industry and the ~lassroom [3,9,12,15,17].

There are three modes of analysis provided by petri:
simUlation, reachability, and invariant. One can simulate

1. UNIX is a trademark of AT&T Bell Laboratories.

CH2345-7/86/0000/1092$01.00© 1986 IEEE

the net with the aid of a two column display that shows
the current marking and the firable transitions. One can
compute the reachability graph of the net and display
information about the reachability graph. One can
compute the S- and T-invariants of the net and have
them displayed.

For reachability analysis petri's preferred mode of
operation is safe place/transition nets. In this case petri
uses one bit per place to store markings, leading to a very
efficient computation. petri also has modes for bounded
nets and unrestricted nets.

2. A Description of the User Interface

This section describes the interface to petri. An
evaluation of petri is given in Section 5.

2.1 Invoking petri

The petri program is invoked with the following
UNIX command

petri [-s] [-b] [-g] [-q] infiles
If infiles are given, petri first reads commands from the
infiles and then prompts the user. The four command
line flags have the following meanings:

-8 means that the user believes the net to be safe;
petri uses this information to compute the
reachability graph more efficiently. One bit is
allocated per place to store markings for
reachability computations. If the net is not
safe, petri discovers this fact and terminates
with an error message that contains a path
(i.e., place/transition sequence) to the unsafe
marking. The -s, -b, and -g flags are mutually
exclusive with -s as the default.

-b means that the user believes the net to be
bounded; in this mode petri does not do the w
search. If the user is mistaken, i.e., the net is

1092

not bounded, the computation of the
reachability graph does not necessarily
terminate.

-g means that no assumptions are made about
the net. In this case, the computation of the
reachability graph does the w search, which is
a very expensive computation. (Formally
speaking we are computing the coverability
graph in this case; see Jantzen and Valk [8]).

-q implies the quiet mode; petri does not prompt
the user after reading the file of commands.
This flag is used for background analyses.

When used in interactive mode, the petri program
prompts the user for commands. Output from a
command may be redirected by adding a filename to the
command to create a new file or by adding "> >
filename" to the command to append to the file.

The petri commands can be partitioned into four
groups; net manipulation, net display, interface support,
and analysis. The following four subsections contain
descriptions of the first three groups; the analysis
commands are covered in Section 3.

2.2 Net Manipulation

Figure 1 depicts an example net that is. used
throughout this paper. The net represents two processes
that share a resource. Each process requires exclusive
access to the resource. Figure 2 contains the commands
to build the net depicted in Figure 1. The meaning of the
commands is given below.

Figure 1. A sample Petri net.

add place list_of _places _ to_add
Creates one new place for each item in the
comma-separated list of the place names. The
name of a place or transition is an identifier (a
letter followed a sequ~nce of letters, numbers,
and underscores).

add transition list of transitions to add
Creates o"ile new transition f~ each item in
the comma-separated list of the transition
names.

1093

add arc list of arc groups to add
C~ates new arcs sp-;cified by each arc group
in the comma-separated list of arc groups. An
arc group is denoted as follows:
node _ a{successorI, successor2, ... }, which
specifies an arc from node _ a to each of
successorI, successor2, The term "node"
refers to either a place or a transition.

mark list of places to mark
All~s one to change the current marking of
the net. The list_of _ places _ to _ mark is a
comma separated list of place names followed
by an equal sign and a number. For example,
place a = 2, place b = O. If a place is
mentioned alone (without an equal sign and
number), this means "set the number of
tokens to 1."

add place pI, p2, p3, p4, resource
add transition tI, t2, t3, t4, both_critical
add arc pI{tl}, tl{p2}, p2{t2}, t2{pl}
add arc p3{t3}, t3{p4}, p4{t4}, t4{p3}
add arc t2{resource}, t4{resource}, resource{tl, t3}
add arc p2{both _ critical}, p4{both _ critical}
mark pI, p3, resource

Figure 2. Commands for building the net in Figure 1.

It is not sufficient in an interface just to be able to
build nets. It is also important to be able to compose
them in such a way that the nets can be built by
automatically translating from some language for
distributed programming. For this purpose, the interface
also contains the merge, split, rename, reduce, and
retain commands, which are described below. The
important point is that the commands facilitate the
building of a net in pieces that can be subsequently
composed. The merge command is the most important
in this category. It should be noted that petri supports
nodes that have multiple names, any of which are valid
identifiers of the node. The result of the merge or
reduce command is a node with multiple names.

merge list of nodes
Merg~ a list of transitions(places) into one
transition(place) whose set of names is that of
all the elements of the list. The predecessors
of the resulting transition(place) is the union
of the predecessors of the transitions(places) in
the list. If a predecessor has arcs' to mUltiple
elements of the list, the resulting transition
has mUltiple arcs from the predecessor.
Similar actions hold for successors.

split transition name in number of parts
Splits- a transition intO number of parts
transitions; each transition - has
"#<an_integer>" appended to it beginning
with O. Each transition has the same set of

predecessor and successor places as the
original transition.

rename node name to identifier

reduce

Ren-;:mes the node with name node name
with new name identifier.

Executes the following net reductions until
there are no reductions possible.

n el
:::;> node2

node3

Note that nodel has exactly one s~ccessor and
node3 has exactly one predecessor. A list of
the reductions is sent to the terminal or to a
file with use of the same syntactic conventions
as the display commands.

retain list of nodes
Sets -;: flag in each transition (place) in the list
to indicate to the reduce command may not
eliminate the transition (place). (The reduce
command resets the flag.) This command is
necessary to prevent the reduce command
from removing the node in which interest lies
when doing analysis.

2.3 Net DIsplay

The five commands for displaying a net are described
below. These commands are usually used for debugging a
net (except for display statistics, which can contain
reachability information).

display net
Displays a depth-first spanning tree of the net.
States are enclosed in braces with the number
of tokens (e.g., {place_p = l}). Events are
enclosed in brackets (e.g., [transition _ t]).

display frame node
Displays the node and all its neighboring
nodes.

display ma.rking
Displays the nam~~ of t~eE!~~~~~it~ nonzero
toKens and the number of tokens If greater
than zero.

display statistics
Displays interesting statistics about the net.
These are: the number of places, the number
of transitions, the number of arcs. If the
reachability graph has been computed
already, the number of nodes, the number of
terminal nodes, and the number of back arcs
of the reachability graph are displayed also.

display firable
Displays the current list of the firable
transitions.

2.4 Interlace Support Commands

There are several commands to help interface with
petri and UNIX. save file copies the net on the file in the
form of petri commands. source file reads file as a source
of commands. alias idl id2 allows idl to be used as an
alias for id2. The purpose of this command is to allow
the user to define short forms for the keywords. ! is the
shell escape. help displays a synopsis of the command
set.

3. Types ol Analyses

There are three forms of analysis provided by petri:
reachability graph analysis, simulation, and invariant
analysis.

3.1 Reachablllty Graph AnalysIs

The compute rgraph command computes the
reachability graph and stores it in memory with no
displayed output. The hitting of the interrupt character
during the computation of the reachability graph causes
the computation of the reachability graph to stop. In this
case, some nodes are marked as type frontier, which
means that these nodes may have successors that may not
have been computed because the computation was
stopped. The computation can be resumed with the
compute rgraph command (there is a small possibility
that the count of the number of arcs in the reachability
graph might be off by 1 when doing this).

Once the reachability graph is computed, the
display bounds, display conflicts, display
concurrent, display terminals, and display path
commands can be used to obtain information about the
reachability graph. The reachability graph is
automatically computed for these commands if it has not
already been done.

The display bounds command lists the greatest
number of tokens that may appear in any place. An w
indicates that the place has no finite bound. The display
concurrent command lists pairs of transitions for which
there is a reachable marking in which the pair of
transitions are concurrent. The display conflicts
command lists pairs of transitions for which there is a
reachable marking in which the pair of transitions
conflict. The display terminals command lists the
terminal nodes of the reachability graph, that is, the
reachable markings at which no transition is firable. The
display path to terminals command lists for each
terminal node in the reachability graph, one minimum
length path from the initial marking to the terminal node.
The display path to (marking) command lists one
minimum length path from the initial marking to the
marking in the reachability graph. The display path to
cover of (marking) command lists one minimum
length path from the initial marking to a cover of the
marking in the reachability graph. The display dead
command lists those transitions that can never be fired
from the current marking. One analysis technique is to
add to the net transitions that represent events that
erroneous conditions. Then one can use the display
dead command to verify that the erroneous transitions

1094

are never enabled. In Figure 1 both critical is such a
transition.

The set of commands is also intended to support the,
design process. The reachability computation implies an
interleaving semantic model. In order to really verify the,
design one must show the noninterference of concurrent
transitions. The display concurrent command exists
for this purpose. In designing systems with nets, because
conflict resolution is nondeterministic, the resolution is
actually a choice that the designer leaves to the
implementer. Designers should be able to easily enquire
about these choices. The display conflicts command
exists for this purpose.

It should be noted that once the reachability graph is
computed, the display statistics command reports for
the reachability graph on the numbers of nodes and arcs,
the number of terminal nodes, and the number of back
arcs. These numbers can be useful in the analysis of a
net. For example, a back arc is an arc that completes a
circuit. If the net is not supposed to have any cyclic
behavior (as in checking for the absence of livelock), then
the number of back arcs should be zero.

No matter how well displayed, a listing of the entire
reachability graph is not an effective analysis tool because
there is too much information. The display commands
are provided to obtain useful information about the
reachability graph. Figure 3 depicts sample outputs for
some display commands for the Petri net in Figure 1.
However, the number of possible display commands is
endless and a method of forming ad hoc queries is needed.
The answer to this problem is to view the reachability
graph as a database about the behavior of the net. With
this view one can see that a database query language
would be useful. Now because we are interested in the
behavior of the net, which occurs over time, temporal
logic is an ideal query language. For this reason we have
incorporated the interface to the Extended Model
Checker, which enables one to form queries in temporal
logic about the reachability graph. The reader should
consult the paper by Clarke, Emerson, and Sistla for more
information [6].

The display emc command displays the reachability
graph as a LISP S-expression for input into the Extended
Model Checker. The Extended Model Checker is a
package with which one can make queries in temporal
logic in terms of certain atomic propositions. The set of
atomic propositions that we chose for the queries about
the behavior of a Petri net are:

• the set of place names, where if x is a place name, then
the atomic proposition x means" x is marked" ,

• the set of transition names, where if x is a transition
name, then the atomic proposition x means "x is
firable" .

In analyzing the net in Figure 1 one could compose the
temporal statement "sometimes p2 is marked and p4 is
marked" and expect that the Extended Model Checker
will reply false. This allows us to test the desired
property of mutual exclusion directly (i.e., without going
to the effort of adding the both critical transition and
checking that it is dead). Note that "x fires" is not an

atomic proposition and one cannot enquiry about it
directly. To make such a query, one may construct the
nets so that the transition of interest has a unique post
state.

petri: display statistics
number of places = 5
number of transitions = 5
number of arcs = 14
number of rgraph nodes = 3
number of rgraph arcs = 4
number of rgraph terminals = 0
number of rgraph back arcs = 1
petri: display bounds

1 resource
1 p4
1 p3
1 p2
1 pI

petri: display dead
both critical
petri: display conflicts
(tl,t3)

Figure 3. Example of analysis commands
for the net in Figure 1.

We mention above that nodes do not ,have just one
name but a set of names. The extra names come from the
use of the merge and reduce commands. The display
emc command outputs all of the names of a node. (The
other commands display only one of the names of anode.)
This feature allows one to reduce the net and still make
queries in terms of the original net.

3.2 Simulation

The simulate command presents the user with a two
column display for simulation. The left column lists the
marked places and the number of tokens in each place.
The right column lists the firable transitions. The
following keys are available as commands when looking at
the simulation display.

k move the cursor up.

move the cursor down.

fires the transition named to the right of the
cursor. The display is updated with the new
marking and new set of firable transitions. (Note:
currently the display shows only 22 marked places
and 22 firable transitions.)

u undoes the firing of the last transition. (Repeated
use undoes the entire simulation.)

p outputs the firing sequence to file sim.path.

q terminates the simulation with the last marking as
the new net marking.

x terminates the simulation with no change to the
net.

1095

The command simulate restart continues the last
simulation from where it was terminated.

The simulate command proved most useful when
debugging nets that reachability analysis showed to have
unsatisfactory behavior. The procedure was to simulate
the net while moving· tokens about a net picture. The
advantage of having the program was that one could fire
multiple transitions and the marking ·would be accurately
kept. This was especially true when one wanted to back
up and try another firing sequence. One opportunity that
was missed in the implementation is the capability to
execute the reachability graph analysis commands on the
firing sequence of the simulation.

3.3 Invariant Analysis

The command display invariants lists the S- and
T-invariants of the net. A T-invariant is an algebraic
formula on a firing .sequence that leaves the marking
unchanged. An S-invariant is a algebraic formula on a
subset of the places of a net such that the value of the
formula remains constant for all firing sequences.

Invariants can be used to prove properties of nets. In
Figure 1 the S-invariants are:

(1) pI + p2
(2) p2 + p4 + resource
(3) p3 + p4

where the name of a place represents the number of
tokens. that the place contains. Based on the initial
marking, it is easy to see that

p2 + p4 + resource = 1

for all reachable markings. This implies p2 + p4 S 1,
which implies that mutual exclusion of p2 and p4 is a
property of the net.

S- and T-invariants are explained in [Ul. The
algorithm of Martinez and Silva [101 is used; this
algorithm produces the set of minimal support invariants.
[4] contains an extensive explanation of how S- and T
invariants may be used to prove properties of protocols.

The advantage of. invariant -analysis is that it can be
used on nets for which the reachability graph is too large
to build. The disadvantage is that there is an additional
step of proving net properties once the invariants are
found. This can be quite difficult. Because petri can
build very large reachability graphs, the direct route of
using the display commands or the Extended Model
Checker has been the one used in all problems. We have
not done anything other than trivial examples with
invariant analysis.

4. An Overview or Implementation

petri runs on Berkeley 4.2bsd UNIX on either a Sun
Microsystems workstation, a Pyramid mainframe, or a
DEC VAX. It is built with approximately 5100 lines of
code that is either C, yacc, or lex. (yacc is a parser
generator and lex is a scanner generator.) The program is
structured like a compiler in that the input commands are
parsed by a yacc/lex generated parser. This technique
and the UNIX facilities for redirecting input and output

account for our ability to achieve high capability ~ith
little software.

Figure 4 depicts. a net schema that is used for a
performance benchmark. This schema is chosen because
it generates very large reachability graphs for small nets.
Table 1 gives the time and space requirements for each of
the three options for building reachability graphs when
run on a Pyramid 90x. Time is given in hours, minutes,
and seconds. Space is given in kilobytes. From this table
one can see the importance of space to the construction of
the reachability graph. In dealing with safe nets the
storage consumption is measured iIi megabytes/minute.
The use of a word instead of a bit for the marking vector
(and . the associated programming techniques) totally
accounts for the difference between the performance for
safe and bounded nets. The w search totally accounts for
the difference between the performance for boundcd and
general nets.

The high performance of the reachability algorithm is
obtained by the following implementation techniques.

1096

1. A reachability graph is computed rather than a
reachability tree. This greatly reduces the amount
of storage required to hold the structure. The
number of nodes in the reachability tree is equal to
the number of arcs in the reachability graph minus
one. From the table above it is clear that for larger
nets, the reachability graph provides large savings.

2. When a new marking is generated, the search for a
duplicate (i.e., a node with an equal marking) is a
costly part the computation. This search of the
reachability graph is done by using a hash table
with 10007 entries.

3. On the less intuitive side, the test for the firability
of a transition is a very costly operation because it
must be done for every transition at every reachable
marking. The algorithm for computing the
reachability graph uses the net itself to keep track
of the current -marking during the computation.
This allows a quick check of" firability because the
predecessor places of a transition can be quickly
accessed and usually the first predecessor has zero
tokens because the transition is probably not firable.

4. The algorithm was specialized. to compute the
reachability graph for safe and bounded nets ... This
was done in two ways.

a. Markings for safe nets are stored with one bit
per state instead of one word per state. In
turn, this allowed other optimizations such as
increasing the speed of the equality test of
marking vectors.

b. The search of the frontier to discover w's is
omitted, because w's cannot occur in safe or
bounded nets.

5. All the memory for the storage of the 'net and its
reachability graph is dynamically allocated. (For
this reason there are no limits on the size of ' entities
other than the operating system limit on. storage
allocated to a job.)

6. All of the display commands for reachability graph

•••

Figure 4. Net schema for performance benchmark.

Processes
Rgraph -s -b -~ .

Nodes Arcs Time Space Time Space Time Space

09 512 4608 2 296 4 328 11 328

10 1024 10240 4 424 10 504 38 504

11 2048 22528 9 712 25 873 2:25 873

12 4096 49152 22 1306 1:01 1674 9:14 1674

13 8192 106496 50 2556 2:21 3358 36:47 3358

14 16384 229376 1:50 5220 531 6952 2:28:53 6952

15 32768 491520 405 10863 12:56 14614 9:52:45 14614

Table 1. Performance statistics for a Pyramid 90x.

analysis involve a search of the graph. Usually
searches are done with a marking bit at each node
to indicate whether or not the node has been visited.
This leads to the problem of resetting the marking
bit at the beginning of each search, which implies
two passes over the graph for' each search. To
avoid this problem, a global count of the number of
searches is kept and for each node the number of
times it is visited is kept in the node. At the
beginning of a search the global count is
incremented; when a node is visited during a search
the local count is set equal to the global count.
Therefore, unvisited nodes have a local count less
than the global count. Although this technique
requires more. storage it is preferable to resetting
bits because it yields faster searches.

s. Experience

The experience described was accumulated over by
the author previous to his employment at MCC with a
different net analyzer.(which he also built). The analyzer
described to this point is the one with a new architecture,
while the experience is with the old, analyzer. Although
we have not yet had the- opportunity to use the new
analyzer, the experience with the old one is valid for
discussion.

S.l Synergy In the Tool Set

Originally net entry was conceived to be an
interactive process. Net entry was never interactive; it
didn't prove to be useful In dealing with larger nets. (In
fact, a command was implemented to delete nodes and
arcs, but it was never used.) Instead synergy among the
available tools ran rampant during use. The synergy
between petri and erne is just one example. The most
used combinations were petri and tools for building nets
like the.rn4 macro processor.

One mode of using petri was as follows. One would
build macros to generate pieces of a net that are repeated
in a problem. For. example, if one were modeling the
dining philosophers problem, a philosopher macro and a

rork macro would be written. This would be done
carefully so that the generated net pieces could be merged,
with the merge command. The net was generated by
writting the proper macro invocations and merge
commands.

The second mode of use was to generate the net from
a programming-like language. A language based on
Holt's Role/Activity Diagrams [7] was designed and a
translator to Petri nets was built. The rename, merge,
and split commands were indispensable in this
translation process. There are many reductions possible
for Petri nets; however, for the analysis of the nets
produced from this programming language, only the
reduction that is described for the reduce command was
found to be useful (which was why it was the only one
implemented).

S.2 Reachablllty Graphs and Debugging Net Designs

The interactive analysis of a net is a very useful
feature when showing that a net model satisfies behavioral
requirements. When the analysis shows that the
requirements are not met, a debugging process then
proceeds. There are many subtlies of the command set
that facilitate this process.

Let us consider how we might tackle one type of
erroneous net. Imagine that we are designing with the
intent of having a safe net. If the net is not safe, the
analyzer reports on the shortest firing sequence to the
unsafe marking (i.e., the shortest that exists in the
partially built reachability graph when the unsafe
marking is found). The use of the simulation facility with
this information may be enough to correct the net. But if
it is not, then the computation may be done with either
the -s or -g option. This takes more time, but one can
interrupt the computation and analyze the partially built
reachability graph. This can be done until one has a
reachability graph with enough information to correct the
problem.

S.3 Actual Use

Despite the power of petri, experience shows that its

1097

use requires study and creativity. When modeling a
System, it is easy to abstract away the properties in which
one is truly interested. The model must be constructed
accurately. The other side of the coin is that one can
easily overwhelm the analyzer (remember the size of the
reachability graph can be exponential in the size of the
net). One must try to abstract as much a possible. This
gives us a trade-off between two conflicting goals.

Two protocols were analyzed with petri. Let us call
them A and B; space does not permit us to describe them
other than to say that protocol A was for the run-time
support of a distributed programming language and
protocol B was for a packet switching telephony system.
In both cases errors were found in the protocol. In the
case of A, the protocol was abandoned for other
techniques. In the case of B, the designers corrected the
protocol. It is significant to note that the second analysis
was not done by the author [21.

8. Conclusion

An analyzer for Petri nets was built and used on two
protocols. This proved successful in that errors in the
protocols were found that might have gone undetected
until after the software was released. The analyzer tool
fit well with other available tools leading to increased
synergy in the tool set.

Another useful aspect of having an analyzer is that it
supplies the. impetus for people to learn about Petri nets.
To an organization involved in the design of software, the
benefit is a model of concurrency that is independent of
any programming language.

Acknowledgement

I would like to thank Jim Peterson for his comments
on this paper.

References

1. Agerwala, T., "Putting Petri' Nets to Work,"
IEEE Computer Magazine 12(12) pp. 85-94
(December, 1979).

2. Ashok, E., private communication, ITT, 1
Research Drive, Shelton, CT 06484 (1986).

3.

4.

5.

Beaudouin-Lafon, M., "Petripote: a graphic
system for Petri-Nets design and simulation,"
4th European Workshop on Applications and
Theory of Petri Nets, Toulouse, France,
September, 1983, pp. 20-31

Berthelot, G. and Terrat, R., "Petri Nets
Theory for the Correctness of Protocols, "
IEEE Trans. on Communications Com-
30(12) pp. 2497-2505 (December, 1982).

Brauer (ed.),
Applications,
(1980).

W., Net Theory
Springer-Verlag, New

and
York

6. Clarke, E. M., Emerson, E. A., and Sistla, A.
P., "Automatic Verification of Finite-state
Concurrent Systems Using Temporal Logic
Specifications: A Practical Approach," Conf.
Rec. Tenth Ann. ACM Symp. on Principles of

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

1098

Programming Languages, Austin, Texas,
January 24-26, 1983, pp: 117-126

Holt, A. W., Ramsey, H. R., and Grimes, J.
D., "Coordination System Technology as the
Basis for a Programming Environment,"
Electrical Communications 57(4) pp. 307-314
(1983).

Jantzen, M. and Valk, R., "Formal Properties
of Place/Transition Nets," pp. 165-211 in Net
Theory and Applications, ed. W.
Brauer,Springer-Verlag, New York (1980);

Jensen, K., Huber, P., Larsen, M. N., and
Martinsen, I., "Petri Net Package User's
Manual," DAIMI MD-46, Computer Science
Department, Aarhus University, Aarhus,
Denmark (September, 1983).

Martinez, J. and Silva, M., "A Simple and
Fast Algorithm to Obtain All Invariants of a
Generalised Petri Net," pp. 301-310 in
Application and Theory of Petri Nets, ed. C.
Girault and W. Reisig,Springer-Verlag, Berlin
(1982).

Memmi, G. and Roucairol, G., "Linear
Algebra in Net Theory," pp. 213-224 in Net
Theory and Applications, ed. W.
Brauer,Springer Verlag, Berlin (1980).

Montel, B., Grissault, D., Le Mer, E., Robert,
C., Sivet, A., Ayache, J. M., Azema, P.,
Bachmann, S., Berthomieu, G., Chezalviel
Pradin, B., Courtiat, J. P., Diaz, M., and
Dufan, J., "OVIDE: A Software Package for
Verifying and Validating Petri Nets,"
Proceedings of Softfair, Arlington, Virginia,
July 25-28, 1983, pp. 86-92

Peterson, J. L., "Petri Nets," ACM
Computing Surveys 0(3) pp. 223-252
(September, 1977).

Peterson, J. L., Petri Net Theory and the
Modeling of Systems, Prentice-Hall,
Englewood-Cliffs, N.J. (1981).

Razouk, R. R. and Hirshberg, D. S., "Tools
for Efficient Analysis of Concurrent Software
Systems," Softfair, pp. 192-198 (1985).

Reisig, W., Petri Nets, Spr{nger-Verlag, Berlin
(1985).

Vuong, S. T. and Cowan, D. D., "Reachability
Analysis of Protocols with FIFO Channels,"
SIGCOMM '83 Symp. on Communications
Architectures and Protocols, Austin, Texas,
March 8-9, 1983, pp. 49-57

The GTPN Analyzer: Numerical Methods and User Interface

Mark A. Holliday
Department of Computer Science

Duke University
Durham, NC 27706

Abstract

The GTPN (Generalized Timed Petri Net) is a perfor
mance model based on Petri Nets. The state space for a model
of the system is automatically constructed and analyzed us
ing results from Markov chain theory. We address some of the
key computational issues involved in the Markov chain theory
approach. In particular, we discuss two types of algorithms.
The first type compute the absorption probabilities and mean
time to absorption. The second type compute the steady state
probability distribution for a single, possibly periodic, recur
rent Markov chain class. We also describe the GTPN's user
interface for input of the model description, execution of the
tool, and the output of the performance results.

Section 1. Introduction
Petri Nets are a formal graphical model of asynchronous

parallel computation [PET62, PET81]. Modifying Petri Nets
so that time is represented has recently been an active re
search area [MOL81, NAT80, ZUB80, AJM84, HOL85a]. The
goal of these models is to analyze system performance and/or
reliability as an extension of the reach ability analysis. Our
model, Generalized Timed Petri Nets (GTPN) [HOL85a], as
sociates firing frequencies and deterministic firing times with
each transition in the net. For the purposes of performance
analysis, we view the GTPN as a stochastic process. The time
in-state is a deterministic function for each state of the net.
However, a probability distribution is defined over the possible
next states based on the firing frequencies. Analysis of the em
bedded discrete-parameter Markov Chain yields performance
estimates. [HOL85b and VER86] contain results for multipro
cessor performance issues obtained using the GTPN analyzer.

We have used our GTPN analyzer to solve models with up
to 45,000 states. An important issue is the computational effi
ciency of the performance analysis. An earlier paper [HOL85a]
describes efficient methods we developed for building the state
space for GTPN models. States in the automatically generated
Markov Chain are grouped into transient and recurrent classes.
This paper focuses on numerical methods we use for solving
the very large (typically 20,000 x 20,000), but very sparse (typ
ically 2-3 non-zero entries per row) matrix equations to get
the absorption probabilities and equilibrium state probabilities
for the recurrent classes in the Markov Chain. For comput
ing absorption probabilities, we use the key observation that
the classes in the Markov Chain form a directed acyclic graph

This research was partially supported by the National Sci
ence Foundation under grants DCR-8402680 and DCR-8451405,
and by grants from IBM and Cray. Research, Inc.

CH2345-7j86jOOOOj1099$01.00© 1986 IEEE
1099

Mary K. Vernon
Computer Sciences Department

University of Wisconsin - Madison
Madison, WI 53706

(DAG). For computing equilibrium state probabilities, we use
the Power Method, with some shifting and scaling of the prob
ability matrix needed for periodic Markov Chains. A second
important issue we address is the user interface of the tool.

The organization of the remainder of this paper is as fol
lows. Section 2 presents an overview of the GTPN and outlines
the equations which must be solved. Section 3 considers effi
cient methods of computing the absorption probabilities and
mean times to absorption for the recurrent classes. Section 4
considers methods for computing the steady state probability
distribution for each recurrent class. Section 5 describes the
current user interface of the GTPN. Section 6 summarizes our
experiences.

2. The GTPN Model

2.1. The Net
A GTPN is a Petri net which includes: 1) a deterministic

firing duration associated with each transition, 2) a mechanism
for specifying next state probabilities for conflicting transitions,
and 3) a set of named resources assoclated with transitions
and/or places which are used to calculate performance esti
mates. We plan to add transition enabling times [RAZ83] to
support modeling behavior such as timeouts in network pro
tocols. This will require some minor changes in the model
definition and how the reachability graph is built.

Letting S denote the set of reachable states, !R+ denote the
positive reals, and P denote the power set, the current GTPN
is formally defined by the following tuple:

GTPN= (P,T,A,Mo,D,F,C,R)

where
P = {PlJP2, ••. ,Pn}
T= {tlJt2, ..• ,tm}
A: {P x T} U {T x P} -+ {O, 1,2, ... }

Mo: P -+ {O, 1, ... }
D: T x S -+ !R+ U {O}
F: T x S -+!R+ U {O}
C:T -+ {Yes, no}
R:P U T -+ P({rl, r2, •.. , r",})

(places)
(transitions)
(directed arcs)
(initial marking)
(firing durations)
(firing frequencies)
(Cn tComb flags)
(resources)

The first four components of the tuple are identical to the
constructs in an untirned Petri Net (see [PET81]). The remain
ing four components are described below.

Figure 2.1 shows an example GTPN including the initial
state distribution of tokens. Each transition is labeled with,
from left to right, its firing duration expression, its frequency
expression, its CntComb boolean flag, and its list of resources.
There are no resources associated with places in this model.

Figure 2.1.Example of a GTPN net

A transition's firing duration and frequency are expressions
containing immediate values (real and integer), names of places
(which represents the number of tokens in that place in the
current state), names of transitions (which represents the value
one if at least one firing of that transition is in progress in the
current state and is otherwise zero), and arithmetic, relational,
and logical operators. Thus, a transition's firing duration and
frequency can be state-dependent, but for a given state they
are deterministic.

The example in Figure 2.1 models users at terminals who,
with a geometric think time, generate requests for a server.
There is one token on place P1 for each user. Transitions T1
and T2 implement the think time. Note that the GTPN can
represent geometric, as well as constant, holding times. Tran
sition T3 implements a load-dependent server with a firing du
ration that depends on the number of tokens on P2.

2.2. The Reachability Graph

The multiplicity of an input place is the number of arcs
from that place to that transition. An output place's multiplic
ity is defined analogously. An enabled transition starts firing
by removing from each input place a number of tokens equal
to its multiplicity. After start firing, the firing is in progress
until end firing. While the firing is in progress, the time to end
firing, called the remaining firing time (RFT), decreases from
the transition's firing duration to zero. At end firing a number
of tokens equal to its multiplicity is put on each output place.

A marking together with the set of current RFT's defines a
state of the net. State transitions in the GTPN are defined by
maximal sets 1 of start firing or end firing events which occur at
the same time. A state which has at least one transition enabled
(e.g. the initial state in Figure 3.1), has zero duration, and
leads to a set of next states defined by all possible combinations
of start-firing events that can occur simultaneously. The new
RFT's are set to their transitions' durations. If there are no
enabled transitions, but there are some firings in progress, then
there is one next state generated by the end firing of all firings
in progress with the smallest RFT (Tmin). The time-in-state
value in this case is Tmin. If there are no enabled transitions
and no firings in progress, then the net remains in the current
state forever.

For each state, a probability distribution is defined over
the set of next states. In the nontrivial case, we need to as-

1 a set with property ex is a maximal set with property ex if it is
not a proper subset of any other set with property ex.

1100

sign a probability to each maximal set of transitions that can
start firing together. Calculation of the next state probabilities
for start firing events is complex, due to the possibility of con
flicting transitions. We only outline our approach and quote
the relevant formulas in this paper. The reader is referred to
[HOL85a] for a more complete discussion.

Two transitions whose sets of input places intersect are- in
the same conflict set. The transitive closure of the property
of intersecting input places defines an equivalence relation on
the set of transitions. This equivalence relation partitions the
set of transitions into disjoint sets called generalized conflict
sets. A maximal set of start firing events which comprise a
state transition is the union of a set of independent local max
imals, one from each generalized conflict set. The probability
for the maximal is the product of the probabilities for the as
sociated local maximals (since the local maximals are indepen
den t). Let LocalM ax!i, if denote the ith local maximal of the
ith generalized conflict set. Let NumComb denote the number
of combinations, or the number of ways tokens can be removed
from input places, in order to implement a local maximal. Our
formula for Pr{LocaIMax!i,i]} is

J. n fk
{k:kELocaIMazl;,i/}

Pr{ LocalM ax!i, in = ----=E=------:-M.,....."....--.......:..;.-=n::----=-"c
{m:m=l, ... ,M} {k:kELocaIMazlm,il}

J is NumComb[LocaIMax[j,i]] if NumComb is used and zero oth
erwise. M is NumComb[LocaIMax[m,ilJ if NumComb is used
and zero otherwise. In some cases, the value NumComb is
needed in order to derive an intuitively reasonable probabil
ity. The boolean flag CntComb (Count Combinations) associ
ated with each transition specifies whether this should be done.
Only if the flag is yes for all transitions in the maximal, is Num
Comb used.

In Figure 2.2 and Table 2.1 we show the reach ability graph
for the net in Figure 2.1, assuming there is only one user (i.e.
one initial token in P1). The labels on the edges of the graph
are the next state probabilities. The labels on the vertices of
the graph are the values for time-in-state. The marking vectors

Figure 2.2.Reachability Graph for example

Table 2.1. Reachable States for example

States
Marking

RFT Set Resources
PI P2 P3

0 I 0 I n n
I 0 0 I {(Tl,O.O)} n
2 0 0 I {(T2, LO)} fTerminal(l) }

3 0 I I {} {}

4 0 0 0 {(T3,6. 73)} {Server(l) }

are shown in the table. The RFT sets are shown as a list of
pairs with one pair per in progress firing of a transition. The
first component of each pair is the name of the transition. The
second component is the remaining firing time. The resources
used and their number of uses are also shown in the table.

Section 2.3. Analysis of the Embedded Markov Chain

Our analysis is based on the key observation that the times
at which state changes occur form an embedded, discrete-time,
finite state Markov Chain. Consequently, we need to sketch
some of the relevant terminology and theorems of Markov Chain
theory. We are only concerned currently with analyzing models
;ith finite state-spaCes. The strongly connected component~
of the state space (when viewed as a directed graph) are the
classes of the Markov Chain. The condensed graph (one ver
tex for each class) is a directed acyclic graph with one root.
In the case of a finite state space, the interior vertices of the
condensed graph are called transient classes. The leaf vertices
of the condensed graph are called recurrent classes. In a typ
ical evolution of the system being modeled, the system starts
in a state in the root of this condensed graph. It then filters
through the transient classes until it is absorbed by one of the
recurrent classes. Once absorbed it stays in that recurrent class
permanently.

Since, in the GTPN, we are interested in long run behav
ior, there are two characteristics of the movement through the
transient classes that are of interest. First, is the absorption
probabilities, the probabilities of being absorbed by each leaf.
Second, is the mean time to absorption.

The primary approach to computing the absorption prob
abilities is based on First Step Analysis [TAY84j. Consider a
particular initial state, i. On the first state change, the process
will move from state i to a state j that is in a transient class
or in a recurrent class. If j is in class R, the future probability
of being absorbed by class R is one. If j is in another recur
rent class, the future probability of being absorbed by class R
is zero. If j is in a tr~sient c!ass, then, by the _memoryless
property, the probability of being absorbed by class -R is the
same as if j were the initial state.

More formally, suppose that the states in all the transient
classes are numbered 0, ... , n - 1 and consider a fixed recurrent
class R and fixed initial state i. Let UiR = Pr{Absorption in
class RiXo = i} for 0 5 i 5 n - 1.

B-1

UiR = L Pij + L PijUjR , i = 0, 1, ... , n - 1
{fER} ;=0

This equation cannot be solved in isolation. However, if
we consider all possible transient initial states, then we have a
system of linear equations that can be solved for the UiR'S.

Once absorbed in a particular recurrent class, the proba
bility distribution over the states in the long run needs to be
computed. This probability distribution exists for any recur
rent class R in a finite state space as long as it is interpreted
as the long run expected fraction of visits in each state. This
stationary probability distribution is easy to find since it is the
unique solution to the set of equations

and

The matrix PR is PR = {Piiii, j E R}.

1101

Section 2.4. Computing Performance Estimates

The embedded Markov Chain has allowed us to obtain, for
each recurrent class, the long run expected fraction of visits in
each state. We still need to obtain, for each recurrent class,
the performance estimate for each resource. This is done in
two steps. First, we obtain, for each recurrent class, the long
run expected fraction of time, ReITime(81), spent in each state
81 , (i.e. count time-in-state, instead of visits). Let 8 be the
set of states in R. AB shown in [HOL85aj, RelTime(8d can be
computed by:

R IT" (8) Timeln8tate(8d7rS1

e ,me 1 = E Timeln8tate(k) 7rk

kES

Second, the performance estimate for a resource in a given
recurrent class is the long run expected number of usages of
that resource in that class. Consequently, we simply take the
expectation of the random variable ResUsages (again 8 is the
set of states in R).

E[ResU sages] = L ResU sages(k)Pr{ statek}
kES

= L ResU sages(k)ReITime(k)
kES

The probability distribution of the random variable ResUsages
with respect to the number of usages of the resource is also
computed. Computing this distribution is straightforward. We
know the long run probability distribution of time over the
states in the recurrent class. We also know the number of us
ages of the resource in question for each state. Simply summing
the probabilities of the states that use the resource the same
number of times generates the desired distribution. This dis
tribution is very useful for reliability prediction (e.g. 90% of
the time will at least 3 processors be working?).

Section 3. Absorption Probabilities and Mean Time to
Absorption

AB discussed in section 2.3, two of the characteristics of
the system's performance that we need to determine are the
absorption probabilities and mean time to absorption. First
Step Analysis was proposed as the method for computing these
characteristics. In this section we discuss the computational is
sues involved in determining those characteristics. Section 3.1
discusses some of the efficiency issues involved in implementing
First Step Analysis for computing the absorption probabilities.
Section 3.2 describes an optimization which can significantly
accelerate solution of the First Step Analysis equations. Sec
tion 3.3 covers the analogous material for computing the mean
time to absorption. In an important special case that arises
frequently in GTPN models, an alternative to First Step Anal
ysis can be used to compute absorption probabilities. Section
3.4 describes this still more efficient method.

Section 3.1. First Step Analysis

Direct application of First Step Analysis implies that r sys
tems of n linear equations are solved where r is the number of
recurrent classes, and n is the number of transient states in the
Markov Chain. Solving one system of equations determines
the absorption probability of interest for one recurrent class.
Since the GTPN is intended to be a practical tool, an efficient
solution method is important.

We write the systems of linear equations in matrix form as
follows:

(3.1)

where URis the n x 1 vector of absorption probabilities for
recurrent class R from transient states 0,1, ... , n - I, PTR is the
n x 1 vector of one-step transition probabilities from transient
state i to any state in R, and Fr is the n x n one-step transition
probability matrix for the transient states.

The standard form for a system of linear equations is Ax = b
where A is nX n, x is nX 1, and b is nX 1. Our form maps into the
standard form by letting A = (PT - I), 2: = UR , and b = -PTR :

(3.2)

There are many methods of solving systems of linear equa
tions. Gaussian elimination is the primary direct method. It
erative methods, such as the Gauss-Seidel method, are much
more efficient for large matrices. Before selecting a solution
method, howeyer, we will discuss an important optimization
that can be applied to First Step Analysis.

Section 3.2 Optimization of First Step Analysis

An optimization exists that can significantly accelerate so
lution of the linear systems of equations for First Step Analysis.
This optimization is based on a key observation: by permuting
the rows and columns of the matrix PT, Fr can be put into
block upper triangular form, where each diagonal block repre
sents the transitions within one transient class of the Markov
Chain. To see this, recall that the Markov Chain classes are
the strongly connected components in the reachability graph.
They thus form a directed acyclic graph (DAG), the condensed
graph. As with any DAG, the vertices of the condensed graph
can be numbered via a topological sort so that the number as
signed to a vertex is always less than the numbers assigned to
its children. This numbering defines the permutation that gen
erates the block upper triangular form. We find the strongly
connected components using Tarjan's O(n) algorithm, and per
form the topological sort on the DAG using another linear-time
depth-first search [SED83].

After the permutation, equation 3.2 is of the following
form:

AlN) (Ul) (-PlR) A2N U2 -P2R · . . · . . · . .
ANN Un -PnR

(3.3)

where the elements are matrices, each diagonal block Ail is
square of order ni and

N

l:~ = n.
i=l

The system (3.3) can be solved as a sequence of N smaller
problems. Problem i is of order ~ and the matrix of coefficients
is Ail,i = 1,2, ... ,N. The procedure is as follows [PIS84]:

(i) Solve the last subsystem, with ANNas the matrix of coef
ficients, for the last nN unknowns. Compute the vector XN

of order nN.

(ii) Subtract the products AiNxN from the right-hand side for
i = I, ... , N - 1. A block upper triangular matrix of order
N - 1 is obtained, and the procedure is repeated until the
complete solution is obtained.

Note that the assumption must be made that the diago
nal blocks in Equation (3.2) are nonsingular. The solution of
each subsystem can be done by any method for solving linear

1102

equations, such as Gaussian elimination or the Gauss-Seidel
iteration.

Section 3.3. Computing Mean Time to Absorption

The mean time to absorption can also be computed using
a first-step analysis. One system of n linear equations is solved
where n is the number of transient states. Each transient state
i has one equation. Starting in state i, the mean time to ab
sorption is the time-in-state for state i plus zero if the next
state is in a recurrent class and plus I{i times the mean time
·to absorption for state i if state i is transient. Note that the
Markov property is again being used. Formally, each equation
is of the form:

n-l

Ui = TimeInState{i} + l: I{iUj,
i=O

i = 0, 1, ... , n - 1

IT the integer 1 replaces the time-in-state, then the mean
number of visits to transient states before absorption can be
computed. The mean number of visits to a given set oftransient
states before absorption can be computed if the time-in-state
is replaced by the integer 1 when visiting a state in the given
set and is replaced by the integer 0, otherwise.

The discussion in Section 3.2 applies here also. In par
ticular, the system of equations can be changed into the form
Ax = b, permuted into block upper triangular form, and then
solved as outlined.

Section 3.4. More Efficient Solution of an Important
Special Case

In a special case that occurs frequently in GTPN mod
els, an efficient alternative approach based on the condensed
reach ability graph (i.e. one vertex per strongly connected com
ponent) can be used to compute absorption probabilities. In
this alternative, probabilities are assigned to the edges leaving
each vertex in the condensed graph A depth first search is then
done. During the depth first .search the probability along each
path to each leaf is determined by taking the product of the
edge probabilities along the path. The absorption probability
for a given leaf is then simply the sum of the path probabilities
terminating at that leaf.

The difficulty with this approach is with determining the
edge probabilities leaving a vertex in the condensed graph. IT
all the exit edges originate at the same vertex Vl within the
strongly connected component, then the probabilities are easily
computed. Find all the edges of which Vl is the parent that
are exit edges. Sum their probabilities as edges in the original
graph. The probability of each edge in the condensed graph is
its probability in the original graph normalized by this sum.

The problem is when more than one vertex, say Vl and V2 ,

in the original graph are parents of exit edges. Determining the
probability that each of these parent vertices is the vertex from
which exiting occurs is dependent on the detailed structure of
the strongly connected component. Our current implementa
tion uses the condensed graph approach when the special case
of one parent vertex in the strongly connected component is
met. When the special case is not met, first-step analysis with
Gauss-Seidel iteration is used. We plan to implement the op
timization described in section 3.2 with subsystem solution by
Gauss-Seidel iteration.

Section 4. Stationary Probability Distributions

In this section we discuss the method we use to calculate
the stationary probability distribution for each recurrent class

in the Markov Chain. Let R denote a recurrent class with
states j = 0, 1, .'" n, and let 7r; represent the long run expected
fraction of visits to state j, given that the modeled system is
absorbed in class R.

Recall that the vector 7rR = (7ro, 7r1, "., 7rn) is uniquely de
termined by the following equations:

and
n

L1rj = 1,
;=1

(4.1)

where PR is the n x n state transition probability matrix for R.

Because the matrix PR is sparse, but potentially very large,
iterative methods are more practical than direct methods. One
of the most widely used iterative methods, the Power Method
[JOH82], views equation 4.1 as an eigenvalue problem. In par
ticular, 7rR is the eigenvector associated with the unit eigenvalue
of PRo Applying the Power Method to iteratively solve for 7rR,
is done as follows:

7r~+1 = 7r~PR.

Since our current implementation uses the Power Method, the
remainder of this section focuses on issues related to it and, in
particular, with ensuring convergence.

Section 4.1. Spectral Distribution

An eigenvalue, A, of a real n x n matrix A, is strictly domi
nant, if its modulus is strictly greater than those of all the other
eigenvalues of A. Direct application of the Power Method con
verges to an eigenvector corresponding to the dominant eigen
value, if and only if the matrix has a simple, strictly dominant
eigenvalue.

This constraint on the direct application of the Power Me
thod can be expressed in terms of the periodicity of the recur
rent class in the Markov Chain. In order to make that connec
tion between the spectral distribution and the periodicity of
the Markov Chain class, we need the theorems of Perron and
Frobenius [CIN75,SEN84]. These theorems state the following:

An irreducible non-negative matrix, A, has a real,
positive, and simple eigenvalue, a, which is greater
than or equal to all other eigenvalues of A in modu
lus. The eigenvector corresponding to the eigenvalue
a is strictly positive. If A is aperiodic, (i.e. Ak > 0
for some k), then a is strictly greater than all other
eigenvalues of A. A periodic matrix with period 0, has
exactly 0 eigenvalues with absolute values equal to a.
These eigenvalues are all distinct and are given by:

[
2 ... /6Ik-1 k ~. ~ r-11 Ak=ae , =1,2,.",II,'=V-.L

If A is a stochastic matrix (i.e. all rows sum to one), then
a = 1. An aperiodic stochastic matrix thus has a simple unit
eigenvalue and all other eigenvalues are of strictly smaller mod
ulus. A periodic stochastic matrix with period 0 has exactly
o eigenvalues of unit modulus all of which are simple. These
eigenvalues can be regarded as a set of points around the unit
circle in the complex plane, which goes over into itself under a
rotation of the plane by the angle 211'/0.

Section 4.2. Ensuring Convergence
According to the above discussion, the Power Method can

only be applied directly to find the stationary probability distri
bution when the recurrent class is aperiodic. To handle the case

1103

of a periodic recurrent class, the following theorem [STE74]
concerning shifting and scaling the matrix becomes important:

Theorem: Let A be a complex n x n matrix, and let A be an
eigenvalue of A with eigenvector X. Then:

1. aA is an eigenvalue of aA with eigenvector X.

2. A - b is an eigenvalue of A - bI witn eigenvector X.

This theorem allows us to transform the matrix PR to en
sure that the unit eigenvalue is strictly greater than all other
eigenvalues in modulus. In particular, we make the following
transformations on PR:

Ph = e(PR - I) + 1= ePR + (1 - elI O<e<1.

The first transformation, subtracting I, shifts all eigenvalues of
PR to the left by one in the complex plane. The eigenvector
1I'R now corresponds to the eigenvalue zero. The second trans
formation, multiplication bye, shrinks all of the eigenvalues
except tlie zero eigenvalue corresponding to 1rR (the circle is
now centered at -e and is of e radius). The third transforma
tion, adding I, shifts all eigenvalues to the right by one, creating
a unit eigenvalue corresponding to 1rR whose modulus is strictly
greater than that of all other eigenvalues. Thus, application of
the Power Method using Ph always converges.

Section 4.3. Convergence Rate

The convergence rate of this method is essentially the rate
at which A~k converges to zero, where A~ is the second largest
eigenvalue of the matrix Ph [JOH82]. The value of e indirectly
influences the rate of convergence by scaling all of the eigenval
ues. Wallace and Rosenberg [WAL66] define a suitable value for
e to be 0.99 x [ma:z;(IPii -11)1-1 • We have used this value, which
equals 0.99 for most GTPN models, in our implementation.

In general, the value of A~ depends on the size and struc
ture of the particular GTPN model constructed, and conver
gence rates vary considerably. In particular, the convergence
rate may be extremely slow. A recent paper by Stewart and
Goyal [STE85], suggests that successive overrelaxation is a bet
ter method for solving steady-state equations for continuous
time Markov chains. We plan to investigate whether this ap
proach would also be more efficient for the G TPN.

Section 5. The GTPN Analyzer User Interface

This section describes the current user interface to the
GTPN tool. This interface has three parts: the format of the
model description input to the tool, the process of running the
tool, and the format of the output of the performance results.
We should note that the nature of this interface is largely in
dependent of the rest of the tool.

Section 5.1. The Input Format

The model description is input in textual form. This text
is processed by table-driven lexical and syntactic analyzers. In
particular, we use two tools, Scangen and LLgen, that have
been developed by others at the University of Wisconsin
Madison. Scangen accepts descriptions of tokens written as
regular expressions and generates tables to drive a lexical ana
lyzer. LLgen accepts a context-free grammar specification and
generates tables for parsing sentences of the specified language.
It generates tables for any LL(I) grammar. During execution
of the GTPN tool, the tables generated by Scangen and LLgen
are used in conjunction with the parser and semantic routines
to construct the internal tables describing the net and its initial
state.

NET

P1(1) -- > P2(1): 0,0.4, yes, j
P1(1) -- > Pl(I): 1,0.6, yes, Trans2j
P2(1), P3(1) -- > Pl(I), P3(1):

(P2*2)+4.73, 1.0, no, Trans3j
RESOURCES

Terminal: Trans2j
Server: Trans3j

INITSTATE
P1(2), P3(1)

END

Figure 5.1.lnput Format for Example

The input format is quite simple. A.B an example, in Fig
ure 5.1 is the actual input for the net which is shown graphi
cally in Figure 2.1. There are fo.~r reserved words: NET, RE
SOURCES, INITSTATE, and END: These four words, in that
order, divide the input into three sections.

The NET section· is a sequence of entries, one for each
transition. A transition's entry first lists the transition's in-'
put places, the token -- >, and the transition's output places.
Each input place has a number in parenthesis which is the num
ber of tokens removed by a single firing. Each output place has
a number in parenthesis which is the number of tokens added
by a single firing. Mter_ the colon, the transition has four re
maining fields: its duration expression, its frequency expres
sion, the CntComb flag, and an optional name. A transition
needs a name if it is to be referenced in a duration or frequency
expression or in the RESOURCES section.

The RESOURCES section has one entry for each resource
(performance measure). A resource's entry names the resource
and then lists a sequence of names of places and transitions.
In a given state the number of usages of a resource are deter
mined by these place and transition names. A place has as
many resource usages as there are tokens on it. A transition
has as many resource usages as there are firings in progress.
A more general specification of performance measures would
allow expressions containing arithmetic, logical and relational
operators as well as -place and transition names~ We have not
yet implemented this capability, but it appears straightforward.

The INITSTATE section lists the places which contain at -
least one token in the initial state. Each such place has the
number of its initial tokens in parenthesis.

There will be some minor changes to this format when we
introduce enabling times.

Section 5.2. Running the GTPN

The GTPN tool is a single executable file. It is invoked by
the command line: .

gtpna -[a-z] file

The net description comes· from file. The results go to
standard output. Various optional flags display aspects of the
internal state of the tool and are useful for debugging;

Section 5.3. Output Format

The output is also textual. First, general information is
listed. This includes the number of places, transitions, re
sources, and states. Second,' for each leaf, the performance
results for each resource are given as wel~ as the number of it- -

1104

erations needed for the Power Method to converge. Third, the
absorption probability for each leaf is listed. Fourth, for each
leaf and for each resource, the probability distribution over the
number of resource usages is given.

6. Conclusions

A careful study of implementation issues is essential to the
successful development of a modeling tool. We have discussed
some of the most important implementation issues in the Gen
eralized Timed Petri Net modeling approach. The first general
issue concerns using results from numerical linear algebra to
aid in efficient analysis of the state space.

The two important transient characteristics of the state
space are the absorption probabilities and mean time to ab
sorption. We proposed. using First Step Analysis to compute
these characteristics. In this method several systems of linear
equations are solved. Each system could be solved immediately
by Gauss-Seidel. Alternatively, we suggested a more efficient
solution based on permuting the matrix into block upper tri
angular form and then solving a sequence of smaller problems.
In an important special case a still more efficient method based
on the graph of strongly connected components can be used.

The important steady state characteristic is the steady
state. probability distribution within each recurrent class. This
distribution is determined by another system of linear equa
tions. We currently solve this system of equations by treating
it as an eigenvalue problem and using the Power Method. A
direct application of the Power Method, unfortunately, does
not converge if the recurrent class is periodic. We discuss how
scaling and shifting of the transition probability matrix can
ensure convergence without changing the desired eigenvector.
We briefly discuss the convergence rate. We plan to investigate
whether other methods may be superior to the Power Method.

The second issue is the user interface to the GTPN tool.
The most interesting aspect of this interface is the use of a
table-driven scanner and a table-driven parser has greatly aided
in the processing of the textual form of the input description.

Acknowledgements
Many people have made helpful comments and suggestions

during our research. We would like to especially thank Klaus
Hollig and Diane 0 'Leary.

References

[AJM84] M.A. Marsan, G. Balbo, and G. Conte, "A Class of
Generalized Stochastic Petri Nets," A CM Trans. on
Computer Systems, vol. 2, pp. 93-122, May 1984.

[CIN75] E. Cinlar, Introduction to Stochastic Processes, Pren-,
tice Hall, Englewood Cliffs, NJ, 1975.

[HOL85aJ M.A. Holliday and M.K. Vernon, "A Generalized
Timed Petri Net Model for Performance Analysis
(extended version)," Tech. Rep. #593, Computer
Sciences Dept., UW-Madison, May 1985, to appear
in IEEE Trans. on Software Engineering.

[HOL85b] M.A. Holliday and M.K. Vernon, "Exact Performa
nce Estimates for Multiprocessor Memory and Bus
Interference," to appear in IEEE Trans. on Com
puters, also Tech. Rep. #594, Computer Sciences
Dept., UW-Madison, May 1985

(JOH82] L.W. Johnson and R.D. Riess, Numerical Analy
sis, Second Edition, Addison-Wesley, Reading, MA,
1982.

[MOL81] M.K. Molloy,"On the integration of delay and thro
ughput measures in distributed processing models,"
Ph.D. dissertation, Univ. California, Los Angeles,
198!.

[NAT80] S. Natkin, "Reseaux de Petri stochastiques", these
de Docteur Ingenieur, CNAM-Paris, June 1980.

[PET81] J.L. Peterson, Petri Net Theory and the Modeling of
Systems, Englewood Cliffs, NJ: Prentice-Hall, 198!.

[PET62] C.A. Petri, "Kommunikation mit Automaten," Schrif
ten des Rheinisch- Westfalischen Institute fur In
strumentelle Mathematik an der Universitat Bonn,
Heft 2, Bonn, W. Germany, 1962; translation: C.F.
Greene, Supplement 1 to Tech. Report RADC-TR-
65-337, Vol. 1, Rome Air Development Center, Gri
fiss Air Force Base, NY 1965.

[PIS84] S. Pissanetzky, Sparse Matrix Technology. Academic
Press, Orlando, Florida, 1984.

[RAZ83] R.R. Razouk and C.V. Phelps, "Performance Anal
ysis Using Timed Petri Nets," in Proc. 1984 Int.
Conf. on Parallel Processing, pp. 126-129, August,
1984.

[SED83] R. Sedgewick, Algorithms. pp. 428-430, Reading,
MA: Addison Wesley, 1983.

[SEN81] E. Seneta" Non-negative Matrices and Markov
Chains, Second Edition, Springer-Verlag, New York,
NY, 198!.

[STE7Z] G.W. Stewart, Introduction to Matrix Computations,
Academic Press, New York, NY, 1973.

[STE78] W.J. Stewart, "A Comparison of Numerical Tech
niques in Markov Modeling," in Communications of
the ACM, Volume 21, No.2, February 1978, pp. 144-
152.

[STE85] W.J. Stewart and A. Goyal, "Matrix Methods in
Large Dependability Models," Tech. Rep. RC 11485,
November 1985, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY.

[TAY84] H.M. Taylor and S. Karlin, An Introduction to Sto
chastic Modeling, Academic Press, Orlando, Florida,
1984.

[WAL66] V.L. Wallace and R.S. Rosenberg, "The Recursive
Queue Analyzer," Systems Engineering Dept., Tech.
Report #2, Univ. of Michigan, Ann Arbor, MI, 1966.

[VER86] M.K. Vernon and M.A. Holliday, "Performance Anal-·
ysis of Multiprocessor Cache Consistency Protocols
Using Generalized Timed Petri Nets," to appear
in Performunce '86 .and A CM SIGMETRICS '86
Joint Conference on Computer Performance Mod
eling, Measurement and Evaluation, also Technical
Report #618, November 1985, Computer Sciences
Dept., UW-Madison.

[ZUB80] W.M. Zuberek, "Timed Petri nets .. and preliminary
performance evaluation," in Proc. 7th Annual Symp.
on Computer Architecture, pp. 88-96, 1980.·

1105

SECURITY AND PRIVACY REQUIREMENTS IN COMPUTING

Rein Turn

California State University, Northridge
Northridge, CA 91330

ABSTRACT

Advances in computer technology are profoundly
affecting and changing the functioning of societies
worldwide, and are generating a variety of nontech
nical concerns about computer applications. Among
these are information security, privacy protection,
and societal resiliency. This paper briefly
describes the security and privacy requirements in
system design and use, and surveys the current
efforts for meeting these requirements. The paper
points out that it is important to consider
security and privacy issues in all phases of a
system's life cycle, as well as to familiarize
computer professionals with the societal impacts of
computer uses.

I. INTRODUCTION

Recent advances in computer technology are
making available, at acceptable cost, computer
systems with virtually unlimited processing power,
storage capaCity, and capability for data com
munication. The very large scale integration (VLSI)
technology permits placing on single chips tens of
thousands of logic circuits or millions of bits of
memory, and to mass-produce these for near
negligible cost1• It is economical, therefore, to
maximize the use of computer technology in any
system. Such use produces old products and services
in new, digital form, and engenders new services or
products. Ex~ples include the digital telephone,
expert systems , various el~ctronic funds transfer
systems (EFTS), smart cards, embedded microproces
sors 40r controlling other systems, and computer
vision •

The new computer technology and its applica
tions are profoundly affecting and changing the
functioning of societies worldwide. Dependence on
computers is increasing, and they are becoming
critical components in systems that will dirctly
affect our future as well as the daily life. This
means that the traditional computer system design
requirements, such as' high performance and
reliability, software portability, system inter
operability, and easy maintainability must be
strengthened and augmented by new requirements such
as system safety, system and data security, privacy
protection for personal information, and preserva
tion of societal resiliency. The purpose of this
paper is to provide an overview of these require
ments, and to discuss the design issues they raise.

CH2345-7/86/0000/1106-$-01.00 © 1986 IEEE

II. SECURITY AND SAFETY REQUIREMENTS

A general concern of the users of any system,
or of people directly affected by the operation of
a system, is its trustworthiness: Is it available
when needed? Will it function correctly and
reliably? Is it safe to use? Is it protected
against misuse or tampering? For a Simple system
such as a chain saw, it may be possible to answer
these questions by inspection at the time of use.
For complex systems, .such as an air traffic control
system, the designers and operators must be trusted
to have implemented the appropriate safeguards and
requirements.

The safety of computer-controlled re~l-time

systems is receiving increased attention. The
prinCipal goal is to prevent physical harm to the
users of the system, to anyone or any property
within the system's domain of operation, or to the
system itself and its operators. Concerns here go
beyond the reliability of the controlling computer
system alone -- while the latter is recovering, the
controlled system must not be unsafe. ThUS, system
safety encompasses the total system, including its
human operators and users, and even other systems
that may be encountered. Safety preservation tech
niques must be developed and integrated into all
phases of the system's life cycle, especially the
life cycles of the system's software, data bases,
and interfaces with users or other systems.

1106

Security requirements.

Computer security is usually defined as the:
"protection of the system and the data stored
therein against unauthorized access, modification,
destruction or use, and against actions or situa
tions that deny authorized access or use of the
system." While accidental events that threaten
security are included, the emphasis is on
deliberate attempts to weaken security. The need
for computer system security should be self-evident
in view of the large body of evidence that attacks
against compu6e7 systems or the information therein
have occurred ' •

In general, the following are the principal
reasons for providing access controls and security
in computer systems and applications :

Protection of resources: The computer sytem,
and more importantly, the data stored and pro
cessed therein, tend to be critically valuable

to an organization's functioning. Some data in
the system (e.g., financial accounts) directly
represent tangible value and must be protected
against unauthorized alterations.

Mandated ~ law: Several countries have
enacted laws that require protection of cer
tain categories of information, such as na
tional defense information or personal infor
mation; other laws may require that the in
tegrity of financial data be ensured.

Maintain management control: A goal for any
organization is to be in full control of the
computer resources and their use.

Ensure safety and integrity: Security is an
essential prerequisite for the system safety
and for the integrity of the data bases and
processes being used (e.g., in computer-aided
design or in computer-based modeling).

Operational advantages or economies: A secure
computer system is important in organizations
whose business depends on their customers'
trust (e.g., financial institutions). It can
increase the organization's advantage over
competitors with less secure systems. It can
also reduce operating costs such as insurance
premiums.

Despite of the convincing rationale, many
systems employ only a minimal set of security
safeguards. One reason for this is that the operat
ing system software provided by vendors is still
not capable of preventing unauthorized access
security has not been a design objective. While
operating systems generally perform their intended
functions correctly, experience has shown that they
contain design or implementation flaws and
shortcuts that permit any existing access control
mechanisms to be bypassed a~d, thus, cannot prevent
unauthorized access and use •

The theory of designing truly secure operating
systems appears now to bel~e11 in hand and meaning
ful deSign criteria exist ,but applying these in
practice is a different matter. Secure operating
systems will require radical changes in the cur
rently used hardware and software architectures,
and it will be very difficult to maintain com
patibility with the existing systems and software.
Vendors and their customers are reluctant to
develop new systems which, even if they provide
much better security, require expensive conversions
of the existing software and data bases. Many users
would accept the uncertainty of suffering large
losses in the future due to lack of security rather
than making even relatively modest expenditures for
security now.

Managers who do want to improve security find a
sparse market place: a few acc~,s control software
packages for managing passwords ,some devices for
controlling dial-up access to thwart hackers, and
various anchoring devices for personal computers.
With a fey exceptions (e.g., Honeywell's MULTICS
and SCOMP 2), there are no secure operating systems
available.

Security Risks.

Not all systems require a high level of
security, and different approaches can be taken to
achieving a desired degree of secureness. The
determination of security requirements for a given
system, and the selection of appropriate security
mechanisms are a part of the risk l~anagement ac
tivity. The basic steps are : value and
criticality analysis, vulnerability analysis,
threat identification, risk analysis, risk assess
ment, security safeguards selection and implementa
tion, development of contingency plans, and effec
tiveness reviews. Again, these steps may be dif
ficult to apply in practice. For example, it is
difficult to place value on information, discover
all vulnerabilities, or develop threat scenarios
for exploiting these vulnerabilities.

Security risk analysis requires establishing
for each threat its probability of occurrence over
a specified time period (e.g. a year) and the
amount of loss that would be incurred. These quan
tities can be multiplied to obtat~ the annual loss
expectancy (ALE), as described in • However, since
very little actuarial information is available
about threats to computer systems, computations of
the ALE's is usually based on the analyst's subjec
tive judgement. A thor~ggh review of risk analysis
techniques is found in •

The operational environment is also taken into
account. Thus, in general, security risks are
higher in systems where: (1) the ndistance" is
large between the highest information sensitivity
or processing criticality level in the system, and
the lowest trustworthiness level of the users; (2)
user capabilities in the system include assembly
language programming rather than being restricted
to higher-level language (HOL) programming only
(systems where users are limited to predefined
transactions are even less risky); (3) system
architecture is complex, such as in the case of
multiprocessors or in distributed data processing
systems (the risk is even higher in computer
networks); and (4) there is considerable uncer
tainty over the trustworthiness of the system
software developers (the situation worsens when
hardware developers' trustworthiness is also in
doubt).

The result of risk analysis is a list of
threats ordered by some severeness measure (such as
ALE). In the risk assessment step, decisions are
made about each threat: either to accept the risk
due to that threat or to reduce the risk by select
ing and implementing a set of additional security
mechanisms. However, in practice the granularity of
strengthening security is much more coarse and,
correspondingly, security cost increases are also
in much larger increments that might be expected.
In addition, tradeoffs may need to be made with
system design objectives or reqUirements other than
cost, such as functionality, performance, resource
sharing, reliability, and user-friendliness.

1107

Security Policies.

The conceptual elements of a security system
are: (1) a security policy which establishes the
security framework for the system; (2) prevention
mechanisms which provide isolation, identification
and authentication, and access control; (3) active
protection mechanisms which perform monitoring and
response functions; (4) integrity assurance
procedures for the security mechanisms; (5) backup
and recovery mechanisms; and (6) deterrence provi
sions (e.g., the existing computer crime laws).

In general, a security policy of an organiza
tion or a system defines the data protection re
qUirements, establishes the information sensitivity
levels and access categories, defines access
criteria and protection requirements, and es
tablishes authorization and accountability systems.
A formal model of the access control rules defined
by the policy is developed to permit formal proofs
of the correctness of the design, implementation,
and enforcement

16
0f the policy in the computer

system software • This model is called the
"reference monitor", and it is imPlemen~,d in the
operating system as the "security kernel" •

The security policy model of the U.S. Depart
ment of Defense (DoD) for protecting national
defense infsrmation can be used as an
illustration • The objective is to permit multi
level secure (MLS) operation where the system
permits concurrent storage and processing of infor
mation with different degrees of sensitivity
(security levels and categories), and permits
concurrent access by users with different
authorizations (security clearances and
categories), but prevents any unauthorized ac
cesses. In this security mode, full resource shar
ing is possible and the system can be used effi
ciently. The cost is in developing a secure and
trusted operating system. The DoD multilevel
security model may be stated as follows.

The system contains protected entities, called
·objects",O, and active entities that seek access
to the objects, called "subjects", S. Each object
is assigned a ·security level", SL(O), and member
ship in a set of access control categories, CAT(O).
Each subject has been granted a "clearance level",
CL(S), and access to a set of categories CAT(S).
The security and clearance levels form a hierarchi
cal system. Top secret, secret, confidential, and
unclassified (TS, S, C, and U, respectively) are
used in the DoD. The access categories are unor
dered and may exist at any security level. Two main
access modes of subjects to objects are defined:
read (observation but no modification), and write
(no observation, appending of new information
only) •

The policy has a mandatory (nondiscretionary)
part, and a discretionary part. The latter is a
need-to-know access control policy enforcement
which applies after the mandatory policy require
ments have been satisfied. A model of discretionary
access control is based on the access control
matrix and on access rules which may be implemented

1108

by using "capabilities" or naccess control listsn.
The mandatory (nondiscretionary) security policy
rules for granting access are: (1) the simple
security condition -- a subject is granted nreadn
access to an object if and only if CL(S) ~ SL(O)
and CAT(S) ~ CAT(O); and (2) the nstar-propertyn
(--property) -- a subject is granted nwriten access
(without being able to read) if and only if CL(S)
~SL(O) and CAT(S) = CAT(O). The purpose of the
--property is to prevent copying of information
from objects at a higher SL into objects at a lower
SL by untrusted software or users.

The mandatory access rules must be invoked by
the reference monitor mechanism in the system each
and every time access is sought to an object. In
order to compare the security and clearance levels,
every object and subject in the system must be
labelled. Labels must be unforgeable and the
labelling and label transfer mechanisms must be
proven correct -- they must be trusted. An addi
tional security requirement not explicit in the
above model is nconfinementn prevention of
information leakage to unauthorized subjects via
unconventional, ncovertn information flow channels.

Security policies in the private sector are
less precisely defined and tend to emphasize data
integrity and denial of services rather than data
disclosure. However, the DoD security policy and
systems that implement it may ftl~~ be suitable for
use in commercial applications' •

A recent development which may strongly in
fluence security policies and practice in the
private sector is the National Security Decision
Directive 145 issued in 1984 by the President. This
directive appoints the National Security Agency to
be the lead agency for computer security on a
national scale, and broadens the mission of the
National Computer Security Center to provide
security training and education, risk analysiS
assistance, and access to trusted system technology
also to the private sector. It also defines two new
sensitivity categories: nsensitive but unclassified
government or government-derived information, and
nsensitive non-government information."

Security Evaluation Criteria.

In 1983, the U.S. DoD Computer Security Center
publishe~O the trusted computer system evaluation
criteria which have become a de facto framework
for evaluating system security, especially the
operating system software security. The criteria
emphasize policy enforcement, users' accoun
tability, correctness assurance, and system
documentation. Based on these, the following system
of security divisions is defined:

Division Q, -- minimal protection: Systems in
this class have been evaluated, but fail to
meet any security requirements.

Division £, -- discretionary protection: Sys
tems in this division provide discretionary
protection and accountability of the subjects
for their actions.

Division~, -- mandatory protection: In this
division, all systems contain a Trusted Com
puter Base (TCB) that preserves the integrity
of security labels and uses them to enforce
the mandatory access control policy. The
implementation of the reference monitor con
cept must be demonstrated.

Division A, -- verified design: Systems in
this division have been subjected to formal
verification to assure that the mandatory and
discretionary security controls in the system
can effectively protect sensitive information.

The concept of a "trusted computing base" is
defined in the criteria document as follows: "TCB
is the totality of protection mechanisms within a
computer system -- including hardware, firmware,
and software -- the combination of which is respon
sible for enforcing a security policy. It creates a
basic protection environment and provides addi
tional user services required for a trusted com
puter system. The ability of a TCB to correctly
enforce the security policy depends solely on the
mechanisms within the TCB and on the correct input
by the system administrative personnel of
parameters (e.g., a user's clearance level) related
to the security policy.n

Security Mechanisms.

Security policies can be implemented in several
ways, using combinations of physical isolation,
logical isolation in operating system design and in
hardware architecture, or administrative
procedures. This yields a hierarchy of systems that
provide different levels of security at different
levels of confidence as specified, for example, in
the DoD trusted systems evaluation criteria. The
standard modes of secure operation are: dedicated
system, system-high security mode (all users are
cleared to the highest security level of data or
processing in the system), and multilevel secure
(MLS) mode. In an MLS system, the operating system
software is proven to be correctly designed and
implemented to handle security and clearance level
labels correctly and reliably, and to perform the
reference monitor function correctly and reliably,
such that no unauthorized accesses, overt or
covert, can occur. The state of the art of operat
ing system security, especially verification of
design and implementation correctness, has not yet
progressed to the point where g~Beral purpose MLS
operating systems are available •

Security mechanisms are hardware or software
features which implement the trusted computing base
by providing isolation, identification and authen
tication, and access controls. In conventional
operating systems they provide password validation,
memory protection, memory management, and
user/supervisor domains separation. In the future
trusted operating systems they will implement the
reference monitor model and features ne~,ssary for
enforcing the system's security policy : unfor
gable security labels, TCB protection (isolation of
the TCB from subjects by use of privileged operat-

1109

ing modes of the and virtualizing the system's
resources), confinement of covert channels, and
maintenance of security audit trails.

While the above are not all the architectural
features necessary for the implementation secure
operating systems, as per DoD security evaluation
criteria, they do form an important set of design
requirements that must be incorporated. In more
complex architectures such as distributed systems,
there are additional concerns regarding the
security of interprocessor communications (typi
cally using a local area network or LAN). ~~
plicable security mechanisms include encryption ,
and architectural approaches for achieving MLS ope
ration based on the use of a secure LAN and proc~~
sors dedicated to specific security levels •
Security measures for computer24networks are also
based on the use of encryption and sec~5e proto
for the various communications functions •

Finally, one must not overlook the interactions
of security requirements and mechanisms with the
other system design req~~rements. Of special inter
est is fault-tolerance , where certain software
based techniques for "corrective" redundancy may be
incompatible with security requirements. In using
corrective redundancy, errors in computation due
to a hardware fault are corrected by repeating the
computation. However, it may not be possible to
correct a security violation in this manner.

III. PRIVACY PROTECTION

Privacy is a concept with many meanings. In
this paper it is defined as the rights of in
dividuals regarding the collection, storage,
processing and use in decision making of personal
information about themselves. It becomes an issue
in computer applications in the context of com
puterized personal information record-keeping
systems. While privacy was also a problem in manual
systems, modern computer-communication technology
makes it economical to store and process large
volumes of data, permits complex correlations at
high speed, allows high-speed access from distant
locations and, thus, makes technically feasible for
physically decentralized systems to become central
ized "logicallyn.

Centralization, whether physical or logical,
lays the groundwork for integration of data records
and assembly of personal information dossiers on
individuals. This is viewed by the public as a
threat to their liberties. There are other
problems, too. Since information in stored and
process sed in computers is not directly readable by
humans, they cannot determine without the services
of the record keeper what information about them is
stored. Further, in the computer system, undetected
hardware and software errors can cause information
distortions, and information can be altered without
detection by accident or deliberately.

Privacy Protection Principles.

Privacy protection is a societal policy ahd
value which must be balanced with other policies
and values and, in system design, with other re
qUirements. It is clear that record-keeping on
individuals is necessary when privileges are
granted (such as the driver's license) or
qualification for some benefits is determined. In
these cases, the individual voluntariliy foregoes
some of his privacy in order to receive the
privilege or benefit. This is in the best interest
of the society. On the other hand, the society must
also protect the individual against excesses of the
record'keepers and against unfair decisions.

Since the government at its various levels from
national to local is a major record-keeping entity,
much of the concern about privacy protection cen
ters on its activities. However, in the private
sector, too, are large collections of personal
information on education, health, emplo~e~~,
financial status, purchases, and life style ' •
On the international scale, operations of multina
tional corporations and international data process
ing service bureaus has resulted in ~§a~8border
data flows (TDF) of personal information ' •

The principal mechanisms for ensuring privacy
protection to individual data subjects are legisla
tive and administrative, rather than technical.
Often this distinction is misunderstood -- threats
to individual privacy arise mainly from authorized
users of the system, rather than from unauthorized
users. Thus, privacy protection legislation is
needed to keep the authorized users from making
unauthorized use of personal information.

National level privacy protection legislation
(or data protection, as it is commonly called in
Europe) is now in force in a dozen countries:
Austria, Canada, Denmark, Federal Republic of
Germany, France, Israel, Luxenbourg, New Zealand,
Norway, Sweden, United Kingdom, and the United
States. Legislation is pending in several other
countries (e.g., Australia, Belgium, Finland,
Italy, Japan, the Netherlands, Portugal, Spain and
Switzerland). Although the implementation ap
proaches and protection scope tend to vary from
country to country reflecting different cultural
environments and legal traditions, the privacy
rights granted are remarkably similar.

