
AFIPS 
CONFERENCE 
PROCEEDINGS 

1983 
~ATIONAL 

COMPUTER 
CONFERENCE 

May 16-19,1983 
Anaheim, California 



The ideas and opinions expressed herein are solely those of the authors and are not 
necessarily representative of or endorsed by the 1983 National Computer Conference 
or the American Federation of Information Processing Societies, Inc. 

Library of Congress Catalog Card Number 80-649583 
ISSN 0095-6880 

ISBN 0-88283-039-2 

AFIPS PRESS 
1815 North Lynn Street 

Arlington, Virginia 22209 

© 1983 by AFIPS Press. Copying is permitted without payment of royalty provided 
that (1) each reproduction is done without alteration and (2) reference to the AFIPS 
1983 National Computer Conference Proceedings and notice of copyright are included 
on the first page. The title and abstract may be used without further permission in 
computer-based and other information service systems. Permission to republish other 

excerpts should be obtained from AFIPS Press. 

Printed in the United States of America 



A very bright and dedicated group of computing professionals 
has labored long and hard to develop a high-quality technical 
program for the 1983 NCe. These Proceedings represent a 
printed record of many of the presentations planned for the 
conference educational program. This collection should pro
vide valuable reference material to computing professionals in 
years to come. 

iii 

DON B. MEDLEY 
1983 NCC Conference Chairman 

Preface 

In addition to the papers included in the Proceedings and 
presented at the 1983 NCC, many panelists and speakers also 
participate, making a complete NCC educational program. I 
hope that you will find time to attend one or more of these 
valuable sessions and that this volume of the Proceedings will 
be a useful source of information for you in later years. 





"The Emerging Information Society: Computers, Communi
cations, and People" is the theme of the 1983 National Com
puter Conference. It became very clear as the Proceedings 
developed that this theme is most appropriate for the confer
ence. Many of the sessions within program tracks interweave 
papers, presentations, and ideas that relate to other tracks. 
Many papers in the Proceedings could have been placed in 
several different tracks. The computing field is now clearly a 
multidisciplinary field. Thus the Proceedings place emphasis 
on office systems, personal computers, telecommunications, 
and human factors. Of even greater significance is the growing 
need to integrate all these disciplines to understand the entire 
field today. It is our hope that the 1983 Proceedings provide 
such a viewpoint. 

With this theme as a foundation, the NCC '83 Proceedings 
have been grouped in nine major areas: 

1. Software Engineering-providing new ideas and direc
tions for the development of systems in the future. 

2. ManagementlEducation-a broad view of various man
agement and education issues, with a mini-track on 
maintenance of systems, a growing problem in the field. 

3. Database/Distributed Systems-an update on new 
trends in software and hardware for database manage
ment. 

4. Human and Social Issues-a broad coverage of issues 
relating to the impact of computing on society, organi
zations, and the individual. 

v 

ALLEN N. SMITH 
1983 NCC Program Chairman 

Introduction 

5. Office Automation-an update on many facets of office 
automation, including the growing impact of personal 
computers on this area. 

6. Decision Support Systems-a significant new area of 
growth in providing executive and professional support 
is covered in these sessions. 

7. Hardware-a view of the trends and developments in 
new approaches to computer hardware and architecture. 

8. Telecommunications/ Applications-a series of updates 
on new and recent developments in telecommunications 
along with brief updates on a series of applications and 
on the use of the technology. 

9. Personal Computers-a broad view of the explosively 
growing area of microcomputers, both for personal and 
for business use. 

Pioneer Day will focus on Howard Aiken and the Harvard 
Computational Laboratory, tracing early developments in the 
computer field. 

As with the program for 1982, we have reduced the number 
of sessions to 84, whereas past programs gave more than 100. 
This has allowed us to concentrate the program and the Pro
ceedings on the areas of greatest importance and to offer 
higher quality. We have selected over 80 papers from the vast 
number of papers that were submitted; we believe the ones 
selected provide high quality in their areas. We had to elimi
nate many fine topics and decline many fine papers. The 
conference program includes a key to the page numbers of the 



papers in the Proceedings for easy reference. Summaries of 
the panel discussions are not printed in the Proceedings; how
ever, a brief summary of each track area is included in the 
Proceedings. 

The development of the 1983 NCC program required the 
dedicated effort of many individuals: the Program Committee 
members, the session organizers and leaders, the panelists 
and presenters, and authors of technical papers, as well as the 
referees who helped us select the papers to be presented in the 

Proceedings. Additionally, the staff of AFIPS greatly assisted 
us in developing the Proceedings. The Committee staff, 
headed by Jeff Young, with the invaluable assistance of Carrie 
Borgen and Georgia Marinelli, contributed more than it is 
possibie to acknowiedge to the deveiopment of this voiume. I 
wish to extend my own personal thanks to all of these individ
uals, and especially to the Program Committee. It is our sin
cere hope that this program will provide useful and thought
provoking knowledge to those who attend. 



CONTENTS 

Preface ............................................................................................ . iii 
Don B. Medley 

Introduction ........................................................................................ . v 
Allen N. Smith 

SOFfWARE ENGINEERING 

Writing less code-An approachable ideal ............................................................. . 3 
Naomi Lee Bloom 

Foundation software: A significantly improved approach to the development of large application systems ...... . 11 
Gary A. Curtis 

A case for adaptable applications software ............................................................. . 21 
Mary Woodward and Peter F. DiGiammarino 

Knowledgeable contexts for user interaction ........................................................... . 29 
Bozena Henisz Thompson, Frederick B. Thompson, and Tai-Ping Ho 

An English-language processing system that "learns" about new domains .................................. . 39 
Bruce W. Ballard and John C. Lusth 

Implementation of an Ada ™ run-time environment ..................................................... . 47 
Herman Fischer and Edgar H. Sibley 

Future Ada ™ environments .......................................................................... . 57 
Sabina H. Saib 

Stepwise structuring: A style of life for flexible software ................................................. . 65 
Erik Sandewall, Sture Hagglund, Christian Gustafsson, Lennat Jonesjo, and Ola Stromfors 

HITS: A symbolic testing and debugging system for multilingual microcomputer software ................... . 73 
Takeshi Chusho, Atsushi Tanaka, Eri Okamoto, Akinori Honrul, and Toru Kurosaki 

A global checkpointing model for error recovery ....................................................... . 81 
Krishna Kant 

Development tools for bus controller software .......................................................... . 91 
M. I. Thomas 

Logic analysis and its tools ........................................................................... . 97 
R. S. Wang 

MANAGEMENTIEDUCATION 

Improving software maintenance attitudes ............................................................. . 107 
Paul C. Tinnirello 

A methodology for minimizing maintenance costs ....................................................... . 113 
Linda Brice and John Connell 

Quality assurance and maintenance applications systems ................................................. . 123 
Barbara J. Taute 

Human investment techniques for effective software maintenance ......................................... . 131 
Nicholas L. Marselos 

Structured software maintenance ..................................................................... . 137 
G. R. Eugenia Schneider 

Application maintenance: One shop's experience and organization ........................................ . 145 
Robert E. Marsh 

vii 



Organizational issues of effective maintenance management .............................................. . 
Gary L. Richardson and Charles W. Butler 

When a data processing department inherits software ................................................... . 
Joan R. Zak 

Maintaining user participation throughout the systems development cycle .................................. . 
Randy J. Raynor and Linda D. Speckmann 

Data processing project management: A practical approach for publishing a Project Expectations Document ... 
Lois ZeUs 

DATABASEIDISTRIBUTED SYSTEMS 

A distributed database design for a communications network control system ............................... . 
S. C. Lo, S. L. Kota, and M. H. Aronson 

EMP ACT™: A distributed database application ........................................................ . 
Alan Norman and Mark Anderton 

Dynamic replication, an overview ..................................................................... . 
T. P. Daniell, R. C. Harding Jr., and S. H. Nauckhoff 

Local query translation and optimization in a distributed system .......................................... . 
Emmanuel Onuegbe, Said Rahimi, and Alan R. Hevner 

Progress towards database management standards ...................................................... . 
Donald R. Deutsch 

Command use in a relational database system .......................................................... . 
John D. Joyce and David D. Warn 

Generating requirements from enterprise analysis ....................................................... . 
David V. Kerner and Ashok Malhotra 

Developing a long-range information architecture ....................................................... . 
James C. Wetherbe and Gordon B. Davis 

A reconfigurable VLSI architecture for a database processor ............................................. . 
Kemal Oflazer 

Implementing set-theoretic relatirnal-query functions using highly parallel index-processing hardware ......... . 
Sakti Pramanik 

Cost-effective ways of improving database computer performance ......................................... . 
David K. Hsiao 

Application of the massively parallel processor to database management systems ........................... . 
Edward W. Davis 

Panacea or pitfall? The impact of relational databases on your environment 
Willem Stoeller 

HUMAN AND SOCIAL ISSUES 

Advanced office systems: An empirical look at use and satisfaction ....................................... . 
T. K. Bikson and B. A. Gutek 

An Interactive Display Environment, or knitting sheep's clothing for a wolf ................................ . 
Robert P. O'Hara 

Resiliency of the computerized society 
Rein Turn and Eric J. Novotny 

OFFICE AUTOMATION 

Interfacing people with their machines ................................................................ . 
Nancy B. Finn 

155 

163 

173 

181 

191 

203 

219 

229 

241 

247 

255 

261 

271 

283 

293 

299 

309 

319 

329 

341 

353 



Current issues in electronic mail-Heralding a new era. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 
Walter Ulrich 

The integration of multimedia communications. . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 
B. P. Donohue, III 

Voice mail ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 
Paul F. Finnigan 

Electronic mail: Evolving from intracompany to intercompany.. .. ....... .. .. . .... .. . . ...... . ..... .. .. ... . 379 
H. Paris Burstyn 

DECISION SUPPORT SYSTEMS 

A new look at existence dependency in databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 
T. C. Chiang 

Issues in the design of relational model management systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 
Robert W. Blanning 

Focal points for DSS effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 
Carl Harrington 

Information resource management for corporate decision support.. .. .. ... .... . ... ... . .. .. ... . . .. . ... .. .. . . 409 
William H. Gruber and George Sonnemann 

Developing a strategy profile for management support systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 
Gary K. Gulden and Eevelyn S. Arkush 

The DSS development system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 
Robert H. Bonczek, Nasir Ghiaseddin, Clyde W. Holsapple, and Andrew B. Whinston 

Applications of fuzzy languages and pictorial databases to decision support systems design. . . . . . . . . . . . . . . . . . . . 437 
Edward T. Lee 

Database-oriented decision support systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 
Daniel T. Lee 

HARDWARE 

Universities and the future of high-performance computing technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 
Kenneth G. Wilson 

Dynamic RAM architectures for graphics applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 
Douglas L. Finke 

The iRAM-An innovative approach to microprocessor memory solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 
John J. Fallin 

MULTIBUS® continues to evolve to meet the challenges of the VLSI revolution ......... , .... . . .. ... .. . .. . . 497 
Steve Cooper 

Analysis of the M6809 instruction set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 
Joel Boney 

Tales from the trial trail: Videotex progress in the United States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 
Gary H. Arlen 

Videotex and teletext in the business/consumer marketplace .............................................. 519 
Larry T. Pfister 

Winchesters for multiuser/multi task applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 523 
Larry Jacob 

Intel iAPX 432-VLSI building blocks for a fault-tolerant computer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 
Dave Johnson, Dave Budde, Dave Carson, and Craig Peterson 

Performance evaluation of the MP/C. .. . .. ....... . .... .... ... ..... ..................................... 539 
Bruce W. Arden and Ran Ginosar 

ix 



A multiprocessor with replicated shared memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 
Sigurd L. Lillevik and John L. Easterday 

Reconfigurable architectures for VLSI processing arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 
Mariagiovanna Sami and Renato Stefanelli 

Conflict-free memory allocation for associative data files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 
Svetlana P. Kartashev and Steven I. Kartashev 

Reconfigurable fault-tolerant mUlticomputer network 
Svetlana P. Kartashev and Steven I. Kartashev 

PIONEER DAY 

TELECOMMUNICATIONS/APPLICATIONS 

595 

611 

A standard session protocol for open systems interconnection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617 
Charles E. Young 

The role of the Intelligent Peripheral Interface in systems architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 
I. Dal Allan 

Progress on the network layer of the OSI reference model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631 
Peter F. Linington 

The technology of digital speech: Compression, editing, and storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 
R. E. Crochiere and J. L. Flanagan 

Statistical modeling for automatic speech recognition [abstract of presentation] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 
R. L. Mercer 

Implications of VLSI technology for speech processing [abstract of presentation] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 
R. W. Brodersen 

Network security and vulnerability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 
J. Michael Nye 

IBM information network performance and availability measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 
Richard C. Soucy and Richard M. Bailey 

Designing and managing an SNA network for growth.................................................... 663 
S. M. Schiffman 

Backup and recovery in the IBM Information Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671 
K. Bhadra and S. M. Schiffman 

Logical problem determination in an SNA network. . . . . .. . . . . . .. .. .. ... . . . . . .. . . .. . . .. . . .. . . . . . . . . . .. . . . 677 
Robert A. Weingarten and Edward E. Iacobucci 

Planning high-speed digital services in the Bell System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 
Gary J. Handler 

Three heuristics for improving centralized routing in large long-haul computer communication networks. . . . . . . 691 
Ivan M. Pesic and Daniel W. Lewis 

A new probabilistic routing algorithm for packet-switched computer networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 
Chi-Yuan Chin and Kai Hwang 

Optical wireless modem for office communication ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721 
Takatoshi Minami, Kenjiro Yano, Takashi Touge, Hisashi Morikawa, and Osamu Takahashi 

A high-throughput interconnection structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729 
J. A. Hernandez, E. Horlait, R. Joly, and G. Pujolle 

A new look at computer contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735 
Dennis K. Knight 

An information system for developing information systems 
Bruce I. Blum 

743 

x 



A metric of estimation quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753 
Tom DeMarco 

Software productivity measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757 
J. S. Collofello, S. N. Woodfield, and N. E. Gibbs 

The laboratory automation system in the electrical communication laboratories of NTT . . . . . . . . . . . . . . . . . . . . . . 763 
Nobuyoshi Terashima 

Applications of digital optical disks in library preservation and reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 
William R. Nugent 

PERSONAL COMPUTERS 777 

Software maintenance objectives [NCC 1982 paper]... . . . .. . .... . . . .. ... .. . . . .. .. .. . .... . ... . .. . . ... . ... . 779 
Ned Chapin 

xi 





Toni Shetler 
TRW 
Redondo Beach, California 

SOFTWARE ENGINEERING 

The Software Engineering track at this year's NCC has twelve sessions that are 
rich with ideas and information; included are: methodology, technology, tools, 
management, user considerations, and research and development. 

Software engineering research and development activity is addressed by 
three separate panels from the research, defense, and industrial communities. 
Experts will examine the critical priorities, technologies, issues, and resources 
instrumental in directing current R&D efforts and in formulating the ideas and 
identifying the concerns that will be part of our future. 

Software development techniques are addressed in four sessions that focus 
on available methods and tools. Methods for improving development produc
tivity through techniques such as reusable code will be presented. Presented 
will be improvements in existing programming methodologies including devel
opment support environments, testing and debugging tools, as well as effective 
documentation methods. 

Software development management is addressed by a panel experienced in 
managing large projects and delivering state-of-the-art software systems. They 
will discuss their experiences and work environments, and project these ex
periences into the future, touching on the issues that software development 
management will face in the years to come. 

Artificial intelligence is addressed in two sessions. One session explores 
experiences with systems that adapt to user interface requirements. The other 
session provides a panel of AI experts to explore the value of AI in the tools 
of the future. These sessions provide a refreshing look at how AI has evolved 
from the fantasy fringe to the mainstream of computing. 

The two Ada ™ sessions address the present and the future: early experi
ences developing Ada applications and Ada programming environments. The 
software engineering community has watched Ada evolve during the 
70's-from concept to definition to early implementation. This evolution had 
more care, planning, coordination,and tracking than any of its language pre
decessors. These sessions provide an opportunity to learn about the Ada activ
ity, thinking, and directions for the 80's and beyond. 

"Communicating with Databases in English": This session introduces cur
rently available systems for asking questions of databases in English and de
scribes commercial user experiences with them. The focus is on methods of 
enabling users to redefine the subset 6f English appropriate for their own 
applications and to switch easily from ~ne context to another. The session was 
organized by the Association for Computational Linguistics to present the best 
current work in applied natural language processing. 

"Artificial Intelligence: Blue Sky or Tools of the Future?" This session 
presents work from several points across the research and development spec
trum, from work characterized as "why-do-you-want-to-do-THAT?" to work 
whose solid, practical results are being used in everyday industrial and aca
demic applications. 

"Writing Less Code-An Approachable Ideal": This session is composed of 
three reviewed papers that are included in the Proceedings. 

"Software Management for the 80's": A group of experienced, large-scale 
software development managers present their experience and intuition, ad
dressing the problems and solutions of managing software development 



projects in the changing computer hardware and software technological envi
ronments. This session will concentrate on large-scale systems. The panelists 
discuss past experiences in software management given changes in technolo
gies, what the panelist is doing to manage effectively at present, and predic-
tions for the future. 

"Reducing Program Development Risks with Reusable Code": The need 
for improved programmer productivity has spurred the development of a 
variety of program generation aids. One significant approach to applications 
development is reusable COBOL code modules. The developers and users of 
Raytheon's ReadyCode discuss the theory of reusability and its implemen
tation in specific user environments. 

"Software Engineering Techniques and Approaches": This session is com
posed of five reviewed papers that appear in the Proceedings. 

"Directions in Software Engineering: Now and The Future": This panel 
session discusses the recent workshop held by ACM SIGSOFT and IEEE 
Technical Committee on Software Engineering concerning activities they 
could sponsor to speed the development of software engineering techniques 
and their successful transfer into practice. Recommended actions from the 
workshop are discussed and followed by open discussion. 

"Software Technology for Adaptable Reliable Systems": A discussion of the 
new DOD software initiative program is presented. Two panelists, heavily 
involved in its formulation, discuss the issues. 

"Experience in Ada ™ Applications": This session focuses on some of the 
first projects using Ada ™ as an implementation language. Each of the speakers 
has been involved with a large Ada application. In particular, this session 
provides their early lessons learned, as well as describes how Ada was intro
duced to their organizations. 

"Future Visions: Ada ™ Environments of the 1990's": This session is 
composed of two reviewed papers and a panel of three. The two papers appear 
in the Proceedings; the panelists, involved in Ada ™ environment research 
review the issues. 

"Software Engineering by the Year 2000": This panel of distinguished soft
ware engineers explore the directions software engineering might take in the 
next 17 years. Panelists present their predictions, followed by an interchange 
among panelists and with the audience. 

"Effective Software Documentation-Online Documentation": Online 
documentation is replacing hard-copy, or written, documentation for com
puter systems and software. This session explores the past, present, and future 
of online documentation. 



Writing less code-An approachable ideal 

by NAOMI LEE BLOOM 
American Management Systems, Inc. 
Arlington, Virginia 

ABSTRACT 

We are being inundated by a sea of unsatisfied user expectations. This growing, and 
sometimes frightening, backlog of application development requests has been much 
discussed but little reduced. One almost universal approach to reducing this backlog 
has been to try to improve the productivity of our scarce technical resources (pro
grammers, systems analysts, etc.). A more promising approach to meeting user 
application needs may be to substantially reduce the amount of new code needed 
to satisfy these needs. It takes no great insight to become convinced that, other 
things being equal, the less code written to achieve a specific level of systems 
support, the less risk, cost, elapsed time, and frustration must be accepted by the 
organization. This paper presents a brief survey of some common, and some less 
obvious, applications-enabling techniques. Two of the most promising techniques, 
foundation software and adaptable application packages, are more fully described 
in separate papers. 

3 





INTRODUCTION 

We are being inundated by a sea of unsatisfied user expecta
tions. This growing, and sometimes frightening, backlog of 
application development requests has been much discussed 
but little reduced. And the invisible backlog, described by 
MartinI as the unspoken (and perhaps not yet dreamed of) 
desires of our users, ensures that this problem is not likely to 
diminish. 

One almost universal approach to reducing this applications 
backlog has been to try to improve the productivity of our 
scarce technical resources (programmers, systems analysts, 
etc.). Productivity techniques, such as structured program
ming, structured analysis, regression testing, and interactive 
programming, have been widely adopted, but still the backlog 
grows. Clearly, even quantum leaps in the productivity of 
scarce technical resources will not eliminate this backlog. 

A more promising approach to meeting user application 
needs may be to substantially reduce the amount of new code 
needed to satisfy these needs. Such application-enabling tech
niques, to use a phrase that seems to have originated within 
IBM, are intended to reduce the amount of new code written 
rather than to merely expedite the production of new code. It 
takes no great insight to become convinced that, other things 
being equal, the less code written to achieve a specific level of 
systems support, the less risk, cost, elapsed time, and frus
tration must be accepted by the organization. 

It is important to note, however, that other things are usu
ally not equal. Many of the techniques described in this paper 
substitute increased consumption of computing resources for 
reductions in the personnel resources needed to achieve a 
certain level of user support. As hardware costs and the re
sulting price performance ratios continue to improve while 
competent analysts, programmers, and related computer pro
fessionals grow more scarce and more expensive, it is a rea
sonable business judgment to explicitly trade off increased 
hardware resource consumption for man-hours of develop
ment and user time. Such trade-offs must not compromise 
satisfying user needs and they must be carefully evaluated for 
each application so that the system overheads associated with 
various packages and tools do not catch the project team· 
unawares. 

This paper presents a brief survey of some common and 
some less obvious applications-enabling techniques. Two of 
the most promising techniques, foundation software and 
adaptable application packages, are more fully described in 
separate papers by Curtis2 and Woodward and DiGiam
marino. 3 If properly used, the techniques presented here will 
reduce not only the amount of new code written by anyone 
organization, but also the aggregate amount of new code. 

Writing Less Code-An Approachable Ideal 5 

However, even if these applications-enabling techniques are 
fully applied, some new code will have to be written, and that 
should be done in a highly productive and orderly way. While 
this paper and those by Curtis and Woodward and DiGiam
marino focus mainly on traditional business applications, 
applications-enabling techniques may be applied equally to 
the development of scientific, system-oriented or personal 
applications. 

THE SPECTRUM (OR HIERARCHY) OF 
APYLICATIONS-ENABLING TECHNIQUES 

There is nothing very mysterious about finding ways to write 
less code. You can do any of these things: 

1. Convince the user not to want (or to need) a new appli
cation. 

2. -Reuse old code-your own or someone else's. 
3. Use simple tools (remember how levers work?) to multi

ply the work value of any code you do write. 
4. Get someone else, perhaps your users, to write the code 

for you. 

The key to successful applications enabling is to build these 
very simple maxims into your systems development life-cycle 
methodology. Applications development or even package in
stallation projects should not be initiated, unless the new ap
plication is really needed. And in every stage of the life cycle, 
you must ask yourself what alternatives exist to developing 
new code. Thus, applications-enabling techniques parallel, in 
some sense, the applications development life cycle. 

In the earliest stage, frequently called the business systems 
or strategic systems planning stage, you must ask the funda
mental question of whether this application is worth doing at 
all. As the process goes forward, you should be asking the 
following types of questions: 

1. Has this application been developed before? If so, there 
may be some old code that you can reuse. 

2. Does this application lend itself to the use of simple 
tools? Either tools that someone else has developed, or 
that you yourself could develop? 

3. Does this application lend itself to the end user-written 
code that is characteristic of many data manipulation 
and analysis applications? 

By asking these types of questions at the appropriate points in 
the systems development life cycle, you can take advantage of 
the many techniques available to minimize the amount of new 
code written. The remainder of this paper explores these tech-



6 National Computer Conference, 1983 

niques in the order in which they tend to present themselves 
in the life cycle. 

DO NOT DEVELOP UNNECESS,A,.RY APPLICATIONS! 

The most obvious solution to our problem of how to write less 
code is to eliminate from the backlog all but the essential 
(translation: justified) applications. Strategic systems plan
ning (also known as business systems planning) is the process 
by which an organization identifies and prioritizes its major 
systems development objectives. By explicitly aligning the 
applications development priorities with the organization's 
business strategy, we take a critical first step toward reducing 
the amount of new code to be written. 

Although there are many flavors of strategic systems plan
ning described in the literature, the objectives identified by 
IBM4 in their business systems planning methodology are 
representative: 

1. To provide management with a formal, objective meth
od for establishing priorities for corporate information 
systems without regard to local interests 

2. To ensure that scarce development resources are com
mitted to those systems that have a long life, thereby 
protecting the systems investment, because these sys
tems are based on the business processes that are gener
ally unaffected by organizational changes 

3. To provide that the data processing resources are man
aged for the most efficient and effective support of the 
business goals 

4. To increase executive confidence that high-return, major 
information systems will be produced 

5. To improve relationships between the information-sys
tems department and users by providing for systems that 
are responsive to user requirements and priorities 

6. To identify data as a corporate resource that should be 
planned, managed, and controlled in order to be used 
effectively by everyone 

By ensuring that we develop only those applications whose 
relevance to the organization and benefits have been rigor
ously examined, we have made the first breakthrough toward 
minimizing the backlog of unsupported application require
ments. To repeat, if you develop no unnecessary applications, 
you will not be called upon to write (and maintain!) worthless 
code. 

REUSE OLD CODE-YOUR OWN OR 
SOMEONE ELSE'S! 

Where an application is justified, there are several possibili
ties for developing it without writing any code or by writing 
only a small amount of (it is hoped) simple code. Application 
software packages have been available for nearly 30 years, and 
many routine business (and system, e.g., sorting) functions 
are very adequately supported by such packages. In addition, 
many of your business functions, such as edit routines for 
specific data elements, have probably been programmed 

many times within your own organization. Before deciding 
that an application is so unique as to obviate using any existing 
code-a common attitude among many in-house analysts and 
users--consider the many flavors of software packages and 
reusable in-house code. 

Currently available commercial applications software can 
be divided into three general categories: 

1. Traditional software packages, which perform a well-de
fined set of functions with minimal installation options 

2. Contemporary software packages, which perform a well
defined set of functions subject to many table-driven, 
user-defined, installation-specific options 

3. Adaptable software packages, which perform a flexible 
set of functions subject to many table-driven, user-de
fined, installation-specific options 

Traditional Software Packages 

Initially, application packages were really custom software 
that the developer chose to share, albeit for compensation, 
with others. Early package vendors often sold their essentially 
custom systems with minimal documentation and installation 
support. Installing such a package required the buyer to mod
ify code even to support the most obvious installation-specific 
requirements, for example, to change report headings to con
tain the buyer's company name. 

The buyer of a traditional software package (and there are 
many currently being sold) gets some clear benefits: On short 
notice, he is able to obtain and install debugged code that 
performs some well-defined set of functions after minimal 
source code modification; and he pays a far lower purchase 
price than he would for equivalent custom development. 
Needless to say, the italicized adjectives are subject to the 
buyers' personal evaluation. But, in theory, the risks, cost, 
elapsed time (and, hopefully, frustration) of purchasing a tra
ditional package are less than in doing the application from 
scratch. 

That's the theory, but the benefits are often not realized in 
practice. With a traditional package, every user-specific re
quirement, from report headings and formats to variations on 
common algorithms, resulted in modifications to foreign (at 
best) or (more often) incomprehensible and undocumented 
source code. Although traditional packages remain an appro
priate technique for writing less code, their inflexibility can be 
frustrating. 

Contemporary Software Packages 

Eventually, modern (that is, scientific) approaches to soft
ware design, combined with the recognition that even the 
most flexible software buyer had some unique requirements, 
led to a new type of package. Written to be generalized, 
commercial software products, contemporary packages (my 
term) have the following: 

1. Well-documented source code constructed to provide 
low-risk user exits, that is, specific points at which user-



written subroutines can be inserted without disrupting 
the program flow or voiding the vendor's warrantee 

2. Reference tables that remove from the source code such 
frequently customized functions as report headings and, 
in some cases, formats; message code literals and sever
ity levels; data element names, field lengths, data types, 
and edit rules, including pointers to other reference 
tables of valid values and code translations; parameter 
values, for example, process scheduling dates, current 
withholding tax percentages, and airline overbooking 
percentages; calculation algorithms-sophisticated pack
ages exist for which not only the parameter values but 
also the operators and calculation bases are table-driven; 
and coding structures, for example, the chart of accounts 
or organizational structure 

3. A formal installation process, including sample conver
sion programs, job streams, and other code-reducing 
aids 

Like traditional packages, the purchase and use of contem
porary application packages generally reduces the costs, risks, 
elapsed time, and personal frustrations of meeting system 
support needs. However, there is always a price for flexibility. 
Sophisticated reference tables can require considerable load
ing and maintenance effort, although this approach is far less 
risky than modifying source code. Plus, users can often be 
roped into taking responsibility for loading and maintaining 
most of the tables. 

More important, from the perspective of containing cost, 
risk, and elapsed time, the availability of options means some
one (usually a cast of thousands) must analyze, document, 
recommend, evaluate, and (it is hoped) decide on each de
sired option. But contemporary applications packages go a 
long way toward meeting organization-specific requirements 
without developing new code. 

One further note before moving into a new area of pack
aged software. As mentioned earlier, there is usually a hard
ware resource consumption penalty for using generalized 
software. Contemporary packages which favor table-driven 
processes over hard-coded processing, exact a stiffer penalty 
in this regard than do the traditional packages. 

Adaptable Software Packages 

One of the most interesting recent developments in soft
ware packages is the trend toward building groups of related 
modules that can be reconfigured to suit various application 
requirements. One such package was developed to support 
credit card collection activities (CACS). Recognizing that 
credit card collections are a specific example of a generic class 
of applications, that is, case tracking, scheduling, and state
processing functions, the software was developed to automate 
these generic functions. With a combination of powerful refer
ence tables, including process control tables, and program 
modules that can be combined in various ways, CACS can be 
used with minimal source code modifications to support a 
broad class of user requirements. The paper by Woodward 
and DiGiammarin03 describes CACS and the concept of 
adaptable software in more detail. 

Writing Less Code-An Approachable Ideal 7 

Solve Part of the Problem With Old Code 

Access to mathematical and statistical subroutines was an 
early enhancement to many compilers. In contemporary sys
tems, active data dictionaries often drive data element edits 
from a common or shared subroutine. Indeed, most data pro
cessing shops have developed some standard source language 
components, perhaps as COPYLIB equivalents, that can be 
reproduced in various applications at minimal risk, cost, and 
so on. When we discuss using simple tools to leverage the 
value of any newly written code, one point that we'll develop 
further is the idea that the design effort must explicitly focus 
on identifying common processes that could be programmed 
once rather than needing to be redone in multiple programs 
or systems or installations. 

To take full advantage of existing code (or to identify com
mon processes for initial development), the life-cycle meth
odology must emphasize answering the following questions at 
each level of the design: 

1. Have we ever automated this function before? Even a 
relatively minor function, such as a date edit, can be 
programmed once, even as a generalized routine, at far 
less cost than having every programmer do his own 
thing. At a minimum, your effort for the year 2000 will 
be greatly simplified if you've been smart enough to 
incorporate a single date routine into all your systems. 
It's essential to evaluate each process in this way as a 
potential candidate for the organization's library of stan
dard software. 

2. Will we ever need to automate this function again? Date 
edits, translations of organization codes into their cor
rect names, report headings, and many other common 
functions appear in nearly every business application. 
Do them once in a generalized way, at somewhat greater 
cost initially, and use them forever. 

Unless the deliverables at each stage of the development life
cycle explicitly address the issue of standard software (re
usable code), many opportunities for writing less code will be 
missed-now and in the future. 

USE SIMPLE TOOLS 

There are two general approaches to multiplying the value of 
any code you do write: 

1. Extension software, which uses your (it is hoped) simple 
code written in the tool's own command language as the 
input from which it creates (by translation, compilation, 
assembly or one of several other extension techniques) 
very substantial functionality; and 

2. Conservation techniques, which are a formal set of de
sign techniques that look for the common functional 
elements in an application in order to develop a single 
implementation of these common functions for use 
across the application. 



8 National Computer Conference, 1983 

Reusing date routines is a very simple case of conservation. In 
this section we'll explore more sophisticated examples of the 
two approaches just mentioned. 

Extension Software 

When you write JCL to unleash the power of IBM's various 
operating systems, you are using extension software to min
imize the code you must write. My earliest programs in ma
chine language on an IBM 1401 had no such extenders, and 
we wrote our own tape reads and printer writes. Now, every 
use of a system utility from within your application, that is, 
calling the COBOL internal SORT, leverages a few utility 
commands to perform considerable work. 

Thus, the universe of extension software ranges from the 
old and familiar to the new and still developing: 

1. Utility programs that provide system or housekeeping 
functions 

2. Report writers and inquiry languages, including graphics 
packages 

3. Database management systems with which you use sim
ple commands in the application programs to invoke 
powerful data handling, edit, storage, and access 
capabilities 

4. Screen generators 
5. Data management and anaiysis toois, for example, SPSS 

and SAS 
6. Application generators 
7. Very high-level languages. 

The boundaries among these tools are not clear-cut, and 
many of them can be used by nontechnical persons to achieve 
the ultimate shifting of application development responsi
bility. All of these tools hold the same promise of providing 
complex software to leverage simple commands into powerful 
functionality, and many deliver on this promise. 

However, there is a serious fly in the ointment regarding the 
use of extension techniques. We are now being inundated in 

. a sea of command languages, specialized syntaxes, and easy
to-learn, English-like, languages. There's not even agreement 
on how commands are delimited! Until considerable stan
dardization occurs, taking advantage of even a small set of 
these tools will impose a serious training burden on any orga
nization. And many professional programmers and users will 
resist using these tools because they quite reasonably perceive 
that the cost of mastering them is too high. 

Conservation Techniques 

Perceptive analysts and designers have always recognized 
common functions in their application specifications, but the 
process of doing so was largely informal. On many business 
applications, there are a rather large set of common functions 
that lend themselves to a common software approach. At 
American Management Systems, Inc., we have incorporated 
into our life-cycle methodology a quite formal process for 
searching for these common system elements. 

The decision to build an application around a base of com
mon software modules must be made explicit quite early in the 
design process so that all further effort can be efficiently di
rected. We call the resulting software, which provides com
mon services to the rest of the application, foundation soft
ware. The foundation software approach to developing large 
application systems is described in detail in the companion 
paper by Gary Curtis.2 

GET SOMEONE ELSE TO WRITE THE CODE! 

End-user computing is not a new idea. In the beginning of 
computer history, programming was the adjunct function of 
scientists, engineers, and mathematicians who were trying to 
use the great behemoths to calculate ballistic missile trajec
tories and to develop software for other, equally forbidding 
problems. In my early days as a programmer, accountants 
were still developing the first automated payrolls, general led
gers, and banking and insurance systems. Professional pro
gramming is less than 20 years old, so why do we now treat 
end-user computing as a state-of-the-art development? 

One reason is that, until now, whoever approached the 
computer was forced to learn computer-speak-at great per
sonal sacrifice. If we believe the advertisements for various 
end-user computing tools, the professional programmer may 
soon focus solely on core production systems and tool devel
opment, leaving to the user development of most data extrac
tion and analysis (MIS) systems. But the future has not yet 
arrived. 

Many of the simple tools described in this paper can be used 
by a nontechnical person after some training, and the growth 
of information centers attests to the availability of user
friendly tools. Fourth generation languages, for example, 
RAMIS II or FOCUS, are advertised as powerful tools for 
developing whole applications from simple commands. The 
proliferation of personal computers attests to the user orienta
tion of such tools as VisiCalc. Clearly, if the user can directly 
translate his unspoken (or never clearly spoken) information 
requirements into a working system, he won't have the DP 
staff to kick around any more. 

CONCLUSION 

Computers are worthless without programs, be they software, 
firmware, or part of the hardware itself. People still write 
programs, and people are expensive, unpredictable, and frag
ile. If only to sell more computers, the hardware vendors 
would welcome (support and probably give birth to) any ap
proach to program development that used more computer 
resources to free scarce personnel to develop new applications 
that used more computing resources. Since they develop many 
of the packages and tools and generally corner the market on 
really superb professional programmers, software vendors 
certainly favor the techniques described in this paper. Cor
porate users and DP managements are also on board the 
write-less-code bandwagon. So why does the applications 
backlog continue to grow? 



1. In-house programmers would rather write programs 
(not to mention design whole systems) than load tables 
for a contemporary package or do report writer setups. 
Perhaps we need a new category of DP aide or para
professional who sees using tools as a desirable job 
description? 

2. Without standardization in grammar or syntax, cur
rently available tools produce a Tower-of-Babel effect 
wherever they go. 

3. Many users have terminal block, not to mention various 
other phobia, that limit their ability to use any com
puting tools. 

4. Computing resources, while obviously getting less ex
pensive, are not free. Their acquisition, which always 
occurs in large increments, is a more visible expenditure 
to the organization than is the cost (opportunity cost) of 
unfulfilled application needs. 

Writing Less Code-An Approachable Ideal 9 

Time is clearly on the side of the approaches described in 
this paper, but I wouldn't yet discharge my COBOL program
mers nor declare that all user needs can be satisfied by their 
new Apples! As in all things, a balanced mix of these new 
techniques with more traditional application-development 
strategies will produce the best results. 

REFERENCES 

1. Martin, James. Applications Development Without Programmers. N.J.: 
Prentice-Hall, Inc., 1982. 

2. Curtis, Gary A. "Foundation Software: A Significant Improved Approach 
To The Development of Large Application Systems." AFIPS Proceedings of 
the National Computer Conference (Vol. 52), 1983. 

3. Woodward, Mary, and Peter DiGiammarino. "A Case For Adaptable Appli
cations Software." AFIPS Proceedings of the National Computer Conference 
(Vol. 52), 1983. 

4. IBM. "Business Systems Planning-Information Systems Planning Guide," 
GE20-0527-3, 1981. 





Foundation software: A significantly improved approach to 
the development of large application systems 

by GARY A. CURTIS 
American Management Systems 
Chicago, Illinois 

ABSTRACT 

The American Management Systems (AMS) approach to the technical framework 
of large applications systems is based on a concept we call foundation software, an 
integrated environment of standard packages and custom modules that provides 
common services to the development and operation of applications software. This 
environment provides a standardized, structured, and simplified view of the outside 
world to applications software. Use of foundation software dramatically improves 
the economics of development, operation, and maintenance of large systems and 
reduces the risk of developing such systems. In this paper, the foundation software 
approach is defined and illustrated, with particular emphasis on the relationship of 
foundation software to the overall architecture of large-scale systems and the impact 
of foundation software on the application-system development life cycle. 

11 





Foundation Software: A Significantly Improved Approach 13 

INTRODUCTION 

The AMS approach to the techI1ical framework of large appli
cations systems is based on foundation software. Use of foun
dation software dramatically improves the economics of de
velopment, operation, and maintenance of large systems and 
reduces the risk of developing such systems. This paper de
scribes the foundation software concept and our experience 
using this approach from three perspectives: 

• The relationship of foundation software to the overall 
architecture of large-scale systems is discussed, including 
foundation software functions and components and the 
major benefits to developing large-scale systems using 
the foundation software approach. 

• The use of foundation software is an inherent part of the 
AMS GUIDE: Methodology, systems-development life 
cycle. Foundation software activities in each phase of the 
systems-development life cycle are described. 

• The integration of foundation software and application 
software is discussed from the viewpoint of the overall 
system architecture. 

THE DEFINITION OF FOUNDATION SOFTWARE 

Foundation software is an integrated environment of standard 
packages and custom modules that provides common services 
to the development and operation of applications software. 
This environment provides a standardized, structured, and 
simplified view of the outside world to applications software. 

Foundation software increases productivity throughout the 
development, operation, and maintenance of applications by 
isolating applications software from changes in the technical 
components of the computer system and by making those 
components easier to use. 

Despite claims to the contrary, most operating systems, 
database management systems (DBMSs), teleprocessing 
monitors, and other technical components fail to simplify ap
plications development and operations. Indeed, a common 
result is that such components serve to greatly complicate the 
development and operation of applications software. The 
foundation software approach avoids this complication and 
delivers the benefits offered by these technical components to 
application software in a simple, effective manner. 

Software Architectural Levels 

Large-scale systems can be divided into three major archi
tectural levels. Figure 1 shows the relationships among these 

ApPLI CATI ON SOFTWARE 

FOUNDATI ON SOFTWARE 

SCREEN ERROR REPORT INQUIRY REPORT REFER-
MANAGE- PRO- GENERA- PACKAGE DISTRI- ENCE .... 
MENT, TOR CESSING, BUTION DATA 
SCREEN CORREC- PACKAGE INTER-
HANDLING TlON FACE 
I'1ENUS 

. --

TECHNICAL ENVIRONMENT 

MVS DL/I IMS 
SNA RACF IIIIII 

VTAM OR OR OR 
DOS IDflS CICS 

h ~ ~ / 
'DISTRIBUTEDl 

1-I SYSTEMS I 
1 USER 

1- USER 

Figure l-System architectural levels 

levels. Associated with each level are specific functional and 
organizational responsibilities. The levels are 

1. Technical environment-This level includes the technical 
components that the system designer takes for granted 
and that usually cannot be modified for application pur
poses. It typically consists of 
• system control program (OSNS, DOSNSE, MPE, 

VMS, etc.) 
• access methods and utilities (VSAM, VTAM, ID

CAMS, etc.) 
• network architecture (SNA, DECNET, X.25, etc.) 
• telecommunications monitor (IMS DC, CICS, IDMS 

DC, etc.) 
• DBMS (IDMS, DLlI, Model 204, IMAGE, etc.) 
Responsibility for the maintenance and support of com
ponents of the technical environment generally rests 
with the computing facility and its systems-software or
ganization. 



14 National Computer Conference, 1983 

2. Application software-This level is the functional core of 
the application system. It contains all of the specific 
substantive functions that relate to the application (busi
ness) problem at hand: 
, editing, verification, cleansing of application data 
• computations, analysis, transformations of applica

tion data. 
Most, if not all, of the application-data-dependent pro
cessing operations occur at this level. 

3. Foundation software-This level provides an interface 
between the application software and the detailed con
siderations required by each component of the technical 
environment. Foundation software directly uses stan
dard programming, communication, and control ser
vices of the technical environment, such as database 
calls, network messages, and control blocks, to provide 
high-level common application services such as menu 
processing, security, and error handling. Foundation 
software may also include software packages such as 
inquiry software and report generators. 

Foundation-Software Functional Scope 

The functional scope of foundation software cannot be rig
idly defined. For any specific application system, determining 
the functions to be provided by foundation software should be 
done in the context of the application design characteristics, 
constraints of the technical environment, and the organi
zational environment of the system-development effort. 

Our experience is that functions with the following charac
teristics are nearly always more effectively handled as founda
tion software: 

• common use of the function throughout some or all appli
cation subsystems 

• simplification of complex technical-environment features 
• interface to technical-environment features that are sub

ject to a high rate of technological change 
• expected volatility in application requirements for the 

function 
• missing or poor technical-environment features 
• performance sensitivity. 

Although benefits from anyone of these attributes can justify 
inclusion of a function in foundation software, it is usually the 
case that foundation software functions exhibit benefits due to 
several of them. Based on these attributes, a general state
ment of the functional scope of foundation software can be 
made. The functional areas that foundation software typically 
comprises are discussed later. 

Foundation-Software Components 

Foundation software consists of three types of components: 

• Custom interface modules-Efficient, standardized utili
zation of the technical environment's most complex com
ponents is usualiy provided through custom interface 

modules. In some cases, such interfaces provide an entire 
environment for applications processing. Control rela
tionships among these interfaces and application soft
ware vary from normal subprogram linkage to architec
tures in which application software processes under the 
control of a foundation software interface environment. 
Such facilities as a reference-data interface, on-line menu 
processor, and report distribution subsystem are usually 
provided in this manner. 

• Packaged software-Software packages are usually inte
grated into foundation software with custom interfaces. 
This topic is considered in more depth later. 

• Common modules-Processing functions required fre
quently throughout the application software are provided 
as common modules that are invoked through standard 
subprogram linkage. Some functions provided as com
mon modules, such as numeric editing, free-form pars
ing, and data validation, are generic to most business 
applications systems. Others provide services that are 
specific to a particular system or subsystem. 

The Role of Packaged Software 

Software packages, such as report generators, inquiry pack
ages, and data-entry packages, are usually important com
ponents of large applications systems. Packages can provide 
cost-effective solutions to many of the processing functions of 
large applications systems. A major difficulty in the effective 
use of packages in such systems is that packages tend to be 
functionally narrow in scope and are often cumbersome to use 
outside the context of standardized interfaces and procedures. 

Through the use of foundation software front-end and 
back-end interfaces, software packages are integrated into the 
processing environment of large applications systems, such 
that the functions which the packages provide can be used 
much more effectively by applications designers and pro
grammers than would be possible if they were used stand
alone. 

For example, in a large-scale IMS DBIDC financial system, 
ad hoc inquiries into historical and other databases have been 
provided cost effectively by integrating the INQUIRY IV/ 
IMS query package into the foundation software on-line user 
environment. Users access the package through the standard 
application on-line protocol and menus, request their queries 
in simplified, familiar terminology, and are essentially un
aware that a package is being used. This level of integration 
allows application security controls to be applied to ad hoc 
queries and allows uncomplicated transfers among package 
and nonpackage transactions. In this case, functionality was 
also added to the package through foundation software. The 
foundation software interface that captures query requests for 
transfer to the package first scans the requests for search 
conditions that will result in unacceptably lengthy on-line 
database processing and redirects such requests to overnight 
handling. 

For a package to be incorporated into foundation software 
it should be possible to use the package without any internal 
modifications. This restriction does not include the use of 



Foundation Software: A Significantly Improved Approach 15 

vendor-supported exits through which the package passes 
control to other software. Indeed, the use of such exits is a 
common method for tailoring a package to specific application 
requirements within the foundation software. 

Foundation-Software Benefits 

The foundation software approach provides benefits during 
all phases of the system development process. Herein the 
major ones are described, by phase. 

During system design 

Foundation software results in a high level of modulariza
tion and is, in this regard, an extension of structured design 
methodology. Common functions are designed only once and 
many more functions can be provided by standard, reusable 
software. 

The high degree of isolation from a need for detailed under
standing of the technical environment enables application de
signers to concentrate more effectively on solving business 
problems. 

During system development and implementation 

Senior technical staff resources are scarce throughout the 
computing industry. Foundation software allows the efforts of 
such staff members to be concentrated in high-payoff areas. 
This allows technically sophisticated applications to be devel
oped by relatively less sophisticated staff. 

During the development of large-scale systems, changes 
in the technical environment are usually introduced indepen
dent of the application development effort. Foundation soft
ware isolates application programmers from these changes 
and results in fewer disruptions, less recoding and greater 
productivity. 

During system support 

Rapid change in technology presents the system support 
staff with a continuous major effort to keep application sys
tems functioning against a moving background. With the 
foundation-software approach, application programs are iso
lated from the effects of this change. Application software can 
be maintained by less sophisticated technical staff. 

Due to the extensive use of foundation-software common 
services, new application functions can be added with minimal 
impact on the existing system. The application can thus be 
adapted to changing user requirements more easily and more 
cost effectively. 

INTEGRATION WITH THE 
SYSTEM DEVELOPMENT PROCESS 

The foundation-software approach is an inherent part of the 
AMS GUIDE: Methodology, systems-development life cycle. 

This section examines some of the key aspects of the 
foundation-software life cycle and the foundation-software 
development and support team. 

Foundation-Software Life Cycle 

Foundation-software is designed, developed, and imple
mented in a life cycle that is integrated with that of the overall 
application system. The relationship of the foundation
software and the application-development life cycles is shown 
in Figure 2. Some of the key aspects of the foundation
software life cycle follow. 

• Overall system architecture-The first step in the 
foundation-software life cycle is the development of an 
integrating framework for the design of the system as a 
whole. The overall structure for the system, the system 
architecture, is designed as early as possible. The system 
architecture defines the user interface with the on-line 
components of the system, the environment in which the 
system will be developed, and the operational environ
ment in which the application software will run, and pro
vides a model for effective management use of the sys
tem. This step is critical to the successful evaluation of 
the total system through its design, development, and 
support phases. 

Appl ication System 
Life Cycle 

Coo"pt it;oH'OO 

V 
System Design 

I 

I 

I 
System Development 

I 

I 

I 
V 

System Implementation 

I 
V 

System Support 

I 
I 

Foundation Software 
Life Cycle 

0"" 11 SY'T A"hit"t", 

I 
V 

F'"od""o Ttwm 0",,0 

V 
Foundat i on Software Development 

I 
V 

Foundat i on Software Imp 1 ementat i on 

I 
V 

Foundat i on Software Support 
I 

! 
I 

I 
I 
I 

Figure 2-Relationship of the foundation software and the application-system 
life cycles 



16 National Computer Conference, 1983 

• Advanced availability of foundation-software functions
Foundation-software design begins as early as possible, 
generally late in the concept definition or early in the 
system-design phase. This design encompasses all 
foundation-software components including previousiy 
developed foundation software, new custom founda
tion-software components, and software packages. 
Foundation-software design specifications must be com
pleted sufficiently early in the system-design phase to 
support the development of program specifications for 
the application system. Development of foundation
software begins during application-system design in or
der to provide working modules, interfaces, and devel
opment aids at the beginning of the application system 
development phase. Foundation-software implementa
tion and support activities begin during application sys
tem development in order to ensure stable system
development and turnover activities . 

• Iterative design and development-Although a basic set 
of foundation-software functions is designed and devel-

,oped early in the application-system life cycle, further 
development of foundation-software functions is an iter
ative process. The standardized interfaces and functional 
isolation provided by the foundation-software approach 
permit experience gained during application develop
ment to be fed back into the foundation software without 
disrupting application development. 

Organizational Impact 

The system-development project usually has a foundation
software team that is responsible for the design, implemen
tation, and support of all foundation-software components. 
The primary objective of the foundation-software team's ac
tivities is to ensure that foundation-software designs and soft
ware are in place sufficiently far in advance of application 
teams' needs to support the timely progress of the project. 

The team consists mostly of foundation-software and tech
nical specialists. The makeup of the team changes as the appli
cation system moves through its development phases; that is, 
in contrast to most application teams, the foundation-software 
team has some members who bring very specific skills to bear 
and are needed only until a particular problem is solved. In 
all other ways, the team is managed as a normal system
development team, reports to the project manager, and is 
integrated into the project team. The foundation-software 
team remains a part of the overall project team through imple
mentation and turnover of the entire system, including all 
foundation-software components. 

FOUNDATION-SOFIW ARE FUNCTIONS 
AND FEATURES 

The following foundation-software functions reflect AMS ex
perience in various technical environments and application 
areas and are neither a set of required foundation-software 
functions nor an exhaustive list. They do, however, represent 

areas where experience shows the foundation-software ap
proach to be effective and the payoff to be significant. 

On-Line User Management 

On-line user management facilities provide a friendly, 
screen-oriented environment that allows the user to exercise 
all authorized application functions. The language, sequence 
of operations, and features of this environment are relevant to 
the application and the user, and are not constrained by jar
gon and idiosyncracies of the on-line technical environment. 
Features usually provided include 

• menu processing 
• screen handling 
• security 
• user assistance. 

Input Management 

Input management controls the processing of application 
data from the point at which the data enter the system until 
the data have been accepted as valid and has been stored in 
application-data structures. Data can be entered, processed, 
corrected, and reprocessed in batch or on-line modes, in any 
combination. Standardized, application-oriented data organi
zations such as transaction, document, and batch organiza
tions are used. Specific features include 

• data entry 
• error processing and suspense 
• error correction 
• document approval 
• input workflow control. 

Application Data Management 

Foundation software is used to simplify and standardize ac
cess to application data structures and, where needed, to make 
the access more efficient. This function generally takes the 
form of data-structure (database) access interfaces that present 
to the application tabular logical views of application data, and 
of update-isolation facilities which ensure that application data 
structures are updated in a consistent, synchronized manner. 
The interfaces manipulate data structures using efficient, and 
often complex, call patterns, database facilities, and custom
developed functions. The major functions addressed by appli
cation data management are 

• reference data maintenance and control 
• reference data interface 
• update isolation 
• application data backout. 

Network Management 

In distributed data-processing environments, application 
software may operate on different processors connected 



Foundation Software: A Significantly Improved Approach 17 

through a network. In such an environment, isolation from the 
technical complexity of the network is provided by network
control foundation software. Network-control software allows 
the application software to be designed and implemented with
out regard to where in the network architecture the application 
software must operate. Network control includes the functions 
of 

• network status 
• transaction routing 
• distributed site support. 

Output Management 

Management ofthe varied forms and high volumes of output 
produced by large-scale application systems is controlled by 
output-management foundation software. Some of the major 
functions include 

• report distribution 
• graphics interface 
• report generators 
• on-line inquiry. 

System Management 

Overall management of the processing of a complex applica
tion system is simplified through several foundation-software 
functions. The objective is to present to system administrative 
personnel a standardized, simplified view of control facilities 
that makes it possible to exercise complex functions ofthe tech
nical environment with minimal technical expertise. System
management foundation software provides: 

• scheduling 
• recoverylrestart 
• performance monitoring. 

Office Automation Facilities 

Foundation software integrates application-system data and 
reports with office-automation facilities in two ways. Where 
the user's office environment includes existing facilities (such 
as stand-alone word-processing systems), foundation software 
provides interfaces that allow application software to send data 
to and receive it from these facilities. Where office-automation 
features are required by an application system but are not 
available in the user environment, foundation software in
cludes both the application interfaces and the actual document 
preparation and mailbox facilities themselves. The office
automation facilities supported by foundation software include 

• document preparation 
• word processing 
• electronic mail. 

Technical-Environment Enhancements 

Occasionally, technical environments do not provide some 
basic system support facilities that are essential to fulfillment of 

the application's primary objectives. In this situation, the 
system designer must often decide between a considerable 
sacrifice in application functionality and the development of 
significantly more comp.1ex application software owing to the 
incorporation of technical support features. When analysis of 
this tradeoff leads to a decision to support the application's 
required functions by developing the complex facilities missing 
from the technical environment, the foundation software ap
proach minimizes the adverse impact of this additional com
plexity. It further ensures that the complexity of the applica
tion software is not affected. The following are examples of 
facilities that are normally, and preferably, provided by the 
technical environment, but that may be provided by founda
tion software when necessary. 

• database locking 
• transaction logging 
• job control 
• dataset management. 

FOUNDATION SOFTWARE CASE STUDY 

A description of a large-scale integrated financial system im
plemented under IBM's IMS DBIDC technical environment is 
presented below. The relationship of the foundation software 
and application software components are particularly note
worthy. Figure 3 shows the overall system architecture keyed 
for the following discussion. 

The on-line user interface (1) handles user sign-on, sign-off, 
and security checking. It presents users with a series of menus 
to get to the desired system function, be it data entry, pro
cessing, or an inquiry request. As a security precaution, if a 
terminal has not been used for an extended period (set by the 
system administrator-perhaps 15 minutes), then the On-Line 
User Interface will automatically sign-off the terminal. 

A data entry/error correction program (2) accepts input 
transactions (i.e., documents) and stores them on the docu
ment suspense database. 

If the user wishes to process the transaction immediatel y, the 
data entry/error correction program will perform an IMS mes
sage switch to an application edit/update program. If errors are 
detected, the application program will signal the data entry/ 
error-correction program (2), which will post the errors high
lighted back to the user, who may then correct the erroneous 
data and immediately resubmit the document. 

Note that data can be entered and corrected without ever 
interacting with an application program. The data entry/error 
correction program also handles the scheduling of documents 
for processing. The purge-accepted-documents program (3) 
physically deletes documents from the document suspense 
database and creates an audit trail log. 

Reference tables are created and maintained by the founda
tion software reference data edit/update software (4) and ac
cessed through the reference data interface (RDI) software 
(5). The RDI is a memory-buffered approach, which takes 
maximum advantage of the fact that in most financial systems 
only a few specific table values constitute the majority of the 
requests. The RDI approach has eliminated over 90% of the 



18 National Computer Conference, 1983 

Legend: 

F.S. 
A.S. 

20ata Entry/ 
Error 

Correction 

Foundation Software 
Application-Specific Software 

lOn-lin 
User . 

Informa tl on 

Reports 
File 

Figure 3-IBM DB/DC integrated financial system architecture overview 



Foundation Software: A Significantly Improved Approach 19 

reference data DLiI calls in our financial system for Standard 
Oil of Indiana. 

The foundation software provides on-line inquiry (6) into 
the reference data tables and also provides ad hoc inquiry 
through a general-purpose inquiry package. The INQUIRY 
IV/IMS package from Informatics has been used for this 
purpose. 

System assurance software (7) ensures that the application 
database retains integrity at all times. Not only is the techni
cal integrity of the application database verified (no broken 
pointer chains, for example), but the substantive integrity is 
also verified. This capability is incorporated into the database 
design with planned redundancy and summary totals. In our 
experience this is an essential tool to help prevent system and 
application errors from corrupting the quality of the applica
tion data. 

Reports are produced both by custom-written COBOL re
port programs, and by an ad hoc report generator (8), such as 
EASYTRIEVE/IMS from Panasophic Software, which is inte
grated into the foundation software. 

Large systems typically generate scores of reports on a regu
lar basis to be distributed to many recipients. It is time con
suming and expensive to manually burst, duplicate, and decol
late the output of standard report programs for distribution to 
individual managers and staff personnel. AMS has developed 
and used successfully on a wide variety of projects foundation 
software that generates a custom packet of report pages for 
each recipient. This report-distribution system (9) is table 
driven, and it allows each individual to receive the correct num
ber of copies of the desired reports, all organized into a neatly 
bound and indexed packet. 





A case for adaptable applications software 

by MARY WOODWARD 
Associates Financial Services 
Southbend, Indiana 

and 
PETER F. DIGIAMMARINO 
American Management Systems, Inc. 
Redwood City, California 

ABSTRACT 

Contemporary economic circumstances have sent many organizations that extend 
consumer credit scrambling to secure automated support for collection operations. 
The traditional alternatives, custom system development and packaged software, 
fall far short of being acceptable to most large credit-oriented organizations. The 
Computer Assisted Collection System (CACS) was originally developed as a custom 
system and has since been used as adaptable foundation software by many large 
organizations to secure essentially customized support at a fraction of the cost, time, 
and risk that would normally be required. This paper reports on the success of the 
use of adaptive software to fill this urgent need and lends credence to the theory that 
throughout the 1980s there will be a trend towards the use of adaptive software to 
meet business' demands for low-risk, low-cost, fully functional and tailored soft
ware. 

21 





INTRODUCTION 

Consumer credit privileges are among the most visible and 
popular services provided by financial institutions and stores. 
Recent government regulations, economic factors, and social 
trends have had a profound impact on the business of granting 
credit. Consequently, consumer credit operations are of para
mount importance in many of today's business organizations. 

A variety of support functions are required to establish and 
maintain a profitable consumer credit operation, including 
credit authorization, accounting, customer service, and col
lections. Changing economic conditions and restrictive legis
lation often strain an organization's capacity to provide 
effective and efficient credit services. The high payroll and 
record-keeping costs due to their labor-intensive nature also 
significantly affect productivity and profitability of credit 
operations. These factors have an especially severe impact on 
credit collections operations. 

The Computer Assisted Collection System (CACS) is a 
software system that improves the productivity and effec
tiveness of credit collections through a form of office auto
mation. CACS provides users with immediate, on-line access 
to pertinent account information to assist in executing col
lection tasks and in making decisions. 

CACS was developed originally as a custom system by Wells 
Fargo Bank, N .A., in cooperation with American Manage
ment Systems, Inc. (AMS) , a company that specializes in 
management consulting and computer systems development. 
The system first became operational in the Wells Fargo Credit 
Card Collection Department in the spring of 1980. 

Wells Fargo, like many organizations, was severely affected 
by the recession of 1975. Collection operations were strained 
beyond capacity as the number of delinquent and overlimit 
customers requiring proper follow-up surged. Shortly after 
the recession had eased, Wells Fargo Bank resolved to devel
op an automated system for support of collections in order to 
lower processing costs, improve collection effectiveness, and 
accommodate surges in processing requirements in bad times, 
as well as to allow for aggressive growth in credit operations. 

Efforts to develop an automated collection support system 
soon revealed that such a system would require careful human 
engineering, the application of design techniques not com
monly found in contemporary automated support systems, 
and a technical architecture that, on the surface, appeared 
straightforward but, in reality, was quite complex. Several 
years and approximately one million dollars later, Wells Fargo 
was no closer to having an operational support system than at 
the outset. 

A new, 18-month venture with AMS finally resulted in a 
comprehensive collection support system that, almost from 

A Case for Adaptable Applications Software 23 

the day of initial operation, started to pay back in terms of 
increased collection productivity (close to 100% increases in 
productivity were measured) and effectiveness (record low 
losses and delinquencies were experienced). Wells Fargo, 
had, after many hard years, succeeded. 

THE CONCEPT OF ADAPTIVE 
SOFTWARE EMERGES 

The systems developers thought that the underlying CACS 
design and technical architecture were sound enough and flex
ible enough to be used by other organizations to help them 
secure a collection system meeting their own collection re
quirements. CACS, while certainly not a traditional software 
package, could be used as baseline software around which a 
customized collection support system could be developed. 

The merits of this logic were taken to be 

1. Wells Fargo Bank's prior experience, and the experience 
of at least a half-dozen other organizations, indicated 
that it is difficult, expensive, time consuming, and risky 
to custom-develop a collection system. 

2. There were no mainframe collection system packages 
available on the market. 

3. Even if packages did emerge, the esoteric requirements 
found in large organizations, which have evolved over 
decades in the business, mean that the use of off-the
shelf software would require major business and oper
ational concessions, which would be undesirable and 
traumatic. 

For some set of organizations, CACS as foundation or 
adaptive software could, it was reasoned, be used to secure a 
significant head start towards developing a custom collection 
system. Based on available data, the development of a custom 
system for a large organization was estimated to require a 
budget of from $500,000 to $1.5 million for professional ser
vices over 18 to 36 elapsed months. With CACS, the same 
functionality could be accomplished for fees and services of 
from $100,000 to $500,000 in just 3 to 6 months. 

On this reasoning, Wells Fargo and AMS set out to test 
their hypothesis in the market place. The target customers 
were large organizations in several market segments (banks, 
finance companies, service bureaus, retailers, etc.) who might 
be planning to provide automated support to collections. 

THE INITIAL REACTION 

Initial contact was made with several target corporations. As 
expected, many companies were making hasty plans to pro-



24 National Computer Conference, 1983 

vide automated assistance to collections since the current re
cession was at hand and collection woes were mounting. 
While the need was well-established and immediate, the alter
natives were not attractive. The options were to develop cus
tom software or to conform to the terms offered by reiativeiy 
inflexible, minicomputer-based collection systems that had 
recently emerged. 

The concept of starting with CACS and building upon it was 
greeted initially by two types of response. Those organizations 
with large systems organizations tended to say that their com
pany never bought packages because packages couldn't possi
bly meet their specific requirements, were not developed ac
cording to internal standards, and caused more trouble than 
they were worth. Organizations that would usually be inclined 
to consider off-the-shelf packaged software tended to focus on 
the fact that CACS was not actually a package at all because 
standard, well developed user documentation, run books, ac
ceptance test scenarios, and the like did not exist. 

The response to these points was that CACS represented a 
different kind of software solution. CACS is not a packaged 
system. It is a set of software that can be installed and built 
upon to provide, in the end, a complete system tailored to the 
organization's unique requirements. The system, in the end, 
belongs to the organization; it is unique and is maintained by 
in-house resources. 

The decision to acquire and use CACS finally depends on 
a comparative analysis of functionality, cost, schedule, and 
risk (see Table 1). Without disputing any given organization's 
ability to succeed in developing a collection system, we see a 
good deal of empirical evidence that it is difficult to do so. The 
number of abortive efforts speaks for itself. For an or
ganization starting from scratch, therefore, the risk of failure 
is high. The time and cost associated with custom devel
opment are also high relative to that required for systems that 
start with adaptive software. Finally, since the software is 
adaptive and easy to work with, all desired functions, fea
tures, and requirements can be accommodated. 

The final analysis of the adaptive solution includes user 
review of the system in operation and technical evaluation of 
the system's components. The spectacular success of the sys
tem at Wells Fargo Bank, and later at other sites as well, left 
users clamoring for immediate installation of the system. The 

TABLE I-Comparison of packaged software, custom software, 
and adaptive software 

Packaged Custom 
Evaluation Criterion Software Software Adapti ve Software 

Time required to 
impl ement/i nsta 11 Low High Moderate to low 

Costs to install Low High Moderate to low 

Risk Low High Modera te to low 

Degree of Moderate to low 
difficulty Low High 

Flexibility Low Variable High 

Closeness of fi t 
to requi rements Low High High 

Support Rely on In-house In-house 
vendor 

technical elegance of the system's underlying design methods 
and technical architecture left systems personnel convinced 
that the software would be easy to work with and maintain. 

Though initial reactions to the concept of starting with 
CACS are often negative, the final decision is clearly in favOi 
of the adaptive software because of its handling of the critical 
problems of development: 

1. The need to reinvent the wheel is eliminated. 
2. The organization's unique requirements can be met. 
3. The risks are low. 
4. The costs are a fraction of what they otherwise might be. 
5. The time required is similarly reduced. 

CACS STATE PROCESSING 

There are several distinguishing design components of CACS 
that have primarily accounted for its success as adaptive soft
ware. The most prominent of these is its capacity for accu
rately and completely modeling work situations that conform 
to the following: 

1. The work function is to manage a set of items according 
to prescribed procedures (e.g., clients, prospects, ac
counts, patients, etc.). 

2. Associated with each item are one or more events that 
can occur (phone call, letter, payment, check-up, etc.). 

3. For each item, one particular event is scheduled to occur 
next (e.g., follow-up telephone call on the tenth). 

4. This next scheduled event defines the item's state. 
5. It is essential to track all events. 
6. Each event yields one of a set of possible results (e.g., no 

answer, insufficient payment, broken promise, bad cred
it check). 

7. Given an item in a state, when an event occurs that yields 
a particular result, the prescribed procedures determine 
the new state for that item (e.g., after three no answers 
send a letter and obtain a credit report). 

The item's progression through a well-defined set of work 
situations in response to the results of scheduled events can be 
documented using a standard state-processing diagram or a 
conventional finite-state automata grammar. Examples of this 
abound both in the world of computational theory! and in the 
world of collections. Figure 1 presents a simplified view of this 
from a collections viewpoint. Figure 2 presents an actual state 
diagram from one of the CACS installations. The system's 
states and processing rules are easily defined, set-up, used, 
and refined at a given installation (and between installations) 
using the CACS State Definition and Transition Tables, Pa
rameter Tables, and well-structured application software. 
With this, the time required to understand, completely and 
unambiguously, and accurately document the business func
tions, and then to design in detail and implement automated 
support, is reduced to a mere fraction of that which would be 
required using a conventional approach. 

The CACS State Processing facility, with the systems tech
nical architecture (see Figure 3) and its other generic support 



No 
Answer 

Too Many Unproducttve 
Left Messages 

Payment Received, 
Promise Pending 

Insufficient Payment 
Received 

~-

Figure l--CACS state processor overview 

r 

>
n .., 
Vl 
(1) 

0' 
"'1 

>-Q.. .., 
'S .., 

r:::r 
(b 

>-
'"d 
'2. 
n' .., 
f'+ 

0' 
::s 
Vl 

en 
g, 
~ .., 
@ 

~ 



Figure 2--CACS state processor, diagram from actual installation 

~ 

z 
~. 
o 
::s 
~ 

g 
.g 
s. 
(1) 
'"'t 

(J 
o 
::s 
~ 
'"'t 
(1) 

@ 
~ 
\0 
00 
W 



1-PaYllIents. Il 
~ Purchases ~ 

-C FIAccount jn~ IW 
System ~-- (A/S) 

l::::J 
m 

/~ 

Inactive 
Accounts 

tllstory 
Subsystem 

.. ~.atntenanc ----Table t B' 
'Subsystem 

\ y \', 

I 
I 

Daily 
Input 

Subsystem 

letters 

\ 
\ , 

I 
I 

I 
I 

" 

Reports 

Figure 3--CACS technical architecture 

\ , 
\ , 

\ '\ 
\ , 

\ 
\ 

, , 
\ 

\ 

..... 

\ 

\ , 

On-line W (~\ Subsys teRlr 

, 
\ 

\ 

\ , , 
-

-----

" Ih!por t i ng 
SIlL~Y5telil 

.... L--,.---I 

Reports 

» 
(") 
~ 
ell 
(l) 

8' 
'"I 

» 
0-
.§ 
g. 
(;) 

» 
'1:j 

'E.. g. 
o· 
~ 
en o 

i 
t1 



28 National Computer Conference, 1983 

functions (including list processing, audit trail processing, and 
historical data tracking), define a technology capable of being 
used as the foundation for a set of adaptive software systems. 

IMPLICATIONS 

Based on the CACS experience, there should be many similar 
success stories developed around adaptive software in the fu
ture. The need for multiple organizations to independently 
develop large and complicated custom systems to address the 
same fundamental business need is behind us. The need to 
modify the business functions to fit the packaged software 
solution is similarly obviated. The trend will be for well
designed software systems to be used as the foundation upon 
which other self-sustaining software solutions will evolve. 

CACS is one of the forerunners in the evolution of such 
systems. Its success with this strategy has been both swift and 
startling. In just 14 months from the time of its introduction 
into the marketplace, 10 organizations have selected it for 
their solution. Half of these are already realizing the benefits 
from an operational collection system. The remainder will be 
operational within just a few months. Over 25 other or
ganizations are now giving serious consideration to the sys
tem. The success of CACS as adaptive software is already 
secured. The success of adaptive software as a trend for the 
80's lies just around the corner. 

REFERENCES 

1. Brainard, Walter, and Lawrence Landweber. Theory of Computation. New 
York: John Wiley, 1974. 



Knowledgeable contexts for user interaction 

by BOZENA HENISZ THOMPSON, 
FREDERICK B. THOMPSON, and 
TAl-PING HO 
California Institute of Technology 
Pasadena, California 

ABSTRACT 

ASK, A Simple Knowledgeable System, is a total system for the structuring, manip
ulation,-and communication of information. The ASK user interface is a simple 
dialect of natural English. The system includes extensive means by which a user 
group and application programmer can build a knowledgeable context for user 
interaction. The users themselves can build, modify, and extend their knowledge 
base. They can add complex definitions that embody knowledge of their domain. 
They can ground a new tentative knowledge base on more stable ones, modifying 
and extending their new one without affecting the old. 

A truly knowledgeable system must also know how to perform complex tasks in 
response to terse user inputs, taking over complicated but repetitive tasks on simple 
cues. The ASK system includes three system-guided dialogues that can be used to 
build such knowledgeability into a user's context. 

29 





INTRODUCTION 

Systems for Experts 

It is generally agreed that any computer system which di
rectly serves a group of users must be knowledgeable concern
ing the domain in which that group is working. The term 
"knowledge base" is rapidly replacing "database" to describe 
the information available to the computer in responding to 
user interaction. One form of knowledge-based system that is 
receiving a good deal of attention is the expert system. In an 
expert system, experts build the knowledge base and users 
draw on this expert knowledge. In the words of Dr. Edward 
Feigenbaum, of Stanford University, whose seminal work es
tablished this important area: 

Expert systems can be viewed as intermediaries between ex
perts, who interact with the systems in "knowledge acquisition" 
mode, and human users who interact with the systems in "con
sultation mode." 

There are, on the other hand, many areas where the using 
group itself is intimately involved in the building, modifica
tion, and extension of their own knowledge base. In the typi
cal research team, management or military staff, or business 
office, the central activity is the maintenance of the knowl
edge base in the form of plans, data, designs, and coordi
nation of their operations. Office and manufacturing-auto
mation systems will soon evolve into just such systems. 
Knowledge-based systems that support these activities must 
provide a kind of service to their users very different from 
the kinds provided by expert systems. They are, in the words 
of Dr. Donald Walker, of SRI International, Systems for 
Experts. 

There are certain properties that a system for experts must 
have. First, such a system must be natural to use. This implies 
a reasonable facility for natural language but also for accept
ing the jargon that rapidly builds up within such a user-group. 
It implies a capability for text and graphic processing and for 
numerical and statistical calculation, all as an integral part of 
the knowledge base itself. Such systems must have means by 
which their user groups can easily add to, change, and extend 
their knowledge base as a normal part of their interaction with 
it. Such changes and extensions can come from many sources. 
Some will occur as part of the users' interaction with one 
another: bringing records up to date, writing reports and cir
culating comments on the work of others, completing design 
drawings, and scheduling and maintaining the information 
necessary for coordinating operations. Whole bodies of data 
may come from other sources, for example by the incorpor-

Knowledgeable Contexts for User Interaction 31 

ation of commercially available data or the inclusion of the 
knowledge bases of subordinate groups. Providing facile 
means for effecting all of these varied kinds of modification 
and extension is an essential aspect of systems for experts. 

When an expert team uses such a system on a day-to-day 
basis, many of their tasks will be repetitious, and with experi
ence these tasks will reduce in essence to the specification of 
a few inputs to control a complex but repetitive process. A 
system for experts must provide the means for defining such 
tasks and relegating the tedious details to the system. And the 
system must know enough to hold a brief dialogue with its 
user to obtain the instructions necessary for it to complete the 
Jask. The specifications of such tasks will be an everyday 
practice of expert staffs; thus the means for such definition 
must be facile and a natural part of system interaction. 

The ASK System, a System for Experts 

This paper is about such a system, the ASK System, a 
system for experts. ASK, A Simple Knowledgeable System, 
exists. It is implemented ona Hewlett-=Packard HP-9836 desk
top computer, in PASCAL. The film shown in connection 
with this paper is of the ASK System in action. The film is 
taken in real time. (Many of the examples from the film are 
repeated in the written form of this paper.) In a single paper 
it would be impossible both to give a broad coverage and also 
to treat in any depth the various capabilities of this system. In 
this paper we have chosen the former to give a broad overview 
of the ASK System. For those who are seriously interested, we 
would be glad to find an appropriate opportunity to discuss 
more detailed aspects of the system. 

To introduce you to ASK, we will start out with a few 
examples of queries of a simple database concerning ships. 
The uninitiated user may wish simply to ask: 

How many ships are there? 
8 
What is known about ships? 
some are in the following classes: 

Navy 
freighter 
old 
tanker 

all have the following attributes: 
destination 

some have the following attributes: 
home port 
cargo 



32 National Computer Conference, 1983 

all have the following number attributes: 
age 

some have the following number attributes: 
speed 
length 
beam 

List the destinations and home port of each ship. 
ship destination home port 
Ubu New York Naples 

Maru 
Kittyhawk 

Alamo 

Tokyo 
Oslo 
Naples 
Boston 
London 
London 
New York 

Tokyo 
Boston 

London 

North Star London New York 
Nimitz London Norfolk 
Saratoga unknown Norfolk 
What is the number of New York ships? 
There are 2 answers: 

(1) New York (destination) ships 
2 

(2) New York (home port) ships 
1 
What about Norfolk? 
What is the number of Norfolk ships? 
Norfolk (home port) ships? 
2 
Wheat is carried by how many ships? 
2 
Coal and oil? 
coal and oil is carried by how many ships? 

ships 
coal 1 
oil 2 
How many ships are there with Inegth greater than 600 feet? 
Spelling correction: "lnegth" to "length" 
2 
What are they? 
What are they [ships with length greater than 600 feet]? 
North Star 
Kittyhawk 
What ships that carry wheat go to London or Oslo? 

London 
Oslo 

ships that carry wheat 
Maru 
Alamo 

Does the Maru carry wheat and go to London? 
yes 

In the terminology of ASK, a user context is a knowledge 
base together with the vocabulary and definitions that go with 
it. A given user will usually have several contexts for various 
purposes, some of which may be shared with others in the 
group. You have seen examples from the small "ship" file 
context. Let's look at quite a different one, an example of a 
bibliography of literature on artificial intelligence (here trun
cated). 

How many articles are there about knowledge represen
tation? 
15 
Which ones were written in 1979 by each author? 
Which [articles about knowledge representation] were writ
ten in 1979 by each author? 
author articles about knowledge representation 
G. G. Hendrix Encoding Knowledge in Partitioned 

Networks 
R. J. Brachman On the Epistemological Status of Se-

mantic Networks 
What other articles has Hendrix written? 
What other articles [than articles about knowledge 
representation] has Hendrix written? 
LIFER: A Natural Language Interface Facility 

Or a knowledge base concerning one's mail: 

Who have I received mail from? 
John Smith 
Peter Jackson 
Display my mail from John Smith. 
Fred, Your budget looks good to me. Suggest you 
submit it as is. 

John 
File it in my budget correspondence file. 
File [my mail from John Smith] in my budget correspon
dence file. 
my mail from John Smith has been filed. 

You have seen examples from three different contexts. How 
contexts are created and related to one another will be dis
cussed below. 

EXTENDING USER CONTEXTS 

The major emphasis of this paper is on the ability of the users 
of ASK to structure their own knowledge bases. We turn now 
to those issues. 

Extending the Knowledge Base and Adding and 
Changing Data 

A knowledge base typically contains objects and classes of 
these objects; it also has knowledge ofthe attributes that these 
objects might possess and of relationships that might hold 
among them. The ASK System accepts objects of several 
types: individuals (e.g., Boston, John), numbers, texts (e.g., 
the text of a given memo or letter), matrices, and so on. The 
following sequence illustrates how a user can extend his or her 
knowledge base by adding new objects, classes, attributes, 
and relations. We will use the artificial-intelligence (AI) bibli
ography context for this illustration. Note how easy it is to add 
new attributes, "fields" in relational-database terminology, 
and how text objects are handled in a straightforward way as 
integral parts of the knowledge base. 



Create the attribute: rating 
The attribute rating has been added. 
create individuals: seminal, excellent, fair and impossible 
The following individuals have been added: 
seminal excellent fair impossible 
The rating of Winograd's 1980 paper in Cognitive Science is 
excellent. 
excellent has been added as the rating of Winograd's 1980 
paper in Cognitive Science. 
rating of A Framework for Representing Knowledge is im
possible. 
impossible has been added as the rating of A Framework for 
Representing Knowledge. 
Scripts, Plans, Goals and Understanding's rating is seminal. 
seminal has been added as the rating of Scripts, Plans, 
Goals and Understanding. 
The rating of Minsky's paper in The Psychology of Com
puter Vision is seminal. 
impossible has been replaced by seminal as the rating of 
Minsky's paper in The Psychology of Computer Vision. 
List the author of each paper that has a rating of either 
seminal or excellent. 
paper author 
Scripts, Plans, Goals and Understanding R. C. Schank 
A Framework for Representing Knowledge M. Minsky 
What Does It Mean to Understand Natural 
Language T. Winograd 
Create an individual/text relation named comment 
The individualltext relation comment has been added. 
Create a comment on A General Syntactic Processor 
Please enter text: 
Best paper on chart parsers. 
A new text has been added as comment on A General 
Syntactic Processor. 
Display my comments on each paper by R. M. Kaplan. 
paper by R. M. Kaplan comments 
A General Syntactic Processor Best paper on chart pars
ers. 

Definitions 

The examples so far illustrate how one can build, query, 
and modify a database. However, to make such a system more 
knowledgeable, one needs to be able to add definitions that 
embody interrelationships among the basic objects, classes 
and attributes of the data. The simplest form of definition is 
synonym: 

definition: tub: old ship 
Defined. 

Although this form of definition allows one to introduce ab
breviations and many forms of jargon, more extensive forms 
of definition are desirable. Here are two illustrations using the 
ship file context. In the second definition, note the use of 
quotes to create local "variables." 

Knowledgeable Contexts for User Interaction 33 

definition: area: length * beam 
Defined. 
List the length, beam and area of each tub. 
tub length beam 

foot foot 
Ubu 231.667 48 
Alamo 564.5 84 
definition: meter: 39.37 * (foot/12) 
Defined. 

area 
foot**2 
11120.016 
47418. 

beam of the Alamo squared in square meters? 
655.526472343 square meters 
definition: longest "ship": "ship" whose length is the max
imum length of "ship"s 
Defined. 
What is the length in meters of the longest ship whose home 
port is Naples? 
121.920243840 meters 

The notion of what is long may be quite different in another 
context, say in the bibliography context. 

definition: long: paper whose number of pages exceeds 49 
Defined. 
definition: long: book whose number of pages exceeds 800 
Defined. 
What AI bibliography items are long? 
there are 2 answers: 
(1) long: paper whose number of pages exceeds 49 
Physical Symbol Systems 
A General Syntactic Processor 
(2) long: book whose number of pages exceeds 800 
Human Problem Solving 
What long books were written in 1972? 
long: book whose number of pages exceeds 800 
Human Problem Solving 

Family relationships make for a good illustration of defini
tions; we switch to a small family-relationships context. 

What are attributes? 
individual/individual attributes: 
spouse 
What are relations? 
individuallindividual relations: 
parent 
What are classes? 
individual classes: 
male 
female 
What are definitions? 
definition: mother: female parent 
definition: father: male parent 
definition: child: converse of parent 
definition: sibling: child of parent but not oneself 
definition: cousin: child of sibling of parent 
List the father and mother of each of Billy Smith's cousins. 
Billy Smith's cousins father mother 
Baby Boyd Robert Boyd Jill Boyd 



34 National Computer Conference, 1983 

Verbs 

Initially, the only verbs known to the ASK System are "to 
be" and "to have." The user can add new verbs by para
phrase, as in the following illustration: 

verb: ships "go" to New York: destination of ships is 
New York 
Defined. 
verb: ships "carry" coal from London to Boston: ships have 
coal as cargo, have London as home port and go to Boston 
Defined. 
Each old ship carries what cargo to each port? 
old ship port cargo 
Ubu New York oil 

Tokyo oil 
Alamo London wheat 

coal 
What is carried by the Alamo? 
wheat 
coal 
Wheat is carried to London from what ports? 
New York 
What cities does the Alamo carry wheat to? 
London 

Basing One Context on Another 

We have shown how users can add new vocabulary, data, 
and definitions to their contexts. However, this would be a 
tedious way to build a large and useful database from scratch. 
We now discuss two ways of incorporating bodies of existing 
data in a user context. 

Consider a user of the AI bibliography context illustrated 
above, who wants to build a wider bibliography context, 
adding new information-vocabulary, data, and definitions-
without, however, disturbing the old one. To do so, all he or 
she needs to do is select a new name, say CS bibliography, and 
type 

Base CS Bibliography on AI Bibliography 

The result of this basing action is a new context. Upon enter
ing this new context-

) Enter CS Bibliography 

~ne can make additions: 

individuals: An Introduction to Database Systems, C. J. 
Date 
The following individuals have been added: 
An Introduction to Database Systems C. J. Date 
An Introduction to Database Systems is a book. 
An Introduction to Database Systems has been added to 
book. 
The author of An Introduction to Database Systems is C. J. 
Date. 

C. J. Date has been added as author of An Introduction to 
Database Systems. 
Keyword of An Introduction to Database Systems is data
base. 
database has been added as keyword of An Introduction to 
Database Systems. 
Who wrote what about databases? 
author 
D. L. Waltz Natural Language Access to a Large Data Base 
C. J. Date An Introduction to Database Systems 

These additions to the CS bibliography would not affect the 
AI bibliography context. However, additions and modifica
tions that are subsequently made in the AI bibliography con
text would automatically be reflected in the CS bibliography. 
Several contexts can be based on a given one, and one context 
can be based on several; thus a hierarchical structure of con
texts can be realized. All contexts are directly or indirectly 
based on the BASE context, which contains the function 
words and grammar of the ASK dialect of English, the math
ematical and statistical capabilities, and the word processor. 