The principles for privacy protection have
evolved over the last decade, beginning with
several national studies, advancing with the early
national privacy or data protection legislation (as
in West German province Hessen and in Sweden), and
arriving 3~ the current form in the OECD
Guidelines • The Code of Fair Information Prac
tices formulated by ~2 U.S. Government advisory
committee on privacy was the initial foundation
for these principles: (1) openness (no secret
record-keeping systems, uses, or practices); (2)
individual access (the right of individuals to know
what data are kept about them, and how they are
used); (3) individual participation (the right to
correct or amend erroneous records); (4) collection

limitation (restrictions on data types that may be
collected, and on the collection methods); (5) use
limitation (restrictions on the use of data for
unannounced purposes); (6) disclosure limitation
(restrictions on any external circulation of per
sonal data); (7) information management (require
ments to maintain data quality and confidentiaity);
and (8) accountability (clearly fixed responsi
bility for compliance with privacy protection
requirements).

Privacy protection efforts in the United States
have developed along three lines: the federal
government, state and local governments, and the
private sector. Federal-level privacy laws, espe
cially the Privacy Act of 1974, apply to the
federal government agencies, but with law enforce
ment and intelligence communities exempted. They
also apply to the private sector in financial
credit reporting, to educational institutions that
receive federal support, and to government access
to individuals' banking transaction records. The
states have enacted numerous privacy protection
laws that cover government agencies and also some
private sector business, addressing one or more of
the following: employment records, financial credit
reporting, insurance and medical records, law
enforcement and criminal justice records, EFTS and
cable televiSion, and the use of polygraphs.

The future trend in the U.S. is for more exten
sive protection, even though it is not likely that
any new federal-level privacy protection law will
be enacted soon; states are likely to be more
active. Thus, the private sector record-keeping
systems are likely to remain unregulated on the
federal level for some time, despite the priv~§y
Protection Study Commission's recommendations ,
and the general perception of the U.S. public that
the threat to privacy is increasing. There is one
exeption, however. The Electronic Communication
Privacy Act of 1985 is likely to be enacted in
1986. This law would protect messages in electronic
mail systems, and would limit the use of various
el~~tronic surveillance devices ,(e.g., as discussed
in).

1110

The Impact of New Technologies.

The public concern over threats to privacy is
further supported by the emergence of so-called
nnew technologiesn based on the use of computers:
computer networks, electronic mail, office automa
tion, electronic funds transfer systems (EFTS),
smart cards, interactive home serVices, and em
bedded microprocessors as controllers in other
systems. Collectively, these applications tend to
have a set of common attributes or modes of opera
tions which may increase their potential for ad
verse impacts on privacy protection, since they
potentially support: (1) automated services that
generate large volumes of transactions involving
individuals, and keep records on them; (2)
automated techniques and systems for collecting and
transmitting computer readable personal informa
tion; (3) direct or indirect integration of systems
which handle personal information; (4) applications
and services that allow inferring personal informa-

tion; (5) automated decision-making based on per
sonal information about individuals; (6) physical
or information surveillance of individuals; and (7)
overt or covert commercial markets for personal
information.

The above features of the new computer technol
ogy applications set the stage for potential
privacy protection problems. For example, computers
are being connected into networks, and networks
into super-networks, at a rapid rate. The benefits
of this for data communication are obvious, even
though the resulting systems contain multitudes of
complex, hard-to-trace communication paths which
contribute to problems in providing security,
access control, and message integrity and authen
ticity.

From the privacy protection point of view,
computer networks where personal information data
bases are on-line can support de facto integration
of record-keeping systems and, thus, the capability
for "virtual dossiers" and extralegal exchanges of
personal information. Networking will also enhance
matching of personal information fil~g 3g different
systems for investigative purposes ' , increase
the difficulty in monitoring compliance with
privacy protection requirements, and render misuse
of personal data bases more difficult to detect.
Similar privacy protection problems arise in other
applications of the new technology.

Privacy Protection and TDF.

Privacy protection is also an important
transborder data flow (TDF) issue. Some countries
with data protection laws are concerned that less
privacy protection will be given to personal in
fomation about their citizens when transmitted
abroad, espeCially to countries with less com
prehensive data protection laws than their own.
However, some countries that provide international
data processing services or operate private net
works tend to view these concerns as of little
merit and, instead, promote the principle of "free
flow of informationn • These countries, mainly the
United States, are also aginst the concept of
providing privacy protection to information about
legal persons, such as corporations.

Standardization of privacy protection require
ments, such as acceptance and implementation of the
OECD privacy protection guidelines, is one approach
to resolving these differences. The Counc31 of
Europe convention of privacy protection is
another effort in this durection among the European
countries.

Technical Implications of Privacy Protection.

A technical consequence of the privacy protec
tion requirements in the design and operation of
computerized record-keeping systems is the incor
poration of new functions not normally needed.
These include: (1) preparing notifications of the
system's functions and procedures in using personal
procedures for inspections, challenges, reviews,
information; (2) providing facilities and

1111

and submission of corrections or rebuttals by
individuals; (3) accounting for, and auditing of
the collection, use, and disclosure of personal
information, and interactions with the data sub
jects; (4) maintaining data quality, confiden
tiality and security; and (5) demonstrating com
pliance with protection requirements.

Collectively, these technical requirements
imply more computational tasks to be performed, and
more data storage resources to be used. For ex
ample, the Privacy Act of 1974 requires that
n ••• agencies shall maintain all records with such
accuracy, relevance, timeliness, and completeness
as is reasonably required to assure fairness to
individuals in determinationsn • This calls for the
following policy decisions: selection of data items
to be used (relevance), the level of detail of
information items (precision), the retention time
(timeliness), and criteria for verifying accuracy
of factual and evaluative information. In addition,
mechanisms must be provided for assuring authen
ticity of the data items, for access authorization,
and for revalidation or purging of data items.

The above, in turn, call for error control in
data collection and entry, reliable identification
of individuals, maintaining data integrity in the
system, providing additional data fields in records
for privacy protection purposes, operating privacy
protection related audit trails, implementing in
the systems data security safeguards and access
control mechanisms, and adequate provisions for
system backup and recovery.

Data security requirements in national data
protection laws, and in international agreements,
provide another example. The Council of Europe
convention provides that: Appropriate security
measures shall be taken n ••• against accidental or
unauthorized destruction or accidental loss, as
well as against unauthorized access, alteration or
dissemination". In addition, the convention re
quires that specific security measures be provided
for every file; that the degree of vulnerability,
need to restrict access, and requirement for long
term storage be considered; and that the current
state-of-the-art security measures, methods, tech
niques be used.

Concluding this section, it may be observed
that privacy protection continues as a concern in
many countries, and that privacy protection prin
Ciples are well-formulated and implementable. Since
the technical aspects of privacy protection re
quirements are substantial, they must be considered
early in the system's design phase and maintained
throughout its life cycle.

IV. SOCIETAL RESILIENCY

In an information SOCiety, production and
distribution of information is central to the
economic, political, and social life. The benefits
that accrue through the availability of information
drive the society to obtain even more information.
This leads to extensive automation of the informa
tion collection, processing, and dissemination

tion collection, processing, and dissemination
functions. Examples are the. decision support sys
tems in business firms, computer-aided design and
manufacturing systems, automated process control,
.office automation, electronic funds transfers,
military command and control systems, and many
others. It would be very difficult to operate in a
modern society without computerized information
systems.

As early as in the mid-1960s when the total
computer population of the world was a few tens of
thousands, concerns wer~8voiced over the increasing
dependence on computers • NOw, when the computer
population of world is in tens of millions, and
extensive computer networks exist, they are begin
ning to be regarded as a new, potentially serious
technological vulnerability of the society.

In 1979, Sweden released a report of its Com
mittee on the Vulnerability of Computer Systems
(SARK)39, which concluded that "vulnerability is
unacceptably high in today's computerized society".
Responding to this, the OEcRoheld a workshop in
1981 on computer vulnerability • Its conclusion
was that there are sufficient reasons to justify
concerns. In the United States, the American
Federation of Information Processing Societies
(AFIPS), reacted to the Swedish report by es
tablishing a panel to examine the applicability of
SARK conclusions to the United States. The panel
observed that the SARK findings were not represen
tative of the situation in the U.S., and that t~~s
country still appears to be ,adequately resilient •

An analysis of societal vulnerabilities and
potential hazards due to massive use of computers
is similar to performing a technology assessment or
a risk analysis. Vulnerabilities and threats are
identified and their effects are postulated. Among
the effects identified by the AFIPS panel as suffi
ciently severe to cause society-wide problems were:
(1) severe disruption of the national economy, and
large losses; (2) large decline in the productive
capability of an important industrial sector, or
'massive wasting of scarce resources; (3) severe
erosion of citizens' rights and freedoms, (4)
sharply increased dependence on foreign powers in
economy, finance, or politics, and (5) a coup
d'etat, conventional war, or a nuclear conflict.

If it is not possible for computer systems in a
given country to directly cause, or to contribute
to the occurrence of such harmful effects as listed
above, then it would appear that there are no
serious computer-related vulnerabilities in that
country. On the other hand, some computer applica
tion may contribute indirectly by creating poten
tial vulnerabilities which then may cause harmful
societal effects. Examples are command and control
systems, real time process control systems, systems
for distributing goods and services, personal
.information record-keeping systems, elevctronic
funds transfer systems, and management information
systems.

Through a sudden unavailability of a sufficient
number of computer systems a societally paralyzing
chain of events may be triggered. For example, a

1112

coordinated attack on computer systems may be
launched by terrorists, anti-social elements may
embark on a long-term effort of subversion or
sabotage, or computers may be damaged through some
natural or man-made event (e.g., radiation or
electromagne~~c pulse from a nuclear -accident in
earth orbit). A paralyzing situation may also
develop gradually, such as the accumulation in data
bases of erroneous information which results in
wrong decisions and, over time, renders important
computer systems unusable. Deliberate contamination
of data bases or software could result in similar
problems.

Resiliency is the ability to absorb disruptions
and damages without suffering long-lasting or
irreversible ill effects. In the present context,
it is the ability to recover from computer system
failures or from xheir misuse without society-wide
harms.: Resiliency may:be due to certain intrinsic
attributes nf the society in question, or it may be
achieved by-deliberate actions of the users, the
system designers, and the governmental agencies
which may be involved. The following factors appear
to affect resiliency: (1) geographic and
demographic aspects of the society (large countries
are likely to be more resilient); (2) degree of
multiplicity and redundancy in providing critical
services to the society; (3) degree of service
level and society-level preparedness, contingency
planning, and backup; (4) extent of preservation of
the "corporate. memory" of how functions were per
·formed and supported prior to automation; and (5)
existence of legal safeguards against misuses of
computer systems (e.g., such as privacy violations
or computer crime).

Some of the factors listed above are depend on
the Size, location, culture, history, and the
geopolitical situation of a country. Others are
controllable and achievable by appropriate
policies. ThUS, a computerized country is not
necessarily a vulnerable one. ·On the other hand,
resiliency cannot-be expected to be a permanent
condition. Deliberate efforts are required by ,all
sectors of the SOCiety to preserve resiliency. For
example, public awareness of the capabilities as
well as limitations of computer technology must be
increased, industry associations must assume a role
in maintaining resiliency in their specific func
tional -areas, and the government must promote
resiliency as a part of its nati·onal information
policy. Individual organizations that are dependent
on automated systems must plan for quality control
in their data processing operations, provide for
adequate security, establish and test contingency
plans, and take steps to maintain the corporate
memory of how to perform critical functions without
computer support.

v. CONCLUDING REMARKS

This paper has striven to show that the tradi
tional technical reqUirements must be augmented
with nontechnical reqUirements in the development
of computer systems for applications that impact
public safety and individual rights. Information
security and protection of individual privacy are

Information security and protection of individual
privacy are two such requirements. Providing these
protections involves a number of technical and
administrative measures which may reduce the com
puter system's performance, limit user access, and
add to the overhead in general. However, this is
the price that must be paid in designing, im
plementing and operating systems in a societally
responsible way. Warnings about the increased
societal vulnerability due to massive computeriza
tion must also not be taken lightly, since the
potential for highly disruptive threats is, increas
ing. For example, international terrorism is likely
to be directed against computer systems in the fu
ture at a much greater scale than in the past.

REFERENCES

[1] Christiansen', D. (Ed.), "Technology '85",
IEEE Spectrum" January 1985,PP. 34-95.

[2] Feigenbaum, E.A. and P. McCorduck, The· Fifth
Generation: Artificial Intelligence'and Japans
Computer Challenge to the World, Addison
Wesley, Reading,MA, 1982.

[3] Weinstein, S.B., "Smart Credit Cards: The
Answer to Cashless Shopping", IEEE Spectrum,
February 1984, pp. 43-49.

[4] Fu, K.-S. and A. Rosenfeld, ,"Pattern Recogni
tion and Computer Vision", IEEE Computer,
October 1984, pp. 274-282.

[5] Leveson, N., "Software System Safety", Pro
ceedings, .1.2§2 NATO Advanced Study Institute,
Durham, ~.K., Springer Verlag, New York, 1986.

[6] Parker, D.B., Fighting Computer Crime, Charles
Scribner Sons, New York, 1983.

[7] Norman, A.R.D., Computer Insecurity, Chapman
and Hall, London, 1983.

[8] Turn, R., "Private Sector Needs for Trusted/
Secure Computer Systems", AFIPS, Conference
Proceedings, Vol. 21: 1982 National Computer
Conferencen, AFIPS Press, Reston, VA, 1982,
pp. 449-460.

[9] Linde, R.R., "Operating System ,Penetration",
AFIPS Conference Proceedings, Vol. 44: 1212
National Computer, Conference, AFIPS Press,
Reston, VA, June 1975, pp. 361-368.

[10] Department of Defense Trusted Computer System
Evaluation Criteria, CS.C-STD-001-83, National
Computer Securi ty Center, Ft. Meade, MD" 15
August 1983.

[11] Eloff, J.H.P., "Selection Process for Security
Packages", Computers & Security, November.1983
pp. 256-260.

[12] Fraim, L.J., "SCOMP: A Solution to the Multi
level Security Problem", IEEE Computer, July
1983, pp. 26-34.

1113

[13] Campbell, R.P., and G.A. Sands, "A Modular
Approach to Computer Security Risk Assessment"
AFIPS Conference Proceedings, Vol. 48: 1m
National Computer Conference, AFIPS Press,
Reston, VA, June 1979, pp. 293-303.

[14] Guidelines for Automatic Data Processing Risk
Analysis, FIPSPUB 65, u.S. National Bureau of
Standards, Washington, DC, August 1979.

[15] Neugent, W., et al., Technology Assessment:
Methods for Measuring the Level of Computer
Security', NBS SP 500-133, U.S. National Bureau
of Standards, Washington, DC, October 1985.

[16] Cheheyl, M.H., et al., "Verifying Security",
ACM Computing Surveys, September 1981, pp.
279-339.

[17] Ames, S.R., Jr., M. Gasser, and R.R. Schell,
"Security Kernel Design and Implementation: An
Introduction", IEEE' Computer, July 1983, pp.
14-22.

[18] Landwehr, C.E., "Formal Models for Computer
Securi ty" , ACM Computing Surveys, September
1981, pp. 247-278.

[19] Lipner, S.B., "Non-Discretionary Controls for
Commercial Applications", Proceedings, 1982
Symposium on' Security and Privacy, IEEE Com
puter Society, 1982.

[20] Landwehr, C.E., "The Best Available Technolo
gies for Computer Security", IEEE. Computer"
July 1983, pp. 89-100.

[21] Landwehr, C.E., and J.M. Carrol~, "Hardware
Requirements for Secure Computer Systems: A
Framework", Proceedings, 1984 Symposium on,
Security and Privacy, IEEE Computer Society,
pp. 34-40.

[22] Meyer, C.H., and S.M. Matyas, Cryptography
A New Dimension in Computer Data Security,
John Wiley & Sons, New York, NY, 1982.

[23] Rushby, J., and B. Randell, "A Distributed
Secure System", IEEE .. Computer; July 1983,
pp. 55-67.

[24] Davies, D.W., and W.L. Price, Security for
Computer Networks, John Wiley & Sons, New York
NY, 1984.

[25] Voydock, V.L., and S.T. Kent, "Security Mecha
nisms in High-Level Network Protocols·, ACM
Computing Surveys, June 1983, pp. 135-171.

[26] Avizienis, A.A., "Fault-Tolerance: TbeSurvi
val Attribute of' Digital Systems~', Proceedings
of the IEEE, .Oct. 1978.

[27] Westin, A.F., Computers, Health Records, and
Citizens' Rights, NBS Monograph 157, Govern
ment Printing Office, Washington, DC, Decem~
ber 1976.

[28] Westin, A.F., Computers, Personnel Administra
tion, and Citizens' Rights, NBS SP 500-50,
Government Printing Office, Washington, DC,
July 1979.

[29] Turn, R. (Ed.), Transborder Data Flows: Con
~ in Privacy Protection and Free Flow of
Information, AFIPS Press, Reston, VA, 1979.

[30] Transborder Data Flows and the Protection of
Privacy, ICCP-1, OECD, Paris, 1979.

[31] Guidelines on the Protection of Privacy and
Transborder-Flows of Personal Data, OECD,
Paris, 1981.

[32] Records, Computers, and the Rights of Citizens,
Government Printing Office, Washington, DC,
July 1973.

[33] Personal Privacy in an Information Society -
Report of the ~.~. Privacy Protection Study
Commission, Government Printing Office, Wash
ington, DC, July 1977.

[34] Electronic Surveillance and Civil Liberties,
Office of Technology Assessment, Congress of
the United States, Washington, DC, October
1985.

[35] Shattuck, J., -Computer Matching Is Serious
Threat to Individual Rights-, Communications
of the ACH, June 1984, pp. 538-541.

[36] Kusserow, R.P., -The Government Needs Computer
Matching to Root Out Waste and Fraud-, Commu
nications of the ACH, June 1984, Pp. 542-545.

[37] Convention ~ Protection of Individuals with
Regard to Automatic Processing of Personal Data,
Council of Europe, Strasbourg, France, 1981.

[38] -Is the Computer Running Wild?-, ~.~. News and
World Report" February 24, 1964.

[39] The Vulnerability of Computerized Society:
Considerations and Proposals, Ministry of De
fense, Stockholm, Sweden, December 1979.

[40] -Workshop Stresses Dependence on Computers-,
Transnational Data Report, July/August 1981.

[41] Turn, R., and E. Novotny, -Resiliency of the
Computerized Society-, AFIPS Conference Pro
ceedings, Vol. 21, 12[1 National Computer Con
ference, AFIPS Press, Reston, VA, June 1983,
Pp. 341-349.

[42] Lerner, E.J., -Electromagnetic Pulses: Poten
tial Crippler-, IEEE Spectrum, May 1981.

1114

Analyzing the Security of an Existing Computer System

Matt Bishop

Research Institute for Advanced Computer Science
NASA Ames Research Center

Moffett Field, CA 94035

ABSTRACT

Most work concerning secure computer sys
tems has dealt with the design, verification, and
implementation of provably secure computer sys
tems, or has explored ways of making existing
computer systems more secure. The problem of
locating security holes in existing systems has
received considerably less attention; methods gen
erally rely on "thought experiments" as a critical
step in the procedure. The difficulty is that such
experiments require that a large amount of infor
mation be available in a format that makes corre
lating the details of various programs straightfor
ward. This paper describes a method of providing
such a basis for the "thought experiment" by writ
ing a special manual for parts of the operating sys
tem, system programs, and library subroutines.

Introduction

Published work in the security of computer systems
tends to take one of two directions. The work may center on
a new, secure (possibly provably so) computer system, and
discuss its design, implementation, and verification, or the
techniques used to do any (or all) of these steps. Less com
monly, the work may report ways of improving the security
of an existing system by discussing the known problems and
methods to counter these threats. Only a few papers l deal
with how to analyze an existing computer system in order to
locate security problems

At this point, we should remind ourselves what we are
trying to do. Users who have legitimate access to the system
are authorized users. If the permissions on the system are set
to allow someone to perform an action, that action is an

authorized action; if the action is performed in the absence of
such permission, it is an unauthorized action. A secure system
is a system which allows only authorized users to perform
only authorized actions. For example, if a user is not known
to the system administrator (by an entry in the password
file), he is not an authorized user and hence should not be
able to access the system. Similarly, a breach of security
occurs whenever an authorized user performs an unauthor.,
ized action, or when an unauthorized user obtains access to

Work reported here was supported by the National Aeronautics and
Space Administration under contract NAS2·11530.

CH2345-7/86/0000/1115$01.00© 1986 IEEE
1115

the system.

There are several reasons to check existing programs.
The most important is that the design, implementation, and
verification of new code takes quite some time, during which
the new code could not be used. When one realizes that
most operating systems were not designed with security as
the primary consideration, the magnitude of such a task
becomes apparent. Existing code, on the other hand, could
be used for increasingly privileged tasks as it is examined in
stages for security flaws. Second, given that there is already
enough existing code to keep a non secure system functioning,
it may be more cost-effective to check the code for security
holes rather than rewriting it completely. Finally, once it is
written, new software can be treated like existing software.

Unfortunately, lack of formal verification poses prob
lems. The best way to reduce the number of security prob
lems is "to use formal security verification methods to assure
that the mandatory ... security controls employed in the sys
tem can effectively protect ... sensitive information stored or
processed by the system.,,2 To do this, the developers must
state their security policy, the axioms used to implement the
security policy, and using these axioms present a mathemati
cal proof that the system satisfies the security policy. Then,
they must show the implementation of the operating system
conforms to the design. (LOCUS3 and PSOS4 are examples
of proposed operating systems for which mechanisms of for
mal verification have been described.) Throughout this pro
cedure is an assumption that the system is designed with this
type of verification in mind. To submit an existing system
to this procedure, one must first decide on a security policy,
and then model the system mathematically and show that
the system not only sqtisfies the security policy, but also is
accurately represented by the mathematical model. Abstrac
tion of a mathematical description from the operating sys
tem is far more difficult than implementing the operating
system from the mathematical description.

It is important to realize that no method will provide
the same degree of security as formally verifying a system;
however, less rigorous methods can reveal security flaws, and
make the writing and checking of secure system software
easier and less prone to error.

The Starting Point

Given that mathematical verification is not suitable, let
us look at other methods of testing, and improving, system
security. The most obvious is an ad hoc approach of trying
types of attacks that have proven successful on this, or

other, operating systems in the past. Although doing so is
very effective in discovering specific security problems, it does
not provide a broad, systematic approach for discovering
flaws in the security of computer systems, or for testing new

. components.

A generalization of this method will provide a founda
tion for analyzing security problems. One technique for
penetrating operating systems involves a formal strategy
called the "Flaw Hypothesis Methodology.,,5 It consists of
four parts: knowing how the target operating system
interacts with users, hypothesizing a flaw in that interaction,
confirming that the flaw exists (through "thought experi
ments" and actual testing), and generalizing the flaw, and
similar flaws, to a design or implementation deficiency in
that operating system. Clearly, the most difficult part is
taking the first step, from the knowledge of the operating
system to the supposition of flaws.

Before discussing ways to make this easier, let us try to
categorize the main areas in which problems arise, to gain
some insight about where to look. Bisbey, Carlstedt, and
Hollingsworth at the University of Southern California's
Information Sciences Institute have identified several
categories of system flaws which can produce security viola
tions. The following list summarizes them by listing main
areas, each broken into sub-areas:*

(1) Improper protection (initialization and enforcement):

(Ia) improper choice of initial protection domain; for
example, an incorrect choice of a protection
domain or security partition leading to a user
being able to access and change an audit trail;

(1 b) improper isolation of implementation detail; for
example, allowing users to bypass operating sys
tem controls and write to absolute input/output
addresses;

(Ic) improper change; for example, allowing data to
be inconsistent while still in use, by letting one
process change a database file while another,
different process is accessing that file;

(Id) improper naming; for example, allowing two
different programs to have the same name;

(Ie) improper deallocation or deletion; for example,
leaving old data in memory deallocated by one
process and reallocated to another process, ena
bling the second process to access the information
used by the first;

(2) Improper validation; for example, not checking critical
conditions and parameters, leading to a process' address
ing memory not in its memory space by referencing
through an out-of-bounds pointer value;

(3) Improper synchronization:

(3a) improper indivisibility; for example, interrupting
atomic operations such as locking;

(3b) improper sequencing; such as allowing race condi
tions among processes vying for resources;

(4) Improper choice of operand or operation; such as using
unfair scheduling algorithms that block certain processes
or users from running.

Although certainly not complete, this list provides a means

* This organization is from Peter Neumann6
.

1116

of classifying most security problems, and is quite suitable as
an outline of areas in which problems of security will arise.

Now that we have guidelines on where to look, we must
consider how to go about looking. Unfortunately, there is no
way to do this other than by trial and error. (There has
been some discussion of problems leading to, and attacks
takin~ advantage of, security flaws in operating systems gen-:
erally ,6, as well as discussions of the security of specific
operating systems 7,8,9.) Such methods may be made more
effective if the trials are done systematically rather than at
random. One technique to systematize the search is to use a
dependency graph of the control objects in the operating sys
tem to study their interaction and look for possible problems
that may enable an' attacker to breach security. Among the
difficulties with this are the generation of the graph, and its
being understood by those not familiar with the layout of
the graph.

Before examining another technique, let us analyze the
problem of finding security holes a bit further.

Laying the Groundwork

The key point in looking for security flaws is recogniz
ing that the security problems we are dealing with arise from
interactions between the user and the operating system.
Specifically, the user creates a condition using one or more
programs and then executes another program or programs
which cause the operating system to ignore specific protec
tions. For example, to copy a protected file, the user must
force the operating system to ignore or override this protec
tion (for example, by running a program at a level of
privilege sufficient to cause file protections to be ineffective.)

Unfortunately, any list of methods to do this will con
tain only a subset of all possible methods, since any new sys
tem program would add many new ways to evade protec
tions. Even if such a list could be made, it would be very
different for each operating system, because each operating
system has its own design and implementation philosophy,
and the latter often differ in ways that affect very subtle
points of interaction. Similarly, programs perform different
tasks, and the work needed to catalogue all of the possible
jobs programs may do will be endless. Indeed, the required
level of security differs, too; programs executed with special
powers (such as root or operator privileges) must be checked
for security violations that need not be looked for in other
nonprivileged programs.

But the problems that arise come from the interaction
of users with the operating system, as we have said. The
only two ways for a user to interact with the operating sys
tem are through programs (software) and through equip
ment attached to the computer (hardware), in the latter case
the interface being the kernel. So, in order to examine the
way users interact with the operating system, we must study
how the programs interact with the operating system, and
the device drivers and other routines through which the
equipment interacts with the kernel.

Let us deal with individual programs first. To study
how they interact with the kernel, we shall try to abstract
the functionality of the program from the actual code. This
will have two effects. First, it will separate security problems
introduced by the coding of the program from those intro
duced by the design of the program. Then, the design of the
program can be checked, both for internal security problems

and for security problems arising from interaction with other
programs. Once this is done, the implementation can be
examined to ensure that it does not introduce other security
problems.

The first step, therefore, is to figure out what the pro
gram does, and how it goes about doing it. For the first
part, system documentation will provide some guidance, but
because documentation very often is incorrect, incomplete, or
imprecise, it is not always good to rely on it; hence, for both
learning what the program does, and how it does it, one
must go through the program code. Second, one must docu
ment all interaction with the operating system (such as the
files looked at, and how the program uses them.) In particu
lar, one must document all error checking and recovery (or
the lack of it.)

As an outline, the following organization for this docu
ment would be appropriate:

Name

This is the name of the program. If the program may be
invoked by any of several names, all should be listed.

Actions

Although similar to a specification, this section should con
form to the code and not to what the program is supposed
to do. This section requires that the implementation be
examined and written out in such detail that someone not
familiar with the code could understand not only the action
of the program, but how it works, and what side effects it
has. If library routines or programs already documented in
this fashion are used, it is often useful to refer to the
appropriate pages rather than recapitulate the actions of
those routines or programs.

Apparent Assumptions

This presents any inherent assumptions. For example, if a
file is assumed to be in a specific format, this should be
noted here. If an assumption about the meaning of an error
condition is made, list it here.

Files Used

This section names the system and user files used. It also
contains a short description of each, any assumptions made
about format, and the system calls used to access each.

System Calls

This lists all the system calls used.

Execution Modes

This is most useful for programs; it describes who may exe
cute the program and with what privileges the program exe
cutes.

Known Bugs

Any known security problems are listed here. As security
holes are found, they should be added. Note that suspicions
should be listed (but marked as suspicions) until they are
proven or disproven.

Error Handling

This describes what happens if errors occur. For example,
suppose an index into an array is out of bounds; does the
program dump core? Suppose a file is not in the correct for
mat? Are there checks to ensure any reading or writing
succeeds?

1117

Library Functions Used

List the names, versions, and dates of any library functions
used.

Manual Page Version

Give the author, date, version of the program, and system
for which this document was prepared.

We shall call this document the security manual page to dis
tinguish it from the usual manual page. (A sample page, for
the UNIX* library routine getlogin, follows the references.)

Of course, in the Known Bugs section, one should docu
ment any discovered security problems.

This documentation should not be confined to the pro
gram only. Very often system programs need to perform a
task such as looking up a name in a table to obtain associ
ated data. These functions are performed so often that they
have been collected into a set of library routines. Since these
routines affect the function of each program in which they
are used, it would save time and work to document these
routines as described above. This would provide one refer
ence for each library routine, rather than having the same
routine be checked once for each program in which it is used
(and risking a security hole being overlooked once). Simi
larly, new programs should use library routines whenever
possible, and rather than duplicating code amongst several
programs, the code should be changed into a library routine
which the programs then call.

As an example of why documentation that describes the
implementation of a program or library routine is necessary,
consider the getloginO bug, which exists on many UNIX sys
tems. According to the manual lO

, "[gjetlogin returns a
pointer to the login name as found in /etc/utmp." Although
accurate, this description is very imprecise. Getlogin actually
returns the login name of the user whose terminal is associ
ated with the input, output, or error streams; this mayor
may not be the same as the login name of the person who
executed the program. The security manual page should
make this final statement, even though the manual page
states getlogin's function as indicated.**

Because of its complexity and function, the kernel must
be checked differently than system programs and libraries.
The principle is the same - analyze the code and document
those parts which interact with other programs and equip
ment - but many security manual pages, not just one, will
be written for it. Specifically, at least one page per system
call and device driver will be necessary, stating error condi
tions and precisely how they are handled, as well as how the
system calls and device drivers are accessed. Main
components of the kernel - the initialization routines, the
scheduler, and so forth - must also be documented, as must
any routines that rely on files or specific memory locations or
any other external factors.

Hence, the first step to checking the security of pro
grams and the operating system is:

Document each program, system call and device
driver, and library routine thoroughly, not just as to
purpose but also as to its side effects and error han
dling.

* UNIX is a Trademark of Bell Laboratories.

* * See the sample security manual page that follows the references.

Hypothesizing the Flaws

Once a manual page or set of manual pages have been
written, the process of locating security flaws begins. Unfor
tunately, the only known approach to doing this is largely ad
hoc.

There are analogies in other fields. For example, the
only way communications analysts can assess vulnerabilities
of communications systems is to study the system
thoroughly, and then draw on their knowledge of that sys
tem, their experience, and their knowledge of attacks that
worked with other systems, to hypothesize security problems.
They then test for these suspected flaws. The situation is
precisely the same for computer security.

As with analyses of the vulnerability of communications
systems, we can draw on past experience. There have been a
number of studies of operating system security in general
and of specific penetrations of various operating systems
(some of these have been referred to earlier.) These studies
provide knowledge of attacks that worked with many
different systems. Combined with the knowledge gleaned
from mathematical analyses of other systems and the
weaknesses uncovered using those tools, all this experience
provides a very solid background for hypothesizing security
flaws.

The security manual described in the previous section
will provide both the means of studying the system
thoroughly and a reference guide useful in formulating
hypotheses. As each program or routine algorithm is con
sidered by itself, flaws may become apparent. (In fact, this
happened with the getlogin manual page attached to this
report. The second of the Known Bugs section was found by
noticing the assumption made in step 4 of the algorithm,
comparing it to step 3, and wondering what would happen if
the assumption was invalid.) Correlating programs which use
the same system files may reveal that the interaction of some
such programs presents attackers with opportunities to sub
vert the system, or that these programs make inconsistent
assumptions (or invalid assumptions) about the data in the
file, or the way the file is used. A similar comment holds for
programs and system calls; special attention should be paid
to those system calls used to access and manipulate system
files. The section on error handling should be quite fruitful
for hypothesizing flaws. Many error conditions are not ade
quately handled, not handled correctly, or simply ignored.
Very often this produces unusual situations that ma~ present
security holes which a clever attacker can exploitll,l .

Hence, the second step to checking the security of pro
grams and the operating system is:

Drawing on the documentation, past experience,
and general knowledge of operating system vulnera
bilities, hypoth,esize security flaws in the computer
system, and test either to confirm or to deny that
those flaws exist.

Summary

When checking an existing computer system for secu
rity, both the operating system kernel and the system
libraries and privileged programs must be examined. (If
none of these has security flaws, applications programs will
not be able to breach security.) They should be examined in
the above order; note that this will ensure that the operating

1118

system calls, which are the basis for system library routines
and system programs, will be examined before the code using
them is examined.

Within each of these aspects, the steps of the "Flaw
Hypothesis Method" as described in sections 2, 3, and 4
should be used to locate security flaws, paying special atten
tion to the problem areas described in section 2. For each
aspect, a security manual of the sort described in section 3
should be written and used as the basis for examining the
interaction of the various components of the kernel, the
libraries, and the system programs as discussed in section 4.

While this method will not ensure perfect security of a
computer system, it will significantly increase the difficulty of
an attacker penetrating the system.

Acknowledgements: My deepest thanks to Barry Leiner and
Peter Neumann, who both made very valuable suggestions
towards improving this paper; to Mike Long, Bill Wall, and
George Hays, for their incisive comments; and to Larry Hof
man and Bob Brown.

References

[1] Denning, Dorothy E., An Intrusion-Detection Model,
Technical Report CSL-149, SRI International, Com
puter Science Laboratory, 333 Ravenswood Avenue,
Menlo Park, CA 94025 (Nov. 1985)

[2] -, Trusted Computer System Evaluation Criteria, CSC
STD-001-83, Department of Defense Computer Security
Center, Fort George G. Meade, MD 20755 (Aug. 1983)

[3] Walker, Bruce, et al., Specification and Verification of
the UCLA UNIX Security Kernel, CACM 23(2), pp. 118-
131 (Feb. 1980)

[4] Neumann, Peter G., et al., A Provably Secure Operating
System: The System, Its Applications, and Proofs, Com
puter Science Laboratory Report CSL-116, SRI Interna
tional, Computer Science Laboratory, Menlo Park, CA
(May 1980)

[5] Linde, Richard R., Operating System Penetration, in the
1975 National Computer Conference Proceedings
(AFIPS Conference Proceedings 44), pp. 361-368 (May
1975)

[6] Neumann, Peter G., Computer System Security Evalua
tion, in the 1978 National Computer Conference
Proceedings (AFIPS Conference Proceedings 47), pp.
1087-1095 (Jun. 1978)

[7] Attanasio, C. R., Markstein, P. W., and Phillips, R.,
Penetrating an Operating System: a Study of VM/970
Integrity, IBM Systems Journal 15(1), International
Business Machines Corp., pp. 102 - 116 (1979)

[8] Grampp, F. T., and Morris, R. H., "UNIX Operating
System Security", AT&T Bell Laboratories Technical
Journal 63(8), pp. 1649-1672 (Oct. 1984)

[9] Ritchie, Dennis M., "On the Security of UNIX", in UNIX
System Manager's Manual, 4.2 Berkeley Software Distri
bution, Virtual VAX*-ll Version, Computer Science
Division, Department of Electrical Engineering and
Computer Science, University of California, Berkeley,
CA (Mar. 1984), as reprinted by the USENIX Associa
tion

* V AX is a Trademark of Digital Equipment Corporation,

[10] -, UNIX Programmer's Manual Reference Guide, 4.2
Berkeley Software Distribution, Virtual VAx-11 Version,
Computer Science Division, Department of Electrical
Engineering and Computer Science, University of Cali
fornia, Berkeley, CA (Mar. 1984), as reprinted by the
USENIX Association

[11] Bishop, Matt, How to Write a Setuid Program (extended
abstract), Proceedings of the Spring 1986 Cray User
Group (May 1986)

[12] Darwin, Ian, and Collyer, Geoff, Can't Happen or /*
NOTREACHED */ or Real Programs Dump Core, 1985
Winter USENIX Proceedings (January 1985)

Appendix - Sample Security Manual Page

NAME

getlogin - get login name

INVOCATION

char *getloginO; .

ACTIONS
Getlogin returns the user believed to be using the controlling
terminal. It does this as follows:

1. Find the first of the file descriptors 0, 1, 2 associated with
a terminal by running an ioctl(2) on each and seeing
which one succeeds; if all fail, return O.

2. Find the device/inode pair corresponding to that termi
nal by using fstat(2), and scan the files in the directory
/dev/ until one is found with that device/in ode pair. If
none is found, return O.

3. Search the file /etc/ttys for that file name, and count the
number of lines N skipped before it is found. If not
found, return O.

4. Read the Nth record in /etc/utmp; this corresponds to
the user currently using that terminal. It is in the format
of utmp(5).

5. Return the contents of the ut name field of that record.
Note it is kept in a static a;;a, and is overwritten the
next time getlogin is called.

APP ARENT ASSUMPTIONS

The first of the file descriptors 0, 1, and 2 that is associated
with a terminal is associated with the terminal the user
logged in on.

The number of the (text) line in /etc/ttys describing a termi
nal corresponds to the offset into the file /etc/utmp for that
terminal.

FILES USED
/etc/ttys List of terminal names, one per line; open(2),

read(2), close(2)

/ etc/utmp List of logged-in users; assumes each record
corresponds to a line in /etc/ttys and that the

records have the same order; open(2), Iseek(2),
read(2), close(2)

1119

/dev/ Directory containing files corresponding to termi
nals; used to determine the name of the control
ling terminal; open(2), read(2), close(2)

SYSTEM CALLS

close(2), fstat(2), ioctl(2), lseek(2) , open(2), read(2), sbrk(2),
stat(2)

EXECUTION MODES

This is a system library function.

KNOWN BUGS

If the first file descriptor found to be associated with a termi
nal is not associated with the controlling terminal, the name
of the user at the associated terminal will be returned, and
not the name of the user at the controlling terminal.

If a line is added to or deleted from /etc/ttys, the algorithm
used to associate users with their terminal names fails miser
ably. This problem can be corrected by looking in the
ut_term field of the record and comparing it with the name
obtained from /etc/ttys.

ERROR HANDLING

On error, it is supposed to return O.

No error check to be sure the lseek(2) to the record in
/etc/utmp succeeds.

No error check to be sure the record in /etc/utmp
corresponds to the name of the terminal.

Silently assumes names which are shorter than the space
allocated in the record for user names are blank padded.

LIBRARY FUNCTIONS USED

NAME VERSION DATE
11/14/82
12/21/80
12/21/80
5/7/82
7/1/83
7/1/83
7/1/83

getlogin.c
isatty.c
ttyslot.c
ttyname.c
closedir.c
opendir.c
readdir.c

4.2
4.1 (Berkeley)
4.1 (Berkeley)
4.3 (Berkeley)
4.5 (Berkeley)
4.5 (Berkeley)
4.5 (Berkeley)

MANUAL PAGE VERSION

AUTHOR
DATE
SYSTEM
VERSION

Matt Bishop
December 1, 1985
4.2 BSD
getlogin.c 4.2 (11/14/82)

A NETWORK TECHNIQUE TO ACHIEVE PROGRAM AND DATA SECURITY
WITH NOMINAL COMMUNICATIONS OVERHEAD

J. R. Driscoll*, H. N. Srinidhi*, and T. S. Chesser**

*Dept. of C. S., Univ. of Central Florida, Orlando, FL 32816
**Martin Marietta Data System, Orlando, FL 32809

ABSTRACT

In an environment where copyrighted
programs are shared by numerous indepen
dent users via a network configuration
(e.g., a local area network), security
research efforts have focused primarily
on program security or on data security,
but not both. In this paper we are con
cerned with achieving both types of
security and characterizing the communi
cation cost of doing this. We survey
existing security techniqu~s for the
environment of concern and present a
radically new technique. We analyze and
simulate the communication cost of each
technique to demonstrate their relative
merits. It is shown that the technique
requires nominal communications overhead
while achieving both program and data
security.

This paper deals with three issues
securing user-data~ securing program
logic, and reducing communications
traffic. The securing of user-data. has
been widely studied and many effective
techniques exist (see, for example,·
[DENN82). By program-logic, we mean the
set of all executable paths o~ a. program.
The securing of program-logic ia a network
environment is an issue not commonly stu
died or even mentioned in the literature~
Achieving security of program-logic, in
conjunction with securing user-data, will
have an effeat on communications traffic
in a network environment.

Security in computer networks is ham
pered by the requirement that the applica
tion program and the portion of the data
base it manipUlates must be physically
resident on the same processo~ node at
prog~am execution. This may require
transmission of programs or' data ove~
wire, microwave, or satellite links with
resulting vulnerability to interception,
decryption, and analysis. Since database
management systems are the most widely

CH2345-7/86/0000/1120$Ol.OO© 1986 IEEE ..
1120

used applications in main frame sites with
information centers [KNIG85], we feel that
a way which minimizes the shipment of
program~logic and user-data (with sp~cial
emphasis on database applications} would
increase overall security within network'
environments.

Proprietary software and sensitive
data are two assets, each of which have
value [PARK81]. Our work to secure, these
two assets in a network environment has
been influenced by the following addi
tional concerns:

(1) Softwar~.updates: Information sys-
tems inherently require periodic
software upgrading. Dispersion of a
change to all users can be expensive
and may never result in a complete
upgrade among all the users.

(2) Communications traffic: The volume
of communications' traffic and the
communications rate affects the per
formance of the network.

(3) Number 'of users.serviced: The number
of users serviced by a single copy of
a program can determine main storage
requirements. A processor servicing
a large number of users could very
easily require a large I/O buffer
space.

(4) Volume of user-data: The volume of
user-data determines the amount- of
secondary storage required. The
issues are cost and responsibility
for that storage.

Section 2 uses an example to motivate
and describe two prevalent techniques for
the network environment of concern and
then describes a new, more secure, tech
nique. Our descriptions allude to the
above concerns. Section 3 outlines an
approach for implementing the new tech
nique, and Section 4 presents performance
results for a simulation of this approach.
In Section 5, we provide an analysis to
he lp ver.ify our s imu la t ions". Sec t ion. 6
concludes our paper by discussing the sig
nificance of our work and presents alter-

native approaches for implementing our new
technique.

In this section, ,we present a commer
cial example to motivate and describe the
chara~teristics of two prevalent tech
niques 'for the program-logic and user-data
security problem when these two assets do
not have the same owner or do not have the
same nod a residency ~uring execution. It
will .be seen that each of these techniques
causes a compromise of either program
logic or user-data, and neither one pro
vides an acceptable solution to the four
security related concerns listed in Sec
tion 1. We then introduce a radically new
technique which is applicable when gen
eralized database management systems are
considered for the program-logic environ
~ent. It will be seen in Sections 4 and 5
that this new technique provides a viable
alternative to existing techniques for the
defined environment.

Let a person's house be an environ
ment. (A business could just as well be
used here for an environment.) Consider
the Internal Revenue Service. The IRS
requires, essentially, annual reports from
people. People should have access to
standardizad application programs which
enable them to maintain IRS acceptable
records for completing IRS forms (manage
ment information). It is easy to imagine
that, in the near £uture, a company like H
& R Block would make convenient IRS appli
cations programs available for people to
maintain IRS acceptable bookkeeping
records so that IRS forms can be automati
cally completed. The conditions here are
the following:

(a) People insist on keeping their data
in-house, so. they will insist onhav
ing their own copy of H & R Block's
application program.

(b) H & R Block will not provide a copy
of any of their application programs
to people for fear that the programs
would be passed on without reimburse
ment. H & R Block will insist that
any person who desires to use pro
grams submit their data to H & R
Block.

(c) The application programs developed by
H & R Block will need to be modified
periodically to reflect annual
changes, such as new tax tables,
alternations in computation pro
cedures, and new formats for print
ing. H ~ R Block will insist that,
at any particular time, every person
must use the same application pro-

1121

grams. This requirement will be
impossible to enforce unless the pro
grams "run" at computer installations
controlled or owned by H & R Block.

We will refer to this example to help
explain the security techniques described
in the following subsections.

This technique is characterized
essentially by the fact that the user pur
chases the database management system
software and data storage hardware. Since
the user executes the program in his
environment and the data is not transmit
ted, absolute data security is insured.
However, protection of proprietary
software is of concern since the software
may b e p I a g i a r i zed • S o'f twa r e up d ate s
involve additional expense to the aoftware
vendor. The cost of the processing
hardware and software may be of concern to
the user. The weakest security mechanism
here is the software licensing agreement
[PARK81] •

Referring to the commercial example
in Section 2.1, H & R Block would have to
allow users to purchase their application
programs which violates condition (b).
Consequently, the Data Secure technique is
not a realistic technique for this exam
ple.

This technique is chara~terized
essentially by the fact that the ~atabase
management system runs on one machine (the
program node). while all the user-data
originates on another machine (the data
node) and must be transmitted to the pro
gram node for processing. Assuming the
data traffic contains sens itive informa
tion, effective data protection mechanisms.
[ABRA85, DENN82, HOFF77, MCMA85, WOOD86]
are essential. But, since data is
transmitted. in some form. it will 'always
be vulnerable; absolute data ~security is
not provided. However, software ~ainte
nance is simplified and proprietary
software is protected. The volume of data
and the communications transfer rate
impact system performance. The communica
tions traffic may be a problem. For some
techniques of this type, the user-data is
transmitted and then resides at the pro
gram node for processing (e.g., Martin
Marietta Data .Systems of Orlando,
Flo rid a); -f or 0 the r s , it i s rep eat e d 1 y
transmitted for processing and resides at
the data node. The number of users ser
viced is of concern for the program node.
Volume of user-data may be of concern to
either the program node or the data node.

Referring to the commercial example
in Section 2.1, people would have to
transmit their data to H & R Block which
violates condition (a). Consequently, the
Program Secure technique is not a realis
tic technique for this example.

Absolute protection of proprietary
software and sensitive data can be accom
plished. This is true when the program
logic environment is defined by a general
ized data base management system. The
configuration shown in Fig. 1 provides a
solution by keeping the program-logic
separate from the user-data [CHES85,
DRIS84].

Execution of a DBMS occurs on the
program node. The user-data resides on
the data node. This technique employs a
signal/response method to accomplish DBMS
execution. A signal packet is generated
by the program node and transmitted to the.
data node for interpretation. The data
node has processing and storage abilities.
Interpretation of the signal packet
requires some software interface to exist
on the data node. The intent of this con
figuration is to keep this interface sim
ple and compatible with various data nodes
so that any off-the-shelf personal com
puter can act as a data node. The data
node performs the requested signal opera
tion and transmits a simple response back
to the program node if necessary. Thus,
the number of users serviced will not be a
concern. Since the user-data is never
transmitted across the communications link
between the two nodes, absolute data secu
rity is insured. Thus volume of user-data
js .of concern only to the data node. The
DBMS is resident on the program node and
its program~logic is never transmitted;
only data manipulation instructions are
transmitted. Thus. software maintenance is
simplified and proprietary software is
protected. The volume of signals and
responses and the communications traffic
rate impact system performance. Communi
cations traffic may be a problem and needs
to be studied.

Referring to the commercial example
in Section 2.1 and the configuration shown
in Figure 1, the processing facility of
the program node would be owned by H & R
Block. People would buy personal comput
ers of their choice and each person's
equipment would represent a data node. A
person would select commands offered by
the H & R Block application programs. The
application programs would issue commands
to cause data movement or modification
within the person's system. The financial
records of the person do not move outside
the person's system. Each person would
establish and maintain their private

1122

financial records during a year. At the
end of a year, each person would produce
their own income tax return on their
printer. H & R Block application programs
are used but not seen by the people. H &
R Block can easily alter or update their
programs to comply with IRS whims. Conse
quently, all toe conditions (a), (b) and
(c) of Section 2.1 are satisfied by this
technique.

The primary purpose of this paper is
to present evidence which demonstrates
that this new technique is a viable alter
native to existing techniques. This is
done in Sections 4 and 5. In the next
section, we outline a method of implement
ing this new technique.

In this section we describe a low
level hardware method of implementing the
Program and Data Secure technique. We
consider only generalized database manage
ment systems for the program-logic
environment. This method involves ship
ping machine language data manipulation
instructions with the generalized database
management system to the data node for
_e x e cut ion. T h i_s_ _ i S _ Dec 0 m p 1 ish e d by
extending the machine's instruction opcode
field to include a special bit identifying
an instruction for shipment. This method
requires additional storage for the ship
ping bits, interpretation logic for
instruction type identification, and modi
fied compilers which identify the instruc
tions that need to be shipped.

If an instruction directly references
data which exists on the data node, the
instruction must be marked as an instruc
tion to be shipped to the data node.
Clearly, I/O operations using peripheral
devices residing on the data node (i.e.
printer or terminal) must also be marked

DBMS
E'xl'cution

PROGRAM
NODE

Signal
GE'nE'rator

Ins~ructions for data
r ansfer and modific~~ion

DATA
NODE

Signal
In~('f""prE't

RE'SDOnSE' I RE'sponsE'
I' Inti'rprpt i':(>soonsE' to mE'nu, ='IOn<llll-=-GE':....n:..:..p:....ra:.:.t.:..:or-h.

IIUHIDil instruction, I/O rE'turn ~
~ codE's ~

M[MOkY M[MOhY

ITIIJJ ITIIJJ
"!i!U,!,~s ~(GlSTHS

wlthm l'nviro:1ml'nt

Fig. 1. The Program and Data Secure Configuration.

for shipment to the data node. Since the
DBMS executes on the program node,
instructions which control the execution
flow of the DBMS are never shipped to the
data node for execution. An example of
this type of instruction is a branch
instruction.

Automation of the process of identi
fying the data manipulation related DBMS
instructions poses an interesting problem.
A likely solution is to design a compiler
capable of distinguishing between data
node and program node variables. If there
is a mix of program node and data node
variables in an instruction, then the com
piler must decide as to where the instruc
tion is best executed at that instant. An
alternative solution is to have a prepro
cessing software which would flag those
instructions that need shipping and
replace them by the appropriate calls to
shipping routines. We are not concerned
with the design of such a software in this
paper.

Our concern here is to show by exper
imentation the feasibility of the method
described in Section 3. It is true that

·the messages passing via the link between
the program and data nodes need be
encrypted and authenticated [DENN82]. The
overhead associated with encryption would
be proportional to the length of the mes
sage and do not alter our results
~e~tioned here. All softwa~e overheads
are ignored as the slow communication link
speed will dominate the execution times

A simple DBMS was written using IBM
370 assembly language. The DBMS was capa
ble of defining up to four files, insert
ing and deleting records, printing files,
deleting files, and displaying directory
contents. The DBMS was not designed for
storage of real data as we were more
interested in writing a DBMS capable of
performing a reasonable test of basic data
manipulation operations. Consequently,
the DBMS was not complex; it offered only
basic file-handling capabilities which
served our purpose.

The data manipulation instructions of
the DBMS were identified and the DBMS was
executed on an ISPS [BARB81] simulation of
the three techniques corresponding to Data
Security, Program Security, Program and
Data Security. The ISPS simulator ran on
VAX 11/730 operating on VMS. The DBMS
operations performed under the simulator
consisted of three stages of t~sting:

(I) Define DBMS Schema
-Define 1 File
-Define 2 Files
-Define 3 Files

1123

-Define 4 Files

(II) Mass Load DBMS Data
-Insert Records in Random Order
-Insert Sorted Records

(III)Typical DBMS Operations
-Display Directory Contents
-Print Files
-Delete Files
-Delete Records
-Insert Records
-Search Records on Key Field

A more efficient DBMS design in which
the directory data is read once per ses
sion is also considered. This reduces the
communications traffic in the Program and
Data Secure technique because an instruc
tion to read directory data is shipped
only once. In the original DBMS design,
an instruction to read directory data was
shipped to the data node for each query.

The statistics resulting from each
stage of testing are now summarized. The
communications traffic overhead incurred
by each technique is presented in terms of
both volume and transmission delay time.

Stage I involved the definition of
the database files. This activity
involved mostly disk directory operations.
The timing delay graph for each technique
in Fig. 2 shows the transmission delay due
to communications traffic volume plus I/O
delay occurring in each technique. This
graph does not indicate the effects of a
more efficient DBMS design since detailed
peripheral activity was not collected by
the simulator.

100l

90i 85.2

"1 73.8

I 70

~ 601 VI ~ ~ Cl
Z
0 "j u w

39.5

I
VI

~ 40
";"//"/.:;>

30~ y;.<~ 0~ " /··'/i //:'/,/;
20~ ~~(/.~ ':z}' ,/ ",/.' ~:ia 10~ / // ,./

/,/.;~ ~; ~ I

y//% .r%~ I ,1/~ , %' 0..1.-··
D-;:'rA st:W{' p~GRAM -S[CU M AND DATA S[CU

PROGRA

CONFIGURATION

Fig. 2. Communications Plus I/O Traffic Delay for Stage 1.

The increase in communications
traffic for each file defined is linear as
shown in Fig. 3. The graph clearly indi
cates the increase in communications
traffic of the Program and Data Secure
technique over the Program Secure tech
nique. The projected traffic for a more
efficient DBMS design substantially
reduces this increase for the new tech
nique. The Program Secure technique is
unchanged because there is no communica
tions traffic in this situation that
results from disk I/O operations. The
residency of the disk causes the DBMS
design change to have no effect on commun
ications traffic in that technique.

Stage II testing involved a mass load
of the database. This type of activity
references the disk frequently. There
fore, the residency of the disk data will
dictate the volume and types of communica
tions traffic. The timing delays due to
communications traffic plus I/O traffic in
each technique is presented in Fig. 4 for
the Stage II testing. The more efficient
DBMS design would have redtic~a these
values since the communications traffic
volume would be reduced. The timing delay
for the Data Secure technique is the time
required to perform the peripheral I/O
operations. The delays for the other two
techniques involve this I/O delay plus
communications traffic delay.

Stage III involved a collection of
typical DBMS operations. For Stage III
testing, Fig. 5 summarizes the communica
tions traffic delay for each technique.
This timing delay is directly related to
the communications traffic volume plus I/O
activity which occurs for this testing
stage in each technique. The timing delay
in the data secure technique results only
from I/O activity. The same amount of I/O
activity occurs in all the three tech
niques. Because the detailed peripheral
I/O activity was not collected by the
simulator for a more efficient DBMS
design, an accurate display of timing
delays for that DBMS design could not be
presented.

The overall communications traffic
volume is compared in Fig. 6 for the Pro
gram Secure technique and the new tech
nique. The communications traffic volume
resulting from a more efficiently designed
DBMS is presented. The Program and Data
Secure technique reflects a significant
savings in traffic volume with the more
efficient DBMS. This graph illustrates
that for a more efficient DBMS, the new
technique has an overhead of only 3.7%
over the communications traffic volume for
the Program Secure technique. To achieve
~bsolute program and data security, this
overhead expense is minimal.

1124

We present here a simplified model to
estimate the query execution times for the
Data Secure, the Program Secure and the
Program and Data Secure techniques.
Parametric values used for the simulation
will be plugged into this model and the
results obtained will be compared with
those of Section 4 to illustrate the vali
dity of our model.

We list below the various parameters
that are included in the model:

c

R

B

b

Number of bytes of control instruc
tions in the program to answer a user
query.

Number of bytes of data manipulation
instructions executed in the program
to answer a user query.

Number of bytes of data that need to
produced and transmitted between the
data and program nodes in the process
of answering a user query.

Baud rate of the transmission line
(in bits/sec.).

Number of bits transmitted per byte
(byte + start and stop bits).

Total time for all data accesses
between the disk, the main memory and
the processor, to answer a user
query.

Total time for transferring the pro
gram from the disk to the main memory
to answer' a user query.

Total execution time for the program
to answer a user query excluding any
disk accesses.

Average length (in bytes) of a data
manipulation instruction.

Tm Time to access a single byte from
main memory.

Note that (C + IrJ) indicates the total
number of bytes of the program-logic
to answer a user query.

2·1 gy~L~ !~~s~!ign Iim~ i~ !~~ R~!A
~~S~L~ I~s~~i~~~

This technique will be the fastest.
However, this technique offers no
program-logic security whatsoever. Assum
ing that the results are transmitted to
the user terminal via Direct Memory Access

cr.CO I

;",j
6CC3.j

5~O~'!
~ ,

::: 4COO.!

lD I
. ::::j

~COO-I
I

f~) r;":-.K ·lA~.! f.'.~~ J!:'.'. \ !:'~~;. :-:r,
.-. ; ,: ~: .. :..:::j .~~~J c:-:-:, ::t:~!:-:~ - ~.;·t:::'L~.~; c:~,;

lO
o . en
if)

DEFINE 3 FlLICS m:Flj::: 4 r.!..!:s

Fig. J. Communications Traffic' VqlllnlJ'J fnf St~, 1

279.8

Fig. 4. Communications Plus I/O Traffic Delay for SLuge II.

1125

200l

19O1
1801
170l

1GOl

150~
140~

I

130~

120-1

110~
100...1

!
95.5

192.9

.180'. I

PROGRA

CONFIGURATION

Fig. b. Communications Plus I/O Traffic Delay for Stage III.

ORIGI~IAL DBMS ErnCIENT DBMS

Fig. 6. Overall Communications Traffic Volume.

(DMA) , the total query execution time is

TDS=T,+Trj+T-R +Tm~C+lcl)+TmR (1)

whereTmR is the time to store the result
bytes in main memory. There is no commun
ication cost in this technique.

2.1 gy~~y ~~~£~li2B Iim~ iB lh~ ~~2&~~m
~~£~~~ !~£hBis~~

This technique offers only program
logic security and experiences a penalty
in shipping the menu and the result bytes
R from the program node to the data node.
As in Section 5.1, we assume that the
results are accessed in a DMA fashion for
transmission to the data node. The total
query execution time is

(2)

of which

the communications cost=(b/B)R. (3)

2.1 Q~~~y ~~~Yli2B Iim~ iB lh~ ~~2&~~m
~B~ Dal~ ~~£~~ !g£hBis~~

This technique provides the security
for both program-logic and user-data, but
suffers the penalty in shipping the data
manipulation instructions to the data
node. We assume here that we have to
transmit ~ control byte with each
transmitted instruction. The control byte
instructs the data node as to the contents
of the signal packet and the type of
response (or no response) expected. As
before, we assume that the result bytes
are transmitted to the user terminal in a
DMA fashion. The total query execution
time is

TpDS=TDS+{Irjb/ B){1+lI l)+Tm(2Irj+R)+(b/ B)R' (4) .

of which

the communication cost = (Irjb/ B)(l+lI l)+(b/ B)R' (5)

The factor 'G/rjTm accounts for the receiv
ing, storing and fetching of the data
manipulation instructions at the data
memory. The f ac tor /rj(lI l) accounts for the
number of control bytes that get
transmitted with the data manipulation
instructions. The value of R' in this
case would be lower than the value of R in
Section 5.2 because only menu but no query
results need be shipped to the data node.

We illustrate below an application of
our model to validate the simulation
results of stage III of the testing
described in Section 4. A comprehensive
testing of typical DBMS operations, seems
to be app~opriate as our example. The
following parametric values were used for
~r obtained from the simulation:

1126

Tm 1 Microsecond.

B 1200 bits/sec.

'b 8 bits(ignoring start and stop bits).

i 3(majority of data manipulation
instructions being the RR, the SI and the
RX instruction types of IBM370).

C 1248 bytes.

fa 3 3 54 by t e s •

R 12383 bytes for the Program Secure
technique; 9824 bytes for the Program and
Data Secure technique.

From equations (3) and (5), the com
munications costs are 82.55 seconds and·
95.23 seconds for the Program Secure tech
nique .and the Program and Data Secure
technique, respectively. The correspond
ing values from Fig. 5 are 85.1 seconds
and 97.4 seconds, respectively, after
eliminating I/O delays. The model agrees
fairly closely with the simulation
results. The small disparity is accounted
in that the above parametric values do not
take into account transmission of direc
tory data or condition code responses
between the program node and the data
node.

In this paper we considered an
environment where copyrighted programs are
shared by numerous independent users via a
network configuration. We were concerned
with achieving both program and data secu
rity and characterizing the communication
cost of doing this. We surveyed existing
security techniques for the environment of
concern and presented a radically new
technique. We analyzed and S1mulatea rne
communication cost of each techni~ue to
demonstrate their relative merits. We
showed that our new technique requires
nominal communications overhead while
achieving both program and data security.

The new technique discussed in this
paper achieves security by controlled
shipment of flagged instructions at the
assembly level. Two other approaches are
possible:

(1) The Software Trap Approach which con
sists of software flagging of code
sections that need to be shipped via
a software trap instruction. This
approach requires a special handler
for Shipping instructions invoked by
execution of a software trap instruc
tion, and modified compilers which
identify sections of code that are to
be shipped. The compiler will insert
the trap instruction and the number
of bytes to be shipped prior to the

section of code that will be shipped.
Upon execution of the trap instruc
tion, the appropriate number of bytes
will be shipped by the trap handler.

(2) The Software Macro Call Approach
which consists of software macro
calls to the data node which make use
of the data node's operating system.
This approach requires modified com
pilers which identify what can be
invoked as a system call to the
node's operating system or a call to
a receiver subroutine at the data
node.

Of the above two approaches, the
Software Macro Call approach seems promis
ing in improving the communication costs
as the number of instructions that need to
be shipped are considerably reduced. The
performance of our new technique using
this approach is expected to considerably
excel the other techniques. We are study
ing the Software Macro Call approach by
implementing it on a demonstration system
consisting of two Intel system/310 micro
computers obtained under a grant from the
Intel Corporation.

[ABRA85]

[BARB81]

[CHES85]

[DENN82]

REFERENCES

M. D. Abrams, "Observations on
Local Area Network Security,"
Proceedings of the IEEE
Aerospace Computer Security
Conference, McLean, Virginia,
pp. 77-82, Mar. 1985.

M. R. Barbacci, "Instruction Set
Processor-Specification (ISPS):
The Notation and its Applica
tion", IEEE Trans. Comp., Vol.
C-30, pp. 24-40, Jan. 1981.

T. S. Chesser, "A Secure Network
Configuration with Minimal Com
munications Traffic," Master's
Project, Department of Computer
Science, University of Central
Florida, Dec. 1985.

D. E. Denning, Cryptography and
Data Security, Addison-Wesley,
Reading, Mass., 1982.

[DRIS84] J. R. Driscoll and H. N.
Srinidhi, "Minimization of Logic
and Data Traffic in Distributed
Networks," Intel Grant Proposal,
University of Central Florida,
awarded Dec. 1984.

[HOFF77] L. Hoffman, Modern Methods for
Computer Security and Privacy.
Prentice-Hall, Inc.,1977.

1127

[KNIG85] B. Knight, "Info Center Concept
Enters Middle-age," Software
News, pp. 23-25, Oct~ 1985.

[MCMA85] E. M. McMahon, "Restricted
Access Processor - An Applica
tion of Computer Security Tech
nology," Proceedings of the IEEE
Aerospace Computer -Security
Conference, McLean, Virginia,.
pp. 71-73, Mar. 1985.

[PARK81] D. R. Parker, Computer-Security
Management, Prentice Hall, Inc.,
1981.

[WOOD86] P. Woodie, "Distributed Process
ing Systems Security: Communi
cations, Computer, or Both,"
Proceedings of the IEEE Int.
Conf. on Data Engineering, Los
Angeles, California, pp. 630-
636, Feb. 1986.

From RIGto Accent to Mach: The Evolution of
A'Network Operating System

Richard F. Rashid

Computer Science Department
Carnegie· Mellon University

Pittsburgh, Pa. 15213

Abstract

This paper describes experiences gained during the design,
implementation and use of the CMU Accent Network Operating
System, its predecessor,the University of Rochester RIG system
and its successor CMU's Mach multiprocessor operating system.
It outlines the major design decisions on which the Accent kernel
was based, how those decisions evolved 'from the RIG
experiences and how they-had to be modified to properly handle
general purpose multiprocessors in Mach. Also discussed are
some of the major issues in the implementation of message-based
systems, the usage patterns observed with Accent over a three
year period of extensive use at CMU and a timing analysis of
various Accent functions.

1. Background
Mach is a multiprocessor operating' system kernel currently

under development at Carnegie-Mellon University. In addition to
binary compatibility with Berkeley's current UNIX 4.3 bsd release,
Mach provides a number of new facilities not available in 4.3,
including:

• Support for tightly coupled and loosely coupled
general purpose multiprocessors_

• An internal symbolic kernel debugger.

• Support for transparent remote file access between
autonomous systems_

• Support for . large, , sparse virtual address spaces,
copy-on-write virtual copy operations, and fTIemory
mapped files.

• Provisions for user-provided memory objects and
pagers.

• Multiple threads of control within a single address
space.

• A capability-based interprocess communication
facility integrated with virtual memory management to
allow transfer of large amounts of data (up to the size
of a process address space) via copy-on-write
techniques.

• Transparent network interprocess communication
with preservation of capability protection across
network boundaries.

CH2345-7 /86/0000/1128$0 L 00 © 1986 IE E E
1128

As of May 1986, Mach runs on most uniprocessor VAX
architecture machines: VAX 11/750, 11/780, 11/785, 8200, 8600,
8650, MicroVAX I, and MicroVAX II. Mach also runs on two
multiprocessor VAX machines, the four (11/780 or 11/785)
processor VAX 11/784 with 8 MB of shared memory the VAX 8300
(with up to 4 processors). Mach has already been ported to the
IBM RT IPC and work has begun on ports to the uniprocessor SUN
3 and multiprocessor Encore MultiMax. The current version of the
system, Mach-1 ,"includes all of the features listed above and is in
production use by CMU researchers on a number of projects
including a multiprocessor speech recognition system called
Agora [5] and a project to build parallel production systems.

Mach is the logical successor to CMU's Accent [16, 17] kernel -
an operating system designed to support a large network of
uniprocessor scientific personal computers. The design and
implementation of Accent was in turn based on experiences
gained during the development of the University of Rochester's
RIG system [3, 14], a message-based network_access machine.
Both RIG and Accent have seen considerable use over the years.
RIG provided a variety of functions including terminal support and
remote file access within the Rochester environment until early
this year when the last RIG machine was decommissioned.
Accent continues in use at CMU as the basic operating system for
a network of 150 PERQ workstations and has seen commercial
use in .printing and publishing workstations as well as engineering
design systems. As a third generation network operating system
Mach, benefits from the lessons learned in over ten years of
design, implementation and use of RIG and Accent. This paper
summarizes the lessons of those systems and 1heir impact on the
design and implementation of Mach.

2. The Evolution of Accent from RIG
Implementation. of RIG began in 1975 on an early version of the

Data General Eclipse mini·computer. The first usable version of
the system came on-line in the fall of 1976. Eventually the
Rochester network included several RIG Eclipse nodes as network
servers and .a number of Xerox Altos acting as RIG client hosts.
RIG provided clients network file services, ARPANET access,
printing services and a variety of other functions. Active
development continued well into the 1980's but obsolescence of
its Data General Eclipse and Xerox Alto hardware base eventually
dictated its demise in the Spring of 1986.

2.1. The RIG Design
The. basic system structuring tool in RIG was an interprocess

communication (IPC) facility which allowed RIG processes to
communicate by sending packets of information between
themselves. RIG's IPC facility was defined in terms of two basic
abstractions: messages and ports.

A RIG port was defined to be a kernel-provided queue for
messages and was referenced by a global identifier consisting of n
dotted pair of integers <process number. port number). A RIG port
was protected in the sense that it could only be manipulated
directly by the RIG kernel, but it was unprotected in the sense that
any process could send a message to a port. A RIG port was tied
directly to the RIG abstraction of a process .. a protected address
space with a single thread of program control.

A RIG message was composed of a header followed by data.
Messages were of limited size and could contain at most two
scalar data items or two array objects. The type tagging of data in
messages was limited to a small set of simple scalar and array data
types. Port identifiers could be sent in messages only as simple
integers which would then be interpreted by the destination
process.

Due largely to the hardware on which it was implemented, RIG
did not allow either a paged virtual memory or an address space
larger than 2t16 bytes. RIG did, however, use simple memory
mapping techniques to move data [3]. The largest amount of data
which could be transferred at a time was 2K bytes.

2.2. Problems with RIG
The RIG message passing architecture was originally intended

more as a means for achieving modular decomposition (much like
Brinch-Hansen's RC4000) rather than as the basis for a distributed
system. It was discovered early on, though, that RIG's message
passing facility could be adapted as the communication base for a
network operating system. Unfortunately, as RIG became heavily
used for networking work at Rochester a number of problems with
the original design became apparent:

• Protection

The fact that ports were represented as global
identifiers which could be constructed and used by
any process implied that a process could not. limit the
set of processes which could send it a message .. To
function correctly, each process had to be prepared
to accept any possible message sent to it from any
potential source. A single errant process could
conceivably flood a process or even the entire system
with incoherent messages.

• Failu re notification

Another difficulty with global identifiers was that they
could be passed in messages as simple integers. It
was therefore impossible to determine whether a
given process was potentially dependent on another
process. In principle any process could store in its
data space a reference' to any other process. The
failure of a machine or a process could therefore not
be signaled back to dependent· processes
automatically. Instead, a special process was
invented which ran on each machine and was notified
of process death events. Processes had to explicitly
register their dependencies on other processes with
this special "grim reaper" process in order to receive
event-driven notifications.

1129

• Transparency of service

Because ports were tied explicitly to processes, a port
defined service could not be moved from one process
to another without notifying all parties. Transparent.
net .. vork communication was also compromised by
this naming scheme. A port identifier was required to
explicitly contain the network host identifier as part ot
its process number field. As the system expanded
from one machine to one network to multiple
interconnected networks this caused the port
identifier· to expand in size .. usually resulting in
considerable reimplementation work.

• Maximum message size

The limited size of messages in RIG resulted in a style
of interprocess interaction in which large data objects
(such as files) had to be broken up into. chunks of 2K
bytes or less. This constraint 'impacted on the
efficiency of the system (by increasing the amount of
message communication) and on the complexity of
client/server interactions' (e.g., by forcing servers to
maintain state information about open files).

2.3. The evolution of RIG
CMU's Spice [8] distributed personal workstation project

provided an oportunity to effectively "redo" a RJG:like system
taking into account that system's limitations. The result was ·the
Accent operating system kernel for the PERQ Systems
Corporation PERQ computer.

The Accent solution to the problems present in the RIG design
was based on two basic ideas:

1. Define ports to be capabilities as well as
communication objects.

By providing processes with capabilities to ports
rather than a global identifier for them, it was possible·
to solve at one time the problems of protection, failure
notification and transparency:

• Protection in Accent is provided by allowing
processes access only to those ports for which
they have been given capabilities .

• Processes can be notified automatically when a
port disappears on which those processes are
dependent because the kernel now has
complete knowledge of which processes. have
access to each port in the system. There is no
hidden communication between processes.

• Transparency is complete because the ultimate
destination of a message sent to a port is
unknown by the sender. Thus transparent
intermediary processes can be constructed
which forward messages between groups of
processes without their knowledge (either for
the purpose of debugging and monitoring or for
the purpose of transparent network
communication).

2. Use virtual memory to overcome limitations in
the handling of large objects.

The use of a large address space (a luxury not
possible in the design of RIG) and copy-on-write
memory mapping techniques permits processes to
transmit objects as large as they can directly access
themselves. This allows processes such as file
servers to provide access to large objects (e.g., files)
through a single message exchange -- drastically
reducing the number of messages sent in the
system [9].

The first line of Accent code was written in April 1981. Today
Accent is used at C~U in a network of 1,50 PERQ workstations. In
addition to network operating system functions such as distributed
process and file management, window managemertt and mail
systems, several applications have been built using Accent. These
include research systems for distributed signal processing [10],
distributed speech understanding [5] and distributed transaction
processing [18]. Four separate programming environments have
been built -- Common Lisp, Pascal, C and Ada -- including
language support for an object-oriented remote procedure call
facility [12].

3. The Accent Design
Accent is organized around the notion of a protected, message

based interprocess communication facility integrated with copy
on-write virtual memory management. Access to all services and
resources, including the process management and memory
management services of the operating system kernel itself, are
provided through Accent's communication facility. This allows
completely uniform access to such resources throughout the
network. It also implies that access to kernel provided services is
indistinguishable from access to process provided resources (with
the exception of the interprocess communication facility itself).

3.1. Interprocess communication
The Accent interprocess communication facility is defined in

terms of abstractions which, as in RIG, are called ports and
messages.

The port is the basic transport abstraction provided by Accent.
A port is a protected kernel object into which messages may be
placed by processes and from which messages may be removed.
A port is logically a finite length queue of messages sent by a
process. Ports may have any number of senders but only one
receiver. Access to a port is granted by receiving a message
containing a port capability (to either send or receive).

Ports are used by processes to represent services or data
structures. For example, the Accent window manager uses a port
'to represent a window on a bitmap display. Operations on a
window are requested by a client process by sending a message
to the port representing that window. The window manager
process then receives that message and handles the request.
Ports used in this way can be thought of as though they were
capabilities to objects in a object oriented system(Jones78). The
act of sending a message (and perhaps receiving a reply)
corresponds to a cross-domain procedure call in a capability
based system such as Hydra [2] or StarOS [11].

1130

~ m~ssa_!ll!.._ ~onsists of a fixed length header and' a variable size
collection of typed data objects. Messages may contain both port
capabilities and/or imbedded pointers as long as both are
properly typed. A single message may transfer up to 2t32 bytes of
by-value data.

Messages may be sent and received either synchronously or
asynchronously_ A software interrupt mechanism allows a
process to handle incoming messages outside the flow of normal
program execution.

Figure 3-1 shows a typical message interaction: A process A

sends a message to a port P2. Process A has send rights to P2

and receive rights to a port Pl. At some later time, process B

which has receive rights to port P2 receives that message which
may in turn contain send rights to port Pl (for the purposes of
sending a reply message back to process A). Process B then
(optionally) replies by sending a message to Pl.

Time to Time t1

0 0
G G
"'Clt'l'1"Ieth,r •• _,elhl" • A RIClt"I" • A
SI.dlr. -. Sl.d.r. • A •• S •• dtrt S.ftderl
...... g ••• 0 ,. 1 0 .. ·0 0

0 0
0 G

Rtc.t.,er • A •• e,h,r • A

Suder, S."dlrt IItlcl""tr • A '''el1"." • A

...... g ••• t "'''11'' • 0
Stnd.rs S,ndlrl - ... ,.
M glI • 0 M g •• ·O

Tim. t2 Tim. t3

Figu re 3-1: Typical message exchange

Should port P2 have been full, process A would have had the
option at the pOint of sending the message to: (1) be suspended
until the port was no longer full, (2) have the message send
operation return a port full error code, or (3) have· the kernel
accept the message for future transmission to port P2 with the
proviso that no further message can be sent by that process to P2

until the kernel sends a message to A telling it the current
message has been posted.