The Bulk Data Input Dialogue 

There is a great deal of information in existing databases, 
and a system for experts must facilitate the addition of such 
data to the knowledgeable user's context. In the ASK System 
there is a dialogue, called the Bulk Data Input Dialogue, 
which can be called on to build an existing database into one's 
context. The result not only integrates these new data with 
those already in the context, according to the ASK dialect of 
English, but in many circumstances will make the use of these 
data more responsive to users' needs. 

The Bulk Data Input Dialogue prompts the user for neces
sary information to (a) establish the physical structure of the 
database to be included (b) add necessary classes and attri
butes as needed for the new data entries. The user also indi
cates, using English constructions, the informational relation
ships among the fields in the physical records of the database 
file that he or she wishes carried over to the ASK context. We 
will not illustrate the Bulk Data Input Dialogue here, since it 
is similar to two other ASK System dialogues that will be 
described and illustrated below. 

KNOWLEDGEABLE DIALOGUES 

In the day-to-day use of an interactive system, a user is very 
often involved in repetitive tasks; much of the drudgery of 
such tasks could be shifted onto the system if it were more 
knowledgeable. Such a knowledgeable system, as it goes 
about a task for the user, may need additional information 
from the user. What information it needs at a particular point 
may depend on earlier user inputs and the current state of the 
database. 

Some have raised the question, whether natural language is 
always the most desirable medium for a user's communication 
with the computer. Expert systems, for example, have tended 



to use computer-guided dialogues. One simple form such a 
dialogue might take is illustrated by the following dialogue, in 
which a new entry is added to the AI bibliography: 

New bibliography item 
Add to what bibliography? AI Bibliography 
Title: Natural Language Processing 
Author: Harry Tennant 
Keyword: natural language 
Keyword: syntax processing 
Keyword: speech acts 
Keyword: 
Natural Language Processing has been added to the AI 
Bibliography. 
Title: 
The "new bibliography item" dialogue is completed. 
What AI Bibliography items were written by Harry Ten
nant? 
Experience with the Evaluation of Natural Language 
Question Answerers 
Natural Language Processing 

Other alternative media for user/system communication are 
menu boards, selection arrays, and query by example. Many 
other cryptic ways to communicate user needs to a knowledge
able system can be thought of; often the most useful means 
will be highly specific to the application. For example: in 
positioning cargo in the hold of a ship, one would like to be 
able to display the particular cargo space, showing its current 
cargo, and to call for and move into place other items that are 
to be included. 

In the past, enabling the system to respond more intelli
gently to the user's needs required the provision of elaborate 
programs, since the user's tasks may be quite involved, with 
complex decision structures. The introduction of terse, effec
tive communication has incurred long delays; thus a user's 
changing needs had little chance of being met. In the ASK 
System, the users themselves can provide this knowledge. 
They can tell the system how to elicit the necessary informa
tion and how to complete the required task. This ASK capa
bility is quite easy to use, opening the way for its everyday use 
in extending the knowledgeable responsiveness of the com
puter to the user's immediate needs. 

The Dialogue-Designing Dialogue 

The user must provide the system with knowledge of a 
particular task; more precisely he or she must program this 
knowledge into the system. The result of this programming 
will be a system-guided dialogue that the user can subse
quently initiate and that will then elicit the necessary inputs 
that it needs. Using these inputs in conjunction with the 
knowledge already available, particularly the database, the 
system completes the task. It is this system-guided dialogue 
that the user must be able to design. 

In the ASK System, there is a special dialogue that can be 
used to design system-guided dialogues to accomplish particu
lar tasks. We call this the Dialogue Designing Dialogue 

Knowledgeable Contexts for User Interaction 35 

(DDD). Using DDD, the user becomes a computer-aided 
designer. Since DDD, in conducting its dialogue with the 
user, only requires simple responses or responses phrased in 
ASK English, the user need not have any programming skill 
or experience at all. Using DDD, the user alone can replace 
a tedious, repetitive task with an efficient system-guided 
dialogue, all in a natural-language environment. The ASK 
DDD constitutes a high-level, natural-language programming 
capability. We hasten to add that it is not a general-purpose 
programming environment. It is for "ultra-high" -level pro
gramming, gaining its programming efficiency through the 
assumption of an extensive vocabulary and knowledge base on 
which it can draw. 

DDD is based on the concept of an interaction node. Such 
a node represents a point in the dialogue where the computer 
turns to the user for additional input, that is, more data or 
further instruction as to what is desired. At such a node, the 
system prompts the user as to what information it needs, 
digests the user's response, takes indicated actions, and 
progresses to another node that it perceives as the next place 
for interaction. As it does so, it maintains its own local con
text, remembering what the user has told it and what it is 
supposed to do. 

The DDD dialogue sets up all of this; therefore it is itself 
quite complex in its dialogue paths to elicit the information it 
needs, information about prompts, expectations of user re
sponses, diagnostic messages, references to the database, 
maintenance of the local context, and so on. We can only 
illustrate a small part of the DDD dialogue here, but it should 
give you some feel for how the DDD dialogue works. Earlier 
in this paper, we used as an illustration a simple dialogue for 
adding a new item to the AI bibliography. Here is the DDD 
dialogue that defined that "new bibliography item" dialogue. 

new dialogue 
What user input should initiate this dialogue? new bibli
ography item 
Please define each node in turn. 
Designing node 1: 
What is the prompt message for node 1: Add to what bibli
ography? 
If you wish the response to this prompt to be assigned to a 
field, give the field number: 1 
What is the type option for node 1: 2 
What is the response option for a nil response to node 1: 1 
What is the response option for a bad evaluation of user 
response: 2 
What is the response option for a good evaluation of user 
response: 2 
Transfer to what node: 2 
Node 1 is completed. 
Designing node 2: 
The fields that have been assigned on entering this node 
are: 
< 1 > : Add to what bibliography? 
What is the prompt message for node 2: Title: 
If you wish the response to this prompt to be assigned to a 
field, give the field number: 2 
What is the type option for node 2: 2 



36 National Computer Conference, 1983 

What is the new word option: 3 
What is the category option for this word: 1 
What is the response option for a nil response to node 1: 
help 
1: abort the dialogue and exit 
2: reprompt 
3: complete all actions and exit 
4: a condition-action-transition sequence 
5: transfer to next node directly 
What is the response option for a nil response to node 2: 3 
What is the response option for a bad evaluation of user 
response: 2 
What is the response option for a good evaluation of user 
response: 4 
Condition: otherwise 
Action: < 2 > is a < 1 > . 
Action: 
Transfer to what node: 3 
Node 2 is completed. 
Designing node 3: 
The fields that have been assigned on entering this node 
are: 
< 1 > : Add to what bibliography? 
<2>: Title: 
What is the prompt message for node 3: Author: 
If you wish the response to this prompt to be assigned to a 
field, give the field number: 3 
What is the type option for node 3: 2 
What is the new word option: 3 
What is the category option for this word: 1 
What is the response option for a nil response to node 3: 2 
What is the response option for a bad evaluation of user 
response: 2 
What is the response option for a good evaluation of user 
response: 4 
Condition: otherwise 
Action: Author of < 2 > is < 3 > . 
Action: 
Transfer to what node: 4 
Node 3 is completed. 
Designing node 4: 
The fields that have been assigned on entering this node 
are: 
< 1 > : Add to what bibliography? 
<2>: Title: 
< 3 > : Author: 
What is the prompt message for node 4: Keyword: 
If you wish the response to this prompt to be assigned to a 
field, give the field number: 4 

> What is the type option for node 4: 2 
) What is the new word option: 3 
) What is the category option for this word: 1 
) What is the response option for a nil response to node 4: 4 
) Condition: otherwise 
) Action: display: "< 2 > has been added to the < 1 > ." 
) Action: 
) Transfer to what node: 2 
) What is the response option for a bad evaluation of user 

response: 2 

What is the response option for a good evaluation of user 
response: 4 
Condition: otherwise 
Action: Keyword of < 2 > is < 4 > . 
i11ction: 
Transfer to what node: 4 
Node 4 is completed. 
Design of "new bibliography item" dialogue is completed. 

Simple dialogues, like this one, can be defined by the user. 
However, complex decision/action structures and the pro
vision of diagnostics and recovery, complex looping, and so 
forth is the appropriate province of the application program
mer. The "node-driven" organization ofDDD is quite natural 
for someone with even brief experience in computer program
ming. Sketching the dialogue as a rough flow chart, then 
proceeding to the use of DDD, one can quickly implement 
complex processes. DDD has a number of features that facil
itate the development of the program, including a variety of 
validity checks. The super-high level of natural-language pro
gramming means that the sort of bugs found at low levels are 
eliminated. Particularly significant is the fact that in the devel
opment of such a user dialogue, all of the vocabulary and 
associated semantics of the immediate application are directly 
available. 

The Use of Forms as a Dialogue Medium 

The form is an efficient means of communication with 
which we are all familiar. A number of computer systems 
include a forms package. For most of these, however, filling in 
a form results only in a document; the form does not consti
tute a medium for interacting with the knowledge base or 
controlling the actions of the system. The ASK forms capabil
ity enlarges the roles and ways in which forms can be used as 
a medium for user interaction. As the user fills in the fields of 
a form, the system can make use of the information being 
supplied to (a) check its consistency with the data already in 
the knowledge base and, if necessary, respond with a diagnos
tic, (b) fill in other fields with data developed from the knowl
edge base, (c) extend the knowledge base, adding to the vo
cabulary and adding to or changing the data itself, and (4) file 
the completed form in prescribed files or in those indicated by 
the user and also mail it to a specified distribution list through 
the electronic-mail subsystem. Since the form processing can 
check consistency and modify the knowledge base, forms can 
be used to facilitate data input. Since form processing can fill 
fields in the form, the forms capability includes the functions 
of a report generator. Letters and memos can be written as 
special cases of form filling, automatically adding dates, ad
dresses, and so on, and filing and dispatching the result. 

It must be easy and natural to add new forms, if they are to 
be a convenient tool. That is the function of the Forms De
signing Dialogue. Much like the Bulk Data Input Dialogue 
and the DDD, the Forms Designing Dialogue holds a di
alogue with the user through which he or she can specify the 
fields of the form itself and the processing to be automatically 
accomplished at the time the Form is filled in. The Forms 



Designing Dialogue makes many options available, only a few 
of which are illustrated here. 

The protocol to be included here as an example of the 
Forms Designing Dialogue is designed to illustrate the fea
tures mentioned above, and does not reflect any actual form. 
It utilizes the notion of a field as in the DDD, allowing a field 
to be referred to by number. 

new form 
form name: shipping 
start your design: 

Shipping Form 
ship: 2222222222222222 
port: 2222222222222222 

quantity item 
1111 2222222222222222222 

price 
$111.11 

total 
$1111.11 

commander: 2222222222222222 

Shipping Form 
ship: < 1 > 2222222222 
port: < 2 > 2222222222 

quantity item 
< 3 > 1 < 4 > 22222222222222 
commander: < 7 > 2222222222 

price 
$<5>.11 

Please confirm the design ("y" or "n"): y 
Do you want to repeat some lines? (y In): y 
repetition fieid: < 3 > 
repetition frequency: 0 
repetition field: 
What fields are to be filled by the computer? 
field: < 2> 
value: home port of < 1 > 
if unable, what message should be used: 
< 1 > does not have a home port. 
if unable, what option should be taken: 1 
field: < 5 > 
value: price of < 4 > 
if unable, what message should be used: 
if unable, what option should be taken: 
field: < 6> 
value: < 3 > * < 5 > 
if unable, what message should be used: 
if unable, what option should be taken: 
field: 

total 
$<6>1.11 

What conditions should be verified by the computer? 
condition: < 3 > is less than the inventory of < 4 > ? 
if fail, what message should be used? 
There are not enough < 4> s in stock. 
if fail, what option should be taken? 2 
condition: 
Actions to be taken on completion of the form? 
update data base: Reduce inventory of < 4 > "by < 3 >. 
update data base: Commander of < 1> is < 7 >. 
update data base: 
name of completed form: Shipping List for < 1 > 

Knowledgeable Contexts for User Interaction 37 

) file in: Shipping Invoice File. 
) file in: 
) mail to: Jones. 
) mail to: ask 

The design of form "shipping" has been completed. 

We will now fill in the form that was just designed. To illus
trate the fact that the database will be changed as a result of 
filling the form, we first ask the questions: 

What is the home port and commander of each old ship? 
There are 2 answers: 
(1) There is no commander. 
(2) 
ship home port 
Ubu Naples 
Alamo London 
Who is John Smith? 
The following words are not in the vocabulary: John Smith 
Inventory of wheat and hydrochloric acid? 
wheat and hydrochloric acid 
wheat 
hydrochloric acid 

inventory 
86.7 

123400. 

Note that the home port of the Alamo is London and that it 
does not have a commander, further that John Smith is not 
known to the system. 

) Fill shipping 

(For the purposes of the published paper, in contrast to the 
film shown at the presentation of the paper, only the initial 
and final copies of the form are given, underscores indicate 
fields filled in by the user, all other fields being automatically 
filled by the System) 

(before) 

ship: _ 
port: 

quantity 

commander: 

(after) 

Shipping Form 

item 

Shipping Form 
ship: Alamo 
port: London 

quantity 
3 
500 

item 
wheat 
hydrochloric acid 

commander: John Smith 

price 
$ 

price 
$ 35.75 
$ 2.50 

total 
$ 

total 
$ 107.25 
$1250.00 

Shipping List for Alamo has been filed in Shipping Invoice 
File. 



38 National Computer Conference, 1983 

Shipping List for Alamo has been mailed to Jones. 
mail to: 

FlU shipping has been completed. 
List the home port and commander of each ship. 
ship 
Ubu 
Alamo 

home port 
Naples 
London 

commander 

John Smith 
Inventory of wheat and hydrochloric acid? 
wheat and hydrochloric acid 
wheat 
hydrochloric acid 
What is in the Shipping Invoice File? 
Shipping List for Alamo 
Shipping List for Maru 

inventory 
83.7 

122900. 

ACKNOWLEDGMENTS 

The three system-guided dialogues, Bulk Data Input, Dia
logue Designing Dialogue, and Forms Designing Dialogue, 
are from the doctoral dissertation of Tai-Ping Ho. The aspects 
of ASK that concern the basing of one context on another are 
from the doctoral dissertation of Kwang-I Yu. The methods 
for handling anaphora, fragments, and correction of inputs 
are from the doctoral dissertation of David Trawick. 

The ASK System is implemented on the HP-9836 Desktop 
Computer in PASCAL. The research that has resulted in the 
ASK System has been supported by the Hewlett-Packard Cor
poration. 



An English-language processing system that "learns" about 
new domains 

by BRUCE W. BALLARD and JOHN C. LUSTH 
Duke University 
Durham, North Carolina 

ABSTRACT 

We are developing an English-language processing system called LDC with empha
sis upon (a) small- or medium-sized office domains, as opposed to large relational
style databases; (b) mechanisms to learn about new domains and the English to be 
used in discussing them; and (c) capabilities for deep semantic processing, for 
example where English inputs can be phrased naturally, not merely as a notational 
variant for complete, formal queries. LDC consists of two major components and 
an external retrieval module. The first component, which we call "Prep," obtains 
information about a new domain and the language to be used in discussing it. The 
second, "user-phase," component ofLDC resembles an ordinary NL processor, but 
(a) most decisions are determined from the preprocessed information appearing in 
the data files produced by Prep, and (b) the emphasis is upon the semantics of 
"layered" domains, described herein. In this paper we (1) present the motivation 
behind LDC; (2) summarize and give examples of the behavior of Prep; (3) provide 
an overview of the user-phase component; and (4) give examples of current and 
projected capabilities of the system. 

39 





INTRODUCTION 

During the 1970's, several experimental natural-language pro
cessing systems were developed, many of them reaching the 
prototype stage. At least one natural-language database 
query system is now being marketed,lO while several other 
systems have been successfully used in pilot studies. Although 
most practical investigations have concerned database 
query,6,7,10,13,15--17,19,21 our previous work in natural-language 
processing at Duke has been in the area of natural-language 
programming. Our system, called the Natural Language 
Computer (NLC) , was developed in the late 1970's,2,4 has 
been systematically evaluated,5 and has been used on a trial 
basis by linear algebra students without prior computing 
experience.8 

Drawing on our experience with NLC, we are presently 
developing a new NL processor, which we call the Layered 
Domain Class (LDC) system. Our current emphasis is upon 
(a) small- or medium-sized office domains, as opposed to 
large relational-style databases, (b) mechanisms to learn 
about new domains and the English to be used in discussing 
them, and (c) capabilities for deep semantic processing, e.g., 
where English inputs can be phrased naturally, not merely as 
a notational variant for complete, formal queries. Our ap
proach amounts to constructing a "knowledge base" and is 
closer in spirit to systems like KLAUS, POL, SCHED, and 
TEAM than to the database systems cited above.9,12,14,18 

In a recent publication 1 we presented the philosophical and 
psychological basis on which LDC is founded. As is explained 
there, we are currently considering the class of what we refer 
to as "layered" domains. We regard a domain as layered if its 
structural relationships resemble those of NLC matrices, 
where entities break down uniformly into lower-level entities. 
Examples of "layered" domains and their associated entity 
breakdowns include matrices (matrix, row/column, entry); 
desk calendars (year, month, week, day, hour slot); office 
architecture, (building, floor/wing, room); document organi
zation (document, section, paragraph, sentence, word, char
acter); and academic course offerings (course, section, stu
dent). While some of these domains (e.g., academic course 
enrollments) can be represented fairly well by conventional 
database schemes, and others (e.g., documents) as text files, 
we believe experience with previous systems has proven that 
many of the semantics arising in a natural-language environ
ment require a "deeper" form of domain model than are 
provided by conventional representations. This is why LDC 
has chosen to formulate a model of "layered" domains and 
seeks to work with them. In this paper, we will select examples 
from the course offering and document domains to illustrate 
the capabilities and goals of LDC. 

An English-Language Processing System 41 

LDC consists of two major components and an external 
retrieval module. The first component, which we call "Prep," 
serves to acquire information about a new domain and the 
language to be used in discussing it. It then uses this domain 
knowledge to derive various forms of information that will be 
used during subsequent processing. The second, "user-phase" 
component of LDC resembles an ordinary NL processor, but 
its design is highly parameterized. Thus, many of its decisions 
are determined from the preprocessed information appearing 
in the data files produced by Prep. The actual retrieval com
ponent and raw-data file are regarded as external to LDC. 

THE LEARNING COMPONENT 

The initial interaction between a user and LDC, which in
volves telling the system about a new domain, consists of a 
dialogue with the preprocessor, which we call "Prep." Prep 
operates by asking for (a) the names of each type of "entity" 
of the domain, (b) the nature of the relationships among 
them, (c) the English words that will be used as nouns, verbs, 
and modifiers, and (d) morphological and semantic properties 
of these new words. It also aUows the user to probe its knowl
edge and to make updates as desired. We will now summarize 
the capabilities of Prep. 

Domain Structure Acquisition 

Suppose we want to tell Prep about a data file that records 
all student grades in a certain academic department for a given 
semester. By asking the user a series of questions, Prep con
structs a "domain model" network like that shown in Figure 
1. The important distinctions here are (a) decomposition of 
one entity into another, indicated by the double arrow, versus 
a simpler form of association; (b) mUltiple values, indicated by 
plural names, versus single values; (c) an idea of which multi
ple values are to be thought of as ordered, indicated by the 
asterisk, for which ordinals such as "first," "second," ... , 
"last" may be applied; and (d) an indication of which nodes 
will have persons as values, indicated by an exclamation point. 
The actual internal network is represented in a nested list 
format. A description of how this structure is acquired, in
cluding actual dialogue with the user, can be found else
where. I 

Language Acquisition 

Having learned about domain structure, Prep proceeds to 
inquire about related language items. In particular, for each 
entity of the domain (node of the domain-structure network), 



42 National Computer Conference, 1983 

Courses 

/.~ 
Sections Title 

J"'" 
(L "" Students< !) Instructor(!) 

J 
uraae 

Figure I-An internal model of the final grades domain 

Prep asks for (a) nouns used to refer to the entity, (b) ad jec
tives which modify the entity, and (c) nouns used to modify 
the entity. Prep then proceeds to ask for verbs having the 
given entity as subject. Since our parser and semantics pro
cessor work with slotted, case-frame structures, Prep asks for 
the entity types that are allowed for subject, object, and as 
prepositional arguments. For instance, Prep might be told that 
an instructor can fail a student, that a student can fail a course, 
that a student can take a course from an instructor, and so 
forth. 

Having acquired a list of new vocabulary items, Prep pro
poses what its rules suggest will be their inflections, fo~ exam
ple past and present participles for verbs, comparative and 
superlative forms for adjectives, plurals for nouns, and so 
forth. The user may then either accept the system's "guess" or 
specify the correct form. 

Finally, Prep asks about the meanings of adjectives and 
verbs, which it attempts to capture in terms of seven primi
tives. This small set, coupled with mechanisms for traversing 
the domain-structure network, provides a powerful language 
with which to describe verb and adjective meanings. The sev
en primitive functions are id, the identity function; val, which 
returns the "value" or name field of a record; look, which 
retrieves a specified field of a record; num, which returns the 
SIze of its argument, which is assumed to be a set; sum, which 
returns the sum of its list of inputs; avg, which returns the 
average of its list of inputs; and pet, which returns the fraction 
of its list of boolean arguments which are true. In addition to 
these seven built-in functions, other user-defined adjectives 
can also be used. Thus, a "wordy" manuscript might be de
scribed as a manuscript where 60% or more of the sentences 
are "long." The specification of these two adjectives is shown 
in Figure 2. 

Since verbs and adjectives are treated similarly, we will 

ACQUIRING 
PRIMARY? 
TARGET? 
PATH IS: 
FUNCTIONS? 
PREDICATE? 

ACQUIRING 
PRIMARY? 
TARGET? 
PATH IS: 
FUNCTIONS? 
PREDICATE? 

SEMANTICS FOR LONG SENTENCE 
sentence 
word 
WORD/SgNTENCE 
id /num 
>= 20 

SEMANT lCS FOR WORDY MANUSCRli:>'r 
manuscript 
sentence 
SENTENCE/PARAGRAPH/CHAPTER/MANUSCRIPT 
long lid lid /pct 
>= 60 

Figure 2-Semantic acquisition for adjectiVeS (system out in upper case) 

confine our discussion to adjectives. Furthermore, once the 
meaning of an adjective has been obtained, the semantics for 
its associated comparative and superlative forms can be de
rived automatically. For example, the definition of "long sen
tence" as given in Figure 2 says to (a) compute a value for the 
entity in question, in this case the number of words in the 
sentence, and then (b) compare this value against a designated 
parameter, in this case 20. When phrases such as "sentences 
longer than ... " and "the longest sentence" arise, values are 
computed as given in step (a) but then compared against one 
another, rather than against the specified parameter. 

As shown in Figure 2, Prep requests four pieces of informa
tion for each adjective-entity pair. The first of these, called 
the primary, is the entity to which the adjective is actually 
"applied." This mayor may not be the entity with which the 
adjective has been associated. For example, if a "lucky" stu
dent is one who is enrolled in the section of a good instructor, 
instructor would be the primary, not student, since the in
structor would have to be investigated. 

The second piece of information needed, called the target, 
is any descendant of the primary and is the most primitive 
entity needed to specify the semantics. In the case of "long 
sentence," the target entity would be word, since the number 
of words must be found to tell whether a sentence is long. 

The third piece of information requested is a list of functions 
corresponding to the arcs between the primary and the target 
nodes. Once the primary and target are identified, Prep out
puts a path from the target to the primary. This path serves as 
a guide to the user in specifying what is to be done to each 
piece of data as it bubbles its way upward during semantic 
processing. 

The fourth and final piece of information required is a 
predicate to be applied to the numerical value obtained from 
the series of function calls just acquired. The overall effect, 
then, of applying an adjective to a datarep is to obtain either 
"true" or "false." 

Probing and Update 

At any time during acquisition, Prep allows the user to 
review all or selected parts of the information associated with 
a given term or syntactic class. For instance, the user can ask 
Prep to display all entity types presently known-

ENTITY NAME? list 
ENTITIES ARE: SECTION, GRADE, STUDENT 

-or may ask for information about all ways in which specified 
terms can be used-

ENTITY NAME? uses score poor 
score: SYNONYM FOR GRADE, 

VERB FOR STUDENT 
poor: ADJECTIVE FOR STUDENT. 

Typing "uses" without arguments instructs Prep to give infor
mation on all known terms. 

When the user decides to change previous specifications, he 



or she may call for an update, which begins with Prep asking 
which entity is to be updated. 

ENTITY NAME? instructor 

Next, a menu of update options is displayed. 

WHAT INFORMATION NEEDS TO BE UPDATED 
FOR INSTRUCTOR? 

LIST ATTRIBUTES 
DELETE ENTITY 
RENAME ENTITY 
SYNONYMS 
TYPE 

(TYPE list) 
(TYPE del) 
(TYPE ren) 
(TYPE syn) 
(TYPE typ) 

The list option is used to request Prep to summarize all infor
mation associated with the entity in question. The options 
delete and rename are provided to allow for correcting errors 
or for making changes in the network structure. The remain
ing options are listed in the order the associated information 
was originally acquired. A verb specification may be altered 
by updating the entity associated with its subject. 

As an example of an update, suppose the user has neglected 
to inform Prep that the word "teacher" can be used in place 
of "instructor." This correction is accomplished as follows: 

OPTION: syn 
SYNONYMS FOR INSTRUCTOR ARE: PROFESSOR 

SYNONYMS TO BE ADDED: teacher 
SYNONYMS TO BE DELETED: none 

Here we see that Prep has (a) listed current synonyms; (b) 
asked for new ones; and finally (c) asked for old ones to be 
removed. 

USER-PHASE PROCESSING 

As shown in Figure 3, the user-phase component of LDC is 
designed as a linear stage of modules for scanning, parsing, 
semantic processing, and output generation. 

Scanning 

The role of the scanner is to identify each word of the typed 
or spoken input and retrieve information about it from the 
dictionary file, which will have been created by Prep. Each 
dictionary listing consists of (a) the word itself; (b) its part of 
speech; (c) the associated root word; and (d) zero or more 
associated features, each with one or more possible values. An 
example of a word definition might be 

(better Compar good (nt student section» 

which says that "better" is a comparative form of "good," and 
can be applied to nouns having an nt-feature (for "nountype") 
of either "student" or "section." Some words will have more 
than one dictionary listing, in which case the scanner sends 

An English-Language Processing System 43 

Dictionary Rout-Word 

I r ccur I tat 
~I SCANNER 1---.1 PARSER J-I 

1 
GRAMMAR 

Domain 
Structure 

SEMANTICS 1--+1 OUTPUT 1--+ 

AdjiVerb 
Semantics 

retrieval I 
1 raw-data 

Figure 3-An overview of user-phase processing. (Names of program 
modules in boxes; other names are names of files, all of which are 

created by the Preprocessor except for the grammar and the raw-data file. 
The retrieval module is regarded as external to LDC.) 

them all to the parser, where context will be used to select one 
of them. 

The existing LDC scanner assumes typed input. However, 
we have been experimenting with a Nippon DP-200 voice 
recognition device, have completed an initial interface be
tween it and NLC, and will eventually want to provide the 
LDC user with a microphone rather than a keyboard. One of 
the structures we are using tells which pairs of dictionary 
words can occur next to each other in a legal input. Antici
pating the introduction of voice technology into LDC, Prep 
automatically constructs this word-pair information by con
sulting (a) the system grammar and (b) the domain-specific 
dictionary it is creating. This file has been called Co-Occur in 
Figure 3. 

Parsing 

The job of the parser is to determine, from the information 
provided by the scanner, the syntactic structure of the input. 
In a computational domain, especially one for retrieval rather 
than programming, the syntactic complexity of most inputs 
lies in the complexity of their noun phrases. For this reason, 
we regard relative-clause verb forms as basic, and sentence
level verbs as derived. For example, the input 

"How many students failed the midterm?" 

is treated as 

Find-size-of: "students who failed the midterm" 

The tree-like parser output for noun phrases is suggested by 
the following structure, which corresponds to the phrase "the 
longest word." 

(NP «nt word) (sp sing» (Head. word) (Superl.long» 

The "feature" list immediately following the label "NP" indi
cates lexical and semantic, opposed to syntactic, features that 



44 National Computer Conference, 1983 

have been built up during a parse. In particular, the nountype 
(nt) of the head noun is known to be "word," while the 
singularity (sp) of the phrase has been determined to be "sin
gular." These features are used to enable certain "local" 
forms of compatibiiity checks. For instance, adjectives and 
other modifiers are accompanied in the dictionary by a list of 
entity types they can modify. When a new word is incorpo
rated into the parse structure, the set of values for each fea
ture attached to it is intersected with the previous set of values 
for that feature. Whenever the set of values for some feature 
becomes nil, the parser knows that either (a) the wrong mean
ing has been used for a word with several dictionary listings; 
(b) a wrong choice was made at some previous point in the 
nondeterministic processing of the system grammar; or (c) the 
input is wrong or anomalous. 

The LDC grammar is a hybrid between transition network 
and phrase-structure grammars. 11

,20 Note from Figure 3 that 
in addition to this grammar the auxiliary files Rout-Word and 
Compat, each created by Prep, are made use of by the parser. 
Rout-Word tells which words can begin a syntactic consti
tuent, such as noun phrase, prepositional phrase, relative 
clause, and so on. Some parts of spee.ch are also included 
(e.g., to handle the potentially infinite class of ordinals). This 
information is much like the LL(l) tables of traditional com
piler design, and prevents many forms of needless backup 
during parsing. The Compat file, created by Prep based on 
information gathered during preprocessing and also on heu
ristics we have formulated for layered domains, is used to 
assure that a constituent is "compatible" with the word it is 
about to be attached to. 

Semantic Processing 

The job of the semantics module is to translate the tree-like 
parse structures into an internal form that we refer to as 
"bubble structures.,,3 These structures, which can be inter
preted directly or can be translated into a formal query for the 
external retrieval component, possess at least three desirable 
properties. First, they can be created in a straightforward 
fashion from the information produced by the previous stages 
of processing. Second, they capture the idea of the user's 
input, not merely its syntactic structure. Third, they can be 
used to direct subsequent processing, which for us means both 
carrying out actual retrieval operations and setting up an ap
propriate context in which to process further inputs. 

In determining the proper bubble structure for an input, the 
domain-structure network, as acquired by Prep, serves as a 
backbone on which semantic representations are based. Out
put from the parser is used to complete the representation. 
For simple sentences, it is sufficient to tag entities in the 
domain-structure network with the appropriate modifiers 
from the parse tree. Verbs are treated as adjectives and are 
also attached to their primary entity, along with their remain
ing operands. For more complex sentences, that is, those 
containing relative clauses, a separate semantic represen
tation is built up for each clause. These clause representations 
are then merged into the final semantic representation. As an 
example, the bubble structure corresponding to the input 

"What grade did Mary get in the course John failed?" is 
suggested in Figure 4. The reader will notice that only the 
relevant nodes of the full domain-structure network given in 
Figure 1 have been used. 

Evaluation of these semantic representations, or bubble 
structures, can proceed in two ways. The first method of eval
uation, which is discussed in the next section, involves inter
action with an external retrieval component. In the second 
method, the bubble structure is used to drive an internal inter
pretation routine. In the latter case semantic processing takes 
place by producing data representations, or datareps, which 
correspond to the noun phrases of the user's input. For exam
ple, the datarep 

(section 2 course 3) 

would refer to the 2-nd section of the 3-rd course in the do
main. Evaluation of the bubble structure given in Figure 4 
begins by creating a pointer to the first course in the data file. 
Ultimately, a reference to each student of each section of that 
course is made, until either the correct student (John) is found 
or no more students remain, in which case a pointer to the 
next section is generated. If all sections for a given course are 
exhausted, then the next course is examined in a similar man
ner. When a course is found that satisfies the left-hand side of 
the bubble structure, the sections of that course are examined 
for a student named Mary. If Mary is found, her grade is 
retrieved from the data file and passed down to the "collect" 
node, and eventually sent to the output generator. 

In a pure bubble interpretation, all students of all sections 
of all courses will be examined to find the student John. 
Admittedly, this will be an inefficient process. It is important 
to keep in mind that bubbles are a device to capture the deep 
meaning of a sentence, not to provide an optimized means of 
carrying out what has been asked for. Indeed, efficient re
trieval almost certainly requires knowledge of the physical 
structure of the raw-data file, for example which mappings 
have been "inverted," which we insist on concealing from the 
natural-language components of LDC. In the interest of effi
ciency, we provide for an external retrieval component, dis
cussed in the next section. 

Course 

/ 
Section Section 

/ 
Student (john) 

~ 
Student (mary) 

1 
"failed" 

1 
Grade 

1 
[Collect] 

Figure 4-Bubble structure for "What grade did Mary get in the course 
John failed'?" 



Output Generation 

Finally, an output generator converts the top-level datarep 
produced by semantics into a human-readable form. We are 
presently using a trivial generator, which for the datarep given 
above would respond with "CPS 154.2." At a later time we 
will want to consider methods of generating more informative 
responses. In fact, we will probably want to incorporate voice 
response, which is now being provided for NLC by a Votan 
D5000 device. 

THE RETRIEVAL COMPONENT 

We have seen that the information acquired by Prep focuses 
on the conceptual rather than the physical structure of domain 
entities. For instance, LDC will know that a course can be 
"broken down into" sections, but it is not concerned with 
whether the raw-data file has section names as its "primary 
key," whether courses are listed with pointers to their sec
tions, and so forth. The actual "binding" of bubble structures 
and datareps to physical record/table/file structures is handled 
by a retrieval component, which is regarded as external to 
LDC proper. 

To test the feasibility of this approach, we are having a 
"standard" retrieval component built (in PASCAL) to inter
act with the existing LDC code (written in LISP). In addition 
to routine bookkeeping operations to Get, Put, and Update 
records, this module will implement certain operations that 
are standard for layered domains but do not necessarily occur 
in conventional query situations. These special-purpose oper
ations include ordinals, to get the nth record with a certain 
property; superlatives, to get the record with the largest, 
smallest, etc. value in a specified field; and various bubble
type operations such as averaging field values, counting the 
number of records in a set, or finding the percentage of a set 
of records having a specified property. 

When LDC operates with an external retrieval module, the 
bubble structure produced by the semantics processor (see 
Figure 4) is first translated into a formal query. The retrieval 
component uses this formal query to repeatedly subset the set 
of all relevant records in the database. At the completion of 
all the subsetting operations, a value is retrieved from a field 
or fields of the remaining records. The module also recurses 
on any embedded query, using the result to evaluate the main 
query. 

For the previously considered input "What grade did Mary 
get in the course John failed?", the translation into a formal 
query is suggested by the following. 

Equal course {Equal student John 
Apply student fail 
Get course} 

Equal student Mary 
Get grade 

Evaluation of the imbedded query occurs first, with records 
in the database that do not have John as an entry in the 
student field being discarded. Of the remaining records, those 
that show that John failed, that is made a grade of F, are 

An English-Language Processing System 45 

evaluated for the course name. If two records remain after 
sub setting , with entries in the course field of EE157 and 
CPS154, then the main query would become 

Equal course EE157 CPS154 
Equal student Mary 
Get grade 

After sub setting the database using the main query as a 
guide, only the record(s) with EE157 or CPS154 in the course 
field, and with Mary in the student field is left. The values of 
the grade field in the remaining record( s) are sent back to 
LDC from the retrieval module, whereupon they are passed 
to the output generator. 

DISCUSSION 

In designing an NL processor, many decisions must be made 
regarding where and in what form various kinds of informa
tion should be stored. When one is building a single-domain 
system, many of these decisions can be made arbitrarily or to 
minimize implementational complexities. When many do
mains are to be handled, however, unwarranted decisions as 
to what functions each routine should perform will frustrate 
efforts to act upon newly acquired information, and may pro
hibitively limit the flexibility of what can be learned. For this 
reason, we feel that a learning system has much to contribute 
to the theory of language processing, as well as enhances the 
technology of natural-language interfaces. 

We have seen that the learning mechanisms of LDC allow 
for semantic specifications of new terms. These facilities are 
important for at least three reasons. First, they allow the user 
to paraphrase long constructs in a concise way. Second, se
mantic acquisitions let one ask about certain very complex 
notions that would be outside the scope of the vocabulary or 
syntax of the system if they had to be expressed using prim
itive terms. Third, information is available about new words 
independent of the syntactic context in which they will occur. 
For instance, knowing that "large" is an adjective that can 
modify "section," and that its inflected forms are "larger" and 
"largest," subsequent processing will be able to accept not 
only "large section" but also "sections which are large," 
"larger section than ... ," "sections larger than ... ," "the 
largest section," and other forms. 

As for technical issues, we have discussed several of the 
ways in which the design of LDC is parameterized to support 
learning. To oversimplify, learning takes place by converting 
new information into various forms of data to be used by 
existing processes. Thus, we have designed our semantics pro
cessor in a domain-independent fashion, where meanings are 
represented as text to be interpreted, rather than as pre
viously coded procedures. In this sense our semantics module 
behaves like the parser, which similarly interprets its phrase
structure grammar as a form of data. 

ACKNOWLEDGMENTS 

The creation of the Co-Occur, Rout-Word, and Compat files 
appearing in Figure 1 is due to Andrew Reibman, and the 



46 National Computer Conference, 1983 

implementation of compatibility checking in the parser was 
done by Nancy Tinkham. These individuals also contributed 
to our method of producing and interpreting bubbles. We are 
also indebted to Alan Biermann, Rusty Bobrow, Bill Buttle
man, B. Chandrasekaran, Martha Evens, George Heidorn, 
Gary Hendrix, Bill Ogden, Robert Rodman, and Fred 
Thompson for valued discussions during the course of our 
work. Finally, we are grateful to Griff Bilbro, Happy Deas, 
Linda Fineman, Pamela Fink, and Casey Gilbert for helping 
to sustain a friendly and productive atmosphere for Natural 
Language research at Duke. 

This report is based on work supported by the National 
Science Foundation, Grant Number MCS-8116607. 

REFERENCES 

1. Ballard, B. "A Domain-Class Approach to Transportable Natural Lan
guage Processing." Cognition and Brain Theory, 5 (1982), 3, pp. 269-287. 

2. Ballard, B. and A. Biermann. "Programming in Natural Language: NLC as 
a Prototype." Proceedings of the 1979 ACM National Conference, 1979, 
pp. 228-237. 

3. Biermann, A. "Natural Language Programming." Proceedings of the 
NATO Advanced Study Institute on Automatic Program Construction, 
Bonas, France, 1981. 

4. Biermann, A. and B. Ballard. "Toward Natural Language Computation." 
American Journal of Computational Linguistics, 6 (1980), 2, pp. 71-86. 

5. Biermann, A., B. Ballard, and A. Sigmon. "An Experimental Study of 
Natural Language Programming," International Journal of Man-Machine 
Studies, (1983), to appear. 

6. Bronnenberg, W., S. Landsbergen, R. Scha, and W. Schoenmakers. 
"PHLIQA-1, A Question-Answering System for Data-Base Consultation 
in Natural English." Philips Technical Review, 38 (1978-79), pp. 229-239 
and 269-284. 

7. Codd, E. F. "Seven Steps to RENDEVOUS with the Casual User." IBM 
Report 11333, 1974. 

8. Geist, R., D. Kraines, and P. Fink. "Natural Language Computation in a 
Linear Algebra Course." National Educational Computer Conference, 
1982, pp. 203--208. 

9. Haas, N. and G. Hendrix. "An Approach to Acquiring and Applying 
Knowledge." First National Conference on Artificial Intelligence, 1980, 
pp. 235-239, 

10. Harris, L. "The ROBOT system: Natural Language Processing Applied to 
Database Query." Proceedings of the 1978 ACM National Conference, 
1978, pp. 165-172. 

11. Heidorn, G. "Augmented Phrase-Structure Grammars." IBM Research 
Report, 1975. 

12. Heidorn, G. "Natural Language Dialogue for Managing an On-Line Calen
dar." IBM Research Report RC7447, 1978. 

13. Hendrix, G. "Human Engineering for Applied Natural Language Pro
cessing." Fifth International Conference on Artificial Intelligence, 1977, 
pp. 183--191. 

14. Hendrix, G. and W. Lewis. "Transportable Natural-Language Interfaces to 
Databases," Annual Meeting of the Association for Computational Linguis
tics, 1981, pp. 159-165. 

15. Mylopoulos, J., A. Borgida, P. Cohen, N. Roussopoulos, J. Tsotsos, and 
H. Wong. "TORUS-A Natural Language Understanding System for Data 
Management." Proceedings of the Fourth International Conference on Arti
Jidalintelligence, 1975, pp. 414-421. 

16. Plath, W. "REQUEST: A Natural Language Question-Answering 
System." IBM Journal of Research and Development, 20 (1976), 4, 
pp. 326-335. 

17. Thompson, F. and B. Thompson. "Practical Natural Language Processing: 
The REL System as Prototype." in M. Rubinoff and M. Yovits (eds.), 
Advances in Computers, Vol. 3. New York: Academic Press, 1975. 

18. Thompson, F. and B. Thompson. "Shifting to a Higher Gear in a Natural 
Language System." AFlPS, Proceedings of the National Computer Confer
ence (Vol. 50), 1981, pp. 657-662. 

19. Waltz, D. "An English-Language Question Answering System for a 
Large Relational Database." Communications of the ACM, 21 (1978), 7, 
pp. 526-539. 

20. Woods, W. "Transition Network Grammars for Natural Language Anal
ysis," Communications of the ACM, 13 (1970), pp. 591-606. 

21. Woods, W., R. Kaplan, and B. Nash-Webber. The Lunar Sciences Natural 
Language Information System: Final Report, Bolt, Beranek and Newman 
Report 2378, '1972. 



Implementation of an Ada* run-time environment 

by HERMAN FISCHER 
Litton Data Systems 
Van Nuys, California 

and 

EDGAR H. SIBLEY 
Alpha Omega Group, Inc. 
Silver Spring, Maryland 

ABSTRACT 

The Ada Programming Support Environment (APSE) has been introduced! as a set 
of tools to support program development systems. This paper introduces the idea 
that the concepts and facilities of APSEs are valuable not only to host systems 
(those used to develop software), but also to certain Ada run-time environments 
(ARTEs) (those in which applications execute) and examines the implementation 
of large database transaction oriented systems in such an environment. Two exam
ples of actual systems are used to show the benefits gained by using the Ada 
environment. A costlbenefit analysis for such a transition is also outlined. 

* Ada is a registered trademark of the Department of Defense. 

47 





INTRODUCTION 

The benefits of using an Ada run-time environment (ARTE) 
based on the Ada Programming Support Environment 
(APSE) model are basically the same as the APSE's benefits 
for the programming host: transportability and interoperabil
ity of system components in a hardware-independent manner 
that was not previously realizable. These terms, though in 
common use, are not always used in the same way and must 
first be defined. The KITIA2 have agreed that "inter
operability" is the ability of support environments to ex
change database objects and their relationships in forms 
usable by tools and user programs without conversion, and 
that "transportability" is the ability to install a function in a 
different environment, without reprogramming, to perform 
with the same functionality. 

The ARTEIAPSE Concepts 

It is our belief that the STONEMAN model, though de
fined for host/target environments, will be applied to com
puting environments not intended for program development. 
In STONEMAN, a kernel APSE (KAPSE) is surrounded by 
a Minimal APSE (MAPSE) toolset that, when extended with 
a comprehensive set of tools, becomes a full APSE. This is 

DATA DICTIONARY MAINTENANCE 
APPLICATIONS GENERATORS 
TERMINAL TRANSACTION DEFINERS 
REPORT GENERATORS 

Figure I-STONEMAN model of APSE 

Implementation of an Ada Run-TIme Environment 49 

illustrated in Figure 1, with the KAPSE at the center of a set 
of rings (embodying the hardware, operating system, stan
dardized interprogram communications mechanisms, and its 
"database"), and with the surrounding wedges representing 
the minimal toolset. Surrounding the outside of the wedges 
are applications-specific tools and programs; these can also 
occupy "open" (MAPSE) tool spaces in the wedges ring. 

It is proposed that the layered-rings model applies to 
transaction-oriented database management system (DBMS) 
ARTE systems, as portrayed in Figure 2. Although more 
detail is shown in the kernel of the ARTE (KARTE), the case 
will be made that the features of the KARTE are applicable 
to the APSE also. In fact, an ARTE can use many ofthe same 
facilities, or share the same processor with an APSE (as hap
pens today in logistics systems that run applications software 
in the processor used to support software-development 
organizations) . 

Figure 2-Application of model to transaction-oriented DBMS ARTE 



50 National Computer Conference, 1983 

We shall first examine the need for this form of run-time 
environment. 

Problems of Existing Large=Scale Information Systerns 

There ~re six categories of problems that exist in current 
systems; we shall first show how these are solved in a current 
programming and run-time environment (there are also many 
problems with existing systems that are only remediable with 
improved software methodologies, better maintenance, more 
money, and the like). These are: 

1. Hardware-Hardware, as used in large systems is often 
obsolete before the applications software is placed in 
operation; in fact this may occur early in the applica
tion's life cycle. Hardware is also often not suitable for 
new, heretofore unthought-of applications of existing 
software, such as occur when rapid-deployment concepts 
force portability of previously stationary systems. 

2. DBMS-DBMSs are large, complex beasts. The suc
cessful ones marketed to Fortune 500 companies seem to 
have upwards of 2,000,000 source lines, including the 
various optional (but essential) tools that surround the 
DBMS. These tools are constantly evolving, and up
grading from one major version to the next is a major 
undertaking. Furthermore, as the DBMS systems 
evolve, new generations of systems appear. In the ab
sence of KAPSE-like layers separating applications from 
underlying implementations, portability is not possible. 
Existing applications are enormously expensive to 
upgrade. 

3. Tools-DBMSs contain, in their environments, a large 
quantity of very diverse tools; these vary from initial
ization, backup, and restoration tools, to online dictio
naries and schema-maintenance tools, reporting and 
configuration-management tools, applications gener
ators, Query tools (structured and English-like), and so 
on. It is not reasonable to switch tools every time new 
hardware is obtained, or when switching to an improved 
underlying DBMS. 

4. Applications Generators-Such applications generators 
as the Cullinane Corp ADS-OnLine,3 the IBM IMS
ADF,4 and the Air Force On Line Data System 
(AFOLDS) DUEL5 are a vital part of today's environ-. 
ment. These products allow transactions to be coded in 
very high level applications languages, or to be ex
pressed as a set of rules or decisions. The Cullinane 
product is said by commercial users to provide a seven
fold to tenfold productivity improvement over "old" 
(manually-coded) programming techniques. The USAF 
product's users estimate a 60% improvement in produc
tivity. Applications generators are expected to become a 
vital part of the future of DBMS-based transaction 
processing systems, even though they are not, strictly 
speaking, DBMS tools. Thus, their future use will need 
some attention to the portability of the applications
generator toolset independently of the underlying 
DBMS or hardware. 

5. Transaction-Based Terminal Handlers-The ability to 
create user-friendly and easily maintainable transaction
processing software depends, to a large extent, on user 
terminal handling processors that are intimately inte
grated into the underlying system. At the same time, 
they must be sufficiently separable to permit migration 
among significantly differing terminals, networking 
philosophies, communications facilities, and report gen
erators that supply the user needs. Standish discusses the 
needs for a bounded set of user interfaces for accessing 
tools and the possible need for standardization in this 
area.6 User interfaces have been categorized as "normal 
conversational" (prompted command lines), "form fill
ing" (CRT with prompts and fill-in fields), "tree of 
menus" (hierarchy of levels of choices), and "graphical" 
(windows and iconics). All these will be needed at future 
user interfaces. 

6. Configuration Management-Configuration-manage
ment features are an integral part of today's complex 
large-scale transaction-based systems. However, they 
are often treated lightly and incompletely; the result is 
that logistics-type systems have never had great success 
in supporting variants and versions of schemas, pro
grams, and transactions. Nearly all major DBMS and 
their dictionaries today support identification of versions 
or variants, and yet almost none of these support the 
coexistence or automatic maintenance of different ver
sions at different sites, exchanging distributed data, con
verting formats, ensuring proper library control and test
ing, and recovering crash and archival data of differing 
versions. 

SOME EXISTING SYSTEMS 

The U.S. Air Force relies on two very different large-scale 
DBMS-oriented logistics systems for aircraft maintenance 
tracking. 

• The Maintenance Management Information Control Sys
tem (MMICS), presently implemented on the Burroughs 
Medium System computer family (the Phase II system) 
handles fighter aircraft (F-15, F-16, and A-lO). This sys
tem tracks engine parts and operating conditions, and 
performs calculations to predict the need for preventative 
maintenance. 

• The Automated Maintenance System (AMS), based on 
the IBM 370 family architecture, handles airlift trans
porters (C-5, C-141). It has also been considered for 
handling logistics for the B-1, the Space Shuttle (if the 
USAF takes responsibility for it), and the MX system. 

The MMICS system is huge, encompassing far more than 
fighter engine maintenance tracking; MMICS provides much 
of the data required to manage maintenance equipment and 
personnel resources, worldwide, for aircraft, missile, and 
communications-electronics-meteorological environments. 
MMICS includes over! million source lines of coding. 

The AM:S system is also huge, including a large number of 



Implementation of an Ada Run-Time Environment 51 

TABLE I-Systems Environments and Problem Areas 

Example 
Transaction-Based 
Logistics Systems 

MMICS 
(Phase II) AMS 

Purpose! Application Engine maintenance & Logistics 

F15, F16, AIO C5,C141 
Aircraft Aircraft 

Hardware Burroughs IBM 
B3500,B4700 360Compat. 

DBMS Internal Cobol IMS 
(none) 

Tools Special Cobol IMSutilities 

Applications Generation None None 

Temtinal Formating None IMS macros 

components and users. AMS is more recent than Phase II; 
AMS is architecturally an online system, based on the 327x 
terminal family and IBM's IMS database system. 

MMICS is an "updated system;" its COBOL programs re
flect batch processing punched-card transactions and a 
"home-grown" database structure (embedded in the trans
action programs). MMICS has since evolved to be online, but 
only by overlaying on the Burroughs Master Control Program 
(MCP) a USAF "home-grown" transaction-analyzer program 
(itself over 110,000 source lines) to simulate punched-card 
inputs and line-printer output on CRTs. 

MMICS operates in a base support computer environment, 
where the complete system is known as Phase II. Not all Phase 
II programs are COBOL-based with embedded database 
handling: the Civil Engineering, Accounting and Finance, 
Medical, Operations, and Transportations applications are all 
implemented (on the same B3500 hardware) using AFOLDS, 
which includes data description capabilities, an applications 
generator, a transaction-oriented terminal handler (and forms 
builder), and an English-like query language. 

Neither Phase II nor AMS is transportable; Phase II is not 
because its MMICS has a large volume of embedded assem
bler coding within Cobol programs to handle database access. 
Phase II's AFOLDS-based functions are also machine de
pendent. AMS is not transportable because of the use of IMS 
and 327X terminal formatting facilities. 

Table I examines these systems with respect to the problem 
areas enumerated previously. 

Hardware and Transportability 

Phase II is tied to Burroughs Medium-Sized Systems. Most 
bases have "ancient" B3500 computers installed. These tran
sistor and discrete component curiosities cannot be replaced, 
under Government Accounting Office rules, except by com
petitive bidding. (A few bases have slightly newer B4700s.) 
Although Burroughs makes modern equivalents, such as the 

Transportable 
Current Ada-Based 

Environments Environment 

Phase-II IBM 
Compatible Compatible 

IMS Cullinane 

Burroughs IBM IBM KAPSE 
B3500,B4700 370 compat. 370compat. compatible 

AFOLDS IMS IDMS Adaplex (CCA 
Corp.) 

Backup restore ADF IDD -
Data Dictionary utilities 
Misc. 

DUEL ADF Adds-On Line -

FRAMES ADF On Line -
Mapping 

900 series B3900, the USAF has not been able to convert to 
them (due to the obvious lack of competition) and is thus 
stuck with the B3500s. 

Phase IV, the upgrade-in-process for Phase II, was directed 
by public law to be a competitive procurement (the authors do 
not mean to imply that it is bad, only that STONEMAN 
concepts are needed to make such future actions reasonable). 
Two companies are in a "compute-off" conversion, Bur
roughs and Univac; both are re-implementing the present 
system on new (different) hardware families, using new oper
ating systems and terminal handlers, and using manufacturer
supplied DBMSs. 

Even Phase IV hardware will become obsolete in the near 
term (owing to the pressures of an advancing semiconductor 
industry), and at that time the DBMS, operating system, and 
terminal handling systems will remain untransportable. The 
Phase IV system, once deployed, will be no more readily 
transportable (in competitive reprocurement) than Phase II. 

AMS, being based on IBM architecture, appears to have a 
longer life: there is a large industry of instruction-set
compatible processor builders. AMS users can thus develop 
new software and not worry that near-term hardware up
grades will remove the IMS and 327X terminal architectural 
footing. 

Independent Systems and Interoperability 

There will always be organizational, spatial, and temporal 
reasons for independent procurements of systems with similar 
requirements. For example, the aircraft maintenance software 
for fighter aircraft and transport aircraft has been handled by 
separate organizations, and it is therefore not surprising that 
MMICS and AMS are two different systems. MMICS is over 
ten years old. If it were not for its lack of transportability, 
some of the MMICS sites would have been upgraded to more 
recently procured hardware. However, unless the new system 
remains interoperable with the old one (in addition to being 



52 National Computer Conference, 1983 

able to reuse its software), there is no way to phase-in new 
equipment, and there would thus be no way to reduce acqui
sitions of side-by-side systems such as MMICS and AMS 
which could otherwise share resources. 

ENVIRONMENT CONCEPTS APPLIED 
TO THE EXAMPLES 

Both the Phase II and AMS systems will, at some time in the 
future, need to be transferred to new-technology support sys
tems. There is only one cost-effective way that this can be 
accomplished within the constraints of implementing trans
portability and interoperability. Software costing studies show 
that a robust modern support environment, providing a tool
set which minimizes the complexity of applications programs, 
minimizes costS.7 Clearly there are two prerequisites to such 
a transition: a robust DBMS and a complete set of tools to 
support its use (e.g., applications generators). 

Given that these prerequisites were met on an Ada
supportive system, one would still be faced with the problem 
that the resultant new systems would be nontransportable 
(except among families of the Ada-supportive system 
chosen). For example, if one were to base a reimplementation 
on the ALS architecture (the U.S. Army Ada Language Sys
tem effort), the system would be tied to DEC VAX architec
ture and its current operating systems. Furthermore, the DEC 
architecture, as it is being used by the Ada products, is not 
supportive of transaction-based terminal networks (e.g., 
multi dropped externally clustered buffered approaches). 

An attempt to build a run-time system for the transported 
systems is likely to meet with two barriers, the cost and the 
lack of guarantees of support in future environments. 

The only solution is to base the transported system on the 
use of the STONEMAN concept, where the transaction
processing software itself is an outer layer of programs around 
a "ring" of DBMS and transaction-supportive tools. 

COSTIBENEFIT CONSIDERATIONS 

The Phase II to Phase IV conversion, now in progress, pro
vides interesting cost data. Each vendor is charging the tax
payer (in round numbers) $50 million for the first increment 
of software conversions. In addition, the USAF has approxi
mately 500 staff members supporting the three-year effort. 

Given that 1500 man-years cost approximately another $50 
million, the initial conversion cost is of the order of $150 
million-owing to the lack of software transportability. The 
initial nine applications converted (of several hundred) are 
said to be the most difficult, and may thus represent as much 
as half of the total effort. 

Moreover, Phase II is only one system, within one service, 
and the selected hardware, however good it is at the time of 
delivery, will be hopelessly obsolete by the end of the decade 
and, under federal rules, unreplaceable except by a new multi
vendor competition. 

In an ARTE, only the kernel would need re-interfacing to 
transport a system; that would be some orders of magnitude 
less expensive to the taxpayer. 

RELATIONSHIP BETWEEN APSE AND RTE 

Where would one find an ARTE? Certainly the most obvious 
possibility is to utilize the structure of an APSE and replace 
some of the tools in the MAPSE with transaction and data
base oriented functions, and utilize the same core KAPSE for 
both APSE and ARTE. 

This idea's merit becomes clearer when one looks at the 
systems given as examples above, and realizes that, in both 
cases, the identical operating system (the major part of a 
KAPSE) is used by both the programming-support centers 
and the operations centers; in fact, operations often shares the 
same processor with development on a time sharing basis. 

It is then worth examining whether a KAPSE can also be 
the kernel for an RTE. 

Differences in KAPSE Databases 

The STONEMAN document is a generic statement of the 
goals of PSEs. Therefore, it is not unexpected that "in
stances" of environments supposedly designed to meet these 
goals differ substantially in matters important to the use of a 
KAPSE for an ARTE kernel. Indeed, the definition is so 
loose that it is possible to produce conflicting (and definitely 
non transportable ) software based on different KAPSE imple
mentations. 8 

Key areas are in the database support mechanism. The 
SofTech Ada Language System implements a hierarchical 
"database" structure based on the concept of trees of nodes, 
attributes, stream storage (unformatted), etc. 9 This database 
structure is well suited for "bulk" storage (of program text, 
compiled code, and unstructured small files). The Inter
metrics Ada Integrated EnvironmentlO implements a "semire
lational" sort of database that uses a mechanism similar to 
directory trees to locate each stored element (attribute, un
structured file, or indexed file). Both of these environments 
basically place the responsibility for the structuring of data 
with the tools and programs that lie outside the KAPSE (e.g., 
compilers, program library managers, etc.). Two European 
efforts (the UKll and the EEC12

) place in the KAPSE the 
structuring mechanism for program support access to code 
trees, program-library configuration data, and so on. 

Other key areas include "optIons" such as configuration 
management. The SofTech and Intermetrics effort both place 
this responsibility as an embedded function within using tools, 
rather than as a kernelized system service. (An effort to im
plement configuration management in a transportable and 
interoperable manner is presently funded to CSC; however, 
this is being provided as a MAPSE tool, rather than being 
integrated into the run-time environment.) 

A Structured Database Project for the KAPSE 

There is one known attempt to place a "structured" data
base onto a KAPSE environment. The continuing success of 
this effort could be used to base an argument that KAPSEs, 
in general, are capable of supporting the form of database 



required by transaction-based logistics systems, such as the 
two discussed above. 

The Computer Corporation of America's Adaplex effort13 

is developing an Ada-compatible DBMS. Their approach is 
based on an entity and function database structure, with typed 
data. Adaplex uses a database model said to furnish more 
capabilities than either the hierarchical, network, or relational 
database models. Although Adaplex is being implemented to 
run on a DEC VAX computer, using the SoITech KAPSE and 
MAPSE toolset, the authors of Adaplex intend to use the 
VAX VMS operating system calls to access the disk directly 
(instead of utilizing the SoITech KAPSE for disk access). 

Although Adaplex is coded in Ada, it will be non
transportable because of its VMS dependencies. The SoITech 
KAPSE could probably be redefined to include the appropri
ate disk-access services. Yet even given that the KAPSE con
tains the necessary services, the SoITech KAPSE is non
transportable because it is heavily dependent on VMS services 
and non-Ada internal coding.14 

The KIT15 and KITIA 16 have efforts to create standardized 
KAPSE interfaces; fruition of interface standardization would 
allow the Adaplex DBMS to be transported to other 
KAPSEs. 

Given that (a) the Adaplex can eliminate VMS dependen
cies by a change to SoITech's KAPSE services and (b) the 
KAPSE interface-standardization efforts meet with success, 
one would postulate that Adaplex could become an instance 
of a transportable DBMS usable for constructing an ARTE. 
This example would place the DBMS in the tool layer sur
rounding the kernel, not in the kernel itself. 

Using a Non-Ada DBMS in an APSE 

The enormous cost of implementing a DBMS from scratch, 
along with the necessary "optional" tools (applications gener
ators, transaction terminal handlers, etc) has led to the study 
of incorporating existing, non-Ada DBMS implementations 
with Ada environment tools and programs. A proposed 
solution17 allows structured queries and updates from Ada 
packages to map into non-APSE DBMS primitives, by trans
lating the operations and binding the data. Thus, a set of 
package interfaces "crosses" the APSE domain into "for
eign" DBMS facilities, without going through a standard 
KAPSE interface. Existing DBMS tools, application gener
ators, terminal handlers, and English-like or well-designed 
query tools of the original environment are not available to 
the APSE user, except through the underlying operating sys
tem. This shortcut solution thus does little to provide for 
transportability and interoperability at the DBMS application 
level. 

USING AN ARTE DBMS IN THE APSE 

Conventional DBMSs do not make a good job of dealing with 
bulk data in the form of the so-called unformatted file or in 
the form of libraries of nonhomogeneous data, such as a set 
of programs that have been partially or fully link-edited as a 

Implementation of an Ada Run-Time Environment 53 

system ready to be executed. Such data occurs in streams of 
bits representing machine structures: words, or bytes, or para
graphs, or syllables, or blocks, and so on. The stream or its 
parts may be directly or randomly accessible, or it may only be 
serially accessible. Such data are sometimes called un
structured data, and the database said to have no knowledge 
of the internal form of the data. This may be true in some 
cases, but it does not capture the essential difference. For 
example, in Ada, a file is said to be "associated with an 
unbounded sequence of elements, all of the same type." It can 
be argued that the system is required to know the element 
type, to ensure that all users access it using the same element 
type. 

A suitable treatment of bulk data is essential in the KAPSE, 
because the entities that are controlled through a pro
gramming support environment (PSE) are primarily associ
ated in storage as bulk text (e.g., Ada source and compiled 
objects). The normal way to deal with bulk data in the past has 
depended on the usage of that data. If the data were an entire 
system, a program, or a part of a program, and so on, it was 
placed in a "library" that could access the program-unit by its 
name. The structure of the program-unit was generally simple 
or nonexistent. If the data were to be accessed by a procedure, 
they were stored as a relatively conventional set of records in 
a file or in some similar fashion (indeed, they could be stored 
as a stream of characters or even as a stream of bits, but the 
procedures and the supplied access methods were the only 
way that the data structure was known). One of the special 
Ada data structures is, of course, the Diana tree. This has a 
structure that has been standardized, and the fact that the 
Diana tree has needed to be made a standard is an interesting 
example of the need for standards within the KAPSE or with 
the MAPSE levels-in order to allow inter-tool action at that 
level. 

Clearly, if a DBMS is to be provided for use by the PSE, it 
would be very convenient and useful if the same DBMS were 
also suitable for applications use. This would mean that there 
was a DBMS in the KAPSE to allow for the addition of a 
formatted data concept to the PSE; as a result, the DBMS 
could be used for other functions (as discussed later) and if the 
same DBMS were to support such actions as an ad hoc query, 
then the KARTE would potentially have the same interface 
DBMS. 

Classes of Data Supported 

As already discussed, there are at least three classes of data 
that are important in the Ada environment. These are: 

1. Unformatted data. -This is a broad class of data that 
may have structure, but which have no structure that 
may be known to any program or procedure except 
through special communication from a programmer. 
This class of data could be a report in character form 
(possibly internally indexed, or part of a word processing 
system with a retrieval mechanism), or it could be a 
traditional file (with a well-defined file structure that 
needs a special access method-such as ISAM-to act as 



54 National Computer Conference, 1983 

an indexing device for rapid retrieval), or a "bucket of 
bits" that might be the results of a transmission or a 
program. All types within the class of unformatted data 
have one characteristic in common-they consist of a 
stream of bits that may have structure, but this structure 
is unknown outside the suite of procedures that access 
the data. 

2. Standard formatted data. -Such data have a predefined 
format that has been previously defined by a community 
of users who are on their honor to see that all tool-using 
devices are used consistently. Typical of these data are 
the groups of procedures that work on a common data 
structure. In a run-time environment these may be a 
suite of personnel programs that provide accounting, 
payroll, and personnel support services; in Ada the com
piler and editor interactions (via Diana trees) are exam
ples of standard formatted data systems. The difficulty 
with such systems is that they rely on the good will of the 
users (or the hard heads of auditors) and often are vio
lated, either deliberately or in error. 

3. Fully formatted data.-These are seen in database
managed systems and in some structured PSEs. The es
sential characteristic of such data is that the environment 
is aware of the structure of data as a whole and of any 
part of them. For example, the PSE being designed in 
the UK has a built-in structure which assures that the 
program parts are properly controlled-thus the sub
programs of a main program are associated with it; 
moreover, the particular version of the subprogram that 
is valid with it. Thus the "structure" of these data is an 
exact match of the configuration that must be managed. 
The run-time environment, then, will be able to retrieve 
the required version of the main program and with it all 
relevant and correctly versioned copies of its sub
programs. 

APSE AND ARTE INTERACTION 

The ARTE and the APSE are not really easy to differentiate, 
yet an attempt to do so for the programming environment has 
led to the definition of an entity termed a KAPSE. And it 
appears that in the time since the STONEMAN document was 
approved the Ada community has forgotten that the prime 
reason for a programming environment is to provide pro
grams that can be run-presumably in a run-time environ
ment. The idea of a host-to-target environment, of course, has 
led to some of this apparent neglect, but most target machines 
have a need for some environment, and it seems reasonable to 
assume that future target-machine architecture will benefit 
from the definition of a standard run-time environment. Nat
urally, any other run-time environment that interacts with 
other machines/computing devices will benefit even more if a 
standard KARTE exists. 

Much then has been said of the KAPSE, but little of the 
KARTE. If, as appears very likely, the Ada langugage is used 
to implement logistic and other large-scale nonoperational 
(large-scale administrative) systems, then some of the require
ments of a KARTE that were only marginally necessary in the 

KAPSE will be more essential. These features include the 
need for security features; a way to store data structures and 
define the meaning of the data entities (an information
resource dictionary); a means for storing and retrieving data 
based on these definitions (a generalized DBMS with good 
user interfaces for query, table generation, and reporting); 
methods for recording program structures, their relationships 
to data and users, and so on (a good software-configuration
management system); and interfaces to the documentation, 
which can be a part of the combined configuration and infor
mation resource management system. 

There are at least three types of security that should be 
investigated: user checking, procedure validation and ini
tiation, and data sensitive checking. 

The DBMS-like features should include the capability of 
interfacing to a dictionary. Modem dictionaries have many 
different features, but they are all generally able to capture 
compiler data to document data and program usage. Some are 
even able to hold information on the users, some security 
needs, and some configuration-management controls. The 
controls between a DBMS and a dictionary, and even the 
configuration manager, are implemented through an active 
interface between the dictionary and its users (automated or 
human). The value of the dictionary is only fully realized if it 
can operate in this controlling role. 

CONCLUSIONS AND A PROPOSED ARCHITECTURE 

The purpose of this paper was twofold: 

1. To show that there was a need to consider the use of the 
KAPSE as an ARTE. 

2. To suggest some of the problems in making the transi
tion from one to the other. 

It does seem, however, that there is a possibility of using 
architectures that have been developed for operating systems, 
DBMSs, and information resource dictionary/configuration 
management systems in the past. One possible high-level 
architecture was given in Figure 2. 

This shows that it would be possible to use the general 
architecture of the STONEMAN KAPSE for a combined pro
gramming and run-time support environment, but some addi
tional controls will need to be added to the system, and the 
configuration management system would need to have control 
of any access to the libraries. 

However, the use of an Ada environment that had realized 
these features would make future software more easily trans
portable and allow real "software reusability," thereby reduc
ing the rising costs of software while allowing major systems 
of the future to be implemented in spite of the expected "gap" 
in available programmers and systems implementors. 

ACKNOWLEDGMENT 

The authors are grateful to Mr. Leo Meany of the U.S. Air 
Force Data Systems Design Center, who provided informa
tion on AFOLDS. 



REFERENCES 

1. Department of Defense. Requirements for Ada Programming Support 
Environments "STONEMAN." Department of Defense, February 1980. 

2. "Definitions." Kernel Ada Programming Support Environment (KAPSE) 
Interface Team: Public Report Volume 1. San Diego, Calif.: Naval Ocean 
Systems Center, Technical Document 509, April 1982, Appendix C. 

3. Application Development System/OnLine Reference Guide. Cullinane 
Database Systems, Inc., Order Number TDAO-330-1O, January 1982. 

4. IMSIApplications Development Facility Program Description/Operations 
Manual. IBM Corporation, order number SH20-1931. 

5. AFOLDS, Air Force OnLine Systems User's Guide. U.S. Air Force Data 
Systems Design Center, Gunter AFS, Alabama, 1975. 

6. Standish, T. "Extensibility." Kernel Ada Programming Support 
Environment (KAPSE) Interface Team: Public Report Volume 2. San 
Diego, Calif.: Naval Ocean Systems Center, 1982. 

7. Boehm, B. Software Engineering Economics. New York: Prentice-Hall, 
1981. 

8. Fischer, H. "Time Line Analysis of KAPSE Interfaces During a 
Compilation." Kernel Ada Programming Support Environment (KAPSE) 
Interface Team: Public Report Volume 2. San Diego, Calif.: Naval Ocean 
Systems Center, TD552, 1982, pp. 30-1 ff. 

9. "The Environment Database." Ada Language System Specification. 
Waltham: SofTech, CR-CP-0059-AOO, June 1981, Appendix 50. 

Implementation of an Ada Run-Time Environment 55 

10. Computer Program Development Specification for Ada Integrated 
Environment: KAPSEIDatabase. Cambridge: Intermetrics, Inc., Draft 
IR-678, June 1981. 

11. Final Technical Report. KAPSE Database. London: United Kingdom 
Department of Industry. 

12. Gallo, F. Presentation to EFDPMA Ada Conference. Copenhagen: 
Olivetti Corp., September 1982. 

13. Smith, J. Reference Manual for AdaPLEX. Cambridge, Mass.: Computer 
Corporation of America, 1981. 

14. "Rehosting." Ada Language System KAPSE B5 Specification. Waltham: 
SofTech, CR-CP-0059-C81, August 1981, pp. 3-63. 

15. Kapse Interface Team. "Ada Programming Support Environment 
Requirements for Interoperability and Transportability and Design Criteria 
for Standard Interface Specifications." Kernel Ada Programming Support 
Environment (KAPSE) Interface Team: Public Report Volume 2. San 
Diego, Calif.: Naval Ocean Systems Center, TD552, 1982, pp. 3G-2 ff. 

16. Sibley, E. "Towards a KAPSE Interface Standard." Kernel Ada 
Programming Support Environment (KAPSE) Interface Team: Public 
Report Volume 2. San Diego, Calif.: Naval Ocean Systems Center, TD552, 
1982, pp. 3K-l ff. 

17. Bever, M., M. Dausmann, S. Drossopoulou, W. Kirchgassner, P.L. 
Lockemann, G. Persch, and G. Winterstein. "The Integration of Existing 
Database Systems in an Ada Environment." Proceedings of the AdaTEC 
Conference on Ada, New York: ACM, 1982. 





Future Ada* environments 

by SABINA H. SAIB 
General Research Corporation 
Santa Barbara, California 

ABSTRACT 

The current Ada environments are oriented toward traditional code production 
tools such as editors, compilers, loaders, and program library managers. Future 
Ada environments will add to the initial capabilities to provide support from the 
initiation of requirements to the enhancement of existing operational software. In 
addition to software development facilities, future Ada environments will support 
management activities. The future will also see applications of current tools and 
techniques across the entire life cycle. 

* Ada is a trademark of the Department of Defense. 

57 





INTRODUCTION 

Ideally all phases of the software development cycle from 
requirements to maintenance or enhancement should be sup
ported by a software environment. Many current software 
tools contain capabilities for supporting one phase of the life 
cycle. These tools ignore what has gone before in the life cycle 
or what will happen in the next phase. Often different lan
guages that are oriented towards a portion of the life cycle are 
used, so that the tool is totally incompatible with all other 
tools in use. In the use of such tools, much effort is expended 
in transferring incompatible data from one tool to another. 
This effort could be avoided by implementing an integrated 
support environment. During all phases of software devel
opment, management needs to be able to see what the status 
of a project is. Today this is often done without the use of tools 
that can look at the actual state of the software. As a result, 
the managemen.t view is often incorrect and management is 
unable to address problems in a timely manner. 

LIFE CYCLE CONSIDERATIONS 

The traditional approach to identifying the capabilities 
needed in a software development environment has been to 
examine each phase in the software development life cycle as 
a separate activity. Occasionally its relationship to immedi
ately preceding and following phases is also considered. 
Recently emphasis has been placed on the ability to trace 
requirements through specifications and design to the imple
mented code elements and acceptance tests. Another ap
proach to developing an environment for life cycle support is 
to examine the needs of the maintenance or enhancement 
phase. The impact of a change in the requirements must be 
traceable out to the affected software components, and the 
proposed changes to the software must be traceable back to 
the unaffected requirements. 

GOALS FOR AN ENVIRONMENT 

Any future Ada environment must include a wide variety of 
capabilities in order to support the development of software 
during all phases of the life cycle. It must be easy to use, and 
assist the user not only in such detailed activities as interactive 
debugging, but also in organizing and directing the effort. The 
environment must be extensible to allow the addition of capa
bilities as new tools and techniques emerge, and it must 
be standardized across machine architectures, operating sys
tems, and file access methods. The capabilities for an environ
ment can be implemented as a set of cooperating development 

Future Ada Environments 59 

and management tools. These tools can be clustered into 
three major groups: multipurpose, software production, and 
management. 

Multipurpose tools find use in numerous phases of the soft
ware life cycle. These tools for examining and updating text 
files and the generation of reports must be designed with 
general purpose capabilities to reflect their universal usage. 
The most important multipurpose tool that can be developed 
for an environment is the database manager. The Ada envi
ronment requires a single database for all environment activ
ities. Such a database will automatically provide a history of 
a project and avoid duplication of database functions among 
tools. 

Software production tools that work together can form a 
comprehensive package of support for a user. Some specific 
tools that should be developed for the future Ada environ
ments are requirements processor, specification processor, 
design analyzer, coding assistant, standards checker, com
piler, static analyzer, linking loader, configuration manager, 
test as sister , and verifier. 

Management tools fill needs that differ from those of the 
software production staff. Activities that should be supported 
by tools are planning, staffing, controlling, directing, or
ganizing, and status reporting. 

From a designer'S viewpoint, the goals imply that the Ada 
environment must be both extensible and modifiable. Experi
ence has shown that nearly all truly useful systems grow and 
change over time as new needs are developed and old ones 
become obsolete. Extensibility and modifiability are en
hanced by the use of a single, uniform, functionally oriented 
command language. Tools will be contributed to the Ada 
environment from numerous sources. The sheer number of 
tools that should be provided makes it impossible for one 
group to be the sole suppliers to the environment. Further
more, the particular tools within the environment will be 
changing. A tool should rely less on the physical format of 
information than on its logical structure. A uniform database 
system and database manager provide such a capability. The 
virtual memory manager in the Ada Integrated Environment 
appears to offer this capability. The design of a new tool can 
ignore which other tools in the environment create the infor
mation it needs; it only needs to know that the data will be 
created and will be accessible though a standardized format 
that stresses the logical rather than the physical characteristics 
of the data. 

SOFfWARE DEVELOPMENT DATABASE 

For each software project, a common information storage and 
retrieval system should provide a repository to consolidate all 



60 National Computer Conference, 1983 

relevant project data. The database also serves to unify the 
tools in the environment by pr~viding common access to 
project data. The project database must, therefore, be com
mon to all tools in the environment. Each tool should use the 
database access faciiities to retrieve the data it requires and to 
store the information it derives. The use of such a database is 
shown in Figure 1. 

The advantages of a common database are many. Informa
tion required by more than one tool can be computed and 
stored once, avoiding duplicate data files and extra pro
cessing. Also, information can be conveniently passed from 

ADA 
ENVIRONMENT 

TOOL BOX 

DESIGN 

CODE 

TESTS 

Figure I-Future Ada environments 

one tool to another, communicating through the database. 
Information managed within a database is more reliable than 
data scattered in separated files. Information is less likely to 
become inconsistent, because the database can impose a num
ber of consistency constraints. For example; analysis data may 
be inconsistent if a program has been modified since the anal
ysis was done. Such analyses can be marked as obsolete when 
a program has been modified, so that reanalysis can be 
scheduled at a convenient point in the development. 

REQUIREMENTS AND SPECIFICATION TOOLS 

The requirements state what a computer system should do 
from the user's viewpoint. The environment should aid the 
user or systems analyst who must enter the requirements in 
machine readable form and must aid the analyst who must 
convert the requirements into a system design. 

There are five properties that a well-written requirements 
document should have; it should be 

Complete: 

Consistent: 
Testable: 

Unambiguous : 

Concise: 

say everything the implementor needs to 
know. 
not contradict itself. 
implementor can objectively determine 
when the job has been done correctly. 
implementor can interpret requirements in 
only one way. 
not ramble on. 

To a certain extent the environment can help an analyst 
judge a set of requirements with respect to these criteria. In 
addition, it is possible to construct a requirements definition 
system that prompts the user for information so as to encour
age requirements with these desirable properties and also to 
enhance the environment's ability to detect flaws. 

Requirements are complete when all system inputs and out
puts are fully characterized, system level error policy is stated, 
all documentation and deliverables are specified, and the 
functional relationships between inputs and outputs are 
stated. For inputs and outputs this requires specifying the data 
type, the value range, a prose description, a mnemonic name 
for reference, the source for the input and destination for the 
output, and its format. The environment can prompt the user 
for such information about each proposed system data item. 
This will help ensure that the requirements are complete. 
Furthermore, since the environment obtains the requirements 
through an interactive dialogue, the information will neces
sarily be in machine-readable and machine-analyzable form. 

For system errors the user should decide on the error han
dling capabilities of the system. Error processing is too im
portant to be left in the hands of systems analysts. The ana
lyst's job is to determine the feasibility and cost of the desired 
error processing capabilities. For each error condition the 
requirements tool should prompt the user for a description of 
the nature of the error, what the user would like to see dis
played to indicate detection, such as a lit-up panel or a sound
ing alarm, and what recovery action to take, such as turning 
off a sensor. 



The functional relationships between input and output 
should be specified in a moderately nonprocedural way, since 
the user who will supply them cannot be assumed to be a 
systems analyst. SADT, 1 a manual system from Softech for 
requirements definition, is a nonprocedural graphical ap
proach to system decomposition. Graphical support for re
quirements definition seems highly advantageous because a 
clear drawing can offer a better perspective on logical re
lationships than simple words can. An automated version of 
SADT that is merged with a prompting system as just de
scribed would be a valuable requirements tool. 

In addition, the requirements tool should request a sched
ule of activities, deliverables, tolerances whenever approxi
mate answers are possible, timing constraints, physical 
constraints, budgetary information, equipment to be used, 
applicable standards, testing practices, and acceptance pro
cedures. By having the tool explicitly request this informa
tion, which will be primarily prose, hence not very analyzable, 
the system database will be able to index the requirements 
automatically for each of these major categories. Later, if the 
user wishes to request the set of applicable standards for the 
project, the database manager will be aware of which part of 
the requirements dealt with this subject. With a less struc
tured format for entering requirements, such queries would 
be more difficult, if not impossible, for the database manager 
to successfully respond to. 

If the requirements are entered in the fashion just de
scribed, it may be possible to perform limited tests for consis
tency. RSL/ the TRW requirements specification language, 
has such a capability. With the limited information about the 
system available in a requirements document, it is still able to 
check, for example, that all input items are used in the com
putation of some output value, and that no output item is also 
treated as an input item at a different point in the system. 

Another advantage of using an automated tool to enter 
requirements is that it simplifies tracing requirements into the 
design and code. The Requirements Tracing Tooe developed 
by Logicon tries to achieve this by forcing requirements to be 
written in a format in which each identifiable requirement is 
tagged with an indexing number that is explicitly written into 
the design and code implementing the requirement. With the 
requirements tool described here, the tracing of requirements 
to design is automatic because the design will be generated 
automatically from the requirements. The system can report 
the relationships between design elements and those aspects 
of the requirements from which they were generated. 

SOFTWARE DESIGN 

A program design should not only be useful in the stage of the 
life cycle between the requirements phase and the imple
mentation phase of a project, it should also aid the designer 
in expressing the design, aid a reviewer in checking the design, 
aid an implementer in developing the design into a product, 
aid a tester in validating the resulting software, and aid a 
maintainer in changing the design. 

There are at least two levels of detail that a design language 
should support: programming in the large and programming 

Future Ada Environments 61 

in the small. In programming in the large, the user should be 
prevented from detailed design. It should be possible to use 
the requirements database to develop automatically a skeletal 
system design that contains the highest level modules written 
in pseudocode. Module inputs and outputs, a pseudocode 
description of purpose, the attributes of the inputs and out
puts, and the interfaces between modules can all be auto
matically generated from the information gathered through 
the dialogue described earlier. The analyst can restructure this 
skeletal design and enhance it with the further details that are 
inappropriate for the requirements. 

In the design stage, a user should be able to input fragments 
of a design and receive information on what has been entered, 
consistency checks on what has been entered, and if desired 
a measure of the completeness and complexity of the design 
description. Analysis of a design should proceed in stages such 
that the user is not inundated with information on the entire 
design while the design is incomplete. Analysis reports should 
be interactive, with the designer able to quickly alter the 
design, reanalyze that part of the design, and view the results 
on an interactive basis. The design analyzer should produce 
consistency reports at various levels of detailed analysis, doc
umentation reports, a detailed design skeleton that an imple
mentor can use, a test plan outline that a tester can use, a 
change history that a maintainer can use, and a project history 
that can track the design progress. 

At the design stage there is much more room for analysis 
tools than at the requirements stage. One aspect of an Ada 
design that must be carefully analyzed at the design stage 
before much effort is spent in implementation is the package 
organization. In Ada, when a package is recompiled, all the 
programs using that package must be recompiled. Ideally, the 
module-package relationships will be simple, without a great 
deal of interdependencies between them. Tools showing the 
dependencies between packages and compilation units will be 
very useful at the design stage to minimize compilations when 
changes are made and to minimize communications between 
packages and multiple modules. Whether the design is written 
in syntactically correct Ada or in a mixture of legal Ada and 
prose that uses Ada keywords, the design tools should be able 
to automatically generate a syntactically legal Ada program 
turning the prose into comments. This program skeleton, 
which is automatically generated from the design description 
as the design skeleton was generated from the requirements, 
cannot help but be traceable to and consistent with the design. 

TESTING SUPPORT 

In addition to the debugging facilities provided by the com
piler, there are a number of formal testing techniques that the 
environment should support with test tools. Formal testing 
should be supported at both the single-module and system 
(after integration) levels. The environment should maintain a 
record of the test description, test data sets used, modules 
tested, and test results. The testing information is useful not 
only in accounting for the test performed but also in deter
mining the retesting requirements for the maintenance and 
enhancement phase. In formal testing there is the need to 



62 National Computer Conference, 1983 

generate appropriate tests to demonstrate that the software 
performs correctly. There are several approaches to testing, 
each of which can be supported by a test tool that assists in test 
data generation. The test data generation tools provide data 
sets for exercising the software in a particular way. Tools 
performing boundary testing, symbolic execution of loop con
structs, checking of assertions from a requirements stand
point, stress testing, and path testing should be provided. 

Test harnesses to assist the user in exercising singie or mul
tiple modules in a simulated system environment should be 
easily fabricated. A general test harness that provides hooks 
to program-defined data can save effort and result in more 
thorough test cases. Tools should also evaluate testing thor
oughness. Criteria that can be used are 

1. Showing that the complete input space for small modules 
is exercised 

2. Deriving the response function for a module to compare 
it to the sampled ideal function 

3. Checking that all combinations of paths for a small mod
ule, and all path segments for a program, have been 
exercised 

4. Demonstrating that all functional requirement para
graphs have test cases that have been used 

For the purpose of demonstrating that optimal performance 
has been achieved, the places where most of the time is being 
spent should be determined. It has been shown that only 10% 
of most code needs to be optimized fot maximum per
formance. Test tools should identify these areas for possible 
redesign. 