3.2. Virtual memory support
Accent provides a 2t32 byte paged address space for each

process in the system and a 2t32 byte paged address space for
the operating system kernel. Disk pafJes and physical memory can
be addressed by the kernel as a portion of its 2t32 byte address
space. Accent maintains a virtual memory table for each user
process and for the operating system kernel. The kernel's
address space is paged and all user process maps a~e kept in

paged kernel memory. Only the kernel virtual memory table, a
small kernel stack, the PERQ screen, I/O memory and those
PASCAL modules required for handling the simplest form of page
fault need be locked in physical memory, although in practice
parts of the kernel debugger and symbol tables for locked
modules are also locked to allow analysis of system errors. The
total amount of kernel code and symbol table information locked is
64K bytes [9].

Whenever large amounts of data (the threshold is a system
compile-time constant normally set at 1 K bytes) are transmitted in
a message, Accent uses memory mapping techniques rather than
data copying to move information from one process to another
within the same machine. The semantics of message passing in
Accent imply that all data sent in a message are logically copied
from one address space to another. This can be optimized by the
kernel by mapping the sent data copy-on-write in both the sending
and receiving processes.

Figure 3-2 shows a process A sending a large (for example 24
megabyte) message to a port P1. At the point the message is
posted to P1, the part of A'S address space containing the
message is marked copy-on-write .. meaning any page referenced
for writing will be copied and the copy placed instead into A'S

virtual memory table. The copy-on-write data then resides in the
address space of the kernel until process B receives the message.
At that point the data is removed from the address space of the
kernel. By default, the operating system kernel determines where
in the address space of B the newly received message data is
placed. This allows the kernel to minimize memory mapping
overhead. Any attempt by either A or B to change a 512 byte page
of this copy-an-write data results in a copy of that page being
made and placed into that process' address space.

Send Ope rat ion Receive Operation

o
A Map Ke rne 1 Map B Map A Map Kernel Map B Map

o
~ o R

:::~
i:.:: ..

p. 0
N

o

Figu re 3·2: Mapping operations during message transfer

3.3. Network communication
The abstraction of communication through por:ts permits the

distinction between access to local and remote resources to be
completely invisible to a client process. In addition, Accent
exploits the integration of memory management and IPC to
provide a number of options in the handling of virtual memory,
including the ability to allow memory to be sent copy-on-reference
across a network. Each entry of an Accent virtual memory table
maps °a contiguous region of process virtual memory to a
contiguous portion of an Accent memory object. A memory object
is the basic unit of secondary storage in Accent. Memory objects
can be contiguous physical memory (as used for the PERQ screen
or I/O buffers) or a randomly addressed disk file. A memory

1131

object can also be backed not by disk or main memory, but by a
process through a port. Initial references to a page of data
mapped to a port are trapped by the kernel and a request for the
necessary data is forwarded in a message on that port. This
feature allows processes to provide the system with virtual
memory that they themselves maintain (either locally or over a
network connection to another machine). In this way network
communication servers can provide copy-on-reference network
transmission of pages in a large message.

4. Key Implementation Issues in Accent
Many of the implementation decisions made in Accent were

based on experiences with RIG. Nevertheless, the addition of
virtual memory and capability management to the RIG design
made it unclear how the RIG experiences would extrapolate to the
Accent environment.

4.1.IPC Implementation
The actual implementation of the message mechanism relied on

several assumptions about the use of messages:

• the average number of messages outstanding at any
given time per process would be small,

• the number of port capabilities needed by a process
could vary from two to several hundred, and

• the use of simple messages (meaning messages
which contained port capabilities only in their header
and which contained less than a few kilobytes) would
so dominate complex messages that simple messages
would be an important special case.

Each of these assumptions had held true for RIG [4, 14]. It was
hoped that although Accent provided a substantially different
application environment than RIG, the RIG experiences would
provide a reasonable prediction of Accent performance.

Given these expectations, the implementation was optimized for
anticipated common cases, including:

• The assumption that there would seldom be more
than one message waiting for a process at a time led
to an implementation in which messages are queued
in per-process rather than per-port queues.

• To allow large numbers of ports per process and fast
lookup, port capabilities are represented as indexes'
into a global port record array stored in kernel virtual
memory. Port access is protected through the use of
a bitmap of process access rights kept per port (the
number of processes is much less than the number of
ports).

• The assumption that simple messages would be an
important special case led to the addition of a field to
the message header so that user processes can
indicate whether or not a message is simple and thus
allow special handling by the kernel.

These usage assumptions did in fact prove true for Accent.
Table 4-1 demonstrates the properties of Accent message passing
as measured during an active day of use.

1.01
33.42
14.38
0.094

Average probes to requested message

Average port rights held per process

Average ports owned per process

Ratio of complex to simple messages

Ta ble 4-1: Message use statistics

4.2. Virtual Memory Implementation
The lack of sophisticated virtual memory management in RIG

(and in fact in nearly all message·based systems of that era) meant
that Accent could not benefit from previous experience with virtual
memory use resulting from message operations. Instead, the
design of Accent's virtual memory implementation grew out of
simple assumptions based purely on intuition. These initial
assumptions influenced the design of the Accent virtual memory
implementation:

• process maps had to be compact, easy to manipulate
and support sparse use of a process address space,

• the number of contiguously mapped regions of the
address space would be reasonably small, and

• large amounts of memory would frequently be passed
copy·on-write in messages.

The Accent process virtual memory map is maintained as a two
level indirect table terminating in linked lists of entries (see Figure
4-1). Each entry on the linked list maps a contiguous portion of
process virtual memory into contiguous regions of Accent memory
objects. The map is organized so that large portions can be
validated, invalidated or copied without having to modify the
linked lists of map entries. This is accomplished by having valid,
copy-on-write and write-protect bits at each level of the table.
During lookup, these bits are "ored" together. Thus all of memory
can be efficiently made copy-on-write by just setting the copy-on
write bits of valid entries in level one of the process map table.
Figure 4-1 illustrates the translation of a virtual address to an
offset within a memory object.

Physical memory in Accent is used as a cache of secondary
storage. There are no special disk buffers. Access to all
information (e.g., files) is through message passing (and
subsequent page faulting if necessary).

This scheme is flexible enough to be used internally by the
kernel to remap portions of its own address space. An entire
process virtual memory map, for example, is copied in a fork

Laval 1 Leval 2 Laval 3

Figu re 4-1: Mapping a virtual address in Accent

1132

operation without physically copying the map by using Accent's
copy-on-write facility. To reduce map manipulation overheads,
changes caused by copy·on-write updates are recorded first in a
virtual to physical address translation table (kept in physical
memory) and are not incorporated into a process map until the
relevant page must be written out to secondary storage.

Copy-on-write access to memory objects is provided through the
use of shadow memory objects which reflect page differences
between a copied object and the object it shadows (which could in
turn be a shadow). Disk space for newly created pages or pages
written copy-on-write is allocated on an as·needed basis from a
special paging area. No disk space is ever allocated to back up a
process address space unless the paging algorithms need to flush
a dirty page. See figure 4-2.

Figu re 4-2: An example of memory object shadowing

Most shadow memory objects are small (under 32 pages). Most
large shadows contain only a few pages of data different from the
objects they shadow. These facts led to an allocation scheme in
which small shadows are allocated contiguously from the paging
store and larger shadows use a page map and are allocated as
needed.

Overall, the basic assumptions about the use of process address
space in Accent appear to hold true. The typical user process
table:

• is between 1024 and 2048 bytes in size,

• contains 34-70 mapping entries, and

• maps a region of virtual memory approximately eight
megabytes in extent (in PERQ PASCAL each
separately compiled module occupies a distinct 128K
byte region of memory) and about one. to two
megabytes in size.

Although all memory is passed copy-on-write from one process
to another, the number of copy-on-write faults is typically small. A
typical PASCAL compile/link/load cycle, for example, requires
only slightly more than one copy-on-write fault per second.
Clearly most of the data passed by copy in Accent is read and not
written. The result is that the logical advantages of copy-on-write
are obtained with costs similar to that of mapped shared memory
[6].

4.3. Programming issues
One of the problems with message based systems has

traditionally been the fact that existing programming languages do
not support. their message semantics. In RIG, a special remote

procedure call function was provided called "Call" [13] which
took as its arguments a message identifier, a process· port
identifier, and operation arguments along with their type
information. One of the early decisions in the implementation of
Accent was to define all interprocess message interfaces in terms
of a high·level specification language. The properties of ports
allow them to be viewed as object references. The' interprocess
specification language is defined in terms of operations on
objects. Subsystem specifications in this language are compiled
by a program called Matchmaker into remote procedure call stubs
for the various programming languages used in the system ..
currently C, PASCAL, ADA and Common LISP. The result is that
all interprocess interfaces look to the programmer as though they
were procedural interfaces in each of these languages. In
PASCAL, for example, the interface procedure for writing a string
to a window of the screen would look like:

WriteString(window,string·to·be·written)

All Matchmaker specified calls take as their first argument the
port object on which the operation is to be performed. The remote
procedure call stub then packages the request in a message,
sends it to the port, and waits for a reply message '(if necessary).
Initial access to server ports is accomplished either through
inheritance (by having the parent process send port rights to its
children) or by accessing a name server process (a port for which.
is typically passed to a process by inheritance). A complete
description and specification of Matchmaker can be found in [12].

Matchmaker's specification language allows both synchronous
and asynchronous calls as well as the specification of timeouts
and exception handling behavior. It supports both by· value and
by·value·result parameters. It allows types to be defined as well as
the specification of their bit packing characteristics in the
message. For the server process, Matchmaker produces routines
which allow incoming messages to be decoded and server
subroutines automatically invoked with the proper arguments.

The support provided by Matchmaker is similar to some of the
features which have been introduced in modern languages for
managing multiple tasks such as the ADA rendezvous mechanism
[1]. Matchmaker, however, supports a number of different
programming languages and provides a much greater range of
options for synchronous and asynchronous behavior in a
distributed environment.

Despite the obvious simplicity of simple "remote procedure call"
style interfaces, a suprisingly high percentage of network
operating system interfaces take advantage of the asynchronous
form of Matchmaker interfaces. Of 225 system interfaces:

• 170 (approximately 77 percent) are synchronous,

.45 (approximately 19 percent) are asynchronous and

.10 (approximately 4 percent) represent exceptions.

Runtime statistics show that over 50 percent of messages actually
sent during normal system execution are sent as part of
asynchronous Matchmaker specified operations .. normally due to
the behaviour of I/O subsystems (such as handlers for the PERQ
keyboard and display) or basic system servers (such as network
protocol servers).

1133

Matchmaker server interfaces account for approximately 10
percent of the total network operating system code .. roughly
75.5k bytes out of 757k bytes. For the Accent kernel itself, the
Matchmaker interface is 10280 bytes out of approximately 115k
bytes. Runtime costs are considerably less. During a PASCAL
compilation, for example, less than 2 percent of CPU time is due to
Matchmaker interface overheads. .

4.4. Key Statistics

4.4.1. Hardware and basic system performance of Accent
Table 4·2 compares the relative performance of PERQ and

VAX·ll 1780 CPUs. Timings were performed in PASCAL on the
PERQ and in C on a VAX running UNIX 4.1bsd.

PASCAL programs written for the PERQ range in overall speed
from 1/5 to 1/3 the speed of comparable programs on the VAX
111780, depending on whether 16·bit or 32·bit operations
predominate. In fairness to the PERQ hardware, the underlying
microengine is much faster than the PASCAL timings in table 4·2
would indicate. Microcoded operations often run as fast as or
faster than equivalent VAX 111780 assembly language. Note, for
example, the relative speeds of the microcoded context switch
and kernel trap operations. Moreover, instruction sets better
tuned to the PERQ hardware, such as the Accent Common Lisp
instruction set, run at speeds closer to 50 percent of the VAX.
Nevertheless, for the purpose of gauging the performance of the
Accent kernel code, which is written in PASCAL and makes heavy
use of 32·bit arithmetic, pointer chasing and packed field
accessing, the CPU speed of a PERQ is about 1/5 that of a VAX
111780.

Perq Vax Ratio Operation

2300ns 720ns .31 Tick (32·bit stack local)

12us 4us .25 Simple loop (16·bit integer)

20us 3us .17 Simple loop (32·bit integer)

35us 20us .57 Null procedure call/return

75us 25us .33 Procedure call with 2 arguments

aous 400us 5.00 Context switch

132us 264us 2.00 Null kernel trap

30s 9s .30 Baskett Puzzle Program (16·bit)

50s lOs .20 Baskett Puzzle Program (32·bit)

Table 4-2: Comparison of Perq and Vax·111780 operation times

4.4.2.IPC Costs
Table 4·3 shows the costs of various forms of message passing

in Accent. As was previously described, Accent distinguishes
between simple and complex messages to improve performance
of common message operations. Simple messages are defined to
be those with less than 960 bytes of in·line data that contain no
pointers or port references (other than those in the message
header). Other messages are considered complex. The times for
complex messages listed in the table were measured for
messages containing one pointer. to 1024 bytes· of data. The
observed ratio of simple to complex messages in Accent is
approximately 12·to·1.

Time IPC Operation

1.15 Simple message send

1.35 Simple message receive
10. Complex message send (1024 bytes)

10. Complex message receive (1024 bytes)

Table 4-3: IPC operation times in milliseconds

The average number of messages per second observed during
periods of heavy standard version use (e.g., compilation) is less
than 30. There were 67378 simple messages and 4279 complex
messages sent during one measurement of three hours of editing,
network file access, and text formatting, an average of less than
eight per second [9].

4.4.3. Accessing file data
One of the reasons for the relatively low message rate of

message exchange in Accent is the heavy reliance on virtual
memory mapping techniques for transferring large amounts of
data in messages. A process making a request for a large file
typically receives the entire file in a single message sent back from
a file server process. As a result, all file access in Accent is
mediated through the memory management system. There are no
separate file buffers maintained by the system or special
operations required for file access versus access to other fo~ms of
process mapped memory. By contrast, in RIG the same operation
would have required as many message exchanges between client
and server as there were pages in the file.

Table 4-4 shows the costs associated with reading a 56K byte
file under UNIX 4.1 bsd on a VAX 111780 with a 30 millisecond
average access time Fujitsu disk and under the standard version
of Accent with a 30 millisecond average access time MAXSTORE
drive.

The measured cost of a file access in Accent as shown in table
4-4 is due, in part, to the cost of a disk write to update the file
access time. This disk write is unbuffered in Accent and thus is
included in the file request time. The Unix disk write associated
with an open is buffered and is excluded from the open/close
time.

Accent file access speed is limited by the basic fault time of
about four milliseconds (see table 4-5), the average number of
consecutive file pages on a disk track and the cost of making new

System Time Operation

Accent 66 Request file from server
UNIX 4.1 5-10 Open/close
Accent 5·10 Read a page (512 bytes)

UNIX 4.1 16·18 Read a page (1024 bytes)
UNIX 4.2 16·18 Read a page (4096 bytes)

Table 4-4: File access times i'n milliseconds

VP entries. Its page size is only 512 bytes, in contrast to 1024 bytes
for 4.1bsd and 4096 or 8192 for 4.2bsd.

1134

Once mapped, file access in Accent ranges from somewhat
faster than 4.1 bsd to slightly slower, depending on the locality of
file pages. 4.2bsd file access [15] is considerably faster than
either 4.1 bsd or Accent. This increase in speed appears to be due
almost entirely to the larger (typically 4096 byte) file page size.
The actual number of disk I/O operations per second under 4.2 is
almost identical to 4.1, about 50-60 per second, and appears to be
bounded by the rotational speed of the disk (60 revolutions per
second).

4.4.4. Fault handling and copy-on-write
Table 4-5 summarizes the results from test programs that caused

100,000 instances of a variety of memory fault types. It shows the
average total times required to handle single faults.

Total

0.623

3.355

3.704

3.760
4.504

3.833

Type of fault

Null fault

Read fault, zero fill

Write fault, zero fill

Read fault, memory fill, small file

Read fault, memory fill, large file
Write fault, CopyOnWrite copy

Table 4-5: Fault handling times in milliseconds

Overall, the costs of copy-on-write memory management are
nearly identical to that of by-reference memory mapping. Less
than 0.01 percent of the total time associated with an entire
rebuilding of the operating system and user programs from source
is used to handle copy-on-write faults [9].

5. Mach: Adapting Accent to
Multiprocessors

Accent went beyond demonstrating the feasibility of the
message passing approach to building a distributed system.
Experience with Accent showed that a message based network
operating system, properly designed, can compete with more
traditional operating system organizations. The advantages of this
approach are system extensibility, protection and network
transparency.

By the fall of 1984, however, it became apparent that, without a
new hardware base, Accent would eventually follow RIG into
oblivion. Hastening this process of electronic decay was Accent's
inability to completely absorb the ever burgening body of UNIX
developed software both at CMU and elsewhere -- despite the
existence of a "UNIX compatibility" package.

Mach was conceived as an Accent-like operating system which
would provide complete UNIX compatibility. It was also designed
to better accommodate the kind of general purpose shared
memory multiprocessors which appear to be on their way to
becoming the successors to traditional general purpose
uniprocessor workstations and timesharing systems.

5.1. The design of Mach
The design of Mach differs from that of Accent in several crucial

ways:

• The Accent notion of a process, which like RIG is an
address space and single program counter, was split
into two new concepts:

1. a task, which is the basic unit of resource
allocation including a paged address space,
protected access to system resources (such as
processors, ports and memory), and

2. a thread, which is the basic unit ,of CPU
utilization.

• A facility for handling a form of structured sharing of
read/write memory between tasks in the same family
tree was added to allow finer granularity
synchronization than could be achieved 'with a kernel
provided mechanism.

• The Mach IPC facility was further simplified. This
came about as the logical result of using thread
mechanisms to handle some forms of ~synchrony and

error handling'(rnuch as was done in the V Kernel [7)).

• The notion of memory object was generalized to allow
general purpose user-state external pager tasks to be
built.

These design modifications are a consequence of handling
shared-memory multiprocessor architectures. Accent provided no
tool for fine grain synchronization or lightweight processes. Both
are important for effective use of multiprocessor cycles in a variety
of applications.

Despite these changes, the basic features which allowed Accent
to provide uniform access to both local and network resources are
still in place. This allows networks of multiprocessors or of
multiprocessors and uniprocessors to be built using the same
basic system abstractions. As in Accent, operations on all Mach
objects other than messages are performed by sending messages
to ports which are used to represent them. For example, the act of
creating a task or thread returns access rights to the port which
represents the new object and which can be used to manipulate it.
A thread can suspend another thread by sending a suspend
message to that thread's thread port, even across a network
boundary.

Tasks are related to each other in a tree structure by task
creation operations. Virtual memory may be marked as inheritable
to a task's children. Memory regions may be inherited read-write,
copy-on-write or not at all. A standard UNIX fork operation, for
example, takes the form of a task with one thread creating a: child
task with a similar single thread of control and all its memory
shared copy-on-write.

The notions of multiple threads of control within a task and
limited sharing between task allows Mach to provide three levels
of synchronization and communication: fine grain, intra-.
application interprocess communication and inter-application
interprocess communication.

1135

Fine grain communication is performed on memory shared
either within a task or between related tasks. Mach provides a
library to support synchronization on shared memory to avoid the
cost of kernel trap operations on short-term locks. Network
read/write shared memory is not provided by the kernel, but is
potentially implementable by a user·state process acting as an
external object pager (see discussion of object pagers below).

Intra-application inter-thread communication is performed using
the standard Send and Receive ports primitives_ but c~n be
implemented more efficiently in the presence of shared libraries
and memory. By the nature of the abstractions, threads can
ignore the difference between intra· application communication
and inter-application communication.

Inter-application communication requires the intervention of the
Mach kernel to provide protection. As in Accent, large amounts of
data in messages may be mapped copy-on-write from one address
space to another rather than copied. Data forwarded in messages
over the network can be transmitted on reference rather than all at
once at the discretion of the network server.

5.2. Implementation

5.2.1. Virtual memory modifications
While system analysis indicated that the basic Accent virtual

memory scheme worked well, it also demonstrated that the data
structure used to represent an Accent process map _. a two·level
indirect table terminated in linked lists of mapping descriptors -
was unnecessarily complicated. Because nearly all operations on
maps are sequential and maps seldom get very large, Mach
implements task address maps as simple ordered lists of mapping
descriptors. Each descriptor maps a range of virtual addresses to
a range of bytes in a memory object. The only non-sequential
operation .. lookup events due primarily to memory faults .. is
sped by the use of hints based on previous lookup requests.

Another innovation of Mach over Accent is in the'use of sharing
maps to represent read/write shared regions between tasks. A
Mach mapping descriptor may point either directly to a memory
object (which can then only be shared copy-on-write) or indirectly
to memory objects through a sharing map. A sharing map is
simply an address map which maps a range of virtual addresses
shared by at least two task address maps. All operations on tasks
maps in a shared range of addresses are performed through
indirection on sharing maps.

Overall, the Mach data structures are simpler, more compact
and more expressive than those of Accent. A Mach address map
can be thought of as a simple run-length encoding of a process
address space. A typical UNIX·style process can be expressed in
less than 100 bytes.

5.2.2. Mach IPC
The introduction of the notion of tasks and threads into Mach

necessitated some changes to Accent's basic IPC facility. Port
access rights in Mach are owned by a task. All threads within a
task may therefore send or receive messages on that task's ports.

;he availability of threads to manage asynchronous activities
simplified handling of software interrupts. Moreover, several
message options, such as message priorities and the ability to
preview the contents of a message before it had to be received,
had been found to be largely unused for their intended purpose in
Accent and have been removed.

5.2.3. Managing hardware diversity
Mach was intended from the outset to handle a wide diversity of

both uniprocessor and multiprocessor hardware. For example,
Mach provides a task memory sharing and a thread memory
sharing model for multiprocessor memory synchronization. This
allows Mach to support both multiprocessors which support full
memory sharing with cache consistency as well as machines with
only partial sharing or explicit memory caching. In practice, the
system already is configured to handle a wide range of
uniprocessor and multiprocessor VAX configurations. The same
binary kernel image is used on both uniprocessor and
multiprocessor systems.

Mach also handles another form of diversity. Messages, because
they contain tagged data, are transformed from one machine data
format to another by network servers. Properly typed Matchmaker
interfaces allow programs written on an RT PC to communicate
with VAX applications despite different byte ordering, data
packing and data format conventions. There are, however, limits
on this form of machine independence. For example, no attempt is
made to preserve precision of floating point numbers converted
from one form to another.

5.2.4. Confronting UNIX
One mechanism for ensuring Mach's survival in the face of a

flood of UNIX based software is to make certain that it is
compatible with an existing UNIX environment. This was achieved
by building Mach to allow UNIX 4.3bsd system calls to be handled
in much the same way they would be handled in a completely
native system. The Mach kernel effectively supplants .the basic
system interface functions of the UNIX 4.3bsd kernel: trap
handling, scheduling, multiprocessor synchronization, virtual
memory management and interprocess communication. 4.3bsd
functions are provided by kernel·state processes which are,
scheduled by the Mach kernel and share communication queues
with it. Work is now underway to remove non· Mach UNIX
functionality from kernel-state and provide these services through
user-state processes.

6. Conclusions
The evolution of network operating systems from RIG through

Mach was, in a sense, driven by the evolution of distributed
computer systems from small networks of minicomputers in the
middle 1970s to large networks of personal workstations and
mainframes in the early 1980s to networks of uniprocessor and
multiprocessor systems today. Not suprisingly, the basic software
primitives of Mach -- task, thread, port, message and memory
object -- parallel the hardware abstractions which characterize
modern distributed systems -- nodes, processors,. network
channels, packets and primary and secondary memory.
Experiences, both good and bad, with RIG and Accent have
played an important role in determining the exact definition' of the.
Mach mechanisms and their implementation.

1136

7. Acknowledgements
In addition to anything the author may have done, the heroes of

the RIG kernel development were Gene Ball and lIya Gertner.
Jerry Feldman was in large part· responsible for the initial RIG
design and the system's name. The Accent development team
included George Robertson and Gene Ball as well as the author.
Keith Lantz and Sam Harbison made notable contributions to the
design. Mary Shaw contributed the name. Others contributed
greatly to Accent's evolution: particularly Doug Philips, Jeff
Eppinger, Robert Sansom, Robert Fitzgerald, David Golub, Mike
Jones and Mary Thompson. Matchmaker could not have come
into existence without the aid of Mary Thompson, Mike Jones, Rob
MacLachlin and Keith Wright. Mach was the brainchild of many
including Avie Tevanian', Mike Young and Bob Baron. Dario Giuse
came up with the name.

This research was sponsored by the DefenSe Advanced
Research Projects Agency (DOD), ARPA Order No. 3597,
monitored by the Air Force Avionics Laboratory Under Contract
F33615-81-K-1539.

The views and conclusions contained in this document are those
of the author and should not be interpreted as representing official
poliCies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

Department of Defense.
Preliminary Ada Reference Manual
1979.

Almes, G. and G. Robertson.
An Extensible File System for Hydra.
In Proc. 3rd International Conference on Software

Engineering. IEEE, May, 1978.

Ball, J.E., J.A. Feldman, J.R. Low, RF. Rashid, and P.O.
Rovner.
RIG, Rochester's Intelligent Gateway: System overview.
IEEE Transactions on Software Engineering 2(4):321·328,

December, 1976.

Ball, J.E., E. Burke, I. Gertner, K.A. Lantz and RF. Rashid.
Perspectives on Message-Based Distributed Computing.
In Proc. 1979 Networking Symposium, pages 46·51. IEEE,

December, 1979.

Bisiani, R, Alleva, F., Forin, A. and R Lerner.
Agora: A Distributed System Architecture for Speech

Recognition.
In International Conference on Acoustics, Speech and

Signal Processing. IEEE, April, 1986.

Bobrow, D.G., Burchfiel, J.D., Murphy, D.l. and Tomlinson,
RS.
TEN EX, a paged time sharing system for the PDp·1 O.
Communications of the ACM 15(3):135·143, March, 1972.

Cheriton, D.R and W. Zwaenepoel.
The Distributed V Kernel and its Performance for Diskless

Workstations.
In Proc. 9th Symposium on Operating Systems Principles,

pages 128·139. ACM, October, 1983.

Spice Project.
Proposal for a joint effort in personal scientific computing.
Technical Report, Computer Science Department,

Carnegie-Mellon University, August, 1979.

Fitzgerald, Rand R F. Rashid.
The integration of Virtual Memory Management and

Interprocess Communication in Accent.
ACM Transactions on Computer Systems 4(2):, May, 1986.

1137

[10] Hornig,D.A.
Automatic Partitioning and Scheduling on a Network of

Personal Computers.
PhD thesis, Department of Computer Science, Carnegie·

Mellon University, November, 1984.

[11] Jones, A.K., RJ. Chansler, I.E. Durham, K. Schwans and
S.Vegdahl.
StarOS, a Multiprocessor Operating System for the

Support-of Task Forces.
In Proc. 7th Symposium on Operating Systems Principles,

pages 117·129. ACM, December, 1979.

[12] Jones, M.B., R.F. Rashid and M. Thompson.
MatchMaker: An Interprocess Specification Language.
In ACM Conference on Principles of Programming

Languages. ACM, January, 1985.

[13] Lantz, K.A.
Uniform Interfaces for Distributed Systems.
PhD thesis, University of'Rochester, May, 1980.

[14] Lantz, K.A., K.D. Gradischnig, J.A. Feldman and RF.
Rashid.
Rochester's Intelligent Gateway.
Computer 15(10):54·68, October, 1982.

[15] -tv1cKusick, M.K., W.N. Joy, S.L Leach and R.S. Fabry.
A Fast File System for UNIX.
ACM Transactions on Computer Systems 2(3):181·197,

August, 1984.

[16] Rashid, RF. and G. Robertson.
Accent: A Communication Oriented Network Operating

System Kernel.
In Proc. 8th Symposium on Operating Systems Principles,

pages 64· 75. ACM, December, 1981.

[17] RF. Rashid.
The Accent Kemellnterface Manua/.
Technical Report, Department of Computer Science,

Carnegie·Melion University, January, 1983.

[18] Spector, A.Z. et al.
Support for Distributed Transactions in the TASS

Prototype.
In Proceedings of the Fourth Symposium on Reliability in

Distributed Software and Database Systems, pages
186·206. October, 1984.

LOAD BALANCING IN NEST: A NETWORK OF WORKSTATIONS

Ahmed K. Ezzat

Computing Systems Technology Research Department
AT &T Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACf

This paper describes a fully distributed load
balancing model for scheduling processes in a
distributed system. The model consists of two
modules, information policy module and
control policy module. These modules are
replicated at every host and they cooperate
together to provide a network-wide objective
function. The model takes into consideration
the imperfect knowledge about the system
state, and assumes no a priori knowledge of
the new processes description. The scheme is
fully distributed, and the algorithm is
adaptive and stable. The remote execution
phase of the model has been implemented in
the NEST distributed system. We give the
essential details of the implementation and
initial results on its performance. The scheme
was tested under a realistic environment using
an adapted version of an internal benchmark.
The results confirm the feasibility and
effectiveness of a simple policy to reduce the
response time by dynamically taking
advantage of load differences in the network.

1. INTRODUCfION

One of the interesting problems in the design
of any distributed computing system is how to
improve the overall system performance (i.e.,
throughput, response time, etc.) by
dynamically distributing the load over the
entire system. This should be done in a
transparent way so that physical boundaries
between resources on different hosts are hidden
from system users. Optimal load balancing is
expensive computationally, and would require a
pnon knowledge of the run-time
characteristics of the workload in the system.
Alternatively, it is desirable to have a
suboptimal algorithm which requires less
information about the workload, can deal with

C H2:~·'lS-7/H(j!()()()()/ J J :{H~O J .00 c) J 9H(j lEE E 1138

the imperfect knowledge about the system
state, and is inexpensive to use.

In this paper, we present an implementation of
a decentralized control dynamic load balancing
algorithm in NEST [1, 2, 12], a multiprocessor
system consisting of a network of AT&T 3B2
computers interconnected with AT&T 3BNET
(which is an Ethernet compatible 10
megabit/second local area network). The
purpose of this work is to validate the
assumptions made in our scheduling model;
furthermore, a prototype implementation would
give us more insight into the feasibility,
effectiveness, and performance of load
balancing algorithms under sophisticated and
realistic environment. We report our
experience on both of these counts.

In the following section we review related
research on load balancing. Section 3 gives an
overview of our scheduling model. Section 4
discusses the load balancing algorithm in
detail. Section 5 presents a brief background
about the NEST system. Section 6 describes
the benchmark used in evaluating the
algorithm. Section 7 discusses the algorithm
implementation considerations and gives an
initial performance evaluation and its
implications. We compare our work to other
related systems in Section 8, and give some
concluding remarks in Section 9.

2. BACKGROUND

Numerous studies have addressed the problem
of load balancing in distributed systems. We
found it convenient to review previous work in
load balancing by dividing the problem into its
three fundamental components and discussing
the different approaches for each one
individually. These components are namely
load balancing mechanism, policy, and cost
function formulation. In general these

approaches for the different components are
not mutually exclusive.

Load balancing can either have a centralized
or a decentralized mechanism. In centralized
mechanism schemes, the decision making
process of assigning processes to different hosts
in the network is done at a central controller
where the system state is maintained. Stone
[28] presented a centralized resource allocation
algorithm based on the Ford-Fulkerson
maxflow-mincut algorithm in order to
maximize flow in commodity networks. Chow
and Kohler [8] used a central dispatcher to
allocate processes to hosts in order to minimize
the mean response time in the network. In
decentralized mechanism schemes, processes
are scheduled at the arrival host. This
approach is faster in making decisions, however
it requires more communication overhead to
update all hosts with the system state. Also,
the policy in such a scheme has to be able to
handle inconsistent hosts' view of the system
state as a result of communication delays
£13,16]. Stankovic [27] presented a heuristic
for the effective cooperation of multiple
decentralized components of a process
scheduling function. The heuristic itself is
based on the application of Bayesian decision
theory as a systematic approach to complex
decision making under conditions of imperfect
knowledge.

Load balancing policy can be either static or
dy~amic. In static load balancing policies,
assIgnment of processes to hosts are done based
on a predetermined average behavior of the
network and not on the current system state.
Tantawi and Towsley [29] presented two
decentralized static algorithms. The load
balancing scheme is formulated as a nonlinear
programming problem. Alternatively, in
dynamic policies assignment of processes are
done based on the current estimate of the
system state. These policies would assign the
process upon creation or external arrival
permanently to what appears to be the best
host at that time. A non-preemptive dynamic
policy does not move a process even though its
run-time characteristics may prove to be poor
later. For example, Bryant and Finkel [5]
developed an algorithm for point-to-point
interconnection networks. The algorithm uses
the current load estimate in forming a set of
host pairs that differ greatly in load. Once a

1139

pair is formed, the more heavily loaded host
decides which processes, if any, to send to the
other host. This is based on the greatest
expected improvement in the response ratio of
the migrant process. On the other hand, a
preemptive dynamic policy would reassign the
process whenever the system state changes and
the run-time characteristics of _ the process
indicates that it would be better to execute the
process at some other host.

Finally, a cost function is needed to represent
the objective function of the load balancing
policy. Depending on the formulation the
policy would solve for the minimu~ or
maximum cost function in the system.
Algorithms for process scheduling can be
grouped into four main general approaches:
mathematical programming [9], graph
theoretic [4, 7,28, 31], queuing theory
£19,22,25]' and heuristics [5,10,18,20]'

In this paper, we propose a decentralized
dynamic preemptive scheduling model. The
model assumes no a priori knowledge about the
execution time of processes. Different hosts in
the network may have different views of the
system state; it is considered a natural
extension to the scheduling function in a single
host operating system. The nonpreemptive
phase of the model has been implemented
under the NEST system. Initial results are
presented and its implications on the model are
discussed.

3. OVERVIEW OF THE MODEL

Our process scheduling model consists of two
modules, the information policy module and
the control policy module. These modules are
replicated at every host and they cooperate
together to provide a network-wide objective
function. The information policy module sends
the local host's workload state to the network
and receives the corresponding messages fro~
the network. This information is used by the
control policy module in assigning processes to
hosts in the network. The control policy
module is part of the local host's copy of the
distributed operating system and is considered
a natural extension to the traditional scheduler
in the single host case. Since process
scheduling is a critical operating system
function, any algorithm must be inexpensive.
This precludes the use of any sophisticated
algorithms including many potential solutions

based on mathematical programming. We
envision as a part of the distributed operating
system that every host will have a scheduling
entity called the "Network Scheduler," (see
Fig. 1), to perform three functions:

• Remote execution - The remote
execution function assigns each newly
arrived (or created) process using global
strategy to the "run queue" of one of the
hosts in the network.

• Local scheduling - This function
schedules the processor among the
processes in the local run queue using a
local scheduling discipline (e.g., such as
Round Robin with interval ~t).

• Process migration - The process
migration function, at periodic intervals
(N~t where N is very large), uses the
estimate of the local load and the
estimate of the average load in the
network to determine whether to
migrate one or more processes to the
run queue of another host with less
load.

Both remote execution and process migration
functions use the information gathered by the
information policy module about the network
state in making assignment decisions. Issues
with the process migration function include the
criteria on which to select a process for
reassignment, how to prevent processor
thrashing (i.e., spending most of the time
reassigning processes rather than doing actual
work), and finally how often to invoke this
function. The process migration function is
not addressed further in this paper.

Both control and information policy modules
use the communication subsystem of the
network to perform their functions. The
control policy module sends a request message
to the target host that describes the process to
be initiated and the information policy module
sends a status message that contains
information on that host's workload state.

4. REMOTE EXECUTION

In this section we present an algorithm that
implements the remote execution function of
the Network Scheduler as presented in the
previous section. Processes arrive at different
hosts in an unpredictable manner, and no a

1140

priori knowledge about the process description
is assumed. The objective of this algorithm is
to balance the processing load over the entire
network in order to improve the response time
with a mInlmUm number of processes
movement. Given that this function of the
Network Scheduler is performed, the same
approach (with suitable constraints) can be
adapted to handle processes in execution (i.e.,
the process migration function).

State Representation

Because of the rapid fluctuations in the
instantaneous value of the processor load and
the communication delays, transmitting the
instantaneous value of the host load may result
in a nonproductive processes movement. To
avoid such situation, we suggest that the
instantaneous local host state parameters are
taken every Ts units of time, and that it is
averaged over a period of time nTs' where n is
the number of samples and defines the window
size over which we calculate the state
distribution parameters. Every Tu time units,
the information policy module calculates the
average local host state parameters during the
most recent window of time. The new
calculated local state is sent to the rest of the
network if the calculation differs significantly
from the last value transmitted. Both n, Ts '

and Tu values are affected by factors such as
the speed of the communication subsystem and
the nature of the applications used by the
network.

This scheme contributes to the system stability
as sudden changes in the instantaneous value
of the host state would not be completely
reflected in its representation until it is proven
to be a steady trend rather than a temporary
one.

Parameters of the Algorithm

Let M be the number of compute servers
available to a specific client host. Let '11 j be
the processing cost of assigning a new process
to host j. Let {j be the bias used in the
algorithm. The bias is defined as the
percentage saving of the local cost below which
a process is not moved to another host; it is a
function of the load unbalance in the system as
we shall see later. Let Ib 12 be the weighting
factors used in the normalized response time

External Arrival

Completion

Network
Scheduler

host 1 host 2 host M

I I

,
.. ,

............

(~~::.: .. :.::.. Communication Network System ..~:.'~~:'::)
..

Figure 1. A Distributed Computer Model

formula. The information policy module sends
the following state parameters to the rest of
the network:

Nj == the last updated estimate for the
average number of processes at host j.

Pj == the last updated estimate for the
average CPU utilization at host j.

The NRT Algorithm

This algorithm is designed to minimize the
normalized response time (NR T) for all
processes in the network. NR T is defined as
the weighted sum of the average number of

1141

processes (N) and the average number of
processes during the busy period (N fji) over
the most recent window in time. The
combination of these two parameters is a
better description of the load probability
density function distribution than just any of
the two parameters individually. This is
because they represent the average and the
peak of the load distribution. Notice that we .
do not distinguish between user processes,
system processes (i.e., swapper, etc.), and
network server processes (i.e., network server,
file server, or dispatcher server). The cost
function 'I' j to assign a process to host j is
defined as the ratio of time needed to complete

this process at host j to the time required by
the process from host j; ('l! j ~ 1) due to the
fact that the process may be sharing the
processor with other processes.

Assume that an external process arrives at host
i. The following steps are carried out by the
Network Scheduler at host i.

Step 1. Calculate the cost function for
assigning the process locally, 'l!;.

0, if Pi - o.
NRT; - _ N.

lIN; + 12 (--::!-) , otherwise.
p;

'l!; - NRT;+1

Step 2. Calculate the cost function 'l! j for
every host j in the network.

'l!j - NRTj+l
for j - 1, 2, .. , i-I, i + 1, .. , M

Calculate the average cost function in the
network, 'l! a.

If the local cost is less than or equal to the
average cost in the network ('l!; ~ 'l!a), the
process is assigned to the local run queue and
the algorithm terminates. This comparison is
intended to minimize process movement and
contribute to the scheduler stability.

Step 3. Calculate the bias against process
movement, o.

Find the set of hosts in the network having the
minimum cost function 'l! m. If 'l! m is less than
the local cost 'l!; by at least the bias against
process movement ('I' m ~ 'l!; - 0), the process
is assigned to host m, otherwise it is assigned
to the local host. If there is more than one
host with minimum cost, one is selected at
random.

1142

We conclude this section with a note about
incorporating the processor capacity in our
algorithm. Let Cj denote the CPU capacity of
host j (measured in any commonly units). If
C·- 2C;, and the two hosts have the same
l~ad, then the expected response time of host j
is half that of host i. Then the normalized cost
function formula at host j, :q;j' is defined as
:q;.- 'l!/Cj . In all results shown in this paper,
~{ processors have the same capacity; therefore
'1'- 'l!.

s. OVERVIEW OF THE NEST SYSTEM

In NEST, we consider a computing
environment that consists of a network of
highly autonomous yet cooperative personal
computer workstations and shared servers.
These computers are interconnected via AT&T
3BNET hardware, which is an Ethernet
compatible 10 megabit/second local area
network. An important aspect of NEST is to
provide processor sharing by creating a pool of
compute servers in the network that may be
used by the workstations to supplement their
computing needs. Some processors are
permanently designated to be compute servers.
In addition, through an advertisement
mechanism [12], any workstation may make
itself temporarily available for a specific
duration of time to be used as a compute
server. Each processor runs the NEST system
[1,2,12]. The basic software building block
for developing parallel and distributed
applications is the "rexec" primitive [1] which
provides the execution location independent
remote execution capability. At the user level,
the remote execution can be initiated as
follows,

rexec [-s host-name]
"command string"

where host-name specifies the target compute
server at which the "command string" to be
executed. The "command string" may include
a compound operation such as pipe, standard
input/output redirection, background
execution, etc. It is also possible to initiate the
remote execution of a "command string" at the
program level by execing the rexec from a C
program [171. This rexec capability allows
processes to be offioaded to a compute server
and preserves the execution environment of

these processes as if they were still executing
locally at the originating host. The execution
location independent capability is achieved by
preserving the process view of the file system
(i.e., treating the CPU and the file system as a
separate and independent resources), parent
child relationships, process group relationship,
and process signaling across machine
boundaries in a transparent way.

In NEST, each workstation has its own file
tree which is configured from the available
network file resources. It is likely that system
commands such as nroff, cc, etc. are replicated
at every machine. The SWITCH variable
capability gives the user a system controlled
capability to access absolute pathnames either
from the local tree or the compute server tree.
This capability is used to alleviate copying
system files across the network. Another
example of using the SWITH capability is
temporary files which would be more efficiently
created at the machine on which the process is
executing. This is because by default
temporary files are deleted at the end of the
operation.

To have a feeling fo~ the penalty of remotely
executing a process in NEST as well as to
demonstrate the use of the SWITCH
capability, we measured the response time for
both local and remote compilation. Table 1
depicts the penalty of compiling a 26 Kbytes
source file remotely using different values for
the SWITCH variable. The penalty includes
both overheads of remotely invoking the
compilation operation and accessingl creating
remote files during the compilation. When the
SWITCH was set to NULL, all system files
(cc, comp, cpp, as, ld, etc,) , temporary files
(symbol table file, etc,), include files in the
source file, and source and output files were
accessed or created on the originating machine.
The penalty in this case for remotely compiling
the source file was 55.6% relative to the local
compilation. When the SWITCH was set to
"/bin:/lib:ltmp", only input and output files
were accessed or created on the originating
machine. The penalty in this case dropped to
6% relative to the local compilation. For more
details about the remote execution and the
SWITCH capability refer to [11.

1143

6. WORKLOAD BENCHMARK

In this section, we present an adapted version
of an internal benchmark [IS) which is widel~
used to give a picture of the global UNIX
system performance rather than measurements
of individual components (e.g., CPU, file
system). The benchmark uses a scaling
technique which allows measuring the degree
to which a time sharing system manages
concurrent, competing demands for system
resources. The workload is represented by a
script of interactive commands. A model was
constructed by measuring three days of activity
on a UNIX system in a development
environment. The script workload was
constructed so that resources are consumed in
the same proportions as the real workload
model. The representative script consists of
atomic sequence of commands including
compile, load, execute, text format, file edit,
spelling check, searching for and copying files,
etc. Multiple scripts can be initiated in
parallel to increase the level of concurrency.
In this case, the ordering of the set of
commands in the different scripts are permuted
in order to avoid synchronization problem, i.e.,
all simulated users execute the same command
at the same time. This approach allows each
instance of the workload to be different, while
imposing the same overall amount of work on
the system.

In measuring performance for our implemented
load balancing algorithm, different loads G.e.,
light, moderate, and heavy} are represented by
different number of scripts executing
concurrently. Performance measures include
the average host response time (a script is the
unit of load rather than individual commands),
average system response time, percentage of
commands remotely executed, and the CPU
utilization over the life time of the workload.

7. IMPLEMENTATION OF NRT ON NEST

Host's State Measurement

The mechanism used for measuring the local
processor load parameters is turned on
automatically whenever a processor advertises

t UNIX is a trademark of AT&T Bell Laboratories

Execution Mode Penalty
Local 0.0%

SWITCH = NULL 55.6%

Remote
SWITCH = Itmp 33.6%

SWITCH = Ibin:lIib 29.0%
SWITCH = /bin:lIib:/tmp 6%

TABLE 1. Compilation Penalty Measurements

itself as a compute server and is turned off
otherwise.

Because parameters needed in our algorithm
(N, p) are already computed and available in
an accounting data structure in the kernel, we
found it convenient to sample this information
.every second (i.e., select Ts- Isec) in the clock
interrupt service routine. In order to tune the
other parameters of the information policy
module, we have taken measurements of the
overhead incurred by _the NEST system to
move a process and resume its execution at a
compute server. For a source program of size
2Kbytes, the difference between local and
remote compilation is 2.5 seconds. This
overhead includes moving the process
environment, process view of the file system; it
also include copying user source program,
sys_tem programs (i.e., cc, cpp, ld, etc.), and
output module across the network. This would
suggest [11] that an update rate of 3 seconds
(Tu - 3sec), and : window size of 6 seconds
(n- 6 samples) would help in alleviating the
effect of load fluctuations between the time of
selecting a compute 'server and resuming
'execution at the compute server.

Every Tu - 3sec, the clock interrupt service
routinewakesup a state server kernel process
-to calculate the local state parameters. If it is
different significantly from the last broadcasted
value, a state update message is sent to the . list
of clients previously advertised by this compute
server.

On the reception of a state update message by
the network server [12] at a client host, the
new server's state is updated in the appropriate
entry at the server state kernel table. This
information is used by the load balancing
policy to assign an rexeced' process to a host in
the network.

1144

Bias Selection

The bias {3 value as expected is very much
dependent on the underlying system and the
load differences in the network. In a network
where the load differences among the different
hosts is small, processes movement should be
discouraged as the overhead of moving the
process may not counterbalance the gain from
executing the process remotely. This means a
higher bias for fairly balanced networks than
that needed for unbalanced loaded networks.
Optimal bias values for typical. balanced and
unbalanced loads were deducted from
experiments discussed below and then plugged
back into the algorithm as a list. The
algorithm indexes the appropriate .bias value
from the list depending upon the current load
differences in the network. This modification
does not impose significant 'overhead as these
information are simple to extract.

Policy Implementation

The rexec command discussed earlier has been
modified as follows,

rexec [-s host-name]
[-g group-name]
"command string"

Using only the "s" option, the system will
behave exactly ,as discussed earlier. If no
options are specified, the system applies the
NRT algorithm to assign the "command
string" .request either locally or to any of the
available compute servers. If the option "g" is
specified, the system applies the NRT
algorithm to assign the "command string"
request to a host from the group of hosts
defined by the alias group-name. Information
about the compute servers' load parameters are
accessed from the kernel 'server state table.

This table is maintained by the state server
process as discused before.

System Resources Considerations

In a case where system resources (e.g., process
table entry) are near fully utilized, newly
forked processes are forced. to rexec remotely if
compute servers are available.

Initial Performance Evaluation

In this section, we present results of the remote
execution function of our process scheduling
model. The load balancing algorithm was
tested in a network of three AT&T 3B2
computers interconnected via 3BNET
hardware. All computers are functioning as a
client and a compute server simultaneously.
Different loads in the network (light, moderate,
and heavy) are represented by different
number of scripts executing concurrently. The
selected set of loads have a wide range of load
differences among, the hosts in the network.
The three sets of load parameters are shown in
Table 2.

First, We note that in NEST all objects, except
processes, are static, i.e., they do not migrate
across host boundaries. Examples of such
objects are files, devices, etc. These objects
however. can be shared by some or all hosts in
the network. Access to such objects may be
originated at any host, but it is performed in
the host where the object physically resides
using a pool of file servers. In oqr experiment,
we generated enough. number of file servers so
that they do not contribute degradation to the
response time in the system.

The results shown here used the following set
of parameters: sampling time Ts- Isec,
number of samples n- 6, update rate
Tu - 3sec, and weighting' factors for the NRT
formula /1-/2- 0.5. In all tests, in order to
maintain the same load throughout the tests,
the scripts were' executed in a loop, i.e., upon
completion each script restarts.

We are presenting here three· set of tests, e.g.,
light, moderate, and heavy loads, each
including two phases. In the first phase, the
load balancing algorithm is enabled and the
bias {1 is varied over a wide range of values.
Performance measurements includes the
average host response' time, average system
response time" percentage of processes

1145

movement, and the CPU utilization. In the
second phase, we run the same set of tests with
the load balancing algorithm disabled, i.e.,
commands in the scripts were executed locally
and recorded the same performance
measurements. Notice that in the second
phase the SWITCH value is irrelevant. The
purpose of the second phase is to give' an upper
bound to our load balancing algorithm. The
tests proceeded as follows:

For light balanced load with the SWITCH set
to NULL, whose results is shown in Table 3,
the algorithm needed high bias 75% to prohibit
nonproductive processes movement. The gain
achieved at bias 75% is also negligible (less
than 1 %) as was expected. In general, at low'
bias, processes movement was nonproductive
and degraded the average system response time
relative to the nonload balancing case.

For a moderate unbalanced load with the
SWITCH set to NULL, whose results is shown
in Table 4, the test demonstrates the potential
advantage of remote process assignment. In
spite of the fact that the load, (i.e., scripts). has
commands which cost much less than the
process movement cost (i.e., local execution of
Is command costs around 0.8sed, the
algorithm achieved on the average system-wide
gain of 17% at bias value of 50% over the
nonload balancing' case. Also, we point out
that the CPU utilization is almost evenly"
utilized. The difference in response time
between Phase-l results with 75% bias and
Phase-2 results in Table 4 is due to the
overhead of the control and information policy
modules. When the SWITCH was set to
"/bin:llib:/tmp", the average system response
time at bias of 50% was 8 minutes and 25
seconds, i.e., 35% improvement over the
nonload balancing case.

For a heavy balanced load with the SWITCH
set to NULL, whose results is shown in Table
5, these test results are very similar to. the light
balanced load case. The algorithm needed
high bias of 75% to prohibit nonproductive
processes movement; The gain achieved at
bias 75% is negligible (less than 1%). At low
bias of 25% processes movement was
nonproductive 'and reduced 8.3% degradation
in the average systein response time.

We conclude this section with a note about
selecting the bias value dynamically. The

Host Light Moderate Heavy

1 2 4 4

2 1 1 3

3 1 2 5

TABLE 2. Workload Sets (script/host)

Phase-l (SWITCH - NULL)
Bias Phase-2

2S% SO% 7S%

Host 1 2 3 1 2 3 1 2 3 1 2 3

Host rpt 9:06 5:02 7:51 8:58 4:51 4.55 7:53 4:52 4:54 8:05 4:47 4:47

% of movement 18.7 0 12.5 6.25 0 0 3.12 0 0 0 0 0

CPU util 82 90 85 96 88 86 95 89 89 93 88 88

system rpt 7:47 6:56 6:23 6:26

TABLE 3. Light Balanced Workload Set (response time in minutes:seconds)

Phase-l (SWITCH - NULL)
Bias Phase-2

2S% SO% 75%

Host 1 2 3 1 2 . 3 1 2 3 1 2 3

Host rpt 15:41 11:29 11:38 12:31 8:52 9.08 17:40 4:52 8:14 17:28 4:47 8:05

% of movement 53.1 25 25 31.2 0 0 0 0 0 0 0 0

CPU util 87 98 77 97 95 94 98 89 95 94 88 93

system rpt 13:54 10:46 13:08 12:58

TABLE 4. Moderate Unbalanced Workload Set (response time in minutes:seconds)

Phase-l (SWITCH - NULL)
Bias Phase-2

2S% SO% 75%

Host 1 2 3 1 2 3 1 2 3 1 2 3

Host rpt 21:01 19:14 19:34 18:56 13:31 23.36 17:29 13:10 22:16 17:28 13:08 22:25

% of movement 34.37 20.8 45 6.3 0 15 0 0 2 0 0 0

CPU util 84 98 94 98 97 93 91 98 92 94 93 94

system rpt 19:58 19:31 18:22 18:26

TABLE S. Heavy Balanced Workload Set (response time in minutes:seconds)

NR T algorithm was modified so that if the
current ratio of the maximum host estimated
load to the minimum one is greater than or
equal to 4, the bias is selected to be 50%;

1146

otherwise, it is selected to be 75%. Different
tests have been conducted using the automatic
bias selection and resulted in a consistent
response time improvement; however, we feel

that more study is needed in this area.

8. RELATED WORK

Our work is related to processor sharing and
load balancing in distributed systems.
Processor sharing has been an issue of research
in many distributed systems like Arachne [14],
Accent [24], Cambridge Distributed System
[211, DEMOS/MP [23]. However, it is
difficult to draw parallels with our work
because even though some of these systems
support transparent remote process execution,
none have reported system wide automatic
scheduling. Other systems such as the Worm
programs [26] have developed the notion of
multi-segment worm programs. The warm
mechanism is built into each program,
necessitating modification in user programs.
While the stress in the worm system is on
failure recovery and making use of idle
workstations, we stress on preserving the user
applications without any changes, and load
balancing across multi-user machines.

Locus provides preemptable remote execution
[6]. The Locus system is geared toward
providing a single virtual machine, meanwhile
in a workstation environment we stress on
autonomy. As a consequence, many design
and implementations issues are very different.

A network-transparent remote execution
facility has also been designed for the V
system [30] that allows a user of a
workstations to offioad programs onto idle
workstations. The emphasis in this work is
similar to the Worm programs system in
making use of idle workstations rather than
load balancing across a multi-user machines.
Also, there are no reported results indicating
the benefit of automatic scheduling to make a
meaningful comparison.

Recently, a decentralized dynamic load
balancing policy on the MOS system has been
reported [31. The scheduling policy used the
average number of processes during the busy
period as the measure of the machine's load.
Our algorithm uses more sophisticated measure
for representing the machine's load. Using the
SWITCH capability in NEST, the average
system response time improvement in our
scheme without the process migration phase is
much higher than those reported in MOS.
However, more information is needed about

1147

the workload used in testing the load balancing
algorithm to make more accurate comparison.

9. CONCLUDING REMARKS

In this paper we described the organization of
a load balancing scheme implemented in the
NEST distributed system. The scheme
consists of two modules, the information policy
module and the control policy module. The
remote execution phase of the model has been
implemented and many of its primitives will be
also used for the process migration phase. The
remote execution algorithm assigns processes to
hosts in order to improve the overall system
response time. The algorithm is adaptive in
the sense that host's view of the network state
is updated to reflect changes in the network
workload, and the bias is selected dynamically
depending on the current load unbalance in the
network.

Some details of the load balancing scheme
were described and initial results on its
performance were given. The scheme was
tested under a realistic environment. The main
implication of these results is that, it is possible
to reduce the response time by dynamically
taking advantage of load differences in the
system.

In the conduction of this work we have
identified several issues which require further
study. One issue is that it may prove to be
useful to make assignment decisions for new
processes after allowing them to execute locally
at least an amount of time equal to the cost of
moving the process. This would require
studying the tradeoffs between the gain in
performance by filtering inexpensive processes
from being remotely executed and the extra
cost of moving the process after it starts
execution.

10. ACKNOWLEDGEMENTS

We gratefully acknowledge the effort and the
comments of the referees which inspired a
significant revision and improvement to the
paper.

References

[11 R. Agrawal and A. K. Ezzat, "Processor
Sharing in NEST: A Network of
Computer Workstations," 1 st

International Con! on Computer
Workstations, Nov. 1985, pp. 198-208.

[2] R. Agrawal and A. K. Ezzat, "Processor
Sharing in a Network of Workstations,"
AT&T Workstation Symposium, Oct.
1985.

[3] A. B. Barak and A. Shiloh, "A
Distributed Load-balancing Policy for a
Multicomputer," Software-Practice and
Experience 15(9), (September 1985), pp.
901-913.

[4] S. H. Bokhari, "Dual Processor
Scheduling with Dynamic
Reassignment," IEEE Trans. Software
Eng. SE-5, 4 (July 1979), pp. 341-349.

[5] R. M. Bryant and R. A. Finkel, "A
Stable Distributed Scheduling
Algorithm," Proc. 2nd Int. Con/. Distrib.
Comput. Syst., Apr. 1981, pp. 314-323.

[6] D. A. Butterfield and G. J. Popek,
"Network Tasking in The LOCUS
Distributed UNIX System," Proc.
Summer USENIX Conference, June
1984, 62-71.

[7] T. C. K. Chou and J. A. Abraham,
"Load Balancing in Distributed
Systems," IEEE Trans. Software Eng.
SE-8,4 (July 1982), pp. 401-412.

[8] Y. C. Chow and W. Kohler, "Models for
Dynamic Load Balancing in a
Heterogeneous multiple Processor
System," IEEE Trans. Comput. C-28, 5
(May 1979), pp. 354-361.

[9] W. W. Chu, "Optimal File Allocation in
a Multiple Computing System," "IEEE
Trans. Comput. C-18, (Oct. 1969), pp.
885-889.

[10] G. Chuanshan, J. W. S. Liu and M.
Railey, "Load Balancing Algorithms in
Homogeneous Distributed Systems,"
IEEE, 1984, pp. 302-306.

[11] A. K. Ezzat, R. D. Bergeron and J. L.
Pokoski, "Adaptive Decentralized
Control Job Scheduling in Distributed
Computing Systems," Distributed
Computing Journal. Submitted to.

[12] A. K. Ezzat and R. Agrawal, "Making
Oneself Known in a Distributed World,"
Proc. 1985 Int'l Con/. on Parallel

1148

Processing, Aug. 1985, pp. 139-142.

[13] A. K. Ezzat, R. D. Bergeron and J. L.
Pokoski, "Task Allocation Heuristics For
Distributed Computing Systems," Proc.
6th Int'l Con/. on Distributed Computing
Systems, May. 1986, pp. 337-346.

[14] R. Finkel, "The Arachne Kernel,"
Computer Sciences Tech. Rep. #380,
Univ. Wisconsin, Madison, April 1980.

[15] S. L. Gaede, "A Scaling Technique For
Comparing Interactive System
Capacities," Proc. CMG XIII In!'l Con/.,
San Diego, California, Dec. 1982, pp.
62-67.

[16] E. D. Jensen, "Distributed Control," in
Lecture Notes in Computer Science. vol.
105, Springer-Verlag, New York, 1981,
pp. 175-190.

[17] B. W. Kernighan and D. M. Ritchie,
"The C Programming Language,"
Prentice-Hall, 1978.

[18] A. Kratzer and D. Hammerstrom, "A
Study of Load Levelling," IEEE
COMPCON Fall 80, Sept. 1980, pp.
647-654.

[19] M. N. Lionel and K. Hwang, "Optimal
Load Balancing in a Multiple Processor
System with Many Job Classes," IEEE
Trans. Software Eng. SE-11, 5 (May
1985), pp. 491-496.

[20] M. Livny and M. Melman, "Load
Balancing in Homogeneous Broadcast
Distributed Systems," Proc. ACM
Computer Network Performance
Symposium, Apr. 1982, pp. 47-55.

[21] R. M. Needham and A. J. Herbert, "The
Cambridge Distributed Computing
System" Addison-Wesley, 1982.

[22] L. M. Ni and K. Hwang, "Optimal Load
Balancing Strategies for a Multiple
Processor System," Proc. 1981 Int'l
Con/. on Parallel Processing, Columbus,
Ohio, Aug. 1981, pp. 352-357.

[23] M. L. Powell and B. P. Miller, "Process
Migration in DEMOS/MP," Proc.
ACM-SIGOPS 9th Symp. on Operating
Systems Principles, Oct. 1983, 110-119.

[24] R. F. Rashid and G. G. Robertson,
"Accent: A communication Oriented
Network Operating System Kernel,"
Proc. ACM -SIGOPS 8th Symp. on
Operating Systems Principles, Dec.
1981, 64-75.

[25] W. D. Roome and H. C. Torng,
"Modeling and Design of Computer
Networks with Distributed Computation
Facilities," IEEE Computer Networks:
Trends and Applications, May 1974, pp.
30-38.

[26] J. F. Shoch and J. A. Hupp, "The Worm
Programs - Early Experience With a
Distributed Computation," Commun.
ACM 25, 3 (March 1982), 172-180.

[27] J. A. Stankovic, "An Application of
Bayesian Decision Theory to
Decentralized Control of Job
Scheduling," IEEE Trans. Comput. C-
34, 2 (Feb. 1985), pp. 117-130.

[28] H. S. Stone, "Multiprocessor Scheduling
with the aid of Network Flow
Algorithms," IEEE Trans. Software
Eng. SE-3, 1 (Jan. 1977), pp. 85-93.

[29] A. N. Tantawi and D. Towsley,
"Optimal Static Load Balancing in
Distributed Computer Systems," ACM
32, 2 (April 1985), pp. 445-465.

[30] M. M. Theimer, K. A. Lantz and D. R.
Cheriton, "Preemptable remote
Execution Facilities For The V -System"
Proc. ACM-SIGOPS 10th Symp. on
Operating Systems Principles, Dec.
1985, pp. 2-12.

[311 S. B. Wu and M. T. Liu, "Assignment of
Tasks and Resources for Distributed
Processing," IEEE COMPCON Fall 80,
Sept. 1980, pp. 655-662.

1149

Checkpointing and Rollback-Recovery for Distributed Systems·

Richard Koo"
Sam Touegt

Department of Computer Science

Cornell University

Ithaca, New York 14853

ABSTRACT

We consider the problem of bringing a distributed system

to a consistent state after transient failures. We address

the two components of this problem by describing a distri

buted algorithm to create consistent checkpoints, as well

as a rollback-recovery algorithm to recover the system to a

consistent state. In contrast to previous algorithms, they

tolerate failures that occur during their executions. Furth

ermore, when a process takes a checkpoint, a minimal

number of additional processes are forced to take check
points. Similarly, when a process rolls back and restarts

after a failure, a minimal number of additional processes

are forced to roll back with it. Our algorithms require

each process to store at most two checkpoints in stable

storage. This storage requirement is shown to be minimal

under general assumptions.

1. Introduction

Checkpointing and rollback-recovery are well-known

techniques that allow processes to make progress in spite

of failures12 • The failures under consideration are tran

sient problems such as hardware errors and transaction

aborts, i.e., those that are unlikely to recur when a process

restarts. With this scheme, a process takes a checkpoint

from time to time by saving its state on stable storage9

When a failure occurs, the process rolls back to its most

recent checkpoint, assumes the state saved in that check

point, and resumes execution.

·The views, opinions and findings contallled In thi~ report are those
of the authors and should not be construed a,:; all uffic.:ial Department of
Defence position, policy, or decision,

"This author was supported by the Of'fenn" Ad~cIlH;ed Resear,:h
Projects Agency (DoD) under ARPA order :):3.~ Contract MOA~03-8:)

C-0124, and by the National Science Foullrlatl(l[' unrlf'r 5rant,. OCR·
8412582 and MCS 83-03135,

+This author was supported by the Nationi:ll 5CI8[11'8 Fuundation
under grant MCS 83-03135.

CH2345-7/86/0000/1150$01.00 © 1986 IEEE
1150

We first identify consistency problems that arise in

applying this technique to a distributed system. We then

propose a checkpoint algorithm and a rollback-recovery

algorithm to restart the system from a consistent state

when failures occur. Our algorithms prevent the well

known "domino effect" as well as livelock problems associ

ated with rollback-recovery. In contrast to previous algo

rithms, they are fault-tolerant and involve . a minimal

number of processes. With our approach, each process

stores at most two checkpoints in stable storage. This

storage requirement is shown to be minimal under general
assumptions.

The paper is organized as follows: We discuss the

notion of consistency in a distributed system in section 2,

and describe our system model in section 3. In section 4

we identify the problems to be solved. Sections 5 and 6

contain the checkpoint and rollback-recovery algorithms

respectively. The algorithms are extended for concurrent

executions in section 7. In section 8 we consider optimiza

tions. Sections 9 and 10 contain a discussion and our con
clusion.

2. Consistent Global States in Distributed Sys
tems

The notion of a consistent global state is central to

reasoning about distributed systems. It was considered by

Randell ll
, Russell 13

, and Presotto 10, and formalized by

Chandy and Lamport2
. In this section, we summarise

their ideas.

In a distributed computation, an 1:'(elll can be a spon

taneous state transition by a process, or the sending or

receipt of a message. Event a (hrer.ll\ happefls hl'/im's

event b if and only if

(1) a and b are events in the same process, and (/ occu 1'8

before b; or

(2) a is the sending of a message m by a process and h is

the receiving of m by another process.

The transitive closure of the directly happens be/im' rela

tion is the happens before relation. If event a happens

before event b, b happens after a. (We abbreviate happens

before, "before" and happens after, "after".)

A local state of a process p is defined by p's initial

state and the sequence of events that occurred at p. A glo

bal state of a system is a set of local states, one from each

process. The state of the channels corresponding to a global
state s is the set of messages sent but not yet received in

s. We can depict the occurrences of events over time with

a time diagram, in which horizontal lines are time axes of

processes, points are events, and arrows represent mes
sages from the sending process to the receiving process. In

this representation, a global state is a cut dividing the

time diagram into two halves. The state of the channels

comprises those arrows (messages) that cross the cut. Fig

ure 1 is a time diagram for a system of four processes.

Informally, a cut (global state) in the time diagram is

consistent if no arrow starts on the right hand side and

ends on the left hand side of it. This notion of consistency

fits the observation that a message cannot be received
before it is sent in any temporal frame of reference. For

example, the cuts c and c' in Figure 1 are consistent and

inconsistent cuts, respectively. The state of the channels

corresponding to cut c consists of one message from p to q,

and another message from s to r. Readers are referred to

the work of Chandy and Lamport2 for a formal discussion
of consistent global states.

3. System Model

The distributed system considered in this paper has
the following characteristics:

(1) Processes do not share memory or clocks. They com

municate via messages sent through reliable first-in
first-out (FIFO) channels with variable nonzero
transmission time.

(2) Processes fail by stopping, and whenever a process

fails, all other processes are informed of the failure in
finite time. We assume that processes' failures never

p------~~----------~--~~----------~

q------~~~--~--~--------~~------~

r--~--------~~------~~~~------------~

FIG. 1. Consistent and incon:-;istent cuts

in a distributed sy:-;tem

1151

partition the communication network.

We want to develop our algorithms under a weak set

of assumptions. In particular, we do not assume that the
underlying system is a database transaction system4,6.

This special case admits simpler solutions: the mechanisms

that ensure atomicity of transactions can hide inconsisten

cies introduced by the failure of a transaction. Further

more, we do not assume that processes are deterministic:
this simplifying assumption is made in previous results6.

16
.

4. Identification of Problems

A checkpoint is a saved local state of a process. A set
of checkpoints, one per process in the system, is consistent

if the saved states form a consistent global state. For

example, consider the system history in Figure 2. Process

p takes a checkpoint at time X and then sends a message

to q. After receiving this message, q takes a checkpoint at
time Y. Subsequently, p fails and restarts from the check

point taken at X. The global state at p's restart is incon

sistent because p's local state shows that no message has

been sent to q, while q's local state shows that a message
from p has been received. If p and q are processes

supervising a customer's account at different banks, and

the message transfers funds from p to q, the customer will

have the funds at both banks when p restarts. This incon

sistency persists even if q is forced to roll back and restart
from its checkpoint taken at Y.

The problem of ensuring that the system recovers to a

consistent state after transient failures has two com

ponents: checkpoint creation and rollback-recovery; we
examine each one in turn

4.1. Checkpoint Creation

There are two approaches to creating checkpoints.

With the first approach, processes take checkpoints
independently and save all checkpoints on stable storage.

Upon a failure, processes must find a consistent set of

checkpoints among the saved ones. The system is then

rolled back to and restarted from this set of check
points 1,5,14,19.

x failure

p~----~--~--------------~----------~

q~------------~~~------------------~ y

FIG 2. Inconsi~tent checkpoints.

Xl Xo

P~----~~1-------~~~------~~~--~~~

X2 x'] failure

q~~--------~~------~~+--------+~~

Yo Y/ Y., Y·/
FIG. 3. "Domino effect" following a failure.

With the second approach, processes coordinate their

checkpointing. actions such that each process saves only its

most recent checkpoint, and the set of checkpoints in the

system is guaranteed to be consistent. When a failure

occurs, the system restarts from these- checkpoints 17.

The main disadvantage of the first approach. is the

"domino effect" as illustrated in Figure 310
•
11

. In this

example, processes p and q have independently taken a
sequence of checkpoints. The interleaving of messages and

checkpoints leaves no consistent set of checkpoints for p

and q, except the initial one at {Xo, Yo}. Consequently,

after p fails, both p and q must roll back to the beginning

of the computation. For time-critical applications that

require a guaranteed rate of progress, such as real time

process control, this behavior results in unacceptable

delays. An additional disadvantage of independent check

points is the large amount of stable storage required to

save all checkpoints.

To avoid these disadvantages, we pursue the second

approach. In contrast to Tamir 17 , our method ensures that

when a process takes a checkpoint, a minimal number of

additional processes are forced to take checkpoints ..

4.2. Rollback-Recovery

Rollback-recovery from a consistent set of checkpoints

appears deceptively simple. The following scheme seems

to work: Whenever a process rolls back to its checkpoint, it

notifies all other' processes to also roll back to their respec

tive checkpoints. It then installs its checkpointed state and.

resumes execution. Unfortunately, this simple recovery

method has a major flaw. In the absence of synchroniza

tion, processes cannot all recover (from their respective

checkpoints) simultaneously. Recovering processes asyn

chronously can introduce livelocks as shown below.

Figure 4 illustrates the histories of two processes, p

and q, up to p's failure. Process p fails before receiving

the message nl! rolls back to its checkpoint, and notifies lj

Then p recovers, sends m2, and receives Ill' After p's

recovery, p has no record of sending.mI, while q has a

record of its receipt. Therefore the global state is

1152

failure

p~------~~------------~~--~------~

.~,1/

mz

FIG. 4. Histories of p and q up to p's failure.

inconsistent. To restore consistency, q must also roll back

(to "forget" the receipt of ml) and notify p. However, after

q rolls back, q has no record of sending III while p has a

record of its receipt. Hence, the global state is inconsistent

again, and upon notification of q's rollback, p must roll

back a second time. After q recovers, q sends liZ and

receives m2' Suppose p rolls back before receiving 112 as

shown in Figure 5. With the second rollback of p, the

sending of m2 is "forgotten". To restore consistency, q must

roll back a second time. After p recovers it receives 112,

and upon notification of q's rollback, it must roll back a

third time. It is now clear that p and q can be forced to

roll back forever, even though no additional failures occur.

Our rollback-recovery algorithm solves this livelock

problem. It tolerates failures that occur during its execu

tion, and forces a minimal number of processes to roll back

after a failure. However, in Tamir 17 , a single failure forces

the system to roll back as a whole. Furthermore, the sys

tem crashes (and does not recover) if a failure occurs while
it is rolling back.

5. Checkpoint Creation

5.1. Naive Algorithms

From Figure 2 it is obvious that if every process takes

a checkpoint after every sending of a message, and these

two actions are done atomically, the set of the most recent

checkpoints is always consistent. But creating a check

point after every send is expensive. We may naively

reduce the cost of the above method with a strategy such

roll back
e2nd time

p~------~------~~----~~--~------~

n2

q~--------------~~~--------------~

FIG. 5; History of p and q up to p's 2nd rollback.

as "every process takes a checkpoint after every I,' sends,

I~ > I" or "every process takes a checkpoint on the hour".

However, the former can be shown to suffer domino effects

by a construction similar to the one in Figure 3, while the

latter is meaningless for a system that lacks perfectly syn

chronized clocks.

5.2. Classes of Checkpoints

Our algorithm saves two kinds of checkpoints on

stable storage: permanent and tentative. A permanent

checkpoint cannot be undone. It guarantees that the com-

. putation needed to reach the checkpointed state will not be

repeated. A tentative checkpoint, however, can be undone

or changed to be .a permanent checkpoint. When the con

text is clearj' w"e call permanent checkpoints "checkpoints".

Consider a system with a consistent set of permanent

checkpoints. A checkpoint algorithm is resilient to failures

if the set of permanent checkpoints is still consistent after

the algorithm terminates, even if some processes fail dur

ing its execution. To exclude the impractical "naive" algo

rithm (in last section) from our consideration, henceforth,

we consider only those systems where processes either can

not afford to .take a checkpoint after every send, or cannot

combine the sending of a message and the taking of a

checkpoint into one atomic operation. The following

theorem shows that checkpoint algorithms for these sys

tems must store at least two checkpoints in stable storage

to be resilient to failures. (The proofs of all lemmas and

theorems in this. paper can be found in Koo and Toueg7
.)

Theorem 1: No resilient checkpoint algorithms that take

only permanent checkpoints exist. o
Theorem 1 shows that in those systems we consider, any

resilient checkpoint algorithm must store at least two

checkpoints on stable storage.

5.3. Our Checkpoint Algorithm

We assume the algorithm is invoked by a single pro

cess that wants to take a permanent checkpoint. We also

assume that no. failures occur in the system. In section

5.3.4 we extend the algorithm to handle failures, and in

section 7 we describe concurrent invocations of this algo

rithm.

5.3.l. Motivation The algorithm is patterned on two

phase-commit protocols. In the first phase, the initiator q

takes a tentative checkpoint and requests all processes to

take· tentative checkpoints. If q learns that all processes

have, taken tentative checkpoints, q decidei' all tentative

checkpoints should be made permanent; otherwise, q

decides tentative checkpoints should be discarded. In the

second phase, q'sdecision is propagated and carried out by

all processes. Since all or none of the processes take per

manent checkpoints, the most recent set of checkpoints is

always consistent.

However, our goal is to force a minimal number of

processes to take checkpoints. The above algorithm is

modified as follows: a process p takes a tentative check

point after it receives a request from q only if q's tentative

checkpoint records the receipt of a message from p, and p's

latest permanent checkpoint does not record the sending of

that message. Process p determines whether this condition

is true using the label appended to q's request. This label

ing scheme is described below.

Messages that are not sent by the checkpoint or

r~llback-recovery algorithms are system messages. Every

system message m contains a label m.l. Each process

"appends outgoing system messages with 'monotonically

increasing labels. We define .1. and T to be the smallest

and largest labels, respectively. For any processes q and

p, let m be the last message that q received from p after q

took its last permanent or tentative checkpoint. Define:

1153

Im.l if m exists
lasLrmsgq(p) = .1. otherwise .

Also, let m be'the first message that q sent to process p

after q took its last permanent or tentative checkpoint.

Define:

-Im.l if m exists
(irsL.smsgq(p) - .1. otherwise .

When q requests p to take a tentative checkpoint, it

appends lasLrmsgq(p) to its request; p takes the check

point only if lasLrmsgq(p) ~(il'sLsmsg[l(q) > .1..

5.3.2. Informal Description Process p is a

ckpLcohort of q if q has taken a tentative checkpoint, and

lastJmsgq(p) > .1. before the tentative checkpoint is taken.

The set of ckpLcohorts of q is denoted C'kpt_C'ohol'tq. Every

process P keeps a variable willing_to_C'kpt [I to denote its

willingness to take checkpoints. Whenever p cannot take a

checkpoint (for any reason), willing_to_ckptp is "no". The

initiator q starts the checkpoint algorithm by making a

tentative checkpoint and sending a request "take a tenta

tive checkpoint and lasLrmsg,/p)" to all pEckpLcohol'tt[' A

process p inherits this request if toilling_to_ckpt [I is "yes"

and lastJmsgq(p)~{irsL,-;m;;g{l(q»l.. If p inherits a

request, it takes a tentative checkpoint and sends "take a

tentative checkpoint and la;;I/"lIIsgp(r)" requests to all

rEckpLcohort p • If p receives but does not inherit a request

from q, p replies lvilling_(().J:kpl,. to q.

After P sends out its requests, it waits for replies that

can be either Hyes" or "no", indicating a ckpLcohort's

acceptance or rejection of p's request. If any reply is "no",

willingJo_ckptp becomes "no"; otherwise u'illillg-'o_ckpt"

is unchanged. Process p then sends [villillg_ltLchptp to the

process whose request p has inherited. From the time p

takes a tentative checkpoint to the time it receives the

decision from the initiator, p does not send any system

messages.

If all the replies from its ckpLcohorts arrive and are

all "yes", the initiator decides to make all tentative check

points permanent. Otherwise the decision is to undo all

tentative checkpoints. This decision is propagated in the

same fashion as the request "take a tentative checkpoint"

is delivered. A process discards its previous checkpoints

after it takes a new permanent checkpoint.

The algorithm is presented in Figure 6. For simpli

city, we create a fictitious process called daemon to assume

the initiation and decision tasks of the initiator. In prac
tice, daemon is a part of the initiator process.

5.3.3. Proofs of Correctness We consider a single

invocation of the algorithm, and we assume no process

fails in the system.

Lemma 1: Every process inherits at most one request to

take a tentative checkpoint. 0

Lemma 2: Every process terminates its execution of Algo

rithm Cl. 0

The next lemma shows that Cl takes a consistent set of

checkpoints.

Lemma 3: If the set of checkpoints in the system is con

sistent before the execution of Algorithm Cl, the set of

checkpoints in the system is consistent after the termina

tion of Cl. 0

We now show the number of processes that take new

permanent checkpoints during the execution of Algorithm

Cl is minimal. Let P={Po, Pb ... ,p,J be the set of

processes that take new permanent checkpoints in Cl,

where Po is the initiator of Cl. Let

C{P)={c(Po), C(Pl), ... ,c(Pk)} be the new permanent

checkpoints taken by processes in P. Define an alternate

set of checkpoints: C'(P) ={c'(Po), ("(PI), ... , (' '(PI')} where

c'(Po) = c(Po) and for l:5i:5k, ("(P,) is either rip) or the

checkpoint Pi had before executing Cl.

Theorem 2: C'(P) is consistent ifand unl} if (,'(PI=-CljJ).

Daemon process:

send(initiator, "take a tentative checkpoint and T");
await(initiator, wiilingJo_ckptlllltiato,.);';C:;:

if willingJo_ckpt initiator = "yes" then
send(initiator, "make tentative checkpoint permanent")

else
send(initiator, "undo tentative checkpoint")

6.

All processes p:

INITIAL STATE:
{irsL...smsgp(daemon) = T;

. . I"yes" if p is willing to checkpoint
wllltngJo_ckpt p = "no" otherwise ;

UPON RECEIPT OF "take a tentative checkpoint and
lasLrmsgq(p)" from q no

1154

if willingJo_ckpt p and lasLrmsg q(p);;:::: /irsL...smsgp(q) >.1
then take a tentative checkpoint;
for all r EckpLcohort p send(r, "take a tentative

checkpoint and last.J·msgp(r)");

for all r EckpLcohort" await(r, willing_to....I:kpt r);
if 3 r EckpLcohort p' willing_to_ckpt,. = "no"

then willing_to_ckpt p ~ "no" 6;
6;
send(q, willing_to_ckpt ,); .

on.

UPON FIRST RECEIPT OF m ="undo tentative checkpoint" or
m ="make tentative checkpoint permanent" no
if m ="make tentative checkpoint permanent" then

make tentative checkpoint permanent;
else

undo tentative checkpoint;
6;
for all rEckpLcohort", send(r, m);

on.

FIG. 6. Algorithm Cl: the Checkpoint Algorithm

Theorem 2 shows that if Po takes a checkpoint, then all

processes in P must take a checkpoint to ensure con

sistency.

* await does not prevent a prot.:b" frun! rec!"'i \ Ing Ill!"', -<lg!"'''

5.3.4. Coping with Failures We now extend Algo

rithm C1 to handle processes' failures. We first consider

the effects of failures on nonfaulty processes. When

failures occur, a nonfaulty process may not receive some of

the following messages:

(1) "yes" or "no" from ckpLcohorts,

(2) "make tentative checkpoint permanent" or "undo ten

tative checkpoint" from the initiator.

Suppose that process p fails before replying "yes" or

"no" to process q's request. By the assumption of section 3,

q will know of p's failure. After q knows that p has failed,

it sets willingJo-Ekptq to "no" and stops waiting for p's

reply. Therefore, to take care of a missing "yes" or "no", it

suffices to change the statement in Cl from

if 3 rEckpLcohort P' willingJo_ckptr = "no"

then wiilingJo-Ekpt P ~ "no" fi

to

if 3 rEckpLcohort p' willingJo_ckptr = "no" or ,. has failed

then lJ)illingJo_ckptp~ "no" fi.

Suppose that process p does not receive the decision

regarding its tentative checkpoint. If p undoes its tentative

checkpoint or makes it permanent, it risks contradicting

the initiator. The two-phase structure of C1 requires p to

block until it discovers the initiator's decision 15. We will

discuss ways to prevent blocking in section 8.

We now consider the recovery of faulty processes.

When a process restarts after a failure, its latest check

point on stable storage may be tentative or permanent. If

this checkpoint is tentative, the restarting process must

decide whether to discard it or to make it permanent. The

decision is made as follows:

Suppose that the restarting process is the initiator.

The initiator knows that every process that has taken a

tentative checkpoint is still blocked waiting for its deci

sion. Hence, it is safe for the initiator to decide to undo all

tentative checkpoints and send this decision to its

ckpLcohorts. If the restarting process is not the initiator,

it must discover the initiator's decision regarding tentative

checkpoints. It may contact either the initiator or those

processes of which it is a ckpLcohort; it follows the deci

sion accordingly to terminate C 1.

The restarting process is now left with one permanent

checkpoint on stable storage. It can recover from this

checkpoint by invoking the rollback-recovery algorithm of

section 6.

1155

Let C2 be the Algorithm C1 as modified above. C2

terminates if all processes that fail during the execution of

C2 recover. At termination, the set of checkpoints in the

system is consistent, and the number of processes that took

new permanent checkpoints is minimal. The proofs for

these properties are similar to those of C 1 and they are

omitted.

6. Rollback-Recovery

We assume that the algorithm is invoked by a single

process that wants to roll back and recover (henceforth

denoted restart). We also assume that the checkpoint algo

rithm and the rollback-recovery algorithm are not invoked

concurrently. Concurrent invocations of these algorithms

are described in section 7.

6.1. Motivation

The rollback-recovery algorithm is patterned on two

phase-commit protocols. In the first phase, the initiator q

requests all processes to restart from their checkpoints.

Process q decides to restart all the processes if and only if

they are all willing to restart. In the second phase, q's

decision is propagated and carried out by all processes. We

will prove that the two-phase structure of this algorithm

prevents livelock as discussed in section 4.2. Since all

processes follow the initiator's decision, the global state is

consistent when the rollback-recovery algorithm ter

minates.

However, our goal is to force a minimal number of

processes to roll back. If a process p rolls back to a state

saved before an event e occurred, we say that e is undone

by p. The above algorithm is modified as follows: the roll

back of a process q forces another process p to roll back

only if q's rollback undoes the sending of a message to p.

Process p determines if it must restart using the label

appended to q's "prepare to roll back" request. This label

is described below.

For any processes q and p, let f1l be the last message

that q sent to p before q took its latest permanent check

point. Define

-lm.l if m exists
lasLsmsgq(p) - T otherwise .

When q requests p to restart, it appends la.'iL-;msgq(p) to

its request. Process p restarts from its permanent check

point only if lasLrmsgp(q) >lasL':Imsg'l(p),

6.2. Informal Description

Process P is a roll-cohort of q if q can send messages

to it. The set of roll-cohorts of q is roll-cohort,/, Every pro

cess P keeps a variable willing--'oJoll" to denote its wil

lingness to roll back. Whenever p cannot roll back (for any

reason), willing_to~'oll p is "no", The initiator q starts the

rollback-recovery algorithm by sending a request "prepare

to roll back and lasLsmsgq(p)" to all pEroll-cohort(/, A

process p inherits this request if willi ng_[(Lroll p is "yes",

lastJmsgp(q) >lasLsmsgq(p), and P has not already inher

ited another request to roll back. After P inherits the

request, it sends "prepare to roll back and lasL.smsgp(r)"

to all r Eroll-cohort p; otherwise, it replies willing--'o_roll (I

to q.

After p sends out its requests, it waits for replies from

each process in roll- cohort p' The reply can be an explicit

"yes" or "no" message, or an implicit "no" when p discovers

that r has failed. If any reply is "no", willing-1o_roll (I

becomes "no", otherwise willing-1oJoll p is unchanged.

Process P then sends willing-1o_roll p to the process whose

request p inherits. From the time p inherits the rollback

request to the time it receives the decision from the initia

tor, P does not send any system messages.

If all the replies from its roll-cohorts arrive and are

all "yes", the initiator decides the rollbacks will proceed,

otherwise it decides no process will roll back. This deci

sion is propagated to all processes in the same fashion as

the request "prepare to roll back" is delivered. If failures

prevent the decision from reaching a process p, p must

block until it discovers the initiator's decision. We discuss

nonblocking algorithms in section 8.

The rollback-recovery algorithm is presented in Fig

ure 7. Like the presentation of Algorithm Cl, we introduce

a fictitious process called daemon to perform functions that

are unique to the initiator of the algorithm.

6.3. Proofs of Correctness

We consider a single invocation of the rollback

recovery algorithm. The variable ready-1o_roll p ensures

that a process p inherits at most one request to roll back.

As a result, the variable also ensures that a process rolls

back at most once. To prove the termination of Algorithm

R, it suffices to show that Algorithm R is free of deadlocks.

Lemma 4: Algorithm R is deadlock free, o
We show next that the global state of the system is con

sistent after the termination of R

1156

Daemon process:

send(initiator, "prepare to roll back and -1");

await(initiator, willing-1o_roll illili%r);

if willing-1o_roll initi%r = "yes" then
send(initiator, "roll back")

else
send(initiator, "do not roll back"}

fi.

All processes p:

INITIAL STATE:
ready-1oJoll p = true;
lasLrmsgp(daemon) = T;

, . j"yes" if p is willing to roll back
wllllflg-10~'oll p = "no" otherwise ;

UPON RECEIPT OF "prepare to roll back and
lasLsmsgq(p)" from q DO
if willing-1oJoll p and ZasLrmsgp(q»ZasLsmsgq(p)

and ready-1oJoll p then
ready_toJoll p +- false;

for all r E roll - cohort p

send(r, "prepare to roll back and lasLsmsg,,(r)");

for all rEroll-cohortp await(r, willing_to~'ollr);

if 3 r E rolLcohort P' willing_to~'oll r = "no"
or r has failed then willing_to~'oll,,+- "no" fi;

fi;
send(q, willing_toJoll f);

OD.

UPON RECEIPT OF m = "roll back" or
m = "do not roll back" and ready_toJoll p = false DO
if m = "roll back" then

restart from p's permanent checkpoint;
else

resume execution;
fi;
for all r E roll- cohort p' send(r, m);

OD.

FIG, 7. Algorithm R: the Rollback Algorithm

-------- ---- -------

Lemma 5: If the system is consistent before the execution

of Algorithm R, the system is consistent after the termina

tion of Algorithm R. 0

Lemma 5 ensures that a single execution of Algorithm R

brings the system to a consistent state after a failure; since

processes roll back at most once in any execution of R, the

rollback algorithm prevents livelocks. Thus, Algorithm R

prevents livelocks.

Many existing rollback algorithms exhibit the follow

ing undesirable property .. If the initiator rolls back, it

forces an additional set of processes P to roll back with it,

even though the system will be consistent if some of the

processes in P omit to roll back. For instance, all

processes are required to roll back every time any process

wants to roll back 17. However, in some cases, the initiator

could roll back alone and the system would still be con

sistent. With our algorithm, the number of processes that

are forced to roll back with the initiator is minimal.

Theorem 3: Let E be an execution of R in which the ini

tiator, Po, and an additional set of processes P roll back.

Consider an execution E', identical to E except that a

non-empty subset of processes in P omit to roll back upon

receipt of the "roll back" decision. The execution E' leaves

the system in an inconsistent state. D

7. Interference

In this section, we consider concurrent invocations of

the checkpoint and rollback-recovery algorithms. An exe

cution of these algorithms by process p is interfered with if

any of the following events occur:

(1) Process p receives a rollback request from another

process q while executing the checkpoint algorithm.

(2) Process p receives a checkpoint request from q while

executing the rollback-recovery algorithm.

(3) Process p, while executing the checkpoint algorithm

for initiator i, receives a checkpoint request from q,

but q's request originates from a different initiator

than i.

(4) Process p, while executing the rollback-recovery algo

rithm for initiator i, receives a rollback request from

q, but q's request originates from a different initiator

than i.

One single rule handles the four cases of interference:

once p starts the execution of a checkpoint [rollback] algo

rithm, p is unwilling to take a tentative checkpoint [roll

back] for another initiator, or to roll back [take a tentative

checkpoint]. As a result, in all four cases, fJ replies "no" to

q. We can show this rule is sufficient to guarantee that all

previous lemmas and theorems hold despite concurrent

1157

invocations of the algorithms. This rule can, however, be

modified to permit more concurrency in the system. The

modification is that in case (1), instead of sending "no" to

q, p can begin executing the rollback-recovery algorithm

after it finishes the checkpoint algorithm. We cannot

allow a similar modification in case (2) lest deadlocks may

occur.

8. Optimization

When the initiator of the checkpoint or of the

rollback-recovery algorithm fails before propagating its

decision to its cohorts, it is desirable for processes not to

block for its recovery. To prevent processes from blocking,

we can modify our algorithms by replacing the underlying

two-phase commit protocol with a nonblocking three-phase

commit protocol 15. However, nonblocking protocols are

inherently more expensive than blocking ones3.

We next address the following problem: after a

ckpLcohort q of a process p fails, p cannot take a per

manent checkpoint until q restarts (p cannot know if the

latest checkpoint of q records the sendings of all messages

it received from q). To avoid waiting for q's restart, p can

remove q from ckpLcohort p by restarting from its check

point (using the rollback-recovery algorithm). After its

restart, process p can take new checkpoints.

9. Message Loss

Rollback-recovery can cause message loss as illus

trated in Figure 8. When p is rolled back to X following a

failure at F, the global state is consistent, but the message

m from q is lost. It is lost because the state of the chan

nels corresponding to the global state {X, Y} contains m.

One method to circumvent message loss is to have

that processes use transmission protocols that transform

lossy channels to virtual error-free channels, e.g., sliding

window protocols 18. Another method is to ensure that the

state of the channels corresponding to the most recent set

p~------~------~--------~*-----------~

q~------~~------~--------------------~

FIG. 8. Message loss following p's rollback to X.

of checkpoints contains no messages. We can modify the

checkpoint and rollback-recovery algorithms to implement

this latter method, but such modification increases the

number of processes that are forced to take checkpoints

and roll back.

10. Conclusion

We have presented a checkpoint algorithm and a

rollback-recovery algorithm to solve the problem of bring

ing a distributed system to a consistent state after tran

sient failures. In contrast to previous algorithms, they

tolerate failures that occur during their executions. Furth

ermore, when a process takes a checkpoint, a minimal

number of additional processes are forced to take check

points. Similarly, a minimal number of additional

processes are forced to restart when a process restarts after

a failure. We also show that the stable storage require

ment of our algorithms is minimal.

Acknowledgements

We would like to thank Amr EI Abbadi, Ken Birman,

Rance Cleaveland, and Jennifer Wid om for commenting on

earlier drafts of this paper.

Bibliography

[1] T. Anderson, P. A. Lee and S. K. Shrivastava, Sys

tem fault tolerance, in Computing System Reliabil

ity, T. Anderson, B. Randell (eds.) Cambridge

University Press, Cambridge, 1979, pp. 153-210.

[2] K. M. Chandy and L. Lamport, Distributed

snapshots: Determining global states of distributed

systems, ACM Transactions on Computer Systems,

vol. 3, no. 1, pp. 63-75, February 1985.

[3] C. Dwork and D. Skeen, The inherent cost of non

blocking commitment, Proc. ACM Symposium on

Principles of Database Systems, March 1983.

[4] M. Fischer, N. Griffeth, and N. Lynch, Global states

of a distributed system, IEEE Transaction on

Software Engineering, May 1982, pp. 198-202

[5] V. Hadzilacos, An algorithm for minimizing rollback

cost, Proc. ACM Symposium on Principles of Data

baw Systems, March 1982.

[6] T. Joseph and K. Birman, Low cost management of

replicated data in fault-tolerant distributed systems,

ACM Trallsactwns on Compllter System.~, February

1986, pp. 54-70.

[7) R. Koo and S. Toueg, Checkpointing and Rollback

Recovery for Distributed Systems, To appear in a
special issue of IEEE -TSE.

[8] L. Lamport, Time, clocks and the ordering of events

in a distributed system, Communications of the

ACM, vol. 21, no. 7, July 1978, pp. 558-565.

[9] B. Lampson and H. Sturgis, Crash recovery in a dis

tributed storage system, Xerox PARC Tech. Rep.,

Xerox Palo Alto Research Center, April 1979.

[10] D. L. Presotto, Publishing: A reliable broadcast com

munication mechanism, Tech. Rep. UCB!CSD 8.'3-

165, Computer Science Division, University of Cali

fornia, Berkeley, December 1983.

[11] B. Randell, System structure for software fault toler

ance, IEEE Transactions On Software Engineering,

vol. SE-l, no.2, June 1975, pp. 226-232.

[12] B. Randell, P.A. Lee, and P.C. Treleaven, Reliability

issues in computing system design, ACM Computing

Surveys, vol. 10, no. 2, June 1978, pp. 123-166.

[13] D. L. Russell, Process backup in producer-consumer

systems, Proc. ACM Symposium on Operating Sys

tems Principles, November, 1977.

1158

[14] D. L. Russell, State restoration in systems of com

municating processes, IEEE Transactions 'Oil

Software Engineering, vol. SE-6, no. 2, March 1980,

pp. 183-194.

[15] D. M. Skeen, Crash recovery in a distributed data

base system, PhD. dissertation, Computer Science

Division, University of California. Berkeley, 1982.

[16] R. Strom and S. Yemini, Optimistic recovery in dis

tributed systems, Transactions on Computer Sys

tems, August 1985, pp. 204-226.

[17] Y. Tamir and C. H. Sequin, Error recovery in multi

computers using global checkpoints, Proc. of 13th

Inter1lational Conference on Parallel Processing,

August 1984.

[18] A. S. Tanenbaum, Computer Networks, Prentice

Hall, New Jersey, 1981, pp. 148-164.

[19) W. G. Wood, A decentralized recovery control proto

col, Proc. of the 11th Annual International Sympo

sium on Fault-Tolerant Computing, June 1981.

The Gutenberg Operating System :(ernel

Panayiotis Chrysanthis, Krithi Ramamritham, David Stemple, and Stephen Vinter 2

Department of Computer and Information Science
University of Massachusetts Amherst MA. 01003

ABSTRACT

The Gutenberg system is a port-based, object-oriented operating
system kernel designed to facilitate the design and structuring
of distributed systems. This is achieved by providing primitives
for controlling process interconnections and thereby controlling
access to shared resources. Only shared resources are viewed as
protected objects. Processes communicate with each other and
access protected objects through the use of ports. Each port
is associated with an abstract data type operation and can be
created by a process only if the process possesses the privilege to
execute that operation. Capabilities to create ports for request
ing operations are contained in the capability directory which is
a kernel object. At any time, each process is associated with a
single subdirectory of the capability directory designated as its
active directory.

This paper describes the design philosophy and the struc
ture of the Gutenberg kernel. First, it discusses the principles
and motivations behind the Gutenberg design. Then, it presents
the structure, contents and operations of kernel objects and dis
cusses their use in structuring access to protected user-defined
objects. Also discussed are the salient aspects of the distributed
Gutenberg kernel. A brief comparison with other related sys
tems is given.

1 INTRODUCTION

Modern distributed operating systems must be designed to fa
cilitate structuring distributed computations in an understand
able and reliable manner that is suitable for validation. Experi
ence in programming languages and in controlling complexity of
large software systems has shown that the strongly typed object
paradigm and its associated information hiding can be used to
produce manageable and understandable systems. In large dis
tributed systems, lack of a corresponding clean, well-structured
interprocess communication paradigm leads to more complexity
than is required by the nature of the distribution alone. This
points to the need for an efficient mechanism which structures
all interprocess communications along the abstract data type
lines.

IThis material is based upon work supported in part by the National
Science Foundation under grants DCR-8403097, and DCR-8500332.

2Stephen T. Vinter's current address is: BBN Laboratories, Cambridge,
Mass.

CH2345-7/86/0000/1159$01.00 © 1986 IEEE
1159

This paper deals with the design of such a mechanism, the
distributed Gutenberg kernel [11,12,7,8J. The Gutenberg Op
erating System Kernel, currently being developed at the Uni
versity of Massachusetts, takes a unique approach to interpro
cess communication, provides multiple programming language
support, and attempts to minimize overheads. The following
three salient features of Gutenberg provide for the controlled
establishment of communication connections which serves the
goal of understandability and verifiability, and should contribute
to its better performance compared to previous communication
schemes:

• the adoption of port-based communication, whereby inter
process communication is solely by means of ports, queue
like objects which are managed by the kernel.

• the adoption of non-uniform object-orientation, whereby
only interprocess communication, but not module inter
connections within a process, are structured and controlled
by means of capabilities; and

• the use of a capability directory, which expresses all po
tential process interconnections in the system and is a
distributed persistent object, maintained and manipulated
only by the kernel.

Principles underlying the Gutenberg Kernel. The
Gutenberg system evolved from the following series of design
decisions concerning the nature of communication and protec
tion in the system.

Limit the responsibilities of the kernel. Operating systems
that support the definition and protection of arbitrary objects
traditionally have had performance problems because of the
maintenance of protection domains and the overhead of dynamic
access checks, e.g. Hydra [16J and iMAX [4J. We hoped to re
strict the overheads of the kernel by taking a non-uniform ob
ject orientation, in which only resources shared by different pro
cesses need to be structured as objects at the operating system
level. We believe that conventional mechanisms for protecting
unshared data (e.g., local variables) are adequate and desirable,
from both a downward compatibility and an efficiency viewpoint.
Conventional memory protection mechanisms (e.g. page tables)
ensure .that the local data of processes are not accessible to other
processes. Gutenberg depends on programming languages to
provide static type-checking for self-protection. Thus, although
local data are not necessarily object-oriented (depending on the
programming language), shared data are required to be object
oriented. An underlying assumption in Gutenberg is that the
granularity of objects is medium to large, a size adequate to
amortize the cost of the interprocess communication required to
access the object.

Programming language independence. There should be no
requirement that a specific programming language or that only

object-oriented languages run under the Gutenberg system ker
nel. In fact, non-object-oriented languages can achieve an ob
ject oriented view of other processes through the use of kernel
primitives [l1J. The system is designed to support applications
implemented in any programming language.

Resources are directly manipulated only by their managers.
Managers are processes that synchronize the operations on an
object (i.e., a .shared resource). A process managing an ob
ject is the only subject able to directly manipulate the object.
The process performs the operations, in part, by invoking kernel
primitives for manipulating kernel objects.

Object sharing is via interprocess communication. Processes
do not share address spaces. They can interact only through

. interprocess communication using explicit message passing. An
operation can be performed on the object only as a result of a
request from another process via interprocess communication.
Processes are provided with communication primitives allowing
both synchronous 'and asynchronous communication.

Interprocess communication connections are established us
ing functional addressing [12J. Processes use communication
channels called ports to request operations on objects. A port
can be used to request an operation only if it was created for
that purpose. Ports are created by indicating the function of
the port (viz., to .request an operation), not by identifying a
particular process.

The kernel controls access to shared objects by controlling
interprocess communication. An operation may- be requested
only by transmitting the operation request over a port to the
object's manager. By limiting the use of ports and constraining
their use to request a specific operation on a specific object,
access to the object is controlled.

Details of the implementation of the communication mech
anism are hidden from the processes using it. Ports are them
selves objects with a small set of operations defined on them.
They are managed by the kernel. The representation of ports
and details of message transmission and reception are hidden
from communicating processes.
-- Privileges persist in a single kernel-managed structure.
Gutenberg recognizes that privileges need to persist in t.he sys
tem independent of the execution of processes. Rather than
allowing privileges to be placed on secondary storage in user ob
jects (hidden from the view of the kernel), privileges t~at are not
dependent on the existence of a process are stored In a kernel
managed structure called the capability directory. This direc
tory is shared by the processes in the system. Being physically
distributed it can be designed to ensure availability and reliable
access despite communication and nQde failures. However, since
it is logically unified, i.e., appears as a single globally addre~s
able entity, the physical distribution will be tr~nsparent ~~ ~ts
accessors. Transient capabilities of a process, I.e., capabIhtIes
that exist only as long as the process is active, are kept in the
process' c-list.

The above design principles made it possible to use Guten
berg as the basis for a distributed operating system for the fol
lowing reasons. The use of resource managers is a common ap
proach to structuring software in distributed syst~ms.Second,
the logical separation of process address' spaces In G~tenbe.rg
corresponds to the physical realization of processes In a dIS
tributed system. Third, the close association of communication
and protection contributes to decentralized access autho.rizati~n.

The rest of the paper is structured as follows: SectIOn 2 In

troduces the structure and. the contents of the kernel objects.
User-defined objects, type creation, and manager instan~iation
are the subject of section 3. Issues related to the dynamIC con
trol of interprocess communication are also discussed in section
3. The distributed kernel is examined in section .4. _Section 5
contains a brief comparison of Gutenberg with related systems.
We conclude with a section summarizing our approach and fu
ture work.

1160

2 GUTENBERG KERNEL OBJECTS

The Gutenberg kernel itself is structured as a set of cooperative
abstract data type managers. Furthermore, the -kernel is viewed
by the processes as an abstract data type manager of kernel
objects with the kernel primitives as the corresponding abstract
data type operations. There are four types of kernel objects:
processes, ports, capability directory and transient capabilities.

2.1 Processes

A process is an independently schedulable unit of computation
with the ability to communicate with other processes. Each pro
cess is. represented by a unique process control block, abbreviated
PCB, which resides within the kernel address space.

- Processes can communicate only through .explicit message
exchanges over communication channels called ports. As a re
sult, processes do not share address spaces, eliminating the need
for synchronization in memory access and generalizing the pro
cess interactions in a distributed system.

2.2 Ports

A port is a kernel object that processes manipulate by invoking
-kernel primitives. It is a communication channel between a pair
of processes in one-to-one topology connecting just one pair of
processes at a time. Typically, one process has the privilege to
place messages on the port, which-behaves as a queue of mes
sages awaiting delivery. The .other has the privilege to remove
messages. This communication can be either synchronous or
asynchronous.

The basic interprocess communication of the Gutenberg sys
tem is based on the client/server model, in which the creator of
a port, called the client, communicates with the port server, the
manager of some shared object, for the purpose of requesting
an operation on the object. A port is established with func
tional addressing: A client creates a port by naming the service
it would like to request using the port rather than by identi
fying the server pro-cess. As a result, the server process does
not have to be in existence. prior to the creation of the port.
The advantage of this strategy is that it allows the dynamic
creation of server processes. In fact, in Gutenberg, process cre
ation and destruction are byproducts of port operations. There
are no primitives for process creation and destruction: processes
are hidden from the programmers, the lowest level of abstraction
being the level of operations on the ports.

Therefore, the only way a process can request an operation
on a shared object is to create a .port and execute a kernel
primitive on that port. The possible kernel primitives on ports
that a client is entitled.to, include SEND, RECEIVE, and SEND
RECEIVE (to receive the result of an operation based on the
parameters sent).

In order to restrict the use of ports to the functionality for
which they have been created, a port is typed as either a Send,
Receive, or Send-Receive port. This typing specifies the direc
tionality of the port and the kernel primitives used by the client
to transmit messages through it .. Consequently, it specifies the
kernel primitives that the server of the port may use. Figure 1
shows the. port primitives used by clients and, servers for each
port type. Send and Receive ports are unidirectional. Send
Receive ports are bidirectional, allowing the port's client to send
a message and receive a response from the port's server.

Port typing also determines the format of messages that may
be placed in the port and the object operation associated with
this, which identifies the operation that will be requested via the
port. Each port is represented by a unique channel control block,
abbreviated CCB, which resides within the kernel address space.
CCB contains the port -type along with information about the

Port Type Client Primitives Server Primitives I
SEND RECEIVE

S REVOKE REFUSE
EXAMINE

R RECEIVE SEND
EXAMINE REFUSE

SEND-RECEIVE GETDETAILS
SR REVOKE SEND

EXAMINE REFUSE
EXAMINE

Figure 1: Port primitives used by clients and servers for each
port type

status of the client and server processes and the owner of the
port. Ownership represents the privilege to destroy the port.
The creator of a port becomes the initial owner of the port.
As part of the sharing mechanism supported by the Gutenberg
system, a process may transfer part of its privileges, including
port privileges, to another, over ports.

Here is a short summary of the functionality of port primi
tives.

CREATE-PORT (only a client primitive) creates a port of a
specific type. The type is specified via. a parameter to the
call.

DESTROY-PORT (only a client primitive) destroys a port.
The caller must be the owner of the port. The port-id is
specified via a parameter to the call.

SEND puts a message ona port. The system has two kinds of
SEND primitives: acknowledge-SEND and no-acknowledge
SEND. If the SEND is an acknowledge-SEND, the sending
process is informed when its correspondent over the port·
receives the message. The sender can choose to block until
the receipt of the acknowledgement.

RECEIVE requests the next message from the port. The caller
elects via a parameter to the call, to either block, if there
is no message on the port, or execute concurrently with
the servicing of the request.

SEND-RECEIVE (only a client primitive) puts information,
termed request details, on a port for the server to use in
satisfying the request. When the server responds to the
request by executing a SEND, the server's reply is returned
to the client as in RECEIVE. The caller may block until the
server replies, or execute concurrently with the servicing
of the request.

ACCEPT-REQUEST (only a server primitive) is used to ob
tain access to newly created ports and to query a set of
existing ports to see if new messages have arrived. The
caller may block until the kernel replies, or execute con.,.
currently with the servicing of the request.

GETDETAILS gets request details from a port. The caller
(the port's server) may block if there is no pending SEND
RECEIVE, and thus no request details, on the port, or
it may execute concurrently with the satisfaction of its
request.

EXAMINE examines messages on the port without removing
them.

1161

REFUSE rejects a client's request for service as unsatisfiable
and notifies the requester by setting a status.

REVOKE revokes privileges sent as part of request details by
a SEND-RECEIVE or in a SEND message up to receipt of
the message 3.

The choice of these primitives during system design was
based on the desire to keep their number and complexity to
a minimum while providing users a set of primitives for building
systems of communicating processes in arbitrary topologies with
reasonable ease. Thus, we have added to the basic SEND and
RECEIVE primitives the bidirectional SEND-RECEIVE and its
receiving reciprocal GETDETAILS in order to allow such func
tions as reading a record with a given key (the key being sent
as request details) or a remote procedure call (the procedure's
parameters being sent as request details) to be implemented
by a single primitive. However, it should be noted that the
asynchronous mode makes the SEND-RECEIVE operation more
robust and flexible than a remote procedure call semantics.

2.3 Capability Directory

Gutenberg controls the creation and use. of ports through the use
of capabilities. All capabilities for accessing potentially sharable
objects are maintained in a logically unified structure called the
capability directory. Thus, the capability directory expresses
all potential process interconnections in the system. This is
similar to the UNIX file directory [10] which provides uniform
treatment of files, devices and interprocess communication. The
capability directory is a stable structure in that its existence does
not depend on the existence of any process. It is also shared

since more than one process may concurrently access the -same
segment of the directory. It should be noted that no portion of
the directory is owned by any process at any time.

2.3.1 Capability Directory Nodes

Capabilities within the capability directory are further organized
into groups called the capability directory nodes, abbreviated
cd-nodes. They are identified by both a system-wide unique
name created by and visible only to the kernel" and by 'user
specified names. In general, cd-nodes contain other information
along with capabilities. Cd-nodes are' linked to other cd-nodes
through capabilities. The same cd-node may be linked to sev
eral cd-nodes under possibly different user-specified names. All
capabilities pointing to a cd-node have equaLstatus. That is, cd
nodes are unique and are not contained within other cd-nodes.
A cd-node exists independently of any other cd-node and disap
pears along with the last capability link to it; if it is. not explicitly
destroyed. In this way the capability directory is structured as
a graph in which nodes (each node corresponds to a cd-node)
are connected by edges corresponding to capabilities. Figure 2
shows a sample capability directory.

The capability directory may contain two kinds of cd-nodes:
subdirectories and manager definitions (see figure 3). Note that
an asterisk next to attribute names' used in the figures desig
nates that the attribute cannot be modified by the users but is
maintained by the kernel.

A subdirectory isa list of capabilities. It is merely an organi
zational unit of the capability directory, similar to a file directory
in a file system. At any time, every process in the system is as
soc~ated· with a single subdirectory in the capability directory
deSignated as its active directory. The active directory of a pro
cess is the set of capabilities from the capability directory that
a process may use or exercise.

3 A scheme for revoking transferred capabilities anytime after the transfer
is discussed in [8].

R

Symbols:

D subdirectory cd-node

o manager definition cd-node

, manager capability

\} subdirectory capability

<) operation capability

o cooperation class capability

operation capability /manager link

Figure 2: Example of Capability Directory Segment
This is a sample capability directory of a basic mail system.
The Mail Maintenance Directory which contains the Mail Sys
tem Manager Definition is created by the creator of the system
and stored in the System Maintenance Directory. The two oper
ations defined on the Mail System, namely the Mail and Read,
are contained in the login process subdirectory. Each user gets
capabilities for these operations during the login procedure. In
the default subdirectory of the Mail System, operations on the
File Manager exist that permit access to files.

The active directory of a process is one component of a pro
cess protection domain. The other component is its current set
of transient capabilities; this is discussed later. A process may
dynamically switch from one protection domain to another by
changing to a new active directory or changing the contents of
its current active directory, if it has the privilege to do so.

Manager definitions constitute one of the novel features of
the Gutenberg system. All processes in the system are instan
tiated from manager definitions. Thus, a manager definition
provides information necessary for instantiating the manager
process, as, for example, a capability for the file containing the
executable image (object module) of the process, and the initi
ation protocol (see section 3.2) for determining the manner in
which ports are connected to manager processes. It also includes
a capability for a subdirectory containing the privileges that all
processes instantiated from the manager definition will initially
possess.

One other component' of a manager definition node is a set
of port descriptors. This set corresponds to the set of operations
defined within the manager. Each port description contains a
generic operation name (a name specified by the user at man
ager creation time), and the type of port through which a user
requests this operation.

1162

Capabilities in cd-nodes inherit all the properties of the ca
pability directory in that they are stable and sharable but are
not owned by processes. These capabilities are called stable ca
pabilities and can only reside in the capability directory.

Capabilities in Gutenberg consist of three parts: a specific
kernel primitive, a list of parameters for the primitive, and a
list of primitives that can be used to manipulate the capability
itself, which are called capcaps, for capabilities on a capability.

A capability permits a process which possesses it to invoke
the specific kernel primitive it contains. This primitive is also
called primary kernel primitive in order to distinguish it from

Subdirectory cd-node Contains a set of capabilities, and has
the following attributes:

subdirectory id· system-wide unique identifier of the sub
directory.

use count· the number of stable and transient subdirec
tory capabilities (including those in manager definition
cd-nodes) pointing to this cd-node.

active directory count· the number of processes having
this cd-node as their active directory.

Manager Definition Node Provides information necessary for
instantiating a manager process. The manager definition
cd-node has nine attributes.

manager id· system-wide unique identifier of the manager
cd-node.

initial active directory a subdirectory capability point
ing to the subdirectory cd-node that will become the
active directory of tlie manager process when it is ini
tiated.

initial process image a privilege (represented by a coop
eration class capability) for a file containing the object
code to be executed when the process is initiated.

manager dependency indicates whether the existence of
a manager process is dependent on the existence of
ports connected to it.

initiation protocol indicates when a new manager process
is created or an existing one is connected to when a port
to the manager is created.

port descriptors is the list of (port type, generic opera
tion name) pairs for operation capabilities that may be
linked to this manager cd-node. The port type specifies
whether it is a Send, Receive or Send-Receive port as
well as the format of the arguments that may be passed
over the port as part of a message or request-details.

manager use count* the number of manager capabilit.ies
pointing to this cd-node.

operation use count* the number of operation capabili
ties linked to this cd-node.

port use count· the number of ports associated with this
cd-node.

Figure 3: Attributes of Capability Directory Node

Operation Capability Provides the privilege to create ports.
Operation capabilities have six attributes:

operation name user-specified name of the operation.
This name becomes the object operation of created
ports. This name also serves to identify the operation
capability.

generic operation name* name of the corresponding op
eration defined in the manager definition cd-node. This
name can be the same as or different from the opera
tion name.

port type* specifies the port type for this operation that
may be linked to the corresponding manager definition
cd-node. The port type can either be Send (S), Receive
(R), or Send-Receive (SR).

message format* specifies the arguments that may be
passed over the port as part of the message, and the
request-details in case of Send-Receive port type.

cooperation class(es)' restrict how the port will be con
nected to a manager process.

manager id* a pointer, global name, to the manager to
which this operation capability is linked.

The capcaps of the operation capability are: COPY,
TRANSFER, REGlliTER, REMOV~ HOLD, MERG~
MODIFY-CAP, MODIFY-CAPCAP, and VIEW-CAP.

Figure 4: Attributes of an Operation Capability

the other kernel primitives that manipulate the capability itself.
The capcaps determine how the capability may be modi

fied and used. Capcaps include the privilege to transfer (to
another process), copy, register (make stable), hold (make tran
sient), merge (with other mergeable capabilities), view, and mod
ify the capability. Each capcap may be active, in which case the
corresponding kernel primitive may be invoked for the capabil
ity, or inactive, in which case the corresponding kernel primitive
cannot be invoked on the capability. Not every capcap makes
sense for each type of capability. When we discuss the specific
capabilities next we point out the capcaps that are applicable.

The parameter list may include names of cd-nodes as well as
other capabilities (most notably, the cooperation class capability
which is discussed later).

2.3.2 Types of Capabilities

There are four different types of capabilities that may be stored
in the capability directory: operation, subdirectory, manager def
inition, and cooperation class capabilities.

An operation capability (figure 4) represents the privilege to
create a port for use in requesting a particular operation on a
given user-defined object type. Thus, the primary kernel primi
tive of the operation capability is Create-port. One parameter
of the operation capability is the operation name, which becomes
the operation requested via ports created from this capability.
This name also serves to identify the operation capability in the
subdirectory in which the capability is contained. Another pa
rameter of the capability is the name of a manager definition
cd-node in the capability directory that the operation capability
is linked to. This manager definition is used by the kernel to
determine whether a newly created port is to be connected to
a new server process instantiated from the manager definition
or to an already existing one. It is also used by the kernel in

1163

conjunction with a third parameter, the generic operation name,
to determine whether the requested operation is currently sup
ported by the manager; this is checked by examining whether
the operation generic name is part of the port descriptors in the
manager definition.

The primary kernel primitive in the manager definition ca
pability (figure 5) is Create-operation, which is used to create
operation capabilities, linked to the manager definition named
in the capability. Since an operation capability can be used to
create a port to access a protected object, a manager definition
capability signifies the privilege to provide other processes with
specific types of access to their objects. This effectively is the
privilege to control access to the object's type.

The primary kernel primitive associated with the subdirec
tory capability (figure 6) is Change-directory. The Change
directory primitive is used by a process to change its active di
rectory to the subdirectory named in the subdirectory capability.

The subdirectory capability also contains a set of subdirec
tory rights. When a subdirectory capability is exercised to make
a subdirectory active, the subdirectory rights override the cap
caps of each individual capability in the subdirectory, and this
further restricts the use of the capabilities registered in the sub
directory. This restriction during the changing of the active di
rectory, referred to as privilege filtering, allows a fine granularity
of control over the use of capabilities within an active directory.
This is vital for supporting an effective mechanism that allows
processes to switch from one protection domain to another dy
namically. In this situation, when a process wants to switch to
a new protection domain, it has to traverse the capability direc
tory and change to a new active directory. While traversing the
capability directory, a process may have to visit intermediate
subdirectories which contain capabilities that the process need
not be authorized to exercise or even view. By deactivating all
rights except the 'CHANGE-DIR along the path between the

Manager Definition Capability Provides the privilege to cre
ate operation capabilities. The manager definition capability
has the following attributes:

manager definition name user-specified name used to
identify the manager definition cd-node to which the
created operation capabilities are linked to. This name
also serves to identify the manager definition capabil
ity.

cooperation class(es) restrict who may create operation
capabilities linked to the definition manager. Posses
sion of one of the specified cooperation class capabili
ties is required when exercising the Create-operation
primitive.

manager id* a pointer, global name, to the manager defi
nition cd-node corresponding to this capability.

The capcaps of the manager definition capability are:
COPY, TRANSFER, HOLD, REGISTER, REMOVE,
DESTROY-NODE, MERGE, MODIFY-CAP, MODIFY
NODE, MODIFY-CAPCAP, VIEW-CAP, and VIEW
NODE.

Figure 5: Attributes of a Manager Definition Capability

Subdirectory Capability Provides the privilege to change the
process' active directory. The attributes are:

subdirectory name user-specified name of the subdirec
tory cd-node which becomes the process' active di
rectory when the change-directory privilege is ex
ercised. This name also serves to identify the subdi
rectory capability.

cooperation class(es) used to restrict who may make the
subdirectory active. When exercising the Change
directory privilege, a process must possess one of
specified cooperation class capabilities or else the prim
itive is illegal.

subdirectory right restricts how cd-nodes and capabil
ities contained in the subdirectory may be used;
each right may be ON (active) or OFF (inactive);
the rights are: TRANSFER, COPY, REGISTER,
REMOVE, HOLD, MERGE, VIEW-CAP, VIEW
NODE, MODIFY, DESTROY-MANAGER-NODE,
DESTROY-DIR-NODE, CHANGE-DIRECTORY,
CREATE-PORT, and CREATE-TYPE.

subdirectory id* a pointer, global name, to the subdirec
tory cd-node corresponding to this capability.

The capcaps of the subdirectory capability are:
COPY, TRANSFER, REGISTER, REMOVE, HOLD,
DESTROY-NODE, MERGE MODIFY-CAP, MODIFY
CAPCAP, VIEW-NODE and VIEW-CAP.

Figure 6: Attributes of a Subdirectory Capability

Cooperation Class Provides a wild card privilege that may be
merged with any other capability type. It has two attributes:

class name user-specified name used to identify the coop
eration class in the current protection domain.

class id* system wide unique identification of cooperation
class.

The capcaps of the cooperation class capability are:
COPY, TRANSFER, HOLD, REGISTER, REMOVE,
MERGE, VIEW-CAP, MODIFY-CAP, and MODIFY
CAPCAP

Figure 7: Attributes of Cooperation Class Capability

initial and goal subdirectory, the mechanism for switching to a
new domain becomes simple, and the security of the system is·
not compromised.

The fourth type of capability, the cooperation class capa
bility, represents the privilege of a process to participate in a
cooperative activity identified by a unique identifier, the class
id (figure 7). The cooperation class capability may be associ
ated with any other capability type, thus providing a wild card
privilege. Hence, the primitive associated with this capability is
ANY denoting its wild card property. When a cooperation class
capability is associated with either a subdirectory or a man
ager definition capability, it restricts the invocation of the cor
responding primary primitive to the processes which possess the
cooperation class capability. In effect, such processes become
members of the cooperative activity represented by the capabil
ity. In this way cooperation class capabilities complement the

1164

role of capcaps by determining how these capabilities may be
exercised. In the case in which a cooperation class capability is
associated with an operation capability, it specifies a coopera
tive activity, for example a communication with a manager of a
shared object. Here, the cooperation class capability can be used
as a synchronization token or to identify either an instance of a
manager or a particular instance of an object. It could also be
used to identify a transaction, a file, or a process. It can be used
to classify the users in the system into groups and divisions for
administrative reasons. New cooperation class capabilities can
be created, on request, by the kernel.

2.4 Transient Capabilities

Port capabilities and copies of stable capabilities from the ca
pability directory are the transient capabilities. Two features
distinguish the transient capabilities from the stable capabili
ties: they are owned by a single process, and therefore cannot
be shared, and their existence is dependent on the existence of
the process that owns them. All the transient capabilities a
process owns exist only for the duration of the existence of the
process and are destroyed when the process terminates. The
transient capabilities possessed by a process, are stored in the
process' capability list, or c-list. Capabilities in the c-list, as pre
viously stated, together with the active directory of a process,
form the protection domain of the process. Thus, a process, in
addition to the capabilities in its active directory, may exercise
the capabilities in its c-list.

A transient capability comes into existence when a process
moves or copies a capability from its active directory, into its
c-list (using a primitive called HOLD), when it receives the ca
pability from another process via a port, when it creates a capa
bility by invoking the proper create primitive, or when it creates
a port. In the last instance, two port capabilities are generated
to access the created port, one for the client of the port and
the other for the server of the port. A process moves a capa
bility in its active directory into its c-list in order not to lose
the capability when it changes its active directory to another
subdirectory.

The part of the c-list in which the kernel maintains the port
capabilities of a process is called the p-list. The port capabilities
are exclusive and as such, port capabilities are inherently tran
sient, cannot be shared or copied. However, either the client
or the server process may transfer its port capability to an
other process. The transferring may be either temporary (the
semantics of a lend with the ownership retained) with the SEND
RECEIVE primitive or permanent with the SEND primitive. In
the latter case, the ownership of the port is transferred along
with the port capability.

The only capcap associated with a port capability is trans
fer. The transfer capcap in the client's port capability is set to
the value of the corresponding transfer capcap in the operation
capability used. If the used operation capability is stable, then
the transfer right of the client's active directory is also taken
into consideration. The transfer capcap in the server's port ca
pability is always enabled. A server process may transfer a port
that it serves, to another server as long as the port functionality
is preserved. This is essential for supporting the implementa
tion of load balancing algorithms and realizing a hierarchy of
object managers, features which can improve the performance,
flexibility and reliability of a distributed system. A common ex
ample of a hierarchy of managers is a manager structured based
on the master/slave model, in which a process can only create
a port for requesting an operation to the master process. The
master process decides which slave process should service the
request and passes the port capability to it. A process may re
set the transfer capcap of the port capability when it passes the
capability to another process, to prevent further transferring.

Transient capabilities contribute to the 'flexible use of capa
bilities in Gutenberg without compromising the security of the
system because the c-list is saved in the PCB and may only be
manipulated through kernel primitives.

The kernel primitives that manipulate the capabilities both
within a c-list and an active directory, fall into two classes:
genert'c and speC£al prt'm£t£ves. Generic primitives are further
classified into construct£ve in that they do not affect the par
ticipating capabilities, and destructive. Constructive primitives
are designated by the ending -C attached to their names. Re
call that a number of capcaps and rights correspond to each
primitive, and must be active in the capability on which the
primitive is invoked, and must be allowed by the rights of the
active directory of the invoking process.

The eleven generic kernel primitives are: Create, Register,
Register-C, Remove, Hold, Hold-C, Drop, View, Modify, Merge
and Merge-C. Here is a brief description of their functionality
(Details concerning the primitives may be found in [3]).

Create These primitives create a capability. Create-port, and
Create-operation are instances of this generic primitive.
A Create always creates a transient capability which may
then be registered or transferred with all or part of its priv
ileges retained. Creating an operation capability requires
a manager capability, and creating a port capability re
quires an operation capability. Other Create primitives
require no privilege.

Register and Register-C These primitives make a transient
capability, or one derived from transient capabilities, sta
ble. A process may reset part of the cap caps and/or rights
of a capability, when it registers the capability. The pur
pose of these primitives is two-fold: to allow a process to
store a capability for future reference in another session;
and, to allow a process to share a capability with other
processes which are not currently instantiated, but share
access to a subdirectory.

Remove These primitives delete a stable capability from the
active directory.

Drop These primitives delete a transient capability from the
c-list.

Hold and Hold-C These primitives make a stable capability,
or one derived from stable capabilities, transient. A pro
cess may reset part of the capcaps and/or rights of a capa
bility, when it holds the capability. The purpose of these
primitives is to allow a process to retain a capability from
its active directory when it changes its active directory to
another subdirectory.

View These primitives bring a copy of a transient or stable ca
pability, or a cd-node into the address space of a process.
Partial views are also facilitated in the case of a subdirec
tory; it is possible to bring capabilities of a specified type
into the address space of the process. The purpose of these
primitives is to allow a process to examine capabilities it
possesses, and, if desired, use this information to modify
or create new capabilities.

Modify These primitives allow a process to modify an existing
transient or stable capability, or a cd-node.

Merge and Merge-C These primitives allow a process to
merge two compatible capabilities to obtain another. Two
capabilities are compatible if they are of the same type and
have identical non-modifiable attributes (attributes whose
values cannot be changed with the Modify primitive).

1165

As has previously been discussed, the manager definition and
subdirectory capabilities are slightly different from other capa
bilities. These capabilities contain pointers to manager defini
tion and subdirectory cd-nodes, respectively. When one of these
capabilities is created with the Create primitive, the cd-node is
created as well. These cd-nodes exist in the system until either
they are explicitly destroyed by using the proper Destroy prim
itives, or all of the capabilities that point to them are deleted
using the Remove or Drop primitives.

The kernel uses the c-list and the active directory of a pro
cess to check whether it has a legitimate privilege for executing a
primitive it has requested. Therefore, the consistency and avail
ability of the capability directory is fundamental to the correct
operation of the protection mechanism. As is commonly done
with resources in distributed systems, the capability directory is
physically distributed, though still logically unified, across the
distributed system as we discuss below.

3 USER-DEFINED OBJECTS

Recall that the Gutenberg kernel is not involved in the protec
tion of objects that are purely local to a process. User-defined
objects are those objects managed by one process but accessible
by other processes via operations requested using ports. Here,
we discuss how user-defined objects are created, shared, and
protected.

3.1 Type Creation

User-defined types in Gutenberg are represented by manager
definition cd-nodes (figure 3). A manager definition is created
by a process invoking the Create-manager primitive. Recall
that no special privilege is required to invoke this primitive.
In invoking the primitive, a process must provide five parame
ters: A cooperat.ion class capability identifying the file contain
ing the executable image for the process; a subdirectory capa
bility identifying the default d£rectory, the subdirectory which
becomes the active directory of any process instantiated from
this manager definition; the operation list, the specification of
the operations that are implemented by the manager; the man
ager initiation protocol, indicating how manager processes are
instantiated; and, the manager dependency indicating whether
a manager process will be destroyed when all ports connected
to it are destroyed.

Upon successful execution of the Create-manager primitive,
the kernel places a manager definition capability, pointing at the
new manager definition and containing its name, in the process's
c-list. After the manager definition and the corresponding man
ager definition capability are created, the process may use the
manager capability to invoke the Create-operation primitive to
create the operation capabilities for the type. These operation
capabilities can then be stored in the capability directory or
distributed over ports to processes wishing to use the type.

3.2 Manager Initiation Protocols

The manager initiation protocol specified when creating a man
ager definition determines the manner in which ports are con
nected to the manager processes instantiated from the defini
tion. It specifies whether all the object instances of a type are
managed by one process or each object is managed by different
processes. There are three initiation protocols in Gutenberg:
conservative, creative and class conservative. In the conservative
manager initiation protocol, a manager process is instantiated
from the manager definition only if there is no other manager
process executing in the system which was instantiated using this
manager definition. If such a process already exists, the port be-

ing created is attached to this process. This protocol provides
the means to produce a manager process that manages all the
objects of a type, and to automatically connect port-creating
processes to this manager. Using this protocol, the manager
can be informed of the object being accessed at port-creation
time using a cooperation class capability. Instantiating more
than one conservative manager requires creating more than one
manager definition.

The creative protocol creates a new manager process. from
the creative manager definition cd-node for each new port cre
ated. This protocol allows a process to create a port to a new
process under all situations. This protocol allows a process to
isolate the newly created manager in order to ensure that the
manager cannot leak information. However, it cannot support
multi-port interconnections between a specific client and a spe
cific server.

The third protocol is the class conservative manager initia
tion protocol. It allows new managers to be instantiated selec
tively based on the cooperation class capability supplied at port
creation time. The class conservative manager is typically de
signed to manage one object of the type, and may serve rJultiple
ports from any number of processes.

In the class conservative protocol, when a port is created
using an operation capability, the kernel checks to see if a process
associated with the specified class id has been instantiated from
the manager definition pointed to by the operation capability. If
so, the port is connected to this manager. If not, a new manager
is instantiated and associated with the specified class id.

Both conservative protocols allow any two processes to com
municate indirectly through a conservative process, although
they cannot establish direct, full duplex interconnections. How
ever, using these protocols and by allowing processes to pass
port use privileges via ports, the one-to-one process intercom
munication topology adopted by Gutenberg can be expanded to
arbitrary topologies. For a more detailed description of manager
initiation protocols, see [12].

.3.3 Object Protection and Sharing

Once a type is created, distributing privileges to allow other'
processes to use the object type corresponds, in Gutenberg, to
distributing operation capabilities linked to the manager defini
tion. As has previously been discussed, for a process to access
a shared resource, a port is needed between itself and the pro
cess managing the object. Establishing a port involves checking
for an operation capability in the active directory or c-list of
the requesting process. Thereafter the kernel performs access
authorization for a user-defined operation simply by checking
that the requesting process has the privilege to access the port
associated with the operation. Thus, creating and accessing
user-defined objects involves using kernel-defined capabilities to
authorize access to kernel-defined objects, and does not involve
checking user-defined capabilities as in other capability-based
systems.

In Gutenberg, process interconnections can change dynam
ically through the transfer of capabilities on ports. There are
three ways in which one process can transfer some of its capabil
ities to another; The transferred capabilities are always placed
on the receiving's process c-list. Since the kernel is the man
ager of the capabilities and ports, it monitors the transfer of
capabilities between processes.

The first method of capability transfer is the transfer of a
port capability. The sending process loses the port capability,
and therefore the privilege to execute the object operation asso
ciated with the transferred port; the receiving process obtains
this privilege.

The second method of capability transfer is the transfer of an
operation capability (which can be associated with a cooperation

1166

class) that can be used to create any number of ports to access
an object (identified by the cooperation class).

The third method of capability transfer is by registering the
capability to be transferred in a subdirectory and transferring
the subdirectory capability that points to it. Using this method
a process may transfer a number of capabilities at once with the
minimum communication overhead.

In all three methods, capabilities are transferred either by
SEND as part of the message or by SEND-RECEIVE as part of
the request details. These two mechanisms of capability trans
fer are distinguished by the semantics of the transferring. The
transfer by SEND is permanent, whereas the transfer by SEND
RECEIVE is temporary and the transferred capabilities can be
held only while the recipient is processing the request to which
it pertains. When the recipient executes the SEND that satisfies
the request, the kernel automatically returns the outstanding
capabilities to the process which executed the SEND-RECEIVE.
For more detailed discussion of the privilege transferring mech
anisms as well as their implications see [8].

4 DISTRIBUTED GUTENBERG

KERNEL
An instance of the Gutenberg kernel is running on each site in
the system. From the objects that the kernel maintains only the
capability directory needs to be distributed. The other three
objects, namely processes, ports and transient capabilities, are
n'aturally distributed since processes always execute on a single
site, and ports and transient capabilities can only' be used by
the process which possesses them.

The capability directory is partitioned and replicated to en
sure availability and reliability. Manager definitions are repli
cated only at the sites in which manager processes from these
can possibly be instantiated. Subdirectories are replicated in lo-
cations where they are expected to be used and in a number of
other locations in a manner that meet the resiliency requirement
and balance the distribution of local directory storage space.
The site where a cd-node is created has a copy of that cd-node
and also keeps track of which sites have copies of that cd-node.

The set of capabilities and cd-nodes from the capability di
rectory that resides on a site forms that site's local directory.
The site's local directory dynamically expands and contracts to
accommodate the needs of any process executing on the site.
Dynamic adjustments pertain only to the migration of subdirec
tories; modifications to manager definitions are expected to be
relatively rare to justify their migration. A subdiretcory is mi
grated only when processes make repetitive use of the capabilties
located there, justifying the move. Even then, only (lockable)
portions of the subdirectory are copied in a lazy copy fashion.

Synchronization of access to components of the capability
directory is achieved with the use of two locking-based concur
rency control schemes with the granularity of locks being on
portions of cd-nodes. For example, a subdirectory is associated
with three locks; one is used for the set of operation and cooper
ation class capabilities; the second for subdirectory capabilities;
and the third for manager definition capabilities.

Two concurrency control schemes used are the primary two
phase locking scheme [2] where a single copy is designated as the
site to gain all locks, and the basic two-phase locking scheme [2]
where to lock a cd-node for reading it is necessary to lock only
the local copy whereas a write requires obtaining the write lock
on all replicates of the cd-node. Which scheme is used for a spe
cific cd-node depends on the likelihood of its predominant access
by processes on one site or on multiple sites. A dynamic recat
egorization allows the kernel to adapt to the system behaviour
by changing the concurrency control mechanism for a cd-node
in response to the nature of its use.

A two-phase commit protocol is used to achieve a reliable

distributed commitment and ensure atomicity. For a more de
tailed discussion of issues involved in the distribution and the
approach adopted see [7].

5 A COMPARISON WITH RELATED
SYSTEMS

A large part of the improvement in programming languages has
come from the promotion of data and procedural abstraction
as a major tool for structuring modules. This led to the adop
tion of abstraction and encapsulation mechanisms in Gutenberg,
as in many other systems, e.g. Argus [6], NIL [13]. While in
these two systems, the mechanism for dynamic module inter
connection control is built within a programming language, the
approach taken in Gutenberg separates process interconnection
control from programming languages. Gutenberg supports the
dynamic control of process interconnections through the use of
capabilities. However, it is different from the other protection
oriented operating systems such as Hydra [16] and iMAX [4], in
that it adopts a non-uniform object-orientation.

A few systems provide port-based communication facilities
using functional addressing [12], but none ties protection so
closely to communication as Gutenberg does. The Accent sys
tem is port-based and supports asynchronous communication
with process transparency [9]. Communication in Gutenberg
is also similar to the mechanisms used in Intel iAPX-432 [4],
DEMOS [1] and NIL [13]. In all these systems, apart from NIL,
even though a communication link could be typed, thus restrict
ing its use, they do not support the concept of restricting access
to shared objects by restricting the creation of communication
channels is not supported directly, as in Gutenberg.

As mentioned earlier, a unique feature of Gutenberg is the
capability directory, which contains stable capabilities in a uni
fied structure controlled by the kernel. Other systems, such as
Hydra, iAPX 432, and CAL [5] allow capabilities to be stored in
inactive objects (i.e., data structures, as opposed to processes)
that are not kernel objects. The problem of how to allow such
objects to be permanently stored in secondary memory is noted
in [5]. Having a unified structure for stable capabilities that is
separate from user-managed data facilitates their management.
by the kernel and their use by application processes.

6 CONCLUSION

The Gutenberg system is a novel attempt to facilitate the de
sign and structuring of distributed computations in an under
standable and reliable manner that is suitable for validation.
The crux of the Gutenberg approach is the use of port-based
communication, non-uniform object-orientation and decentral
ized access authorization using ports and the capability direc
tory. This nonprocedural directory provides an abstract view of
the functional building blocks of a large system of distributed
cooperating modules and should serve the goal of understand
ability and verifiability.

In this paper we discussed the design of the Gutenberg
kernel. In particular, we presented the kernel primitives, i.e.,
kernel-implemented operations for manipulating the capability
directory and ports. Since process creation and destruction are
byproducts of port operations, there are no explicit primitives to
deal with processes in Gutenberg. Gutenberg does allow users
to construct managers for user defined objects. Such manager
definitions are registered in the capability directory.

A Privilege in Gutenberg is represented by capabilities which
can have two levels of persistence, transient for those capabili
ties which persist only as long as an owning process exists, and
stable for those capabilities in the capability directory, whose

1167

existence is independent of processes. Gutenberg has mecha
nisms for achieving transfer of privileges represent eo by both
transient and stable capabilities. Some of the highlights of these
mechanisms include:

• Using both unidirectional and bidirectional communica
tion primitives and associating them with permanent
(unidirectional) and temporary (bidirectional) granting of
privileges in order to provide flexibility in privilege grant
ing while keeping the kernel simple.

• Typing ports with respect to the ability to transfer privi
leges on them in order to expedite communication in cases
where no privilege transfer can be made.

• Restricting ports to connecting one client process with one
server process in order to simplify interprocess communica
tion in general and the transfer of privileges in particular.

Design and implementation of a Gutenberg kernel (built on
top of UNIX) is currently nearing completion. Experimentation
with this kernel should provide qualitative evaluation of the ad
vantages of the Gutenberg approach.

References

[1] Baskett, F., Howard, J., Montague, J., 'Task Communica
tion in DEMOS,' Proceedings of the 6th ACM Symposium
on Operating System Principles, November, 1977.

[2] Bernstein, P., Goodman, N., 'Concurrency Control in Dis
tributed Database Systems,' ~CM Computer Surveys, vol.
13, no. 2, June 1983.

[3] Chrysanthis, P.K., Ramamritham, K., Stemple, D.W., Vin
ter, S.T., 'The Gutenberg Operating System Kernel,' Dept.
of Computer and Information Science Technical Report 86-
06, University of Massachusetts, February, 1986.

[4] Cox, G., Corwin, W., Lai, K., Pollack, F., 'A Unified Model
and Implementation for Interprocess Communication in a
Multiprocessor Environment,' Intel Corporation, 1981.

[5] Lampson, B. W., Sturgis, H. E., 'Reflections on an Operat
ing System Design,' Communications of the ACM, vol. 19,
no. 5, May, 1976.

[6] Liskov, B., Scheifler, R., 'Guardians and Actions: Linguis
tic Support for Robust, Distributed Programs,' Proceedings
of the 9th Annual ACM Symposium on Principles of Pro
gramming Languages, January, 1982.

[7] Ramamritham, Stemple, D., Vinter, S. T., 'Decentralized
Access Control in a Distributed System,' Proceedings of the
5th International conference on Distributed Computing Sys
tems, May 1985.

[8] Ramamritham, K., Briggs, D., Stemple, D., Vinter, S. T.,
'Privilege Transfer and Revocation in a Port-Based Sys
tem,' IEEE Transactions on Software Engineering, vol. SE-
12, no. 5, May 1986.

[9] Rashid, R., Robertson, G., 'Accent: A Communication Ori
ented Network Operating System Kernel,' Carnegie-Mellon
University Technical Report, April, 1981.

[10] Ritchie, D. and Thompson, K., 'The UNIX Time-Sharing
System,' Communications of the ACM, vol. 17, no. 7, July,
1974.

Ill] Stemple, D., Ramamritham, K., Vinter, S., 'Operating Sys
tem Support for Abstract Database Types",' Proceedings of
the 2nd International Conference on Databases, September,
1983.

112] Stemple, D., Vinter, S., Ramamritham, K., 'Functional Ad
dressing in Gutenberg: Interprocess Communication With
out Process Identifiers,' to appear in IEEE Transactions on
Software Engineering, 1986.

[13J Strom, R., Yemini, S., 'NIL: An Integrated Language and
System for distributed Programming,' Proceedings of SIG
PLAN '89, Symposium on Programming Languages, Au
gust, 1983.

[14J Vinter, S. T., 'A Protection Oriented Distributed Kernel,'
Ph.D. Thesis, University of Massachusetts, August 1985.

[15J Vinter, S. T., Ramamritham, K., Stemple, D., 'Recoverable
Communicating Actions,' Proceedings of the fifth Interna
tional Conference on Distributed Computing Systems, May
1986.

[16] Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R.,
Pierson, C., Pollack, F., 'HYDRA: The Kernel of a Multi
processor Operating System,' Communications of the ACM,
vol. 17, no. 6, June 1974.

1168

CARAT: a Testbed for the Performance Evaluation
of

Distributed Database Systems!

Walt Kohler and Bao-Chyuan Jenq2

Department of Electrical and Computer Engineering
University of Massachusetts

Amherst, MA 01003

Abstract

This paper describes the goals, design, and current implemen
tation of CARAT, an operational distributed software testbed.
CARAT is a simplified but complete transaction processing en
vironment. It was designed to be a flexible tool for the test
ing and performance evaluation of distributed concurrency con
trol, deadlock detection and avoidance, and recovery mechanisms
used in distributed database systems. CARAT contains all the
major functional components of a distributed transaction pro
cessing system (transaction management, data management, log
management, communication management, and catalog manage
ment) in enough detail so that the performance results will be re
alistic. Some of the protocols currently implemented in CARAT
and discussed in this paper are: a two-phase locking protocol
with distributed deadlock detection, a distributed version of op
timistic concurrency control, before-image and after-image jour-

-naling mechanisms for transaction recovery, and a two-phase
commit protocol for global consistency of distributed transac
tions.

1 Introduction

During the past decade, concurrency control and recovery in
transaction-oriented database systems has been the subject of in
tensive research [GRAY79,BERN81, KOHL81, HAER83J. Even
though a. wide variety of concurrency control and recovery algo
rithms'have been proposed, there is currently little quantitative
knowledge on how the choice of algorithms impacts the perfor
mance of the overall transaction processing system [STON83J.

There are three major approaches to system performance
evaluation: simulation, analytical modeling, and measurement.
Simulation studies are most widely used primarily because sys
tem parameters and configurations are relatively easy to change
and any desired level of detail can be captured. However, it often
requires a tremendous amount of computation to gather convinc
ingsimulation results for complex systems. Furthermore, the re-

IThis work was supported by the National Science Foundation, grant num
bers ECS-8120931, ECS-8340029, and SDB-8418216.

2Bao-Chyuan Jenq is now with Digital Equipment Corpora.tion, Nashua,
New Ha.mpshire.

CH2345-7 /86/0000/1169$01.00 © 1986 IEEE
1169

suits. can be misleading if some significant factors are ignored by
the. simulation model.

Analytical modeling is relatively inexpensive to perform and
often provides good insight into system behavior, if an.appropri
ate model can be found. But analytic models for complicated
systems are difficult to construct and solve without introducing
simplifying assumptions that may be inappropriate.

Both analytical and simulation models require estimates of
the system resource requirements of the primitive elements of
the algorithm as implemented in the system under study. Usu
ally they can only be obtained by extensive measurement of a
prototype implementation. Performance measurement of a real
system is more conclusive than either simulation or analytical
analysis. However, performance data is time comsuming to col
lect and reduce and it is not feasible to generalize the results of
performance measurement to different system configurations and
designs without using some type of model.

One way to obtain the model parameters needed for analytical
and simulation studies is through the implementation and mea
surement of a testbed system. A testbed system is an operational
prototype system that is simple and flexible enough to permit the
designer to "plug in" various algorithms or strategies and then
measure and study their impact on system performance. As dis
cussed in a special issue of Computer (Vol. 15, No. 10, 1983),
testbeds are becoming recognized as an important research tool
because "We expect experimentation with distributed systems to
provide

1. an improved understanding of the functional requirements
and operational behavior of distributed systems,

2. measurements from which quantitative results about dis
tributed systems can be derived,

3. an integrated environment in which interrelations of solu
tions to individual problems can be evaluated, and

4. a design environment in which design decisions can be
based on both theoretical and empirical studies." [BERG82,
page 9J

We believe that an evaluation approach based on a com
bination of performance measurement. and modeling studies is
necessary in order to characterize and understand the impact

of different concurrency control and recovery algorithms on the
performance of a distributed database system. The testbed sys
tem we have implemented for the performance measurement of
concurrency control and recovery algorithms is called CARAT
(Concurrency and Recovery Algorithm Testbed). Some of the
protocols currently implemented in CARAT and used in perfor
mance measurement experiments are:

• a two-phase locking protocol with distributed deadlock de
tection based on probes

• a distributed version of optimistic concurrency control

• before-image and after-image journaling mechanisms for
transaction recovery

• a two-phase commit protocol for global consistency of dis
tributed transactions.

Performance comparisons of concurrency control algorithms
have been carried out by a large number of researchers using
simulation and analytical models, for example, by Irani and
Lin [IRAN79], Ries and Stonebraker [RIES79j, Lin [LIN81],
Thomasian [THOM82], Galler [GALL82J, Menasce and Nakan
ishi [MENA82], and Carey and Stonebraker [CARE84]. But
there are important issues that have received little consideration
in previous studies:

• There has been little empirical comparison of differ
ent concurrency control and recovery algorithms in dis
tributed database systems, as pointed out by Stonebraker
et al.[STON83]. Moreover, even though system resource re
quirements for the basic components of concurrency control
and recovery algorithms are necessary for realistic perfor
mance modeling studies, few results have been reported.

• The validity of the various assumptions made in the mod
els have not been carefully examined. In fact, the previ
ously reported results have been contradictory. Refer to
the recent modeling work of Agrawal, Carey, and Livny
[AGRA85a] for an examination of the discrepancies.

• Most of the previous modeling studies considered only
the performance of concurrency control algorithms in a
centralized database system. Few studies have addressed
the distributed database environment [GARC79, LIN81,
NAKA82].

• Although concurrency control and recovery mechanisms are
intimately related, except for the recent modeling work of
Agrawal and DeWitt [AGRA85b] they have been treated
as two separate problems when studying their impact on
database system performance.

In this paper we describe the design and implementation of
the CARAT testbed. Our goal is to show how we constructed
the testbed and to identify our major design decisions. Since
our initial performance studies have concentrated on transac
tion management issues, i.e., concurrency control and recovery
protocols, we have separated transaction management from data
management as much as possible. A discussion of our perfor
mance measurement methodology and experimental results can

1170

be found in [KOHL86]. We have also developed and validated an
analytical queueing network model for the CARAT distributed
transaction processing system [JENQ86b]. The current paper
serves .as an introduction to the testbed used in those studies.
The next section begins with an overview of the physical design
of CARAT. .

2 Overview of the CARAT Architecture

The process and communication structure are the two major ar
chitectural issues in developing a testbed for the efficient ex
ecution of distributed transactions. In determining the pro
cess structure, there are three primary considerations. First, it
is important to minimize communication overhead and context
switching. Second, it should support a high degree of concur
rency among multiple transactions, called inter-transaction con
currency. Finally, to exploit the processing parallelism available
in a distributed system, it should be possible for requests from
a single transaction to be executed sequentially or in parallel at
multiple nodes, this is called intra-transaction concurrency.

CARAT is implemented as a set of cooperating server pro
cesses which communicate via a uniform and efficient message
passing mechanism. After experimenting with an early proto
type [GARC83], we decided to implement CARAT using two
levels of servers at each node. Figure 1 illustrates the process
and message structure of CARAT for two nodes, but the archi
tecture generalizes to any number of nodes. The top level server
process, called the TM server, is the Transaction Manager. At
the next lower level there is a pool of Data Managers, designated

the DM servers. This structure cleanly divides most of the func
tions of transaction management and data management between
the two server categories. (See the book by Ceri and Pelagatti
[CERI84] for a discussion of distributed transaction management
issues and architectures.) TheTM and DM servers work coop
eratively to service transaction requests from user application
processes. Each user process, labeled TR, submits transaction
requests sequentially. In our experiments each node runs on a
single processor.

One function of the TM server is to act as the inter-process
communication agent for user processes. Inter-node communi
cation links are established at system start-up time among the
TM servers and are maintained forever. There is no communi
cation link between a TM server and a remote DM server. Since
all inter-process connections are maintained, there is no connect
or disconnect overhead for individual transactions. Each request
to a remote DM server is routed through a remote TM server.
This also reduces the required number of inter-node links, which
would otherwise become overwhelming for an environment with
many users at each node.

A user application process issues transaction requests only
to its local TM server. The local TM server is called the Co
ordinator TM. A local transaction request is routed by the Co
ordinator TM to a local DM server while a remote request is
sent to a remote (slave) TM server. The DM servers execute
the transaction requests and send response messages to their lo
cal TM server. For responses to local requests, the TM server
then routes the messages to the initiating user processes, while
responses to remote requests are routed to the user processes

Coordinator Node Slave Node

Figure 1: CARAT process and message structure.

through the initiating TM server.

A OM server for a particular transaction is dynamically allo
cated by the TM server from the OM server pool. The association
of a OM server with a transaction is maintained throughout the
lifetime of the transaction. For a distributed transaction, there
is a OM server agent at each of the participating nodes.

Inter-transaction concurrency can be achieved by having mul
tiple OM's active concurrently at one or more nodes on behalf
of different transactions. The degree of inter-transaction concur
rency at a node is thus bounded by the number of DM servers
at the node. Intra-transaction concurrency can be achieved if a
user transaction issues multiple requests in parallel for different
DM server nodes.

We believe that the two-level server structure is well-suited
for the distributed workstation and database server environment.
The TM server may become a bottleneck when the message ar
rival rate is high. However, our experience so far has shown that
the serialization delay due to the TM server is not a significant
factor for a wide range of message request rates. Besides, our
testbed architecture allows the TM server to control the effective
multiprogramming level by simply queueing the message requests
from transactions. By controlling the multiprogramming level,
TM is able to control the level of conflict among transactions.
This process structure also maps well into an environment where
each node is a multiprocessor or tightly-coupled cluster. Each
TM or DM process could run in a separate processor.