SOFTWARE MAINTENANCE AND ENHANCEMENT 

Pennington4 has estimated that software maintenance con
sumes about 60% to 85% of the total software life cycle costs. 
Since maintenance is the most expensive part of computer 
software, the environment must provide maximum support 
for the maintenance effort. The tools discussed in preceding 
sections will help generate high-quality software and docu
mentation. These tools will reduce many of the current soft
ware maintenance problems. However, even the most reliable 
software can contain errors, and all software is eventually 
modified. 

Software maintenance can be divided into two categories: 

1. Correction of faulty programs 
2. Modification or enhancement of processing capabilities 

To aid in the correction of faulty programs, tools will be 
required for establishing a test environment to check reported 
errors. Diagnostic facilities will also be necessary to aid in 
tracking error symptoms to their source. 

Corrected software must be retested to ensure that no new 
errors were introduced. The test conditions that demonstrated 
the error must be incorporated into the test plan. The changes 
must be documented, and change notices must be distributed. 

Major changes to a software product, whether corrections, 

modifications, or enhancements, will require additional sup
port from software tools. Changes in the user's software re
quirements can necessitate dramatic changes in the design of 
existing code. Tools to provide assistance for these worst case 
conditions will be required in any comprehensive software 
support environment. 

The appropriate place to start making changes in computer 
software is with the statement of the user's requirements and 
the specifications for the software product. These documents 
describe the user's needs and how the software is to support 
those needs. It is, therefore, most important to keep this 
documentation up to date to direct the modification effort and 
to allow for future maintenance efforts. Requirements and 
specification documents in machine-readable form can be eas
ily reviewed and edited to reflect any changes to be made. 

Machine-readable software specifications can be expressed 
in forms that can be analyzed automatically for completeness 
and consistency. Therefore, changes to the specifications can 
be checked for conflicts and missing information. Identifying 
such errors at the earliest possible time minimizes the cost of 
their correction. Automated analysis of specifications can also 
produce a skeletal design that aids in evaluating the extent of 
design changes precipitated by new requirements. 

The aids described for generating test data and providing 
the necessary testing environment (test harness) will find use 
in the retesting phases. It is rarely sufficient to test just the 
changed part of a program. A complete check of all processing 
capabilities is necessary to verify that no adverse side effects 
from any modifications affect other parts of the program. 
Modifications that are necessary to correct faulty software 
may indicate a shortcoming in previous testing efforts. The 
criteria for acceptable test thoroughness can be reevaluated 
and changed to improve testing reliability. Performance im
provements can be measured and verified during retesting. 

Documentation of the testing activity, including descrip
tions of all tests and a log of all tests conducted, will be 
assisted by the testing tools. An inventory of all tests will be 
maintained, as well as a history of the tests performed on all 
software. Test histories will be maintained for individual-unit 
tests, subsystem and system level integration tests, and final 
system checkout. 

The final item of responsibility of software maintenance is 
to keep track of various versions of modified programs. The 
software maintenance environment will aid in documenting 
program versions and storing distribution information such as 
release dates and names of recipients. The documentation will 
include installation instructions, user manuals, and system 
descriptions that can be compiled from the project database. 

MANAGEMENT TOOLS 

Management activities can be broken down into five basic 
categories: 

1. Planning-preparation of schedules, budgets, resource 
estimates and other factors relevant to the execution of 
a project 



2. Staffing-assignment of personnel to organizational 
positions 

3. Controlling--enforcement of directives and manage
ment decisions 

4. Directing-providing direction to project personnel to 
support management objectives 

5. Organizing--establishment of the project structure, 
positions, and lines of authority 

These activities are pervasive in software development, 
being necessary during all phases of the software life cycle. 
Up-to-date information regarding the project status and the 
staff activities must be available for effective management. 
The environment can playa large role in providing the neces
sary information in a timely fashion and in a format suited to 
someone removed from the technical aspects of the project. 

The common project database will playa large role in sup
plying the needed data to the manager. The environment can 
automatically and accurately record as complete a history of 
the project's development as management needs. This infor
mation can be reported to the manager, who plays a relatively 
passive role in the building of the database, by a series of 
management tools. 

For planning activities, one of the most important reports 
would be one indicating the degree of completeness of the 
project. At the beginning of the project, the manager could 
enter into the database a proposed schedule of events, includ
ing recognizable milestones. The schedule could be updated 
as the project progresses and unforeseen events occur; howev
er, it would also present the means for the manager to note 
which project tasks are falling behind schedule and which are 
going as expected. Exception reports can indicate trouble 
spots requiring special attention. 

The manager should also be able to see at any time how well 
the actual figures match the projected costs by entering 
budgetary information into the database. The system can au
tomatically record the computer resources used to date, 
together with a record of personnel active on the project. 
From this information, status reports on expenditures and 
indications of possible trouble spots where projections are far 
off can be automatically generated for the manager. 

'Once planning information is entered, special tools can 
analyze the schedule of tasks to determine those critical paths 

Future Ada Environments 63 

whose successful timely completion is vital to the overall suc
cessful completion of the project. Interactive scheduling pro
grams can assist the manager in developing a schedule that 
tries to optimize staff and material resources. When a project 
runs into trouble and requires rescheduling, such programs 
can suggest new schedules consistent with the revised 
information. 

Another aspect of control is accountability. The environ
ment enhances accountability because all activity within it is 
recorded. If a module is erased from a library, the environ
ment will indicate who issued the erasure command. If a 
document is modified, the environment will be able to report 
who the editor was. With this automatic recording and report
ing capability, programmers will also be discouraged from 
mischief since their identity will likely be known. 

SUMMARY 

Future Ada environments will support the entire life cycle of 
a system, from helping to budget personnel to helping with 
software maintenance. The code development tools presently 
being implemented will be only a small part of future Ada 
environments. 

ACKNOWLEDGMENTS 

Many present and past GRC personnel have contributed to 
the ideas contained in this paper. In particular, Carolyn Gan
non, Nancy Brooks, Reg Meeson, and Art Pyster made sub
stantial contributions. 

REFERENCES 

1. Ross, D.T., and K.E. Schoman, Jr. "Structured Analysis for Requirements 
Definition." IEEE Transactions on Software Engineering, SE-3 (1977), pp. 
6-15. 

2. Alford, M.W. "A Requirement Engineering Methodology for Real Time 
Processing Requirements." IEEE Transactions on Software Engineering, 
SE-2 (1977), pp. 60-69. 

3. Pierce, R.A. "A Requirements Tracing Tool." Proceedings of the Software 
Quality and Assurance Workshop, November 1978, pp. 5>-60. 

4. Pennington, R.H. "Software Development and Maintenance-Where are 
We?" Proceedings of the IEEE Computer Software and Applications 
Conference, October 1980, pp. 419-422. 





Stepwise structuring: A style of life for flexible software 

byERIK SANDEWALL, STURE HAGGLUND, CHRISTIAN GUSTAFSSON, 
LENNAT JONESJO, and OLA STROMFORS 
Linkoping University 
Link6ping, Sweden 

ABSTRACT 

In a life cycle perspective on software, the paper describes a strategy for initial
ization and successive growth of software, which emphasizes flexible introduction 
and flexible use. The examples in the paper are taken from office information 
systems or personalized data processing systems. 

The key points in the paper are as follows: 
1. The system should be organized so that it allows multiple representations of 

the same information, particularly as images (bitmaps), text, and structured 
data. 

2. New applications should first be started by using representations with rela
tively little structure (such as images) and only graduaily shift to using more 
structured representations. 

3. It is valuable for the end user to be able to control and make use of the gradual 
introduction of more structure. 

4. It is useful to have software tools that facilitate the interactive work of intro
ducing more structure into the information. Some tools that have been imple
mented in this project are described. 

65 





A PRACTICAL CASE: FROM TEXT FILE TO 
STRUCTURED DATA 

When we have used office information systems in our own 
work, we have repeatedly found it useful to use plain text files 
as an interim representation before building a conventional 
data file. Consider a very simple example: an international 
address register, which contains name and address informa
tion correctly in the various formats used in different coun
tries and which is used for one single purpose: printing adhe
sive mailing labels to be put on envelopes. If this address 
register is represented as a text file, it can be edited (with a 
standard text editor) and it can generate the required labels 
(using the standard PRINT operation). 

Such an implementation leaves with the user, of course, the 
responsibility of making sure that all entries are correct--e.g., 
have the correct number of lines and observe the maximum 
line length. However, it is not difficult for the user to under
stand these requirements. If there are any mistakes, they can 
be observed when the labels are printed out, and the user can 
readily solve the problem. This arrangement has the funda
mental advantage that the user can easily master the system. 
For the user, that is an advantage that is often worth the price 
of extra attention. 

The text-editor implementation becomes imp!)lCtical, of 
course, when the number of addresses in the/directory in
creases and when the same information is to be used for 
multiple purposes. The application is then converted to a file 
of records in the obvious way-to a structured representation. 
The extra effort of converting the existing text files to the 
record format can be avoided if one implements the structured 
representation right from the start. However, it can be worth 
the effort, since the first stage, using the text file representa
tion, provided a body of experience of several kinds: experi
ence of all the odd varieties of addresses that may occur in 
practice (which is useful for the implementor), a familiarity 
with the computer system as a tool (which is significant for the 
end user), and finally a check of possible practical problems 
with computer-based solutions (such as mechanical problems 
with the printer and the labels). 

This simple case examplifies the first two of the general 
principles that we proposed: 

1. The data that are contained in an information processing 
system occupy a slot in a spectrum from less structured 
(in our example, the text file) to more structured (in our 
example, the file of records). 

2. It is useful to let the early stages of software develop
ment be based on less structured data and to increase the 
strength of structure as the system matures. A significant 

Stepwise Structuring for Flexible Software 67 

advantage of this approach is that it is conservative with 
respect to structuring; i.e., one does not introduce more 
structure than necessary for processing. The organiza
tional effects of different information media with differ
ent levels of structuring has been studied by Innis l and 
Taylor. 2 

In the remainder of the paper we shall argue that there are 
more than two significant points along that spectrum and dis
cuss their character. We shall also argue an additional point: 

3. Software systems for interactive information processing 
should support more than a single point on the struc
turing spectrum. In other words, data with different lev
els of structure should be able to coexist in the same 
system. 

Finally, we refer to systems that have been implemented 
and used in our laboratory that have allowed us to develop and 
test these principles. 

SOME OTHER EXAMPLES 

Let us now discuss additional examples of applications whose 
data have a place along the spectrum from less structure to 
more structure. 

References in a Text 

A good example from the academic environment is the 
preparation of the bibliography for a scientific paper. At first 
the manuscripts are just text files. The first transformation is 
to factor out the references individually as small text files 
(notices, using the term of Sandewall et aI., 1980.3

) The main 
text file is changed so that it contains only the expansion 
command, with the file names of the text files for the various 
references as arguments. A preprocessor must then be used 
before the regular text formatter in order to reinsert the small 
text segments for each reference. 

Even this first step is valuable because it makes it con
venient for various papers to share references. A second step 
may be to change the text file representation of each reference 
to a structured representation as a record in a database. Again 
in this example, it is valuable to have a body of practical data 
at work in the intended application before the structures are 
decided. 

From Image to Text File 

We return to the problem of moong paper-based and 
computer-based documents and consider an information 



68 National Computer Conference, 1983 

workplace, i.e., an office or another working environment 
where a large number of documents are processed by people. 
By tradition, those documents arrive on paper. 

It would be impractical to key all the contents of those 
documents into the computer system-i.e., to convert them to 
the form that we have called text in the previous section. Not 
only is it expensive to do the keypunching; it is also difficult 
to support all kinds of figures, tables, photographs, etc. 

The obvious solution, by analogy with the argument in the 
previous section, is to recognize the original image of the 
arriving papers as another representation (probably imple
mented by raster-scan techniques), along with text and struc
tured data. The image is of course less structured than the 
text: The conversion from text to image is done automatically 
by formatters and printout devices; the conversion from im
age to text is usually done manually (by key-typing), and only 
in some cases automatically. 

The support of the image representation requires hardware 
as well as software. The following is a scenario for what the 
system could be like. The personal work station consists of a 
keyboard, a text screen (i.e., a conventional character display 
terminal), and an image screen (e.g., a full video screen). The 
direct user-computer dialogue is performed using the key
board and the text screen--e.g., for issuing commands to the 
system. The system also contains a long-term memory for 
image data, using either photographic or electronic storage 
technology, and a short-term memory for the same kind of 
data (e.g., in digitized form on a disk memory). 

Both kinds of image memory are kept at a central location 
and may be viewed from all work stations. It is well known 
that the technology that makes that possible practically is 
becoming available. Information of lasting value, such as 
printed reports (or reports that used to be printed), are stored 
in the long-term memory. In a research setting, this would 
also include, for example, scientific journals. Information that 
has just arrived and that is of general interest to the user 
community (bulletin board information and circulation list 
information) goes into short-term image memory and is trans
ferred periodically to cheaper long-term memory. Newspaper 
clippings, advertisements for new products, and (in a research 
setting) calls for papers for conferences are examples of infor
mation that could be handled in this way. 

From the perspective of the user, paper-based information 
that arrives in one copy to the organization is available imme
diately to everybody on the image screen in his or her office. 

Again, the advantages of the strategy should be fairly obvi
ous: Our everyday office life includes many documents that 
are, properly speaking, images, and that cannot be easily 
expressed as text without significant loss of information and 
readability. An electronic office system that is able to repre
sent image and text side by side makes it possible to shift from 
one representation to the other exactly when it is worthwhile. 

Redundancy in Structured Data 

There is also a later step, after the conversion from text to 
structured data, which may be either a normal form represen
tation, in the sense of database theory, or a so-called truth 

maintenance system, in the sense of artificial intelligence. If 
the textual stage in the conversion chain is interpreted to 
contain all the texts that are required by the organization and 
if the structured-data stage deals with structured forms of the 
same texts, then the next stage again should be one where the 
user is relieved of the duty of maintaining redundant informa
tion in cases where the same information is used in several 
texts. This can be achieved either by reducing the structured 
data to a normal form, with the standard techniques; or by 
keeping redundant information in the system together with 
operators that automatically maintain the consistency, which 
is what truth maintenance systems do. 

The advantage of the normal-form approach is, among 
others, that it can store large amounts of data economically. 
An advantage of the truth-maintenance approach is that it can 
be more concretely understood by the user: the machine still 
contains the user's documents, and there are "demons" that 
propagate new information to all the relevant places. Those 
demons can be created and removed at will and can also be 
designed so that they can be asked about the reasons for their 
actions. 

A LARGER CASE STUDY: PERSONAL PLANNING 
INFORMATION 

Several experimental office information systems provide facil
ities intended to facilitate the users' personai planning: calen
dars, agenda lists (such as "to do" lists and tickler files), and 
others. Such facilities can serve a widely perceived need when 
they make it easier to find common time for meetings and 
appointments. (The potential disadvantages of making it even 
easier to fill up people's entire days with meetings have not 
been discussed as much.) Further work along these lines is 
envisioned: Morgan4 points out that "in true automation, the 
control of when to use the tools is placed in the machine 
support system," and he suggests that that is a desirable goal: 
"Similar work at Xerox, IBM, and MIT holds much promise 
for truly automating in the office environment" (p. 785). 

Although formal reports are hard to find, informal evidence 
suggests that computer-based personal planning systems do 
not usually become popular. We believe that the following 
factors contribute: 

1. Many people want to be in control of how they use their 
time. 

2. Personal planning information is needed the most by 
people who move around a lot. At least with today's 
technology, a computer terminal is not available when 
and where a decision is made to update a plan. 

3. The computer-based system cannot compete, in terms of 
overall convenience, with the paper-based system of 
handwritten notes. 5 

This does not mean that all is well the way things are usually 
done. The available range of literature, courses, and tools for 
personal planning suggests that many people are not satisfied 
with how they use their own time. Some of those tools could 
be computer based. 



Clearly, personal planning information has a structure. 
Some tasks such as meetings occupy a fixed location in time; 
others are limited by deadlines, or by requirements that things 
be done in a certain order. There is also a goal structure, since 
most tasks are intended to serve a purpose. Finally, many 
tasks have other information attached to them: the task of 
calling a person can be executed only if a phone number is 
available; the task of traveling to another city is associated 
with the information that goes into the travel expense form. 

At least for a computer professional, it is tempting to diag
nose that problems arise because the structure of the informa
tion is not made explicit and to implement a piece of software 
that will administer the information, properly structured. This 
would be another example of going from a less structured, 
paper-borne representation of the information (often imple
mented as a heap of paper slips, with notes scribbled on 
them), directly to a more structured, computer-borne repre
sentation. According to the principle that we argue in this 
paper, one should not attempt to do that. 

In this case, the intermediary station is not computer-borne 
texts, but instead paper-borne structures. The following de
scription should be interpreted as an example of what one 
could do, rather than as a specification. The paper-based tool, 
which represents many of the structures in personal planning, 
could be a small, looseleaf binder, with tab sheets organizing 
the papers in the binder into sections and subsections. There 
could be sections for personal calendar-style time planning 
(on several levels of time scale); for the schedule of the whole 
organization, which serves as background for the personal 
schedule; for agendas and deadline-directed tasks; and for the 
various kinds of information that are attached to the tasks and 
sometimes prerequisites for performing them. 

Furthermore, the structure provided by the tab sheets 
should be further refined by a repertoire of different forms 
used in the binder. It is natural to have special forms for 
calendar sheets, address directory sheets, and agenda sheets; 
and the looseleaf structure would allow new forms to be intro
duced as significant new structures are recognized. 

A structured, paper-based planning tool of this kind serves 
a purpose in itself, and such systems exist already in the office 
supply market. They are relevant to the topic of the present 
paper, because we argue that such a paper-based planning 
tool is necessary before a computer-based tool can become 
worthwhile. Provided that the integrity of decision making is 
preserved, the individual user may find it beneficial to arrange 
that the information in his or her planning book interacts with 
the information in the computer. 

Interaction means that information indeed goes both ways. 
For example, it is clearly convenient to let the address! 
telephone directory in the planning book be a selective print
out from a file that is shared in the organization, but it is also 
natural to treat the handwritten updates in one person's 
address!telephone printout as a source of update information 
for the database. Thus the interaction between paper-borne 
and computer-borne information should be viewed as a paper 
refresh: The user brings in a set of paper sheets with hand
written corrections, updates the information in the computer 
accordingly (or obtains assistance for that chore), and receives 

Stepwise Structuring for Flexible Software 69 

a clean set of printouts confirming that the updates have been 
performed. 

The paper refresh operation is of course similar to how 
programmers work with listings of programs. It may also serve 
as a model for how other items of personal planning informa
tion, such as weekly schedules, communicate with the 
computer. 

The structuring of personal planning information will then 
have proceeded top-down, and differently from the bottom
up structuring that we discussed above for the publication 
referencing. Top-down structuring aims at providing an over
all structure, within which yet unstructured parts may con
tinue to exist. For example, in an information system which 
supports image information in short-term memory as de
scribed above, it may be sufficient to store an image of each 
person's weekly plans, so that it is available for others to 
watch. (Dividing the plan into two columns, one of which is 
not publicly visible, is a natural modification.) With that de
sign, no software can inspect or modify the contents of the 
week's plan-a limitation that many users will consider a dis
tinct advantage. 

SOFTWARE DEVELOPMENT STRATEGIES 

We described initially how the various representations may be 
successive stages in the system's development process. One 
starts with a less structured representation and later shifts to 
a more structured representation when the time is ripe. The 
body of available information at the time is converted to the 
more structured form, and there is some procedure (e.g., a 
formatter or a report generator) that is able to recreate the 
less structured form from the more structured one. The more 
structured representation becomes the source; i.e., it is hence
forth the object of successive editing. 

In some cases the user may wish to keep both representa
tions permanently. For example, ordinary business cards con
tain some information that it may be worthwhile to change to 
a more structured form in the address directory, but also some 
other information which is best kept as it is, such as the logo
type of the company or perhaps handwritten notes on the 
card. The user may keep both the image of the card and the 
database entry in his or her OIS in such a way that one can 
easily go from one to the other. In this case it is unclear which 
of the representations should be thought of as source in the 
above sense. 

An additional and more sophisticated case occurs when the 
choices of representation are used alternatingly. In an applica
tion it is often easy to find a more structured representation 
that accounts for most but not all of the cases. Returning to 
the example of the reference list in the scientific paper, most 
quotations fit into one of a small number of cases (book, 
paper in a journal, internal report, etc.); but there are also 
occasional references that do not fit those patterns. In the 
transfer from the textual representation of the individual ref
erence to the structured representation, the user might then 
elect to retain the textual representation for the odd cases. 

This easy way out has two drawbacks: Search operations 
(e.g., the search for papers with a certain author) will often 



70 National Computer Conference, 1983 

not "see" the odd cases, and transformations (e.g., alterna
tive formats for presentation of the quotation, with italics for 
the title of the paper, the journal, etc.) have to be done 
manually for the odd cases. However, those drawbacks may 
be easily acceptable if the volume of information is moderate 
and if the system is always used interactively, as is often the 
case in OIS. It is much worse to have to think in advance of 
all the cases that may possibly arise-or to deal with an in
flexible system where some of the cases that should have been 
thought of in advance have not been. 

Two general observations are that one and the same system 
should be able to account for the various representations of 
information, and that each user should be able to understand 
how those representations for the same information can be 
used and exchanged. 

Comparisons with Other System Development Methods 

Conventionally, software engineering has recommended a 
sequence of carefully separated steps (often illustrated as a 
staircase or waterfall) from specification of needs to operation 
and maintenance. Stepwise structuring recommends instead 
that that an initial system should be put into operation early, 
using general-purpose software that is able to support low 
levels of structuring; and that only as more experience is 
gained should the level of structure be increased. The disad
vantage of the conventional method is, of course, that it is 
often difficult to understand needs and do the specifications in 
advance. 

The method of rapid pro to typ ing has been proposed repeat
edlyas another way of dealing with that phenomenon. It has 
often been quoted as a raison d'etre for various incremental 
programming languages, such as CS4,6 Lisp/ or APL. 8 How
ever, prototyping cannot deal with the fact that users' needs 
change continuously during the system's lifetime (and in fact, 
tha! the system's lifespan is often limited by its ability to adapt 
to these changing needs). Stepwise structuring does address 
that issue; but at the same time it will clearly require other 
kinds of software tools in order to be practical-for example, 
tools that support the transition to higher structuring levels. 

The method of structured growth has been proposed by one 
of the present authors 7 as a strategy for the gradual extension 
of software. The idea there is to build an initial software 
system with relatively few facilities, but with an organization 
that supports the gradual incorporation of more and more 
features. Thus it is closer to stepwise structuring in character; 
but, whereas the method of structured growth emphasizes the 
gradual accumulation of more software and more variants of 
data structures, stepwise structuring emphasizes transforma
tion of data between structure levels as the most significant 
event during the development process. 

SOFIWARE TOOLS FOR STEPWISE STRUCTURING 

The method of stepwise structuring formulated in this paper 
immediateiy suggests the need for a number of software toois: 

1. Support/or mixed data representations. The most impor
tant tool is an information management system (IMS) (a 
kind of editor) that is able to handle several kinds of data 
at the same time--e.g., text, structured data, figures, 
and images. If some data are kept on a lower structuring 
level, even after the bulk of the data has been trans
formed to a stronger structure, then this IMS will be the 
working tool of the computer user. But even if complete 
transformations are done at one time and all data are 
thereafter in the stronger structured form, the mixed
structure information management system is a necessary 
tool for those who do the conversion work. 

2. Data parsers. Regularities of data often arise spontane
ously within one structuring level; therefore a data 
parser can be used as a tool for increasing the structure 
level. For example, an address directory has fairly regu
lar contents, even if it is stored as a text file. But of 
course one cannot assume that all data will fit into the 
presumed syntax. A data parser that is going to be used 
for this purpose must th~refore be embedded within an 
IMS as just described so that it can be run under strong 
user control. 

3. Catalogs. One aspect of such an IMS for mixed data is 
that it must include the services of a conventional file 
directory. The use of directories for text files is univer
sally understood, but when one starts to use a very large 
number of small text files, the function of the dictionary 
changes from being a way of assigning mnemonic names 
to individual files to being a database where combina
tions of named objects (entities, in database jargon; con
cepts, in semantic network jargon) from the application 
domain, have text objects (small text files, big strings) 
associated with them. 

Similarly, the image representation of information is 
practical only if it is annotated by catalogs, which, for 
example, will identify where a certain issue of a certain 
journal is stored or in which picture frames a certain 
article (defined by author, title, etc.) occurs, or where a 
certain quotation within a certain article is located. In 
our example, the catalog for the image information 
tends to merge with the database used for generating 
references in the bibliography in new papers. That ex
ample illustrates a general principle: We really do not 
need a system that is just a catalog; we need a database 
that is organized in terms of concepts from the applica
tion domain and that among other things contains what 
used to be catalog or directory information. 

When a text or an image is annotated in a catalog or 
a database, some of its structure is already being identi
fied. This suggests that the structuring operation (from 
image to text and from text to structured data) is often 
a top-down process, where one first identifies the top
level structure and decomposes the original image (or 
text) to a number of smaller images (or texts), which 
may then be again decomposed. Several of the examples 
follow this pattern, and a catalog in our wider sense can 
be viewed as the software support for top-down 
structuring. 

There are aiso many exampies of bottom-up struc-



turing, where small parts of a text are broken out, but 
the whole text retains its character as text. The above 
example of the references in the research paper is a case 
in point, and one can add the examples of yearly activ
ities reports, as well as curricula vitae, where lists of 
similar events (seminars, travel, etc.) can be structured 
in a bottom-up fashion. 

4. Reconversion tools. These last examples remind us of 
another useful, general-purpose tool: a preprocessor for 
the text formatter, which takes a source-source file as 
input, recognizes the macro expansion commands in that 
file, and produces as output a source file, which may be 
input to the regular text formatter. For the bibliography 
example, the user defines a command that fetches a text 
file with a given name and embeds it in the main file. 
Later, when the individual references are upgraded from 
text to records, the command is redefined so that it 
fetches the same information from the database and an
notates it appropriately (e.g., using font shifts). 

In general, there must always be a tool for recon
verting data from a higher structuring level to a lower 
one previously used. As long as a certain structuring 
level is being used, one is likely to build up a number of 
services that make,use of that level. Services that cannot 
be substantially improved by using the increased struc
ture can continue to be used as they are if information 
with the new, higher structure is reconverted to the pre
viously used level as a preprocessor to the service. 

5. Recognition mechanisms. We have discussed examples 
where the conversion from text to structured data is 
done at one time. It is also frequently necessary to iden
tify pieces of data in an incoming text in order to relate 
it to structured data that are already in the system-e.g., 
when a computer mail message contains the date and 
time of a forthcoming event that has to be related to the 
contents of the user's calendar. In general, one needs 
software that can recognize structure in surviving lower
level data to such an extent that they can be related to 
the right point in the existing structure in the system. 
Kofer9 describes plans for the design of an interface 
between the two representations that would be adequate 
for this purpose. 

6. Prototype implementations. The contents of the present 
paper are conclusions that we have drawn from earlier 
implementation efforts, namely the Linkoping Office In
formation System (LOIS)lO,l1 and the ED3 structure ed
itor,12 which is a candidate tool for conversion from text 
to structured data. 

One view of ED3 is that it is an editor for tree
structured documents, where the structure may be the 
one of chapters and sections inside one document, or the 
dictionary structure that organizes a collection of docu
ments, or both. In an editing session, the user starts at 
the root of a tree and is offered a repertoire of oper
ations for navigating and modifying the tree structure. 
The leaves of the tree are pieces of text and are modified 
by a cooperating text editor. 

ED3 has more recently been extended with support 
for leaves that have other types than text, particularly 

Stepwise Structuring for Flexible Software 71 

vector graphics and tables. As such, it illustrates the 
required characteristics of a dictionary that encompasses 
several representations, as discussed earlier in this 
section. 

But another view of ED3 is that it simply maintains a 
conventional text file together with a bracketing struc
ture that points out the beginning and end positions in 
the text of blocks that may be nested recursively. When 
the user views a position in the ED3 tree, he/she views 
one selected block i!1 the text file. The surrounding 
blocks are not seen at all, and in the contained blocks 
only the first line is seen. 

This view of ED3 is actually closer to the actual imple
mentation. It also explains how ED3 may be useful as a 
tool for the transition from text to structured data: It 
contains commands whereby the user can conveniently 
bracket the text file into recursively nested blocks. 

In another project we have developed the Carousel 
system 11 which shows how a hierarchical information 
structure, similar to the one used in ED3, can be the 
basis of a very concise system for many of the basic 
services in an office information system, such as forms 
management and command-oriented user dialogue. 

Finally, an extensible preprocessor for the formatter has 
been implemented within Interiisp and has been applied to a 
number of different uses, including the administration of ref
erence lists. It was used for the preparation of this paper. 

Work in progress includes the formal specification of an 
IMS that, among other things, should be a good software 
support environment for application development by stepwise 
structuring. 

ACKNOWLEDGMENTS 

This research was supported by the Swedish Board of Tech
nical Development under Contract Dnr 80-3918. 

REFERENCES 

1. Innis, Harold A. Empire and Communications. Oxford: Oxford University 
Press, 1950. 

2. Taylor, James R. "New Perspectives on the Office of the Future." In 
Proceedings of the International Workshop on Office Information Systems. 
Paris: INRIA, 1981. 

3. Sandewall, Erik, Goran Hektor, Anders Strom, Claes Stromberg, Ola 
Stromfors, Henrik Sorensen, and Jaak Urmi. "Provisions for Flexibility in 
the Linkoping Office Information System (LOIS)." AFIPS, Proceedings of 
the National Computer Conference (Vol. 49), 1980, pp. 569-577. 

4. Morgan, Howard Lee. "Research and Practice in Office Automation." 
Invited paper. S. H. Lavington (ed), Information Processing 80. North
Holland, 1980. 

5. Maryanski, Fred. "Guest Editor's Introduction." Computer, 14 (1981), 
p. 11. 

6. Berild, Stig, and Sam Nachmens. "CS4-A Tool for Database Design by 
Infological Simulation." In Proceedings of Third International Conference 
on Very Large Data Bases. Published in 1977; available from IEEE Com
puter Society, Long Beach, California. 

7. Erik Sandewall: Programming in the Interactive Environment: The 'Lisp' 
Experience. ACM Computing Surveys, Vol. 10, No.1, pp. 35-72, March 
1978. 



72 National Computer Conference, 1983 

8. Gomaa, Hassan, and Douglas B. H. Scott. "Prototyping as a Tool in the 
Specification of User Requirements." In Proceedings of the 5th Inter
national Conference on Software Engineering. New York: IEEE, 1981. 

9. Kofer, G. Reinhard. Some Software Integration Technology Concepts for 
Saving Money While Doing Empirical User Research. In Proceedings of the 
Iniernational ~Vo;kshop on Office Information Systerr.s. Paris: INRI,44 .. , 
1981. 

10. Hagglund, Sture; other authors (names not given in report). "80-talets 
elektroniska kontor. Erfarenheter fran LOIS-projektet." ("The Electronic 
Office of the 80's. Experience from the LOIS Project.") Research report 

LiTH-MAT-R-81-4, Software Systems Research Center, Linkoping Uni
versity, Sweden, 1981. 

11. Sandewall, Erik. "Unified Dialogue Management in the Carousel System." 
In Proceedings of the SIGACTISIGPLAN Conference on the Principles of 
Programming Languages. Albuquerque: 1982. 

12. Strornfors, Ola, and Lennart Jonesjo. "The Implementation and Experi
ence of a Structure-Oriented Text Editor." In Proceedings of ACM 
SIGPLANISIGOA Symposium on Text Manipulation. New York: Associ
ation for Computing Machinery, 1981. 



HITS: A symbolic testing and debugging system for 
multilingual microcomputer software 

by TAKESHI CHUSHO, 
ATSUSHI TANAKA, and 
ERIOKAMOTO 
Hitachi, Ltd. 
Kawasaki, Japan 

and 

AKINORI HONDA 
and TORU KUROSAKI 
Hitachi, Ltd. 
Yokohama, Japan 

ABSTRACT 

The use of a large-scale computer is the key to the development of increasingly 
numerous and large-scale microcomputer software programs. HITS (Highly Inter
active Testing-and-debugging System) constructs an integrated programming envi
ronment for 68000 microcomputer systems on a large-scale computer in cooperation 
with language translators. This system supports efficient and effective software 
validation from module testing through system testing. Functions of HITS are 
provided in the test-procedure description language, in which test data, expected 
results and the testing environment are described and separated from the target 
program. The main features are (1) symbolic support of both a high-level language 
and an assembly language, (2) module testing facilities such as driver and stub 
definitions, (3) a testing coverage monitor for branch testing, (4) debugging com
mands added temporarily to a test procedure from a terminal, and (5) a macro 
definition for language extension. HITS has already been used at many sites. In our 
early experience of applying it to the software development of various commu
nication systems, software productivity and reliability were considerably improved. 

73 





INTRODUCTION 

Software development for microcomputer systems is entering 
a critical stage. This is because the programming environment 
is still poor, even though microcomputers have been applied 
extensively to various fields, many of which have required 
high reliability. Furthermore, large-scale software has begun 
to be developed as 16-bit microcomputers have come into 
wider use. For example, we have developed 100 - 200 kilo 
steps of software for a digital switching system using 68000 
microcomputers. 

To date, almost all programming environments for micro
computer-software development have been constructed on 
the target microcomputer or on a development support sys
tem in which a microcomputer is embedded. Such resident 
support systems, however, provide limited facilities. That is, 
the programming language is usually assembly language. Fur
thermore, a debugger supports only dump, patch, breakpoint, 
and trace on a machine-language level. There are no oper
ating systems with various useful utilities and powerful file 
management for software development as there are in a large
scale computer. 

There are two effective solutions to these problems: 

1. Programming in a high-level language and testing and 
debugging on a source-program level. 

2. Using a large-scale computer for developing software, 
from programming through validation. 

These solutions have been partially adopted in previous stud
ies. For example, a high-level language, PLIM, for Intel's 
microcomputer families, was early developed. However, the 
software development system is not sufficient for software 
validation, because it mainly supports debugging, not testing 
such as the symbolic description of a test procedure.! Another 
example is the microcomputer software engineering facility, 
MSEF, which uses a minicomputer. 2 Although this system is 
aimed at supporting a wide range of microcomputer-software 
development, the testing facility is limited to management of 
the relationship between a target program, its input data, and 
results under the hierarchical file system. 

We have incorporated both of these solutions in an attempt 
to deal with the problem of developing large-scale software 
for digital switching systems. First, a system description lan
guage for microcomputers, S-PLlH, has been developed and 
its cross compiler has been available in the Hitachi M-series 
computer system since the end of 1980.3 S-PLIH is a superset 
language of PLiM and it provides both the basic facilities of 
PLiI and microcomputer-oriented facilities. 

Next, a testing and debugging system for microcomputer 

HITS: A Symbolic Testing and Debugging System ~ 75 

68000 software, HITS, has been developed for efficient and 
effective software validation using the large-scale computer. 4 

This has been available since the spring of 1982. HITS con
structs an integrated programming environment for micro
computer software development in cooperation with S-PLIH. 

The main requirements for HITS are a wide range of sup
ports for various aspects as follows: 

1. Support ranging from small-scale software through 
large-scale software, 

2. Target programs in both a high-level language and as
sembly language, 

3. Testing facilities ranging from module testing through 
system testing, 

4. Compatibility of testing facilities and debugging facili
ties, 

5. Executions in interactive mode and batch mode. 

This paper describes the design concepts and functions of 
HITS and some application results. 

DESIGN CONCEPTS 

Many different techniques and tools for software validation 
have been developed, such as data-flow analysis for automatic 
error detection, symbolic execution for automatic test-data 
selection, and assertions for correctness proof. 5 Many of 
them, however, are not practical for large-scale software vali
dation because they require enormous computing resources. 

Therefore, we still must depend on "exhaustive testing" in 
which a lot of data are evaluated against the corresponding 
expected results. Our goal is to improve the efficiency and 
effectiveness of such dynamic testing. HITS was thus devel
oped on the basis of the following design concepts: 

1. Environment: use of a large-scale computer 
2. Coverage: support of module testing, integration testing, 

and system testing 
3. Function: support and unification of systematic testing 

facilities and interactive debugging facilities 
4. Object: program modules written in a high-level lan

guage and assembly language 
5. Ease of use: minimization of preparations and oper

ations, such as symbolic commands and a test-procedure 
library. 

First, the use of a large-scale computer provides the follow
ing advantages: 

• integrated file management for source programs, object 
programs, test data, test results, and path-coverage data, 



76 National Computer Conference, 1983 

• parallel processing of both module testing and integra
tion testing under a time-sharing system. 

Figure 1 shows the system configuration of HITS. The second 
item, systematic testing from module testing through system 
testing in this configuration, will be described in the next 
chapter. 

The third item is based on the idea that testing and de
bugging cannot be separated. Of the conventional tools for 
software validation in practical use, there are many that pro
vide only debugging facilities. The others provide only testing 
facilities. For example, although MTS6 and TPL7 are excellent 
tools for module testing, they do not support debugging. Fur
thermore, the former requires much preparation time because 
of target-language independence. The latter is limited to tests 
having only Fortran subroutine parameters. In HITS, when an 
error is detected by the execution of a test procedure that 
includes test data and the expected results, the test procedure 
can be executed again interactively while adding temporary 
commands for debugging. 

The fourth item, support of both a high-level language and 
assembly language, is necessary for the development of sys
tem software because assembly language is used for the de
scription of modules requiring device control or critical re
sponse time. For example, in the aforementioned digital 
switching system, 70% of all modules are described in a high
level language, S-PLlH, and 30% in assembly language. 
Therefore, these two languages are supported so that HITS 
may be available not only for module testing but also for 
integration testing and system testing. The fifth item, ease of 
use, is indispensable to support tools. A test procedure de
scription language for HITS was designed taking this policy 
into consideration. 

SYSTEMATIC TESTING 

Software testing is performed in the following steps: 

Programming Database 

Cross 
Compiler 

Cross 
Assembler 

HITS 

Operating System 
(TSSjBatch) 

Large-Scale Computer 

Figure l-Systcm configuration of HITS 

Commands 
and 
Displays 

Terminals 

1. module testing for validation of each module function, 
2. integration testing for validation of interfaces between 

related modules, 
3. system testing for validation of system function. 

To be applied as widely as possible, a test system should 
systematically and uniformly support all of these steps and not 
depend on anyone particular testing strategy such as bottom
up testing or top-down testing. 8 

HITS provides the following features for systematic testing: 

1. All testing steps are supported by providing testing
environment simulation facilities for module and inte
gration testing and a module-binding facility for integra
tion and system testing. 

2. Test data can be shared among all testing steps by using 
a test procedure that includes the test data. 

3. Testing-coverage data for effective test-data selection 
and quality assurance are collected throughout all test
ing steps. 

We will now look at these features in a little more detail. 

Module/Integration Testing 

Module and integration testing should be performed as 
thoroughly as possible, considering the following two axioms 
of productivity and reliability: 

1. The later an error is detected, the more it costs to correct 
it. 9 

2. It is difficult to get a high testing-coverage rate at a later 
step. 10 

These testing steps, however, require a testing-environment 
construction that is complicated and troublesome. That is, an 
upper module, lower modules, global data, and input/output 
devices for the target module must be simulated. HITS re
duces this work with testing-environment support facilities as 
shown in Figure 2. 

Test Procedure 

A test procedure includes test data, expected results, and 
testing-environment simulation, and is described in the test 
procedure description language that will be discussed later. 
This procedure is separated from a target module and can be 
shared throughout all testing steps by eliminating the simu
lation part, which integration of modules makes unnecessary. 

Branch testing 

Test-data selection methods are classified into functional 
testing, based on function specification, and structural testing 
based on program structure. l1 Branch testing is typical of the 
latter methods and is supported by HITS.12 That is, the num-



Driver Definition (CALL) ,------, 
: Upper : 
I Module I L _____ J 

~ 
r-----' ~-----t 

I I/O l+-- Target ~I Global : 
: Devices I ------+ Module ~ I Data I 
L.. _____ J ....... ___ ----' L _____ .J 

Data I/O II Storage 
(SET, LIST) .ij. Allocation 

r-------, 
I Lower I 
I I 
I Modules I L _____ -! 

(GET) 

Stub Definition (STUB) 

¢= : Control flow 
-E-- : Data flow 
( ): Command 

Figure 2-Environment support facilities for module testing 

ber of executed branch directions is measured and the un
executed parts are reported. 

FUNCTIONS OF HITS 

Test-Procedure Description Language 

A test-procedure description language is designed as a com
mand language rather than a procedural language because 

1. HITS supports both testing and debugging in a uniform 
manner, and a command language is very suitable for 
interactive debugging. 

2. Furthermore, a command language is easy to use even 
for test-procedure description and this satisfies the de
sign policy of minimization of preparations and oper
ations. 

The structure of a test procedure is as follows: 

PROC test -procedure name 
{commands in common use among the following 
test cases} 
CASE the first test-case name 

{commands only for the first test case} 
END 
CASE the second test-case name 

{commands only for the second test case} 
END 

END PROC 

HITS: A Symbolic Testing and Debugging System 77 

Commands in common use include commands such as 
those for binding of target modules and storage allo
cation of external global data. The test procedure is 
stored in a library and is executed by an EXEC com
mand or is entered directly from a terminal. We would 
next like to look at command functions. 

Simulation of Testing Environment 

1. Driver definition: Upper module simulation is composed 
of value assignments to input parameters using SET com
mands, target-module invocation using a CALL or GO com
mand, and result verification using IF commands. CALL may 
include value assignments to input parameters. 

2. Stub definition: Lower module simulation is described in 
a STUB command whose sub commands may be composed of 
IF commands for input-parameter checks and SET commands 
for value assignment to output parameters. 