CARAT contains the functional components: transaction
management, data management, log management, communica
tion management, and catalog management. Transaction man-

1171

agement, inter-node communication and catalog management are
the responsibilities of the TM server processes. The data'man
agement function is handled by the OM server processes, which
also hold the primary responsibility for log management if re
covery based on logging is used. The CARAT system has been
implemented for a high-speed network of DEC VAX/VMS3 sys
tems with DECnet/Ethernet connections. In the next section we
will describe the communication management component. This
will be followed by a section that sketches the execution of a
transaction and then sections that describe the implementation
of each of the other functional components.

3 Communication Management

To reduce programming effort and increase flexibility, a port in
terface is implemented by the communication management mod
ule. A uniform call interface is provided by the port interface
for both intra-node and inter-node process-to-process communi
cation. There is at least one port associated with each of the
CARAT system processes (TM's and DM's) and the user trans
action processes (TR's). The coupling of ports and processes
enables us to categorize the port types by the associated pro
cess types. Thus, there are three basic port types in CARAT:
TM, DM and TR. Each of the ports is named by port type, port
number, and node number.

In essence, a port is an abstraction of a first-in-first-out queue
containing messages destined for the associated process. Mes

sages received either through inter-node or intra-node communi
cation are all appended to the tail of the port queue. A process is
transparently interrupted when a message arrives and it is then
automatically resumed after the message has been placed on the
queue. Both synchronous and asynchronous primitives for send
ing and receiving messages are provided by the communication
module. Our experience has shown that asynchronous send and
receive are essential for the operation of the TM server process
due to its multi-threaded nature. Each of the server processes
defines its port at system start-up time. By defining a port, the
process has essentially set up an incoming channel from the port.
Outgoing communication channels are established by connecting
to the ports owned by the other communicating processes.

Intra-node process-to-process communication is implemented
using the mailbox facility provided by the VAX/VMS operating
system. Mailboxes support synchronous and asynchronous com
munication between processes by buffering messages in system
dynamic memory. When using synchronous mailbox communi
cation, the process that issues the receive blocks and waits, if
it finds no message in the mailbox. It remains blocked until a
message is sent to the mailbox by some other process. Likewise,
a process sending synchronously is blocked until the message it

. sent is received by another process connected to the mailbox.
Asynchronous communication, on the other hand, allows a send
ing process to continue before the message is read by a receiver
and a receiving process to continue even if there is no message in
the input queue.

For inter-node process-to-process communication, the under
lying communication mechanism is based on DECnet virtual cir
cuits. This shields undesirable conditions such as lost messages,

3DEC, VAX, VMS, and DECnet are trademarks of Digital Equipment
Corporation.

message duplication, and out-of-order message delivery from the
servers. Communication link failures and node crashes can be ob
served by DECnet and the involved communicating parties can
be notified of the failures. DECnet supplied failure information
can be used to supplement the TM server's timeout based failure
detection mechanism. The only inter-node communication in the
current CARAT architecture is between TM servers.

4 Model of CARAT Transaction Execu
tion

A transaction is basically a sequence of host language statements,
including terminal input/output statements, and database DML
statements bounded by the transaction delimiters TBEG IN and
TEND. In a distributed database system based on message
passing, each of these DML commands may be carried by a mes
sage to a DM server which will interpret and then execute the
command. This approach requires one request/response message
per DML command in addition to the processing overhead associ
ated with the run-time interpretation of the command. To reduce
message overhead, several DML commands with parameters can
be grouped into a request and carried by a single message. To
reduce the run-time interpretation overhead, the requests can be
compiled.

In CARAT a request is compiled into a small object module
and stored with the DM server. Requests are invoked at run
time by a message that carries the request number and the actual
parameters used by the request. Requests are the basic units of
execution and distribution among participating nodes.

There are five basic message types issued by a CARAT trans
action: TBEGIN, DBOPEN, TDO, T.ABORT, and TEND. A
user process initiates a transaction by sending a TBEGIN mes
sage to its local TM server. This TM becomes the Coordinator
TM for the transaction. A TBEGIN message is followed by a
DBOPEN message and a sequence of TDO messages, each of
which contains a transaction request. A DBOPEN message car
ries the description of the data objects (e.g., name of the area
or file) upon which the subsequent TDO messages will operate.
Upon receiving a DBOPEN message, the TM server determines
the location of the data object by consulting its local catalog. The
catalog is replicated at each site. If the data object resides locally,
it WIll allocate a local DM server to serve the transaction if one
is not already allocated and then forward the DBOPEN request
to the DM server. For remote data objects, the TM forwards
the DBOPEN message to the TM server where the data object
resides. The remote TM server is called the Slave TM. Transac
tions initiated at another node are called foreign transactions for
the Slave TM server. When a Slave TM receives a request from a
foreign transaction, it assigns it a DM server, if it does not have
one already, and then forwards the request. After processing
the request, a DBOPEN.K acknowledgment is returned to the
transaction. One of the parameters included in the DBOPEN.K
message is the location of the data object for use in subsequent
TDO requests. 4 Note that there is exactly one DM server which
acts as an agent for a transaction at every node the transaction
visits. The use of a catalog by the TM coordinator provides lo
cation transparency to transactions. This allows transparent file

4The ".K" on a message name is used to indicate an acknowledgment
message.

1172

migration and simplifies application programming.

The TDO message carries a request number, a locati~n in
dicator, and the actual parameters for the request. Each TDO
message is routed by the coordinating TM server to either a local
DM server, using a DO STEP message, or a remote TM server,
using a REMDO message. For TDO messages which expect data
to be returned to the requesting transaction, an acknowledgment
message, TDO_K, will carry the response data. Our current im
plementation assumes that the entire response set can fit into the
message buffer.

The user process issues a TEND message to commit a trans
action. To coordinate execution of distributed transactions, the
cooperating TM and DM servers execute a commit protocol.

An example of the flow of messages that might occur during
the execution of a simple transaction is shown in Figure 2. The
sequence of events are time ordered from the top of the figure to
the bottom. Each column represents the user process or a system
process and the interchange of a message is shown by an arrow.

TR TM Local DM Remote TM Remote DM

TBEG1N -->
<-- TBEG1N.K

DBOPEN -->
DBOPEN -->

<-- DBOPEN.K

<-- DBOPEN.K

DBOPEN -->

TOO

TOO

TEND

REM.DBOPEN -------. -- ---->
DB OPEN -->

<-- DBOPEN.K

<---------------- REM.DBOPEN.K
<-- DBOPEN.K

--> (local request)
DOSTEP -->

[DB 10] {LOG 10}

< - - DOSTEP .K

--> (Remote request)

REMDO - -- -- - --- - -- - - -->
DOSTEP -.>

<- --- - - - -- -- - - - - - REMDO.K

PREPARE -->
PREPARE - - - --- - --- -- - - - -> PREPARE

{DB IOHLOG 10}

[DB IOJ {LOG IO}

-->
{DB IOHLOG IO}

<-- PREPARE.K <.- PREPARE.K

<- - - - -- - - - -- - -- - - PREPARE.K
[LOG IO]

COMMIT -->
COMMIT ---------.------> COMMIT -->

[LOG IO] [LOG IO]

<-- COMM1LK

<- - - - -- -- - - - - - - - - COMMIT.K

Figure 2: Flow of messages for a simple CARAT transaction.

5 Transaction Management

The basic function of transaction management is to coordinate
distributed transaction execution to guarantee that all the partic
ipating nodes reach the same decision about the outcome of each
distributed transaction, despite node, communication or transac
tion failures. This is achieved by implementing a commit proto
col. Another responsibility of this module is to provide an inter
face to user transactions and to route requests and responses be

tween the transaction, TR, and the local DM or remote TM pro
cesses based upon the transaction state information it maintains
and the message type. In the following subsections we will discuss
transaction state management, the two-phase commit protocol,
and the failure handling mechanisms implemented in CARAT.

5.1 Transaction state management

Upon receiving a TBEGIN message, the transaction management
component of the TM process registers the transaction by as
signing it a globally unique transaction identification, TS. TS is
a timestamp [LAMP78] formed by concatenating three numbers:
a local counter, a node number, and a retry number. The local
counter represents logical time and is incremented by each local
transaction registration. TS is returned to the transaction in the
TBEG IN_K acknowledgment message. All future messages sent
by the transaction contain TS as identification. To maintain the
correct partial ordering of transactions in the distributed system,
the local counter is brought up-to-date every time it receives a
message from another node.

The transaction management module keeps track of the trans
action state of every active transaction. Each TM server process
maintains two tables for transaction state information. The Co
ordinator Table contains global state information on each active
transaction that was initiated locally. The Slave Table contains
local state information on each active foreign transaction that has
opened a database file and executed requests at that node.

The global state of a transaction is either: inactive, active,
collecting, committing, or aborting. A TBEGIN message received

by the Coordinator TM marks the beginning of the transaction's
active state. The transaction normally remains in the active state
until a TEND message is received by the TM coordinator from
the transaction. While in the active state, the TM coordinator
accepts and forwards DBOPEN and TDO messages for process
ing by local or remote DM managers. A TEND message triggers
the TM coordinator into the transaction commit protocol.

The Slave Table maintains the local state of foreign trans
actions. There are six local states: inactive, active, preparing,
prepared, committing, or aborting. An entry is maintained for
each foreign transaction that is not inactive at the node. The
local state becomes active when a REM_DBOPEN message is re
ceived and a DM server is assigned to the foreign transaction.
Under normal operation the state remains active until a PRE
PARE message is received from the Coordinator TM process.
This marks the beginning of the preparing state and a PREPARE
message is sent to the assigned DM process. The prepared state
is entered when the DM process returns a PREPARED_K mes
sage. This tells the Slave TM that the DM has safely stored the
information to undo (or redo, depending on the recovery method
used) the transaction in stable storage. A transaction in the

1173

prepared state means that the slave has given up its right to uni
laterally abort the transaction. It must wait for the Coordinator
TM server's commit or abort decision.

The transaction management component is also responsible
for coordinating failure recovery. The three basic types of fail
ures that are usually considered as recoverable are [GRAY79,
HAER83]: transaction failure, system failure, and media failure.
We assume that transaction failures do not corrupt the volatile
or non-volatile database or the log, that system failures do not

corrupt the non-volatile database or log, and that media failures
do not corrupt the log or the database checkpoint. Transaction
failures occur with the highest frequency and they are typically
caused by user abort and deadlock abort. Before failures can
be handled they must be detected. User abort failures can be
detected by the underlying operating system and message sys
tem. Deadlock failures are detected by the deadlock detection
component of lock based concurrency control schemes.

Since our performance experiments have only been concerned
with transaction deadlock abort, we have not yet implemented
a sophisticated user and node failure detection mechanism. The
basic mechanism employed for user abort and node crash de
tection in the current implementation is message timeout. For
example, if the Coordinator TM does not receive a message from
an active TR within a predefined timeout interval, the TM coor
dinator assumes the transaction has failed and initiates an abort
procedure. Similarly, a remote node crash or communication net
work failure is detected by the inability to send a message to the
node or by timeout waiting for the next message or acknowledg
ment from the node.

The logic of the transaction manager (TM) is specified using a
finite state machine representation. Depending on a transaction's
current state and the type of input message received on behalf of
the transaction, it may make a transition to another state or stay
in the same state, and it may send messages to a DM server, other
TM servers, or the user transaction. The implementation of the
TM module is based on this finite state machine representation ..
This approach proved to be of great value in the debugging and
modification of the system. A complete description of the state
transition tables can be found in [JENQ86a].

5.2 Commit Protocol

The conventional centralized two-phase commit protocol
[GRAY79] has been implemented in CARAT. For each transac
tion the Coordinator TM is the the controller. The coordinator
com~unicates with the participating slave TM's to reach unani
mous agreement on the outcome (commit, or abort and rollback)
of the transaction. During execution of the commit protocol,
log records with recovery information are written to the stable
storage so that the effects of the transactions can be correctly
recovered from system failures in which the volatile memory is
lost.

Performance improvements to the basic two-phase commit
protocol can be achieved by reducing the number of inter-node
messages and the number of log writes in the distributed envi
ronment. In addition, since read-only transactions are likely to
be dominant in most application environments, it is desirable
to optimize the protocol for read-only transactions. Two more
efficient commit protocols, called Presumed Abort 2PC and Pre
sumed Commit 2PC, have been proposed and implemented in
IBM system R* [MOHA83]. Two-phase commit protocols are

'.

vulnerable to coordinator failures and to network partitions that
isolate the coordinator. We plan to study additional protocols in
the future.

5.3 Failure Handling

Following the work of Skeen and Stonebraker [SKEE81], we clas
sify the failure handling mechanisms into two protocols: the ter
mination protocol and the recovery protocol. The termination
protocol is invoked at failure detection time to guarantee trans
action atomicity. It attempts to terminate consistently (commit
or abort, depending on the transaction's current state) all af
fected transactions at all the participating nodes.

If a failure is detected before the commit decision is made, i.e.,
while the transaction is in the active or collecting state, the TM
coordinator sends an ABORT messages to the local DM server
process and all the participating Slave TM servers. The slave TM
server then forwards an ABORT message to the participating DM
server to roll back the transaction.

However, if a node crash is detected by the Coordinator TM
while a transaction is in the committing state, which corresponds
to the second phase of the two-phase commit protocol, then the
transaction will be left in the committing state until the slave
node recovers and informs the coordinator it is functioning again.
Then the commit message will be forwarded to the slave.

For communication failures, the underlying DECnet vir
tual circuit communication layer will first try to send messages
through an alternate communication path. If one exists, the com
municating processes will be allowed to continue; otherwise, the
Coordinator TM follows the protocol for a failed slave.

If a Slave TM server detects that the Coordinator TM server
for one of its transactions has failed, it will either abort the trans
action or wait for the coordinator to recover. The decision de
pends on the local state of the transaction stored in the slave
table. If the local state is prepared, then it must remain in the
prepared state until the coordinator node recovers and sends a
COMMIT or ABORT message. However, if the slave is not pre
pared, the transaction is immediately aborted.

A node which has failed must execute a recovery protocol
before it resumes communication with other nodes. The ma
jor functions of the recovery protocol are to restart the system
processes, the TM and DM's in the case of CARAT, and to re
establish consistent transaction states for all transactions affected
by the failure. The information in the system log is sufficient to
re-establish a consistent state and it is assumed to survive the
failure.

We have taken a simple approach in the current implemen
tation of CARAT. All transactions that were active at the time
of the node crash but not in the second phase of the two-phase
commit, i.e., not in the committing state in the coordinator table
or the prepared state in the slave table, are rolled back.

6 Data Management and Concurrency
Control

The DM servers manipulate the database on behalf of user ap
plication processes. The implementation of the DM servers can

1174

be partitioned into five major modules: Request Processor,
DML Processor, Buffer Manager, Concurrency Control,
and File 10.

The Request Processor module is the front-end for the DM
server. It processes the transaction requests received in DOSTEP
messages from the Transaction Manager. It contains a set of
request-handling routines that map the request number and in
put parameters into a sequence of DML statements to be exe
cuted by the DML Manager. Each request from the TM server

is dispatched to a corresponding request-handling routine. In
our current implementation, the request handlers are statically
defined and linked into the Request Processor module.

The DML Processor module supports database DML rou
tines. We are currently using a simple CODASYL database pro
cessor because we have access to the source code and it is easy
to modify those parts that impact our transaction processing
experiments. Other data models could be supported, but we
believe that the concurrency control and recovery issues can be
studied independently of the data model. The DML Processor
routines are called to execute CODASYL DML statements using
currency, set information and data definitions specified in the
database schemas. A simple database protection mechanism is
provided by checking passwords contained in the DBOPEN state
ments before opening the database files for access. Currently, our
distributed database is just a collection of independent database
fragments, one at each node. But other structures, including
replication, can be supported by our architecture.

The DML Processor calls routines in the Buffer Manager
module to fetch the database pages it requires. To reduce .disk
10, the Buffer Manager manages a private buffer, i.e., private
to each DM server, for high traffic data pages. A least-recently
used (LRU) strategy is employed for buffer page replacement.
The size and management of the buffer can be adjusted to ac
commodate different concurrency control and journaling strate
gies. For the lock based concurrency control scheme, a fixed size
private buffer is managed by each DM server. Modified pages
are written back to the on-disk database when the buffer slots
are re-assigned to other data pages. The Buffer. Manager is also
called to flush the modified data pages during the first phase of
the two-phase commit execution. For the optimistic concurrency
control approach, the size of the private buffers are extended to
accommodate all modified pages, since no updates to the on-disk
database is allowed before a transaction is committed. A global
buffer mechanism, in which one or more shared buffers are used
to further reduce the disk 10 traffic for concurrent transactions
will be considered for future implementation.

Low level 10 routines for file operations are contained in
the File-10 module. This module supports both synchronous
and asynchronous write to non-volatile disk storage. Asyn
chronous write is used for database read/write operations while
synchronous write, also called force-write, is primarily used for
journaling operations to ensure that the log records are safely
stored on disks before a process can continue executing other
operations.

The Concurrency Control module contains most of the
routines for local and distributed concurrency control and dead
lock detection. Several mechanisms have been implemented and
tested. A two-phase locking protocol with distributed deadlock
detection [ESWA76, CHAND83] and a distributed version of
Kung's and Robinson's optimistic concurrency control [KUNG81]

are described in the next two subsections.

6.1 Two-Phase Locking with Distributed Dead
lock Detection

Two-phase locking (2PL) in CARAT is supported by a Lock
Manager that uses a hashing technique to manage a,lock table
containing Lock-Grant queues and Resource-Wait queues. There

is one lock table at each node. It is used to record the locks on
resources at the node. Five lock modes are supported [GRAY79J:
Concurrent Read (CR), Concurrent Write (CW), Protected Read
(PR)' Protected Write (PW), and Exclusive (EX). A lock request
is queued for a resource if the requested lock mode is not com
patible with the locks held by other transactions or with other
queued lock requests for the resource. The Buffer Manager is
sues a read or write lock request before reading a page into its
buffer. All locks are held until a transaction has committed or
rolled back.

Both local deadlocks and global deadlocks are resolved by
detection. Local deadlocks are detected by searching cycles in
the Transaction-Wait-For-Graph that is encoded in a two dimen
sional array. One approach to distributed deadlock detection
that is implemented in CARAT is based on the probe algorithm
proposed by Chandy and Misra [CHND82J. In this case, the TM
server at each node acts as a controller for distributed deadlock
detection. A PROBE message is an ordered pair (initiator, re
ceiver), where the initiator denotes the transaction that initiates
the probe computation and the receiver denotes the transaction
which is in the dependent set of the initiator.

Our implementation of distributed deadlock detection using
probes will be described using the following notation:

• TM(n) denotes the TM server and DM(Ti,n) the DM server
for transaction Ti at node n.

• A transaction Ti is said to be in the Remote-Wait state, i.e.,
communication wait state, at node n if the DM(Ti,n) server
for Ti is waiting for a request or response from a remote
node. The remote node will be denoted by RWN(Ti,n).

• At each node the dependencies of transactions, e.g., Ti on
Tj, are registered in an array DEPENDENT(Ti,Tj) in order
to filter out redundant PROBE messages.

DM(Ti,n) executes the following protocol:

If DM(Ti,n) is blocked on a lock request then
If Ti is locally dependent on itself then

Declare Ti as the deadlock victim
else

If (Ti is dependent on Tj) and (Tj at node n is in
Remote-Wait state) then
Send an INIT-PROBE(Ti,Tj) message to TM(n)

endif
Idle, i.e., wait for lock release

endif
endif

On receiving an INIT-PROBE(Ti,Tj) message from DM(Ti,n),
TM(n) sends a PROBE(Ti,Tj) message to TM(m), where m is
the remote node from which Tj at node n is waiting for a request
or response to an request, i.e., RWN(Tj,n).

1175

TM(m), on receiving a PROBE(Ti,Tj) message from TM(n)
executes the following protocol:

If (Tj is idle) and (DEPENDENT(Ti,Tj) = FALSE) then
DEPENDENT(Ti,Tj) := TRUE

else

If (Ti = Tj) or (Tj is locally dependent on Ti) then
Declare Ti as the deadlock victim

else
If Tj is in Remote-Wait state at node m then

Send PROBE(Ti,Tj) to RWN(Tj,m)
else

For each Tk that blocks Tj and Tk is in
Remote-Wait state at node m
Send PROBE(Ti,Tk) message to TM at node
RWN(Tk,m)

endfor
endif

endif

Ignore probe message
endif

To illustrate the implementation of distributed deadlock de
tection in CARAT, a deadlock that was detected in one of the
performance experiments is shown in Figure 3. In the figure,
each transaction Ti is identified by its associated timestamps
q.n, where q is the local counter and n is the node number. The
sequence of the events is listed below.

1. DM(7.1,1) for transaction 7.1 at node 1 is in Remote-Wait
state waiting for DM(7.1,2) at node 2j

2. DM(7.1,2) for transaction 7.1 at node 2 is blocked on a lock
request by DM(2.2,2) for transaction 2.2j

3. DM(6.2,2) for transaction 6.2 at node 2 is in Remote-Wait
state waiting for DM(6.2,1) at node Ij

4. DM(7.2,2) for transaction 7.2 at node 2 is blocked on a lock
request by DM(6.2,2) for transaction 6.2j

5. DM(6.2,1) for transaction 6.2 at node 1 is blocked on a lock
request by DM(7.1,1) for transaction 7.1j

6. DM(2.2,2) for transaction 2.2 at node 2 is blocked by on a
lock request by DM(7.2,2) for transaction 7.2. Since trans
action 2.2 is dependent on transaction 6.2 and 6.2 is in
Remote-Wait state, an INIT-PROBE{2.2,6.2) message is
sent to TM(2)j A

7. On receiving INIT-PROBE{2.2,6.2) from DM(2.2,2), TM(2)
sends PROBE(2.2,6.2) to TM{I)j

8. On receiving PROBE(2.2,6.2), TM{I) executes the probe
protocol and sends PROBE{2.2,7.1) to TM(2)j

9. On receiving PROBE(2.2,7.1), TM(2) executes the probe
protocol. Since 7.1 is locally dependent on 2.2, transaction
2.2 is declared the deadlock victim.

6.2 Optimistic Concurrency Control

In the optimistic approach (OPT) [KUNG81], a transaction con
sists of three phases: a read phase, a validation phase, and pos-

sibly, a write phase. Our implementation of the optimistic ap
proach is based on the use of two counters at each node: 1)
NVN, the node validation number, and 2) NWN, the node write
number. At the 'beginning of the read phase at each node transac
tion Tj visits, Tj reads the value of NWN into START-WN(Tj).

START-WN(Tj) is the highest assigned transaction write num
ber, NWN, when the transaction starts. During the read phase,
each transaction performs read and write operations by manag
ing data in the private buffers of the DM ,servers and its read-set
and write-set are maintained in arrays of resource names.

Node 1 Node 2

7
-.~-------PROBE(2.2,6.2)

3 4

DM(6.2.1) f------DM(6.2.2) ~DM(7.2.2)

6 6

2
DM(7. 1 .1) -----...... DM(7. 1. 2) ---I~"'DM(2. 2.2)

8
PROBE (2 . 2 • 7 . 1) -----:;'lI~

Figure 3: An Example of distributed deadlock detection in
CARAT.

At the end of the read phase, the transaction is validated
within a critical section. For distributed transactions, validation
proceeds independently and in parallel at each node within sep
arate critical sections. The DM(Tj,n) server at node n becomes
ready to enter the validation phase for transaction Tj when it
receives a PREPARE message from its TM server. If transac
tion Tj is validated successfully at node n, the node validation
number, NVN, is incremented by one. The write-sets of vali
dated transactions are kept in a VALIDATED-WRITE-TABLE
(VWT), since the~ may be needed for the validation of some
concurrent transactions.

Transaction Tj is validated 'within a criticaLsection at node
n as follows: .First, the current value of NVN is assigned to VAL
VN(Tj). Then the read-set of Tj is checked against the write-set
of each transaction Ti that completed writing after Tj started its
read phase. Tj will fail validation if its read-set intersects with
the write-set of at least one ofthe Ti'..s. As discussed in [CERI84,
page 236], Tj must also be validated against other active transac
tions that have successfully validated but have not yet completed
writing to the database. 5 Therefore, for each Ti such that VAL
VN(Ti) < VAL-VN(Tj) and Tihas not yet completed writing,

"We discovered that the approach described in [CERI84, page 235-236J
is not adequate to handle all cases. 'We introduced the node validation
number, NVN, and modified the validation procedure as described here to
correct the problem.

we compare the union of the read-set and write-set of Tj with the
write-set of Ti. If the sets intersect, Tj fails validation and the
transaction is aborted. If Tj does not fail validation, the node
validation counter NVN is incremented by one before leaving the
critical section.

A transaction Tj enters the write phase only if it is an up
date transaction and it has been validated successfully at each
node where it was active. The two-phase commit protocol is em
ployed to ensure global consistency as described in [BHAR82].
The parts of the transaction at each node, called subtransac
tions, are validated separately. In the PREPARE phase, each
subtransaction that succeeded in validation locally returns a pos
itive acknowledgment, i.e., a "Yes" vote, via a PREPARE_KiOK
message to its TM server. The Coordinator TM server commits
the transaction only if each sub transaction of the transaction val
idates successfully. In order to guarantee global consistency in
the face of failures, the after-image log records of successfully
validated transactions are force-written to the log file before a
PREPARE-KiOK message is returned by the DM server. The
effects of a committing transaction can be recovered by rolling
forward· the database using the after-image log records. At the
end of the write phase, the value of NWN is incremented by one
and assigned to FINISH-WN(Tj). Note that the value of NWN
is incremented and assigned to Tj only after all writes are com
pleted. Therefore, a transaction Ti that has START- WN(Ti) ~
FINISH- WN(Tj) is able to see all the updates produced by Tj.

7 Log Management

When a transaction is aborted, for example, because of concur
rency control conflict or node failure, the effects of the transac
tion have to be removed by a recovery mechanism provided by the
database system. One approach is to update-in-place the data
objects altered by the transactions. In this case, each data object
has a fixed location in non-volatile storage and each site main-

-.," tains, perhaps on a storage device with different failure modes,
a sequence of log records containing a before-image, an after
image, or both, of the data objects modified by the transactions
to' undo and redo the transactions [GRAY79, HAER83]. The
log is manipulated. as an cappend-only file on a per node basis.
-The log record for a data object has to be written to non-volatile
storage before the data object is modified at its home location,
which is the reason the mechanism is "Often called a write-ahead
log (WAL).

1176

The journaling facility currently implemented in CARAT is
based on this write-ahead-Iogging mechanism. The TM and DM
servers at each node share a single system log file for before
image (BI) or after-image (AI) log records and data objects and
two-phase commit protocol-records. journaling can be done at
various levels of data object granularity, however, only page level
journaling is currently-implemented.

When two-phase locking is used with before-image journaling,
designated as 2PLiBI, before-image data pages are force-written
to the logging disk by the DM servers before the data pages are
modified in the buffers and, therefore, before the data buffers are
written back to the database. The resulting before-image log can

be used to roll back the 'database if the transaction aborts.

For the optimistic concurrency control approach with 'after
image journaling, designated as OPT/AI, log records of modified
pages are force-written to the logging disk during the prepare
phase of the two-phase commit execution, i.e., before the DM
server returns a PREPARE_K message to the TM server. Note
that, for the optimistic approach, all the modified data pages are
buffered in a virtual memory buffer and are flushed out to the
database only when the COMMIT message is received by the
DM server.lf the transaction does not commit, the buffer is just
discarded.

To safely record the transaction state against system failures,
the Coordinator TM server, as the coordinator for a distributed
transaction, force-writes a COMMIT or ABORT log record to
the system log at the end of the first phase of the two-phase
commit, after the fate of the transaction is determined. Also, a
PREPARED log record is force-written to the system log when a
DM server reaches the prepared state. A PREPARED log record
contains the coordinator node number to resolve the fate of the
transaction at system recovery time.

The TM server at a recovering node executes a recovery pro
tocol before it resumes transaction processing. First, the system
log file is examined for the states of the transactions at node
crash time. Active transactions are rolled back"for example, by
using the before-images in the system log. For committing trans
actions a COMMIT message is sent to the Slave TM servers and,
for each Prepared transaction, an inquiry message is sent to its
Coordinator TM server for the final outcome of the transaction.

8 Catalog Management

Catalog management is introduced to support location trans
parency and replication transparency [LIND80]. CARAT uses a
distributed catalog mechanism consisting of local catalogs man
aged by each of the TM server processes to provide location trans
parency to user transactions. In the current implementation, the
mapping of file names and locations in the catalog is static, since
no file migration or file deletion is allowed "and each node has
the complete global knowledge of the mapping. However, cat
alog management schemes such as those described by Lindsay
[LIND80] can be implemented in the future.

A DBOPEN message carries the name of the data. objects
(i.e., file names) to be accessed. Upon receiving a DBOPEN
message, the TM server determines the location of the data object
by consulting its local catalog. If the data object resides locally
and no DM server was allocated for the transaction, it allocates
a DM server as the local agent for the transaction. The DM
server then checks the protection and opens the file for access.
For remote data objects it forwards the DBOPEN message' to
the remote TM server which allocateS' a DMserver at that node
for the transaction or, if a DM server has been already allocated,
forward the DBOPEN message to the DM server to open the file.
Note that there is at most one DM server for a transaction at
each node.

1177

9 Summary

We have described the design and implementation of CARAT,
a distributed testbed for use in the performance evaluation of
integrated concurrency control and recovery algorithms. The
testbed approach has enabled us to "plug in" various algorithms
and protocols, verify their correctness, and measure their im
pact on system performance. Some of the protocols that we
have implemented and used in performance tests are: two-phase
locking with distributed deadlock detection based on· probes,
a distributed version of optimistic concurrency control, before
image and after-image journaling mechanisms for transaction re
covery, and a two-phase commit protocol for global consistency
of distributed transactions. Other companion papers [KOHL86,
JENQ86b] describe the. use of CARAT in performance measure
ment and modeling studies. Our experience has shown that-the
empirical and analytical studies are synergistic. We are now in
the process of gathering additional measurements for different
hardware configurations (more disks and more nodes), other com
binations of concurrency control and recovery algorithms, and
other buffering schemes. We are also extending our modeling
efforts in these areas.

Acknowledgments. A prototype version of the CARAT
testbed was implemented in the Corporate Research Group at
Digital Equipment Corporation by Hector Garcia-Molina, Frank
Germano, Walt Kohler, and others between 1980 and 1982 .
CARAT has been redesigned and reimplemented at the Univer
sity of Massachusetts under the direction of Walt Kohler, Jack
Stankovic, and Don Towsley with support from National Sci-

ence Foundation, grants ECS-8120931, ECS8340029, and SDB-
8418216.

References

[AGRA85a] R. Agrawal; M. J. Carey, and M. Livny, "Models for
Studying Concurrency Control Performance: Alter
natives and Implications," ACM SIGMOD Interna
tional Conference on Management of Data, 1985,.
pp. 108-121.

[AGRA85b] R. Agrawal and D. J. DeWitt, "Integrated Concur-
rency Control and Recovery Mechanisms: Design
and Performance Evaluation," A CM Transactions
on Database Systems, Vol. 10, No.4, December
1985, pp. 529-564.

[BERG82] H. K. Berg, "Distributed System Testbeds," Com
puter, Vol. 15, No. 10, October 1983, pp. 9-11.

[BERN81] P. Bernstein and N. Goodman, "Concurrency Con
trol in Distributed Database Systems", A CM Com
puting Surveys, Vol. 13, No.2, June 1981.

[BHAR82]. B. Bhargava, "Resiliency Features of the Op
timistic Concurrency Control Approach for Dis
tributed Database Systems," Second Symposium
on Reliability in Distributed Software and Database
Systems, July, 1982.

[CARE84] M. Carey and M. Stonebraker, "The Performance of
Concurrency Control Algorithms for Database·Man
agement Systems," Tenth International Conference
on Very Large Data Bases, August 1984.

[CERI84] S. Ceri and G. Pelagatti, Distributed Databases:
Principles and Systems, McGraw-Hill, New York,
1984.

[CHND82] K. M. Chandy and J. Misra, "A Distributed Al
gorithm for Detecting Resource Deadlocks in Dis
tributed Systems", in ACM SIGACT-SIGOPS Sym
posium on Principles of Distributed Computing, Ot
tawa, Onterio, Canada, August 1982.

[ESWA76] K. P. Eswaren, J. N. Gray, R. A. Lorie, and I. L.
Traiger, "The Notions of Consistency and Predicate
Locks in a Database System," Communications of
ACM, Vol. 19, No. 11, November, 1976.

[GALL82] B. Galler, "Concurrency Control Performance Is
sues," Ph.D. dissertation, University of Toronto,
September 1982.

[GARC79] H. Garcia-Molina, "Performance of Update Al
gorithms for Replicated Data in a Distributed
Database," Ph.D. Dissertation, Computer Science
Department, Stanford University, 1979.

[GARC83] H. Garcia-Molina, F. Germano, Jr., and W. H.
Kohler, "Architectural Overview of a Distributed
Software Testbed," Proc. Sixteenth Hawaii Inti.
Conf. on System Sciences, January 1983.

[GRAY79] J. N. Gray, "Notes on Data Base Operating Sys
tems," in Operating Systems: An Advanced Course,
R. Bayer, R. M. Graham, and G. Seegmuller, Edi
tors, Springer - Verlag, 1979, pp. 393-481.

[HAER83] T. Haerder and A. Reuter, "Principles of Transaction
Oriented Database Recovery," ACM Computing
Surveys, Vol. 15, No.4, December 1983.

[IRAN79] K. B. Irani and H. Lin, "Queueing Network Mod
els for Concurrent Transaction Processing in a
Database System," ACM SIGMOD International
Conference on Management of Data, 1979, pp. 134-
142.

[JENQ86a] B. P. Jenq, "Performance Measurement, Modelling,
and Evaluation of Integrated Concurrency Control
and Recovery Algorithms in Distributed Database
Systems," Ph. D. Dissertation, Department of
Electrical and Computer Engineering, University of
Massachusetts, Amherst, February 1986.

[JENQ86b] B. P. Jenq, W. Kohler, and D. Towsley, "A Queueing
Network Model for a Distributed Database Testbed
System," Technical Report CS-86-142, Department
of Electrical and Computer Engineering, University
of Massachusetts, June 1986.

[KOHL81] W. H. Kohler, "A Survey of Techniques for Synchro
nization and Recovery in Decentralized Computer
Systems," A CM Computing Surveys, Vol. 13, No.
2, June 1981, pp. 149-183.

1178

[KOHL86] W. H. Kohler and B. P. Jenq, "Performance Eval
uation of Integrated Concurrency Control and Re
covery Algorithms Using a Distributed Transaction
Processing Testbed," Sixth International Confer
ence on Distributed Computer Systems, June 1986,
pp. 130-139.

[KUNG81] H. T. Kung and J. T. Robinson, "On Optimistic
Methods for Concurrency Control," A CM Transac
tion on Database Systems, Vol. 6, No.2, June 1981.

[LAMP78] L. Lamport, "Time, Clocks, and the Ordering of
Events in a Distributed System," Communications
of the ACM, Vol. 21, No.7, July 1978, pp. 558-564.

[LIND80] B. Lindsay, "Object Naming and Catalog Manage-
ment for a Distributed Database Manager," IBM
Research Report, RJ2914 (36689), 1980.

[LIN81] W. K. Lin, "Performance Evaluation of Two Con
currency Control Mechanisms in a Distributed
Database System," ACM SIGMOD International
Conference on Management of Data, 1981, pp. 84-
92.

[MOHA83] C. Mohan and B. Lindsay, "Efficient Commit Pro
tocols for the Tree of Processes Model of Dis
tributed Transactions," IBM Research Report, RJ
3881, 1983.

[MENA82] D. Menasce and T. Nakanishi, "Optimistic Ver
sus Pessimistic Concurrency Control Mechanisms in .

Database Management Systems," Information Sys
tems, Vol. 7, No.1, 1982.

[NAKA82] T. Nakanishi and D. Menasce, "Performance Eval
uation of a Two-Phase Commit Based Protocol
for DDBs," A CM Principles of Database Systems,
March 1982.

[SKEE81] D. Skeen and' M. Stonebraker, "A Formal Model
of Crash Recovery in a Distributed System," Proc.
Fifth Berkeley Workshop on Distributed Data Man
agement and Computer Networks, February 1981,
pp. 129-142.

[RIES79] D. R. Ries and M. R. Stonebraker, "Locking Gran
ularity Revisited," ACM Transaction on Database
System, June 1979.

[STON83] M. Stonebraker, et aI., "Performance Analysis of
Distributed Data Base Systems," Proceedings Third
Symp. on Reliability in Distributed Software and
Database Systems, October 1983, pp. 135-138.

[THOM82] A. Thomasian, "An Iterative Solution to the Queue
ing Network Model of a DBMS with Dynamic Lock
ing," 19th Computer Measurement Group Confer
ence, December 1982, pp. 252-261.

REQUEST II - A DISTRIBUTED DATABASE SYSTEM FOR LOCAL AREA NETWORKS

Marek Rusinkiewicz and Dimitrios Georgakopoulos

Department of Computer Science
University of Houston - University Park

ABSTRACT

The design and implementation of a
distributed database management system,
organized as a collection of a central
database and several member databases is
described. The central database contains
copies of all data items that reside in
member databases, and (possibly) some
additional data that are not replicated.
All updates are applied first to the
master copy of the data item at a member
database, and then propagated to the
central site. Distributed concurrency
control uses the Two-phase Locking with
primary copies. Protection from the loss
of data consistency, due to site or
network failures, is provided by a
spooling mechanism which is used to ,keep
logs of all incomplete update operatlons.
The controlled data replication scheme
used in the system simplifies the
implementation of transaction processing,
concurrency control and fault recovery
facilities.

INTRODUCTION

For many database applications
distributed systems constitute an
attractive alternative by offering
improved availability of data, increased
reliability, and response times better
than those possible in functionally
equivalent centralized systems. Recent
developments in th7 ,Local Area N7twor~s
(LAN) lead to a signlflcant re?Uctlon ln
the communication overhead, WhlCh used to
constitute a major bottleneck in computer
networks. Thus the development of
practical and reliable distributed
database systems (DDBMS) became feasible
[1]. REQUEST II is an example of a DDBMS
such system designed to manage databases
whose data is distributed over the
multiple sites of a local area network.

The distributed configuration of the
system fits naturally into hierarchical
organizational structures of many modern
corporations. These tree-like structures
usually consist of functionally or
operationally separate units with varying
level of autonomy (divisions, branches,

CH2345-7j86jOOOOjl179$01.00© 1986 IEEE
1179

departments, etc.). The units are
frequently allowed to create and maintain
their own operational data. In such
environments access to a single pool of
information is required, while the data
sources are distributed in a close
geographic area. At any level of the
corporation hierarchy, an efficient
mechanism should be provided allowing to
access not only the local data, but also
the data belonging to the subordinate
units.

REQUEST II provides a logically
integrated view of data with distribution
transparency and controlled data
replication to meet the above
requirements. Distribution transparency
is a feature expected from modern
distributed database system and allows
users to interact with REQUEST II exactly
as if it were not' distributed.
Replication of data is controlled by a
static scheme which reflects the
hierarchical structure of data and allows
to improve response time, fault tolerance
and data availability. Under the proposed
replication scheme all members of a
hierarchy, are provided with a local copy
of data owned by their direct
subordinates. This hierarchical
organization applies to the data
distribution and replication scheme but
not to the underlying data model. In fact
a REQUEST II database is a collection of
(possibly replicated) relations.

Many general solutions to the
problems of failure and recovery in
distributed systems [2] are not directly
applicable to the design of (efficient)
distributed databases. The main reason
for this is the number of data items
involved in a transaction and the fact
that the relevant data items may be
determined dynamically during the
transaction processing. Majority of
solutions proposed for distributed
database systems [3] are tuned towards
long haul, low bandwidth communication
networks. Since the design trade-offs are
different in LANs, the solutions suitable
for this type of environments would have
to be developed.

In a Local Area Network such as
Ethernet or ring network, many of
"classical" reliability issues such as
network partitioning need not to be
considered. Instead, the achievement of a
high level of performance becomes more
important. Furthermore, it is possible to
impose some data architecture constraints
to allow the use of efficient transaction
processing algorithms that improve the
response time and simplify fault error
recovery. REQUEST II constitutes an
attempt to provide an efficient solution
for a LAN-based DDBMS with a reasonable
set of restricting assumptions.

The remaining part of the paper is
organized as follows. The next section
describes the data architecture and
outlines the nodal database system used by
REQUEST II. The following sections
introduce the' techniques used by
REQUEST II to solve the most difficult
problems in distributed data management,
namely transaction processing, concurrency
control and fault tolerance. The last
section describes the system
implementation. The discussion concludes
with some comments on further system
development.

DATA ARCHITECTURE

Data distribution and replication

A distributed database under
REQUEST II can be viewed as a collection
of a central database and several member
databases. A copy of each data item can
be stored in at most two locations: the
central database and one of the member
databases. The central database contains
copies of all data items that reside in
member databases, and (possibly) some
additional data that is not replicated.
Each member database contains copies of
its local data items, which are used as
master copies for concurrency control and
recovery purposes. The member databases
are considered to be the owners. of that
data. The central database owns only the
data that is not stored in any member
database. No data item resides in more
than one member database (Figure 1).

The configuration of the central
database (COB) and the member databases
(MOBs) can be described using the concept
of data objects collections of data
items constituting the contents of
databases. The master copy of a data
object 0, will be denoted by Oi. If only
one copy of a data object exists, it is
considered to be a master copy. Based on
the previous discussion of the data
distribution and replication, we may say

1180

that the objects (Di, i=l .. n) are stored
in the corresponding member databases
(MBOi,i=l .. n). The central database (CDB)
contains the duplicate copies of data
objects (Di', i=1,2, ... n) and the
non-replicated data object (DO) which is
stored only in the central database.

Thus, the data distribution and
replication scheme of REQUEST II satisfies
the following conditions:

central database:
CDB = {DO, D1', D2', ... , Dn'}

member databases:
MOBi = {Oil, i= 1, ... ,n

replication rules:
Di' = Di, i = 1, ... ,n
Di /\ Dj = {}, i<>j, i,j = 1, ... ,n

where /\ stands for intersection and
{} represents the empty set.

Extension of this scheme to a
clustered distributed database environment
is straightforward. Each member database
can be thought of as a central database of
an underlying (lower) level in a
hierarchy, thus allowing to implement a
hierarchically structured database
collection. A REQUEST II cluster can be
defined as a collection of database
network sites (nodes) whose data items
follow the above model of data
distribution and replication (Figure 2).

A database network node is allowed to
participate in at most two clusters, i.e.
a node that is a member database in one
cluster can constitute a central database
in another cluster. In a clustered
environment a copy of an object located in
the lowest-level member database is
considered to be the master copy of this
object.

Distributed dictionary structure

The meta-information about data
objects is stored in a hierarchical system
of database dictionaries (catalogs).
REQUEST II uses a simple general rule for
dictionary replication: copies of table
dictionaries reside where a copy o~
corresponding data table is located.

A node dictionary resides at each
site ana--contalns lnformation about all
active nodes in the clusters of the
distributed system, in which the site
participates as a member and/or a central
node. The entry for each node contains
the information necessary to access the

-E) On')

Figure 1. Data Architecture for a Two-level Hierarchy

Figure 2. Multi-level Data Distribution and Replication Scheme

1181

data stored at this node, including the
logical node ID and the access information
used by REQUEST II to perform remote
operations.

The database dictionarl lists all the
databases def1ned in t e distributed
system, and provides access information
(addresses) for their dictionary, security
and data files. The database dictionary
is fully replicated, i.e. a copy of it
exists at each node. Table dictionaries
describe the structure of every relation
in the system. In each cluster, there are
at most two copies of each table
dictionary located together with the
corresponding data files. REQUEST II
dictionaries can be manipulated only by
special routines which clearly distinguish
dictionary relations from data relations.

The nodal Database Management System

REQUEST [4, 5] is a relational
multi-user DBMS used as a "nodal" Database
Management System for both central and
member databases. REQUEST supports a wide
variety of user interfaces, including
several non-procedural query languages
such as SQL, QUEL and Query-By-Example, a
report generator, a screen-oriented
application development tool, a host
language interface, an integrated data
dictionary and an on-line HELP facility.
Most user interfaces are menu driven.

A database under REQUEST stores three
kinds of relations: dictionary, data and
security tables. The integrated
dictionary system is hierarchically
structured and consists of a database
dictionary and a number of table
dictionaries. For each database the
information is kept describing all
existing tables, including the owner, the
table logical record length, table
cardinality, table type (i.e. the
information whether the relation is a view
or a base table) and the physical
organization of data files. A table
dictionary file contains description of
all fields defined in that table including
field name and length, field type (i.e.
integer, real, string, money or date),
maximum and minimum values, default value
(if applicable), default display format,
and key information. A table security
file contains the list of users authorized
to access the table together with the
allowed operations. Security file can be
modified only through a GRANT-REVOKE
authorization mechanism. Data files can
be internally stored and accessed either
as hash files or an indexed sequential
files. REQUEST access method uses
multi-key extendible hashing [6] and

1182

sequential organizations with secondary
(dense) indexing for data files.

The local concurrency control under
REQUEST uses the Two-Phase Locking [7]
with intent locks [8]. REQUEST uses only
a restricted form of transactions in which
locks can be imposed on linearly ordered
database object classes. This restricted
form of transaction allows efficient
implementation of a deadlock-prevention
strategy.

When the user enters and executes a
query, the query language interface (UFI)
calls the language processor to parse,
optimize and interpret the query. Before
a parse tree is created, all relation and
attribute variables are validated, and the
domains of all constants used in the query
are checked. At this stage it is
determined whether the query is local or
remote.

A nodal REQUEST can be viewed as a
two level abstraction consisting of user
interfaces (upper level) and the run-time
unit (lower level). The run-time unit is
capable of serving requests independently
of the request source (local user or
another site in the distributed system).
User interfaces generate requests to be
satisfied either at the local or at a
remote site. The "centralized" REQUEST
has been converted to a "nodal" database
management system by modifying the
interface between the run-time unit and
the user access requests, so it became
flexible enough to support both the calls
from local users interfaces and the calls
from the distributed system software.

currently the distributed environment
of REQUEST II, allows basic DDL, DML and
SQL data retrieval functions to be
performed interactively from any site in a
network-transparent manner.

TRANSACTION PROCESSING

A single execution of a Data
Definition, Data Manipulation or Query
command constitutes a transaction.
Transactions can be classified as queries
(read-only) or updates (read-write) and
apply either to the dictionary tables or
to both dictionary and data tables. In
order to support a multi-user, multi-site
environment it is necessary to schedule
conflicting transactions using some
concurrency control mechanism. The
concept of serializability [9] is employed
to assure that conflicting read and write
operations are scheduled according to some
serialization order. Serializability
requires that whenever transactions

execute concurrently, their effect must be
identical to some serial execution of
these transactions.

Nodal DBMSs use the "Two-Phase
Locking" to resolve local conflicts, while
the distributed system extends this basic
locking scheme to satisfy the distributed
environment requirements. Two different
locking methods are employed in
REQUEST II. The "Basic Method" is used
for the database dictionary copies and the
"primary Copy" method is used foe table
dictionaries and data items. [9]

Under the "Basic method", a read-lock
is set at the local copy, if it is
available. Otherwise, an arbitrary copy
of the data item is read-locked. For
update operations, write-locks are
requested from all copies of the data item
and the transaction is allowed to proceed
only after all of them are granted. This
reader-preference solution was adopted
since, the changes to the data definition
scheme do not occur frequently. To
eliminate the possibility of a deadlock
priorities are assigned to all database
dictionary copies. Deadlocks are
prevented by requiring all transactions to
request their locks on copies of the
database dictionary, in the a priori
assigned order. Under the "primary Copy"
method both the read-locks and write-locks
are imposed only at a designated master
(primary) copy.

REQUEST II requires all transactions
to lock distributed database objects in
the following order:

- database,
- table (optional),

data record (optional),
- table header (optional).

This linear ordering defines a
hierarchy of all classes of lockable
database objects. During the transaction
execution a tree of locked objects of
different granularity is produced.
Deadlock avoidance techniques have been
used, to carefully analyze the lock/unlock
sequences in all transactions types and
assure that deadlocks can not occur.
Deadlock prevention in REQUEST II relays
on two assumptions: the linear ordering
of all classes of lockable objects in the
restricted REQUEST II transactions and
intent locking of these objects.
Intention mode is used to lock all the
ancestors of a node which is to be locked
in shared or exclusive mode.

Transaction processing algorithms
depend on the availability of data (data
replication). For each transaction a

1183

transaction processing plan is determined
by a Transaction Manage~. Transaction
Managers locate the remote and local
copies of database items and manipulate
them by calling the corresponding (local
or remote) Data Managers. The distributed
system obtains the information about data
location from its dictionary system and
executes the transaction as follows.

1. Updates: All updates are
performed first at the site that
stores the primary copy of a data
item. Then, if there are other
copies to be updated, the the
primary copy site assumes the
responsibility for propagating
updates to the other sites
involved. The primary copy of
the updated object remains locked
until all copies are updated.

2. Dictionary Queries: If the
dictionary is available at the
local site it is read locally.
Otherwise read requests are
forwarded to the site that holds
the primary copy of the
dictionary. Database dictionary
queries need to lock only the
local copy of the database
dictionary, while for table
queries the primary copy of the
table dictionary must be locked.

3. Data Queries: If all data tables
(and therefore dictionaries)
required to evaluate a query are
available locally then the query
is processed. Otherwise, the
query is submited to the central
site, evaluated there and the
response table is sent back to
the originating site. Data
queries lock the primary copies
of the data tables.

processing of data queries is
facilitated by the data replication scheme
used in REQUEST II, under which no
decomposition of compound queries is
required. This approach may have one
drawback, namely little use is made of
potential for parallel processing within a
single transaction (although different
transactions can be processed in
parallel). Parallel processing requires
the decomposition of a query into
sub-queries, to be evaluated in parallel
at different sites. The query evaluation
cost consists of the I/O cost, the CPU
cost and the communication cost. Studies
of local area networks have shown that
communication overhead is reasonably low
and therefore the communication time does
not necessarily dominate the cost of a

query evaluation. This observation is not
true in packet switching networks where
the communication'"' overhead is a dominant
factor [10, 11].

As an example illustrating the use of
our locking protocols, let us consider the
processing of an interactive transaction
performing a data record update. In the
discussion below, S stands for shared
lock, X means exclusive lock and IX means
intent exclusive lock.

Data record update:

Get database and table names;
LOCK(IX). the local copy of the database;
Search' local database dictionary for
database and table names;
If database or table name are not found
then error;
If the local site is not the primary copy
site of the data then

SUBMIT update request to the primary
copy site;
UNLOCK(IX) the local database copy;
Wait for a response;

else {primary copy site}
LOCK(IX) the primary (local) copy of
the table;
Get the new data value(s);
LOCK(X) the primary (local) copy of the
data record to be updated;
Perform the update on the primary
(local) copy and propagate the update
to the other (remote) copy;
UNLOCK(X) the primary copy of the
updated data record;
UNLOCK(IX) the primary copy of table;
UNLOCK(IX) the local database copy;

other classes of transactions, i.e.
data queries, dictionary queries, table
field updates, table updates, database
updates and authorization checks are
performed in a similar way.

FAULT TOLERANCE

One of the frequently mentioned
benefits of distributed database systems
is the improved reliability and data
availability. However, in order to
achieve this benefit, the system must be
able to operate correctly (preserve
database consistency) even in the presence
of failures. There are several types of
failures that could occur in a distributed
system. Two main categories are
communication network failure.s and site
failures. Undetected failures may
severely damage the integrity of the
system. Thus a failure detection
mechanism must be provided to notify the
system when a failure occurs. Failure
detection and notification mechanisms

1184

usually reside in the communication
subsystem. Distributed Database Systems
logically belong to the (ISO) application
layer of communication subsystems [12] and
they rely on the network error detection
mechanisms [13].

If a site fails during an update, the
distributed system may be left in an
inconsistent state. To. protect
distributed databases from this type of
inconsistencies, a log of an operation
must be recorded in a stable storage,
before the execution of any update
operation. In REQUEST II a spooling
mechanism is used to maintain logs. A
spooler is a process. with access to the
secondary storage, that serves as a
first-in, first-out message queue. Any
message sent to a node _is first delivered
to a spooler. The spooler secondary
storage is managed using conventional DBMS
reliability techniques (i.e. locking and
message invalidation) to guarantee the
integrity of these messages. Log entries
are uniquely identified within the site by
(local) timestamps. Other sites can refer
to a specific log entry by providing its
timestamp to the spooler where the log is
kept, e.g. to commit an operation. Log
files can be inspected by the recovery
procedures to Undo/Redo any update that
left the database inconsistent.

A Two-Phase Commitment Protocol

The commit protocol employed by
REQUEST II to help maintain the
consistency of the distributed database is
a modification of the "presumed abort"
two-phase commit protocol [14]. The
protocol ensures that an update is either
committed at all sites or not committed at
all, even if a failure occurs during its
execution. A transaction is aborted and
the the user is informed if during an
update operation the site holding the
primary copy of a data object fails,
before the commit message of the
transaction is accepted for processing at
that site. This assumption implies that
sites holding primary copies of database
objects must be operational at least up to
the point where the transaction is
accepted (marked as committed) but they
can fail anytime before, during or after
the effects of the update operation are
actua11y installed in their local
databases.

The REQUEST II two-phase commit
protocol uses one process called the
coordinator, which is connected to the
user application and a set of subordinate
processes running in cohort sites. The

coordinator is responsible for preparing
and committing an update in the site where
the primary copy of the data item is
stored (primary cohort site). When this
task is completed the coordinator
"forgets" the operation and informs the
user that a transaction has been
committed, even though the actual database
updates are not yet installed in all
copies. Thus, the response time as
perceived by the user is significantly
reduced. The primary cohort site becomes
responsible for performing the update on
the primary copy and propagating the
update t·o·the Iemaining copies of the data
item.

Algorithm: Two-phase Commit

step 1: When a transaction at some site
of the system requests an update
operation that involves remote sites,
it automatically becomes a coordinator
for this transaction. The coordinator
constructs a message composed of the
site ID and the remote DM operations to
be performed. Then a
PREWRITE(site ID, DM operations)
message is sent by the' coordinator to
the- spooler of the cohort site which
stores the primary copy of the data
item (primary cohort site). If the
primary copy of the data item is stored
in the ~oca1 site then the primary
cohort site is the coordinator's site.

step 2: When a PREWRITE message arrives
at the primary cohort site, the spooler

·receives the message and constructs a
Log uid- based.oni ts local clock value.
-This Log uid uniquely identifies the
log at the primary cohort site. Then,
the spooler creates a log entry
consisting of the Log uid, the DM
operations, the number of- non updated
copies of the data item to be updated
(target count), and the set of nodes
that store-tne yet to be updated copies
of that item (tarret set). The target
count is initia ly equal to the total
number of copies for the data item.
Its purpose is to serve as a commit
flag. If its value is less than the
total number of copies of the data item
to be updated, then the transaction is
considered committed else it is
uncommitted. The target set initially
contains all nodes that store copies of
that item. It is used as a checkpoint
for the transaction progress at the
various nodes involved in its
execution. Finally, the primary cohort
site locks properly the spooler storage
and inserts the log entry. At this
point a PREWRrTE ACK(~og uid) message
is sent back to tne coordInator.

1185

step 3: If the coordinator does not
receive the PREWRITE ACK message from
the primary cohort site -(the site is
down), then it aborts the transaction

_and informs the user. Otherwise it
sends a COMMIT(Log uid) message to the
primary cohort site:

step 4: When the COMMIT(Log uid) message,
is received by the primary cohort site,
its spooler locates the log entry using
the Log uid as an index, and extracts
the DM operations to be performed from
the log. The target count is
decremented by one and simultaneously a
COMMIT ACCEPTED ACK message is sent
back -to the- coordinator (i.e.
transaction is accepted for
completion). The above ·two actions are
performed in a single indivisible step
(i.e. similar to the "test and set"
instruction found in all types of
computers). Finally, the DM operations
are forwarded to the local DM for
execution, and the target set is
modified by removing the local site ID.
The purpose of the COMMIT ACCEPTED ACK
message is to inform the user site that
the transaction will be eventually
completed under the control of the
primary cohort site.

step 5: When the coordinator receives the
COMMIT ACCEPTED ACK message it assumes
that tne update-has been completed and
"forgets" about it. The primary cohort
site assumes the responsibility for
propagating the updates to the
remaining copies of the data item.
This task is accomplished by
determining the IDs of the cohort sites
which keep non updated copies of the
data item (i.e. target set). For
every such site, the target count is
decremented, and an update message is
sent to the corresponding remote DM.
when an acknowledgement is received the
target set is modified by removing the
remote site ID. These updates are
performed in accordance with a
one-phase commit protocol. When the
target set becomes empty, the
INVALIDATE(Log uid) operation is
performed to remove the log entry from
the spoo~er storage.

The above process can be
simplified taking into account data
replication and the location of the
primary copy in relation to the user's
site, resulting in reduction of the
processing and communication overhead.

Crash recovery

When a site resumes running and prior
to the execution of any transaction, the
recovery routine accesses the spooler
storage (local and remote) and if
possible, finishes all incomplete updates
violating the consistency of the database
in the recovering node. Crash Recovery
routine is essentially a ReDo procedure
that examines the log files and and
performs all the necessary updates. The
requirement for designing a REDO recovery
process is to implement most recovery
operations in such a way that may be
repeated without producing any additional

. inconsistency •. This can be achieved by
keeping additional information in the logs
and/or allowing the recovery process to
perform read-only DM operations on the
distributed database. The latter implies
the use of monolithic recovery locks which
are necessary to preserve consistency and
will not be discussed here.

In the first phase the recovery
process examines its local spooler storage
and all uncommitted log entries (i.e.
entries where the target count of a data
item is equal to the total number of
copies of that item) are discarded.

In the second phase, the recovery
process completes the committed
transactions by executing the DM
operations which are recorded in the log
entries (i.e. entries where the target
set is not empty). The effects of those
DM operations are directed only to the
nodes which are found in the target set of
each log. Before the remote execution of
a DM operation the target count for that
data item is decremented. After the DM
operation is executed, the target set is
modified by removing the 1D of the node
where the effects of the DM operations
were installed. Installing the effects of
an incomplete transaction is performed in
a pre-defined order, on a node by node
basis. At each node, the recovery DM
operations are executed in a sequential
order for each log entry. This sequential
order is reflected in the structure of the
logs, where log entries are associated
with timestamps. Therefore, later events
follow the earlier ones when the log is
examined sequentially.

If a log is stored locally (i.e. the
recovering node is a primary node) its
effects are installed in all nodes found
in the target set of that log entry. For
every log entry its target set contains
only the sites where the recorded DM
operations are not yet installed. Thus,

1186

all c~pies of data items whose primary
site 1S recovering will be eventually
updated and all related inconsistencies
will be resolved. Since we assumed that
no updates to a data item are allowed if
its primary node is not available, the log
at the primary node must contain all
unfinished DM operations related to this
data item.

Whenever the recovering node is found
in the target set of a log entry at a
remote spooler, the DM operation(s) of
this log entry are applied only to the
recovering nod7. The purpose of this type
of recovery 1S to remove inconsistencies
by "informing" the recovering node about
changes that occurred to database objects
having their primary copies at different
sites while the recovering site was not
accessible. In addition, inconsistencies
in the distributed database dictionary are
resolved this way (e.g. if a table whose
primary node is different than the
recovering node has been deleted, the
database dictionary copy at the recovering
node must be modified to reflect this
change).

In the final phase all invalid logs
(i.e. entries for which the target set
empty) are removed.

If a node failure occurs during a
crash recovery, the recovery process need
to be repeated. Most recovery operations
are repeatable (e.g. if the current log
that is examined by the recovery process
indicates an "update data record" DM
operation, the recovery process is
designed to verify the existence of a
valid version of the record to be updated
before it actually attempts the update).
Therefore, a failure of the recovery
process cannot cause any additional
inconsistency.

The proposed spooler structure scheme
requires that the log files entries that
reside at different nodes correspond to
independent database objects, namely,
primary copies which by definition reside
in at most one site. Thus, in the case of
a multiple site failure, the processing of
the log files located at different member
sites by different recovery processes
could be performed in any order.

The proposed protocol provides
complete protection against single site
failures and many multi-site failures.
This is achieved at the expense of
limiting somewhat data availability.

SYSTEM IMPLEMENTATION

Inter-site
alternatlves

process communication

When a user requests an operation on
remote data, the request is passed to and
executed at the site where the data is
stored. Several alternative organizations
can be considered for implementing the
execution of remote operation requests.

1. One solution is to provide a
single service process (server)
that accepts and services
requests from remote processes
(i.e instances of REQUEST lIon
remote machines). A server of
this type must multiplex itself
among multiple client requests
and maintain transaction state
information from one transaction
to another. The problem with
such organization of a server is
the throughput degradation due to
delays associated with page
faults and database I/O
operations.

2. Another solution is to create a
separate process to service each
incoming request. However,
creating and initializing a
process is a time consuming
operation which adds overhead to
the execution of a request. A
more serious drawback is that
such organization does not
preserve the notion of a
transaction, thus all requests
belonging to a transaction must
be associated by some mechanism
that ties them together. Data
access authentication is a
problem too. Each request must
be individually authenticated,
which is a potentially expensive
operation [15].

3. Another solution is to create a
process for each user on his
first request and retain that
process for subsequent use for
the duration of the session.
This reduces the process set-up
cost necessary to service
multiple requests for data.
Since a process belongs to a
single remote user and since all
requests that are part of a
transaction originate from the
same user, there is no need to
transmit the user ID and perform
user authentication every time.

4. Another possibility is to
initialize the server as a single

1187

process. The server process
handles all incoming transaction
requests until its performance
degrades. At this point a new
insta~ce of the server is spawned
to share the load with the "old"
instance of the server. The
spawning of new instances of
server can be controlled
statically, by setting an upper
limit to the number of
transactions that can be serviced
concurrently by a single server
instance, or dynamically, by
monitoring the server load [16].

In our implementation the system
sites communicate using the DECNET
transparent communication facility. The
client process (Transaction Manager) and
the server process (Data Manager or
Spooler) are connected by a virtual
circuit (logical channel). When a process
requests an activity at another site for
the first time, a virtual circuit between
the sites is established. This is
accomplished by remotely executing a
command procedure which activates the
REQUEST II programs. The virtual circuit
and the server processes are retained for
the duration of the user session. The
processes can now communicate with each
other by performing remote procedure
calls. A process constructs and sends a
message describing the function to be
performed and its parameters, and then
waits for replay. Remote procedure calls
are used to perform most of the inter-site
operations except for transferring large
amounts of data which is done by
explicitly invoking the DECNET file
transfer facilities.

In detecting network or node failures
REQUEST II relies upon this send/receive
interface to report if a process or a
processor at the other end has failed.
Communication failures are reported to the
processes on both ends of the virtual
circuit. The DECNET provides the
necessary failure detection and reporting
capabilities.

A pilot implementation of the system
runs on five VAX-11 computers using the
DECNET facilities and the VMS mailbox
mechanism for inter-nodal communication
[17]. In our further work, we plan to
compare the efficiency and the overhead of
the four outlined organizations of the
inter-site process communication, and
evaluate their suitability to implement a
distributed database systems using the
testbed approach. Another direction of
our work, is to adapt the database
management system to an' environment in

which several Local Area Network clusters
are connected through gateways. In
particular, we are investigating a
distributed database system which can
operate in a heterogeneous network and OS
environment consisting of DECNET/VMS and
UNIX/3BNET.

REFERENCES
[11 Stonebraker M. and E. Neuhold, "A

Distributed Data Base Version of
INGRES", Second Berkeley Workshop on
Distributed Data Management ana
comsuter Netwo~ 1977. ---

[2] Bar ara Liskov and Robert Scheifler,
"Guardians and Actions: Linguistic
Support for Robust, Distributed
programs", ACM Transactions on
prorramming Languares and SystemS;
(Vo. 5, No 3), Ju y 19~

[3] Hammer, M. and D. Shipman,
"Reliability Mechanisms for SOD-I: A
System for Distributed Databases, ACM
TODS, December 1981.

[4] s:-- Czejdo and M. Rusinkiewicz,
"REQUEST: a Testbed Relational
Database Management System for
Instructional and Research purposes",
AFIPS Conference Proceedings, (Volume
~July 1984, The NCC 84.

[5] Rusinkiewicz,M.,and B.Czejdo, "Query
Transformation in Heterogeneous
Distributed Database Systems",
Proceedings of 5-th International
Conference on -oistrIEuted Computlng
Systems, Denver, May 1985.

[6] Kelley, K. and M.Rusinkiewicz,

[7]

[8]

[9]

[10]

[11]

"Implementation of Multi-key
Extendible Hashing as an Access
Method for a Relational DBMS", to
appear in proceedin¥s of the Second
International Con erence on Data

Los Angeles, February En§lneerlng ,
19 6.
Eswaran K., Gray J., Lorie R. and
Traiger I., "The Notion of
Consistency and Predicate Locks in a
Data Base System", Communication 6f
ACM, (Vol 19, No 11), November 1976:-
Date,C.J., An Introduction to
Database systems Volume II,
Addlson-wesley, 1983.
Bernstein P., and Goodman N.,
"Concurrency Control in Distributed
Databases", ACM computin§ Surveys,
(Volume 13, N~), June 19 1.
Epstein R., Stonebraker M., and Wong
E., "Distributed Query processing in
a Relational Data Base System",
Proceedings of the ACM SIGMOD
International -- conference on
Management of Data, June 1978.
Agrawal,R.,~.Carey, and M. Livny,
"Models for Studying Concurrency
Control Performance: Alternatives
and Implications", Proceedings of the

1188

ACM SIGMOD International Conference
on Mana5ement of Data, Austin, Texas,
May 198. -- ----

[12] Zimmerman,H., "OSI Reference Model
The ISO Model of Architecture for
Open System Interconnection", IEEE
Trans. Commun., (Vol. 23, NO~
February 1980.

[13] Thomas A. Joseph and Kenneth P.
Birman, "Low Cost Management of
Replicated Data in Fault-Tolerant
Distributed Systems", ACM
Transactions on Computer Syste~
(vol. 4, No IT; February 1986.

[14] C.Mohan, B.Lindsay, "Efficient Commit
Protocols for a Tree of Processes
Model of Distributed Transactions",
ACM proceedings. of ~. 2nd
SIGACT/SIGOPS Samposlum on prlnclpIeS
of Dlstrlbute ComputIng, August
I983.

[15] Lindsay B., Hass L., Mohan C., Wilms
P. and Yost R., " Computation and
Communication in R*: A Distributed
Data Manager", ACM Transactions on
Computer s~stems"-,--(vol 2, No IT;
February 1 84.

[16] Ousterhout J., Scelza D. and Sindhu
P., "MEDUSA: An experiment in
Distributed Operating System
Structure", Communication of ACM,
(Vol 23, No 2), February 1980:- ---

[17] Digital Equipment Corporation, "Guide
to Networking on VAX/VMS" VAX/VMS
Version 4.0 Manual, September 1984.

A PROTOCOL FOR FAILURE AND RECOVERY DETECTION TO SUPPORT
PARTITIONED OPERATION IN DISTRIBUTED DATABASE SYSTEMS

Jung K. Kim and Geneva G. Belford
Department of Computer8cience

University of Illinois at Urbana-Champaign

ABSTRACT

Data replication in distributed database systems is designed to
achieve high reliability and availability. In case of network
partitioning, the mutual consistency of data may become
doubtful unless the transaction processing mechanism puts
appropriate limits on its operation. To achieve high availabil
ity, transactions must be processed despite failures. An
optimistic approach allows transactions to be executed in each
partition and the database is reconciled when the partitions
are merged. To coordinate the partition merge process
correctly, the system must know the partitioning and merging
points. This paper presents a new protocol for failure and
recovery detection, which correctly supports partitioned opera
tion and subsequent merging.

1. Introduction

To achieve high reliability in a distributed database sys
tem, component failures must be tolerated. Since unexpected
failures may occur at any time, the transaction processing
mechanism must be robust against them. In a distributed
database system, concurrent accesses to a data object must be
synchronized and recovery from failure has to preserve the
consistency and integrity of the database. If data is replicated,
an update to a data object must be atomic; i.e., it should be
performed on all copies or none. Also, transactions should not
be delayed indefinitely in the face of failure. It is therefore
important that failures and recoveries are detected accurately
and efficiently.

When failure occurs it is possible that one group of sites
cannot communicate with another group. This type of failure
is called network partitioning. If network partitioning occurs,
the mutual consistency of data items may become doubtful
unless the transaction processing mechanism appropriately
limits its operation. When data redundancy is used in order to
increase the availability of data, transactions must be pro
cessed despite failure. Several approaches to operation in the
face of network partitioning have been proposed. One
approach allows all transactions to be processed, p.nd later,
when partitions are merged, any data inconsistency is resolved.
(See [1], [12], [9], etc.) This approach is called optimistic, since
it is efficient only when there are few inconsistencies to be
resolved after the partitions are merged.

In order to support partitioned operation, a mechanism
to detect changes in the status of the network is necessary.

CH2345-7j86jOOOOjl189$01.00© 1986 IEEE
1189

Recently, a number of protocols for failure and recovery detec
tion have been proposed (e.g., [5], [10], [11], [4], [6]). Most of
these protocols are based upon periodic checking of the system
status, which requires considerable overhead. Even when the
system is lightly loaded or idle, the status of the network is
periodically checked. This paper presents a new failure and
recovery detection algorithm, which may be used to support
optimistic partitioned operation. In this algorithm, each site
monitors other sites only when necessary. Specifically, if a
transaction includes operations to be carried out at remote
sites, its home site then checks the status of the other sites. A
Status Monitor (SM) resides in each site to detect status
changes (failure or recovery) of other sites and to coordinate
the construction of a consistent view of the membership of a
partition. In addition, our protocol handles the problem of
synchronizing multiple failure/recovery detection in a particu
larly robust way. This protocol consists of two sub protocols -
the Failure and Recovery Detection Protocol (FRDP) and the
Status Change Protocol (SCP).

In section 2, background material, basic assumptions
about communication facilities, and the system model are
presented. The transaction management mechanism is briefly
described in section 3. Section 4 presents the detailed descrip
tion of the FRDP and the SCP. Section 5 discusses the feasi
bility of our protocols and gives arguments that they work
correctly. Finally, our conclusions are in section 6.

2. Background

A transaction is defined here as a process that manages a
sequence of read and write actions to be executed atomically
for one application. A maximal subset of sites which can com
municate with each, other forms a partition group (or parti
tion, for short). In the optimistic approach, while the network
is partitioned, the system processes all transactions, but com
mitment becomes temporary until partitions are merged, even
though actual copies of data items are updated. This means
that some transactions may have to be rolled back after parti
tions are merged. Logical merging of the transactions
processed in different partitions must be done in such a way
that the resulting transaction schedule is serializable. Serial
izability means that concurrent transactions are executed in a
manner equivalent to a serial execution [8]. To enforce serial
izability, a transaction that reads a copy of a data item in one
partition must logically precede a transaction that updates the
same data item in another partition. A serializability conflict
is defined as a situation that occurs when a transaction reads
or updates the copy of a data item in one partition and

another transaction updates the copy in another partition.
Thus, if an update to the same data item occurs in more than
one partition, there is a serializability conflict.

In Davidson's protocol [1] for recovery after partitions
are merged, possible inconsistencies among data item values
are detected by using a precedence graph, which checks for the
serializabiIity of the executions of transactions across parti
tions. A concurrency control mechanism is assumed to
guarantee the serializability of the execution of transactions in
each partition. A transaction is assumed to read a data item
before updating it. This assumption facilitates serializability
conflict detection in the precedence graph, since the graph can
be reduced considerably. It is also assumed that each partition
has a unique coordinator. When partitions are merged, the
coordinator in each partition is notified and local transaction
executions in each partition are stopped. The coordinator then
derives the total ordering of the transaction execution history
in its partition. Then a global precedence graph is generated
from these histories. Conflicting transactions are detected as a
cycle in the precedence graph. If there is such a cycle,
conflicting transactions are rolled back until the cycle is elim
inated. Then the remaining transactions are executed at sites
that have not yet executed them yielding a consistent data
base. A new coordinator of the merged partition is then
elected.

To coordinate such a partition merge process, the system
must know when the partitioning occurred and when the
merge process is initiated. (By "when" we mean not clock time,
but the point within the execution schedule of transactions.)
Thus, some surveillance mechanism which sees the status
changes is necessary. The only way to detect a status change
is to send messages and use timeouts, because a global
snapshot of the network status is not possible. A site may
periodically send messages to check for network status changes
or the status may be checked only when necessary. If a sur
veillance mechanism which operates only as needed is adequate
to support partitioned operation, then we can save on

overhead. Essentially, we only need to know about status
changes that can affect the consistency of the database. If the
system is partitioned but the transactions can be processed
without any problem (i.e., there is no conflict), we do not need
to know that partitioning has occurred. Our protocol provides
only those network status change points that are needed to
restore the database to a consistent state after the partitions
are merged.

Site failures and communication link failures are con
sidered in our protocol. A site failure occurs when a site in the
network goes down, and a communication link failure occurs
due to a transmission medium fault. Generally, it is not possi
ble to distinguish between a site crash and a partitioning.
Therefore, when it is not possible to communicate with a site,
network partitioning is assumed. When a site failure occurs, it
is assumed to be pure, meaning that the processor simply
stops running and no garbage messages are produced.

Since our protocol does not detect all network statuB
changes, it is necessary to define a view of a partition. A logi
cal partition view (or just view) at a site is defined as being
the subset of sites with which communication is thought to be

possible [7]. A site may think that it cannot communicate with
certain other sites even if they are available. Similarly, a site
may be unavailable when it is thought to be available. But, if
communication is needed with such a site, our protocol will
detect the status change. Thus, a site's view of the network
may be updated only when knowing the status of the network
is necessary. A site Sj is considered to be UP at site Sj if Sj

and Sj are in the same logical partition in S/s view. Other
wise, it is considered to be DOWN. A site status table is
maintained by each site to maintain its current view.

In order to detect conflicts and to resolve them after par
titions are merged, each partition is assumed to have a unique
coordinator. Garcia-Molina discussed elections of a coordina
tor in a distributed system [3]. To avoid the question of elect
ing a coordinator in a partition, an ordering of the sites is
assumed. For example, the sites may be numbered 1, ... n, and
we assume 8 1 < 8 2 < ... < 8n • The site which is lowest in
order becomes the coordinator when a new partition is
created. This ordering need not be related to the physical
topology of the network.

Data items are assumed to be partially replicated, so that
some sites may have copies of a data item while other sites
may not. It is assumed that transactions follow the 2-Phase
locking protocol [2]; also that a write operation requires that
all copies be locked and a read operation requires that the
copy read be locked. This guarantees that serializability
within a partition is not violated. Furthermore, the following
are assumed.