3. External global data: Their storage is allocated using 
GET commands and may be assigned values by SET com
mands. 

4. Input and output: Their instruction location is specified 
as a breakpoint by an AT command whose subcommands are 
SET commands for value assignments to input variables or 
LIST commands for display of output values. 

Reduction of Test Procedure Description 

1. ll.1acro-definition: A list of commands used repeatedly is 
defined as a new extended command by a macro-definition 
facility. For example, a new command for a result check is 
defined as follows: 

CLIST %CHECK 
IF &1 = &2 LIST' < O.K. >' , '&1 = &2' 
IF&l< >&2LIST'<N.G.>', '&1< >&2' 

END CLIST 

&n implies the nth parameter. Assuming that this macro is 
used as %CHECK (STATE, 3), if the value of the variable 
STATE is 3, 

<O.K.> STATE=3 

is displayed. if not, 

<N.G.> STATE < >3 

is displayed. 
2. Simplification of object identification: A QUALIFY 

command permits references to a local name without qual
ification that specifies the scope of the name. An EQUATE 
command replaces a complicated address expression with a 
new name. 

3. Variation of constant values: A DATA command defines 
a sequence of constant values so that a test case can be exe
cuted repeatedly while varying only constant values. 



78 National Computer Conference, 1983 

4. Communication among test procedures: LOAD and 
SAVE commands permit a test procedure to use data values 
that are created by another test procedure. 

Debugging Facilities 

1. Breakpoint: The breakpoint is specified by an AT com
mand which may include subcommands executed at the 
breakpoint. A breakpoint is expressed by the procedure 
names or statement numbers for the target program in 
S-PLIH. The specification of the procedure name causes an 
interruption and requests commands at the beginning of the 
procedure. The specification of the procedure name following 
END also functions at the end of the procedure. The state
ment numbers should be used only for interactive debugging, 
not for test-procedure description, so that modification of a 
target program does not cause modification of the test pro
cedure. For the target program in assembly language, a break
point is expressed by the label names and hexadecimal offset 
address. 

2. Trace: TRACE commands are used for the forward and 
backward control trace of branches or procedure calls, or for 
trace of data-value modifications. A BREAK option causes 
an interruption and requests commands at every trace event. 

3. Debug mode: The BREAK option also functions at the 
beginning of the target-program execution if it is so specified 
before execution of a test procedure. Therefore, at that time, 
temporary commands for debugging can be entered without 
rewriting the test procedure in a library. 

4. Off-line output: A large amount of trace data or dump 
can be output to a line printer instead of a display terminal by 
using an OUT option. 

5. Exception handling: Exception handling can be de
scribed in a STUB command with an INTERRUPT option 
that includes an interruption condition such as an operation
code trap and an address error. References to undefined data 
are always detected. 

DESIGN OF COMMAND LANGUAGE 

The command syntax of HITS has the following features in 
comparison with conventional command languages: 

1. procedural concept of block structure, 
2. target language dependency, 
3. abbreviation of command name. 

First, it is desirable that constraints between commands be 
few. However, when HITS commands are used for descrip
tion of a test procedure, some commands require subcom
mands. Therefore, the following seven block structures are 
introduced: 

i. test-procedure block (PROC - END) 
ii. test-case block (CASE - END) 
iii. macro-definition block (CLIST - END) 
iV. linkage block (LINK ."~ END) 

v. stub block (STUB - END) 
vi. condition block (IF - END) 
vii. breakpoint block (AT - END). 

The last four blocks are used only if they have two or more 
subcommands. When there is only one subcommand, it is 
specified at their operands for simplicity. The second feature 
implies that a user can describe a test procedure on the 
target source-program ievei. For example, abstract operands 
of HITS commands, < instruction-address> and < data
address> , depend on a target language as shown in Table I. 
Therefore, it is easy to learn and use the command language. 
The third feature is provided to improve the efficiency of 
interactive debugging (full names of commands should be, 
used in test procedures for readability). Our abbreviation rule 
is simple, that is, the latter part of a name can be truncated 
from an arbitrary position after the first character. If the 
truncated names of some commands are the same, the system 
decides which is which in advance, based on the frequency of 
use. 

EXAMPLE 

An example is given for explanation of a testing process using 
HITS. Assume that we develop a program for selecting the 
maximum of two values that are the minimum values of two 
groups of values. Two procedures, MINIMAX and MIN, are 
written in S-PLIH as shown in Figure 3. 

A test procedure for integration testing of these procedures 
is shown in Figure 4, assuming that the lower procedure MAX 
and a caller of MINIMAX are not written yet. First, two 
modules, SUB1 and SUB2, including MINIMAX and MIN, 
respectively, are extracted from a library by an INCLUDE 
command that is a subcommand of a LINK command. Next, 
storage for the external global data, X and Y, is allocated. 
Then, a stub for MAX is defined and several test cases follow. 

One of the test cases, C07, is composed of value assign
ments to global variables, X and Y, invocation for MINI
MAX, and result check. The definition of %CHECK has 
been previously mentioned. Here, two other interesting 
macro-definitions can be used, namely %PRE and %POST. 
They are assertions for verification of the precondition and 
postcondition of a procedure, and are defined as follows: 

CLIST %PRE 
AT &1 DO 

IF &2 RESUME 
LIST '&1 PRECONDITION: &2 is false,' 

END 
END CLIST 

CLIST %POST 
AT END &1 DO 

IF &2 RESUME 
LIST '&1 POSTCONDITION: &2 is false.' 

END 
END CLIST 



TABLE I-Command operands differing between S-PLIH and 
assembly language 

Details for 
Abstract Operand Details for S-PLIH an Assembly Language 

procedure name < instruction
address> 

or label with offset 
statement number 

< data-address> variable name 
label with offset, 
indirect addressing, 
and register indexing 

For example, these commands may be inserted before a 
CALL command in the test case C07 as follows: 

%PRE (MIN, A(l) > -1) 
%POST (MIN, I < 11) 

The first command verifies that the input parameter A to 
procedure MIN has at least one valid value. The second veri
fies that the array variable A was never erroneously referred 
to out of range in procedure MIN. 

When the test case C07 is executed, the following error 
message is output at %CHECK (RESULT, 2): 

< N.G. > RESULT < > 2 

An example of interactive debugging for this error is shown in 
Figure 5. The test case C07 is executed with the debug mode 

SUBl: do; 
dcl (X,Y) (10) integer external; 

MINIMAX: proc (var M) public; 
dcl (M,MX,MY) integer; 
call MIN(X,MX); 
call MIN(Y,MY); 
M=MAX(MX,MY); 

end MINIMAX; 
end SUBl; 

SUB2: do; 
MIN: proc (A,var B) public 

del A(10) integer; 
dcl (B,I) integer; 
B=A(I); 
1=2; 
do wh 1 i le A( I) >= 0 ; 

if A(I) > B then B=A(I); 
1=1+1; 

end; 
end MIN; 

end SUB2; 
Figure 3--A sample of a target program 

HITS: A Symbolic Testing and Debugging System 79 

PROC TP21 
LINK INCLUDE SUBl,SUB2 
GET X,Y 
STUB MAX(P,Q) DO 

SET MAX=P 
IF P < Q SET MAX=Q 

END 

CASE C07 
SET X=(1,3,5,7,-I) 
SET Y=(2,4,6,-I) 
CAlL MINIMAX(RESULT) 
%CHECK (RESULT,2) 

END CASE 

END PROC 
Figure 4-A sample of a test procedure 

(BREAK option). At the beginning of MIN, the value of the 
input parameter A is checked. Then, MIN is executed while 
tracing for modifications of the output parameter B. Finally, 
the cause of the error in an if statement is detected, and this 
test procedure is terminated. 

APPLICATION OF HITS 

This system has been released to many factories and laborato
ries since the spring of 1982. The following advantages of 
HITS were confirmed. 

1. Writability: The average number of commands in a test 
procedure is 4.4 - 5.6 per test case for module testing of 
a digital switching system, although the number of com-

{ ready} 
OPTION BREAK 
EXEC TP21(C07) 
{ break at MINIMAX} 
AT MIN LIST A 
RESlI4E 
{ display and break at MIN } 
TRACE DATA(MIN#B) 
AT END MIN 
RESUME 
{ display and break at the end of MIN} 
STOP PROC 
{ ready} 

Figure 5-An example of interactive debugging 



80 National Computer Conference, 1983 

mands depends on such things as the number of input 
and output parameters, the number of external data, 
and similarity among test cases. 

2. Operability: The target program is automatically tested 
by enteiing an EXEC command. This is because various 
operations required by a conventional debugger are au
tomated or assembled into a test procedure. 

3. Reliability: The quality of a target program becomes 
visible with the use of a testing-coverage facility and is 
improved by adding test cases for unexecuted branches. 
Reliability of testing is also improved because a test 
procedure is described on the target-program source lev
el and clearly corresponds to a target program and its 
testing specifications. 

4. Productivity: Productivity is improved by the following 
factors: 
i. early error detection by promotion of module test

ing, 
ii. high efficiency of test-data generation, execution, 

and result check 
lll. quick debugging. 
In our experience, when HITS was applied to only mod
ule and integration testing, testing cost was reduced by 
35 % in comparison with the previous testing method 
using the target computer. For a target program applica
ble to system testing, testing cost was reduced by 45%. 

5. Maintainability: It is easy to modify and add test cases 
because a test procedure is separate from a target pro
gram. The test procedure is shared among module, inte
gration, and system testing with only minor changes, and 
is also available in the maintenance phase of a target 
program. 

CONCLUSIONS 

A testing and debugging support system, HITS, for micro
computer 68000 software was developed for efficient and ef
fective software validation using a large-scale computer. The 
main features of HITS are as follows: 

1. All steps of module testing, integration testing, and sys
tem testing are supported while sharing test data and 
accumulating testing-coverage data. 

2. Module-testing support facilities for simulation of an 
upper module, lower modules, external global data, and 
input/output devices are provided. 

3. Test data, expected results, and environment simulation 
are assembled in a test procedure that is executed under 
both batch and interactive modes. 

4. Both a high level language, S-PLlH, and assembly lan
guage are supported on the source-program leveL 

HITS has already been released to many sites and has im
proved software productivity and reliability. 

ACKNOWLEDGMENTS 

The authors wish to express their gratitude to Dr. Takeo 
Miura for providing the opportunity to conduct this study. 
They are also indebted to Tan Watanabe, who designed 
S-PLlH, for his invaluable technical assistance, Mitsuyuki 
Masui for comments on drafts of the functional specification, 
and Tatsuro Oishi for modification of the S-PLiH cross
compiler and the cross-assembler that pass symbolic tables to 
HITS. 

REFERENCES 

1. Guide to Intellec Microcomputer Development Systems. Santa Clara, Calif.: 
Intel Corporation, 1978. 

2. Eanes, R. S., C. K. Hitcon, R. M. Thall, andJ. W. Brackett. "An Environ
ment for Producing Well-Engineered Microcomputer Software." Proceed
ings of the 4th International Conference on Software Engineering, 1979, 
pp. 386-398. 

3. Hitachi Microcomputer System: 68000 Super-PLIH Language Manual. 
Tokyo: Hitachi Ltd., 1981. 

4. Chusho, T., T. Watanabe, T. Kurosaki, and T. Yamamoto. "Design Con
cepts of a Microcomputer Software Testing and Debugging System." The 
Fall Conference of Information Processing Society of Japan (in Japanese), 
1981, pp. 419--420. 

5. Miller, E. F., and W. E. Howden. "Tutorial: Software Testing and Valida
tion Techniques," IEEE Catalog No. EHO 138--8, 1978. 

6. Module Testing System (MTS) Fact Book. London: Management Systems 
and Programming Ltd., 1972. 

7. Panzl, D. J. "Automatic Software Testing Drivers." Computer, 11 (1978), 
pp.44-50. 

8. Myers, G. I. The Art of Software Testing. New York: Wiley-Interscience, 
1979. 

9. Sorkowitz, A. R. "Certification Testing: A Procedure to Improve the Qual
ity of Software Testing." Computer, 12 (1979), pp. 20-24. 

10. Holthouse, M. A., and M. J. Hatch. "Experience with Automated Testing 
Analysis." Computer, 12 (1979), pp. 33-36. 

11. Howden, W. E. "Applicability of Software Validation Techniques to Sci
entific Programs." ACM TOPLAS, 2 (1980), pp. 307-320. 

12. Miller, E. F. "Program Testing: Art Meets Theory." Computer, 10 (1977), 
pp. 42-51. 



A global checkpointing model for error recovery 

by KRISHNA KANT 
Northwestern University 
Evanston, Illinois 

ABSTRACT 

The paper proposes a new concept for providing software fault tolerance in concur
rent systems. It combines the traditional global-checkpointing mechanism with the 
recovery-block concept in order to come up with an easily implementable error
recovery mechanism. This mechanism involves smaller overhead in case of moder
ate to high process interaction than the schemes considered in the past, which are 
based upon the idea of local checkpointing. A model for computing the optimum 
checkpointing interval is also presented. A particular distribution is hypothesized 
for the coverage of the recovery and the behavior of the model studied in detail for 
this case. 

81 





A. INTRODUCTION 

Global checkpointing (GCP) is a popular technique for en;. 
suring that an unexpected system failure does not result in the 
loss of valuable information. The state of the entire system is 
saved at periodic intervals (known as checkpoints) so that in 
the event of a failure the system can be brought to a consistent 
state simply by resetting it to its last checkpoint. There is an 
obvious tradeoff between the checkpointing overhead and the 
amount of computation lost as a result of failure. Many mod
els have been proposed in the literature for computing the 
optimum checkpointing interval.2

,3 

The fundamental assumption in such a GCP-based ap
proach to fault tolerance is that the system failure is caused by 
temporary faults such as transient hardware faults, operator 
error, erroneous input data, timing problems resulting from 
an unusual combination of circumstances, and so on. In such 
cases, a rollback and retry procedure would most likely cor
rect the problem. However, if we consider the failures re
sulting from bugs in the operating software, such a scheme 
does not suffice. In order to obtain fault tolerance against 
software bugs, it becomes necessary to incorporate functional 
redundancy in software. A well-known mechanism for doing 
this is the recovery-block concept.7 

As proposed by Randell, the recovery-block (RB) concept 
uses local checkpointing (LCP), that is, the state saving and 
restoration is done on a per process basis. If the processes 
constituting a concurrent program only compete for resources 
but do not interact otherwise, LCP is clearly the preferred 
strategy, since the rollback and retry will be limited to only the 
failed process. However, if we have a system of interacting 
processes, the erroneous information may propagate from 
one process to the other before it is detected. This leads to two 
complications: (1) it is no longer sufficient to maintain only 
the last checkpoint; in fact, very old checkpoints may need to 
be kept in order to handle occasional very long rollbacks. (2) 
the "exact" identification of the points to which the processes 
of the system need be rolled back becomes extremely complex 
and costly. (See Kant and Silberschatz4 and Kim5 for more on 
LCP-based recovery in concurrent programs.) In this paper, 
we explore the possibility of using GCP instead of LCP to 
reduce the cost and complexity of recovery in concurrent 
programs. 

B. RECOVERY BLOCKS WITH GLOBAL 
CHECKPOINTING 

For this, we simply remove checkpointing from Randell's RB 
concept; that is, when a process enters an RB, it does not 

A Global Checkpointing Model for Error Recovery 83 

establish any checkpoint. Any failures, including those re
sulting from the inability to pass the acceptance tests, are 
handled using the conventional GCP scheme. Thus the check
points will be established at periodic intervals and their loca
tion would be unrelated to the entry and exit points of the 
RBs. It is worth mentioning that this use of GCP is not at the 
level of entire computer system but only at the level of an 
individual program, which may consist of several interacting 
processes. In what follows, "system" refers to only one such 
program. 

An important consideration in the use of global checkpoints 
for error recovery is the coverage, that is, the probability that 
the rollback will undo the erroneous interactions between the 
processes. Since the checkpoint interval is fixed in advance 
rather than deduced from process interaction history, we run 
the risk of doing too little or too much rollback for a given 
case. If the rollback is insufficient, then the system will fail 
again during retry. This situation can only be handled by 
increasing the rollback span for the next recovery attempt. 

We assume that every RB has at least N alternates, where 
N is the number of previous checkpoints (PCPs) we are willing 
to maintain throughout the execution of the program. The 
first N - 1 of these PCPs are consecutive (i.e. PCP(l) is the 
last established, PCP(2) is the one before that, etc.), and the 
last one, PCP(N), corresponds to the starting system state. 
The checkpoint to be established next during normal exe
cution will be denoted by NCP. If a failure occurs before an 
NCP, the goal would obviously be to rollback and restart the 
system so that the execution proceeds successfully until the 
establishment of this NCP. If, during reexecution, a failure 
occurs prior to this NCP, then the rollback span must be 
increased and execution attempted again as explained above. 
It is clear that the system must keep track of the location of 
NCP during retry. 

In order to keep track of which alternative of an RB is to be 
used for execution, we associate a counter ALTNO, initial
ized to 1 with each RB. We assume that all alternatives of an 
RB have been designed and coded independently and are 
approximately equally reliable. Thus we could use them cyc
lically, that is, if the current version of an RB (identified by 
ALTNO) is suspected of being faulty, we set ALTNO to 
mod(ALTNO,N) + 1 for the next retry. The intended recov
ery algorithm for coping with a failure is as follows: 

1. Set a checkpoint counter, K, to 1. K will be used to keep 
track of how far back the system has been rolled back 
from the current state in terms of the number of previous 
checkpoints. 

2. Rollback the system to Kth previous checkpoint. Note 
that if K = N, the system will be restarted from its initial 



84 National Computer Conference, 1983 

state. For each RB that was entered since the establish
ment of this checkpoint until the point of failure, set 
ALTNO to mod(ALTNO,N) + 1. The purpose ofthis is 
to make sure that the failed part of the computation is 
retried using different alternatives. Discard any check
points that were established after PCP(K). 

3. Restart the system and let it run until one of the follow
ing two things happens: 
a. Execution proceeds successfully until the point where 

NCP should be established. In this case, all com
putation has been redone successfully and no further 
action is necessary until the next failure. 

b. A failure occurs before the point for the establish
ment of NCP. Increment K and go to step 2. 

C. ANALYSIS OF GCP MODEL 

Our purpose here is to find the optimal checkpoint interval by 
minimizing the combined cost of checkpointing, recovery, and 
recomputation. However, an assumption is necessary before 
this cost could be defined meaningfully. Note that if a roll
back to the starting state becomes necessary, an unbounded 
amount of computation may have to be redone after the roll
back. If this recomputation is considered in computing the 
cost, the cost would be unbounded and no meaningful results 
can be obtained. Therefore, we consider the costs associated 
with only the first (N - 1) rollbacks. If the probability of 
requiring rollback to the initial state is extremely small, the 
results would still be quite accurate and useful. We define the 
following quantities: 

• cps: Checkpointing span, that is, the number instructions 
executed between two successive checkpoints. 

• cpo: Checkpointing overhead, that is, the number of 
instructions (or its equivalent in terms of time overhead) 
required to establish a checkpoint. We assume that the 
use of a checkpoint in state restoration also involves the 
same amount of overhead. 

• PEj : Probability of successful execution until the next j 
checkpoints have been established given that the exe
cution started in a consistent state. 

• PRj: Probability of successful recovery from failure when 
the rollback span is j. 

• P ERj : Probability of successful recovery and retry when 
a rollback span of j is used. It is easy to see that 

• RRC: Expected cost, in terms of number of instructions, 
of recovery and retry per failure. 

• cost: Fractional cost of checkpointing, recovery and 
retry. 

Let ncp = cps + cpo. The overhead of initial rollback and 
retry is ncp. With probability (1- PERI)' a failure will occur 
during retry, thereby requiring more severe rollback. The 
overhead of the second rollback and retry will be exactly 
2*ncp because PCP(l) must be reestablished during retry. 

Continuing in this manner, and keeping in mind the assump
tion stated above, we come up with the following expression 
for RRC: 

N-l i-I 

RRC = ncp* 2: i* n (1- PERj) where PERo = O. 
i=l j=O 

Let ier be the instruction execution rate of the machine. Then 
the number of checkpoints estabiished per second is (ierlncp). 
Therefore, 

Primary failure rate = (1- PEl) * (ierlncp ) and 

Primary checkpointing cost per second = cpo * (ierlncp ) 

Thus, the total cost of checkpointing, recovery, and retry 
(TC) is 

TC = [cpo + (1 - PEl)*RRC] * (ierlncp ) 

whence 

N-l i-I 

cost = TClier = cpolncp + (1- PEl )* 2: i* TI (1 - PERj) 
i=l j=O 

Now we can minimize cost and compute the optimum cps. 
First, however, we must obtain an expression for P ERj • 

C.l Calculation of PERj 

First note some general properties of PEj and PRj. As
suming that the occurrence of software and hardware faults is 
uncorrelated, PEj would be the product of PESj and PEHh 
which are the probabilities that the software and hardware 
failures do not occur until the establishment of next j check
points. Let P be the probability that no failure occurs during 
the computation performed between successive checkpoints. 
Then P ESj = P * * j assuming that the code used for establish
ing checkpoints and using them for state restoration is free of 
software faults. The probability P primarily depends upon 
three parameters: (a) the checkpoint span cps, (b) the "qual
ity" of the software, and (c) its error-detection capability. The 
last two of these are very difficult to quantify, although several 
me tries for them have been proposed in the literature. 8 Here 
we shall simply work with a parameter ifp , which is defined to 
be the probability of failure per instruction of the user code. 
Then 

P = (1 - ifp yps. 

Note that if fault corrections were taken into account, ifp 
would change as a function of the number of failures experi
enced. We could use Musa's execution-time model6 to com
pute this change. Here we assume that ifp is a constant. Thus, 

PEHj can be computed using the classical hardware-reliability 



model. In order to make our analysis independent of the 
execution speed of the machine, we shall work in terms of 
number of instructions executed rather than the execution 
time. We assume a constant hazard rate (in the units per 
instruction) denoted by x.. Then PERj must be an exponential 
function of the number of instructions executed. Therefore, 

PERj =exp(-X.-ncp oj), 

and 

PEj = PESj * PERj = (1- ifp Y-cPs * exp( -A -(cps + cpo)-j). 

Using the fact that ifp must be extremely small in any practical 
case, we have: 

PEj = exp( -j(a -cps + b» 

where 

a = A + ifp, b = A -cpo. 

We assume that correct recovery can always be performed 
by rolling the system back to its starting state. Thus PRj = 1 
for j = N. It is also clear that PRo = ° because no recovery is 
possible without rollback. Furthermore, PRj is expected to be 
a monotonically increasing function of j. We hypothesize that 
it approaches 1 exponentially as a function of j. Thus 

PRj = 1- exp(-j/o.), Osj <N, 

where 0. is a control parameter and must be nonnegative. It 
can be noted that smaller values of 0. would be desirable. 
Obviously, 0. depends upon the extent to which erroneous 
information can propagate before it is detected. This aspect of 
the system behavior is primarily controlled by two parame
ters, (a) the average number of instructions per RB and (b) 
the extent of interactions between the processes of the system. 
A reasonable measure for the latter is the fraction of in
structions executed by the system that involve or constitute 
interprocess communication. We denote average RB size by 
rbs and the interprocess communication fraction by ipcf. 
Then 0. can be written as a function of two arguments, that is, 
0. (rbs , ipcf). We claim the following: 

1. 0. (rbs , ipcf) is very large for rbs > > cps and ° s ipcf < 1.0 
2. o.(rbs, ipcf) is very small for rbs < < cps and ipcf < < 1.0 
3. o.(rbs, ipcf) increases monotonically with rbs and ipcf. 

The first claim is based on the fact that no recovery is 
possible if the average RB size is much larger than the check
point span. The second claim is based on the fact that a single 
rollback would be sufficient for correct recovery if rbs is much 
smaller than cps and the interactions between processes are 
very infrequent. The justification for the third claim should be 
obvious. We assume that the contribution to 0. from rbs is 
proportional to the fraction rbslcps. The contribution due to 
ipcf, however, is expected to increase with ipcf because error 
propagation due to process interactions generally increases 

A Global Checkpointing Model for Error Recovery 85 

very fast with the level of interaction. We hypothesize that 0. 

is of the following form: 

o.(rbs, ipcf) = C * (rbs/cps) + D* ipcr 

where C, D , and u are some positive constants that depend on 
various characteristics of the system under consideration, such 
as the quality of acceptance tests, the number of processes, 
and the complexity of interprocess communication. For exam
ple, if the processes show a very complex interaction pattern, 
the constant u is expected to be rather large, thereby making 
recovery difficult even when the parameter ipcf is fairly small. 
Since the checkpoint span, cps, is the only parameter of in
terest in the calculation of the optimum checkpoint intervai, 
we can rewrite 0. as follows: 

0. = c/cps + d 

where c = C*rbs and d = D * ipcr. Let x = a -cps + b. Then 
0. = (a -c - b -d + d -x )/(x - b). Also let y = exp( -110.). 
Then, 

PEj = exp(-jx); PRj = 1- yj; PERj = exp (-jx) (1- yi) 

N-l 

cost = cpo/ncp + (1 - exp (-x) * 2: i* 
i=l 

i-l 

II (1 - exp (-jx (1 - yj» . 
j=O 

The expression for cost can be further simplified as 

cost = a·cpo/(x + a·cpo - b) + (1 - exp (-x» *f(x) 

where 

f(x) = 1 + (1 - (1 - y) exp (-x) * [2 + (1 - (1 - Y 2) 

X exp( - Ix) * [3 + ...]] 

C.2 Computation of the Optimal Checkpoint Interval 

For N = 2, we only need to consider the first term in f(x). 
Since x < < 1, we can approximate exp (-x) by (1 - X/2)2 
and compute the value that minimizes cost. The result is: 

x = (1 - f3/2) - [(1 - f3/2)2 - 2(Ya·cpo - f3) ]112, 

where f3 = a·cpo - b. The model for N > 2 can now be solved 
iteratively using the above value as the first approximation. 
The results for the case N = 4 are shown in Figures 1-3. The 
parameters chosen are as follows: 

• Hardware mean computation between failures 
(= I/A) = 109 

• Checkpointing overhead (cpo) = 1,000 instructions per 
checkpoint 

• C = 3, which makes PR1 = 50% at ipcf = ° and RB
size = cps/2 

• D = 30 and u = 3, which makes d = 1.0 at ipcf = 0.32. 



86 National Computer Conference, 1983 

6t-___ ...... ~ 150 

t s 
&'g(CPS) 

5.0 

t 
C.OS'T 

4 0.05 

eog(tlp) ~ 
3 ~--------__ --------~---------+--------~----____ --40~005 

-10 -9 -8 -7 -6 -5 

Figure l-COST and CPS versus instruction failure probability 

The figures show optimum cps (CPS) and optimum cost 
(COST) as a function of ifp, rbs, and ipcf. As expected, CPS 
decreases and COST increases with increasing ifp. It is inter
esting to note that for ifp > > A, that is, when the effect of 
hardware failures is negligible, COST is directly proportional 
and CPS is inversely proportional to the square root of ifp. 
Since COST represents the fraction of instructions that are 
"useless," it must be < < 1 for a practical case. This means 
that for the above parameter values, the case ifp > 10-6 would 
be highly undesirable. 

Both CPS and COST show interesting behavior with re
spect to c (= C*rbs). First consider the case ipcf = O. For 
c < < cps, both COST and CPS are insensitive to increase in 
c but rise at an increasing rate for larger values. Although 
COST maintains its increasing trend, CPS peaks at around 
c = cps 12 and then falls rapidly. Such behavior is expected 
because as RB size increases correct recovery becomes in
creasingly costly. The reason for the peak in CPS is that the 
probability of correct execution (or reexecution) decreases as 
cps increases; therefore, even though a larger cps would make 
correct recovery more likely, the success of correct reexecu
tion becomes more doubtful. Thus we cannot keep increasing 
cps indefinitely to cope with larger rbs values. As the inter
action between processes increases, the recovery cost rises at 
an increasing rate and smaller cps is required in order to hold 
COST down. This also explains why the peak in CPS becomes 
smaller and shifts to left as ipcfincreases. The results for other 
vaiues of N (not induded here) are very similar. 

D. COMPARISON OF LOCAL AND 
GLOBAL CHECKPOINTING 

As mentioned before, the motivation for introducing GCP is 
to reduce the cost and complexity of performing backward 
recovery in concurrent programs. When comparing GCP 
against LCP, we must consider two aspects: (1) the complexity 
and overhead of the mechanism itself, and (2) the cost of all 
computation that had to be discarded or redone. It is clear 
that the recovery mechanism used by the GCP scheme is very 
simple and would result in very little time and space overhead. 
On the other hand, the LCP scheme requires maintaining 
both a very large number of local checkpoints for each process 
and the complete history of the interprocess interaction dur
ing which they were established. Moverover, the determina
tion of rollback points requires either a search through this 
long history (as in Kant and Silberschatz4

) or an incremental 
update of information regarding it (as in Kim5

). Thus the GCP 
wins in this respect. The argument tilts in favor of LCP when 
we consider the second aspect, because LCP determines the 
correct rollback points on the basis of process interaction 
history rather than by a trial and error method. Thus LCP 
would be expected to usually involve less recomputation than 
GCP. However, it should be noted that even in LCP we do not 
know exactly where the problem lies (if we did, it should have 
already been removed!) and the algorithm for determining 
rollback points will usually require significantly more rollback 
than necessary. 



A Global Checkpointing Model for Error Recovery 87 

t 
CPS 

2.9'370 

2.7360 

100 2.00 400 12'000 

a 

t 
COST 

6·907 

Tbs~ 

100 200 800 1600 3200 

b 

Figure 2-CPS versus recovery block size 

It is clear from these observations that neither of the two 
approaches can be claimed to be always superior to the other. 
However, it can be argued that they are complementary if we 
consider the full range of interprocess interaction levels. Since 
all processes are rolled back to a common point in the GCP 
scheme, its overall cost would be higher than that for the LCP 
scheme for a system of processes that rarely interact. Further
more, if the process interactions are rather infrequent, the 

overhead of maintaining and searching interaction history of 
the processes will be reasonably small. Thus LCP is an attrac
tive scheme at low process-interaction levels. GCP appears to 
be a better scheme at moderate to high process-interaction 
levels, since the cost of maintaining and searching interaction 
history rises sharply with interaction level. A combination of 
the two schemes may also be used to advantage in certain 
situations. For example, we may carry out the determination 



88 National Computer Conference, 1983 

-s .r -9 
CPSX 10 @ l..TP::: 10 

7.0 

~5~ 

t 
CPS 

6.0 

5·S 
t 

COST 

5.0 

3.0 

COST @ it~ ': 1.09 
~5~--------____________ ~-

'2.0 
0.0 0.08 

Figure 3--COST and CPS versus interprocess communication fraction 

of rollback points for all processes assuming the LCP scheme 
but actually use GCP for rollbacks. In this case, the global 
checkpoint to which the system must be rolled back will be the 
one established prior to the earliest point in time to which 
some process must be rolled back according to our rollback
point determination algorithm. 

Eo CONCLUSIONS 

In this paper, we have presented a global checkpointing 
scheme as an alternative to the local checkpointing inherent in 
the RB construct proposed by Randell. The basic purpose of 
introducing GCP is to simplify backward recovery in concur
rent programs at the risk of discarding some computation 
unnecessarily. As noted above, this scheme is most suited 
for concurrent programs with moderate to high process
interaction levels. In this sense, the scheme complements the 
LCP scheme, which was designed primarily for sequential 
programs. 

Several models for finding the optimum checkpoint interval 
have been proposed in the literature. 2

, 3 However, these mod
els only consider recovery from transient failures where a 
rollback to the last checkpoint is sufficient for recovery. Our 
model deals with both transient hardware failures and the 
failures caused by software imperfections. (\Ve do not con~ 

sider permanent hardware failures, because the nature of re
covery is very different in those cases). The model does take 
into account crucial system parameters such as recovery block 
size, the complexity and extent of process interaction, and so 
on. The software reliability was accounted for by a single 
parameter ifp, the instruction failure probability. An inter
esting extension would be to use some of the software quality 
metrics proposed in the literature to get a better character
ization of software failure. Many other extensions are possi
ble, such as the consideration of several classes of hardware 
and software faults, taking into account the effect of system 
load on failure rates, and so on. 

REFERENCES 

1. Beaudry, M. D. "Performance Related Reliability Measures for Computing 
Systems," IEEE Transactions on Computers, C-27 (1978), pp. 540--547. 

2. Chandy, K. M. "A Survey of Analytic Models of Rollback and Recovery 
Strategies," Computer, 8 (1975) May, pp. 40--41. 

3. Gelenbe, E. "On the Optimum Checkpoint Interval," Journal of the ACM, 
26 (1979), pp. 259--270. 

4. Kant, K. and A. Silberschatz. "Software Fault Tolerance in Concurrent 
Systems." Technical Report, Northwestern University, September 1982. 

5. Kim, K. H. "An Approach to Programmer Transparent Coordination of 
Recovering Parallel Processes and its Efficient Implementation Rules," Pro
ceedings of the International Conference on Parallel Processing, August 1978, 
pp.5&-68. 



6. Musa, J. D. "The Measurement and Management of Software Reliability." 
Proceedings of the IEEE, 68 (1980), pp. 1131-1143. 

7. Randell, B. "System Structure for Software Fault Tolerance." IEEE Trans
actions on Software Engineering, SE-1 (1976), pp. 220-232. 

A Global Checkpointing Model for Error Recovery 89 

8. Schneider, V. "Some Experimental Estimators for Developmental and 
Delivered Errors in Software Development Projects." Proceedings of 
COMPSAC 80, Oct. 29-31, 1980. 



1 



Development tools for bus controller software 

by M. I. THOMAS 
TEeS/-SOFTWARE 
Paris, France 

ABSTRACT 

This paper addresses the problem of software specification and generation for bus 
controller software. This software is representative of a class of software modules 
for which the tools may be used. Two tools are described, a simple language in 
which to specify the module and a program generator that produces code directly 
from the specifications. The language uses finite state diagram ideas as do many 
other specification languages, but is constrained so that generation of high-quality 
code is feasible. A brief outline of the structure of the code generated is given, 
followed by some indications of the performance of the tools and the experience 
gained from their use. 

91 





INTRODUCTION 

This paper describes two program-development tools that 
have been constructed for use in an avionics software project. 
The tools are a language for specifications of a data-bus sys
tem and a program generator used to convert the specifica
tions into code. They were developed for their utility in the 
specific problem domain rather than with more general objec
tives. Nevertheless they illustrate, in practical running soft
ware, the advantages to be gained by formal system specifica
tion and its automatic conversion into code. 

The data-bus standard of MIL-STD-1553B defines a config
uration consisting of a bus controller that supervises data 
traffic on a bus to which a number of peripherals may be 
attached. 1 The controller uses internal data structures to de
cide which source and destination devices are appropriate for 
a data transfer request. In effect, these data structures model 
the current state of the peripherals attached to the bus. Cer
tain signals, for example a notification of device failure, 
change the values in the data structures and will consequently 
affect the treatment of subsequent transfer requests. 

The classical paradigm for problems of this nature is the 
state diagram. It is difficult to apply in this particular case 
because of the large number (up to 30) of peripherals, each of 
which may assume many different states. (An average of n 
states for each peripheral gives a state space of n 30 config
urations. Because the states of the peripherals are largely 
independent, the size of the state space is not greatly reduced 
by constraints on interrelations). Any reasonably complete 
state diagram or tabular representation is clearly impractical 
in these circumstances. 

The consequent difficulties facing the project were those of 

1. Specifying the controller software responsible for main
taining a correct model of the current bus state. 

2. Specifying how bus signals were to be processed taking 
account of the information in the system model. 

3. Verifying the coherence of these specifications. 
4. Producing a program embodying these specifications in 

such a way that small changes in the specification (which 
may be frequent in a development environment) could 
be reliably and quickly incorporated into the program. 

These difficulties were resolved to a greater or lesser extent 
by two complementary tools that have been developed. The 
first tool is a simple language that can be used to specify the 
bus controller software. It has facilities to describe the data 
structures used by the bus controller to model the system 
state. The language may also be used to describe how the 
controller must react to bus signals in the light of the current 

Development Tools for Bus Controller Software 93 

state of its model. The second tool is a program that accepts 
a specification written in the language and generates variable 
declarations and code to meet the specification. 

The next section of this paper describes the language that 
has been developed and its relation to other specification 
languages and models. The third section outlines some fea
tures of the program-generator tool. This is followed by a 
brief description of the experience gained by the use of these 
tools. 

THE SPECIFICATION LANGUAGE 

Overview 

The language was designed to allow the specification of 
software belonging to a relatively small subset of systems. It 
does not attempt to describe hardware components or the 
interactions and synchronizations between multiple software 
components, nor does it contain facilities to reflect timing 
constraints. It is clearly not intended to serve as a general 
system-specification language. 

It does permit the description of an individual software 
module and the behavior required from it in response to the 
various inputs that it may receive. These inputs may come 
from one or several software modules. It is assumed that the 
processing of each input to the specified module is completed 
before processing of the next input starts. This means that the 
problems of deducing the access protection necessary for the 
module's common data structures are avoided, since concur
rent accesses are precluded. 

These restrictions of the language were adopted for the 
pragmatic reason that the resultant language would ade
quately specify the bus controller software under develop
ment, and to facilitate the generation of code directly from 
specifications written in the language. There are some more 
general specification languages that permit the generation of 
code skeletons for the specified system either automatically or 
by a straight-forward manual process,2 but a considerable 
amount of information needs to be added to these code 
skeletons. 

A Simple Example of Part of a System Specification 

It is important to note that any example, such as the one 
given here, that is small enough to be understood easily can 
also be represented efficiently in a tabular structure. As the 
size of the example grows, the tabular structure becomes 
more unmanageable. 



94 National Computer Conference, 1983 

The example incompletely specifies the behavior required 
from a software module controlling part of the electrical sys
tem of a car. When the car's ignition switch is on, the direction 
indicator switch activates the flashing direction indicators. 
When the ignition switch is turned off and the direction indi
cator switch is in the left or right position, the car's electrical 
system illuminates the left or right parking light (unless the 
parking light switch is on, in which case both lights are illu
minated). 

COMPONENTS 
IGNITION = (ON, OFF); 
INDICATOR-SWITCH = (LEFf, NEUTRAL, RIGHT); 
PARKING-SWITCH = (ON, OFF) 

SIGNALS 
ACfIVATE-INDICATOR-LEFf, 
ACTIVATE-INDICATOR-RIGHT, 
DEACfIVATE-INDICATOR, 
IGNITION-SWITCHED-ON, 
IGNITION-SWITCHED-OFF, 
PARKING-SWITCHED-ON, 
PARKING-SWITCHED-OFF 

RULES 
(IGNITION = ON) & ACTIVATE-INDICATOR-LEFf 
~ 

[START LEFf INDICATOR FLASHING] 
(INDICATOR-SWITCH = LEFf); 

(IGNmON = OFF, 
PARKING-SWITCH = OFF, 
INDICATOR-SWITCH = LEFf) & 
DEACTIVATE-INDICATOR 
~ 

[TURN OFF LEFf PARKING LIGHT] 
(INDICATOR SWITCH = NEUTRAL); 

(PARKING-SWITCH = OFF, 
INDICATOR-SWITCH = LEFf) & 

IGNITION-SWITCHED-ON 
~ 

[TURN ON ALL IGNITION SYSTEMS] 
[TURN OFF LEFT PARKING LIGHT] 
[START LEFT INDICATOR FLASHING] 
(IGNmON = ON); 

etc. 

A specification contains three major subdivisions, namely 
the COMPONENTS, SIGNALS, and RULES sections. 

The COMPONENTS section serves to define the data 
structures manipulated by the module being specified and 
used by the module to determine its responses to the input 
signal it receives. In the case of the bus controller these data 
structures may represent the state of peripherals attached to 
the data bus. It is also possible to define data structures that 
do not reflect the state of physical devices; for example a data 
structure that indicates the current flight phase could take the 
values TAKE-OFF, LANDING, CRUISE, and COMBAT. 

FLIGHT-PHASE = 
(TAKE-OFF, LANDING, CRUISE, COMBAT) 

Two types of data structure, simple and complex, may be 
defined in the COMPONENTS section. Simple data struc
tures are analogous to PASCAL's enumeration types. The 
data structures IGNITION, INDICATOR-SWITCH, and 
PARKING-SWITCH in the example are all simple. Complex 
data structures are a way of grouping a set of reiated simpie 
and complex data structures in order to refer to them by 
name. 

Where a module's data structures represent the states of 
entities outside the module they need only reflect those 
classes of states that can influence the actions of the module. 
That is, the internal states of the entity can be partitioned and 
each class of the partition be considered as one state from the 
point of view of the module. This approach is common in 
specification languages. 

The SIGNALS section contains a list of input signals that 
may be received by the module. The input signals are not 
parameterized in any way, so an input signal whose param
eters cause radically different actions to be performed should 
be characterized by different input-signal names in this sec
tion. In fact, the list may also contain signals which are gener
ated internally within the module. These signals can be used 
to direct the sequencing of the processing of external inputs to 
the module. 

The RULES section associates states of the moduie's data 
structures and an input signal with the processing that needs 
to be executed and the new state of the module's data struc
tures. The left-hand side of each rule (preceding~) defines a 
subset of the state space of data structures, called the source 
set, and also contains the name of an input signal. The right
hand side of each rule contains an optional list of the names 
of actions to be taken and the new values to be assigned to the 
data structures, called the destination state. Only those data 
structures that actually change value need to be mentioned. 

The semantics of a rule are clearly related to the state 
diagram paradigm: 

Whenever the signal is to be processed by the module and 
the data structure values belong to the source set than the 
rule is applicable. The named actions should be carried out 
and then the data structures should assume the new values 
given. 

Each rule therefore defines a class of transitions on the state 
diagram whose states reflect all the possible configurations of 
the data structures. 

As indicated in the example, the source set need not indi
cate values for all of the module's data structures. It is also 
possible to specify that a data-structure value should be one of 
a subset of its possible values or that it should not take a 
certain value or a subset of values. For example, 

(FLIGHT-PHASE < > COMBAT) 
(FLIGHT-PHASE = (TAKE-OFF OR LANDING) ). 