- All messages are delivered to their destinations in the order
in which they are sent.

- Message delivery is not guaranteed. The sender only knows
of the delivery of its message by an explicit acknowledge
ment.

1190

- The maximum and minimum network message transmission
delay, T MAX and T MIN' can be defined.

- The relation 'can communicate with' is symmetric and tran
sitive.

8. Transaction Management while the Network is Parti
tioned

The system is assumed to be running an optimistic algo
rithm such as Davidson's protocol [I]. When a transaction
reads or updates data items and all copies of those items are
not in the same partition, then its commitment is temporary
until the sites that have the other copies join the partition.
After temporary commitment, the transaction sends its execu
tion history to the coordinator of the partition. And the coor
dinator sends an acknowledgement to the transaction. (This
allows the transaction to recognize when the coordinator has
failed or a partitioning has cut it off from the coordinator. See
section 5.) The coordinator uses these transaction execution
histories to produce a totally ordered transaction execution
history within the partition, so that conflicting updates can be
resolved when partitions are merged.

Even a read -only transaction may be involved in a seri
alizability conflict, if it is processed in a partition which does
not have all copi~s of the data items read by it. Therefore a
site executing any transaction involving data items with copies
in other partitions has to monitor the status of other sites that
have copies of the data items used until commitment of the
transaction becomes permanent.

Whenever the transaction performs an action (read or
write), it references a data dictionary to get the identifiers of
the sites which have copies of the data items used. Then:
- For all of those sites marked UP in the current view, the
transaction sends a watch request to the SM. The SM then
begins monitoring the sites for failure. The transaction sends
a watch-release to the SM when it completes (temporary com
mitment).
- If not all of those sites are marked UP, then the transaction
requests a watch for recovery of the sites marked DOWN and
does not release those watch requests until its commitment
becomes permanent. In this way, recovery of the sites in the
other partitions is detected.

If a status change is detected by the SM, transaction pro
cessing is stopped and updating of the network view is carried
out.

4. The Protocol Description

In this section, a detailed description of the proposed pro
tocol is presented. Our protocol consists of two subprotocols -
the Failure and Recovery Detection Protocol (FRDP), and the
Status Change Protocol (SCP). Before presenting the FRDP
and the SCP, we describe the messages and data structures
needed.

4.1 Messages and Data Structures

To facilitate the operation of the FRDP and the SCP, the
following messages are used.
"' The site status checking message (CHECK) - This message is
used to check the status of a site during normal FRDP opera
tion.
• The status response message (RESPONSE) - This message is
used to respond to the CHECK.
• The network status checking message (NETCHECK) - This
message is used to determine the status of the network after a
site status change is detected.
• The network status response message (NETRESPONSE) -
This message is used to respond to the NETCHECK.
• The status inconsistency report message (ALERT) - This
message is used to alert sites to the problem that inconsistent
view vectors might be generated in the partition during SCP
execution.
• The message to acknowledge the ALERT (ACK)
• The message carrying the view vector, V_vector;, which con
tains the partition view at site i-Component k of V_vector;,
V_vector;(k), represents the status of site k, UP or DOWN, as
viewed by site i.

• The message to acknowledge that the view vector was
received (VIEW ACK)

1191

In order to handle arriving messages, the following
queues are maintained by the SM:
• The C-queue - This queue is used to receive the CHECKs
and the NETCHECKs.
• The R-queue - This queue is used to receive the
RESPONSEs, the ALERTs, and the NETRESPONSEs.
• The T -queue - This queue is used to receive requests from
local transactions.

To maintain a current, consistent view of a partition and
to support the exchange of status messages, each site main
tains a Site Status Table (SST). The SST is shared with local
transactions but is updated only by the SM. Each entry in the
SST represents a site (8;) in the network and has four fields:

1) Request...,Set: The set of local transactions requesting mes
sage exchange with site 8;

2) SentYlag: Set when a CHECK is sent to site 8;

3) ReceivedYlag : Set when a RESPONSE is received from
site 8;

4) Status: UP if 8; is available, DOWN if not

In order to detect failures, two timers are used:
• BROADCAST - This timer is used by the FRDP and the
SCP.
• VCHECK - This timer is used by the SCP for robustness.
In order that a consistent timeout period be used throughout
the network, it is assumed that each site owns a physical clock
and that all clocks run at dose enough to the same rate so
that there is no discernible difference between timeout periods.

The following variables are used by the SCP protocol at
each site .
.. LID - is used to synchronize multiple detections of a status
change.
• DVAL - is used to store the values carried by ALERTs and
NETRESPONSEs.
• D..Record - is used to keep track of possible problem sites.
• ST (State variable) - is used to keep track of the state of the
protocol execution: The state can be "Normal",
"IniLCollection", "ParLCollection", or ''View...,Sent''. When
the SM is executing the FRDP protocol, ST is set to "Normal".
When the SM initiates the SCP to collect the current status
~nformation for partition reconfiguration, ST is set to
"IniLCollection". ST = "ParLCollection" means that the SM
is participating in a collection. When a new view vector is
sent by the SM, ST is set to "View...,Sent".

4.2 Description of the Failure and Recovery Detection
Protocol

When a transaction sends a request (Read or Write
request) to remote sites, it sends a request for a watch on the
sites involved to the SM. When the SM receives a watch
request from a local transaction, it puts the transaction
identifier (TRj) into the Request...,Sets of the sites from which
that transaction is requesting service:
SST.Request...,Set[8i J = SST.Request...,Set[8i l U TRj"

While a local transaction is waiting for service from remote
sites, its SM periodically sends CHECKs to the sites involved
and receives RESPONSEs from those sites. After the transac
tion receives its service from all remote sites that are UP, it
sends a watch release to the SM to indicate that it does not
need to check the status of those sites any more. The SM then
deletes this transaction identifier (TRj) from the RequestJ3ets
of the sites:
SST.RequestJ3et[Sil = SST.RequestJ3et[Sil- TRj'

When the SM sends out a CHECK, the timer BROAD
CAST is restarted. The ReceivedYlags of all sites in the SST
are reset and the SentYlags for those sites to which the
CHECK is sent are set. When a RESPONSE is received, the
SM sets the ReceivedYlag of the source site entry in the SST.
The SM responds with a RESPONSE as rapidly as possible
upon receiving a' CHECK. When BROADCAST expires, the
SM checks whether the sites with set SentYlags responded. If
all sites marked UP responded and none marked DOWN
responded, then the SM generates the next CHECK and sends
it to the sites. If any site marked DOWN responded or any site
marked UP did not respond, then: a status change is detected
and the SCP is executed. While the SM is waiting for
BROADCAST to expire, it may receive CHECKs as well as
RESPONSEs from remote sites. These are handled as
described above.

If a CHECK is received after BROADCAST expires but
before the next CHECK is generated, the SM cannot respond
with a RESPONSE immediately, but must wait until after the
next CHECK is generated. Then, in order for the SM to
respond quickly, before it sends out the CHECK it processes
the C-queue. Let Tchtc/c and T m,g denote the times needed to
check the site responses and to generate the next CHECK,
respectively. And let TCq be the maximum time to process the
C-queue. (Note that the actual time is proportional to the
length of the C-queue.) Let T GEN = Tchee/c + T m.g + Teq'

Thus, the timeout period of BROADCAST must be set to at
least 2 T MAX + T GEN in order to ensure that responses from
normally operating sites will be received before BROADCAST

. times out.

The actions of ·the SM during normal FRDP operation
may be then summarized as follows.

• Event: timer BROADCAST expires.

1. The SM checks the SST to see whether all sites to which
CHECKs were sent have responded. If all sites marked UP
responded and all sites marked DOWN did not, go to step 2.
(Otherwise, a status change is suspected and normal FRDP
operation stops. The SCP is then executed.)
2. The next CHECK is generated if there is ,a site in the SST
with a non-empty RequestJ3et.
3. The C-queue is processed. At this time, the SM responds
with RESPONSEs to all CHECKs received after BROAD
CAST expired.
4. If a CHECK has been generated, the SM sends this message
to all sites with non-empty RequestJ3et and restarts BROAD
CAST.

1192

.. Event: Receipt of a watch request

The SM puts the transaction identifier into the RequestJ3et of
each of the sites for which a watch was requested. If the SM is
not currently sending CHECKs to any sites, then CHECKs are
sent to the sites with non-empty RequestJ3et and BROAD
CAST is restarted.

.. Event: Receipt of a watch release.

The SM deletes the transaction identifier from the
RequestJ3ets of the sites.

.. Event: Receipt of a CHECK

The SM responds with a RESPONSE to the source site.

.. Event: Receipt of.a RESPONSE

The SM sets the ReceivedYlag of the source site entry in the
SST.

• Event: Receipt of a NETCHECK

FRDP operation stops. See SCP discussion for details.

4.3 Description of the Status Change Protocol

In summary, the SCP works as follows. When the SM
detects failure or recovery, it suspends the locally executing
transactions and broadcasts a NETCHECK to collect up-to
date status information from all sites. After collecting the
responses (NETRESPONSEs) from the sites, it creates a new
view vector and sends it to all sites in the new partition.

An SM which detects failure or recovery becomes a sys
tem reconfiguration initiator (SRI) for the SCP, and the SM's
of other sites become cohorts. (Notice that the SRI is not the
database merge coordinator, but only an initiator for system
reconfiguration. The site with the lowest rank in the logical
partition which is' formed after system reconfiguration is
automatically assigned as the coordinator.) Many sites can
simultaneously be SRI's, because status changes may be
detected nearly simultaneously 'by different sites and each site
that detects a status change executes the SCP., Therefore,
multiple executions of the SCP must be synchronized. To
accomplish this, the SM of each site tries to be a cohort of the
SCP execution that was initiated' by the SRI at the site of the
lowest rank among the SRI's in the partition.

Unless some messages can be lost during the execution of
the SCP, SRI's with higher site rank will abort their execu
tions upon receiving the NETCHECK from the SRI of lower
site rank. But it is quite possible that inconsistent view vec
tors can be delivered to different sites if some messages are
lost.

. [Example 4.11 Let us suppose the following situation. Two
sites, i and j, become SRI's nearly simultaneously and the
rank of i is lower than that of j . . Site j broadcasts a
NETCHECK and then site i broadcasts a NETCHECK. All

cohorts except site i receive the NETCHECK from site j,
but the NETCHECK sent to site i from site j is lost.
Before the NETCHECK from site i reaches the cohorts, all
cohorts respond to site j. They all accept site j as the
proper SRI. The NETCHECK from site i then arrives at all
cohorts except site j, while the NETCHECK sent to site j
from site i has been lost. All cohorts realize that the rank
of site i is lower than that of site j and they now accept site
i as the proper SRI. Site j generates a new view vector
which has site i marked DOWN and sends it to the cohorts.
Site i generates a new view vector which has site j marked
DOWN and sends it to the cohorts. Now two inconsistent
view vectors have been sent by two different SRI's. All sites
except site j accept the new view vector from site i, but site
1's view vector is different from that of the others. This is
an undesirable,situation since two different views which are
not disjoint make partition management difficult and the
error will soon be detected and need to be rectified. 0

Therefore, the SCP protocol must satisfy the following
condition to guarantee consistency of views.
[Condition 4.1] For any two sites Si and Sj with ST = "Nor
mal", if S. is marked UP in V_vectorj' then Sj must be marked

1
UP in V_vector. and vice versa. 0

Condition 4.1 ~uarantees that a site is marked UP in only one
partition view at anyone time; that is, the sets of sit~s marked
UP in any two views are either identical or disjoint. In order
to enforce this condition, when a cohort receives NETCHECKs
from the SRI's as in example 4.1, it sends ALERTs to the
SRI's that may initiate different views informing them of the
problem, so that the SRI with higher rank aborts its SCP exe
cution; that is, if the SRI with higher rank did not receive a
NETCHECK from the SRI with lower rank,. then it aborts its
SCP execution upon receiving an ALERT. When the SRI
sends out a new view vector it waits for acknowledgements
from cohorts. If all cohorts acknowledge, then the SRI sets its
state to "Normal". While the SRI is waiting for acknowledge..,
ments,· if it receives a NETCHECK, then it assumes that the
network status has changed or inconsistency has been
detected. It then participates in the execution of SCP by the
site that sent the NETCHECK. This mechanism enforces con
dition 4.1. (See Chapter 5 for proof.)

Since the SRI can fail during the execution of the SCP,
the protocol must be robust against this possibility. That is,
the protocol must guarantee that its execution will finish suc
cessfully despite SRI failure. The timer VCHECK is used to
detect SRI failure and to support the resolution of inconsistent
views.

The actions of the SM during SCP execution are
described as follows.

" Event: A status change is detected by site running the
FRDP.

1) The SM stops FRDP execution, sets ST to "IniLCollection",
and stores its site rank in LID'
2) The SM initializes each component of V_vectorj to DOWN.
3) The SM then broadcasts a NETCHECK to all sites in the
network and starts the timer BROADCAST to 2 T MAX +

1193

T GEN' (It is assumed that T GEN' although derived from
FRDP event timings, is more than adequate time for the gen
eration. of a NETRESPONSE.) Normal FRDP operation is
resumed after the successful execution of the the SCP.

• Event: Receipt of a NETCHECK at site i from site k.

For simplicity, let k be the rank of site k. Upon receiving a
NETCHECK, the SM performs different operations depending
on its state:
(~.) Case 1: ST = "IniLCollection" - The SM has initialized
the collection of status information.

1) The SM compares k with LID' its site rank, and takes
appropriate action:
(~) Case 1.1: k < LID

The SM stores k in LID' and aborts its SRI activity by
setting ST to "ParLCollection". Now it considers itself
participating in the collection initiated· by the site k.
The SM starts the timer VCHE.CK. The timeout period of
VCHECK is 3 T MAX + 2 T GEN - T MIN' (See chapter 5 for
the justification of this timeout period.)

(,) Case 1.2: k > LID
The SM sets V_vectorj(k) = UP.

2) The SM then sends site k a NETRESPONSE with param
eter DYAL set to LID' The inclusion of parameter DYAL

causes site k to abort its SCP execution in case 1.2 ..
:~) Case 2: ST = "ParLCollection" - The 'SM is participating
in the collection initiated by another SRI.

The SM compares k with LID' the lowest SRI site rank seen
thus far.
!~) Case 2.1: k < LID

In this case, inconsistency may occur as described in
Example 4.1.
The SM sends an ALERT to site k with parameter DYAL

set to LID' and an ALERT to the site whose rank is equal
to LID with parameter DYAL set to k. The ALERT causes
the site with higher rank to abort its SCP execution if it
had not received a NETCHECK from site k i and causes
site k to mark the site with higher rank UP in case site k
did not receive a NETCHECK from that site.
The SM stores LID in D-Record. The entry for the site
with rank equal to Lm in D-Record will be removed if the
SM receives an ACK from that site.
The SM stores k in LID'
The SM starts the timer VCHECK.

C) Case 2.2: k > LID

The SM sends site k a NETRESPONSE with parameter
DYAL set to LID' Receipt of the parameter DYAL causes
site k to abort its SCP execution.

Case 3: ST = "Normal" - The SM is not executing the
SCP.

1) The SM stops its normal FRDP operation.
2) The SM stores k in LID
3) ST is set to "ParLCollection".
4) The SM sends site k a NETRESPONSE with parameter
DYAL set to LID'
5) The SM starts VCHECK.

(~) Case 4: ST = "View...,Sent" - The SM sent a new view vec
tor to cohorts and is waiting for their acknowledgements.

In this case, receipt of a NETCHECK means that the net
work status has changed or inconsistency has been detected

by a cohort.
1) The SM stores k in LID'

2) ST is set to "ParLCollection" ..
3) The SM sends site k a NETRESPONSE with parameter
DVAL set to LID'
4) The SM starts VCHECK.

• Event: Receipt of a NETRESPONSE at site i from site k.

o Case 1: ST = "IniLCollection"
1) The SM compares DVAL with LID
o Case 1.1: DVAL = LID

The SM sets V_vectorj(k) = UP.
Case 1.2: DVAL < LID - Another SRI with a lower site

rank is executing the SCP.
The SM aborts its SCP execution by setting ST to
"P arLCollection".
The SM stores D VAL in LID'
The SM starts the timer VCHECK.

() Case 2: ST = "ParLCollection"
TheSM just discards the NETRESPONSE.

• Even,t: Receipt of an ALERT from site k.

c) Case 1: ST = "IniLCollection"
The SM compares DVAL with LID'

o Case 1.1: DVAL < LID - The SM did not receive a
The SM aborts its SCP execution by setting ST to
"P art_Collection".
The SM stores DVAL in LiD
The SM starts the timer VCHECK.
The 8M sends an ACK to site k.

o Case 1.2: DVAL > LID - The SM did not receive a
NETCHECK from the SRI with higher rank.

The SM sets the view vector entries for site DVAL and site
k to UP.

(j Case 2: ST = "ParLCollection" - The SM already received
;; NETCHECK from the SRI with lower rank.

1) The SM just discards the ALERT.
2) The SM sends an ACK to site k.

• Event: BROADCAST expires.

(') Case 1. ST = "IniLCollection" - Normal case
'- 1) The SM generates a new view vector according to the

responses from the cohorts.
2) The SM sends V_vector j to all sites UP in its view.
3) The SM sets ST = "View.J3ent".
4) The SM starts BROADCAST.

o Case 2. ST = "ParLCollection" - The SM has aborted the
execution of the SCP.

The SM ignores the signal from BROADCAST and waits for
a new view vector.

C) Case 3. ST = "View.J3ent" - The SM has sent a new view
vector to cohorts.

If the SM did not receive VIEWACKs from all sites marked
UP in its view, it assumes that there has been a problem
and initiates the SCP again.
If the SM received VIEWACKs from all sites marked UP in
its view, it sets ST = "Normal" and returns to FRDP
operation.

• Event: Receipt of a new view vector from site k.

o Case 1: ST = "ParLCollection"

1194

C) Case 1.1: k ::;6 LID - The SM realizes there is an incon
sistency.

The SM resets all necessary data structures and initiates
the SCP.

o Case 1.2: k = LID
The SM checks D...Record to see if there is a possibility of
inconsistency. If D...Record is empty then the SM updates
its Site Status Table (SST) with the new view vector, sets
ST = "Normal", sends a VIEWACK to site k, and
resumes FRDP execution. Otherwise, it assumes that
there has been a inconsistency problem and initiates the
SCP.

C> Case 2: ST = "Normal" or "Init_Collection"
The SM discards the new view vector received.

() Case 3: ST = "View.J3ent" - This can only happen if an
ALERT to this SM notifying it of a lower ranked SRI was lost.

The SM accepts the new view vector, sends a VIEWACK to
the sender, sets ST = "Normal", and resumes FRDP execu
tion .

• Event: VCHECK expires. - The SM has been waiting for a
new view vector.

(~) Case 1: ST = "ParLCollection"
The SM assumes that the SRI has failed, resets all necessary
data structures, and executes the SCP as when a status
change is detected.

(~) Case 2: ST = "Normal"
The SM just discards the signal from VCHECK.

• Event: Receipt of an ACK from site k.

1=) Case 1: ST = "ParLCollectlon"
The SM deletes site k's entry from D...Record.

() Case 2: ST = "Normal" or "IniLCollection"
The SM just discards the ACK.

• Event: Receipt of a VIEW ACK.

The SM records the acknowledgement from the sender.

• Event: Receipt of a CHECK or RESPONSE used by the
FRDP.

The SM just discards them.

4.4 Starting or Restarting sites

Since both recovery from a crash and partition merging
are treated as partition merging, a site just coming on line or
recovering after a crash executes the SCP, informing all sites
with which it can communicate of its recovery. When a siLl'

rejoins the network, it must execute the network merge pIO

cess since it does not know whether it becomes a member of
the same partition which it was in before the failure.

5. Discussion

We believe that implementation of our protocol is quite
feasible for support of the optimistic approach to partitioned
operation. Since our protocol provides the necessary network
status change points, a partition merge process to restore the
database to a consistent state can be done correctly.

Before we prove properties of our protocol, a justification
of the timeout period of the timer VCHECK, which is used by
the SCP to detect failure of the SRI, is presented. The
timeout period of VCHECK must safely allow enough time for
the proper operation of the protocol, so that false failure
detection is avoided.
[Assertion 5.1] The timeout period of VCHECK is safe.
[Proof] The timer VCHECK is used in four cases.
Case 1. (VCHECK is started after sending a NETRESPONSE
to the SRI.) -
Suppose that site i becomes a cohort of the SCP initiated by
site j when i receives a NETCHECK. Site i responds with a
NETRESPONSE to the NETCHECK and starts VCHECK.
Site i expects to receive a new view vector from site j before
VCHECK expires. Suppose that site j sends out the
NETCHECK to sites and starts the timer BROADCAST at
time t}" Site i receives the NETCHECK at time t 2• The
minimum time period between tl and t2 is T MIN" Thus, the
NETCHECK is received at site i no earlier than tl + T MIN"

Therefore, tl + T MIN ~ t2 ~ tl + T MAX' Site j's timer
BROADCAST expires at tl + 2T MAX + T GEN = t3' There
fore, the maximum time between t2 and t3 is
2 T MAX + T GEN - T MIN' After BROADCAST expires, site j
takes at most T GEN to generate the view vector and the view
vector is delivered within T MAX to site i. Therefore, under
normal operation the new view vector must be received at site
i before t2 + 3TMAX + 2TGEN - T MIN .

Case 2. (VCHECK is started after sending an ALERT to the
sites which may be involved in the generation of inconsistent
view vectors.)
Suppose that ALERTs are sent to site i and j from site k at
time t 1, and i < j. Site j is expected to take at most T GEN to
generate an ACK and the ACK takes at most T MAX to be
delivered to site k before time tl + 2 T MAX + T GEN = t2• The
new view vector from site i will be delivered at site k before tl

+ 3T MAX + 2T GEN - T MIN = t3 as in Case 1. Since T MAX +
T GEN - T MIN > 0, t3 > t 2• Thus, the new view vector and
ACK must be received at site k before
tl + 3TMAX + 2TGEN - TMIN"

Case 3. (VCHECK is started when a site j receives a
NETRESPONSE which indicates that another SRI with a
lower site rank is executing the SCP.)
Suppose site i is the SRI with the lower site rank and a
NETRESPONSE arrives at site j from sitek at t2• If site i
sent out a NETCHECK at t1' then it must arrive at all
cohorts before tl + T MAX' By assuming that NETCHECK
from i to k took T MIN and the NETRESPONSE from k took
T MIN' the new view vector from site i must be received at site
j by t2 + 2TMAX + TGEN - 2TMIN + TGEN +TMAX = 3TMAX
+ 2TGEN - 2TMIN ·

Case 4. (VCHECK is started when an ALERT is received.)
Suppose that site i sent a NETCHECK at time tl and site k

1195

sent an ALERT at time t 2• If the NETCHECK took T MIN

and the ALERT took T MIN to be delivered, then site i's
BROADCAST will expire at some time before t2 + 2TMAX +

T GEN - 2 T.MIN" Site i will take at most T GEN to generate the
new view vector and the new view vector will take at most
T MAX to be delivered. Therefore, the new view vector must
arrive before t2 + 3T MAX + 2T GEN - 2T MIN·

Therefore, the timeout period of VCHECK is safe for all four
cases. 0

Next, we demonstrate the property -of our protocol that
all sites in a newly formed partition have a consistent view.
[Assertion 5.2] The Status Change Protocol satisfies condi
tion 4.1
[proof] Suppose condition 4.1 is violated. Since views are
only created by SRI's, there must be two different SRI's, 8 1
and 8 2, 8 1 < 8 2, each of which assumed the other was
DOWN. Furthermore, they both received acknowledgements
successfully from all of their cohorts after they sent out the
new view vectors. In this case, (a) there must be a site 8"
which responded to both SRI's with NETRESPONSEs, or (b)
ALERTs that were sent to the SRI's were lost so that the
SRI's were not aware of the problem. From the SCP
specification, if the SM of 8" receives a NETCHECK from 8 2
when it had already received a NETCHECK from 81, then it
sends an ALERT to both 8 1 . and 8 2, Therefore, case (a) is
impossible. Assuming case (b), the SM which sent ALERTs
initiates the SCP upon receiving a view vector from 8 2 before
it receives a new view vector from 81, and 81 will receive a
NETCHECK from the SM before its BROADCAST expires. If
the NETCHECK was lost, 8 1 would execute the SCP again
since it did not receive acknowledgements from all of its
cohorts. If the SM which sent ALERTs receives a new vector
from 8 1 before it receives a new vector from 8 2, then it checks
whether an ACK from 8 2 is received already and if not it ini
tiates the SCP. Also, 8 2 will not set its ST = "Normal" unless

it receives acknowledgements from all of its cohorts. There
fore, the assumption contradicts the specification of the SCP.
o

Let us elaborate on our comment that our protocol pro
vides the necessary status change points. The problem is that
when partitions are merged, the merge algorithm must know
when partitioning occurred in terms of transaction history.

For simplicity, let partitioning be pairwise, meaning par
titioning subdivides one old partition PIc into two subparti
tions - Pi which contains the coordinator of PIc' and Pi"
Definition 5.1 A partitioning point for the site 8;, LT,,(8;),
8; E PIc' is the last transaction processed at site 8; in PIc
before PIc is partitioned.
Definition 5.2 A partitioning point I: of partition Pi' which
was formed when PIc was partitioned, is the set of LT,,(8;), for
all 8; in Pi.
When P - and P - are merged to re-form P L, the coordinator of

I " 1 '" P; sends I; to the coordinator of Pi (i.e. of PIc) so that
conflicting transactions may be serialized beginning at that
point~

[Assertion 5.3] If partition Pk is subdivided into subparti
tions p. and P. as defined above,then the FRDP and the SCP

I J k k
correctly determine Ii and Ii'
[Informal Proof] We must show that when partitioning
occurs and there is a possibility of a serializability conflict, the
partitioning is detected by our protocol and the coordinator
obtains the necessary partitioning point information. To see
this, there are four possible cases to consider, depending upon
whether or not possibly conflicting transactions are processed
in the partitions while Pk is partitioned:
Case I; Transactions are processed in both Pi and Pi'
When a transaction in either partition executes an action on a
data item having a copy at a remote site (in the other parti
tion), it sends a watch to the SM. If a site fails, the FRDP
then detects it, transactions are halted, and the SCP updates
the network view. The coordinators of both partitions are
elected and they collect the partitioning points, I; and I: from
the sites.
Case 2. Transactions are processed in Pi but not in Pi'
P. notices the partitioning, and the coordinator of Pi is elected
a~d it collects l from the sites in P. as above. When PI' and

. I I

Pi are merged, the coordinator of Pi requests the execution
history from Pi and no conflicts need to be resolved.
Case 3. Transactions are processed in Pi but not in Pi'
P; notices the partitioning and its coordinator collects I;. The

coordinator of Pk ' which is the same as the coordinator of Pi'
does not know about the partitioning since no transactions
involving sites in P. are processed. When Pi and Pi are
merged the coordin~tor of p. sends I~ to the coordinator of , J J

Pi' The coordinator of Pi gets the partitioning point by
checking the history of the transactions processed in Pk
against I;. It finds that there has been no possibility of a seri
alization conflict.
Case 4. No transactions are processed in Pi and Pi'
The coordinator of the merged partition will recognize that
there was no possibility of serialization conflict.D

6. Conclusion

We have presented a new protocol which supports
optimistic partitioned operation by detecting failures and
recoveries. We believe that our protocol is adequate to sup
port optimistic partitioned operation.

Protocols based on periodic status checking require con
siderable overhead. Even when the system is lightly loaded or
idle, the status of the network is periodically checked. There
fore, the system may unnecessarily work to detect failures and
to reconfigure the system.

With our protocol, a status change may not be detected
right after a site crashes or the network partitions, but it is
detected later and system reconfiguration is initiated when the
cooperation of that site is needed by a transaction. However,
the whole system does not have to pay the cost of periodic
checking.

In addition, our protocol handles the problem of syn
chronizing multiple failure/recovery detection in a particularly
robust way.

1196

ACKNOWLEDGEMENT

This work was supported in part by NASA under Con
tract No. NAG 1 - 613.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

S.B. Davidson, "Optimism and Consistency in Parti
tioned Distributed Database Systems," ACM Trans. on
Database Systems, Vol. 9, No.3, Sept. 1984, pp. 456-481.

K.P. Eswaran, J.N. Gray, R.A. Lorie, and 1.1; Traiger,
"The Notions of Consistency and Predicate Locks in a
Database System", CACM, Vol. 19, No. 11, 1976.

H. Garcia-Molina, "Elections is a Distributed Computing
System," IEEE Trans. on Computers, Vol. C-31, No.1,
Jan. 1982.

M. Hammer and D. Shipman, "Reliability Mechanism for
SDD-1: A System for Distributed Database," ACM
Trans. on Database Syst., Vol. 5, No.4, Dec. 1980, pp.
431-466.

W. Kim, "AUDITOR: A framework for highly available
DB/DC systems," Proc. 2nd Symp. Reliability in Distri
buted Software and Database Systems, 1982.

A.V. Ma and G.G. Belford, "A Failure and Recovery
Detection Protocol for Optimistic Partitioned Operation
in Distributed Database Systems," Proc. 6th Int. Conf. on
Distributed Computing Syst., May 1986.

D.A. Menasce and R.R. Muntz, "Locking Protocol for
Resource Coordination in Distributed Databases," Proc.
SIGMOD Int.Conr. on Management of Data, 1978, pp.
1-14.

C.H. Papadimitriou, "The Serializability of Concurrent
Database Updates," J. ACM, Vol. 26, No.4, Oct. 1979,
pp. 631-653.

D.S. Parker, G.J. Popek, G. Rudisin, A. Stoughton, B.J.
Walker, J.M. Chow, D. Edwards, S. Kiser, and C. Kline,
"Detection of Mutual Inconsistency in Distributed Sys
tems," IEEE Trans. on Software Engr., Vol. SE-5, No.3,
May 1983.

B. Walter, "A Robust and Efficient Protocol for Checking
the Availability of Remote Sites," Proc. 6th Berkeley
Workshop on Distributed Data Management and Com
puter Networks, 1982, pp. 45-67.

B. Walter, "Network Partitioning and Symmetric Sur
veillance Protocols," Proc. 5th Int. Conf. on Distributed
Computing Systems, May 1985, pp. 124-129.

D.D. Wright, "Managing Distributed Databases in Parti
tioned Networks," Ph.D. Thesis, Dept. of Computer Sci
ence, Cornell University, Sept. 1983.

Replication in Distributed Systems:
The Eden Experience

Jerre D. Noe, Andrew B. Proudfoot, and Calton Pu

Department of Computer Science
University of Washington

Seattle, WA 98195

Abstract

Two different methods for replicating objects
were implemented on the Eden local area network.
One was at the object level, and it provided easier
implementation and maintenance at some cost in
performance. The other, at the kernel level, gave
better transparency and performance from the
client's view but was more difficult to implement.
Both approaches maintained object availability in
spite of crashes. Their implementation gave insight
in to the conflict between performance and trans- .
parency, the cost of naming replicated resources,
and some inescapable effects on system users who
do not want replication.

1. Introduction
In a distributed system that supports applications

using multiple machines, the probability of failure
free execution is the product of the probabilities of
success for the related sub-tasks running on the in
dividual machines. Two approaches may be taken
to increase the chance of success for a distributed
application; either increase the reliability of the
nodes or provide replicas of crucial resources. This
paper is concerned with the latter approach, for
which the following are the design goals:

1. The loss of copies of replicated resources
should not prevent operation.

2. The use of replicas should not alter the

--rhis work was supported in part by the National Science
Foundation under Grant No. MCS-800411.

CH2345-7j86jOOOOjl197$01.00© 1986 IEEE
1197

client interface.

3. There should be minimum performance
penalty for users of replication and none
for non-users.

1.1. Background
Hardware replication has been an accepted de

sign approach for a long time, but software repli
cation is more recent. A non-exhaustive list of
early efforts on software replication in distributed
systems includes one that led to a commercial
product, Tandeml , which added replication of
processes to its replicated hardware structure.
Bernstein and colleagues2, in an early design paper
on the SDD-l System, made use of distributed a
tomic transactions for updating replicas, using
methods that depended upon a global clock.
Lampson and Sturgis3 introduced the concept of st
able storage, using replicas of unreliable disk files
in a careful manner to provide reliable storage,
which was used to support atomic transactions.
These ideas were incorporated in XDFS, the Xerox
Distributed File System4, where replicas were
cached for ~erformance reasons. The Cambridge
File System used backup replicas on disk, with
transactions for atomic update, but the design was
so conservative in its attempts to cause no penalty
for non-users of replication that it was restricted to
single-site transaction, a limitation later removed.
An interesting comparison of CFS and XDFS is
given by Mitchell and Dion6•

Distributed INGRES provided replicas for data
bases as an add-on feature. The design is de
scribed by Stonebraker7• LOCUS8, another com
mercially available system, supported replication of
Unix™ files with a primary-copy update transaction

mechanism. Walker, et aI., reported that concur
rency control in their transactions was made more
complicated by replication because the primary
storage site no longer knew about all the activity
for a given file.

Since the early experiments, many proposals and
analyses of schemes for concurrency con trol and
crash recovery have appeared in the literature, in
cluding some survey articles2,9. One of the trends
developing for such work has been the adaptation
of distributed database tools for atomic transactions
and their availability as part of the operating sys
tem. Several new designs and prototype implemen
tations are being explored in which the resources
for control of distributed transactions, replication
and crash recovery are, to varying degrees, being
built into the underlying systemslo. 11, f2, 13, but at
this poin t few observed results have been reported.
It is in this context that our experience with repli
cation in the Eden system is of interest.

1.2. The Experiments and Summary of
Observations

The Eden distribu ted system, wh ich began
operating in April 1983, has provided a means to
implement and test various schemes for the control
and use of replication. This paper reports on the
observations from two such experiments. One ap
proach, described previouslyl4, implemented repli
cation at the object level. Another lS was done at
the level of the, kernel which creates and supports
Eden's object environment. These experiments
arose through curiosity about the two approaches
and were not initially conceived as a comparison,
hence they differ in detail. Nonetheless they do
provide an opportunity in retrospect to contrast
some of their features.

With either approach, two features must be
added to the non-replicated system: First, where
formerly one object was dealt with, now a set of
names of the copies of an object must be recog
nized and handled. Secondly, a mapping must ex
ist between this set of names and a single name
used by the client; without this level of indirection
any change in the number or identity of replicas
would require notifying all clients of the change.
When these two functions, mapping and the use of
multiple names, are implemented at object-level we
mean that they are accomplished by objects without

changing the underlying kernel or its in terface.
Alternatively, both functions may be embedded
within the kernel, hence the term kernel-level im
plementation. These approaches differ in the de
gree of transparency to the user of replication, in
the cost of programming the replication system and
the execution cost for users and nonusers of the
facilities.

We shall first state the main observations that
result from the experiments. More complete dis
cussions appear in the following sections of the
paper.

1198

• Both approaches succeeded: objects were
made available in spite of crashes.

• The kernel-level implementation was more
difficult and required more programming
effort.

• The object-level implementation was
easier due to modularization, location
independent invocations and high-level
language support, but it requires some de
gree of kernel support beyond the initial
Eden design.

• The kernel-level replication gave more
transparency from the client's view.

• Kernel size was increased about 20% by
including replication control.

• In a test case requiring writing to two disk
copies, both implementations allowed rep
licated data to be read and written in less
than twice the tim:e required for ordin ary
non-replicated objects, due to concurrency
in the updates.

Our experience led us to believe:

• There is an inescapable cost to the non
user of replication, although careful de
sign can keep it small.

• Transparency and performance are in con
, flict.

• If the underlying network operating sys
tem cannot deal with network partitions,
it is difficult but not impossible to do so in
replication systems that are added.

• Naming of replicated resources has a cost:
Either the clients must hold names of mul
tiple access routes, or some form of

dynamic binding, such as broadcast, must
be used.

• One need not implement transaction
management especially for the purpose of
replication; specialized use of a general
transaction tool can handle it.··

1.3. Structure of the paper
Having declared our principal findings above, we

shall describe the evidence that led us to these con
clusions. Some understanding of the Eden system
is needed in order to proceed; this information is
provided in Section 2. Section 3 describes the
kernel-level approach, and section 4 summarizes
the object-level approach. Section 5 provides
detailed reasoning behind our observations. Sec
tion 6 seeks to relate our findings to what we un
derstand about the "new-wave" of systems that are
incorporating replication or transaction-control
mechanisms. Section 7 summarizes the paper.

2. The Eden System
Eden is a distributed system used as a test-bed

for experimental research on implementation of
distributed computer systems and the construction
of distribu ted applications. Many of its technical
features have been described 16, and recently as
sessed17• The implementation on which the experi
ments were run consisted of sixteen Sun worksta
tions, of which four are disk servers that provide
virtual disk to the other twelve.

2.1. Logical features of Eden
Eden objects encapsulate data, the procedures

that operate upon them, and active processes. Ob
jects are defined by the user rather than being
restricted to a few system defined types. All ob
jects are named by system-wide unique identifiers
called capabilities. All communication between ob
jects is through invocation, a form of remote proce-

*"Note that this says nothing about the use of general trans
action mechanisms for all applications, as opposed to taking
advantage of application semantics. That distinction requires
further research.

dure call, with the same syntax used for local and
remote in vocations .

A high level Eden Programming Language (EPL)
18 is used for defining Eden objects. EPL is based
on Concurrent Euclid 19 with extensions to handle
capabilities and to deal with sending and receiving
in voca tions. It provides "light-weigh t" processes
and monitors that the application programmer may
use to control concurrency.

Invocations are location independent and objects
are mobile. Objects may move from one node to
another or they may be fixed to specific locations,
under the control of kernel calls. Eden objects al
ways appear active from the viewpoint of the in
voking object. To achieve this, Eden objects have
two forms: the active form and the passive
representation. The former is in volatile memory
with a virtual processor assigned to it; the latter is
the long term state of the object, recorded on disk.
Creation of a new object establishes an active form
which, at the discretion of the designer of the ob
ject, can checkpoint itself (i.e., record its passive
representation on disk). This checkpoint to disk is
the only atomic action that is built into the Eden
kernel. It is implemented so that it either succeeds
or has no effect. The object designer may also
make checkpoint available as an invocation so that
other objects may request the active form to check
point itself. The active form may vanish due either
to a crash or to deliberate deactivation. A sub
sequent invocation of the object will cause the ker
nel to fail to find the active form and therefore to
search for the passive representation and create a
new active form which then responds to the invoca
tion. Thus an object always appears active from
the viewpoint of the invoker, but the response time
may vary depending upon whether or not reactiva
tion had to take place. As originally designed,
each object instance could have at most one active
form and one passive representation. This is the
feature that becomes changed by replication, as
subsequent sections will show. Replects, in the
kernel-level implementation, provide a single active
form and multiple passive representations; R2D2
replicates both the active forms and passive
represen tations.

1199

2.2. Implementation features of Eden
The kernel of the Eden distributed operating sys

tem is composed of two sets of cooperating
processes. Running on each node is a process
called the Host that is responsible for creating ob
jects, protecting capabilities from forgery, locating
objects, and passing invocation messages among ob
jects. The second .type of process is the permanent
object database (POD), a copy of which may run on
any node, although it makes most sense to run
them on the nodes attached to physical disks. The
normal Eden' POD stores the passive represen
tations, ensures that at most one active form and
passive representation exists, and cooperates with
the Hosts to .create an active form for an invoked
object if, none exists.

Eden objects may be thought of as values of
abstract types. They will perform certain actions in
response to invocations, as well as internal actions.
The code implementing these abstract types, i.e.,
the concrete types, is encapsulated in TypeStore
objects and this code may be "replugged" (e.g. to
provide a faster implementation) as long as the ex
ternally available invocations are preserved. Type
Store objects have all the features of ordinary Eden
objects but in addition, their data consists of ex
ecutable code. Every object includes a capability
for the TypeStore that contains its code. In prin
ciple, all objects of the same type share the.Type
Store object; in practice, for implementation
reasons, one copy of the code in a TypeStore is
cached on each node that contains one or more ob
jects of that type. Obviously, if instances of Eden
objects are replicated, the TypeStore must also be
replicated' in order to protect against-crashes, and
updates should be automatically handled -by the
same mechanism.

3. Kernel-Level Replication: Replects
The Replect approach, the kernel-level imple

mentation of replication in Eden, seeks to over
come the loss of passive representations stored in
unavailable PODs. This is done by creating mul
tiple passive representations on separate machines,
thus increasing the probability that a passive
representation will be available for activation if an
object is invoked. From the viewpoint. of the- client
there is no visible change between invoking a Rep
lect or an ordinary Eden object; .at most one active
form exists and it is invoked using one capability.

1200

The difference is visible, of course, to the client
that creates the Replect; the number of copies is
under its control. TypeStore replication is
straightforward; a TypeStore object is just another
Replect.

3.1. Replect implementation
The Replect approach required changes to the

kernel; a few to the Host and an almost complete
rewrite of the POD.

When a Replect is to be altered, the update must
be treated as a distributed transaction in order to
allow competing actions (activations, checkpoints,
typestore reads) to take place without mutual inter
ference and in order to protect against crashes that
might leave inconsistent copies. Similarly, transac
tions are required during activation to ensure that
only one active form is produced. In both cases,
one POD is selected to act as the transaction man
ager. During update the transaction manager locks
the other participating POD's passive represen
tations, writes a commit record, causes participat
ing PODs to write shadow copies and/or writes in
place entries in the headers for the copies (with an
''undo'' log for crash recovery). It then uses a two
phase commit protocol to complete the transaction.
If the transaction manager crashes when the slaves
are in the ready-to,;,commit state, the slaves are
blocked until the transaction. manager recovers.

Gifford's voting scheme20 is used both for activa
tion and for updating. Given a number of copies
of an object, Gifford's voting method makes use of
a read-quorum and a write-quorum chosen so that
their sum exceeds the total number of copies. This
overlap ensures that when a read .. quorum is read,
at least one copy of the latest version is found ..
There are minor differences between the scheme
actually used and the approach described by Gif
ford, but no major change in the concepts.

Gifford assumed an underlying general transac
tion mechanism. The Replect implementation did
not have one to draw upon and provision of it ac
counted for a fairly large part of.the implemen
tation effort. However, by not exporting a general
transaction tool to Eden users, shortcu ts in the
Replect implementation were possible. The· trans
action manager code is in a POD with no interface
to objects .and the transaction deals only with single-

objects that are replicated. In contrast, a generally
usable transaction tool would have to deal with a
list of objects involved in the transaction. "Instead,
the kernel code within the POD .deals only with a
list of all the PODS that have copies for a given
Replect.

Very few changes were made in the Host kernel
code, involving only about a one or two percent in
crease in the total amount of Host code. POD
code, however, had to be extensively rewritten and
its size increased by about 20%. The Replect ap
proach took a graduate student the better part of a
year elapsed time in order to become acquainted
with the problem, and define the implementation,
followed by. about six months of coding, debugging,
and testing.

3.2. Replect system performance
To assess performance of Replects, measure

ments were made under three different conditions:

1. The Eden object case: With the standard
Eden system, not modified for Replects.

2. The l-copy Replectcase: With the Rep
lect system, using single-copy Replects.
This assessed the penalty for using Rep
lect kernel code for accessing non
replicated objects, rather than branching
to standard code.

3. The mUlti-copy case: With the Replect
system, using three copies of the passive
representation, with read quorum and
write quorum equal to two. (n = 3; nr =
nw = 2). TypeStore used n = 3, nr = 1
and nw = 3.

Multiple measurements were made, to provide
:data at a confidence level of 98% with the con
fidence interval varying for the different cases, but
in the neighborhood of plus or minus 10%. The
measures of in terestwere the elapsed times for ac
tivation, read invocation and write invocation in
'volving ,checkpoint of the modified objects. Byte
Store objects 'containing 1000 bytes of data were
used.

Activation of Replects required 10% to 13%
more than activation of a standard Eden object.
This was· for the most favorable activation case in
which current copies of the passive representation

1201

and TypeStore were located at the host where the
ByteStore was to be activated. The standard Eden
object required a mean .time of 1.94 seconds; the
single-copy Replect took 2.13 ,seconds; the multi
copy case required 2.20 seconds.

In the very unfavorable activation case, in which
neither the passive representation'nor the Type
Store were on the· host where activation was to oc
cur, activation time was 'much longer; 32.5 seconds
for the Eden object case and 34.4 seconds for the
mUlti-copy Replect. This involved locating the
TypeStore, having· a copy. sent .over the. network,
running the activation protocol, finding ,and copy
ing the remote passive representation.

Remote read invocation of an active object
should be, and was, no greater for the Replect case
than for the single Eden object. A "do-nothing"
invocation requires 0.084 .seconds. The test invoca
tion read 1000 bytes. The Eden object mean invo
cation time· for reading was 0.237 seconds at 98%
confidence level with, in this case, a .confidence in
terval of plus or minus 2%. ·The mean times"for
the single and multiple Replect invocations fell
within this range.

A write invocation to .active objects r.equired 13%
more time for a single-copy Replect and 27% more
for the multi-copy case compared to the standard
Eden object. The Eden object required 1.81
seconds; the single-copy ·Replect took 2.05 seconds
and the mUlti-copy Replect used, 2.30 seconds.
Concurrent writing of the two copies of the passive
represen uition kept· the elapsed time well below
double the. single object figure.

4. Object-Level Replication
A:;previous paper2l descr.ibes an Eden object lev

elimplementation of replication. The emphasis in
that report is on the Regeneration method of in
creasing availability, and its advantages and dis
advantages relative to other data replication
methods. For example, Regeneration differs from
Voting in the number of replicas necessary for each
access. 'To read or update a resource replicated
with Regeneration, one copy is. sufficient. If copies
are inaccessible, new and· .up-to.;date copies are
created elsewhere to substitute the .inaccessible
ones.

At the heart of the object level replication is a
replicated directory, described in section 4.1. In
the replicated directory, the user may specify the
number of copies for each resource; the copies are
placed on machines with independent failure
modes, with user over-ride. Replication of general
objects is described in section 4.2. Implementation
effort and performance are summarized in section
4.3.

4.1. The Replicated Directory
As we have mentioned in section 1.2, a mapping

must exist between a single resource name used by
the client and the set of copies. In the Replect im
plementation (section 3.1), the mapping is stored in
each POD containing a copy, and a broadcast
mech anism is used to find them. Since there is no
such broadcast mechanism at the object level, a
mapping must be constructed. Furthermore, the
mapping must be itself replicated for availability;
otherwise a replicated resource would be as avail
able as a non-replicated mapping. For object-level
replication, the Eden Replicated Resource Distrib
uted Database (R2D2) was designed and imple
mented to serve as the replicated mapping.

R2D2 maps pathnames (character strings similar
to Unix pathnames) into sets of capabilities. Each
level in the path corresponds to a directory, which
may be replicated with several copies. Each copy
of a replicated directory is unaware of its siblings;
a specialized transaction manager main tains the
consistency of replicas despite concurrent access
and crashes. Since pathnames are organized in a
hierarchy, R2D2 has a tree structure with repli
cated nodes.

R2D2 supports typical operations on a mapping
such as Lookup, Add, Replace, and Delete. Each
request is handed on to the R2D2 transaction man
ager, which traverses the tree and finds the ap
propriate directory on which the operation must be
performed. For example,
Lookup("users/alice/testfile"} is a read operation ser
viced by one copy of the directory named
"users/alice". In contrast, a write operation like
Add is sent to all copies. If any of the set is un
available, it is replaced by Regeneration, which
creates new copies on operable machines to replace
the missing ones. This ensures that the transaction
never fails due to crashes, as long as sufficient

machine resources remain to handle the required
number of copies.

If a missing copy of the lowest directory is rep
laced this requires altering the next higher direc
tory, to eliminate the capability of the missing copy
and replace it with the newly created one. This
approach proceeds recursively up to the root of the
addressing structure. Note, however, that protec
tion against a crash of the root must be handled in
some other way. The manner in which
"hardening" the root against crashes is done
depends upon other requirements that one might
wish to meet, such as performance or transparency
at the client interface. One might give clients a
fixed set of capabilities, with enough copies of the
root to give a satisfactory level of availability with
out regeneration, but that requires all clients to in
clude code to deal with the set of capabilities. Al
ternatively, one might arrange to broadcast for ac
cess to a copy of the root, or to use the Replect
scheme. These alternatives were not explored in
the R2D2 implementation, and a Replect was used
for the root.

1202

The root directory receives all R2D2 requests
and forwards them to R2D2 transaction managers
for processing. A centralized lock manager in the
root synchronizes concurrent updates. At the time
R2D2 transaction manager receives an update re
quest, it is given an implicit lock on the name be
ing updated. To avoid deadlocks, conflicting up
dates are returned to clients for later resubmission.

4.2. Eden Resource Management System
Although R2D2 provides transparent access to

replicated directories, other invocations to client
defined objects are not directly supported by R2D2
transaction manager. The Eden Resource Manage
ment System (ERMS)14, has been designed and im
plemented to provide atomic object access within
nested transactions. Here, we delineate ERMS
transaction features concentrating on its client ac
cess to replicated resources.

From within transactions, ERMS clients access
their resources, which are controlled by a transac
tion manager. The ERMS transaction manager is
more general than the R2D2 transaction manager,
since ERMS handles groups of objects of any type.
ERMS has adopted locking concurrency control,

and a lock manager (separate from the R2D2 lock
manager which handles single replicated objects)
synchronizes resource access.

For update atomicity, ERMS uses R2D2 as the
authoritative mapping; only committed versions of
resources are stored in R2D2. At the beginning of
a resource update, the ERMS transaction manager
creates a new version, which is a single object
directly invoked by the client. At commit time,
the ERMS transaction manager creates the neces
sary number of copies, co-located with the old ver
sion if possible, and installs the new copies in
R2D2, substituting the old versions.

4.3. Discussion
The design of R2D2 took about the same time as

for Replects. The coding and debugging took ap
proximately three man months. Additional design
and implementation effort was dedicated to ERMS.
Significant code sharing between R2D2 and ERMS,
such as the locking concurrency control, brought
ERMS online in another three months.

ERMS provides other functions beyond handling
client access to replicated resources. For example,
ERMS . nested transactions are implemen ted with
nested concurrency control and crash recovery,
both independent of replication. Also, ERMS uses
one transaction manager per transaction to simplify
implementation, introducing some additional com
munication cost. Consequently, ERMS resource
access time is dominated by features unrelated to
replication.

In this paper, we use R2D2 as an example of ob
ject level replication, and compare R2D2 perfor
mance measurements with those of a non
replicated directory with the same tree structure.
Multiple measurements were made to provide data
at a confidence level of 98%, with the confidence
interval at plus or minus 4%. For the read case, a
mean value of 0.23 seconds was obtained for the
non-replicated directory and 0.42 seconds for the
replicated resource. The increase is due to the ex
tra invocations to the R2D2 root and its transaction
manager. This could be decreased by combining
these two objects into one, but it would be done at
the cost of decreased modularity and probably

. more difficulty in debugging and maintaining
R2D2.

1203

For updates in which no regeneration of missing
copies was necessary, the two-copy resource re
quired more time than for the non-replicated direc
tory by a factor of 1.5. The single directory re
quired 1.43 seconds and R2D2 needed 2.18 seconds
to update two copies.

5. Observations Based on the
Implementations

Availability, transparency, and performance were
affected by the level at which replication was im
plemented, by the concurrency control and crash
recovery methods used, and by features of the un
derlying Eden systems. Implementation problems
also were affected by these factors. The following
sections comment on these facets.

5.1. Availability
Both implementations succeeded in making ob

jects available in spite of crashes of nodes in the
network. In the object-level case, the dis
appearance of one of the file-servers in the Sun
network for several days had no noticeable effect
on the objects replicated through use of R2D2; the
resources were automatically regenerated on sur
viving file-servers. In the Replect case, PODs were
deliberately switched on and off without decreasing
availability of the replicated resources. (An advan
tage of the Eden system is that logically separate
experimental versions of the kernels can be run
simultaneously with the "official" version, interact
ing only through competition for memory, Ethernet
time, and CPU cycles.)

To measure the change in availability due to rep
lication would require either long-term obser
vations with natural system loads, or use of syn
thetic loads chosen to represent particular classes
of system use. Such studies are important for an
understanding of policies for use of replication, to
answer questions such as the number of copies to
use, how they should be distributed and which ob
jects should be replicated. We restricted our con
cerns to the mechanisms for replication, and made
no attempt to make quantitative measurements of
availability. A separate simulation study to ex
amine availability and policy questions have been
conducted and recently reported22 •

5.2. Transparency
The issues of transparency and performance are

in conflict. From the transparency standpoint one
would like to keep a consistent, single-name, user
interface for replicated and non-replicated objects.
One way to do this, whether working at object lev
el or kernel level, is to treat the non-replicated
case as a single-copy replicated case, but this im
plies burdening the non-replicated applications
with the overhead of the replication mechanism.
Another way is to use another layer of indirection
that allows the system to differentiate between rep
licated and non-replicated objects and branch to
code specialized for each case, while keeping the
interface to the client uniform. This, too, intro
duces extra overhead. We can see ways to min
imize this extra cost, but not to eliminate it; hence
there remains some trade-off between transparency
and performance.

We found this to be a more difficult trade-off at
the object level than at the kernel level and while
we would not yet claim that this is a general effect,
we would suggest that the designer be wary. For
example, in our object implementation, the client
invokes the root of the R2D2 addressing system to
translate a string name into a set of capabilities and
to set up a transaction manager which deals with
the required number of copies. In Eden, these ex
tra invocations can cost around 0.2 seconds. In
Eden without replication, a client accesses a direc
tory with a string name to get a single capability
for the desired object, thus avoiding the extra over
head of dealing with the transaction manager.
Transaction control is not needed, since exclusive
access to a single object can be handled by
monitors within the object.

Using Replects, which give transparency because
the client deals with a single capability for the
resource, there still is a price to be paid: The ker
nel must keep track of the set of passive represen
tations, and select one from which to create the ac
tive form that represents the replicated passive
representations. One might assume that the user of
a non-replicated Eden object could totally bypass
this Replect overhead, but subtleties are involved:
One would have to forbid conversion of a Replect
to a single Eden object while the system was being
used. Suppose access to a Replect was attempted
just as it was being converted back to a non
replicated object. Suppose further that the conver-

sion failed, in which case the object reverts to be
ing a Replect, but in the meanwhile the object had
been accessed and some action was taken on the as
sumption it was a non-replicated object. To avoid
this one obviously would make the conversion un
der control of a transaction, but that implies that
all activations of single objects would in some way
have to be aware of this transaction mechanism,
hence incurring some extra overhead. One could
keep a flag on each passive representation, denot
ing it either a single object or a member of a Rep
lect. The cost to a non-user of replication to check
this flag could be kept small but it is still some
finite amount of overhead.

More generally, replication requires binding mul
tiple objects to a single name known to the clients
and this implies a cost. Whether replication is
defined at the parent level, as in R2D2, or the
sibling level, as in Replects, a price must be paid
for maintaining single-name transparency and
preventing loss of the resource due to a single
crash.

5.3. Performance
We believe that replication can be implemented

at either kernel or object level without creating
performance penalties for non-users of replication
much beyond the normal competition for memory,
transmission time, and CPU cycles incurred in any
application or system facility. However as noted in
the section above, this may call for giving up some
aspects of transparency to the client, in the object
level case.

y./e restrict our conclusions drawn from the rela
tive performance of the two implementations since
for many reasons, as pointed out in preceding sec
tions, they are not strictly comparable. Our object
level replicated directory was slower than the non
replicated directory during query operations by

- around 80%, but we believe this difference could
be reduced to less than 10% by restructuring the
R2D2 design. We do not see this difference as in
herent between object-level and kernel-level imple
mentations.

1204

Some differences were observed in the updating
case, with the object-level response time for two
copies being longer by 50% than the non-replicated
directory. More work is being done to understand

the reasons for this delay despite concurrent updat
ing of the two copies. Some of the difference may
decrease for updates larger than the lK bytes that
were used, since the existence of multiple active
forms in R2D2 provides an advantage over the
Replect single active form during checkpoint. (For
lK bytes the contention for access to the single
Replect active form by the multiple PODs writing
to disk is negligible). The R2D2 performance may
be affected not only by the extra invocations to the
root and the transaction manager; their mere
presence may be causing more paging since Eden
.objects are large. If that is the case there could be
an inherent disadvantage in implementing at
object-level in our existing Eden environment, but
we would not suggest that this would be the case in
object-oriented systems in general.

5.4. Implementation Experience
One of the important motivations for our studies

in replication was to assess the strengths and
weaknesses of the Eden system, a motivation
shared with most of the applications programmed
in the Eden environment. For replication at the
object-level it was useful to have invocation be lo
cation independent, but to be able to bind objects
to locations so that nodes with independent failure
modes could be used. This is a feature that was
not included in the original Eden implementation
but was added shortly after its birth. In connec
tion with this, the uniform use of capabilities for
naming PODS, Hosts, and objects was useful in
binding objects to particular parts of the distrib
uted system. We had positive experience with
other features of Eden such as object mobility,
which was useful when the system configuration
changed. The Eden Programming Language18, and
the fact that object structuring made it easy to
define modules that seemed natural in the design
of R 202, both proved to be u sefu 1. Black made a
good assessment of Eden features 17, and our ex
perience generally supports his conclusions.
Similarly, the slowness of the checkpoint operation,
the lack of incremental logging to stable storage
and the isolation from the disk that was imposed by
building Eden on top of Unix caused high over
head in the replicated resources.

If the underlying system cannot handle par
titions, it is difficult but not impossible to do so
with replication systems built on top, by using

voting to restrict updates to one portion, or using a
version comparison mechanism during combination
of partitions. The Eden system was not designed
to handle partitions. If for a given Eden object the
active form and the passive representation end up
on separate sub-networks, the active form cannot
transfer data to the passive representation to
checkpoint. However, the passive representation
(after suitable timeouts) can create a second active
form. When the partitioned sub-nets are merged,
the two active forms have to be dealt with. This is
not a serious problem within a single Ethernet, due
to the small probability of partitions, bu t can be
come a problem with gateways or with other types
of communication hardware.

The two approaches to replication that we imple
mented vary in their ability to compensate for this
inability to deal with partitions. This is due to in
teracting factors that are best discussed separately.
First consider the general effect of the recovery
method on a replicated system's response to par
titioning. Using Regeneration, all partitions that
contain a copy will be able to continue to operate if
the partition contains an adequate number of
operable machines. Then one would need methods
to adjudicate among competing versions when par
titions merge. If one uses voting methods, the par
tition that contained the required quorum would
be able to operate, whereas the others would not.
This would allow simple recombination of par
titions. A second factor has to do with caching,
represented in Eden by the object's active form.
This does not affect the above description of par
titioning using Regeneration. With Replects, using
voting, it is possible that a partition might contain a
quorum of passive representations but if the active
form is gone it is not possible to tell if it is dead or
in another partition. To be safe, one would not go
ahead and create another active form without also
having merging techniques to handle competing
versions, since the isolated active form might be
updated with no attempt to checkpoint. With
R2D2, on the other hand, if one were to use voting
methods the system would allow a partition con
taining a quorum to go ahead and operate since
each of the replicas can have its individual active
form as well as its passive representation.

1205

Implemen tation at kernel level was more difficult
than at object level. Again, no quantitative state
ment can be made, because two different imple-

mentations by two different persons working in dif
ferent programming environments give no statis
tically significant data. However, the modularity,
uniformity of invocation, and object location inde
pendence made· the object-level implementation
distinctly easier. Design efforts were comparable.

One would like not to implement transaction
management twice in the system, once for replica
tion and once as a general tool, and indeed our ex
perience has shown that it is not necessary. Both
of our replication implementations used concur
rency control methods that were specializations of
a more general approach, although only in the
R2D2 case was this more general facility exported
to the user level. This specialization allowed
bypassing of the features necessary for user inter
face. In the Replect case further simplifications
came about because of dealing only with replicas of
a single object rather than keeping track of a list of
objects.

We recommend prOVISIon of a general transac
tion manager tool with componen ts of it specialized
for use for replication control. However, the
generally available tool should have user override
so that application programmers have the option of
either using the general tool or experimenting with
special transaction techniques, making use of the
semantics of the application.

In summary, kernel level implementation of rep
lication appears preferable to object level if the fol
lowing conditions hold:

1. Transparency to the client is important.

2. Upward compatibility is important. Ap
plications might be written without repli
cation followed by a later decision to rep
licate some or all of the objects involved,
in which case one would like to do it
with no change to the application's ob
jects.

3. Kernel size is not an overriding issue.

4. System programming staff is available to
deal with the additional complexity in
writing the kernel.

Object level implementation of replication is
preferable to kernel level if:

1. Kernel programmers are scarce compared

to object programmers.

2. Faster implementation and easier mainte
nan ce are im portan t. (A 11 poin ts re la ted
to programming are heavily in fluenced by
the availability of a high level program
ming language for object programming.
In the Eden case EPL provided a con
siderable advantage at object level com
pared to the use of C at the kernel level.)

3. Increased kernel size cannot be tolerated.

6. Observations on Related Work
Relative to the "new-wave" of object-oriented

systems being designed and developed that incor
porate various features of replication, crash
recovery and transaction control, our experience
leads us to commen t on several of the efforts, to
the extent we understand the work, much of which
is just emerging in reports and papers.

1206

The ISIS project 10 is designing replication and
crash-recovery into the layers that provide and
maintain the object level - i.e., what we have called
the kernel-level approach. Apparently the client is
not offered the option of not using these built-in
fault tolerant features in order to improve perfor
mance. Similarly, the client is restricted to the
built-in nested transaction mechanisms, although
concurrent updating of replicated data (when using
pessimistic concurrency control, gathering locks in
advance) is provided to improve transaction perfor
mance. As noted above, we would vote for provid
ing options in these areas, to encourage experimen
tation with transaction control mechanisms that
take ad van tage of application seman tics.

For replication of procedures, rather than of ob
jects containing both data and code, Cooper's
replicated procedure call mechanism23 calls several
replicated servers when one replicated procedure
call is made; the call succeeds if just one of the ser
vers remains functional. In the Eden case, objects
include data and code. Both Replects and R2D2
provide a special case of replicated procedure call,
the one-to-many call. For example, if a copy of
R2D2 directory is inaccessible, the R2D2 transac
tion manager simply invokes the next copy in line.
Cooper also supports many-to-many calls, in which
several client processes make the same replicated
procedure call.

The Clouds project 13 is building atomic transac
tion control into the kernel and developing a high
level language (Aeolus) to make them available to
users. The users will have the option of selecting
the kernel's synchronization and recovery tech
niques or to develop their own, to take advantage
of the semantics of the application. The emphasis
in Clouds appears to be on reliability of results, in
the go/no-go sense of atomic transactions, rather
than availability in spite of crashes. The reference
implies that studies of replication at a level above
the kernel are being made.

There are several projects building sup~ort for
transactions, such as Argus24, TABS 1, and
PROFEM0 12• Argus implements nested transactions
(as defined by MOss2S) on top of Unix. TABS is
built on Accent Kernel and supports distributed
transactions. PROFEMO will build nested transac
tions into the operating system level, which will
have hardware support for object management,
crash recovery, and concurrency control. These
systems do not support replication in the kernel,
but provide powerful primitives to build replicated
resources. For example, a replicated directory ob
ject is being built as an application server in TABS.

In summary, the results of our experiments in
the Eden environment lead us to favor many of the
features we see being included in this new wave of
object-oriented designs and implementations, al
though as far as we have seen, no one of them en
compasses all the features we feel are desirable.
Our "wish list" for such features is the following:

1. Kernel support of replication, or support
of primitives that make replication easy
at object level. These include location
independent invocation, ability to pin an
object to a location, mapping of a
resource name into a set of object names,
and a concurrency control method.

2. User choice of replication, including
none at all.

3. Uniform in terface to the system for the
use of single or replicated objects.

4. Minimum performance penalty for users
of replication.

5. Very little performance degradation for
non-users.

1207

6.' Provision of high-level language for ap
plications programming, including easy
control of what is replicated and where
copies are placed.

7. Export of a general-purpose transaction
mechanism for use at the applications
level.

8. Export of the underlying atomic actions
that allow users to build their own trans
action mechanisms to take advantage of
application semantics.

7. Summary and Conclusions
The Eden distributed system has provided the

means to implement two different approaches to
object replication, one at the object level, and one
in the kernel that supports the object environment.
Both implementations succeeded in making
resources available in spite of network node
crashes.

The implementation at the kernel level was more
difficult than at the object level, which also ap
pears to be easier to maintain. Modularity and the
programming environment seem responsible for
this. A number of Eden features were very helpful
at the object level; the nature of the objects, in
cluding the fact that they contain active processes;
the high level language for programming objects;
location-independent invocation; object mobility,
and uniform naming of objects, Hosts and disk
repositories.

Eden also had some shortcomings for our pur
poses. The slowness of checkpointing, and the lack
of incremental logging to stable storage were hand
icaps at the object level, although logging was used
at kernel level. The Eden system was not designed
to handle partitions, and neither of the implemen
tations overcame this limitation, although the ex
perience shows us ways to do so. An R2D2 imple
mentation using voting would allow a majority par
tition to operate; means for detecting and resolving
updates on separate partitions would allow more
general solutions.

There are trade-offs between performance and
the transparency of access obtained by using a
single name for a replicated resource. Problems
arise in retaining single-name access, forcing either

the use of a layer of indirection, or the system to
broadcast to locate a copy. To hide such problems
from the client and provide uniformity of access
for either replicated or .non-replicated resources
implies a performance cost.

The choice of object or kernel level implemen-
. tation depends on the relative importance of trans

parency, performance,implementation time, kernel
complexity and size, as well as the relative ease of
programming and the languages used at the two
levels. We believe that replication can be imple
mented at either level with small and comparable
performance penalties for the client not wishing to

.,. use replication. Our experiments lead us to favor
inclusion of more functions in the kernel than
Eden provides; either complete kernel.support of
replication or provision of a number of' primitives
that aid implementation of replication at the
object-level.

8. Acknowledgments
The Eden system is the result of the work of

many faculty, staff members, and graduate students
whose efforts and insights have made the work pos
sible. Andrew Black and Ed Lazowska made very
helpful suggestions on drafts of this paper, al
though the authors are to be held responsible for
the final result. In addition to ouracknowledg
ment of the contributions of our colleagues, we ap
preciate the support of the Coordinated Ex
perimental Research program of the National
Science .Foundation.

REFERENCES

1. Bartlett, J.F., "A NonStop Operating
System", Proceedings of the Eighth ACM Sym
posium on Operating Systems Principles,
December 1981, pp. 22-29.

2. Bernstein, P.A., Rothnie, J.B., Goodman,
N., and Papadimitriou, C.A., "The concur
rency control mechanism of SDD-l: A sys
tem for distributed databases (the fully
redundant case)", IEEE Transactions on
Software Engineering, Vol. SE-4, No.3,
May 1978, pp. 154-168.

3. Lampson, B. and Sturgis, H., "Atomic
Transactions", in Distributed Systems -- Ar
chitecture and Implementation, Springer
Verlag, Lecture Notes in Computer Science,
Vol. 105, .1981.

4. Sturgis, H., Mitchell, J., and Israel, J.,
"Issues in the Design and Use of a Distrib
uted File System"" ACM. SIGOPS Operating
Systems Review, Vol. 14, No.3, July 1980, pp.
55-69.

1208

5. Dion, J., "The Cambridge File Server", ACM
SIGOPS Operating Systems Review, Vol. 14,
No.4, October 1980; pp. 26-35 .

6. Mitchell, J.G~ and Dion, J., "A Comparison
of Two Network-Based File Servers",
Communications of ACM, Vol. 24, No.4,
April 1982, pp. 233-245.

7. Stonebraker, M., "Concurrency,Control and
Consistency of Multiple Copies of Data in
Distributed INGRES", IEEE Transactions on
Software Engineering, Vol. SE-5, No.3,
May 1979, pp. 188-194.

8. Walker, B., Popek, G., English, R., Kline,
C., and Thiel, G., "The LOCUS Distributed
Operating System", Proceedings of Ninth
Symposium on Operating Systems Principles,
ACM/SIGOPS, October 1983, pp. 49-70.

9. Haerder, T. and Reuter, A., ''Principles of
Transaction-Oriented Database Recovery",
ACM Computing Surveys, Vol. 15, No.4,
December 1983, pp. 287-317.

10. Birman, Ken, "Replication and Fault
Tolerance in the ISIS System", Proceedings
of the Tenth ACM Symposium on Operating
Systems Principles, December 1985, pp.
79-86.

11. Spector, A.Z., Butcher, J., Daniels, D.S.,
Duchamp, D.J., Eppinger, J.L., Fineman,
C~E., Heddaya, A., and .;,Schwartz, P.M.,
"Support for Distributed Transactions in the
TABS Prototype", IEEE Transactions on
Software Engineering, Vol. SE-ll, No.6,
June 1985, pp. 520-530.

12. Nett, E., "PROFEMO: Design and Implemen
tation of a Fault~Tolerant Distributed Sys
tem Architecture", Tech. report Draft,
GMD-Studien,Nr. 100, GMD, .Schloss Bir
linghoven,5205 St. Augustin 1, West Ger
many, June 1985.

13. LeBlanc, R~J. and Wilkes,C.T., "Systems
Programming with Objects and Actions",
Tech. report GIT-ICS-85/03, Department of
·Computer Science, Georgia Institute of
Te~hnology, March 1985.

14. Pu, C. and Noe, J.D., " Design and Imple
mentation of Nested Transactions in Eden ",
Tech. report .85-12-03, Department of Com
puter Science, University of Washington,

February 1986.

15. Proudfoot, A., "Replects: data replication in
the Eden System", Tech. report 85-12-04,
Department of Computer Science, University
of Washington, December 1985.

16. Almes, G.T., Black, A.P., Lazowska, E.D.
Noe, J.D., "The Eden System: A Technical
Review", IEEE Transactions on Software
Engineering, Vol. SE-ll, No.1, January 1985,
pp.43-58.

17. Black, A.P., "Supporting Distributed Ap-,
plications: Experience. with Eden ",
Proceedings of the Tenth Symposium on
Operating Systems Principles, ACM/SIGOPS, .
December 1985, pp. 181-193.

18. Black, A.P., ''The Eden Programming
Language", Tech. report 85-09-01, Depart
ment of Computer Science, University of
Washington, September 1985.

19. Holt, R.C., Concurrent Euclid, The Unix Sys
tem, and Tunis, Addison~Wesley Publishing
Company; 1983.

20. Gifford, D.K., "Weighted Voting for Repli
cated Data", Proceedings of the Seventh Sym
posium on Operating Systems Principles,
SIGOPS, ACM, December 1979.

21. Pu, Calton,Noe, JerreD., and Proudfoot,
Andy, ''Regeneration., of Replicated Objects:
A Techniq ue and Its Eden Implementation",
Proceedings of the Second International Con
ference on Data Engineering, February 1986,
pp. 175-187.

22. Noe, J.D. and Andreassian A.,
''Effectiveness of Replication in Distributed
Computer Networks", Tech. report 86-06-05,
Department of Computer Science, University
of Washington, September 1986.

23. Cooper, E.C., ''Replicated Distributed
Programs", Proceedings of the Tenth ACM
Symposium on Operating Systems Principles,
December 1985, pp. 63-78.

24. Liskov, B.H. and Scheifler, R.W.,
"Guardians and Actions: Linguistic Support
for Robust, Distribu ted Programs",
Proceedings. of 9th Annual ACM Symposium on
Principles of Programming Languages,
January 1982, pp. 7-19.

25. Moss, J. Elliot B., Nested Transactions: An
Approach to Reliable Distributed Computing,
The MIT Press, Information Systems, Vol. 1,
1985.

1209

MAYBE ALGEBRA Operators IN DATABASE MACHINE ARCHITECTURE

L.L. Miller

Department of Computer Science
Iowa State University

Ames, Iowa

Abstract

Changes in the user population continues the
trend to more simplicity for the user and
increased sophistication of the computer systems.
In addition, advances in data storage technology
have enforced the growth and creation of
incomplete data files. A growing number of users
require information from the database which
cannot be obtained through the operators found in
traditional query languages. Such needs have
increased the expectation that a system should be
able to assist the user in gathering and
interpreting the appropriate data. The recent
discussion of null values and maybe
algebra is an attempt in this direction.
However, the current literature has not addressed
the practical issues of such theoretical concepts.
This presentation examines the inclusion of the
maybe algebra operators in a database machine.
In addition, modifications designed to increase
the time and space efficiency of the maybe
algebra operators as well as the quality of the
results are discussed.

1. Introduction
Incomplete information continues to be a

problem for systems involved in information
utilization. The problem of how to handle
missing information has been studied by a number
of researchers [5,6,8,9,16,17,18,26,27]. The
current discussion of the use of the universal
relation assumption (URA) [7,13,14,20,22,25],
has increased the interest of dealing with null
values.

A number of different uses for null
values have been given in [1,22], but the
problem of unknown data value represents the most
common usage of null values. Codd o [6] introduced
a comprehensive extension to relational algebra
that allows the user to examine potentially
interesting data relationships based in part on
unknown (incomplete) data. The theoretical
foundations of Coddls new maybe algebra have been
examined by Biskup [2].

While these works have developed a strong
theoretical basis for maybe algebra, they
have not taken into consideration the practical
impact of such operations. In addition, recent
developments in technology have led researchers

CH2345-7/86/0000/1210$Ol.OO© 1986 IEEE
1210

A.R. Hurson

Dept. of Electrical and Compo Engr.
The Pennsylvania State University

University Park, PA

to seek a hardware solution to the design of
database systems, nameiy, the database
machines [3]. Such machines have been
developed with the purpose of improving the
per formance of the database operations. However,
designers of such systems have not addressed many
of the current issues that have surfaced recently
in relational database design theory.

This presentation is an attempt to
incorporate the concepts of null values and maybe
algebra into the design of a relational database
machine to extend its usefulness to the user
population. Some practical restrictions of such
an approach are also discussed. The database
machine used as the basis of our discussion is
the Associative search Language Machine (ASLM)
[12]. The choice of ASLM stems from the fact
that ASLM is highly parallel, and in many cases,
the tuple search time is almost the same as
relation search time (Associative Search).

The architecture of ASLM is briefly
overviewed in Section 2. 0 The basic concepts of
maybe algebra are investigated in Section 3. The
issues and practical considerations of
implementing maybe algebra on ASLM are examined
in Sections 4 and 5.

2. Database Machines
Several different classifications of

database machines have been proposed. Rosenthal
[23] has classified these machines as large
backend, distributed network data node, and smart
peripheral systems. Champine [4] has a similar
classification using four classes: backend
system, storage hierarchy, intelligent
controllers and database computers. Su et. ale
[24] have classified database machines as
cellular logic systems, backend computers,
integrated database machines and high speed
associative memory systems. These
classifications are similar in that for the most
part they are based on how the database machine
will be used. Bray and Freeman [3] have proposed
a classification based on the concept of
parallelism and the location where the data is
searched. Based on this criteria, we have the
following five groups: single processor indirect
search, single processor direct search, multiple
processor direct search, multiple processor
indirect search and multiple processor combined
search.