Neither of these forms is permitted in the description of the 



destination state since it makes no sense to assign anyone of 
a set of values to a data structure. 

There are situations in which the actions in a rule may 
change the new value to be assumed by the module's data 
structures. For example, in a printing module there may be a 
data structure 

END-OF-PAGE = (TRUE, FALSE). 

The rule describing the printing of a line may be 

(END-OF-PAGE = FALSE) & LINE-TO-PRINT 
=? 

[PRINT LINE] 
[DECREMENT NUMBER OF LINES REMAINING] 
(END-OF-PAGE = FALSE); 

The action of decrementing the number of lines remaining 
may yield the result zero, in which case END-OF-PAGE 
should become TRUE. It is possible to indicate that the valwe 
to be assigned to a data structure may be changed by an action 
so that the code-generation algorithm may take appropriat'e 
action. 

The language also provides facilities for the definition of 
data structure types in a manner analogous to type definition 
in PASCAL or ADA. These definitions appear in an optional 
TYPES section. 

Comparisons with Other Specification Languages 

The term specification language as it is currently used cov
ers two broad classes of language. The first is requirement
specification languages. 3

,4,5 The system to be specified is de
scribed from an external point of view, though reference may 
be made to subsystems in order to clarify the description. The 
second class is system-specification languages, where the sys
tem whose design is to be specified is decomposed into sub
systems. 6 Each of these subsystems is defined together ,vith its 
relationship to other subsystems. This paper describes a spec
ification language for use at a later stage in the development 
process, where the behavior of individual software Icompo
nents that are regarded as non-decomposable must be speci
fied. Formalization of the interaction between such compo
nents, though of primary importance in system-specification 
languages, is not addressed here. The description of system 
components using the concept of internal state is common in 
specification languages. 2

,5,7 However, the decompo'5ition of 
these states into independent data structures whose combina
tions define the state space of the component is not present in 
these systems. 

The notion of a system stimulus is also used in specification 
languages. 3,7 The interpretation in the language spedfied here 
is identical to its usage in these other languages. 

An older technique for specification of software modules is 
the decision table. 8 Although decision-table condhions can be 
regarded as specifying the subset of states in which some 
actions are to be performed, the idea of a new' state to be 
entered after the a~ons is not present. 

Development Tools for Bus Controller Software 95 

Verification of the Specification 

One of the advantages of a rigorous formal specification is 
that verification techniques may be applicable, though the 
current system does not contain a verification tool. The only 
check that is currently carried out ensures that at most one 
transition rule is applicable from any system state in response 
to any input signal. In manually written programs this situ
ation is often disguised by dependencies on the order in which 
the various tests of the data structures are made. This section 
will indicate some verification techniques that are readily ap
plicable to specifications formulated in the language. 

It must be assumed that the data structures of a module are 
independent, that is, that manipulation of one does not neces
sarily change the value of others. A bus-controller module 
where the data structures model independent peripherals at
tached to the bus is an example of such a case. Such systems 
can be concisely modeled using Petri Nets. 9 Several existing 
languages for system description use Petri Nets for validation 
purposes. 10 

Each state of each data structure may be represented by a 
place in a PlacelTransition Net. The transitions of the net 
represent the transition rules of the specification. The mark
ing graph of these places defines the state space of possible 
configurations of the data structures. Clearly the PlacelTran
sition net so far described is an alternative representation of 
the state diagram of the system and needs to be completed 
with a description of the signals and the order in which they 
may arrive for processing by the module. The new representa
tion does however permit the application of analyses of struc
ture that would be more difficult with state diagram represen
tations, while the fact that the net represents a state diagram 
reduces the complexity of these analyses. 

The use of such verification techniques implies an extension 
of the language to cover descriptions of possible input-signal 
orderings. Riddle has developed a formalism to describe such 
orderings.ll More advanced verification may include the di
vision of the state space of data-structure configurations into 
classes of a spectrum ranging from Impossible through Ac
ceptable Malfunction to Complete Malfunction using the con
cepts of deontic logic. 12 

THE PROGRAM GENERATOR 

This software tool was developed to convert specifications 
into high-quality code. It also generates declarations for the 
data structures defined in the specifications. PASCAL or 
CORAL66 code may be generated. Since the generator uses 
an intermediate representation of the program, other target 
languages can be easily added. 

The generated program has a structure analogous to 
PASCAL's case statement, where the case branch selection is 
made on the input signal that is to be processed. This does not 
represent a loss of generality, since the input signals can be 
represented as the values of a data structure in the COM
PONENTS section and the SIGNALS section can be rede
fined to contain only a single input signal that is the notifi
cation that an input event has occurred. 



96 National Computer Conference, 1983 

When the transition rules of a specification have been par
titioned into classes according to the input signals under which 
they may apply, code is generated for each class. The order in 
which the tests of data structure values are made greatly af
fects the efficiency of the generated code. An exhaustive 
search of possible orderings even within a subset of rules is not 
possible for combinatorial reasons, so heuristic methods are 
used. 

A discussion of the problems of code generation and the 
algorithms used can be found in another of the author's 
articles. 13 

EXPERIENCE WITH THE TOOLS 

The avionics software project for which the tools were devel
oped is divided into phases. At the end of the first phase a 
hand-coded version of a simple bus controller had been pre
pared. This hand-coded version used a tabular, packed data 
representation of the states and transitions of the bus control
ler. The tools were also completed towards the end of the first 
phase. In order to gain experience, the simple controller was 
specified in the defined specification language. This took ap
proximately two weeks. However, no comparison with the 
time taken to specify the hand-coded version is possible since 
no formal specification of it existed. 

The program and data of the tool-generated version oc
cupied approximately the same amount of memory as the 
original, but the execution time for a sequence of test inputs 
was reduced by approximately 30%. It is difficult to evaluate 
this result, since the automatically generated version does not 
use packed data. 

The time taken for the tool to process a set of rules obvi
ously depends on their characteristics, but sets of one hundred 

rules are typically processed in approximately three minutes 
of CPU time on a DEC Vax computer. 

REFERENCES 

1. MIL-STD-1553B. u.s. Department of Defense, Sept. 1978. 
2. Ludewig, J. "Computer Aided Specification of Process Control System." 

Computer, 15 (1982), 5, pp. 12-20. 
3. Taylor, B. J. "A Method for Expressing the Functional Requirements of 

Real Time Systems." Proceedings of the IFACIIFIP Workshop on Real
Time Programming. Leibnitz, Austria, April 1980, pp. 111-120. 

4. Teichreow, D. and E. A. Hershey. "PSL IPSA: A Computer-Aided Tech
nique for Structured Documentation and Analysis of Information Pro
cessing Systems." IEEE Transactions on Software Engineering, SE-3 
(1977), 1, pp. 41-48. 

5. Davis, A. M. "The Design of a Family of Application-Oriented Require
ments Languages." Computer, 15 (1982), 5, pp. 21-28. 

6. Riddle, W. E. "An Assessment of DREAM." In H. Hunke (ed), Software 
Engineering Environments. Amsterdam: North-Holland, 1981. 

7. Alford, M. W. "A Requirements Engineering Methodology for Real-Time 
Processing Requirements." IEEE Transactions on Software Engineering, 
SE-3 (1977), 1, pp. 60-69. 

8. Metzner, J. R. and B. H. Barnes. Decision Table Languages and Systems. 
New York: Academic Press, 1977. 

9. Peterson, J. L. Petri Net Theory and the Modeling of Systems. New York: 
Prentice-Hall, 1981. 

1<0. Jorrand, P., J. P. Queille, and J. Sifakis. "Conception et Verification des 
Applications Reparties: Presentation du Systeme CESAR et de develop
pements en COUTS." Actes des journees BlLAN ET PERSPECTIVES DES 
20-21-22 JANVIER 1982-Projet Pilote SURF sur fa surete de fonction
nement des systemes. Paris: Agence de l'Informatique, 1982. 

11. Riddle, W. E. "An Approach to Software System Behaviour Description." 
Computer Languages, 4, (1979), 1, pp. 29-47. 

12. Anderson, A. R. "The Formal Analysis of Normative Systems." In N. 
Rescher (ed.), The Logic of Action and Decision. Pittsburgh: University of 
:,pittsburgh Press, 1967. 

13. Thomas, M. I. "Automatic Generation of Bus Controller Software from its 
S:pecification." Unpublished manuscript, 1982. (Submitted for publica
tilOn.) 



Logic analysis and its tools 

by Dr. R. S. WANG 
RCA 
Moorestown, New Jersey 

ABSTRACT 

This article discusses the logic analysis of a program, points out problems with the 
logic analysis process in general use, and introduces an approach to logic analysis 
that is more effective and less time consuming. The new method generates logic 
paths out of programs and pre analyzes the paths in lieu of directly analyzing the 
program. Three pre analysis software tools are introduced: procedure logic path 
generator, program logic path generator, and logic path pre analyzer . Sample out
puts are given to demonstrate the difference between program analysis and logic 
path analysis. 

97 





INTRODUCTION 

The general process of analyzing a program consists of identi
fying entry point, identifying the path at branch point, going 
to the called routine, returning to the calling routine, manip
ulating data, and interpreting data. The process is completely 
undisciplined 1 and is laborious and repetitive most of the 
time. 

The logic analysis is done by different people at different 
stages of program development. The typical and more 
thorough logic analysis is done during the design stage by the 
designer and reviewer, and during the test stage by the tester. 
The efficiency and effectiveness of the logic analysis approach 
will cause a distinct impact on the quality and cost of the 
design and test. 

This article suggests a systematic logic analysis approach. 
The approach is to isolate and preanalyze the program logic 
paths on the computer before further analysis. The logic anal
ysis of a CMS-2language program in the white box test stage 
is used for the illustration. 1 

LOGIC ANALYSIS FOR MODULE 
VERIFICATION TEST 

A system consists of a set of modules with each module 
consisting of a set of procedures. The test of a module is a 
white box test by which data presets and data outputs are 
needed to be defined through the logic analysis of the module 
and the interpretation of the test case in the test requirement. 
Two approaches are used to complete the module verification 
test (MVT): One is a machine test and the other is an 
inspection test. 

For each test case, after the tester has acquired the under
standing of the overall function to be performed, the tester 
begins to analyze the program and the related data design. 
The tester tries to correlate the test case and the program to 
make sure that the program can carry out the functions as 
described in the test case. The analysis consists of the follow
ing processes: 

1. Defining data according to the preset data specified in 
the test case and the format required by the data design 

2. Justifying and defining the preset data needed by the 
program yet not defined in the test case 

3. Manipulating the data as instructed by the related state
ments in the program 

4. Choosing branches at decision statements 
5. Comparing the outputs of the program with the expected 

outputs specified in the test case 

Logic Analysis and Its Tools 99 

The above analysis process may iterate one or more times 
because of the following reasons: 

1. Mistakes made in the data manipulation 
2. Imperfection of the test case definition 
3. Complexity of the program 
4. Confirmation of the analysis result 
5. Identification or confirmation of the discrepancies or 

errors 

Problems of the Logic Analysis of MVT 

The analysis is the foundation of the MVT. It is usually 
quite time-consuming for the tester, requiring much patience 
to go through the instructions primarily executed by the CPU.
Figure 1 symbolically represents the nature and problems of 
the program analysis. Part (a) of Figure 1 represents a set of 
test cases. Input and output data are specified in the test case. 
The stars symbolize the special data format used in the test 
case. Part (b) represents the program where many logic paths 
are blended together in a box. The data, which are the inputs 
and outputs of the logic paths, are expressed in definite for
mats as symbolized by the circles. Each test case in Part (a) 
will have a corresponding logic path in part (b). 

A problem of the prevalent logic analysis is that, for each 
analysis, one has to identify the tangled logic path of the 
program while performing other analysis efforts. This impacts 
the required time and quality of the total analysis. 

For short and straightforward logic paths, the problem is 
not severe. However, for lengthy and tangled logic paths, the 
problem is severe. For each analysis one has to memorize the 
test conditions, select branch at decision statements, manipu-

TEST CASE 1 

TEST CASE 2 

• • • 
TEST CASE n 

Inputs ** ... * 
Outputs ** ... * 

Inputs ** ... * 
Outputs ** ... * 

Inputs ** ... * 
Outputs ** .. , * 

(a) TEST CASES (b) PROGRAM 

Figure l-Symbolic representation of test cases and program 



100 National Computer Conference, 1983 

lOGIC PATH DATA 

TEST CASE 1 

TEST CASE 2 
• • • 

TEST CASE n 

Inputs ** ... * 
Outputs ** ... * 

Inputs ** ... * 
Outputs ** ... * 

Inputs ** ... * 
Outputs ** ... * 

(a) TEST CASES 

lP1 lP2 lPm 

(b) PROGRAM (e) ISOLATED LOGIC 
PATHS 

Figure 2--Symbolic representation of test cases, program, 
and isolated logic paths 

late data, flip the pages to locate the called procedures and 
calling procedures, and memorize control indicators. Because 
of the involvements, one may easily lose track and end up 
repeating the analysis or obtain analysis of questionable accu
racy. The uncertainty may appear in the result of machine 
test. It may result in another cycle of analysis and machine 
test. For inspection test, this simply means a questionable test 
quality. One of the causes of the problem is directly analyzing 
the program each time. 

In doing the analysis, visibility is a critical factor that affects 
the analysis effectiveness.2 Because the program contains 
many logic paths not related to the test case, the related logic 
path scatters around in the program, and the visibility is great
ly impacted. 

LOGIC PATH ISOLATION 

To increase the visibility, to save time, and to improve the 
analysis effectiveness, it is helpful if logic paths can be isolated 
from the program for further analysis. Logic path isolation is 
symbolically depicted in Figure 2. The program shown in Fig
ure 2(b) is transformed into a set of isolated logic paths shown 
in Figure 2( c). For further analysis, one can check the test case 
against the isolated logic path instead of checking the test case 
against the whole program. 

The decision statements in the path become condition de
scriptors. They reflect the preset conditions, data, and the 
derivatives of the preset conditions and data. After the logic 

. path is isolated, to analyze a logic path one does not have to 
flip the pages back and forth to locate a called procedure or 
a calling procedure. One does not have to select a branch at 
every decision statement either. The analysis of the logic path 
is simplified and straightforward. The tester can make a direct 
comparison between the conditions indicated in the decision 
statements with the data presets in the test case. The expected 
outputs of the test case can be compared directly with the 
outputs of the imperative statements. The redundancy of the 
logic path identification effort is eliminated. The visibility of 
the logic is greatly increased. Software tools to carry out the 
logic path isolation processes are discussed in the following 
paragraphs, 

Procedure Logic Path Generator 

This generator uses the program as input. It converts each 
procedure into a set of logic paths. Each logic path is identi
fied. Files are created. Printed output is also available. An 
example is shown in Figure 3 to illustrate the process. A 
software system has one module which consists of two pro
cedures, PROC1 and PROC2, as shown in Figure 3(a) and 
3(b). By using the program as input, the generator produces 
one set of three logic paths for PROC1 as shown in Figure 
3( c), and one set of three logic paths for PROC2 as shown in 
Figure 3( d). The decision statements are marked so that they 
can be analyzed separately and do not interfere with the im
perative statements. The decision statements in the program 
become condition descriptors in the generated logic path. The 
END statements of the program are not shown in the logic 
path. Since all the unrelated information is not shown in the 
generated logic path, obviously the visibility is significantly 
increased. For each logic path, analyzing the generated logic 
path is much easier and more effective than analyzing the logic 
path in the program procedure. 

Module Logic Path Generator 

After the logic path has been identified for a test case a 
sequence of procedure logic path IDs are manually listed. 
This sequence of procedure logic path IDs is entered as the 
input to the module logic path generator. The generator then 
accesses the procedure logic path files for the selected IDs. 
The procedure calls can be resolved automatically during the 
generation process. The module logic paths are shown in Fig
ure 4. Like the procedure logic paths, the module logic paths 
present a higher visibility for logic analysis than the logic paths 
in the program. 

Logic Path Preanalyzer 

The outputs of the procedure logic path generator and the 
outputs of the module logic path generator can be further 
organized by a tool called a logic path preanaiyzer. The pur-



Logic Analysis and Its Tools 

THEN BEGIN $ 

SETBTO X$ 

ElSE BEGIN $ ENO-PROC S ) 

Logic Path 1 

SET E TO 1 

"IF D2 EQ 0 THEN BEGIN 

(a). SET F TO A 

Logic Path 2 

Logic Path 1 SET E TO 1 

SET A TO 1 "IF D2 EQ 0 ELSE BEGIN 

"IF D1 EQ 0THEN BEGIN "IF D3 EQ 0 THEN BEGIN 

SET B TO X SET G TO 1 

"IF D2 EQ0 THEN BEGIN 

SET C TO 1 
Logic Path 3 

PROC2 
SET E TO 1 

Logic Path 2 

SET A TO 1 

"IF D2 EQ 0 ELSE BEGIN 

"IF D3 EQ 0 ELSE BEGIN 

"IF D1 EQ 0 THEN BEGIN 

SET B TO X 

"IF D2 EQ 0 ELSE BEGIN 

SET CT00 

Logic Path 3 

SET A TO 1 

"IF D1 EQ 0 ELSE BEGIN 

SET B TO Y (c) 

Figure 3--(a) Flowchart of PROCEDURE PROC1; (b) flowchart of PROCEDURE PROC2; 
(c) procedure logic paths of PROCl; (d) procedure logic paths of PROC2 

(b) 

(d) 

101 



102 National Computer Conference, 1983 

Logic Path 1 Logic Path 2 Logic Patti 3 

SET A TO 1 SETAT01 SET A TO 1 

·IF 01 EO GI THEN BEGIN ·IF 01 EOGI THEN BEGIN ·IF 01 EO GlTHEN BEGIN 

SET B TO X SETBTO X SET B TO X 

-IF 02 EOGI THEN BEGIN -IF 02 EOGI THEN BEGIN -IF 02 EO GlTHEN BEGIN 

SETCTO 1 SETCTO 1 SHCTO 1 
SETETO 1 SETETO 1 SETE TO 1 

-IF 02 EO f) THEN BEGIN ·IF 02 EOGIELSE BEGIN -IF 02 OOGIELSE BEGIN 

SET FTO A *IF 03 EOGITHEN BEGIN ·IF 03 EOGIELSE BEGIN 

SETGTO 1 

Logic Path 4 Logic Path 5 

SET A TO 1 SET ATO 1 

*IF 01 EO 0THEN BEGIN ·IF 01 EO 0 ELSE BEGIN 

SET B TO X SET B TOY 

·IF 02 E00ELSE BEGIN 

SETC T00 

Figure 4-Module logic paths 

Logic Path 1 Logic Path 2 Logic Path 3 

Conditions Conditions ~ 
IF 01 EO 0 THEN BEGIN IF 01 EO 0 THEN BEGIN IF 01 EO 0 ELSE BEGIN 

IF 02 EO 0 THEN BEGIN IF 02 E00 ELSE BEGIN Inputs 

Inputs Inputs Y,01 

X,01,02 X,01,02 Process 

Process Process SET ATO 1 

SET ATO 1 SET ATO 1 SET B TO Y 

SET B TO X SET BTO X Outputs 

SETCTO 1 SETCT00 A,B 

PROC2 Outputs 

Outputs A,B,C 

A, B,C 

Logic Path 1 Logic Path 2 Logic Path 3 

Conditions Conditions Conditions 

IF 02 E00THEN BEGIN IF 02 E00ELSE BEGIN IF 02 EO 0 ELS~ BEGIN 

Inputs IF 03 EO 0THEN BEGIN IF 03 EO 0 ELSE BEGIN 

02,A Inputs Inputs 

Process 02,03 02,03 

SET E TO 1 Process Process 

SET F TO A SET E TO 1 SET E TO 1 

Outputs SETGTO 1 Outputs 

E, F Outputs E 

E.G 

Figure 5-(a) The preanalyzed procedure logic paths of PROCl; (b) the 
preanalyzed procedure logic paths of PROC2 

(b). 

pose is to make the analysis of generated logic paths easier. 
Examples are shown in Figures 5(a), 5(b) and 6. In Figures 
5(a) and 5(b) the pre analyzed procedure logic paths are 
shown. The conditions and process in the logic path are listed 
separately. The inputs and outputs of the logic path are also 
identified. The input and output data may greatly facilitate 
the procedure interface analysis. 

In Figure 6 the pre analyzed module logic paths are shown. 

Logic Path 1 Logic Path 2 Logic Path 3 

Conditions Conditions Because of the 

IF 01 EO 0THEN BEGIN IF 01 EO 0 THEN BEGIN reason for Logic Path 2, 

IF 02 E00THEN BEGIN IF 02 E00 THEN BEGIN 
this logic path is also 
considered invalid. 

Inputs IF 02 EO 0 ELSE BEGIN 

X,D'; D2 !F D3 EQ 0 THEN BEG!N 

Process It is apparent that the second 

SET ATO 1 and third conditions are 

SETBTOX 
contradictory. Therefore, 
this logic path is invalid. 

SETCTO 1 

SET E TO 1 

SET F TO A 

Outputs 

A, B,C, E, F 

Logic Path 4 Logic Path 5 

Conditions Conditions 

IF 01 E00THEN BEGIN If D1 EO 0 ELSE BEGIN 

IF 02 EO 0 ELSE BEGIN Inputs 

Inputs Y,01 

X, 01, 02 Process 

Process SET A TO 1 

SET ATO 1 SETBTO Y 

SETBTO X Outputs 

SETCT00 A,B 

Outputs 

A,B,C 

Figure 6-The preanalyzed module logic paths 

The analysis of the logic path is straightforward. Using logic 
path 1 as an example, it shows that if the conditions D 1 and 
D2 are 0, the A , C, E, and F will be set to 1. B will be set to 
X. X, D1, and D2 are the inputs needed by the logic path. 
The input and output data provide critical information for 
module interface analysis if more than one module exists in a 
system. 

For logic path 2 the tester can easily tell that the second and 
third conditions are contradictory, thus, the logic path is con
sidered invalid. The visibility of the generated logic paths is 
clearly much better than that of the program. Redundant page 
flipping and branch selection are eliminated from the analysis 
effort. 

CONCLUSION 

The approach introduced is used to isolate a logic path in a 
program for an MVT test case. The immediate purpose is to 
increase the visibility of the related program logic to be ana
lyzed. Judging by the author's experience, the approach may 
improve the test quality and reduce the test cost. Moreover, 
the logic paths generated may constitute part of the MVT test 
results. They can be used for reviews and the analysis of 
integration test. The integration test is the next level of test 
after MVT. 

Since the basic concept of this approach is to help analyze 
programs effectively and economically, the applicability of 
this approach is not limited in MVT. It can be applied to the 
procedure test and the integration test. It is even applicable in 
the design state and the maintenance stage. Since the logic 



analysis is the major effort in software development and main
tenance, the approach deserves further discussion. 

The design, design review, procedure test, module veri
fication test, and integration test are consecutive processes in 
the program development cycle. Similar logic path analyses 
are done in each of the processes as was done for the module 
verification test. In fact, they all present more or less the same 
problems as mentioned above. The logic path isolation and 
analysis efforts that may be useful to the next process are not 
saved. Consequently one may have to repeat the work. This 
is a waste. For example, the designers must check the logic 
paths in the flowchart to compare with the description in the 
specification. The design reviewers also have to do the same. 
If the generated logic path analysis approach is used, the 
designer may generate the logic paths not only for his own use, 
but it will also be helpful to design reviewers who analyze the 
design. Furthermore, logic paths generated may be more suit
able for presentation during the review meeting. Likewise, in 
addition to the usage in that test process, the procedure logic 
paths generated in the procedure test process may be used 
directly in the module verification test process. 

For the MVT process, the module logic paths generated are 
extremely useful for the modular interface analysis of the 
integration test. Because of their higher readability, the ma
chine outputs of the logic path generators and preanalyzer 
provide a good medium for reviews, presentations, and re-

Logic Analysis and Its Tools 103 

ports. As the validation process is pushed from the test stage 
into the design stage, the need for a good medium in the 
design stage becomes apparent. 

In the test stage and the maintenance stage the program is 
analyzed and the tools are applicable. In order to apply the 
approach and develop tools for the design usage, it is recom
mended that a program design language be used in the design 
process. 

In industry, long years of software development experience 
have demonstrated that people are not satisfied with an ad hoc 
development approach even though the ad hoc approach may 
allow more freedom and demand fewer tools. The additional 
freedom may allow people to see some products earlier. 
Fewer tools may give a feeling of saving some development 
cost. Now the state of the art is to impose more control and 
use more software tools. Generally, for large program devel
opment, better control enables analysts to see the final 
product earlier and the software tools can lower the total 
development cost. 

REFERENCES 

1. Myers, G.J. The Art of Software Testing. New York: John Wiley & Sons, 
1979. 

2. Van Tassel, D. Program Style Design, Efficiency, Debugging, and Testing. 
Englewood Cliffs, N.J.: Prentice-Hall, 1978. 





Bennet P. Lientz 
University of Califonnia, 

Los Angeles 
Los Angeles, California 

Ronald S. Lemos 
California State University 
Dominguez Hills, California 

MANAGEMENT 

This track addresses specific concerns in information systems staffing, man
agement, and planning. The subtrack on staffing includes sessions on the role 
of women in systems, software project management, and improving staff 
effectiveness and productivity. The second subtrack, on software mainte
nance, has sessions dealing with the management of software maintenance, 
applications of software engineering, technical issues in maintenance, and 
motivation of the software maintenance programmer. The final subtrack is on 
planning and control; it comprises a session on planning and one on the audit 
of complex computer/communication systems. All told, more than 50 speak
ers, with experience as developers, implementers, users, and managers of 
computer technology, will present papers or serve on panels in this track. 

EDUCATION 

In a relatively short time the computer has had a profound impact on educa
tional processes throughout our society. Computer literacy is becoming neces
sary for effective functioning in an increasingly complex environment. This is 
especially true for people working in organizations. Computer literacy is dis
cussed in terms of differences between what industry expects of a computer
literate employee and what higher education plans to produce. Another ses
sion deals with creative uses of educational technology. State-of-the-art uses 
of videodiscs in industry, schools, and universities will be discussed. 





Improving software maintenance attitudes 

by PAUL C. TINNIRELLO 
The A. M. Best Company 
Oldwick, New Jersey 

ABSTRACT 

Attitudes towards maintenance have been an overlooked source of problems in the 
software maintenance process. In the past, there has been little recognition of the 
significance of how attitudes affect the performance of maintenance functions. 
Investigation into the origin of these attitudes has led the author to formulate 
feasible solutions that foster productive attitudes through the educational and pro
fessional work environments. 

107 





INTRODUCTION 

Progress in the development of software maintenance tech
niques has been languid in comparison to the growth in soft
ware development procedures. \Vhile fourth generation soft
ware promises to ease the maintenance difficulties, it does not 
change the fact that maintenance today is performed on soft
ware that has been developed in the past 25 years. It is not 
surprising, then, to discover that as much as 80% of all soft
ware costs are spent in maintenance effort while only 20% of 
the cost is invested in developing systems that will possibly 
have software simplicity. 1 The neglect in software mainte
nance development has placed a stigma on the maintenance 
process. In addition, there has been a serious impact on the 
performance of maintenance in the programming environ
ment as a result of the attitudes arising from poor mainte
nance procedures. 

DEFINING THE MAINTENANCE PROCESS AND 
IDENTIFYING THE PROBLEM AREAS 

The software maintenance process can be interpreted as the 
correction, adaptation, and enhancement of computer pro
grams and systems. 2 This definition of the maintenance pro
cess is widely accepted among those in the data processing 
(DP) community. However, finding agreement on what con
stitutes maintenance problems has been a stumbling block for 
years. Part of the difficulty in defining the problems stems 
from the way software maintenance is viewed. 3 Management 
may have a different concept of maintenance functions than a 
programmer who is directly involved with maintenance activ
ities. Still another viewpoint may come from the end-user who 
has extracted a notion of maintenance from both management 
and programmers. 

It is the opinion of the author that software maintenance 
problems can be segmented into three areas: 

• maintenance management, 
• maintenance programming, 
• maintenance attitudes. 

Maintenance management can be defined as the management 
of the software maintenance process within the computer
based organization. Maintenance management affects pro
grammers, managers, and end-users, and requires the care
ful integration of all parties towards a successful solution, 
whether it be correction, adaptation, or enhancement. Main
tenance programming can be defined as the technical meth
odology in which a correction, adaptation, or enhancement 

Improving Software Maintenance Attitudes 109 

occurs. Such methodologies include programming practices 
and techniques implemented within existing software systems. 
Finally, maintenance attitudes can be defined as the position 
an individual has towards the software maintenance process 
in its entirety. Maintenance attitudes are usually held by 
many members of the computer-based organization, with the 
strongest attitudes being held by those who have the greatest 
interaction with the maintenance process. 

INTERDEPENDENCIES IN THE 
MAINTENANCE SOLUTION 

If there is to be any development in the software maintenance, 
process, then each of the problem areas of maintenance man
agement, maintenance programming, and maintenance atti
tudes must be improved. Recognizing this fact is, of course, 
much easier than agreeing on which area has the most impact 
on the maintenance process. Thus far, it appears as if the 
emphasis has been placed on the maintenance programming 
category. One of the approaches used in this area has been the 
evolution of structured programming techniques, which 
promised program maintainability through a modifiable and 
adaptable design. Academic institutions, especially DP orga
nizations, began to stress the use of structured programming 
techniques with the naive hope that maintenance complexities 
would eventually by eliminated. Unfortunately, structured 
concepts have not eradicated all of the maintenance prob
lems. They have eased, however, some of the complexities in 
the maintenance process. 4 In addition, attitudes in performing 
maintenance functions have improved for those individuals 
who are responsible for maintaining structured programs and 
systems. This improvement in attitude, which was elevated by 
the improvement in programming technique, demonstrates 
how each maintenance area is dependent on the other for 
success. The converse is also true. Poor maintenance manage
ment would affect the quality of work being performed and 
also diminish the attitude toward the maintenance process. 5 

At this point, the author would like to suggest that mainte
nance attitude is a problem segment that, when improved, can 
have more benefits for the maintenance process than im
provements in the other problem areas. Until now, mainte
nance attitudes have been recognized only as a result of 
changes in the maintenance-management and maintenance
programming segments. 

COMPLEXITY OF MAINTENANCE ATTITUDES 

The dynamics of attitudes is not fully understood. Attitudes 
can be a mixture of emotional and mental processes that an 



110 National Computer Conference, 1983 

individual develops through personal experience. 6 Attitudes 
towards software maintenance can affect maintenance man
agement and maintenance programming in such a way as to 
possibly prevent either initiative or completion in one or both 
areas. The fact that software maintenance will not disappear, 
nor will there be an all-purpose cure, indicates an attitude 
unto itself. This complexity of attitudes makes it difficult to 
find an approach that would succeed in improving all attitudes 
towards the soft-.vare maintenance process. No mattei what 
approach is used, attitudes will always be derived from the 
experience that the individual encounters. It is with this 
thought that the author is only suggesting a feasible solution 
to the maintenance attitude problem. Further still, the author 
wishes to confine his suggestions to improving those attitudes 
of the computer programmer only. 

ATTITUDE DEVELOPMENT 

In an attempt to find a method for improving maintenance 
attitudes, it is necessary to uncover the origin of such atti
tudes. First, there is a need to examine those attitudes that 
grow out of the work experience. The majority of program
mers usually encounter maintenance duties during the first 
several years of their professional careers. In some cases the 
maintenance work may be moderate to light, while in others 
the maintenance responsibilities can be heavy. Some organi
zations have a definitive policy with respect to new program
mers that requires that they be assigned maintenance respon
sibilities in order to better their understanding of existing 
systems and to improve their software skills. This philosophy 
has been noted for its advantages by advocates of the software 
maintenance process. 3,5 However, such exposure to mainte
nance, especially with new programmers, can be detrimental 
to the organization and can possibly cause the development of 
poor attitudes about the maintenance process. 3 The point can 
be argued either way about maintenance benefits, but the net 
result in attitude is usually negative, even though some valu
able experience was gained. 

Perhaps this suggests that it is unpopular to have a good 
attitude toward maintenance work. In any case, the effects of 
maintenance have been recognized by programming manag
ers involved with maintenance-related activities. Such effects 
include high turnover, low productivity, and excessive soft
ware costs.7 Programmers who reflect the effects of the main
tenance process often possess certain attitudes about their 
work. These high-level attitudes, as they will be termed, in
clude boredom, defeatism, frustration, and a feeling of lack of 
recognition. 8,9 They are usually attributed to some set of con
ditions that is met while the programmers perform mainte
nance functions. These conditions or high-level factors, as 
they will be termed, include poor, little or no documentation; 
unstructured or poorly designed programs and systems; poor 
programming practices such as excess switches, meaningless 
data names, and nonstandard language commands; and extra 
work hours, odd work hours and pressure to complete mainte
nance tasks in little or no time. There is no doubt that the 
outgrowth of these high-level factors results in a poor or nega
tive maintenance attitude. More important is the possibility 

that high-level factors, which foster high-level attitudes, also 
perpetuate the high-level factors. 

As an example, consider a programmer who is given the 
task of performing a maintenance function on a poorly de
signed, poorly documented old program that has been the 
maintenance responsibility of twenty-five prior programmers. 
The probable result of such a task for the average programmer 
is that an attitude is either developed or supported against the 
maintenance process. In turn, the pmgiammei will pmbably 
not provide any more insight into the program than was orig
inally given. The author's experience has shown that the pro
grammer's attitude will allow only minimal documentation 
and programming techniques to be performed, perhaps even 
burdening the program with poorer code. While this example 
might be overemphasized, it does illustrate how an attitude 
perpetuated more software maintenance complexity. High
level factors exist in many computer-based organizations and 
it is not likely that they will immediately disappear. It is safe 
to say, however, that attitudes developed in this environment 
need to be rectified if the maintenance process is to improve. 

Another source of maintenance attitudes comes from a 
more fundamental area than the work place. These are the 
attitudes that grow out of the educational experience, and 
their roots lie deep within our educational behavioral pat
terns. Two of the important individual needs developed dur
ing this experience are those of creativity and skill growth. 
Much of the initial exposure to computer programming was 
through educational experiences that permitted the creation 
of programs as a method to learn new skills. As a result, little 
or no encounter with the maintenance process occurred ex
cept for the individual program debugging (and that task was 
consciously justified as part of the development scenario). 
Attitudes towards maintenance were not even realized at this 
stage. However, the attitudes that supported the theory that 
programming is a creative and skill-strengthening process 
flourished. Perhaps the occupational title of programmer as 
opposed to software engineer connotes the creative attitude as 
well. 

When new programmers are exposed to real software main
tenance situations, they are totally unprepared to handle the 
depth of the software maintenance process. They find them
selves performing a programming task that is constrained by 
another style as well as design. In addition, they are con
fronted with the responsibility of understanding a program 
whose functions may be totally unfamiliar to them. It has been 
argued, however, that it is very possible that maintenance 
functions will provide new skill growth with programs that 
employ current software techniques. 3,5 Unfortunately, pro
grammers are usually assigned maintenance on specific sys
tems for some duration and in time they will achieve the 
maximum skill growth that can be derived from such a system. 
In addition, not every system employs new or current software 
techniques. Therefore the time it takes to outgrow the skills of 
the system may be very short. 

The need for creativity and skill growth extends beyond the 
educational environment into the professional work place. 
When these individual needs are denied, the result is usually 
a search for a place where they can exist. 7 Recall that one of 
the effects of software maintenance is high turnover. It is from 



these concepts that the author suggests that a fundamental 
problem in the software maintenance process is the possible 
hindrance of creativity and professional skill growth. This 
hindrance may create low-level attitudes, as they will be 
termed, which include uncreativity and nongrowth. It is also 
possible that these low-level attitudes create a subconscious 
attitude in the programmer that manifests itself in the more 
recognizable high-level attitudes described earlier. 

Recognition of where maintenance attitudes originate 
points towards a method of how they can be improved. Since 
the attitudes described in this paper stem from the profession
al work place and the educational environment, it is only 
natural that a method of improvement occur in these places. 
The author has provided suggestions for maintenance attitude 
improvement via the conventional educational techniques 
currently in use. These suggestions do not exclude the fact 
that there are probably other techniques available. However, 
the author would like to stress the fact that the source of any 
method for improvement must come from the professional 
work place and the educational environment. 

SOLUTIONS IN THE EDUCATIONAL 
ENVIRONMENT 

Formal education curriculums, which include programming 
courses, should also include courses that address software 
maintenance issues. There is also an important need to clarify 
what the occupational functions of a programmer entail. Sec
ondary schools that offer programming classes to students 
might want to structure their course objectives to include 
exposure to the maintenance process. At this educational lev
el it is not necessary to investigate the methodologies used in 
maintenance but rather to introduce the concepts of what 
maintenance is about. 

At the college and university levels, students who are re
quired to take data processing courses as part of a non-DP 
curriculum should also be exposed to the maintenance issues. 
As potential users of computer-based systems, they would 
develop attitudes that may eventually be part of a computer
based organization. If nothing else, the user community 
would at least be conscious of the complexities involved in the 
maintenance process. 

Finally, and most important, are those college, university, 
and programming schools whose curriculums are designed for 
computer science and programming graduates. A software 
maintenance course or courses should be required as part of 
the requirements for graduation. The content of such a course 
can be divided into the three areas of maintenance manage
ment, maintenance programming, and maintenance attitudes. 
One of the major objectives of the course is the realization 
that software maintenance is essential for the success of the 
computer-based organization. It would be of little value to 
present the course in the way maintenance has been viewed in 
the past, that is, "It's a necessary evil." 

The particular topics of a software maintenance course may 
include: 

• the need for maintenance, 
• what are maintenance functions, 

Improving Software Maintenance Attitudes 111 

• tools for maintenance, 
• preventive maintenance, 
• planning maintenance groups, 
• interfacing with users and developers, 
• change control procedures, 
• monitoring maintenance activities, 
• attitude strategy, 
• integrating creativity, 
• maintenance programming practices. 

Many of these topics would seem theoretical to students who 
have never been involved in a computer-based organization. 
However, a very practical topic, which can almost be the 
course in itself, is that of maintenance programming practices. 
Choosing a language that is a curriculum requirement, an 
instructor can easily create assignments where students need 
to correct, adapt, or enhance a prewritten program or pro
grams. In the correction assignment, students are given the 
task to find and correct a problem that was the result of a poor 
design or oversight in functional specifications. Two pro
grams, one structured, the other unstructured, would be given 
to the students. The grade in such an assignment could be 
dependent on the success of corrective action, or method of 
implementation, that is, maintaining program design uniform
ity, documentation standards, and the time it would take to 
make the change. Of course, it may take several assignments 
before the time factor would be meaningful. In the adaptation 
and enhancement assignments, the instructor could use the 
corrective assignment programs and ask for implementation 
of new functions or modify some existing functions. Use of 
consistent programs might strengthen the maintenance con
cepts without frustrating the student, a possible side effect in 
such a course. If frustration becomes a barrier to completion 
of an assignment, then perhaps the instructor could alter the 
assignment to allow the student to find a technique for getting 
around the frustration. 

Another topic area is the integration of creativity and skill 
growth within the maintenance process. Here students could 
learn how to channel creative energy in a direction that is 
beneficial to both the maintenance task and the individual 
need. Typically, this topic would concentrate on the enhance
ment aspects of the maintenance process. 

Another course for software maintenance might be a study 
of maintenance programming techniques for specific program 
languages, for example, FORTRAN, COBOL, PUl, and 
ASSEMBLY. In this course the concentration would be on 
the problems and solutions for correction, adaptation, and 
enhancement within the constraints of the language. An as
signment that an instructor could give might be to modify two 
different language programs to perform a similar function. 
Again, many assignments can be created to support such a 
course objective. If a programming-languages maintenance 
course is not practical, then another alternative would be to 
include a maintenance section within the teaching of formal 
languages themselves. In such courses, students can learn the 
advantages of a programming language in the development 
process as well as the technique to be used with the language 
during the maintenance process . 

As of this writing, the author has found little or no evidence 



112 National Computer Conference, 1983 

that indicates that higher educational institutions are re
quiring maintenance courses as part of a computer science 
degree program. Maintenance courses, like those suggested, 
would help current and future programmers by raising their 
consciousness of the maintenance process and by improving 
their maintenance attitudes. It is hoped that the shock of 
maintenance functions, which new programmers encounter, 
will thereby disappear. 

SOLUTIONS IN THE PROFESSIONAL WORKPLACE 

Improving maintenance attitudes in the work place will be 
more difficult than resolution in the educational environment. 
Unfortunately, many programmers have less than positive 
attitudes already established. However, changing attitudes is 
definitely possible. One of the best ways to initiate an im
provement is to have the computer-based organization dem
onstrate a positive recognition of the maintenance process. 
Programmers and managers involved with maintenance activ
ities could be given extra incentives for their work. Such in
centives could include extra compensation while assigned to 
maintenance groups, time compensation for extra or odd 
work hours, and advanced training in software techniques. 3 

Another improvement method is the establishment of a 
planned development path for programmers. A typical path 
may include the rotation of maintenance assignments and de
velopment assignments on a regular schedule. This will allow 
programmers the opportunity to flex their creative skills and 
to support their need for professional growth. There is much 
evidence that indicates that some computer-based organi
zations are already gearing up for some type of attitude im
provement strategy. One of these strategies is the use of out
side training seminars in software maintenance for managers, 
project leaders, and group leaders. 

Aside from commitments on the part of the computer
based organization, there is a need for individuals to examine 
their own methods for improving attitudes. Computer science 
is a technology that almost dictates change, and it is vital that 
individuals be conscious of those changes that are needed for 
professional development. 1o Professional programmers must 
commit themselves to improving attitudes about mainte
nance. Given the implementation of maintenance courses in 
the formal educational environment, programmers can attend 
those classes to improve maintenance skills and attitudes. Af
ter all, there seems to be that kind of commitment whenever 
a new software technique is introduced. 