These classifications suffer from the fact
that there is some overlap between the categories.
For example. there is no clear way to determine
when a smart peripheral system becomes a back end
computer as functions are moved from the host to
the peripheral system.

However. one common feature of such
classifications is the existence of a special
purpose hardware system designed to manipulate
the database. This approach is based on the need
to remove the database functions from the host
machine. The hardware specification of the
database operations in the backend computer. the
ability to overlap operations between the host
and the backend. and elimination of the problems
associated with the 90-10% rule [11] have made
the backend approach more promising than the
other categories. In the remainder of this
section. the design of a backend database
machine. ASLM. is discussed.

2.1 ASLM - a backend database machine
ASLM (Associative Search Language Machine)

is a backend database machine [12]. The system
is composed of a general purpose frontend machine
supported by ASLM (Figure 1). The frontend
system acts as the interface between the user and
the backend machine. Security validation of the
user and the user's query. translation of the
user's query into ASL primitives and transmission
of the final results to the user are the major
functions of the frontend system.

Reducing the semantic gap and alleviating
the transportation problem have been the general
motivations behind the design of ASLM. Semantic
gap reduction has been achieved through: i) the
one to one relationship between the set
operations and associative operations. ii)
hardware implementation of the basic relational
operations and iii) elimination of the address
accessability of the data. The transportation
problem has been resolved by screening the data
close to the secondary storage. Solving these
problems has determined the organization of ASLM.

ASLM is composed of four modules: 1)
controller. ii) secondary storage interface. iii)
an array of preprocessors. and iv) a database
processor.

Controller: The controller is a
microprogrammable control unit. The contents of
the writable control memory will be determined by
the user's program. More specifically the
controller: i) stores the ASL microinstructions
generated by the ASL compiler. ii) decodes the
ASL microinstructions. and iii) propagates the
control sequences to the appropriate modules in
the backend. The simplicity of the controller is
primarily due to the use of associative hardware
for the execution of the ASL primitives. since
there is no need for address generation and the
majority of the operations are strictly
sequential.

1211

Secondary Storage Interface: The
secondary storage interface is a collection of
random access memory modules. augmented by some
hardware facilities. This module is an interface
between secondary storage and ASLM. It accesses
blocks of data from secondary storage and
distributes them in a tuplewise fashion among the
preprocessors.

Preprocessors: Because of the practical
limitation on the size of the associative memory.
it may not be possible to store all available
data in the associative memory in order to
perform an operation on the data items. Due to
this restriction. all the systems proposed
earlier based on fully associative memory, are
not capable of handling large databases. In
contrast. the design of ASLM overcomes this
problem through consideration of two points.
First. queries almost always refer to a subset of
attributes in the tuples. Second. in each query,
a small subset of tuples will satisfy the search
cr iter i a [11].

The preprocessors act as a filter which
screens the data. selecting the valid data. The
valid data is then placed in an associative stack
in the database processor. In addition, the
preprocessors perform a projection over the
relevant attributes. In a database operation
the attributes of a relation can be classified
into three groups: i) members of the search
ar gumen t (SA). i i) members of the ou tpu t set
(OS). and iii) the remaining attributes. It is
the task of the preprocessors to validate tuples.
on the basis of the SA attributes and to project
them over the as attributes.

The module is composed of an array of
identical and independent processors which
communicate with the database processor and the
secondary storage interface. The preprocessors
are initialized by the controller according to
the query. After the preprocessors have been
initialized. they perform operations on the
tuples independent of any direct supervision from
the controller.

Database Processor: The database
processor is composed of a set of associative
stacks enhanced by some hardware capabilities for
direct implementation of the relational operators.
The result of the operations of the array of
preprocessors on a relation r with relation
scheme R is a relation rs with relation scheme
RSt which is stored in an associative stack.

RS i Rand V-ts e: r s 3 t e: r such that

ts = t[OS] and t[SA] ; search criteria.

The associative stacks act as intermediate
storage which holds part of the relation in order
to perform the required relational operations on
it. The database processor receives the database
operations from the controller and performs them
on the data stored in the appropriate associative
stacks. At the end of the operations defined by

o
~

~UM I
MACHINE I

o compilation, ~ g
A-------' security ~ ~

o
A

validation, R R

: bookkeeping I g ~
• . ~ U

security

processor

M N
A I
B T
L
E

SECONDARY STORAGE INTERFACE ~ l) ~
~--------~--------_I :
r-----:---:---L-----~__.I U ~

E
S

. . .
associative modules-

BACK-END MACHINE

Figure l: Overall Architecture of ASLM.

the query, the result is transferred to the
general purpose computer.

The module is a set of identical and
independent associative stacks of size w*d (where
w is the width and d is the depth) augmented by
some hardware circuits. The associative stacks
can be linked together to make a memory size
(K*w)*d (1 ~ K ~ n, where n is the number of
associative modules) capable of holding d tuples
of size K*w bits, or they could be linked to form
a memory of size w*(K*d) capable of holding K*d
tuples of size w bits. Because of the generality
of the tuple sizes in a database, this facility
enables the system to adjust the available memory
modules based on the length of the tuples and the
cardinality of the relation. In addition, this
increases the space efficiency of the database
processor. The independence of the associative
modules enhances the modularity and as such the
fault tolerance of the system.

Database processor is enhanced by a group of
small special purpose modules to facilitate the
direct implementation of the relational operators.
One of these modules is used to reformat and
realign tuples in the associative stacks. Such
an action is necessary during some operations
such as join, where the join attributes in the
source tuples should be organized according to
the position of join attribute(s) in the target
tuples. The reformat unit is capable of
performing basic logic operations on a collection
of shift registers (4 units). The function of
this unit will be discussed in more detail in
Section 5.

ASLM is based on the concept of variable
length tuples, where tuples and attribute fields
are separated from each other by tuple separator
markers and attribute separator markers,

1212

respectively. The null value is represented in
this format as two adjacent attribute separator
markers. The fields of a tuple t defined by
t[OS] are expanded by the preprocessors to their
predefined size in the normal manner. Fields
containing null values are expanded to their
appropriate size with don't care symbols.

The ASLM architecture is used in Section 4
to examine the implementation issues of Codd's
maybe algebra [6J. The basic concepts of maybe
algebra are examined in the next section.

3. Maybe Algebra
A great deal has been written about the

relational mopel in recent years. We will assume
that the reader has examined the basic concepts,
in Rarticular, relational algebra at the level of
[26]. We will adopt Maier's notation [19] for
partial information in the relational model. A
partial tuple is one that contains zero or
more null values (1). A tuple t is said to be
total if it contains no null values. A tuple
t whose scheme includes attribute A is
definite on A (written t(A)~) if t has a
non-null value for A. We write t(X)~ when t(A)~
VA e: X and t~ when t is total. If t e: r, where r
is a relation defined by the relation scheme R
then DEF(t) '" {A I A e: R and t(A)~}. A tuple ~
subsumes a tuple u (t~u) if u(A)~ implies
u(A)",t(A). If t> u and t~, then t is an
extension of u (t~~u).

These concepts can be directly extended to
relations as well. A relation r is total (r~)

if all of its tuples are total. A relation r
subsumes a relation s (r ~ s) if for every
ts e: s there is a tuple tr e: r such that tr > ts'
A relation r is an extension of s if r > s
and r is total. If r can be obtained from s-by
changing some null values in s to data values
then r augments s (r;::'" s). A relation r is ~
completion of s if r;:::"" sand r ~.

Missing information presents a problem for
any data model and as the relational model has
matured, researchers have examined the question
of how to handle missing data. Codd [6]
developed an extension to relational algebra that
allows a user to retrieve information based on
partial results. Such a capability allows the
user to probe the database for potential data
relationships that might be useful to the user,
but cannot be retrieved directly br true
relational algebra. Recently, Biskup 2] has
made maybe algebra more appealing by establishing
its theoretical foundations.

A number of different inter~retations of
null values are possible [,,22J, but maybe
algebra is only concerned with missing or unknown
data. Using this interpretation of null values,
Codd [6] defines a 3-valued logic where

T - condition is true,
F - condition is false, and
w - maybe - data values are unknown.

The truth tables for the boolean operations are
given as:
AND T w F OR T w F m T T w F T T T T T F

w w w F w T w w w w
F F F F F T w F F T

The null substitution principle [6] then
can be stated as:

A truth-valued expression has the value
w if and only if both of the following
conditions hold:

1) Each occurrence of a null value in
the expression can be replaced by a
non-null value so as to yield the
truth value T for the expression.

2) Each occurrence of a null value in
the expression can be replaced by a
non-null value so as to yield the
truth value F for the expression.

Relational operators using a search condition to
select tuples will base the search on a set of
attributes, say X, that fall within a single
relation scheme. Clearly, the selection of a
tuple (t) based on a given condition will depend
on the state of the values for t(X). If there
exists A £ X such that t(A)~ and teA) disagrees
with the search condition, then the truth value
associated with t is false (F). A truth value of
true (T) would be generated for t if t(X)~ and
t(X) matches the search argument. The truth
value maybe (w) is assigned if ~A £ X such that
t(A)~, the values teA) match the search condition
and there exists at least one element of X, say
B, such that t(B) = 1.

Two operators that make use of a search
condition to manipulate a relation are the select
and join. The following examples illustrate the
maybe and true relational algebra select, join
and division operations.

1213

r(R) A B C
a, b, ,
a2 b21
a3 b3 2

a) True select r
where C='

A B C

a, b,

c) True join of
rand s over C

A B C C D
a, b, , , d,

Maybe division
manner as shown by the

r(R) A B C
a, b, c,
a2 b, c1
a, b2 c2
a2 b21

a) True division
(r+s)

s(S) C D
-,---cr;
1 d2

b) maybe select r
where C='

A B C

a2 b2 1

d) maybe join of
rand s over C

A B C C D
a, b, 1 d2
a2 b2 1 d2
a3 b3 2 d2
a2 b2 1 dl

is treated in a similar
following example.

Mal' be division
(r. w s)

A somewhat different view of the null value
is taken for the remaining relational algebra
operators. For these operations, null values in
different tuples are interpreted as being
equivalent. As such, we have no change in these
operations over their use in traditional
relational algebra. The following example
illustrates this interpretation for the project
operator.

Project r over A and B
A B
a;-r
a2 b2
a3 b3

Codd [6] has also addressed the issue of
using null values to bring the so called dangling
tuples into the join process and to make
relations union compatable. The outer theta
join [6] will be used here to motivate the
concept. Similar join operations have been
proposed by Merrett [2'], Zanilo [29] and LaCroix
and Pirotte [15].

The outer theta join (denoted,by @) for
r(A,B) and s(C,D) over BeC (i.e., Band Care
defined over the same domain and e is the test
condition) is defined by Codd as:

T = the true join of Rand S over BaC
R I = r ~ T (AB) S I = s - T (CD) •

(where a is equality)

r A B
a;-t>1
a2 b2
a3 b3

A B
~3

s C D
b'1d1
b2 d2
b4 d3

C D

b4 d3

T ABC D
a1 b1 b1 d1
a2 b2 b2 d2

If we think of the traditional relational
algebra as true (T) algebra, then we can view
Codd's maybe algebra as retrieving tuples with
unknown critical values. The search conditions
for such tuples evaluate to maybe (til). Since the
subset of the search condition attributes that is
definite matches the search criteria and the l
remainder are null, it is unclear whether or not
such tuples are of use to the user. Maybe
algebra gives the user the opportunity to
investigate the set of tuples and draw his/her
own conclusions. The impact of implementing the
maybe algebra operators in the ASLM environment
is examined in Section 4.

4. Implementing Maybe Algebra in ASLM
In this section, the ASLM implementation of

maybe algebra is examined. We ignore the obvious
changes required to the query language and
concentrate on the compilation process and the
architectural changes required to add the maybe
algebra operators to ASLM.

i) The null value is simply taken as a data
value by relational operators such as
union, intersection, difference and
projection. Such an interpretation of
null values means there is no change in
the implementation of the operators over
traditional relational algebra. The
details of these operators can be found
in [12].

ii) The result of a maybe select operation
is the set of tuples that yield the
maybe truth value for the select
condition under Codd's null value
substitution principle [6]. A query of
the form:

maybe select from r where
A = "a" AND B = "b" AND C = "c"
can be written as

select from r where
(A = "a" OR A = 1) AND (B = "b" OR B = 1)
AND (C = "c" OR C = 1) AND (A = 1 OR B = 1
OR C = 1).

1214

In the event the condition is defined
over a single attribute, the result in
ASLM can be determined by an equality
search against 1. For more general
search conditions, the maybe select can
be implemented in the database
processor as a sequence of 2d~1 select
operations, where d is the number of
definite attributes used in the search
condition. The sequence of operations
will be determined by the compiler and
hence will be passed to the database
processor prior to execution. The
results of the selects are placed
together on the resultant associative
stack. The operation

Maybe select from r where a<1 AND b>2
would require

select from r where a<1 AND b=l;
select from r where a=± AND b>2;
select from r where a= AND b=l·

Such an approach means that the maybe
select operator can be implemented
directly in the current design of ASLM.
No architectural changes are required to
implement the operator. Since the
search condition is introduced into the
process by the user's query, the 2d-1
select conditions required can be
generated directly by the compiler.
Naturally, an increase on the number of
searches reduces the performance of the
maybe select operator. However, since
no changes have been introduced into the
design of ASLM, no degradation of
performance of the true algebra
operators will be experienced.

iii) The maybe join-operation places a tuple
in the result relation when the test for
a join between two tuples results in a
maybe truth value. For each tuple in rl
(source relation), the relation r2
(target relation) is search 2d:", times,
where d is the number of definite
attributes in the join set.' As in the
maybe select, the searches are looking
for tuples in r2 with different
combinations of the definite attributes
of the join set that contain one or more
null values.

In the ASLM design, the join of relations rl
and r2 is initiated by loading the relevant data
from each relation into two associative stacks.
The tuples from the source relation are popped
one at a time and passed to the reformat module.
The reformat module realigns the join set
attributes to conform to the positions they have
in the target relation. Then, for each
reformatted set of attribute values the target
relation is searched in associative fashion. In
our new environment, compiler distinguishes the
true join and the maybe join during the

compilation. For true join, additional select
operations will be initiated to exclude all the
tuples in the source and target relations which
have at least one null value in their join set
attributes. For the maybe join, the reformat
module is triggered to enumerate all possible
permutations of the join set attributes in the
source relation tuple (i.e. 2d~l cases as above).
This enhancement to the reformat module is the
only hardware overhead of the maybe algebra over
the original design of the system.

maybe join r1 and r2 (A1 = A2 and B1 = B2)

r1 (A] B] C) r2 (A2 B2 D) and r2
a, I c, a, b, d, D
a2 b2 C2 a2 1 d2 C1 d,

a2 b2 d3 C1 d4
1 b2 d4 C2 d2

C2 d4

Maybe join has the potential to have drastic
effects on the resource utilization and the
performance of a database system. For example,
if we wish to use the maybe join to join r1 and
r2 over A = B, where R, and R2 are the respective
schemes and A E R, and B E R2, then we get one
copy of r2 for each tuple t1 in r1 where t1 (A) is
null. Similarly, we get a copy of r, for each
tuple t2 in r2 where t2(B) is null. We can find
the size of the maybe join result for this
example by:

m*n1 + n*m1 I- m1 *n1
where·

In = I r1 I , n = I r2 I and
n1 the number of nulls in r2 for B
ml = the number of nulls in r1 for A.

The potential for drastic loss of
performance is apparent from the following
example.

Example: Suppose m=n=1000
with 1% nulls for A and B
1000*10 + 1000*10 - 10*10 = 19,900
tuples in the maybe join result.

with 5% nulls for A and B
1000*50 + 100*50 ~ 50*50 = 97,500 tuples
in the maybe join result.

with 10% nulls for A and B
1000*100 + 100*100 ~ 100*100 = 190,000
tuples in the maybe join result.

Interestingly, the loss in physical
performance is paralleled by a loss in logical
performance. The value of such an operator must
be rated by its ability to supply a "useable" set
of tuples which the user can examine to see the
potential relationships between data values. The
relation sizes suggested by the previous example
fall beyond the useable category. Zaniolo's
generalized join removes the join over two nulls,
but still has the potential to produce extremely
large relations [29J.

1215

If we consider the probability of a
relationship appearing in the maybe join result,
given that one or more of the join set attributes
are unknown, we can consider the information
content of the operation by· using Shannon's
formula [lOJ

where Pi is the probability of a configuration's
occurence.

Consider the case where the join set is a
singleton attribute. When a tuple from one of
the relations has a null value in the join
attribute, we have a probability of one that the
tuple will be joined to all of the tuples in the
second relation. Using the interpretation from
information theory, we can say that it is
possible to guess the set of relationships
produced by the maybe join and as such the
information value of the operation is zero. From
the database point of view, this means that we
can use other operators that require
significantly less resources to produce the same
result.

Based on this discussion, we present a
practical restriction on the maybe join operator.
In its current form, the operator will likely
cause stack overflow in ASLM when either the
number of attributes in the join set is small or
the two relations have a high percentage of null
values for the join attributes. To deal with
this problem, two solutions are being
incorporated into the ASLM design.

a) Maybe join over a single attribute is
detected by the ASL compiler and ignored.
The user is notified that such an
operation is expected to result in a low
information result.

b) During the maybe Join operation on two
or more attributes, the system will be
able to detect that a large percentage
of nulls are resulting in a large number
of maybe joined tuples. When the stack
containing t~e maybe join result reaches
a predefined load density, the operation
is terminated and the user is notified
of the low information quality of the
data. By using the relative sizes of
the two relations involved in the join,
the system can set the predefined load
density for the stack in question.

The use of these two restrictions will
result in higher information value results. The
first decision can be made during the compilation
while the second de6ision is determined during
the execution time. This can be done by the
reformat module which controls the sequence of
the maybe join operations.

iv) The maybe division operator can be
implemented using the operators
previously defined. The following
algorithm provides the sequences of
operations for r(R) maybe + s(S) in
ASLM:

Algorithm maybe divide;
begin
(maybe join r(R) and {tl € s(S)}) U (join r(R)
and {tl € s(S)});

place result in stack S,;
project S, over R-S;

i=2 ;
while there is an unprocessed tuple in s do
begin
(maybe join r(R) and {ti € s(S)}) U (join r(R)
and {ti € s(S)});

place result in stack S2;
project S2 over R-S;
intersect S, and S2 placing the result in S, ;
i:=i+'

end
Place r+s on stack S2;
Place Sl-S2 on stack Sl
end.

Example

Stack Sl
after
projection
over R-S

Stack S2
r+s

rCA B C)
a, b, I
a2 b2 C2
a, b2 C2
a2 b, c,
a3 b, c,

al Stack S2 a,
a2 after a2
a3 proj ection

over· R S

The maybe divide operation is extremely
slow, but does not require any additional
hardware changes beyond the changes required to
implement the maybe join operator. As such, it
offers no further degradation of the performance
of the true algebra operators.

v. The outer join operation is designed to
bring the so called dangling tuples into
the join process. When the relations r,
and r2 are joined with the outer join,
we have each dangling tuple of r,
extended with null values for the
attributes defined for r2 that do not
appear in r,. Similarly, the dangling
tuples from rZ are extended with null

values to make them union compatible
with r, .DQ r2.

In ASLM, the outer join can be performed by
testing both relations. In the traditional join
operation, dangling tuples in r, are encountered
by the process when the tuples are tested for a
match in r2. The outer join simply requires
extending the tuples and placing them in the
appropriate stack. On the other hand, the
dangling tuples in r2 are not located by the
present join operation. To do this, it requires
using the tuples of r2 to test whether or not a
tuple is a dangling tuple. When a dangling tuple
is encountered, it is extended with null values
and placed in the stack.

rl (A B C) a, b, c,
a2 1 C2
a3 b3 c3
using the outer join of r, and r2 in ASLM,

we have

Searching the result for a2 @ @ d2 e2 (where
@ means the fields are masked out on the search),
a match tells us that the tuple participated
in the join. On the other hand, searching for
a4 @ @ d4 e4, we find that the tuple needs to be
extended and added to the stack. The final
result of the outer join would be

1216

5. Maintaining the database
The use of null values in a database system

increases the complexity of the insertion policy
(i.e., concepts such as tuple subsumption and
null replacement as well as traditional concerns
like duplicates must be considered). Recent
literature has addressed a wide variety of such
techniques ['9]. Creating an insertion policy
from the available techniques requires
establishing the assumptions on how the system
will be used. Our approach is to use somewhat of
a compromise of the available techniques based on
the following assumptions:

i) A new tuple can be inserted into an ASLM
relation if it is not already subsumed
by a current tuple.

11) There are no hard violations of the
database semanties in the current copy
of the database.

The first assumption means that if a tuple
such as t1 = < a1 1 1 1 e1 > currently exists in
an ASLM relation with scheme {A, B, C, D, E} then
the insertion of a new tuple t2 = < a1 ± C1 1

e1 > means that the tuple t1 = < a1 1 e1 >
is no longer needed since t2 ~ t1' Let s = {t I
t £ rand t2 ~ t}, the relation s can be found by
applying a variation of the maybe select over the
relation scheme for t2' For example, the query
for t2 would be:

Select from r where
(A = a1 or A = ±) AND (B = 1) AND (C - c1 OR
C = 1) AND (D =) AND (E - e1 OR E = 1).
The resulting relation, r' = (r-s) U {t2}'

subsumes the relation r. The relation r does
have a larger possibility set, but the
completions of r' will all appear in the
possibility set of r.

The second assumption allows the tuples in
the current relation to be used to determine the
true value of null values in the insert tuple,
based on the existing set of functional
dependencies. For example, given the existence
of the functional dependency A.a, a query such
as:

Select from r where A = a1

would generate the set of tuples with the same A
value. The system can then test the resulting
set of tuples for a non-null value of B. Based
on assumption ii) if such a value exists, there
should be only one such value (ignoring null
values 'whi~ch are considered soft violations). If
such a non-null value exists, the backend system
can ,,then use the value to replace the null value
in t2 for the attribute B.

Null value replacement as discussed can be
extended beyond just changing insertion tuple.
The ,.:definite values of the insertion tuple can be
used to replace null values in the tuples of the
current relation. Such a policy is clearly more
time conauming, since, first it requires that the
use,r interface generates test conditions for all
functional dependencies for which the left side
attrihutes of the insertion tuple are definite
and then the definite right side attributes in
the insertion tuple are used to replace nulls in
the tuples of the current relation. The policy
rests on the assumption that the insertion tuple
is valid. Notice that such an assumption is
consistent wit.h assumption (11). Inserting a
tuple that has an incorrect data value will
result in an incorrect relation.

The null replacement policy used in ASLM
will not provide replacement of all of the nulls
that might be replaced under a more comprehensive
replacement policy_such as the one described by
Maier [19]. The more comprehensive replacement
algorithms, such ,as the one described by Maier,
make use of marked (indexed) null values to
increase the situations where nulls can be

1217

replaced. In considering the overall performance
of ASLM, the use of marked nulls does not seem to
offer sufficient advantages to offset the
increased cost.

6. Conclusion
The inclusion of the maybe algebra operators

into the design of the Associative Search
Language ~achine (ASLM) has been examined. It'is
shown that the system can be upgraded to include
the operators with only modest changes.
Practical restrictions for the implementation of
the maybe join have been given.

The primary concern in adapting ~SLM to
include the maybe algebra operators, is that any
required changes should not degrade the
performance of the traditional relational algebra
operators. To this end, the implementation of
maybe algebra is slow. Current work centers
around attempts to solve this problem.

Reference List

1. ANSI/X3/SPARC Study Group on Database
Management Systems, Inter~m Report,
ANSI, Feb., 1975.

2. Biskup, J., "A Foundation of Codd's
Relational Maybe~perations," ACM TODS,
Vol. 8, No.4, 1983, pp. 608~636.

3. Bray, O.H. andH.A. Freeman, Database
Computers, Lexington-.Books, 1979.

4. Champine, G.A., "Four Approaches to a
Database Computer", Datamation,
December 1978, pp. 101~106.

5. Codd, E.F., "Understanding Relathms",
FDT, 7:3-4, Dec. 1975, pp. 23:"'28.

6. Codd, E.F., "Extending the Database
Relational Model to Capture More
Meaning", ACM TODS, Vol. 4, No.4, 1979,
pp. 397-434.

7. Fagin, R., A.a. Mendelzon, and J.
Ullman, "A Simplified Universal Relation
Assumption and its Properties", ACM
TaOS, vol. 7, No.3, 1982, pp. 343~36~

8. Grant, J., "Null Values in a Relational
Database", Information Processing
Letters, Oct. 1977,'pp. 156,...157.

9. Grant, J. "Partial Values in a Tabular
Database Model", Information Processing
Letters, August 1979, pp. 97""99.

10. Heaps, H.S., Information Retrieval:
Computational and Theoretical Aspects,
Academic Press, New York, 1978.

11. Hsiao, D.K., "D'atabase Computers,"
AdVances in Computers, 1980, pp. 1~64.

12. Hurson, A.R., An Associative Backend
Machine for Database Management, Ph.D.
Dissertation, University of Central
Florida, 1980.

13. Kent, W., "Consequences of Assuming a
Universal Relation," ACM TaOS, vol. 6,
No.4, 1981, pp. 539-556.

14. Korth, H., G.M. Kuper, JU~ Feigenbaum,
A. Van Gelder and J. Ullman, "System/U:A
Database System Based on the Universal
Relation Assumption~ ACM TaOS, vol. 9,
No.3, 1984, pp. 331-347.

15. LaCroix, M. and A. Pirotte, "Generalized
Joins", ACM SIGMOD Record, Sept. 1976,
pp. 14-15.

16. Lien, Y.E., "Multivalued lJependencies
with Null Values in Relational
Databases," VLDB, Rio the Janeiro,
Brazil, 1979, pp. 61-66.

17. Lipski, W., "On Semantic Issues
Connected with Incomplete Information
Databases", ACM TOnS, vol. 4, No.3,
1979, pp. 262~296.

18. Lipski, W., "On Databases with
Incomplete Information", JACM, vol. 28,
No.1, 1981, pp. 41.-lj7.

19. Maier, D., The Theory of Relational
Databases, Computer Science Press,
Rockville, Maryland, 1983.

20. Maier, D., J. Ullman, and M. Vardi, "On
the Foundations of the Universal
Relation Model", ACM TaOS, vol, 9, No.
2, pp. 2831-308.

21. Merrett, T.B., "Helations as Programming
Language Elements", Information
Proc(';tsing Letter's, vol. 6, NO.1, 1977,
pp. 29-33.

22. Parker, D.S. and P. Atzeni, "Assumptions
in Relational Database Theory,"
Proceedings of the ACM SymEosium on
Principles of Database Systems, Mar.
1982, Los Angeles, pp. 1-9.

23. Rosenthal, R.S., "The Data Management
Machine, A Classification", Third
Workshop on Computer Architecture for
Non~numeric Processing, 1977.

24. Su, S.Y.W., H. Chang, G. Copeland, P.
Fisher, E. Lowenthal, and S. Schuster,
"Database Machines and Some Issues on
DBMS gtandards", National Computer
Conference, 1980, pp. 191-208.

25. Ullman, J., "The U.R. Strikes Back",
Proceedings of the ACM Symprosium on
PrInciples of Database Systems, Mar.
1982, Los Angeles, pp. 10-22.

1218

26. Ullman, .J., Principles of Database
Systems, (Second Edition), Computer
Science Press, Rockville, Maryland,
1982.

27. Vassilion, Y.~ "Null Values in Database
Management Denotational Semantics
Approach," ACM SIGMOD Conference, 1979,
pp. 162~169.

28. Vassilion, Y., "Functional Dependencies
and Incomplete Information," VLDB,
Montreal, 1980, pp. 260-269.

29. Zaniolo, C., "Relational Views in a
Database System: Support for Queries",
IEEE COMPSAC, 1977, pp. 267~275.

PROS AND CONS OP OPERATING SYSTEM TRANSACTIONS
POR DATA BASE SYSTEMS

Gerhard Weikum

Computer Science Department
Technical University of Darmstadt
D-6100 Darmstadt, West Germany

Abstract

Recently, several proposals have been made to integrate the well-known
notion of transaction into operating systems. A general transaetion
service could serve as a common basis for various client types, ineluding
data base systems. In this paper, benefits as well as drawbacks of such
an operating system facility are discussed. A major contribution is to
investigate the suitability of three basic kinds of DBS server concepts
with regard to the utilization of OS transactions. To overcome some of
the problems of building DBS transactions on top of OS transactions,
we propose a multi-level transaction methodology. Single DBS requests
are handled as transactions by the OS layer. Management of entire
DBS transactions is done in the DBS supported by basic OS services.
This multi-level transaction management method seems to have certain
performance advantages over pure OS transactions.

1. The Notion of Transaction In Operating Systems

The notion of transaction has proven to be one of the key concepts
of modern data base systems (DBS). It enables application program
mers to overlook all effeets of multi-user mode as well as the possibil
ity of certain classes of failures including a system crash. The DBS
transaction manager guarantees that each transaction appears isolated
from concurrent executions and ensures atomicity and persistence of
transaetions 1211. Application programs simply have to indicate begin
and end of a transaction, usually denoted BOT, standing for 'Begin
of Transaction', and EOT, standing for 'End of Transaction', or RBT,
standing for 'Rollback Transaction', in the case of a deliberate abort.
Thus, transactions are an easy to use concept for fault tolerance in a
multi-user environment 1151.

At the moment, many people believe that transactions need not nec
essarily be tied to the framework of data base systems, but could be
useful for other types of applications too 1361. This idea has given rise to
various approaches aiming at a general transaction management service
within the operating system (OS) as a common basis for all kinds of
applications. A number of projects on this issue, both in the context of
commereialsystems (e.g. 1381,1411, 1461,1511) and focussing on research
prototypes (e.g. 181, 1271, 1281, 1321, 1371), are in an advanced stage or
have already been finished. Basically, all designs suggest an architec
ture similar to that of figure 1. Besides a DBS, possible clients of the
OS transaction manager could be a DC-System managing a network
of terminals (el. 1191, 1451), file servers in a distributed environment
1431 or even mail service as a component of advanced office information
systems Inl.

CH2345-7/86/0000/1219$01.00 © 1986 IEEE
1219

DC-System DBS File Server Mail System

r------------------------------------, t t

: Transaction Manager : L ____________________________________ ~

OS

Flg.l: System architecture based on OS transactions

The above architecture seems to be a very promising direction for fu
ture OS development. On the other side, today's DBSs often ignore
OS services or even circumvent the OS interface because of perfor
mance reasons, thus reimplementing functions like buffer management
and scheduling 1391. Sometimes DBSs even use special channel pro
grams to optimize critical I/O requests 1291. Usually, the argument is
that general-purpose OS facilities cannot meet the requirements of a
DBS, which for example has to schedule thousands of transactions in
a very short time without the overhead of OS processes. The crucial
question arising here is whether an OS transaction management ser
vice is suitable for DBSs, also w.r.t. performance. To be more precise,
we actually should ask whether there is a good chance to implement
OS transactions efficiently enough without semantic knowledge about
data and DBS operations. In the case of a negative answer, DBSs are
likely to ignore OS functions once more, keeping their own transaction
mechanisms (cf. 1411).

This paper discusses benefits of as well as objections to OS transactions
from a DBS point of view. One major issue is the correlation between
transactions and the DBS process strueture. Since, in most proposals, a
process can run OS transactions only one after the other, difficulties to
utilize this new OS feature arise when a single DBS process or a small
group of DBS server processes performs the scheduling of transactions.
On the other side, having done all the scheduling by the OS would
require one DBS process per transaction which seems not to be feasible
in common OSs due to high process management costs. We point out
an efficient solution based on a multi-level approach.

The paper is structured as follows. Section 2 considers basic OS ser
vices supporting DBS transactions. The emphasis of section 3 is on
drawbacks of a direct mapping of DBS transactions to OS transac
tions. A different kind of mapping is presented in seetion 4 taking into
consideration the process structure of a DBS. Design considerations
for the proposed multi-level transaction approach as well as prelimi
nary performance estimations are given in section 5. We conclude with
the recommendation of a revised system architecture on the basis of
figure 1.

2. Operating System Services for DBS Transactions

A first step towards an OS transaction management service would be
to provide at the OS level basic functions for both compoments of
a DBS transaction manager, concurrency control and recovery. As
concurrency control is mostly implemented by locking and recovery
is usually based on logging or shadow storage, this means that two
kinds of services should be offered: lock management and a facility
to backout and redo actions. Implications of such OS functions for a
DBS transaction manager are discussed in this section. We make no
attempt to give an exhaustive survey on various systems or proposals,
which usually are very hard to compare with each other, but restrict
ourselves to a discussion of typical issues.

2.1 Locking Services

State-of-the-art OSs provide functions that allow processes to operate
on global resources in a synchronized way (e.g. 191). These functions
are:

LOCK < re80urce name> < mode>
UNLOCK < re60urce name> < mode>

At least two lock modes, shared access and exclusive access, should be
supported. Additionally, special modes may be useful for hierarchical
locking protocols 1131. When a process wants to acquire a lock on a
resource that is already locked by a different process in an incompatible
mode, the process is enqueued on a FIFO waiting list and deactivated.
It is made dispatchable again as soon as the lock can be granted.

All this is essentially the very same as in DBS concurrency control.
At a second glance, however, some subtle differences become appar
ent. as lockable resources must have a unique name upon which all
processes agree. In a DBS, most resources have unique names such as
page numbers or tuple identifiers, but also proposals have been made
to lock predicates or key values and key intervals in an index (e.g.
151). If, for example, a reader scans the key interval 110,3001, then,
in order to achieve serializability, a writer inserting key 120 must be
prevented from running concurrently. To recognize such a situation,
both the interval and the single key have to be mapped to the same
resource name. Thus, besides the as locking service such a DBS would
need some table management of its own. However, as most DBSs use
page locking, this seems not to be really a serious disadvantage of as
lock management. Even the widely discussed phantom problem can be
handled properly by page locking, since predicate oriented operations
are inevitably transformed into either an index scan or some kind of
relation scan on an implementation level (d. 121).

More serious is that building upon OS locking solely requires an as
kernel call, i.e. an SVC in the common /370 architecture, for each
LOCK operation, even in the nowaiting case. If instead locks were
managed in a common memory pool by the DBS itself, this overhead
can be avoided whenever a lock request is granted immediately. As far
as we know, no figures about this specific SVC overhead have ever been
published. We are convinced, however, that, by microcoding frequent
instruction sequences or with a better design of hardware, the costs of
as locking service functions can be reduced by an order of magnitude
compared with today's figures (d. 1231, 1311). In the common case
of (virtual memory) page locking, special hardware support has been
suggested 1401. The proposed hardware automatically marks a virtual
memory page as locked on the first machine instruction referencing
this page, either in exclusive or shared mode depending on the kind of
reference. This method seems to be practicable provided that locked
pages remain in virtual memory, i.e. the as has a 'one-level storage'
file system 1441, 'this is what the method originally was proposed for,
or locked pages always could be pinned to the DBS buffer pool. Please
note that this approach would require an explicit as kernel call only
for UNLOCK operations.

as locking services can be used by DBSs in two ways. Most DBSs need
a small number of semaphores (sometimes called 'latches') to synchro
nize access to common adminstration pools such as the lock table or

the buffer pool LRU chain. These semaphores are typically acquired
very often and released again after some hundred machine instructions.
When a DBS process is deactivated by the as scheduler, e.g. due to
time-slice runout, while holding such a semaphore, all other processes
soon enqueue on this semaphore, thus forming a kind of convoy. It
has been observed that convois are a lasting phenomenon and hence
have a very negative influence on the overall performance 131. If DBS
semaphores were known to the as, the as scheduler could easily avoid
deactivating a process that would block other processes. Semaphores
should be implemented by the as locking service therefore.

The second way to use as locking is for data items. This seems to
be the method of the relational system INGRES to implement page
locking 1301. We have already discussed inherent limitations of this
approach above. On the other side, two advantages over DBS locking
can be imagined. As the as has knowledge about CPU utilization, it
could try to run a deadlock detection 'demon', i.e. to check for cycles
in a waiting-graph, whenever the CPU would be idle otherwise. Such
an approach, of course, is not feasible for a DBS, that would have to
start deadlock detection in regular intervals, or, even worse, at each
lock wait. In addition to this, we observe that global deadlocks, e.g.
involving data base locks and file locks, can be easily detected if resource
locking is performed entirely in one subsystem, viz. the as.

Another benefit of as locking is simplification and potential perfor
mance improvement of resource unlocking. When the DBS executes
an EaT operation, it has to release all locks held by the committed
transaction, and has to notify all transactions that have been waiting
for one of these locks and are now ready to run. The second step usu
ally is a costly event, since all DBS processes acting on behalf of these
transactions must be signaled via as kernel calls. This requires as
many interprocess messages as there are waiting processes. Probably,
it would be much more efficient, if a process committing a transaction
calls the as locking service once, leaving it to the as to make wait
ing processes dispatchable again. We would simply have to extend the
UNLOCK operation to release a set of resources in one call.

It seems that as locking would not only be far from being a bottleneck
for DBS transactions, but could really improve the overall performance.

2.2 Recovery Services

The purpose of an as recovery service is twofold. First, it provides
clients with the facility to go back deliberately to a previous system
state, either by reconstructing the state of all objects that have been
changed since then or by compensating all update operations through
their inverses. The second task is to secure object states, i.e. to protect
them against crashes by forcing all necessary data to stable storage.

These two facilities are called UNDO and REDO functions in DBS
terms. As in DBSs, rollback need not be expected to any previous
state nor need resiliency be guaranteed for every single action. For
most clients it seems to be sufficient, if states to be secured and backup
states must be indicated explicitly. A special form of this facility is the
notion of a 'recovery sphere' which is a unit of work with the properties
of atomicity and persistence. Recovery spheres enable a client to go
back to a single previous state, marked by a 'BRU' call denoting 'Begin
of Recovery Unit', until it reaches a commit point, marked by an 'ERU'
call denoting 'End of Recovery Unit' 1461. Only committed states are
secured.

Recovery spheres closely resemble the notion of transaction. The differ
ence is that the former need not be synchronized with each other. Thus,
recovery spheres plus strict two-phase locking provide an os transac
tion service. In the following, we exclude nested recovery spheres 126,
271 from our discussion.

Obviously, an as service providing recovery spheres can adopt DBS
recovery techniques which mostly are based on shadow storage or log
ging. The basic idea of shadow storage is to map updated pages, i.e.
current but not yet committed page versions, to disk blocks different

1220

from those of the original, i.e. old page versions which become so
called 'shadow pages' [441. This mapping usually is done through two
versions of a translation table. The necessity of additional I/Os for
these page tables has been considered as a main bottleneck of shadow
storage mechanisms [141.

Integration of shadow storage into a virtual memory OS could help to
reduce the table management overhead drastically. As virtual address
spaces typically are based on a page-to-disk block mapping too, it seems
very advantageous to combine both kinds of tables (e.g. [81). Please
note, however, that this would require a complete file to be bound in
virtual memory, which is the basic idea of 'one-level storage' systems
(cf. [441). No DBS buffer pool is necessary in such an approach, as
alII/Os are done via virtual memory paging. Thus, the problem of
double-page faults [101 is resolved incidentally. One point of criticism of
this technique has been that virtual memory replacement algorithms,
usually LRU-like, are not suitable for DBS page reference patterns
[391. We leave it to the reader's judgement whether this issue could be
remedied or rather is a persistent objection.

Even with a more conventional file system in mind, the OS could de
crease shadow storage table overhead combining it with the mapping
of extents, i.e. collections of consecutive disk blocks, to disk addresses.
This would at least help to shorten page table entries, and consequently
saves I/Os (cf. [241, [321).

The other main approach to recovery - logging - requires an UNDO log
record to be written each time before updating a disk page in place and
REDO log records to be written before committing a transaction 1131.
The first kind of I/Os due to the write-ahead log principle often can be
avoided when buffer pools are large enough to fix updated pages until
they are committed. This is the idea of the 'Cache/Safe' strategy [111
and is termed a NO-STEAL buffer policy in [211. So, as UNDO log
records can be kept in main memory until they are no longer needed,
forcing REDO log records to disk during the commit phase of transac
tions remains the major bottleneck of log-based recovery techniques.

The I/O time to write REDO log records of a transaction can be de
creased considerably through the use of special channel facilities, e.g.
'chained I/O' (cf. 1111). In fact, some DBSs have implemented highly
sophisticated channel programs (e.g. (291). It is our strong opinion that
low-levell/O driver routines are the responsibility ofthe OS kernel and
actually should not be executed directly by a non-trusted process like a
DBS normally is. So the natural place for optimizing REDO loggging
I/Os is in the OS.

An even higher performance enhancement is achievable through a
method called 'group commit' [71. When a client of the OS recovery
service requests to commit, it could be deferred until a certain number
of clients is ready to commit. Then, REDO log records of these clients
are altogether written to disk in one chained I/O operation, thus dras
tically decreasing I/O costs. DBSs have already utilized this technique
too [12,221. The overall performance gain could be still higher yet in
an OS recovery service, as not only DBS processes but also clients such
as DC system processes and file servers (cf. fig.l) participate in group
commit.

Recovery services in the OS kernel seem to be very attractive because
of possible optimization due to its closeness to hardware. In addition
to special I/O drivers, non-conventional disk architectures such as as
sociative search disks (cf. (321) or non-volatile semi-conductor disks
(cf. (341) will have an impact on recovery performance and maybe even
recovery algorithms. It has been a traditional task of OSs to provide
device independence for user processes. We think that this should hold
for DBSs too, also in view of novel device types.

1221

3. Drawbaeks of OS Transaetions

To summarize the results of the last section, we consider OS locking
service and OS recovery service as a basis that is well-suited for DBS
transaction management. Since both services are complementary to
each other, they can be integrated to provide a complete OS transaction
facility. Clients of such a service, particularly DBS processes, only have
to issue BOT and EOT or RBT operations. The OS transaction service
acquires all necessary locks automatically, and is fully responsible for
recovery measures.

However, any OS transaction concept can only comprise objects and
operations that a.re known to it. As a consequence of this, each client
operation on an OS object such as a file must have associated an explicit
OS kernel call in order to inform the OS transaction manager about
it. DBSs usually refer to pages, i.e. fixed-size (typically 2K or 4K)
blocks of a primitive file, as OS objects. This means that each request
to fix or unfix a page has to be treated as an OS kernel call, whether it
causes an I/O or not. Under these circumstances it seems reasonable
to delegate buffer management to the OS too. As we mentioned before,
it is not clear whether OS buffer replacement algorithms can achieve
results nearly as good as a DBS would. Certainly, the OS has no
semantic knowledge about DBS page reference patterns, but it seems
that most DBSs essentially use a rather simple LRU policy [101.

Two further consequences are derived from the page orientation of the
DBS-to-OS interface. If transaction management is in the OS, then
[401:

• page level locking is performed for all types of data, and

• page level recovery is performed for all types of data.

The first item does not take into consideration 'hot spot' data, i.e.
data with a high rate of congestion. Whole pages are even locked when
catalog information such as tuple counters are accessed, although the
DBS only uses this data for query optimization and thus could tolerate
inaccuracies 1411. Similar considerations appear to be valid for recovery.
Page logging usually means that full before images and after images are
recorded, even if only a few bytes have been changed [401. We will revise
this point in the next section.

[411 proposes a solution to these drawbacks. It recommends that the
OS transaction service could be informed to relinquish locking and
recovery measures for certain objects. Moreover, it should allow clients
to record application-specific events of their own in the log. We suggest
a different approach called 'multi-level transactions' that remedies the
above mentioned disadvantages and yet tries to pro6tfrom the OS
transaction service as much as possible. Basically, its idea is to deal
with OS transactions as they are, building a higher-level notion of DBS
transaction upon them.

As we will show in the next section, multi-level transactions also pro
vide a clean concept to cope with another difficulty of pure OS trans
actions. The OS has to identify a client for each active transaction by
some unique criterion. From an OS point of view, it seems very natural
to use process IDs for this purpose (e.g. [271, (461), as a transaction
is always executed in the context of a particular process, or possibly a
tree of processes in a distributed system. In order to avoid confusion
about transaction clients, this process cannot issue a BOT request for
a second transaction unless the one it is executing is terminated first,
either by EOT or by RBT. Note that in the nested transaction case,
this condition still holds for transaction roots. Thus, in many propos
als, client processes are tied to at most one OS transaction for each
period of time. Conversely, when a process issues a BOT operation,
all subsequent actions of this transaction must be invoked directly, or
indirectly in the case of a process tree, from the original process. Im
plications of this binding scheme are discussed in detail in the following
section 4.

4. Mapping of DBS Tranaadlon. to OS Transactlons

As we indicated at the end of the last chapter, the realization of DBS
transactions by OS transactions depends on the DBS process structure.
This correlation has its origin in a one-to-one binding scheme between
OS transactions and processes. The following three basic types of DBS
process structures are used in practice 118,201.

In a symmetric server proces. approach, each DBS transaction is
run as its own DBS process. Either the DBS code is executed directly in
the application process, or because of code protection a separate DBS
process is spawned dynamically and destroyed after the transaction is
finished. The first method seems to be implemented in DB2 1171, the
second one is followed by INGRES 1301 for example. In either case,
scheduling is fully delegated to the OS.

At the opposite end of the range of possibilities, a single server pro
cess method has been successfully implemented e.g. in SQL/DS 141.
One DBS process, permanently running in the background, performs
the requests of all transactions. To achieve satisfactory throughput
results, such a server must do asynchronous I/Os. It cannot afford
being blocked by a request that runs into a lock wait, as the blocking
transaction can make progress and eventually release the lock only if
this single DBS process is executed further. Hence the DBS has to do
some fairly complicated scheduler tasks, e.g. saving context informa.
tion of interrupted request-processing 'agents'. On the other side, this
approach has the virtue of low costs due to process management.

To simplify scheduling and to allow for a multi-processor environment,
multlple server processee (e.g. 1351) could be installed at system
boot time. These processes need not necessarily perform asynchronous
I/Os. They could do without internal multitasking, simply deactivating
a process in case of a lock wait. Typically, the number of concurrent
transactions is higher than the number of DBS processes by a factor of
2 to 5 (d. 1201). So a good and yet simple strategy for such a server
type could be to process any DBS operation request to its end in one
of the server processes before this process accepts another request. At
each point of time, every DBS process acts on behalf of at most one
transaction.

We are now going to investigate the suitability of these various server
types with regard to OS transactions. In a symmetric server process
system, each DBS transaction can be mapped one-to-one onto an OS
transaction running in the DBS process assigned to it. The following
example demonstrates a possible process structure.

T1 T2 Ts

I'+~ .. I.~- -", ~~ ~ ~
121 " : 1s1~'-! 122 ~~. IS2:

~-t ~ -1 . .-~ ----- - : , : ~'" ---- . , : • -<. ... • ,
aU2 :gSl1.: t(/221J \ gS12 gS21 J, (/222 ~- ~ ..

Flg.21 Transactions in a symmetric server process system

The figure shows transactions 7i issuing several DBS tuple operations
Iii which in turn result in a number of OS page operations aii". Trans
actions T1, T2 and Ts are processed in three different DBS servers cre
ated dynamically. The execution order of actions has to be read from
left to right in the above figure. Due to index maintenance, one DBS
tuple operation usually corresponds to more than one page operation.
Separation of application programs and DBS code in distinct processes
is indicated byexe1uding transaction roots from servers.

Each DBS server can initiate a (page level) OS transaction in this
approach. For the scenario of figure 2 the transactions would be:

Tf .. < g111.g112 > in the solid process
T~ .. < 0211 .0221 .(/222 > in the dashed process
T~ .. < gSl1 • gS12 • gS21 > in the dotted process

Clearly, the notion of OS transactions fits nicely with a symmetric
server process scheme.

In a single server approach there is no possibility to assign a unique
process ID to DBS actions, since all requests are handled in the same
process. Therefore, OS transactions are not attractive at all for such
an environment, as one process would have to act as a client for more
than one OS transaction at a time. Actually this is not even surprising,
as a single server DBS nearly is an operating system in itself, ignoring
most OS functions as e.g. scheduling. For this type of server it would
probably be better to run on a small special-purpose OS kernel that
only provides most rudimentary facilities and therefore incurs little
overhead (d. 1421). However, this is in sharp contrast to our.overall
philosophy as indicated in section 1.

In the case of a multiple server process structure we could have a sce
nario like that of figure 3.

Flg.3: Transactions in a multiple server process system

Obviously, the one-to-one mapping of DBS transactions onto OS trans
actions, that has worked for the symmetric server type, is not feasible
here. Requests of three different transactions are executed in the con
text of two DBS processes, which are drawn in the above figure with
solid lines and dashes respectively. Assignment of requests to servers
could be according to some load balancing scheme. Since transaction
T2 migrates from the dashed process to the solid one, treating its page
action sequence < 0211,0221,0222 > as an OS transaction would vio
late the principle that OS transactions are always bound to one single
process.

This binding rule is yet fulflned by page level actions of each DBS op
eration request. Therefore, we could treat these requests as OS trans
actions obtaining:

Tf1 .. < g111 .g112 > in the solid process

1222

T~t .. < 0211 > in the dashed process
T~2 .. < 0221 .0222 > in the solid process
T~t .. < gS11.gS12 > in the dashed process
T~2 .. < gnt > in the dashed process

But is this actually of any value to a DBS? Fortunately, the answer is
yes, as we are going to show now. Our idea is to apply a multi-level
transaction methodology 148,491 with two layers here. The OS trans
action manager guarantees that single DBS operations appear isolated
from concurrent requests and are resilient w.r.t. certain failure cate
gories. From the view of an additional DBS transaction manager this
means that single DBS operations can be treated as atomic actions.
Hence it is valid for a DBS to use tuple locking without the need to
care about interferences on the page level. DBS transactions thus are:

T1 < 111 >
T2 < 121./22 >
Ts .. < 1st ./s2 >

It has been shown elsewhere [1.50) that level-by-Ievel serializability is
sufficient for a multi-level concurrency control method to be sound. The
DBS transaction manager yields serializability of DBS transactions.
and the OS transaction manager ensures serializability of single DBS
operations. i.e. OS transactions. Transaction T3 • for example. then
actually looks like:

Flg.4: Two-level transactions based on OS transactions

Details of this kind of transaction management are discussed in the
next section 5. The multi-level transaction approach is also applicable
in the symmetric server process ease. We are getting into difficulties.
however. with the multiple server type. when DBS processes perform
internal multitasking. e.g. to avoid becoming deactivated in ease of a
lock wait (e.g. UDS [35]). The problem is illustrated in the following
figure.

Flg.5: Transactions in a multiple server process system
with internal multitasking

In this scenario even a single DBS operation. viz. hi, migrates from the
dashed process to the solid one. Therefore, the multi-level transaction
methodology is rendered impracticable in this ease.

5. Multi-Level Transaction Management

Multi-level transactions not only overcome the problem of binding OS
transactions to processes. but have another major virtue. Page locks are
released at the end of each OS transaction, i.e. at the end of each DBS
tuple operation. Only tuple locks must be held until EOT of the DBS
transaction. In most cases this results in increased parallelism. One of
the major objections to OS transactions (see chapter 3), viz. pure page
locking, is remedied this way. However, it is still not possible to use
special locking techniques for special DBS-like data structures within
the OS, e.g. a B-tree locking protocol, unless the OS has semantic
knowledge about these structures. On the other hand, such protocols
are hardly used in real DBSs today, since for recovery reasons one has
to keep locks on updated tree nodes until EOT anyway (d. 133]). We
claim that also our multi-level locking protocol prevents B-tree. roots
from becoming 'hot spots', just by releasing page locks at the end of
each DBS tuple operation.

Log space may be saved by recording tuple changes only instead of
whole pages (d. [16]). However, as tuple actions are in turn made
resilient by page logging, effectively reducing the log size requires some
more refined technique than straightforward multi-level recovery. We
will not discuss this issue further here.

1223

To be fair, disadvantages of our multi-level transaction approach should
not be withhold. As page locks are released prematurely, UNDO of
an unfinished DBS transaction through OS page level recovery, i.e.
restoring page before images for example, could result in anomalies
such as lost updates. Instead DBS operations have to be compensated
by their inverses. Undoing an 'INSERT' operation means to execute a
'DELETE' operation on the inserted·tuple (d. [uD. Admittedly, this
is a costly method, but as transaction UNDOs, e.g. due to deadlocks,
normally are infrequent events, we do not consider this as a serious
drawback and are willing to accept this price in return for enhanced
concurrency.

Another objection could be that the DBS transaction manager needs
its own locking and recovery services (41). This is true for locking, but,
apart from certain restrictions mentioned in section 2.1, the OS lock
manager could be 'used for this purpose if it is made available as an
independent OS service. DBS operation logging could be performed
within OS transactions like any other page level operation. A DBS op
eration inserting a tuple' into a page p and causing index maintenance
operations on pages q and r would look like:

< BOT, read(p) , wrile(p), read(q), read(r), wrile(r), wrile(,),EOT >

where, is a log page containing an entry for the inverse DBS operation,
viz. 'DELETE I'. Atomicity and persistence of OS transactions ensure
that after a crash this UNDO entry will be contained in the DBS op
eration log if and only if tuple I has really been inserted and all indices
have successfully been updated. Thus, log management functions of
the OS transaction service need not be duplicated in the DBS.

However, building DBS logging into OS transactions also has disadvan
tages. As the OS does not distinguish between data pages and DBS
log pages, it enforces page locking on the DBS log too. Fortunately,
potential lock waits on a log page are very short, because DBS log
records are always written as the very last action of an OS transaction.
By splitting the DBS log into n separate logs, where n is the maximum
number of concurrent OS transactions, contention on this ressource
could be totally eliminated, but, on the other hand, this would not
allow for packing log records of several processes into a single page. In
either ease, in a rigorous realization of our multi-level transaction ap
proach, twoDBS processes cannot write their DBS log records together
using only one single I/O.

An essential drawback of our multi-level transaction scheme is that
it will pretty surely increase I/O rates due to REDO logging. Our
approach splits one DBS transaction into a number of short OS trans
actions. Each time such an OS transaction commits, page level REDO
log records must be forced to disk. These I/O costs are inevitable and
can only be reduced to a certain degree. A clever technique based on
the 'Cache/Safe' strategy of [U) could be to record only changed byte
strings (d. [25]) instead of whole page after images in a log buffer.
Such a log entry can be computed without knowing anytaing about
the DBS update operation that has caused the page modification, sim
ply by comparing the page with its before image at commit time. This
comparison causes no additional I/O since in the Cache/Safe approach
before images are kept in the buffer pool throughout the duration of a
transaction. Please note that such a NO-STEAL strategy (21) is more
likely to be practicable when page level transactions are rather short
as is the case in our multi-level scheme. Then, using group commit and
sequential chained I/O for the REDO log buffer might reduce EOT
costs to a tolerable rate.

In order to get quantitative results about the trade-offs of the proposed
multi-level transaction approach, a number of simulation experiments
have been performed. Since we have no OS offering transactions avail
able, we misused a DBS for page level locking and recovery as well
as for mapping tuple operations into sequences of page I/Os. On top
of this layer, tuple level locking and logging has been implemented as
sketched above. Measurements were performed with a mix of DBS
transactions from a real-world application against a 130 MB data base
of real-world data. As underlying process structure we used a variant

of the symmetric server concept, combining it with a simple load gener
ating mechanism. More technical details about this performance study
are contained in [6}.

In the experiments, two basic techniques were applied and compared
with ea:ch other: using page level transactions directly for application
transactions vs. our multi-level transaction approach. A series of mea

.surements has given rise to the following key observations:

• On the average, multi-level transaction management increased the
throughput of.application transactions by 12 percent.

• Pure page level locking resulted, in an unexpectedly high number of
deadlocks, whereas the multi-level technique hardly suffered from
deadlocks at all. Obviously, for short-lived subtransactions the dan
ger of a page level deadlock is extremely low, and usually only few
deadlocks occur due to tuple level waiting situations.

• With pure page locking, the lock wait probability, i.e. the frequency
of lock requests resulting in a lock wait, was fairly low, viz. about
1 percent. This result, however, was clearly outperformed by the
multi-level locking protocol which achieved less than 0.2 percent on
pages, just by, releasing locks early. Of course, in the latter case
one has to consider the lock wait probability on the tuple level too,
which ranged from 1 to 2 percent. However, as the absolute number
of lock waits on tuples was extremely low, compared with lock waits
on pages, the crucial performance impact seems to arise from page
conflicts.

• The inherent increase of I/Os for the multi-level technique was even
worse than expected. Our measurements indicated a factor of 3 per
application transaction. In particular, the number of I/Os caused
indirectly by tuple level logging was tremendous. Basically, this
had,two reasons: The underlying page level recovery system forced
before-images to disk before modifying pages in the buffer, and
flushed committed.pages to the permanent data base immediately
at EOT. Therefore, each tuple level log record caused two additional
I/Os.

Our simulation results have been very encouraging so far. Although
the underlying page level recovery method actually has been totally
unsuitable for short (sub-) transactions, the multi-level technique was
the winner w.r.t. throughput. The next step will be to investigate
potential performance gains of implementation techniques such as the
Cache/Safe approach and the group commit mechanism. These con
,cepts are supposed' to reduce the I/O bottleneck substantially.

6.Coneiuslon

Several consequences might be concluded. from our discussion of bene
fits.and drawbacks of OS transactions in the various DBS server process
structures.

• A first 'conclusion could be that process management costs have to
become much lower in next generation OSs. Under this precondi
tion, .the symmetric server architecture would certainly appear most
favourable, as it is easy to implement, delegates all scheduling tasks

, to the OS, and seems to fit best with the concept of OS transactions.

;;. If a very. high number of concurrent processes still causes intolerable
overhead, a multiple server solution would probably yield better
performance results,especially in combination with a DC system
(d. [191). This approach, however, should be implemented without
internal multitasking, in order to allow for the utilization of OS
transactions according to our multi-level transaction methodology.

1224

• As pointed out in chapter 4, the trouble with OS transactions and
DBS servers primarily comes from binding OS transactions to pro
cesses. If instead each BOT operation returns a system-wide unique
transaction 10, this 10 could be used as a client identification in all
subsequent service calls that refer to the same transaction. Thus,
clients could migrate from one process to another without interfering
with OS transaction management, and, on the other hand, a DBS
server process would be allowed to act on behalf of more than one
OS transaction in an arbitrarily interleaved way.

Of course, we vote for the first two conclusions, whereas the third one
is debatable. Our personal opinion is, that from an OS point of view,
binding service functions, like OS transactions are, to processes seems
to be the most natural and manageable approach as long as processes
themselves are considered a suitable concept to structure program ex
ecutions in a multi-user OS. Therefore, it is likely that future OSs will
indeed expect transactions to be bound to processes. DBSs, like any
other client, will have to make the best of it.

Altogether, OS transactions seem to be a really useful service for var
ious kinds of clients. Whether DBSs in particular will accept this fa
cility, will probably depend on performance issues. As we have argued
mostly qualitatively in this paper, more::efforts should be taken to gain
quantitative results.

Our own"work will concentrate on the promising direction of multi-level
transactions. For this method, the architecture of figure 1 has to be
expanded slightly. In addition to ,the transaction service, the OS should
offer locking as a common service to be used by higher layers. A void
ing reimplementation offunctions in different subsystems'certainly out
weighs minor performance issues in this case. Furthermore, to reduce
the costs of DBS logging in the multi-level transaction framework, it
could be advantageous to allow direct use of the OS logging service
from the DBS level too, though this actually violates the spirit of the
multi-level transaction approach to some extent. The main conclusion
is that to improve the overall performance of multi-level transactions,
an OS transaction kernel should be oriented towards a high number of
short-lived (sub-) transactions rather than handling DBS transactions
entirely.

Refereneea

[I! C.Beeri, P.A.Bernstein, N.Goodman, A Model for Nested Transac
tion Systems, Technical Report, The Hebrew Univerity, Jerusalem,
1986

[2! P.A.Bernstein, N.Goodman, M.-Y.Lai, Laying Phantoms to Rest,
IEEE COMPSAC Conference, 1981

[3} M.Blasgen, J:Gray, M.Mitoma, T.Price, The Convoy Phe
nomenon, ACM Operating Systems Review Vo1.l3 No.2, 1979

[41' D.D.Chamberlin, A.M.Gilbert, R.A.Yost, A History ,of System R
and SQL/Data System, Proc. 7th VLDB Conference, Cannes,
1981

[51 P.Dadam, P.Pistor, H.-J.Schek, A Predicate Oriented Locking Ap
proach for' Integrated Information Systems, Proc. Information
Processing 83, Paris, 1983

[6} T.Dey, H.Georg, Performance Evaluation of Multi-Level Transac
tion Management Strategies, Master Thesis, Technical University
of Darmstadt, 1986, in German

[7} D.J.DeWitt, R.H.Katz, F.Olken, L.D.Shapiro, M.R.Stonebraker,
D.Wood, Implementation Techniques for Main Memory Database
Systems, Proc. ACM SIGMOD Conference 1984

[81 H.Diel, G.Kreissig, N.Lenz, M.Scheible, B'.Schoener, Data Man
agement Facilities of an Operating System Kernel, Proc. ACM
SIGMOD Conference 1984

[9! VAX/VMS System Services Reference Manual, Digital Equipment
Corp., Maynard, Massachusetts

[1O} W.Effelsberg, T.Haerder, Principles of Database Buffer Manage
ment, ACM Transactions on Database Systems Vol.9 No.4, 1984

[llJ K.Elhardt, R.Bayer, A Database Cache for. High Performance and
Fast Restart in Database Systems, ACM Transactions on Database
Systems Vo1.9 No.4, 1984

[121 D.Gawlick, D.Kinkade, Varieties of Concurrency Control in
IMSjVS Fast Path, IEEE Data Base Engineering Vo1.8 No.2, 1985

[131 J.Gray, Notes on Data Base Operating Systems, in: Operating
Systems - An Advanced Course, LNCS 60, Springer-Verlag, Berlin
Heidelberg-New York 1978

[141 J.Gray et aI., The Recovery Manager of the System R Database
Manager, ACM Computing Surveys Vol.l3 No.2, 1981

[lSI J.Gray, Why Do Computers Stop and What Can Be Done About
It?, Proc. German Chapter of the ACM Conference on Office
Automation, 1985

[161 N.D.Griffeth, Reducing the Cost of Recovery from Transaction
Failure, IEEE Database Engineering Vo1.8 No.2, 1985

[171 D.J.Haderle, R.D.Jackson, IBM Database 2 Overview, IBM Sys
tems Journal Vo1.23 No.2, 1984

[181 T.Haerder, Embedding a Database System in an Operating System
Environment, Proc. German Chapter of the ACM Conference on
Data Base Technology, 1979, in German

[191 T.Haerder, K.Meyer-Wegener, Transaction Processing Systems,
TP Monitors, DB JDC Systems - Functional Requirements and
Implementation -, Technical Report, University of Kaiserslautern,
1985, in German

[201 T.Haerder, P.Peinl, Evaluating Multiple Server DBMS in General
Purpose Operating System Environments, Proc. 10th VLDB Con
ference, Singapore, 1984

[211 T.Haerder, A.Reuter, Principles of Transaction Oriented Database
Recovery, ACM Computing Surveys Vol.l5 No.4, 1983

[221 P.Helland, Transaction Monitoring Facility (TMF), IEEE Data
base Engineering Vo1.8 No.2, 1985

[231 J.L.Keedy, J.Rosenberg, K.Ramamohanarao, On Synchronizing
Readers and Writers with Semaphores, Computer Journal Vo1.25
No.l,1982

[241 J.Kent, H.Garcia-Molina, Optimizing Shadow Recovery Algo
rithms, Technical Report, Princeton University, 1985

[251 B.G.Lindsay et aI., Notes on Distributed Databases, IBM Research.
Report RJ2571, San Jose, 1979

[261 B.Liskov, R.ScheiBer, Guardians and Actions: Linguistic Support
for Robust, Distributed Programs, ACM Transactions on Pro
gramming Languages and Systems Vo1.5 No.3, 1983

[271 E.T.Mueller, J.D.Moore, G.J.Popek, A Nested Transaction Mech
anism for LOCUS, ACM Operating Systems Review Vol.l7 No.5,
1983

[281 T.W.Page, M.J.Weinstein, G.J.Popek, Genesis: A Distributed
Database Operating System, Proc. ACM SIGMOD Conference,
1985

[291 R.J.Peterson, J.P.Strickland, Log Write-Ahead Protocols and
IMSjVS Logging, Proc. ACM Symp. on Principles of Database
Systems, 1983

[301 INGRES Reference Manuals, Relational Technology Inc., Berkeley;
California

[311 J.T.Robinson, A Fast General-Purpose Hardware Synchronization
Mechanism, Proc. ACM SIGMOD Conference, 1985

1321 W.D.Roome, The Intelligent Store: A Content-Addressable Page
Manager, Bell System Technical Journal Vo1.61 No.9, 1982

[331 D.Shasha, What Good are Concurrent Search Structure Algo
rithms for Databases Anyway?, IEEE Database Engineering Vo1.8
No.2,1985

134j S.Shibayama, T.Kakuta, N.Miyazaki, H.Yokota, K.Murakami, A
Relational Database Machine with Large Semiconductor Disk and
Hardware Relational Algebra Processor, New Generation Comput
ing Vo1.2, 1984

1225

[35J UDS: Universal Database Management System - System Reference
Guide, Siemens AG, Munich

[361 A.Z.Spector, P.M. Schwarz, Transactions: A Construct for Reliable
Distributed Computing, ACM Operating Systems Review Vol.l7
No.2,1983

1371 A.Z.Spector et aI., Support for Distributed Transactions in the
TABS Prototype, IEEE Transactions on Software Engineering
VoI.SE-ll No.6, 1985

[381 L.L.Spratt, The Transaction Resolution Journal: Extending the
Before Journal, ACM Operating Systems Review Vol.l9 No.3, 1985

139j M.Stonebraker, Operating System Support for Database Manage
ment, Communications of the ACM Vo1.24 No.7, 1981

[401 M.Stonebraker, Virtual Memory Transaction Management, ACM
Operating Systems Review Vol.l8 No.2, 1984

[411 M.Stonebraker, D.DnBourdieux, W.Edwards, Problems in Sup
porting Data Base Transactions in an Operating System Transac
tion Manager, ACM Operating Systems Review Vol.l9 No.1, 1985

142j M.Stonebraker, J.Woodfill, J.Ranstrom, M.Murphy, M.Meyer,
E.Allman, Performance Enhancements to a Relational Database
System, ACM Transactions on Database Systems Vo1.8 No.2, 1983

[431 L.Svobodova, File Servers for Network-Based Distributed Systems,
ACM Computing Surveys Vol.l6 No.4, 1984

[44jI.L.Traiger, Virtual Memory Management for Database Systems,
ACM Operating Systems Review Vol.l6 No.4, 1982

[45j I.L. Traiger, Trends in Systems Aspects of Database Management,
Proc. 2nd Int. Conf. on Databases, Cambridge (UK), i983

[46j J.Verhofstad, Common Journaling and Recovery Units, Field Test
1 Seminar for VMS 4.0, Digital Equipment Corp., 1983

[471 B.Walter, Nested Transactions with Multiple Commit Points: An
Approach to the Structuring of Advanced Database Applications,
Proc. 10th VLDB Conference, Singapore, 1984

[48j B. Walter, Multi-Level Synchronization and Nested Transactions in
Advanced Information Systems, Proc. GI Conference on Database
Systems for Office Automation, Engineering and Scientific Appli
cations, 1985

[49j G.Weikum, H.-J.Schek, Architectural Issues of Transaction Man
agement in Multi-Layered Systems, Proc; 10th VLDB Conference,
Singapore, 1984

[501 G. Weikum, A Theoretical Foundation of Multi-Level Concurrency
Control, Proc. ACM Symposium on Principles of Database Sys
tems, 1986

[51j N.Whyte, ELXSI Data Management Services, Exhibition Pro
gram, 10th VLDB Conference, Singapore, 1984

MAIN MEMORY DATABASE RECOVERY

Margaret H. Eich

Department of Computer Science and Engineering
Southern Methodist University

Dallas, Texas 75275

ABSTRACT

The idea of having entire databases reside in main
memory, or main memory databases (MMDB), has re
cently been an active research topic. It is recognized
that in this framework the issues concerned with
efficient database recovery are more complex than in
traditional DBMS systems. While several authors have
looked at different methods for MMDB recovery, an ex"
amination of MMDB recovery functions and how they
differ from traditional DBMS recovery has not been per
formed. This paper examines MMDB recovery,
identifies differences from traditional DBMS recovery,
composes a "wish list" of MMDB recovery require
ments, describes why previously proposed techniques do
not satisfy these requirements, and proposes a new
MMDB recovery technique which does.

Introduction

The declining cost of main memory and need for
high performance database systems have recently
inspired research into systems with massive amounts of
memory and the ability to store complete databases in
main memory 1,3,8. The use of memory resident data
bases, or main memory databases (MMDB), can achieve
significant performance improvements over conventional
database systems by eliminating the need for I/O to
perform database applications.

Database recovery techniques are used to ensure
that any erroneous database state due to transaction,
system, or media failure can be repaired and restored
into a usable state from which normal processing can
resume 2,9,11,18. Due to the volatility of main memory,
MMDBs complicate database recovery issues. This
problem has been recognized and several new techniques
for MMDB recovery have been proposed 3,5,6,15. The
objectives of this paper are to examine recovery require
ments in a MMDB environment, provide a survey of
proposed techniques, and then propose a new MMpB
recovery technique which better meets these reqUIre
ments than previous methods.

The approach used in this paper is different than
that in previous papers on MMDB recovery. Prior to
defining a technique, we investigate what is meant by
MMDB recovery. With MMDBs, the primary database

CH2345-7j86jOOOOj1226$01.00© 1986 IEEE
1226

copy is memory resident. This change in perspective
from secondary storage to main memory not only causes
problems with the recovery operations, but also changes
some of the accepted methods for recovering from vari
ous failures. In the next section we identify the MMDB
model to be used throughout the paper, defining the
various database components used. Section 3 then uses
this model to define MMDB recovery and compare it's
requirements for recovery to those in traditional data
base systems. From this evaluation, we construct a
"wish list" of MMDB recovery requirements which we
feel a MMDB recovery technique should satisfy. Section
4 reviews existing MMDB recovery proposals and shows
that none meet all requirements on the wish list.
Finally, in section 5 we propose a new recovery tech
nique which does satisfy the wish list items.

MMDB Model

The DBMS model under evaluation is one where
entire databases being accessed reside in main memory.
Although only recently receiving much research interest,
the concept is certainly not new. IMS has supported
main memory databases, Main Storage Data Bases, for
quite some time 12. Unlike the IBM approach, how
ever, we assume no practical limitation on the size or
structure of a main memory database.

Figure 1 shows the MMDB model used throughout
this paper. Sometime prior to access, a database must
be loaded into main memory. To achieve this purpose,
an Archive Database exists on secondary storage. The
archive database is a complete image of some prior
database state and is used solely for loading main
memory. Since no access of the archive is made during
database processing, the organization of this file should
be for efficient loading of memory. Due to the volatility
of main memory, all updates to main memory must be
recorded on a Log located in some stable memory.
Figure 1 shows the log on a secondary storage device,
but it may actually exist in a nonvolatile main memory
supported by a backup power supply, or in a combina
tion of the two. During recovery processing, the log can
be used to achieve UNDO and REDO processing and
thus may contain be/ore Images (BFIM) and/or ajter
images (AFIM) of modified data 11. Together, the
archive and log provide the ability to recover from a

main memory failure. In actual use the archive data
base may be updated directly from data in main
memory or from data in the log.

D
D
11

'S

Fig. 1. - MMDB Model

This view of a MMDB may seem almost identical
to that of a conventional database. However, there
exist several major differences:

1. Main memory is assumed to be large enough
to hold all databases currently being accessed.

2. Any recovery schemes must deal with restor
ing the MMDB not data on secondary storage.

3. No database access can be performed against
the archive database. It's use is strictly as a
backup to the main memory database.

There are several advantages to the use of
MMDBs. Obviously, processing time and throughput
rates should improve <lue to the elimination of I/O
overhead. It has been suggested that the improved per
formance can eliminate the need for concurrency control
bl allowing the serial execution of MMDB transactions

. While we don't agree with this observation, it is cer
tainly conceivable t.hat. concurrency cont.rol mechanisms
specifically designed for the MMDB environment can
reduce the overhead and complexity usually associated
with concurrency control techniques 3.

Some problems not existing in conventional DBMS
systems are introduced in the MMDB environment.
The major problem deals with the volatility of main
memory. To reduce the impact of this problem, it has
been proposed that a small stable main memory be used
to support recovery processing 3,6. If a stable memory
is assumed, its size must be large enough to contain all
updates of active transactions. Another major problem
is the excessive overhead needed to initially load a data
base into memory for processing. This procedure
requires merging data on the archive database and the
log to obtain data needed to recover to the most recent
consistent state. To reduce the time, archives should be
created very frequently and could be distributed across
several secondary storage devices. Additional concerns
center around the increase in the number of main
memory components and the resulting reliability prob
lems and increase in access time. A unique architecture
is currently under investigation at Princeton to address
these issues 7. We are currently only addressing what
appears to be the major problem: MMDB recovery.

1227

MMDB Recoyery Defined

The issues concerning traditional database recovery
are well known and understood 2,9,11,18. The purpose
of this section is to examine aspects concerning data
base recovery under the M~1DB assumption. We inves
tigate the various types of failures effecting database
processing, describe recovery operations necessary for
MMDBs, and conclude by listing the desired features a
MMDB recovery technique should possess.

When discussing MMDB recovery, it is important
to realize that the objective is that of recovering data in
main memory. With conventional databases, the current
database state exists partly in main memory and partly
in the secondary storage. With MMDBs, the current
state completely exists in main memory. Secondary
storage is used solely for recovery purposes. Since
MMDB processing incurs no I/O, any I/O required to
ensure recoverability can have a significant impact on
system performance and become the major bottleneck
during processing.

As with traditional database processing, a trans
action is assumed to be the unit of recovery and con
sistency, and the failures which must be anticipated are
transaction, system, and media failures. The differences
between conventional DBMS recovery and MMDB
recovery are introduced when the specific operations
required to accomplish recovery are examined. TABLE
1 shows the operations needed to recover from the three
failure types in both the tradtional and MMDB environ
ments.

TABLE 1
DAT ABASE RECOVERY OPERATIONS

Failure Type Recovery Operations Required
Traditional DBMS MMDB

Transaction Failure Transaction UNDO Transaction UNDO

System Failure Global UNDO Global REDO
Partial REDO

Media Failure Global REDO Global REDO
Partial REDO

Transaction failure occurs when a transaction does
not successfully commit.' This type of failure occurs
more often than the other two, and thus efficient
recovery from it is essential. A rule of thumb is that
recovery should occur in a similar time frame to that of
successful completion of the transaction 10,11. The nor
mal procedure for recovery after a transaction failure is
a Transaction UNDO. This implies that all effects the
aborted transaction has had on the primary database
copy must be removed. The major concern existing
with transaction UNDO in a MMDB environment is
that it be done with as little I/O as possible. If the rule
of thumb is to be achieved, no I/O should be required

to accomplish transaction UNDO. Additional processing
during transaction UNDO involves the removal of any
dirty data from the log or archive database. These
would also like to be performed with no I/O.

Recovery from a system failure is quite different
with MMDBs than with traditional DBMSs. Tradition
ally, the effects of any interrupted t.ransactions must be
undone, Global UNDO, and any completed transactions
which have not had updates reflected in the database
need to be redone, Partial REDO. When a system
failure occurs, the entire MMDB contents are lost.
MMDB recovery must therefore perform a Global
REDO by completely reloading all databases in main
memory. The archive database is used to reload the
databases to some prior state and then any committed
transactions reflected in the log are redone. The Global
REDO operation is required in conventional systems
only after a media failure causes the loss of the primary
database copy on secondary storage.

System failures occur less often than transaction
failures and more often media failures 11. A goal for
system failure recovery is that it be accomplished in a
time comparable to that required for successful comple
tion of all active transactions. With MMDBs, a Global
REDO requires I/O from the archive database, and thus
it seems impossible to achieve this goal. One way to
reload the MMDBs as quickly as possible is to ensure as
much of recent database updates as possible are
reBected in the archive database. This implies that log
data must be frequently Bushed to the archive database.

In traditional database systems a checkpoint is
often used to reduce the work needed to recover from
system failures 2,g,Il,18. We view a MMDB Checkpoint
as recording all data concerning a prior database state
into the archive database and writing a corresponding
checkpoint record on the log. These checkpoints should
be done with as little impact on transaction processing
as possible. Frequent Bushing to the archive database
th~s requires frequent checkpointing.

Global REDO loads MMDBs into main memory.
However, not all transactions require all data, therefore
transactions can begin processing as soon as some of the
data they need is available. This problem is similar to
the fetching strategies associated with virtual memory
management. At least four possibilities exist when
loading databases into main memory:

1. Database Prefetching - Loading an entire
database into main memory prior to schedul
ing any transactions accessing it.

2. Page Prefetching - Prefetch some subset of
database pages and allow transactions to begin
access of them as the remainder· of the data
base is loaded.

3. Demand Loading - Only load a database when
some transaction first accesses it.

4. Demand Paging - Load database pages after
first access to them.

More research is needed to determine which of these
provides the best performance for Global REDO. The

1228

method to be used depends on such factors as database
storage structure, access methods used, storage location
on disk, and whether any transactions have immediate
need of the data.

Although media failure may only occur once or
twice a year, the impact on recovery of traditional data
bases can be severe ll. A memory failure with MMDBs
can be treated as a system failure and a Global REDO
performed. However, if the specific location of the
failure can be identified, a Partial REDO of only the
effected area would be warranted. This indicates that
the archive database should be physically structured to
correspond with memory addresses. Perhaps partition
ing of memory and archive databases and the ability to
recover by these partitions is needed. Future research
will examine this idea of partitioning for partial redos.
Media failures can effect the archive database or log.
Restoring these files creates similar problems for con
ventional and MMDB systems. Differences do exist in
that the archive database may be needed more fre
quently than in conventional DBMSs and thus it's quick
recovery is more important with ~1MDBs. With the
existence of prior archive databases and corresponding
log data, recreation of archives simply requires redoing
checkpoint processing.

Authors have ignored the problems associated with
failure of stable memories. The use of stable memories
does imply that overhead for recovery from system
failures is greatly reduced, however, there is really no
such thing as a "forever stable" memory. Thus any
reliable recovery technique must prepare for the failure
of stable memory. This implies that any MMDB
recovery technique needs to provide the facilities for
Global and/or Partial REDO of all of memory - stable
and non-stable.

Another issue concerning MMDB recovery is when
log I/O operations occur. It is important that any I/O
needed be performed asynchronously to normal data
base processing. This implies that log I/O not occur
only at commit time, but that it be performed
throughout transaction processing. Transaction pro
cessing should not be dependent on or held up by I/O
to the log.

We close this section by summarizing the major
requirements for MMDB recovery in the following wish
list:

1. No I/O required to accomplish transaction
UNDO.

2. Frequent checkpoints performed with
minimum impact on transaction processing.

3. Asynchronous processing of log I/O and trans
action processing.

Certainly an additional requirement be that a minimum
amount of redundant data be used. For example, the
use of before images on the log should be avoided if
possible.

PreyjQUS MMDB Recovery Techniques

Prior to introducing the new MMDB recovery
method, we examine previously proposed techniques and
compare their processing to the items on the wish list.

As stated earlier, IBM has as imr:lemented MMDBs
in the IMS/VS Fast Path Feature 2,13. At initializa
tion of IMS, the MMDBs are loaded into main memory.
Updates are performed in special database buffers and
MMDB pages are not modified until commit time.
Commit processing ensures that all after images are
written to the log prior to updating the MMDB. S~stem
wide transaction-consistent checkpoints (TCC) 1 are
accomplished by an asynchronous IMS task running in
parallel with MMDB processing. The major disadvan
tages of this scheme are that log I/O is only performed
at commit time and entire MMDBs must be read to per
form checkpoints.

The Massive Memory Machine (MMM) project at
Princeton University has described an architecture
specifically designed to support massive amounts of pri
mary storage 7,8,17. Associated with this project is the
design of a MMDB recovery scheme based upon a
hardware logging device, HALO 6. HALO intercepts
all MMDB operations and creates BFIM and AFIM log
data initially written to a nonvolatile main memory,
and as time permits written out to the log on disk. The
use of the stable main memory implies that commit
processing need not wait until the log buffers have been
flushed. The BFIM log data is needed to accomplish
transaction UNDO. Continuous action-consistent
checkpoints (ACC) 11 of log data to the archive data
base is made. The asynchronous updating of the log and
parallel, continuous updating of the archive database
are certainly advantages of this scheme. However the
requirements for specialized hardware and stable main
memory, the interception of all database calls, and the
requirement for BFIM log data to accomplish trans
action UNDOs are disadvantages.

Researchers at the University of California at
Berkeley, have investigated some of the implementation
concerns for a MMDB 3. Their recovery scheme
assumes the use of a log with BFIM and AFIM plus fre
quent checkpointing. The notion of a pre-committed
transaction is used to achieve asynchronous logging and
database processing. \Vhen a transaction commits, the
commit record is placed in the log buffer and other
conflicting transactions are allowed to progress even
though the log buffers have not been flushed to disk.
The transaction completes commit processing only when
this is done. ACC check pointing occurs continously
and in parallel with transaction processing by reading
the entire MMDB and identifying modified pages.
Although not specifically discussed, it appears that an
entire database must be loaded into main memory prior
to access.

The concept of a Database Cache has been pro
posed for database systems with large amounts of main
memory 5 It is assumed that there is sufficient
memory space to store all dirty pages plus some other
pages which have been fixed for reading. The database

1229

cache and disk database together represent the current
database just as with traditional DBMS systems. Even
though this approach is not strictly a MMDB, an
unusual recovery scheme appropriate to MMDBs is pro
posed. This apftroach recognizes that "shadow" main
memory pages 6 can be used to eliminate the need for
transaction UNDO. To avoid the overhead of loading
entire databases, a demand paging technique is used to
bring pages into main memory. No log is used, rather a
safe 10caLed in nonvalatile memory containing data
needed to reconstruct part of the cache after failure is
maintained. As a minimum, the safe contains all pages
not currently residing on the disk database. When
memory pages are to be modified, a main memory sha
dow page is used for updating if the disk database does
not contain a copy of the page to be modified. In the
event of transaction failure, these shadow pages are
simply deleted in the cache. Subsequent transactions
will either access the other page in the cache or incur a
page fault to bring in a new copy of the page. To com
mit a transaction all modified pages are written to the
safe. Novel procedures are used to limit the number of
records on the safe and to determine the exact state of
each page in main memory. Only when a page is tar
geted for replacement is it written back to the disk
database.

Design for a MMDB including data structure
representation and recovery technique has been propsed
at IBM 1. It is assumed that a MMDB relation is
loaded into main memory at the first reference and, if
modified, written to disk at commit time. All recovery
overhead is restricted to the commit operation achieving
a type of transaction-oriented checkpoint (TOe) 1. No
separate log is suggested, rather the use of shadow
pages on the archive database. At commit time, all
modified relations are written to shadow areas on the
archive database. Once this has been accomplished the
new directory structure is updated and old database
areas released.

Design for a MMDB system, MM-DBMS, is
currently under way at the University of Wisconsin
Madison 14,15. This study includes the design of an
architecture, query processing, data structures, and
recovery technique for a MMDB. Recovery processing
uses a stable log buffer as well as a special log processor
to perform checkpointing. Further details concerning
the recovery strategy used are not yet available.

TABLE 2 summarizes the different MMDB·
recovery techniques ·described. Although some unique
recovery ideas are introduced, none of the techniques
satisfies all items on our wish list. The Fast Path
Feature, DB Cache, and Ammann techniques don't
meet the asynchronous log I/O and transaction process
ing requirement because all log I/O overhead occurs at
transaction commit. The MMM and Berkeley methods
require BFIM and AFIM log data and must have log
I/O operations to accomplish a transaction UNDO.
The information shown in the last row of TABLE 2
describes the type of checkpointing performed by the
various techniques. Part of this data indicates whether
checkpointing is accomplished by reading the MMDB or
log data. Checkpoints for the Fast Path and Berkeley

TABLE 2
COMPARISON OF PREVIOUS MMDB RECOVERY TECHNIQUES

Recovery
Oneration Fast Path HALO
Loading DB Preretch DB Preretch
(Global REDO)
Shadow Yes No
Log I/O Commit Asynchronous

Checkpoint TCC ACC
Parallel Parallel

Continuous
MMDB LoJ!!:

techniques require exammmg all MMDB pages and
therefore must impact transaction processing when
checkpointing occurs.

A Better Technique

In this section we describe preliminary results con
cerning a new MMDB recovery technique which better
satisfies the requirements identified in section 3 than
previously proposed methods. The highlights of this
new method are:

1. Main memory shadow pages

2. Pre-committed transactions
3. Automatic checkpointing
4. Recovery processor

Each of these is discussed in the following paragraphs.
A followup paper will define this technique in more
detail as well as provide simulation results examining its
performance. We assume that no stable main memory
exists, but note any changes which would be needed in
the event nonvolatile main memory were available. The
impact of concurrency control is not included in this
discussion. It may be assumed that transactions are
either run serially or that two-phase locking at the page
level is used.

Main memory shadow pages (similar to that pro
posed for the DB Cache 5) are used to achieve the goal
of no I/O for transaction UNDO. Duplicate copies are
made of any pages updated by a transaction and all
mod~fications occur on these pages. As pages are
modIfied, AFI~ records are written into the log buffer
for output to dIsk. At commit time, a commit record is
also . w~itten in t~e buffer for output. Subsequent
conflIctmg transactIons can begin processing as soon as
this ~ccurs. They will use the data in the dirty pages
and, If ne~ded, crea~e new co~ies for their updating. If
a transac.tlOn commIts (commIt record written to disk),
the prevIOus clean pages are released and the dirty
pages become the new clean ones. When a transaction
abnormally terminates, the dirty pages are released.

Recovery Technique
Berkelev DB Cache Ammann

DB Preretch Demand Paging Demand Loading

No Yes No
Asynchronous Commit Commit
Pre-Commit

ACC Page Replacement TOC
Parallel

Continuous
MMDB MMDB MMDB

1230

To accomplish asynchronous log I/O and trans
action processing, the pre-commitment technique is
used. As explained above, transactions need not wait
until a conflicting transaction has completely commited
prior to beginning execution. Also, log I/O is performed
throughout a transaction execution rather than just at
commit time. Indeed, a transaction can not commit
until all log buffers are written to disk, but without a
stable main memory for the buffer this can not be
avoided. If stable main memory were available, the
pre-commitment technique would not be necessary and
completely independent log I/O and transaction pro
cessing would be possible.

The log contains Begin_Transaction (BT),
Commit_Transaction (CT), Abort_Transaction (AT),
Checkpoint, and AFIM records. All log records except
the checkpoint contain the ID of the corresponding
transaction. The BT record contains a flag that indi
cates the state of the corresponding transaction. It is
initially written with an indication that the transaction
is active, when commited or aborted it is appropriately
modified. This random access to the log implies that a
random access device must be used. As explained
below, this flag is used during check pointing to avoid
flushing dirty data to the archive database. It also
eliminates the need for removing this dirty data during
transaction UNDO.

To accomplish automatic checkpointing, the logger
keeps track of the state of the log. Assuming an initial
state of 0, state transitions occur when BT, CT or AT
records are written to the log. The BT record incre
ments the state value by 1, while the CT and AT decre
ment it by 1. A state value of 0 indicates that a TCC
state exists on the disk. When the logger detects a
state value of 0, a checkpoint record is written out to
the disk before any other r~cords already in the buffer.
To find the most recent checkpoint record on the log,
the logger also notes the address of this checkpoint
record and records it along with its unique checkpoint
ID in a predefined fixed disk address. Performing this
automatic checkpointing only requires two additional
I/O operations and is performed independently of trans
action processing. To ensure that TCC checkpoints
occur, the logger may need to periodically force check-

points even though the checkpoint state has not
occurred. To accomplish this, the logger must write all
log records for actively executing transactions to be
written to the log, before allowing any new transactions
to begin writing to the log. Unlike the techniqu~s use.d
in current database systems where processmg IS

quiesced to reach a TCC, this technique has no impact
on executing transactions.

Actual checkpointing to the archive database is
accomplished by a separate Recovery Processor (RP).
Checkpointing is a two step process: creating a new
copy of the archive database and then applying log
AFIM records for committed transactions to bring the
new archive database state up to that indicated by the
latest checkpoint on the log. When an archive database
is first created, the checkpoint ID and associated
address of the latest log checkpoint record are written
into a predefined location on the archive database. All
AFIM records for successfully committed transactions
(as identified by the BT log record) between the check
point address on the previous archive database and the
address of the latest checkpoint are applied to the
archive. If a checkpoint is attempted, but the check
point ID on log is the same as that on the prior archive,
then the RP must wait until a new checkpoint is taken.
To avoid the overhead of copying the entire archive,
many checkpoints could be applied to the same copy
and at periodic time intervals request the creation of a
new archive database.

Figure 2 shows the model of the M:MDB recovery
system proposed. The use of main memory shadow
pages ensures that only AFIMs are needed on the log
and that no I/O is required for transaction UNDO.
Checkpoint records are automatically written to the log,
and continous checkpointing to the archive database is
performed by the RP. Both of these operations are per
formed in parallel with and asynchronously to MMDB
transaction processing. Without stable main memory,
pre-commitment of transactions and continous writing
to the log buffer provide asynchronous log I/O and
transaction processing. With the use of stable memory,
a nonvolatile log buffer removes the need for pre
commitment but achieves a true asynchronous opera
tion of log I/O and transaction execution.

D
C
H
S

Fig. 2. - Model of Proposed M1v1DB Recovery System

1231

Summary and Future Research

After defining MMDB recovery, identifying its
requirements, and surveying the literature, we have pro
posed a new MMDB recovery technique which better
meets these requirements than previous methods. Our
technique requires no transaction UNDO processing
after a transaction failure, uses asynchronous I/O and
transaction processing to reduce recovery overhead dur
ing transaction processing, and_ provides continuous
system checkpoints in parallel with yet no impact on
transaction processing. Recent M:MDB recovery perfor
mance studies have shown that the major factor con
cerning efficient recovery is the use of stable memory
4,17. Next to stable memory, the use of additional log

ging and checkpoin ting processors can also impact per
formance 4. This is the only known technique propos
ing the use of a special checkpoint processor.

Many areas for future research remain. A major
area of study will address the issue of efficient loading
for MMDBs including the idea of partitioning. This will
examine methods for distributing log and archive data
base information across multiple secondary storage dev
ices. Along this line we also intend to evaluate various
storage techniques to be used for the archive databases.

Currently, a simulation study is being performed to
more accurately compare the proposed technique to pre
vious ones. A future paper will more precisely define
our proposed technique and present the results of the
simulation experiments.

References

[1] Arthur C. Ammann, Maria Butrico Hanrahan, and
Ravi Krishnamurthy, "Design of a Memory
Resident DBMS," Proceedings of the IEEE Spring
Computer Conference, 1985, pp. 54-57.

[2] C. J. Date, An Introduction to Database Systems
Volume II, Addison-Wesley Publishing Company,
July 1984, pp. 1-33.

[3] David J. DeWitt, Randy H. Katz, Frank Olken,
Leonard D. Shapiro, Michael R. Stonebraker, and
David Wood, "Implementation Techniques fol'
Main Memory Database Systems," Proceedings of
the ACM SIGMOD International Conference on
Management of Data, 1984, pp. 1-8.

[4] Margaret H. Eich, "A Classification and Com
parison of Main Memory Database Recovery Tech
niques," Southern Methodist University Depart
ment of Computer Science Tec:hnical Report 86-
CSE-15, June 1986.

[5] Klaus Elhardt and Rudolf Ba.yer, "A Database
Cache for High Performance and Fast Restart in
Database Systems," ACM Transactions on Data
base Systems, Vol. 9, No.4, December 1984, pp.
503-525.

[6] Hector Garcia-Molina, Richard J. Lipton, and Peter
Honeyman, "A Massive Memory Database Sy~
tern" Princeton University Department of ElectrI
cal 'Engineering and Computer Science Technical
Report, September 1983.

[7] Hector Garcia-Molina, Richard J. Lipton, and
Jacobo Valdes, "A Massive Memory Machine,"
IEEE Transactions on Computers, Vol. C-33, No.
5, May 1984, pp. 391-399.

[8] Hector Garcia-Molina, Richard Cullingford, Peter
Honeyman, and Richard Lipton, "The Case for
Massive Memory," Princeton University Depart
ment of Electrical Engineering and Computer Sci
ence Technical Report 326, May 1984.

[9] J. N. Gray, "Notes on Data Base Operating Sys
tems," Lecture NoteJ in Computer Science No. 60,
Springer-Verlag, 1978, pp. 394-481.

[10] Jim Gray, Paul McJones', Mike Blasgen, Bruce
Lindsay, Raymond Lorie, Tom Price, Franco Put
zolu, and Irving Traiger, "The Recovery Manager
of the System R Database Manager," Computing
Surveys, Vol. 13, No.2, June 1981, pp. 223-242.

[11] Theo Haerder and Andreas Reuter, "Principles of
Transaction-Oriented Database Recovery," Com
puting Surveys, Vol. 15, No.4, December 1983, pp.
287-317.

1232

[12]

[13]

[14]

[15]

[16]

[17]

[18]

IDM, !A1S/ VS Version 1 Fast Path Featu~e Gen
eral Information Manual, GH20-V069-2, Apnl 1978.
IBM World Trade Systems Centers, IMS Version 1
Release 1. 5 Fast Path Feature Description and
Design Guide, G320-5775, 1979.
Tobin J. Lehman and Michael J. Carey, "A Study
of Index Struct.ures for Main Memory Database
Management Systems," University of Wiscon~in
Madison Computer Sciences Department Techmcal
Report #605, July 1985.
Tobin J. Lehman and Michael J. Carey, "Query

Processing in Main Memory Database Management
Systems," Proceedings of the ACM-SIGAfOD Inter
national Conference on Management of Data, May
1986.
Raymond A. Lorie, "Physical Integrity in a Large
Segmented Database," ACM Transactions on Data
base Systems, Vol. 2, No.1, March 1977, pp. 91-
104.
Kenneth Salem and Hector Garcia-Molina, "Crash
Recovery Mechanisms for Mail! Storage Database
Systems," Princeton University Department of
Computer Science Technical Report CS-TR-
034086, April 1986.
Joost S. M. Verhofstad, "Recovery Techniques For

Database Systems," Computing Surveys, Vol. 10,
No.2, June 1978, pp. 168-195.

A Relational Database Machine Organization
for Parallel Pipellned Query Execution

Masahito Hirakawa, Kazuyuki Tsuda, Minoru Tanaka, and
Tadao Ichikawa

Information Systems, Faculty of Engineering, Hiroshima University
Shitami, Saijo-cho, Higashi-Hiroshima 724, Japan

Abstract

When we try to implement a relational database
system on a conventional von-Neumann computer, we
face the gap between the relational model and the
computer architecture.

This paper presents a relational database
machine organization for the execution of relational
algebra operations. The proposed database machine is
composed of several processing modules and an
interconnection network. The processing module is a
special unit .and can efficiently execute any relational
algebra operation except selection on a uniform
architecture. For given queries, several processing
modules are connected to each other through the
interconnection network. Queries are then executed in
a parallel pipelined fashion by going through these
processing modules.

The effectiveness of the ~system has been proved
through a simulation. The evaluation results are also
given.

This proposed system shows sufficient flexibility
to be able to cope with the enormous increase in
demand for the development of large-scale database
machines anticipated in the future. It can also be said
that the system organization is relevant from the
viewpoint of cost-effectiveness when the recent
progress of hardware technologies is considered.

1. Introduction

As the social demand for database utilization
expands, implementation of database systems
becomes more and more important. When we try to
implement a relational . database system on a
conventional von-Neumann computer, however, we
face the gap between the relational model and the
computer architecture. This has been accelerating

CH2345-7/86/0000/1233$01.00 © 1986 IEEE
1233

development of special hardware for database
manipulations [11, [2].

Database machines developed at an earlier stage,
RAP [3) and CASSM [4} for example, execute relational
operations directly on the disk by attaching a logic to
each disk head. Although these machines contributed
to an improvement in execution performance of
simple relational operations such as selection, still
the performance of complex operations such as join
and projection was not satisfactory. Recent
approaches toward finding a breakthrough are DIRECT
in which relational operations are processed on the
internal memory by means of multiple general
purpose processors [51, and some special modules for
the execution of relational operations [6)-[8].

Meanwhile, the necessity of improving improve
the execution performance of relational operations
increases as database applications expand. The
extension of a relational database system so that it can
handle a semantic aspect of data, for example,
requires that it is able to execute relational operations
efficiently [91, (10].

The authors have proposed a special module
which executes join efficiently in a parallel fashion
[11 If and have investigated a processing module for
the execution of all other relational algebra operations,
and an organization of a relational database machine
as the next step.

This paper presents a relational database
machine organization for the execution of relational
algebra operations. The database machine we propose
is composed of processing modules and an
interconnection network. Each of the processing
modules can efficiently· execute. any relational algebra
operation except selection on a uniform architecture.
The reason that ·selection is excepted is that each
tuple can be processed independently of the others, so
an improvement in the execution performance of
selection should therefore be achieved in connection

with secondary storage devices.
For a given query, the system translates it in a

form of the relational algebra tree, and after that
several processing modules are connected to each
other through the interconnection network according
to the generated tree. Queries are then executed in a
parallel pipelined fashion by going through these
processing modules.

In Chapter 2, the organization of the database
machine is presented. The architecture of the
processing module and algorithms embodied in it for
performing relational algebra operations are described
in Chapter 3. In Chapter 4, the execution management
of the system is described. Finally, in Chapter 5, the
evaluation of the system performance is given.

2. System OrganiZation

The organization of the database machine we
propose is shown in Fig. 1. The system is composed of
multiple processing modules, multiple 1/0 and
overfJow buffers, a set of staging buffers, and an
interconnection network. Each of the two input lines
of the processing module for the input of the operand
relations can be connected to any buffer via the
interconnection network, and each of the two output
lines are directly connected to the 110 and overflow
buffers.

Staging buffers

Processing modules

I 110 buffer II Staging buffer

~ Overfl ow buffer

Figure 1 System Organization

The processing module is a special unit and
executes relational algebra operations except
selection, that is, join, projection, division, union,
intersection, difference, and Cartesian producl
on a uniform architecture. The reason that the

1234

execution of selection has been left out of our
investigation is that selection can be carried out
directly on secondary storage devices. The attachment
of a logic to disk heads or the use of indices effectively
improves the performance of selection [1 I, [121. This
also contributes to a reduction in the volume of data
to be transferred into the staging buffer for
processing.

The interconnection network is constructed by
2x2 switching elements in a multistage organization.
Each switching elements enables the connection of
either one-to-one or one-to-two correspondency
between input and output ports. Therefore, it takes
one of the four states [131 shown in Fig. 2 .

Straight

Upper

Broadcast

Exchange

Lower
Broadcast

Figure 2 States of Switching Element

Relations to be manipulated are stored in the
staging buffer through the cash memory after
~~election has been fully evaluated. In parallel to the
evaluation of selection, the reduction of attributes
which will not be used any more in the following
database manipulation is also carried out to reduce
the amount of disk 110. And the resultant relations
are fed into the processing modules through the
interconnection network. The 110 buffer is used to
route the resultant relation of an operation to other
processing modules. The overfJow buffer is used
when memory overflow has occurred. A memory
overflow handling scheme will be given in 4.2.

The advantages of the proposed database
machine are as follows:
(1) The system is easily constructed, and can easily be
extended. There is no need to worry about the
correspondency between the processing modules and
the specific operations required for the execution of a
query in advance. What we have to take into
consideration is the number of processing modules

needed in order to get a satisfactory processing
performance. Furthermore, the system can easily be
extended by attaching additional processing modules.
(2) The unified processing module is functionally
flexible and is efficient. Thus, the system shows fairly
good adaptability in the execution of arbitrary
queries, and can process any type of query efficiently.

3. Dedicated Hardware Module

The processing module is a special unit which is
designed to execute seven relational algebra
operations, that is, join, projection, diyision, union,
intersection, difference, and {'/irtesian product
Parallel comparison of the condition enables the
processing module to execute relational algebra
operations efficiently.

3.1 Architecture
Figure 3 shows an organization of the processing

module. The processing module consists of S-memory,
T -memory and Comparator. Both S-memory and
T -memory are divided into n segments. Here,
S-memory is random -access memory and T -memory
is shift-register memory. Two operand relations are
input independently to S-memory and T -memory,
which will hereafter be referred source relation and
target relation, respectively. Each tuple in a relation is
stored in a segment, and n segment pairs of
S-memory and T -memory are compared by means of
.11 comparators in parallel.

f-f--+------tgt-------+--i ~

~+-----___4<J 3

~~ ______ ~<J n
O-flag S-memory T-memorY

S-flag Comparator T-flag

Figure 3 Organization of Processing Module

Furthermore, three flags, that is, S-flag. T -flag,
and a-flag are provided for each memory segment
pair. S-flag and T -flag are used for the duplication

1235

removal of tuples during the execution of projection,
union, dil'ference, and diyision. If the flag is on,
the same tuple as the tuple indicated must have
already existed. a-flag is used to indicate the result of
comparison. If the condition of the comparison is
satisfied, the corresponding a-flag is set on and the
resultant tuple is output.

3.2 Algorithms
In this section, we describe a hardware

algorithm provided for the processing module. Before
giving details of the algorithm of each relational
algebra operation, we will explain a basic algorithm
applicable to all relational algebra operations. Let S
denote source relation which has an attribute A, and T
denote target relation which has an attribute B.

The basic algorithm is listed below:
STEP 0: INITIALIZATION.

Initialize the processing module.
STEP I: INPUT.

Input tuples of Sand T to the segments of
S-memory and T -memory in the following
way: For any .fth input cycle, the .fth tuple
of S is input to the .fth segment of
S-memory, and the .fth tuple of T is always
input to the I st segment of T -memory.

STEP 2: COMPARISON.
Compare n memory segment pairs by

means of n comparators in parallel.
According to the results of the comparison,
S-flag and T -flag are changed depending on
their preceding states. If the result of
comparison meets the output condition. the
corresponding a-flag is set on.

STEP 3: OUTPUT.
Output the resultant tuples from the

segments of S-memory and/or T -memory
whose corresponding a-flag are set on.
a-flags are set off immediately after the
tuples are output.

STEP 4: SHIFTING.
Shift the whole contents of both T -memory

and T-flag.
STEP 5: CONDITION for ITERATION.

Return to STEP 1 when there are still
tuples to be input.

STEP 6: CONDITION for TERMINATION.
Return to STEP 2 when there are still

tuples to be compared. Figure 4 shows the
final state when termination will occur.

STEP 7: TERAIINATION.
End algorithm.

2
1--------1

1--------1 3

'-___ ---'0

S-memory Comparator T-memory

\:::::::::j a segment filled with a tuple

Figure 4 Final state of Processing Module

In the algorithm given above. initialization at
STEP 0. operand relations to be served to S-memory
and T -memory at STEP I. and state transition of flags
in STEP 2 differ depending upon each operation. In
STEP 3. when several a-flags are set on
simultaneously. tuples corresponding to the a-flags
are output in sequence. However. if the output buffer
is large enough to store tuples temporarily. there is no
degradation of execution performance. The details of
each relational algebra operation are as follows:
(1) Projection: S[AI

In projectioo. S is served to both S-memory
and T -memory. Each tuple of S is input to both
S-memory and T -memory in STEP 1. In STEP 2. the
comparison is made for every pair of segments of
S-memory and T -memory. partially on the contents
specified by the attribute A under the condition "=".

If the condition is satisfied, S-flag. T -flag and a-flag
change their states as shown in Table I depending on
their preceding states. The tuple is output only when
a-flag is set on. The state transition specified above
pr~Y~l!!~_5fupli_cation of the same tuple output.

Table 1 Transition of Flag States in Projection

S-flag T -nag O-flag S-flag T -flag O-flag

0 0 0 ~ 1 1
0 0 ~ 0

0 1 0 ~ 0 0
1 1 0 ~ 1 0

1236

(2) Join: S[A e BI T
In joio, Sand T are served to S-memory and

T -memory. respectively. Each tuple of Sand T is
input to S-memory and T -memory respectively in
STEP 1. In STEP 2, the comparison is made for every
pair of segments of S-memory and T -memory,
partially on the contents specified by the attributes A
and B under the condition e ("=", ":;to", ''>'', "2", "<", or "{').
If the condition is satisfied, O-flag is set on. In STEP 3,
tuple pairs whose O-flags are set on are output.
(3) Union: SI.'T

{Inion is regarded as projection. where Sand T
are combined into a single relation and served to both
S-memory and T -memory.
(4) Difference: S - T

Oifference is regarded as projection, where
all tuples of T are input to S-memory by setting the
corresponding S-flag on in STEP O. After that, in STEP
1. S is served to both S-memory and T -memory.
(5) Intersection: SlIT

Intersection is regarded as join under the
condition that the values of all corresponding
attributes are equal to each other.
(6) C6rtesi6n product: S x T

Cartesian product is considered as join with
no condition for comparison.
(7) DiYision: S[A -:- BJ T

Oivision is carried out in two phases, requiring
two modules for the processing. In Phase-1, dividend
relation S is grouped according to the value of
attribute B of divisor relation T. In Phase-2,
intersection among groups of the relation derived
from Phase-1 is performed. This process is illustrated
in Fig. 5.

The details of the process can be explained as
follows:
Phase-l (grouping)

All tuples of dividend relation S are input to
S-memory in STEP O. In STEP 1, one tuple of relation
T is input to the 1 st segment of T -memory. and copied
for all segments of T -memory. The comparison is
made for every pair of segments of S-memory and
T -memory under the condition "=". in STEP 2. In STEP
3. the tuples which satisfy the condition are output.
STEP 1 through STEP 3 are repeated OJ times by
inputing an individual tuple of T at each cycle. where
OJ is the cardinality of T. Furthermore. at each end of
STEP 3. a special symbol is output as a separator.
Phase-2 (intersection)

In STEP 1. a tuple of the first group of the relation
derived from Phase-l is input to S-memory by setting
the corresponding a-flag on. and a tuple of the

S Al A2

T I ~1 A 4
B 2
C 1
A 2
C 2
A 3
B 3
c 3
D 1
E 2

phase- IlJ grouping

S' Al A2

A 4
group A A 2

A 3
------ ------
group B B 2

B 3
------ ------

C 1
group C C 2

C 3

phase- 2lJ intersection

Figure 5 Processing Scheme of J)JvJsit?n

remains (from second to the last groups) of the
relation derived from Phase-l is input to T -memory.
At the comparison in STEP 2. change of the flag states
differs depending on whether or not the content of the
segments is the separator derived from Phase-I. If it
is the separator. the state of the flag changes as shown
in Table 2 (a). If not. for the segment pair which
satisfies the condition "=". the state changes as shown
in Table 2 (b). Meanwhile. STEP 3 is skipped while
there are still tuples to be compared. The output is
generated only once at the end of the repetition.

1237

Table 2 Transition of Flag States in .lJivision

S-flag O-flag S-flag O-flag

0 0 ~ 0 0
1 0 ~ 0 0
0 ~ 0 0

~ 0

(a) For separator

S-flag T-flag S-flag T-flag

0 0 ~ 1
1 0 ~ 1
0 ~ 0

~

(b) For tuple of intermediate relation

4. Query EIecution Management

4.1 Parallel pipelined eIecution of queries
In the system. a given query is translated into a

form of the relational algebra tree and put into an
execution waiting list. If there are enough processing
modules not in use. some of them are assigned for the
execution of the query. Here it is assumed that at
least one processing module is available for the
execution of each relational algebra operation of the
relational algebra tree representing the query.
Moreover. selection is not taken into account in the
process of module assignment because the execution
of selection could be achieved directly in connection
with secondary storage devices.

After that. read requests are sent to secondary
storage devices for obtaining the relations needed.
The relations are transferred to staging buffers page
by page. If the query includes selection. it is
assumed that the ~~election is completed while the
transference of the relations is carried out.

During the execution of a query. processing
modules are connected to each other through the
interconnection network according to the relational
algebra tree representing the query. Each processing
module gets tuples from the 110 buffer or the staging
buffer which is connected to it through the
interconnection network. and transfers the resultant
tuples to the I/O buffer which is directly connected to
it.

The following is an example to explain the
management of the query execution. Figure 6 shows a
sample query Ql in a form of .the relational algebra
tree. Figure 7 explains the process of executing the
query in Fig. 6. Here it is assumed that processing
modules PM 1. PM2. and PM3 are assigned for the
execution of joins J 1 and J2. and projection Pl.
respectively. Furthermore. staging buffers SB 1. SB2.
and SB3 are assigned for relations Rl. R2. and R3.
respectively.

Relations R 1. R2. and R3 get into to the staging
buffers SB 1. SB2. and SB3. respectively. after
selection of R I and R3 has been fully evaluated.
The processing module PM I gets tuples from SB 1 and
SB2. and outputs resultant tuples of Jl to the I/O
buffer B 1. The processing module PM2 gets tuples
from Bland SB3. and outputs resultant tuples of J2 to
the I/O buffer B2. And the processing module PM3
gets tuples from BZ. and outputs resultant tuples of PI
to the 1/0 buffer B3. which shows the final result for
the given query.

In this way. the processing modules execute a
query in a pipelined fashion by transferring tuples
through the I/O buffers. Furthermore. the system can
process several queries in parallel. Accordingly.
queries are executed in a parallel pipelined fashion by
means of multiple processing modules.

PI i
C\
J2 i
C><J

J1~ ~
SI /' \ D
D R2 t

R3

t
Rl

Figure 6 An Example of Query - Q1

1238

U
t

1::::::::::::-:1 1:::;;;:::;:;::1 1:::;:;:;:;:;:;1

SB3 SB2 SBl

Figure 7 Process of Executing the Query in Fig.6

4.2 Overflow handling
The segment size of a processing module is

generally not large enough to contain a whole operand
relation. and therefore a countermeasure is required
to cope with it. The system offers two types of
overflow handling algorithm as follows.

When the cardinality of an operand relation
exceeds the number of memory segments. a memory
overflow occurs. Here the consideration will be
limited to the case of S-memory because the tuples
which are shifted out from T -memory must already
have been compared with all tuples of S-memory. In
the case of a memory overflow, two or more
processing modules work together for the execution of
a single operation. The tuples in a source relation are
sequentially distributed among processing modules
with n tuples as a unit. and the tuples in an entire
target relation are transferred to all processing
modules. Here n is assumed to be the number of
segments in a processing module. The processing is
carried out in the internal memory.

Suppose that the number of processing modules
necessary for the execution of an operation exceeds
the number of available processing modules. We call
it a module overflow. In the case of a module
overflow, the processing is carried out by limiting the
number of tuples in a source relation to the size of
S-memories of the processing modules, and the same
process is repeated for the remaining source relation.
The algorithm described above works externally.

In the following, we explain the memory
overflow handling algorithm in detail.

When memory overflow occurs, tuples which
have overflowed from T -memory are temporarily
stored in the overflow buffer, and connections inside
the interconnection network are changed in order to
newly utilize an unused processing module. The
overflow buffer is used to transfer the overflowed
tuples to the additional processing module through the
interconnection network. The process of memory
overflow handling is described formaHy as foHows
(se~ Fig. 8).

! I J!
for ~-memory for T-memory

I

Processing
Module A

~ - __ ;_ - __ I

I

• -- - - 1

Processing
Module B

I

V V

to the next module
or outputl ine

I

V

before overflow

after overf low

Figure 8 Overflow Handling

The I/O buffer which is connected to the input
line for S-memory of the overflowed processing
module A will be switched to that of the additional
processing module B, and the overflow buffer which is
connected directly to the overflowed processing
module A will be connected to the input line for
T -memory of the additional processing module B. In
the overflowed processing module A. only tuples of a
target relation are input to T -memory, and the
execution continues. Tuples which are shifted out
from T -memory are transferred to the overflow

1239

buffer. On the other hand, in the additional processing
module B, tuples of a source relation and tuples in the
overflow buffer are input to S-memory and
T -memory, respectively. The execution of the
processing is then carried out.

When memory overflow occurs again, the same
procedure is invoked. The operation can be executed
without any degradation of the execution performance
even though the memory overflow occurs, since each
processing module executes the operation
independently of others. Furthermore, it is possible to
manipulate a large relation as long as there are
unused processing modules.

The two algorithms described above guarantee
the consistency and flexibility of the system in the
manipulation of very large databases. Finally, the
resultant relation is split into several I/O buffers
when the me mory overflow occurs, since each
processing module transfers the results to its
corresponding I/O buffers. This requires the
interconnection network to manage recombining of
several independent resultant relations into a single
relation.

5. Analysis

5.1 Analysis criteria
In this chapter, we will analyze system

performance in terms of execution time. The
following are the parameters needed for the
evaluation.

tcb page transfer time from cache to buffer

tde page transfer time from disk to cache

tmc: message communication time for disk I/O

operation
hr cache hit ratio (read)

~ cache hit ratio (write)

tm time to move a tuple between buffer and

processing module
tc time to compare a pair of tuples

ts time to shift tuples

CS cardinality of source relation
CT cardinality of target relation
CR cardinality of resultant relation
ns number of segments in a module

nt number of tuples in a page

sp page size

-Then ns' is defined by ns multiplied by the

number of processing modules used for the execution
of a single operation. It is noted that the operation
can be executed without any degradation of the
execution performance if ns' is greater than or equal

toCS.
The basic tasks used in evaluating the

performance of the system are the 1/0 time, the
communication time, and the CPU time.
(1) 110 time

A read request moves a page into a staging
buffer from the cache. When the required page is not
in the cache, it must be fetched first from a disk. The
average cost, T R' to read a page in the staging buffer is

estimated by assuming a cache hit ratio hr [141.

T R = hr*tcb +(1-hr)*(tcb +tdc)

Similarly T w' the average cost to write a page, is

TW = hv*tcb +(l-fL.,)*(tcb +tdc)'

where hw is a probability for the existence of an

available page frame in the cache during a write
operation.
(2) Communication time

Page transfer is regarded as 110 operation.
Therefore, we take the cost for communicating 110
related (page request and reply) messages into
account. This message communication cost, tmc' is

added to the 110 cost. Thus, T R is replaced by

TR+2*tmc' and Tw by TW+2*tmc'

(3) CPU time
Execution costs of each relational algebra

operation are formulated as shown in Appendix I. For
a _ query containing several relational '- algebra
operations, however,'it is difficult to formulate the
costs for executing it because dynamic aspects of the
behavior of the system must be taken into
consideration. Therefore, we have implemented a
simulation system on a minicomputer. Execution costs
of the query are estimated by using it.

5.2 Results
Parameter values which we assume here for the

evaluation are as follows: tcb=S[msJ, tdc=2S[msJ.

tmc=10Ims), hr=0.8S, hw=O.3S, tm-64h.ls), tc=1281)J.sl,

ts~0.7()J.sJ, ns= I 024, nt'=2S6, and sp = 16k[byte).

Table 3 summarizes the execution costs of each
relational algebra operation. The sizes of the source
.and target relations and the size of the resultant
relation are .changed depending on the operation. In

1240

the table, the first row shows the costs for the cas~
that ns' is large enough to contain a whole relation of

S. The second row shows the costs for the case that ns'

is limited to 4096. CS 1 in -Phase-2 of division

denotes the number of tuples of the first group of the
relation derived from Phase-I.

Tabel 3 Execution Times (seconds) of

Relational Algebra Operations

Projection Join UnIon Difference

CS = 10000 CS = CT = 10000 CS = CT = 10000 CS = CT = 10000
CR = 7000 CR = 10000 CR = 17000 CR = 7000

_. --1-----'- -- '-
n';' 2CS 57 91 12.0 7.5

ns = 1096 1)0 11,6 115 2H

In1ersection Cartesian D1V1sion DivislOn
Product (Phese-l) (Phese-2) -........... . __ -"'cs':ioejoej" "'CS':-5000'"

CS=CT=10000 CS=CT=1000 CT=20 CSI =250
CR = 3000 CR = 1000000 CR = JDOD CR = 25

ns lCS 6.0 392.1 43.3 15

ns = 4096 11.2 392.1 433 2.1

In particular, the execution costs of join are
shown in Fig. 9, varying the operand relation sizes.
The sizes of two operand relations are assumed to be
the same i.e., CS=CT, and' the size of the resultant
relation, CR, is assumed to be the same as CS (and CTt
Three curves in the figure show the costs for three
different numbers of processing modules. It appears
that the costs are proportional to the ,sizes of the
operand relations when the relation sizes are smaller
than ns'.

Next we :odescribe the evaluation result of the
performance in executing a query .. Each query can be
executed independently from others, and hence the
evaluation is limited to a single query in the following
experiment.

We assume the same query 01 used in Fig. 6
again for the evaluation, which contains two joins
and one projection. The sizes of the relations served
to those two joins are assumed to be the same Le.,
CS=CT. The sizes of ' the resultant relations of joins
are assumed to be the -same as CS (and CT), and the
size of the resultant relation 'of projection is
assumed to be O.7*CS. The configuration of the system
comprises 10 processing modules.

time in seconds
50

40

30

20

10

CII the number of modu les = 2

+the number of modules = 4 /
*the number of modules = 8

- ,I

i

I

/
) (¥

(/~
/

//

C
/"

,~y
O~--~-+--~--~--+---~~--~

o 2000 4000 6000 8000 10000 12000 14000 16000

cardinality of relation

Figure 9 Execution Times (seconds) of Join

time in seconds

60

50

40

20

10
" /

O~--r-~---+---r--~--+---~-+--~

o ~ 4000 6000 8000 1~ 1~ 14000 16000 1~

cardinality of relation

Figure 10 Execution Times (seconds) of the Query in Fig.S

1241

Our result is illustrated in Fig. 10. A solid line
curve in the figure shows the cost for the query. A
dotted line curve shows the cost, when pipelined
execution capability is not assumed, and the query Ql
is executed in a sequence of J1. J2, and PI by using all
10 processing modules for each operation. We would
say that pipelined execution is superior when the
relation size is smaller than about 10240. This critical
value can be estimated in terms of the segment size
(1024) multiplied by the number of available
processing modules (10). If the relation size is larger
than the critical value, the costs based on those- two
strategies become almost the same because 110 costs
significantly influence the total processing costs.

Furthermore, in order to prove the effectiveness
of parallel pipelined processing, we compare the
execution performance of the query Ql used in Fig~ 6
with that of the query Q2 in Fig. 11 which contains
three joins and one projection. In Q2, join J3 is
added to Q1. Parameters are assumed to be the same
as used in the previous example.

The result of this comparison is shown in Fig. 12.
It shows that the performances of the two queries are
almost equal to each other, if the cardinality of input
relations is smaller than 10000 (almost the total
number of segments of the processing modules).
Moreover, even though the cardinality of the Telations
exceeds the total. number of segments, it could be said
that the system provides relatively good performance
by means of parallel pipelined execution.

Rl R2 R3 R4

Figure 11 An Example of Query - Q2

time in seconds

70 • the query 01
l + the query 02 I

60 /
50

~/ 40

30

20

10

O+---+---+---+---+---~--r---r-~r-~

020004000 6000 8000 1000012000140001600018000

cardinality of relation

Figure 12 Execution times(seconds) of 01 and 02

5.3 Consideration
In this section. we discuss the comparison of the

performance for computing equi-join operation in the
proposed system and a conventional database
management system. Here the conventional system is
assumed to use a hashing algorithm. The reason we
choose a hashing algorithm is that it is the most
suitable when a main memory is large enough to
perform the operation l1 SJ.

The hashing algorithm used in the conventional
system is explained as follows: First. a hash table is
constructed by applying a hash function to every
tuple of a source relation S independently. S is then
partitioned into m subsets in such a way that any
tuples which have the same hash values lie in the
same subset. After the completion of the partition.
each tuple of a target relation T is hashed and
compared with tuples in the corresponding subset of S
by using the hash table. If the comparison is satisfied.
pairs of tuples are moved to an output buffer. The
cost of this algorithm is shown in Appendix II.

The estimation result is shown in Table 4. It
could be said that the proposed system is better than
software hash-join method when the number of
segments available for the operation is larger than

1242

Table 4 Estimation results

CS = CT = CR = 10000

th~sh = 40 [J,1S)

proposed system

Os /cs

1 1/2 1/3

94 11.2 la.3
[s) [s) (s)

hash-j ion
m

10000 aooo

12.9 133
(s) (s)

5000

14.2

Is)

aproximately half the cardinality of S. In the
estimation. however. hardware costs are not taken
into account. When hardware costs are considered.
the software hash-join method may be reasonably
acceptable for equi-join operations.

However. the application of a hashing technique
is limited to equi-join operations. The use of a
hashing technique does not effectively reduce the
execution cost for non-equi-join operations. In our
system. on the other hand. non-equi-join operations
can also be processed efficiently.

Furthermore. the system capability could be
extended by applying a hashing technique. Both
source and target relations are partitioned into m
disjoint subsets by using a hash function. Each pair of
subsets which have tuples with the same hash value is
assigned to a processing module. and processed in it.
Then an operand can be executed in parallel in
cooperation with m processing modules. We can
improve the performance without preventing the
execution in a parallel pipelined fashion.

6. Conclusion

In this paper. the authors have presented a
relational database machine which is composed of
multiple processing modules and an interconnection
network.

The processing module is.a special unit for the
execution of relational algebra operations. Relational
algebra operations except selection can be executed
efficiently on a uniform architecture. The reason that
selection has been excepted here is that an
improvement in execution efficiency of selection
should be achieved in connection with secondary
storage devices.

For a given query. the system translates it in a
form of the relational algebra tree, and after that,
several processing modules are connected to each

other through the interconnection network according
to the tree. The query is executed in a pipelined
fashion by going through the processing modules.
Furthermore, multiple queries are executed in
parallel. Queries can then be executed in a parallel
pipelined fashion. When a memory overflow occurs,
the system changes the connection of the
interconnection network so as to combine two or more
processing modules for the execution of a single
operation.

Furthermore, the effectiveness of the system is
proved through a simulation. Pipelined execution
capability'greatly con-trIbutes to the improvement of
the execution performance of the query.

The problems which will remain the future
investigation are the scheme of an external storage
device management to support efficient data transfer
and a mechanism which functions for cases in which
the tuple size is greater than the size of the memory
segment.

In conclusion, the proposed system shows
sufficient flexibility to be able to cope with the
enormous increase in demand for the development of
large-scale database machines anticipated in the
future. It can also be said that the system
organization is relevant from the viewpoint of
cost-effectiveness when the recent progress of
hardware technologies is considered.

Acknowledgement

The authors are grateful to Takashi Nakayama,
former graduate student of Hiroshima University, for·
his contribution to the initial stage of developing this
work.

References

[I) G. Z. Qadah, "Database machines: A survey," Proc.,
AFIPS NCC Conf., Vol. 54, pp.211-223, 1985.

[2] Special issue on database machines, Proc., IEEE
Database Engineering, W. Kim, D. Batory, A.
Hevner, R. Katz, and D. Reiner, Eds., Vol. I,
pp.5-75, 1981.

(3) E. A. Ozkarahan, S. A. Schuster, and K. C. Smith,
"RAP - An associative processor for data base
management," Proc., AFIPS NCC Conf., Vol. 44,
pp,379-387, 1975.

1243

[4) S. Y. W. Su and G. j. Lipovski, "CASSM: A cellular
system for very large data base," Proc., VLDB,
ppA56-472, 1975.

[5] D. j. DeWitt, "DIRECT - A multiprocessor
organiZation for supporting relational database
management systems," IEEE Trans. on Computers,
Vol. C-28, No.6, pp,395-406, June 1979.

[6) S. Kamiya, K. Iwata, and H. Sakai, "A hardware
pipeline algorithm for relational database
operation," Proc., Symp. on Computer
Architecture, pp.250-257, 1985.

[7] W. Kim, D. Gajski, and D. j. Kuck, "A parallel
pipelined relational query processor," ACM Trans.
on Database Systems, Vol. 9, No.2, pp.2l4-242,
June 1984.

[8] M. j. Menon and D. K. Hsiao, "Design and analysis
of a relational join operation for VLSI," Proc.,
VLDB, ppA4-55, 1981.

[9] S. Tsurt and C. Zaniolo, "An implementation of
GEM - supporting a semantic data model on a
relational back-end," Proc., SIGMOD Conf.,
pp.286-295, 1984.

[10] T. Ichikawa and M. Hirakawa, "ARES: A relational
database with the capability of performing
flexible interpretation of queries," IEEE Trans. on
Software Engineering, Vol. (SE-12, No.5,
pp.624-634, May 1986.

(11] T. Nakayama, M. Hirakawa, and T. Ichikawa,
"Architecture and algorithm for parallel execution
of a join operation," Proc., Conf. on Data
Engineering, pp.160-166, 1984.

[12J D. j. DeWitt and P. B. Hawthorn, "A performance
evaluation of database machine architectures",
Proc., 7th VLDB, pp.199-213, 1981.

[13] H. J. Siegel, Interconnection networKS for
large-scale parallel processing, Lexington
Books, Massachusetts, 198 5.

[14] D. Bitton, H. Boral, D. j. DeWitt,· and W. K.
Wilkinson, "Parallel algorithms for the execution
of relational database operations," ACM Trans. on
Database Systems, Vol. 8, No.3, pp.324-353, Sept.
1983.

(l51 D. j. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R.
Stonebraker, and D. Wood, "Implementation
techniques for main memory database systems,"
Proc., SIGMOD Conf., pp. 1 -8, 1984.

Appendix I

We formulate the execution costs of each
relational algebra operation as follows:

T· g xTR.CSx tm+2xCSxtc.CRxtm+ ~ xTv. 2xCSxt n t n
t

S

T' .. r~lxCSxt .2xcs-n~ xTR• rcs _11 xcs - n
'$- n'xT]I

ns m n, n~ n,

+ r
g 1" cs x t • n' "t • CR x t • ~ "Tv n's c scm n,

r
Cs 1 rCS 1 cs - n' - n + - x Csx t • n' x t • - - 1 x $ txT v
n~ s s s n~ n,

JQl.H

T. CS+CTx T]I+maz(CS,CT)xtm"(CS+CT)" tc. 2 xCR x tm n t

+ ~ x Tv+(CS+CT)xt n t s

.. rCS+~lX(CS+CT)xt +n' xt)C:S+CT_~ x(CS+CT)-n~- n t xTv
ns s s s I' n~ 11 n t

DIffERENCE

T" CT xT]I.CTxt .9. xT]I+CSxtm'2xCSxtc n, m n t

• CR x t m• ~ "T v • 2" CS x t n t S

• rCS+~Tlx CSx t + n' x t • rCS•CT - 11 x cs - n's- n t x T
ns s s s n~ n t v

INTER SECT I ON

T .. CS~CT xT]I+maz(CS.CT)x tm+(CS+CT)xtc+CR x t • ~ xTv·(CS+CT)x ts
t m n t

T' .. rc~l)(max(n~.CT»)(tm+ n~·CT)(TR+rc~ _~xSEG(CT.n's+nt»)(T
ns n t I"ns 'I n t]I

• rc~l)(max(n~.cT)x tc+min(n~.CT) x tc+CRx t m+ ~ xTv
ns '

+ rcsl)(n~ xt + min(n~.CT)xts. rCS - ~x SEG(CT.n's+nt»)(Tv
n~ s I"n~ 11 n t

1244

CARTESIAN PRODUCT

T· CSn"CT "T]I+max(CS.CT)x tm+(CS.CT)xt .. 2 x CR x t
t c m

+ 2 ~CR xTv+(CS+CT)xts t

T~rc~lxmax(n~.cT)xtm+ n~"CT xTR+rc~ _~)(SEG(CT.n~+nt)x TR
ns n, I-ns 'I n t

.. rCn~lxmax(n~.cT)x tc+min(n~.CT) x tc. 2 xCR x t m+ 2 ~ CRxT v
s '

.. rc~lxn'sxts+min(n's.cT)xts. rc~ _~xSEG(CT.n's·nt)xTv
ns I"ns 'I n t

DIYISION (~).

T.~xTR+(CS.CT)xtm+(CS.J)xCTxt +CTxtc+CRxtm·~ xTv n, s n,

T:' (CT-l) x (CS-n.-n I)· (CS-CT) xTR • (CS+J)xCTxt • (CS-I)x CTx t
n, m s

• (CT-Ox(CS-nsn I > xT",
n,

DIYISION (PHASE-2>.

T.9.XTR·CSxtm+2xCSxtc· CRxtm+ ~ xTv. 2xCSxt n, n,

+ r~l xCSx t + n' xt + rCS+CT - 11 xcs - n~- n, x T
n~ s s s n~ n, v

Here let T and T' be the execution costs for
CS < ns' and CS > ns', respectively. SEG(x, y) is the

function taking a value either x - y for x > y or 0 for
other cases. CS I in Phase-2 of division denotes the

number of tuples of the first group of the relation
derived from Phase-I.

Appendix II

We formulate the execution costs of software
hash-join algorithm. Here, we take the following
parameters for the estimation.

m the number of subsets of the relation
which is partitioned by a hash function

thash : time to hash a tuple

The cost formulates as follows:

CS+CT
T· -n

t
- x T]I+ (CS+CT) x tha.h+2x(CS+CT)xtm

.. (li x CT) x.mx t _ 2xCR x T
m m c n

t
",

f

Index to Authors

Abdou, I.E. 71 Cunniff, N. 56
Abraham, J.A.400, 826, 890 Curry, G 25
Abramson, B. 620 Dhall, S.K. 315
Ali, M 207 Dias, D.M. 785
Allen, J. 871 Dietrich Jr., W.e. 145
Andersson, R.L. 97 Doyle, K. 31
Appelt, D.E. 260 Driscoll, J.R 1120
Araki, M 1000 Dulikravich, G.S 568
Archuleta, R.A 595 Dupont, E 915
Armbruster, D. 648 Dusaussoy, N.J. 71
Armstrong, B.S.R 160 Eich, M.H. 1226
Asakawa, Y. 963 Ellner, N.S' 528
Athale, R.A.422 Ezzat, A.K. 1138
Baba, S 1014 Fearing, R.S 160
Balsamo, S 675 Ferrari, D.684
Barr, P.C. 390 Finkelstein, L. 576
Barragy, E. 535 Fitch, J .T 1
Bastani, F 611 Forman, I.R. 1092
Belford, G.G 1189 Fortes, J.A.B. 899
Bishop, M 1115 Froscher, J.N. 185
Biswas, J. 629 Fujita, H 994
Blaxton, T.A. 190 Furukawa, K 948
Bojanczyk, A.W48
Boming, A.H 36

Furuya, T. 1041
Gaglianello, R.D .. ' 169

Bose, P 372 Gelenbe, E. 691
Breen, D.E 931 Genet, C 64
Breuer, M.A 854 Georgakopoulos, D. 1179
Brost, R.C. 124 Getto, P.H. 941
Brown, C.A. 576 Glasser, L.A 871
Burdick, J.W. 160 Gopalakrishnan, G . e. 864
Buzen, J.P 751 Gordon, K.J 719
Cabodi, G. 909 Gordon, R.F 719
Calo, S 655 Goto, Y 105
Camurati, P. 909 Grimson, W.E.L. 138
Carey, G.F 535 Grossman, D.D 145
Carlo, J.T 498 Grosz, B.J. 260
Carlson, D.A. 585 Gupta, A. 325
Celis, P. 601 Gupta, P 655
Chang, S-K. 79 Hamner, M.C498
Chen, C-Y. 400 Handa, K. 1041
Chen, H-H 223 Hariri, S 344
Chen,I-R 611 Hartman, D. H.464
Chen, J.B 160 Hayashi, K 979
Chen, Q 200 Hayes, P.J. 253
Chesser, T.S 1120 Herath, J 353
Ching, W-M 363 Hershey, H.A 848
Chrysanthis, P 1159 Higuchi, T. 1041
Chung, M.J. 325 Hikita, S 1064

1245

Hilal, W 611 Lakshmi, S 655
Hirakawa, M 1233 Lakshmivarahan, S 315
Holliday, M.A. 1099 LaMaire,O.R 665
Horiuchi, K. 994 Lanin, V 380
Howard, P.C 764 Lavin, M.A. 145
Hua, K.A 826 Lee, N.C.- 864
Hughes, J.L.A. 836 Lee, Y-H 675
Hurson, A.R 1210 Leff, L 925
Hutcheson, L.D.448 Leighton, F.T 871
Hwang, K 307 Leiserson, C.E. 871
Ibaraki, T 287 Leonberger, F.J419
Ichikawa, T 1233 Lesgold, A.M 18
Ihara, H. ' 1056 Lhemann, O 547
Imai, M 287 Li, G-J 297
Isogawa, T. 1050 Limburger, F. 336
Itashiki, A. 955 Lin,I-P. 223
Iyer, B.R. 785 Lo, T.L 768
Iyer, R.K , 797 Lozano-Perez, T. 138
Jacob, R.J.K 185 MacNair, E.A 719
Jacobs, P.S 247 Madala, S. 709
Jenq, B-C 1169 Maeji, M. 994
Johnson,O.G 547 Maejima, H 1014
Joshi, S.P 504 Magel, K. 229
Jungert, E. 79 Mano, T 979
Kakuda, T. 979 Marlowe Jr., T.J 637
Kamiya, S. 1020 Marsland, r.A. 514
Kanamori, T. 994 Martin, P. 260
Kaneko, H 1000 Maruyama, F. 979
Katayama, H 1034 Mason, M.T 124
Kato, K 969 Masuda, T. 969
Katseff, H.P. 169 Masuzawa, H. 955
Kawano, K 1056 Matsumoto, Y 948
Kawato, N. 979 Matsuzaki, K. ; 105
Kennon, S.R 563,568 Matthies, L 114
Kida, H. 1014 Matula, D.W. 629
Kim, J.K. 1189 McCluskey, E.J. 836
Kimura, T.D 48 McKeown, K.R. 241
Kincaid, D.R. 556 Melamed, B.. 729
Kirkland, T 841 Mercer, M.R 841
Kiyoki, Y 969 Meyer, D.G 5
Kobayashi, Y 216 Meyer, J.F 807
Kohler, W 1169 Miki, Y. 1000
Koizumi, M. 1056 Miller, L.L. 1210
Kokubu, A 1041 Miura, H. 287
Kolence, K.W :.741 Miura, K 1020
Komatsu, H. 963 Miyazaki, T. 948
Kon'no, C 1026 Miyoshi, H. 987
Koo, R 1150 Moldovan, D.1. 269
Kotera, M. 1064 Molloy, M.K. 1082
Koya, K 1000 Mori, K. 1056
Krishnamoorthy, S.G. 390 Morton, S.G 277
Kumon, K. 955 Mourad, S. 836
Kurakazu, K 1014 Mowle, F.J 5
Kurata, M. 1050 Muehlenbein, H. 336
Kurokawa, T. 963 Mukai, K. _ 987
Kurose, J.F 719 Munn, J 479
Kushner, B.G 190,434 Munro, J.1. 601
Kusumoto, H. ' 1041 Murata, T 1072
Kweon, I. 105 Muto, S 216

1246

Nackman, L.R. 145 Sohma, Y 955
Nagao, T. 1008 Sridhar, V. 797
Nakai, K -........................... 1056 Srihari, S.N. 87
Nakanishi, H 1056 Srimani, N 514
Nakashima, H 1050 Srinidhi, H.N 1120
Neff, J .A. 434 Srivas, M.K. 864
Nelson, R. 691 Stemple, D .. , -.......... 1159
Newton, A.R. 894 Stone, H.S xxiii
Nguyen, V-D. : 129 Streitz, S. 336
Noe, J.D 1197 Suzuki, Y. 1008, 1056
Nohara, S 1000 Swain, P.H 5
Obatake, T 105 Takeda, S. 1008
Oden, J.T 560 Takeuchi, A. 948
Onitiri, T.A. 848 Tamura, N 237,963
Orimo, M. 1056 Tanaka, H 216
Paul, R.P. 178 Tanaka, J. .., 948
Penfield Jr., P 871 Tanaka, Y 987
Pereira, F. 260 Tanaka, M. 1233
Philips, T 691 Tanakura, Y. 1020
Prinetto, P.909 Tantawi, A 691
Proudfoot, A.B 1197 Taylor, R.H. 145
Psaltis, D.428 Taylor, R.P 56
Pu, C 1197 Thomasian, A 698
Purdom Jr., P.W 576 Toda, K , 353
Raghavendra, C.S 344 Toueg, S , 1150
Ramamritham, K 1159 Toy, E.J , 325
Rashid, R.F. 1128 Trivedi, K.S 817
Rice, J .R. ' 540 Tseng, P.S. ., 307
Rosenstein, L. 31 Tsuda, K 1233
Rusinkiewicz, M. 1179 Tsukagoshi, M. 1034
Ryu, I.K 698 Tsuruho, S. 1050
Sagawa, N. 1026 Turn, R 1106
Sahner, R.A 817 Uchiyama, M. 56
Sahni, S 11 Ueda, K 948
Saito, N. 353 Ueda, Y 216
Saito, T. 1008 Uehara, T 979
Saji, M 1026 Umetani, Y 1026
Samad, M.A 899 Vernon, M.K 1099
Sanders, W.H 807 Vinter, S 1159
Sangiovanni-Vincentelli, A.L. 894 Wachspress, E.L. 528
Satoh, K ~955 Wah, B.W. 297
Saucier, G. 915 Wallace, S. ., 31
Sawchuk, A.A 457 Warhaut, S. 336
Schaeffer, J. 519 Washington, E.S 207
Schanin, D.J410 Watanabe, T 1014
Seki, H 994 Weikum, G 1219
Sequin, C.H 894 Welch, P.D 719
Shafer, S.A 114 White, W.W 665
Shapiro, H.D. 595 Willett, M489
Shasha, D 380 Winkler, J.479
Shatz, S.M 1072 Winkler, S. xxi
Shen, J.P. 878 Wu, C.1. 269
Shenker, B. 1072 Wu, C-P ; 223
Sherwood, B.A 15 WyattJr., J.L. 871
Shigematsu, T 1008 Yamaguchi, Y 353
Sinclair, J.B 709 Yamamoto, T. 1008
Smith, B.J. 760 Yamashita, M 287
Smith, C.U 778 Yokoi, T 987
Smith, D.R 864 Yokoyama, K 1064

1247

Yoshida, K 216 Yun, D.Y.Y 925
Yoshida, M 1064 Yung, M.M. 620
Yoshizawa, J 216 Zdonik, S.B.41
Young, D.M 556 Zhang, H 178
Young, L.T 797 Zhou, S 684
Yu, P.s 675, 785 Zhu, X 854
Yuba, T 353 Zippel, R.E 871

1248

	000000
	000001
	000002
	000003
	000004
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	000015
	000016
	000017
	000018
	000019
	000020
	000021
	000022
	000023
	000024
	000025
	000026
	000027
	000028
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0203
	0204
	0205
	0206
	0207
	0208
	0209
	0210
	0211
	0212
	0213
	0214
	0215
	0216
	0217
	0218
	0219
	0220
	0221
	0222
	0223
	0224
	0225
	0226
	0227
	0228
	0229
	0230
	0231
	0232
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0240
	0241
	0242
	0243
	0244
	0245
	0246
	0247
	0248
	0249
	0250
	0251
	0252
	0253
	0254
	0255
	0256
	0257
	0258
	0259
	0260
	0261
	0262
	0263
	0264
	0265
	0266
	0267
	0268
	0269
	0270
	0271
	0272
	0273
	0274
	0275
	0276
	0277
	0278
	0279
	0280
	0281
	0282
	0283
	0284
	0285
	0286
	0287
	0288
	0289
	0290
	0291
	0292
	0293
	0294
	0295
	0296
	0297
	0298
	0299
	0300
	0301
	0302
	0303
	0304
	0305
	0306
	0307
	0308
	0309
	0310
	0311
	0312
	0313
	0314
	0315
	0316
	0317
	0318
	0319
	0320
	0321
	0322
	0323
	0324
	0325
	0326
	0327
	0328
	0329
	0330
	0331
	0332
	0333
	0334
	0335
	0336
	0337
	0338
	0339
	0340
	0341
	0342
	0343
	0344
	0345
	0346
	0347
	0348
	0349
	0350
	0351
	0352
	0353
	0354
	0355
	0356
	0357
	0358
	0359
	0360
	0361
	0362
	0363
	0364
	0365
	0366
	0367
	0368
	0369
	0370
	0371
	0372
	0373
	0374
	0375
	0376
	0377
	0378
	0379
	0380
	0381
	0382
	0383
	0384
	0385
	0386
	0387
	0388
	0389
	0390
	0391
	0392
	0393
	0394
	0395
	0396
	0397
	0398
	0399
	0400
	0401
	0402
	0403
	0404
	0405
	0406
	0407
	0408
	0409
	0410
	0411
	0412
	0413
	0414
	0415
	0416
	0417
	0418
	0419
	0420
	0421
	0422
	0423
	0424
	0425
	0426
	0427
	0428
	0429
	0430
	0431
	0432
	0433
	0434
	0435
	0436
	0437
	0438
	0439
	0440
	0441
	0442
	0443
	0444
	0445
	0446
	0447
	0448
	0449
	0450
	0451
	0452
	0453
	0454
	0455
	0456
	0457
	0458
	0459
	0460
	0461
	0462
	0463
	0464
	0465
	0466
	0467
	0468
	0469
	0470
	0471
	0472
	0473
	0474
	0475
	0476
	0477
	0478
	0479
	0480
	0481
	0482
	0483
	0484
	0485
	0486
	0487
	0488
	0489
	0490
	0491
	0492
	0493
	0494
	0495
	0496
	0497
	0498
	0499
	0500
	0501
	0502
	0503
	0504
	0505
	0506
	0507
	0508
	0509
	0510
	0511
	0512
	0513
	0514
	0515
	0516
	0517
	0518
	0519
	0520
	0521
	0522
	0523
	0524
	0525
	0526
	0527
	0528
	0529
	0530
	0531
	0532
	0533
	0534
	0535
	0536
	0537
	0538
	0539
	0540
	0541
	0542
	0543
	0544
	0545
	0546
	0547
	0548
	0549
	0550
	0551
	0552
	0553
	0554
	0555
	0556
	0557
	0558
	0559
	0560
	0561
	0562
	0563
	0564
	0565
	0566
	0567
	0568
	0569
	0570
	0571
	0572
	0573
	0574
	0575
	0576
	0577
	0578
	0579
	0580
	0581
	0582
	0583
	0584
	0585
	0586
	0587
	0588
	0589
	0590
	0591
	0592
	0593
	0594
	0595
	0596
	0597
	0598
	0599
	0600
	0601
	0602
	0603
	0604
	0605
	0606
	0607
	0608
	0609
	0610
	0611
	0612
	0613
	0614
	0615
	0616
	0617
	0618
	0619
	0620
	0621
	0622
	0623
	0624
	0625
	0626
	0627
	0628
	0629
	0630
	0631
	0632
	0633
	0634
	0635
	0636
	0637
	0638
	0639
	0640
	0641
	0642
	0643
	0644
	0645
	0646
	0647
	0648
	0649
	0650
	0651
	0652
	0653
	0654
	0655
	0656
	0657
	0658
	0659
	0660
	0661
	0662
	0663
	0664
	0665
	0666
	0667
	0668
	0669
	0670
	0671
	0672
	0673
	0674
	0675
	0676
	0677
	0678
	0679
	0680
	0681
	0682
	0683
	0684
	0685
	0686
	0687
	0688
	0689
	0690
	0691
	0692
	0693
	0694
	0695
	0696
	0697
	0698
	0699
	0700
	0701
	0702
	0703
	0704
	0705
	0706
	0707
	0708
	0709
	0710
	0711
	0712
	0713
	0714
	0715
	0716
	0717
	0718
	0719
	0720
	0721
	0722
	0723
	0724
	0725
	0726
	0727
	0728
	0729
	0730
	0731
	0732
	0733
	0734
	0735
	0736
	0737
	0738
	0739
	0740
	0741
	0742
	0743
	0744
	0745
	0746
	0747
	0748
	0749
	0750
	0751
	0752
	0753
	0754
	0755
	0756
	0757
	0758
	0759
	0760
	0761
	0762
	0763
	0764
	0765
	0766
	0767
	0768
	0769
	0770
	0771
	0772
	0773
	0774
	0775
	0776
	0777
	0778
	0779
	0780
	0781
	0782
	0783
	0784
	0785
	0786
	0787
	0788
	0789
	0790
	0791
	0792
	0793
	0794
	0795
	0796
	0797
	0798
	0799
	0800
	0801
	0802
	0803
	0804
	0805
	0806
	0807
	0808
	0809
	0810
	0811
	0812
	0813
	0814
	0815
	0816
	0817
	0818
	0819
	0820
	0821
	0822
	0823
	0824
	0825
	0826
	0827
	0828
	0829
	0830
	0831
	0832
	0833
	0834
	0835
	0836
	0837
	0838
	0839
	0840
	0841
	0842
	0843
	0844
	0845
	0846
	0847
	0848
	0849
	0850
	0851
	0852
	0853
	0854
	0855
	0856
	0857
	0858
	0859
	0860
	0861
	0862
	0863
	0864
	0865
	0866
	0867
	0868
	0869
	0870
	0871
	0872
	0873
	0874
	0875
	0876
	0877
	0878
	0879
	0880
	0881
	0882
	0883
	0884
	0885
	0886
	0887
	0888
	0889
	0890
	0891
	0892
	0893
	0894
	0895
	0896
	0897
	0898
	0899
	0900
	0901
	0902
	0903
	0904
	0905
	0906
	0907
	0908
	0909
	0910
	0911
	0912
	0913
	0914
	0915
	0916
	0917
	0918
	0919
	0920
	0921
	0922
	0923
	0924
	0925
	0926
	0927
	0928
	0929
	0930
	0931
	0932
	0933
	0934
	0935
	0936
	0937
	0938
	0939
	0940
	0941
	0942
	0943
	0944
	0945
	0946
	0947
	0948
	0949
	0950
	0951
	0952
	0953
	0954
	0955
	0956
	0957
	0958
	0959
	0960
	0961
	0962
	0963
	0964
	0965
	0966
	0967
	0968
	0969
	0970
	0971
	0972
	0973
	0974
	0975
	0976
	0977
	0978
	0979
	0980
	0981
	0982
	0983
	0984
	0985
	0986
	0987
	0988
	0989
	0990
	0991
	0992
	0993
	0994
	0995
	0996
	0997
	0998
	0999
	1000
	1001
	1002
	1003
	1004
	1005
	1006
	1007
	1008
	1009
	1010
	1011
	1012
	1013
	1014
	1015
	1016
	1017
	1018
	1019
	1020
	1021
	1022
	1023
	1024
	1025
	1026
	1027
	1028
	1029
	1030
	1031
	1032
	1033
	1034
	1035
	1036
	1037
	1038
	1039
	1040
	1041
	1042
	1043
	1044
	1045
	1046
	1047
	1048
	1049
	1050
	1051
	1052
	1053
	1054
	1055
	1056
	1057
	1058
	1059
	1060
	1061
	1062
	1063
	1064
	1065
	1066
	1067
	1068
	1069
	1070
	1071
	1072
	1073
	1074
	1075
	1076
	1077
	1078
	1079
	1080
	1081
	1082
	1083
	1084
	1085
	1086
	1087
	1088
	1089
	1090
	1091
	1092
	1093
	1094
	1095
	1096
	1097
	1098
	1099
	1100
	1101
	1102
	1103
	1104
	1105
	1106
	1107
	1108
	1109
	1110
	1111
	1112
	1113
	1114
	1115
	1116
	1117
	1118
	1119
	1120
	1121
	1122
	1123
	1124
	1125
	1126
	1127
	1128
	1129
	1130
	1131
	1132
	1133
	1134
	1135
	1136
	1137
	1138
	1139
	1140
	1141
	1142
	1143
	1144
	1145
	1146
	1147
	1148
	1149
	1150
	1151
	1152
	1153
	1154
	1155
	1156
	1157
	1158
	1159
	1160
	1161
	1162
	1163
	1164
	1165
	1166
	1167
	1168
	1169
	1170
	1171
	1172
	1173
	1174
	1175
	1176
	1177
	1178
	1179
	1180
	1181
	1182
	1183
	1184
	1185
	1186
	1187
	1188
	1189
	1190
	1191
	1192
	1193
	1194
	1195
	1196
	1197
	1198
	1199
	1200
	1201
	1202
	1203
	1204
	1205
	1206
	1207
	1208
	1209
	1210
	1211
	1212
	1213
	1214
	1215
	1216
	1217
	1218
	1219
	1220
	1221
	1222
	1223
	1224
	1225
	1226
	1227
	1228
	1229
	1230
	1231
	1232
	1233
	1234
	1235
	1236
	1237
	1238
	1239
	1240
	1241
	1242
	1243
	1244
	1245
	1246
	1247
	1248