Attitude development in the professional work place is pos
sible through a mutual effort on the part of the programmer 
and the computer-based organization. Perhaps it will require 
the educational community to react first before individuals 
and companies commit themselves to an attitude improve-
ment plan. 

CONCLUSION 

Focusing the effort on improving attitudes towards mainte
nance will help in the development of the software mainte
nance process. Attitudes are complex, but their complexities 
can be more easily understood if the origins of these attitudes 
are examined. Recognizing the source of attitudes will foster 
new methodologies in attitude improvement that can thus 
become part of the programming process. No single solution 
to attitudes will result in attitude change. It will take time for 
attitude improvement theories to become acceptable as solu
tions to maintenance problems. The educational environ
ment, which enabled the achievement of new software tech
niques, will also be inspirational in the development of new 
maintenance concepts. The future of software maintenance 
looks more promising with the recognition of underlying 
problems and implementation of new solutions. 

REFERENCES 

1. Clark, David M. "Maintenance Programming." Computerworld, 14 (1980), 
pp.26-32. 

2. Lientz, Bennet P., and E. Burton Swanson. Software Maintenance Manage
ment. Reading, Mass.: Addison Wesley, 1980. 

3. Schwartz, Barbara. "Eight Myths About Software Maintenance," Datama
tion 28 (1982), pp. 125-128. 

4. Borghesi, Nancy T., and Patricia L. Krapf. "Structured Methodology." 
ICP Interface. Data Processing Management, Spring 1982, pp. 37-42. 

5. Reutter, J. "Maintenance is a Management Problem and a Programmer's 
Opportunity." AFIPS Proceedings of the National Computer Conference 
(Vol. 50), 1981, pp. 343-347. 

6. Silverman, Robert E. Psychology (2nd ed.). New York: Meredith Corpo
ration, 1974. 

7. Beeler, Jeffry. "Exec Identifies Seven Reasons Why DPers Quit," Com
puterworld, 16 (April 19, 1982), p. 25. 

8. Carlyle, Kim. "Programmer's Job Service Averages 18 Months," Com
puterworld 15 (1981), pp. 19-20. 

9. Chapin, Ned. "Productivity in Software Maintenance," AFIPS Proceedings 
of the National Computer Conference (Vol. 50), 1981, pp. 349-352. 

10. Weinberg, Gerald M. The Psychology of Computer Programming. New 
York: Van Nostrand Reinhold, 1971. 



A methodology for minimizing maintenance costs 

by LINDA BRICE and JOHN CONNELL 
Los Alamos National Laboratory 
Los Alamos, New Mexico 

ABSTRACT 

Research conducted in the case study of a large applications system shows that the 
two primary causes of high maintenance costs are 

1. The frequency of user-requested changes to software 
2. The psychological complexity of the software 

A "tool kit" is suggested that, when applied to the design of new systems or 
rewrites, will 

1. Produce systems that users are less likely to need changed 
2. Contribute to the reduction of psychological complexity of code, making it 

easier to change when necessary 

The tool kit is easy to use, can be applied to large or small systems in any language 
on any equipment, and requires no purchase of hardware or software. 

113 





INTRODUCTION 

Maintenance costs escalate when software must be changed. 
Sometimes there are user-requested changes because the sys
tem does not meet the user's needs, and sometimes there are 
"bugs" because the systems and the individual program mod
ules composing those systems are not well structured. All 
changes, whether necessary to fix bugs or desired to improve 
or add features, are difficult when program code is psycho
logically complex. 

Quantifiable costs associated with software applications in
clude the following: computer resources used by the applica
tion; programmer staff time plus computer-resource costs ex
pended to maintain the application; and associated user time 
spent trying to learn and to use the end product. 1 The focus 
of this paper is on programmer staff time expended to main
tain the application. Maintenance will be defined as all 
changes required to keep a system running according to the 
user's needs, including 

• Corrections to programs necessitated by coding errors or 
misunderstanding of user requirements; 

• Changes to programs required owing to changes in envi
ronment or legal/regulatory changes not under the con
trol of the user; 

• Enhancements or optimizations that alter the processing 
environment, often including minor new features. 

Research performed in the case study of a large applications 
system has shown that the number of changes applied to a 
system and the psychological complexity (in particular, the 
misuse of branching instructions) of the code undergoing 
change both correlate positively with maintenance costs in 
terms of programmer effort. 2,5,19 The term psychological 
complexity, as used here, refers to those elements of pro
gramming style that make the resulting software difficult to 
maintain. 

This paper is written to suggest several aids for the reduc
tion of software maintenance costs. The first suggestion is for 
the data processing professional to employ certain metrics to 
estimate the expense of maintaining software. Software 
shown to be expensive to maintain may then be subjected to 
a break-even/payoff analysis for economic justification of a 
rewrite. When rewrites appear to be economically feasible, 
care must be taken so that the new system is indeed easier to 
maintain than the old. 

Many data processing shops continue to maintain produc
tion systems, despite high maintenance efforts, simply be
cause they work. It would be helpful to have a method of 
deciding just when psychological com:el_exity contributes 
enough to the maintenance costs to be economically un
feasible. There comes a time when, because of psychological 

A Methodology for Minimizing Maintenance Costs 115 

complexity due to poor initial program design, or due to many 
"patches," rewriting the program (or set of programs) is more 
economically justifiable than continuing to maintain it. 

In order to develop new systems and rewrites of existing 
ones that will have lower maintenance costs, a methodology is 
needed for designing with future maintenance in mind. Be
cause psychological complexity is causally related to mainte
nance costs, the methodology should provide a means for 
minimizing such complexity. Since it has been demonstrated 
that requests from the user for changes correlate significantly 
with maintenance costs, the methodology should also aim at 
maximizing user satisfaction with new systems and rewrites in 
order to reduce future service requests. 

WHEN TO REWRITE 

One method for deciding when to redesign existing computer 
applications involves deriving an economic break-even/payoff 
analysis using a five-step process: 

1. Track maintenance costs for a time period and then 
project future costs, using straight-line trend analysis. 

2. Measure the complexity of the existing code using a 
demonstrated metric. 3-5,20-24 This step does not con
tribute directly to the break-even/payoff analysis, but it 
does provide confidence that program complexity con
tributes to maintenance costs. 

3. Estimate cost of rewrites. 
4. Estimate costs for the maintenance of the new system 

after implementation. 
5. Prepare a break-even/payoff analysis. In this projection 

(Figure 1), maintenance costs for the present system are 
shown as a straight line. Total cost for the proposed 

1oo0;:'TO~TA~L ~CO~5T"':I!.N ~TH~OUS;!A!:!!;!ND5;"'O:!.F..!:DO~LL~AR::::,5 _____________ --, 

700 

500 

COMPLETION Of REWRITE _ -

100 ,,:: 

/ 
/ 

/ 

/ 

,)*-

/ 

- ....--: - BREAKEVEN POINT 

Figure 1-Time in months (assuming rewrite takes two people six months) 



116 National Computer Conference, 1983 

system is shown as a broken line with cost to completion 
of rewrite having a steep slope (it includes cost of main
taining the present system), and cost after completion of 
rewrite having a gentler slope since the new system will 
be easier to maintain. 

TOOL KIT FOR REWRITE 

The life of software systems is traditionally viewed as a cycle 
or sequence of iterative events. Recently, the life-cycle con
cept has come under fire. 6,7 This paper is not intended to pass 
judgment on the life-cycle concept-many versions exist, not 
all without merit. What is proposed here are a few techniques 
that we hope will reduce the costliness of maintenance. In 
order to describe the helpful tools, it is necessary to assume 
that the software to be maintained is written, not purchased, 
and that the development of that software proceeds in some 
order decreed by management. It is suggested that in order to 
minimize the number of post-implementation requests from 
users for changes, users be involved in setting objectives, and 
that production of output facsimiles and prototyping occur 
early in the development process. 

The assumption will be made that software writers' man
agement and the end users' management agree on the events 
that must take place to get the system up and running. Those 
events should be scheduled in a visual form (Gantt charts, 
Figure 2). The events win vary from project to project, but 

1. SOD: Sample 
Outputs 

* - * * 2. SOO: Data Flow 
Diagrams 

+ + + -

3. SOO: Policies 
(Interviews) 

lJ. -
4. SOD: Begin 

Dictionary 
c 

c 

5. RSP: Chapin 
Charts 

<> 

B. RSP: Program 
Abstracts 
0 

7. RSP: Design 
Walkthroughs 

$ 

B. RSP: Complete 
Dictionary 

x .... .... .... 
I JAN FEB MAR APR 

Start Date 

will necessarily include consultation with the user to describe 
system functions and software development. DP and user 
managements should meet before each major step to review 
the schedule. 

The major goal is inexpensive maintenance. The tools are 
recommended (a) to force users' participation in the design, 
which will cause them to request fewer changes later, and (b) 
to produce lucid code that requires less effort per change. 
They are: 

A 

c 

.... 

1. System requirements definition (SRD). 
Tool: Scheduling guideline 

2. System Design. 
Results in system design document (SDD). 
Tools: Output facsimiles or prototypes 

Data flow diagrams (DFDs) 
Policy statements 
Data dictionaries 

3. Internal Design. 
Results in Requirements Specification Package 
(RSP). 
Tools: DFD's of proposed system (from SDD) 

Approved output formats (from SDD) 
Policy statements (from SDD) 

c 

x 

AI. 

Data dictionaries (completed from SDD) 
Logic-flow charts 
Program abstracts 
Program design walkthroughs 

<> <> 

0 0 0 

x x x x 

... J. .... J. 
MAY JUN JUL AUG SEP OCT NOV 

<------------------> Target Date 

Figure 2-Gantt chart 



The methods and tools mentioned do not depend on team 
makeup or on computer-based tools. None of the tools are 
original with this paper. What is proposed here is the inte
grated use of the tools to meet the stated goals. 

Systems Requirements Definition 

The systems requirement definition (SRD) will not be cov
ered in depth in this paper because, except for the schedule, 
there are no specific tools recommended. The purpose of the 
SRD is to identify proposed objectives, define the project 
scope, define the organizational units involved, identify the 
end users, identify production or purchase approaches, and 
construct a rough schedule and costibenefit for each 
alternative. 

Costibenefit analysis has already taken place when the sys
tem is a rewrite. It is inherent in the break-even/payoff anal
ysis mentioned under "WHEN TO REWRITE." If the sys
tem is an entirely new development, the assumption is that a 
costibenefit study would be necessary for a go/no-go decision 
by management at this point, prior to any actual development 
effort. 

The schedule is not intended to be rigid as to dates. It is 
intended to identify the tasks to be performed, the parties 
involved, and the order in which the tasks will be performed. 
When reviews are held prior to the end of each phase (task), 
the remainder of the schedule can be reviewed and adjusted 
for reasonableness. 

Gladden warns that "system objectives are more important 
than system requirements ... concentrating on objectives can 
go a long way to prevent a system from 'evolving' into one that 
the user does not want or need. ,,7 The life-cycle wheel model 
of system development, which concentrates on viewpoints, 
stresses that " ... requirements analysis is viewed as a design 
activity from a user viewpoint. This design is synthesized from 
various (incomplete, inconsistent) user scenarios and other 
expressions of needs. The emphasis is on what functions the 
system is to perform, and how the system interacts with the 
users.,,8 

The SRD is, then, the project's starting point and the place 
where objectives are defined. 

System Design 

The ultimate degree of user satisfaction with a new system 
or rewrite is often determined in the early stages of analysis 
and design. It is recommended that intensive interviews be 
conducted with the user during this phase. Such interviews 
should concentrate primarily on net outputs-the part of the 
system that will be visible to the user after implementation. 
Users may have little interest in how data will be massaged to 
produce these outputs. 

System design: document components 

Careful users will want to know how the accuracy of the 
information contained in the net outputs can be guaranteed. 

A Methodology for Minimizing Maintenance Costs 117 

A system design document (SDD) should, therefore, contain 
the following elements: 

1. A brief description of the framework within which the 
proposed system will operate, including 
a. constraints imposed by the operating environment 
b. required hardware/software configuration 
c. allowances for future contingencies. 

2. Samples of proposed net outputs, such as report layouts 
and screens. 

3. Proposed formats for net inputs, showing how data will 
be captured at original collection points. 

4. Visual diagrams of data flows for the present system 
(either manual or automated) and the proposed system. 

5. Policy statements giving a decision method for each pro
cedure shown in the above diagram(s). 

6. Rigorous definitions of all data elements shown in the 
above diagram(s). 

System design: tasks 

Development of the SDD components need not be under
taken in the order given above. The SDD's development 
guidelines may specify tasks to be performed in preparing 
such a document, and the order in which they should be 
performed.9 The following is a brief description of each of 
these tasks. 

System design: tasks-describe system environment. At this 
stage, the system designer can recognize when the new system 
will exist in a physical environment that may impose con
straints on the design. The task during this phase should in
volve documenting the nature of that environment and identi
fying areas that might impose design constraints. 

System design: tasks-describe net outputs. Examples of 
proposed outputs can be produced rapidly without using 
actual applications software. The editor on any system can be 
used to produce a text file that, when copied to the line 
printer, will produce a facsimile report or screen layout. The 
main advantage of this approach is that content and format 
can be changed easily without modifying software. In addi
tion, the facsimile reports provide an immediate focal point 
for user interviews. Users who tend to be vague about system 
requirements can often be coaxed into being more specific by 
discussing information contained in the- new outputs. If the 
output formats are approved by the user before the system 
design begins, the result should be fewer design changes and 
service requests after implementation. 

If an installation has available the necessary tools (i.e., 
flexible database systems), it is strongly recommended that a 
prototype system be brought up at this early stage. "It is now 
recognized . . . that although the customer may state his re
quirements very firmly at the beginning, his perception of the 
problem begins to change as he begins to consider how the 
solution development ... is proceeding.,,10 Peters, Gladden, 
and McCracken and Jackson all recommend rapid proto-



118 National Computer Conference, 1983 

typing to combat wholesale requirements changes. 6,7,10 The 
remainder of the SDD is charged with demonstrating that the 
approved sample net outputs can be produced accurately. 

System design: tasks-describe net inputs. If the user is fa
miliar with existing inputs, it is probably not necessary to 
produce samples. There may be, however, implications in the 
above components of the design for new methods of data 
capture or even entirely new data elements to be captured. In 
this case, it is important to solicit user approval of new input 
formats such as data entry screens. The method for providing 
examples of proposed input formats can be the same as that 
for output formats-sample forms produced with a text editor 
form an obvious, simple manner. 

System design: tasks-produce data flow diagrams. For a 
visual representation of the flow of data between functions 
performed by a system, the use of the data flow diagram 
(DFD) is highly recommended. DFDs have been explained in 
Yourdon's structured analysis and design technique, and are 
described by Dr. Marco. 11 Basically, these diagrams consist of 
bubles, arrows, and parallel lines. The bubbles represent a 
procedure, the parallel lines represent a data store, and the 
arrows represent the flow of data between the procedures and 
data stores. The diagrams are ordered by degree of detail
the highest level (Level 0) contains only one bubble labeled 
with the system name and shows only net inputs to and out
puts from the system (Figure 3). The lowest-level diagrams 
show elementary procedures and data elements (Figure 4). 
One suggestion for the number of descriptive levels is seven, 
plus or minus two. The rule also applies to the number of 
bubbles or procedures per level. The diagrams should remain 
visually digestible, since they are the tool for user interviews 
in this phase. 

DFDs demonstrate for the user how net inputs will be trans
formed into net outputs; therefore they serve as a primary 
check on the accuracy and completeness of the outputs. This 
technique tends to minimize unnecessary or over-complex 
procedures and maximize user satisfaction. 

Each of the bubbles or procedures shown in the lowest-level 
DFD should have an associated policy statement that de
scribes the decision method proposed to perform the pro-

ORDERS 

~---j ABC ACCTG. 

WIDGET PROFIT /LOSS SYSTEM 

I 

I HI"" ,,"'L EMPLOYEES 

Figure 3-Level 0 data-flow diagram 

cedure. These policy statements should be expressed in struc
tured English or pseudo-code so that they are unambiguous 
yet still intelligible to the user (Figure 5). They should be 
developed in the interviews with the user so that they are, in 
fact, the user's poiicies. Each policy statement should corre
spond to a bubble on a low-level DFD. 

These statements of user policy should eventually become 
online documentation for production source-code in the form 
of prologues (abstracts) fo~ procedure modules. Initially, they 
serve as a guide to system design; later, they can serve as a 
maintenance aid. 

System design: data dictionary 

Each of the arrows in all of the levels of the D FDs will have 
a label. The SDD should include a "dictionary" defining each 
of these labels. The definition of a data label on a high-level 
diagram should be in terms of the labels on the diagram of the 
next lower level. At the lowest level, each label should also be 
defined as to how, when, and where that element will be 
captured. 

If the dictionary is complete and rigorous, it serves as a 
proof that the user's requirements, as expressed in the policy 
statements, can be satisfied using the data defined therein. 
Each definition should correspond to the level of the DFD on 
which it can be found as the label of a data flow. This also 
answers the designer's question, "what data do I need, and 
where can I find it?" 

Internal Design: Requirements Specification Package 

Once the SDD has been approved by the user, "internal" 
design can begin. Here, internal design will only address those 
elements necessary to develop low-maintenance software. 
The requirements specification package (RSP) components 
will include 

• Copies of the DFDs that identify program modules 
• Approved output (reports) 
• Data dictionary from the SDD 
• Policy statements from the SDD 
• Logic flow diagrams for each module (Chapin charts) 
• Program abstracts. 

The data dictionary may be revised during this phase of the 
project, and policy statements should contribute to the func
tions listed in the program abstract. 

Internal design: Chapin charts 

It is suggested that Chapin charts,12 Nassi-Shneiderman 
Structured Flowcharts,13 or the structured programming de
sign method (SPDM)14 be used to describe logic flow for each 
program module. The three are similar in philosophy, and any 
one can be used to bridge the gap between module need (basic 
requirements) identification and executable code. The docu
ment will be referred to here as a Chapin chart. 



A Methodology for Minimizing Maintenance Costs 119 

GIL COST FILE 

MIDGET 

t..-____ ....II (It) JEVEItIE - LAIQFI • CtWIiE-RATE COST - lJ...ABaA. SALARY-RATEl + IJ\IIoIJ-PEA-MI 

Figure 4-Levell data-flow diagram 

The lowest-level DFDs in the proposed system section of 
the SDD represent processes in bubble format. Usually, each 
of these processes identifies a program module, as well as the 
inputs and outputs. Policy statements in pseudo-code or in 
structured English accompany the DFDs. The combination of 

For each ABC Company General Ledger cost record 
pertaining to Widget Division: 

Add salaried employees and hourly employees to 
employee count; 

Add material cos ted to material-cos ted sum; 

Pass employee count and material-costed sum to 1.2. 

For each ABC Company Procurement record pertaining to 
Widget Division: 

Subtract from material-cos ted sum those purchase 
orders involving contract labor, resulting in 
overhead costs. 

Pass overhead costs to 1.2 for use in management 
report. 

Divide overhead costs by employee count, resulting in 
overhead-cost-per-worker. 

Update the work-in-progress data base with overhead
cost-per-worker. 

Figure 5-Sample policy statement 

inputs, outputs, and policy statements form the skeleton of a 
Chapin chart. If a database-management system is used, it will 
also have been defined in the SDD as "required software 
configuration" under the operating environment. If not, files 
or specific formats for data-transfer mechanisms must be 
specified prior to the construction of Chapin charts. 

The Chapin chart is based on this cumulative knowledge, 
sometimes with the addition of special processing algorithms. 
The reader is referred to the references for in-depth explana
tions of this logic-flow chart. 12, 13, 14, 15 The method, in essence, 
consists of visually representing a set of program building 
blocks that allow single entry/exit and strictly limit branch
ing, a practice known to increase psychological intelligibil
ity. The set of program structures includes SEQUENCE, 
IFTHENELSE, DOWHILE, DOUNTIL, and CASE. When 
used properly, the set of combined structures lends itself to a 
well-structured program guide where arbitrary transfers of 
control are impossible. Figure 6 is an example of a Chapin 
chart. 

The benefits of the Chapin charts are 

• Provision of a "GOTO-Iess" map to be translated direct
ly into a programming language 



120 National Computer Conference, 1983 

SELECT OVERHEAD COSTS F{)R WIDGET DIVISION 

ENTER 

READ FIRST GIL COST RECORD 

DO WHILE MORE GIL COST DATA TO PROCESS 

:-~DOE~ RECORD? 

Y~ NO 

ADD SALARI ED- EMPLOYEES TO 
EMPLOYEE- COUNT 

ADD HOURI.. Y - EMPLOYEES TO 
EMPLOYEE- COUNT 

NULL 
ADD MATERIAL-COSTED TO 
MA TERIAL-COSTED-SUM 

PASS EMPLOYEE-COUNT AND 
MATERIAL-COSTED-SUM TO 
REPORT ROUTINE 

READ NEXT GIL COST RECORD 

READ FIRST PROCUREMENTS RECORD 

DO WHILE MORE PROCUREMENT DATA TO PROCESS 

~s~ RECORD? 

YES NO 

~-::% P.O. ? 

YES NO 
NULL 

SUBTRACT CONTRACT-LABOR NULL 
FROM MA TERIAL-COSTED-SUM 
GIVING OVERHEAD-COSTS 

READ NEXT PROCUREMENTS RECORD 

PASS OVERHEAD-COSTS TO REPORT ROUTINE 

DIVIDE OVERHEAD-COSTS BY EMPLOYEE-COUNT GIVING OVERHEAD-COST-
PER-WORKER 

UPDATE WORK-IN-PROGRESS DATA BASE WITH OVERHEAD-COST-PER-WORKER 

EXIT 

Figure 6--Chapin chart 

• Provision of a document that graphically depicts logic for 
the purpose of review (peer review, team walkthrough) 

• Provision of a test-bed guide. I5 

It has been noted that Chapin charts are not devices that 
provide functional hierarchy, interfaces, or data flow. 14 The 
contention here is that there is no necessity that Chapin charts 
respond to those needs, since they are met by the DFD. What 
Chapin charts do well is control flow of executable code within 
a higher-level functional design. This toolkit provides the 
functional design via DFDs. 

Internal design: walkthroughs 

Approved DFDs showing processes (program modules), 
inputs, outputs, policy statements, functional hierarchies, in
terfaces, and data flows are available from the SDD phase; 
program-module logic design is graphically represented by the 
Chapin charts. Because of the importance of structuring pro
gram code for understandability and readability in the mainte
nance phase ("good" structure equals psychologically clear 
code and minimum branching), the Chapin charts should be 
subjected to a peer review before the coding phase. The re
view should not only insure the structure of the individual 
modules, but should double-check to see that elements are 

defined in the data dictionary, that the process will accurately 
perform what was intended in the higher-level diagrams, that 
the outputs conform to the early prototype specifications, and 
that a program abstract is present. The abstract would min
imally consist of 

• Purpose 
• Input (arguments/files/other) 
• Output (arguments/files/other) 
• Functions (10 or less) 
• Local variables 
• Subprograms called 
• Errors (fatal/non-fatal) 
• Standards violations. 16 

An example of a program abstract is in Figure 7. The purpose 
of walkthroughs is improved (low-maintenance) quality of the 
product. The value of walkthroughs shows up ultimately in the 
maintenance phase. "The inspection process shifts the discov
ery and correction of errors and defects from software's oper
ational period to the early design stages. Since the cost for 
software corrections during operations is many times the cost 
incurred in detecting problems during design, inspections pro
vide an unusual leveraging of costlbenefit over the entire life 
cycle of the software.,,17 Although a heavy commitment is 
necessary for the time of team members and moderator par
ticipation, other benefits beyond low-maintenance code are 

PROGRAM NUMBER: 

SYSTEM DESIGN NUMBER: 

56-311 

56 

DATA FLOW DIAGRAM NUMBER: 1.1 

PROGRAM NAME: SELECT OVERHEAD COSTS FOR WIDGET DIVISION 

AUTHOR: C. G. POND 

PURPOSE: DETERMINE OVERHEAD COSTS FOR WIDGET DIVISION 

INPUT: 1. GENERAL LEDGER COST FILE 
(EXTERNAL FILE NAME • D70129A) 

2. GENERAL LEDGER PROCUREMENTS FILE 
(EXTERNAL FILE NAME = D70101A) 

OUTPUT: 1. OVERHEAD COST REPORT 
2. UPDATED WORK-IN-PROGRESS DATA BASE 

FUNCTIONS: 1. FOR EACH ABC COMPANY GENERAL LEDGER COST FOR 
THE WIDGET DIVISION, EXTRACT EMPLOYEE COUNTS 
AND COST OF MATERIAL TO DATE. 

2. REDUCE THE MATERIAL COST BY THE AMOUNT OF 
CONTRACT LABOR. 

3. CALL A SUBROUTINE TO PRODUCE AN OVERHEAD 
COST REPORT, PASSING THE EMPLOYEE-COUNT, THE 
ORIGINAL MATERIAL-COST, AND THE MATERIAL 
COST REDUCED BY CONTRACT LABOR. 

4. UPDATE THE WORK-IN-PROGRESS DATA BASE WITH 
OVERHEAD COST PER WORKER. (REDUCED MATERIAL 
COST DIVIDED BY NUMBER OF EMPLOYEES.) 

LOCAL VARIABLES: MATERIAL-COSTED-SUM 

SUBPROGRAMS CALLED: 

OVERHEAD-COSTS 
EMPLOYEE-COUNT 
OVERHEAD-COST-PER-WORKER 

1. 56-312 
PRODUCE OVERHEAD-COST REPORT 

COMPILATION OPTIONS = COBOL5, EL=T, LO. 

ERRORS: NONE 

STANDARDS VIOLATIONS: NONE 

Figure 7-Program abstract 



accrued, such as "training and exchange of technical informa
tion among the programmers and analysts who participate in 
the walkthrough. ,,18 

CONCLUSION 

Use of this tool kit will not guarantee that the resulting system 
contains minimal psychological complexity and maximized 
user satisfaction. It is possible to misuse the tools. The in
tention of this paper was to explain some of the factors that 
cause software to be expensive to maintain, and to provide 
aids that may be useful in designing low-maintenance systems. 

REFERENCES 

1. Brice, L. "Existing Computer Applications-Maintain or Redesign: How 
to Decide?" Proceedings of the 1981 Computer Measurement Group Inter
national Conference, pp. ~28. 

2. Brice, L., J. Connell, and J. Taylor. "Deriving Metrics for Relating Com
plexity Measures to Software Maintenance Costs." Proceedings of the 1982 
Computer Measurement Group International Conference. Phoenix, Ariz.: 
Computer Measurement Group, Inc., 1982, pp. 134-141. 

3. Halstead, M. H. Elements of Software Science. New York: Elsevier North
Holland, 1977. 

4\. McCabe, T. J. "A Complexity Measure." IEEE Transactions on Software 
Engineering, SE-2 (1972), 1, pp. 308-320. 

5. Connell, J., and L. Brice. "Complexity Measures Applied to an Applica
tions Case Study." Fourth International Conference on Computer Capacity 
Management Proceedings, 1982, pp. 121-128. 

6. McCracken, D. D., and M. A. Jackson. "Life Cycle Concept Considered 
Ha.nnful." Software Engineering Notes, 7 (1982), pp. 29-32. 

7. Gladden, G. R. "Stop the Life Cycle, I Want To Get Off." Software 
Engineering Notes, 7 (1982), 2, pp. 35-39. 

A Methodology for Minimizing Maintenance Costs 121 

8. Yamamoto, Y., R. V. Morris, C. Hartsough, and E. D. Callender. "The 
Role of Requirements Analysis in the System Life Cycle." AFIPS, Pro
ceedings of the National Computer Conference Vol. 51, 1982, pp. 381-387. 

9. Brice, L., and F. Welch. Manual of Procedures and Standards. Adminis
trative Data Processing Division, Los Alamos National Laboratory, Los 
Alamos, N.M., 1982. 

10. Peters, L. "Relating Software Requirements and Design." ACM Pro
ceedings of the Software Quality and Assurance Workshop. Software En
gineering Notes of the ACM, 3 (1978), pp. 67-71. 

11. DeMarco, T. Structured Analysis and System Specification. New York: 
Yourdon, Inc., 1978. 

12. Chapin, N. "New Format for Flowcharts." Software Practice and Experi
ences, 4 (1974), 4, pp. 341-357. 

13. Nassi, I., and B. Shneiderman. "Flowchart Techniques for Structured Pro
gramming." SIGPLAN Notices of the ACM, 8 (1973), 8, pp. 12-26. 

14. Marca, D. "A Method for Specifying Structured Progra.'lls." Software En
gineering Notes of the ACM, 4 (1979), 3, pp. 22-31. 

15. Yoder, C. M., and M. L. Schrag. "Nassi-Shneiderman Charts-An Alter
native to Flowcharts for Design." Software Engineering Notes of the ACM, 
(1978), 5, pp. 79-86. 

16. Control Data Corporation. Final Report of the Aircraft Noise Prediction 
Program Phase II, (Contract No. NASl-13983), NASA, Langley Research 
Center, Hampton, Va., July 1978. 

17. Werner, F. L. "Software Inspections: Process and Payoffs." Computer
world, April 12, 1982. 

18. Yourdon, E. Structured Walkthroughs. New York: Yourdon, Inc., 1978. 
19. Chrysler, E. "Some Basic Determinants of Computer Programming Pro

ducitivty." Communications of the ACM, 21 (1978), pp. 472-483. 
20. Chapin, N. "A Measure of Software Complexity." AFIPS, Proceedings of 

the National Computer Conference, Vol. 48, 1979, pp. 995-1002. 
21. Zolnowski, J., and D. Simmons, "Measuring Program Complexity in a 

COBOL Environment." AFIPS, Proceedings of the National Computer 
Conference, Vol. 49, 1980, pp. 757-766. 

22. McTap, J. "The Complexity of an Individual Program." AFIPS, Pro
ceedings of the National Computer Conference, Vol. 49, 1980, pp. 767-771. 

23. Berlinger, E. "An Information Theory Based Complexity Measure." 
AFIPS, Proceedings of the National Computer Conference, Vol. 49, 1980, 
pp. 773-779. 

24. Zolnowski, J. "Taking the Measure of Program Complexity." AFIPS, Pro
ceedings of the National Computer Conference, Vol. 49, 1980, pp. 329-336. 





Quality assurance and maintenance application systems 

by BARBARA J. TAUTE 
Time Inc. 
New York, New York 

ABSTRACT 

Modifications to application systems in production can have a devastating effect on 
the environment if the changes are not handled correctly. A comprehensive quality 
assurance (QA) approach can help minimize this potentially harmful effect. This 
approach involves all groups: users, data processing center, applications pro
gramming, and quality assurance. 

The QA approach should address four areas: 
1. Phased approach 
2. Procedure flows 
3. Maintenance guidelines 
4. Implementation 
This paper describes the QA phased approach successfully developed at Time 

Inc. The phased approach consists of the definition and implementation of eight 
phases, envisioned in a circular life cycle. Emergency processing is considered 
separately. Procedure flows consist of diagrams and charts listing responsibilities of 
the participants. Maintenance guidelines contain helpful hints and checklists and 
provide direction to the participants. 

The benefits are noteworthy: The phased QA approach consolidates groups, 
forms a standard for maintenance procedures, and increases productivity. 

123 





Quality Assurance and Maintenance Application Systems 125 

INTRODUCTION 

Computer application software systems in production exist in 
a volatile environment. An environment is unstable when 
data, hardware, systems software, and usage are in flux. Envi
ronmental changes will probably create a need for modifica
tion to the application system itself. 

Production application systems are in high-risk environ
ments simply because they are in use. The user community 
expects and needs correctness to meet deadlines (in contrast 
to a system in development, which is not yet in the users' 
hands). Any change in a system can have an adverse effect on 
its operation. 

This paper will address a methodology for understanding, 
controlling, and benefiting the maintenance environment. 
The environment is best perceived as affecting four groups: 
users, data processing center, applications programming, and 
quality assurance. This approach document, developed by the 
Quality Assurance Department of Time Inc., continually re
flects the responsibilities of all four groups. Only through a 
combined coordinated approach encompassing the four 
groups can changes in production application systems be con
trolled and made manageable. 

TIME INC. ENVIRONMENT 

Time Inc., with headquarters in New York, is a diversified 
company encompassing publishing, forest products, and 
video. The Application Programming Department supports 
the development and maintenance of applications for the de
partments of Magazines, Books, SAMI (Selling Areas
Marketing, Inc.) and Corporate Staff offices. It is composed 
of 240 people, split mainly between Chicago and New York. 
A liaison role of user of record provides an application inter
face to the user department. The Quality Assurance De
partment provides methodologies and structured approaches 
to all departments. 

Because the people in applications programming were of 
varied backgrounds (multiple groups), disciplines (software 
packages to in-house development), experience levels (1 to 15 
years), and sophistication (hard coded assembler to test data 
generators) a need was perceived for a methodology to con
solidate these efforts. This methodology was to be created by 
the quality assurance team, which possessed an independent, 
experienced, state-of-the-art view for programming structure. 

The methodology was to address several areas. The first 
area was to pertain to maintenance systems, the next to devel
opment systems, the third to testing, the fourth to measure
ment of all processes, and the fifth to productivity. This paper 

deals with the first approach, that of maintenance systems, 
which is defined as follows. 

DEFINITIONS OF MAINTENANCE 

A maintenance application system is defined as being in pro
duction and in use by the user groups. Since maintenance 
(back end) was being organized first (before a development 
approach), the quality assurance department was not able to 
define a specific set of test, documentation, operation, recov
ery, or security requirements that would need to be met be
fore a system was officially considered to be in maintenance. 
This sort of requirement would compose the turnover criteria 
from a development effort. Since no standard existed, pro
grams showed varying levels of completeness in their pro
duction environment. The original design criteria no longer 
existed, and in many cases system documentation had not 
been kept up to date. Yet these systems were providing accu
rate, meaningful data and output results to the user de
partments. In order to include all systems in the approach, it 
was necessary to define maintenance as pertaining to any sys
tem in a production environment. 

The Quality Assurance Department, however, was able to 
influence the definition of a maintenance life cycle, It is de
fined to consist of eight structured, related phases with defi
nitive criteria and responsibilities shared by four groups 
(users, data center, application programming, and quality 
assurance) . 

MAINTENANCE STRUCTURED PHASES 

The maintenance life cycle (Figure 1) is represented as a circle 
with one phase leading into the next. Its eight phases refer to 
the following: 

1. Request phase-An expressed desire for a change to a 
system 

2. Estimate phase-A calculation of effort to complete the 
change 

3. Schedule phase-An identifiable release date planned 
for the change 

4. Programming phase-The modifications to a controlled 
source copy of the system 

5. Test phase-The verification that the change performs 
as expected 

6. Documentation phase-The modification to system, 
user, and run specifications 

7. Release phase-The replacement of the old system with 
the changed system 

8. Operation phase-The day-to-day usage of the system 



126 National Computer Conference, 1983 

8 8 

Figure 1-Maintenance life cycle 

Request Phase Definition 

A request for a change, whatever its form, initiates a pro
cess that will affect an existing production system. A change 
request is a request for an investment, since there will be time 
and therefore money spent by various groups. A change re
quest may occur for numerous reasons. If there are no change 
requests, the environment is stable; and if a system is not 
used, no changes are necessary. A system in production will 
by definition have changes made to it, because it is being used. 
The reason for a system change is often a function of the time 
a system is in use and is not peculiar to one system or another 
nor an indication of how poorly or well it was developed. 

Since changes can come from so many different sources 
(users, data processing center, programmer, manager, audi
tor), it is necessary to have a standardized format representing 
requests. It is not possible to evaluate changes or to assign 
priority without established criteria. A change request form 
helps pinpoint symptoms of a problem, level of need, and time 
of involvement; and appropriate levels of approval can be 
expressed and retained. 

In the environment at Time Inc., several change request 
forms were being used. The Quality Assurance Department 
consolidated the best portions of these forms to devise a new 
form for all groups. 

The completed change request form specifies the deliv
erable for this first phase. When it is completed, it is trans
mitted to the librarian. This transmittal initiates the next 
phase, the estimate phase. 

Estimate Phase Definition 

The estimate phase has its own significant steps. Upon re
ceipt of the change request form, the librarian assigns it a 

unique number. Then, if the change request concerns an ap
plication system error, the suspect error needs to be verified 
prior to estimation. It is hoped that this will help eliminate 
reported problems that are the result of nonadherence to 
ooerational orocedure, user misunderstanding, or invalid 
d~ta. Next, ~ person from Applications Programming needs 
to evaluate the change request and estimate the number of 
hours it will take to correct the problem. The project manager 
must aiways review this estimate for concurrence. The esti
mate must be as thorough and as accurate as possible, since 
this number will be used as the basis for a scheduling process. 
The estimate is also reviewed with the user of record. 

The process of internal reviews helps to eliminate incorrect 
estimates and permits several individuals to learn from the 
estimation process, rather than just a few. At Time Inc., levels 
of review established were based on fixed hours. These limits 
were refined as upper management modified their level of 
review requirements and as personnel became more confident 
in the estimate process. 

The completion of the estimate and review portions (includ
ing signatures on the change request form) determines the end 
of the estimate phase. The schedule phase follows. 

Schedule Phase Definition 

Functional enhancements compose a significant portion of 
the maintenance workload. In order to handle these changes 
as efficiently as possible from the standpoint of all depart
ments, a scheduled release concept is used. Releases of sys
tems are numbered and gi,ven predetermined dates based on 
their business cycle, such as every 60 or 90 days. Nonemer
gency changes are then assigned to a specific release number. 
Each release contains multiple changes and forms a new re
placement system. The advantages of this process are 

1. Consolidation of changes 
2. Increased stability of the production system 
3. Reduction of training requirements 
4. Better planned and managed workloads 

The change requests provide the basis for a project tracking 
system. A summary entry for each outstanding change forms 
the agenda for a meeting of all four departments. Periodical 
sessions, called Change Control Board meetings, are held to 
discuss the various needs and priorities of groups. After the 
meeting the project tracking system and the change request 
form can be updated with a scheduled date and release 
number. 

When a sCiledliled release accommodates multiple changes, 
it represents many added hours of effort. There is an increase 
in the risk of malfunction for that release. Therefore an ap
proval process similar to the review process in the estimate 
phase must be followed. This process helps guarantee that 
management will maintain proper awareness of releases of a 
predefined magnitude. 

At Time Inc. the process of scheduled release was a new 
one. There was initial skepticism about its success until one 
group installed this process, with close guidance. The process 



Quality Assurance and Maintenance Application Systems 127 

was an overwhelming success: Users were pleased to have 
expected dates for changes, requests were dealt with and not 
put aside because of time commitments, and application pro
gramming was favorable to fewer releases in number. A 
3-month release cycle was initially established, but this was 
ultimately changed to a 2-month cycle to be more responsive 
to the natural business cycle. 

The assignment of a release date and time frame for a 
change marks the completion of the schedule phase. The next 
phase is the programming phase. 

Programming Phase Definition 

Modifications of application systems in production differ 
from changes in systems in development, since production 
systems are currently operating as an integral part of the user's 
business. It is essential to insure that modifications are being 
made to the current operational version of a system. Thus, a 
procedure to control the source should be followed. The pro
gram phase consists of creating a test version of the controlled 
production source code of the system, making the program
ming changes according to the approved design, and initiating 
the test process and updating the documentation. Associated 
version numbers and dates will help guarantee that the proper 
source code files are being modified. A program log at the 
start of each program will help to identify the changes and 
ease the next modifier's job. While modifying the test version, 
care must be taken to maintain the integrity of the production 
system. Files can be lost or data can be extensively altered if 
the integrity of the systems is compromised. In addition, the 
programmer must be cautioned to make only authorized 
changes. When a segment of code is opened up, it is not the 
time to make a "nice little fix." These fixes can be disastrous 
(in error), can cause extra test time (invalidating estimates), 
or can just be undesirable (unneeded enhancement) to the 
users. 

At Time Inc. various existing support systems (SLIM, 
PANV ALET) required the retention of varying source copies. 
An attempt to consolidate these was not deemed advisable, 
because of varying form as well as location (varying cities, 
varying locations). Therefore, all groups agreed upon a min
imum number of storage repositories and upon adherence to 
defined control procedures. A long-range paperless re
pository is currently being planned. 

At the conclusion of the programming phase, a set of pro
gram and system changes exist. This marks the beginning of 
the test phase. . 

Test Phase Definition 

Testing of a production system is one of the most critical 
and important phases of the entire change process. Testing 
helps insure that the replacement system will function prop
erly and not disrupt the user environment. The quality of 
testing is a function of both the thoroughness of the test plan 
and the quality of the test data. The test plan should be 
comprehensive and should include unit testing, integration, 
and system testing of the changed elements and their inter-

faces. Good test data start with a good test base, which is kept 
current as production systems change. If a test base does not 
exist, create one. Regression testing (verifying changed sys
tems run correctly with known data) can only be accomplished 
through maintaining a controlled test set. 

The Program Manager has the ultimate responsibility for 
the correctness of system changes, but other groups may also 
become involved. Often users will test for functionality, and 
the data center may verify via parallel runs. This involvement 
can provide further confidence in system integrity. 

At Time Inc., through the initiation of this methodology, 
the programmers were made aware of the importance of keep
ing a good test base to achieve time savings, cost savings, and 
accuracy. 

The completion of the test phase is evidenced by correct 
operation of the changed program and by a test approval 
signature on the change form. Prior to a system going live 
(after a correct test run) documents must be updated. The 
next phase discusses the documentation issues. 

Documentation Phase Definition 

Three forms of documentation are considered for mainte
nance systems: system, user, and run. 

Since documentation must be accomplished before the sys
tem is released to production, it is therefore represented in the 
life cycle immediately before the release phase. 

System documentation is maintained to help a programmer 
learn a system and its elements. This information describes 
the system in its past phases (history) and its present state and 
is used as the basis for future changes in the system. These 
items, at a minimum, should be continuously maintained: 
high-level system flow, system functional description, self
documented program source compilation listing, and docu
mentation describing data flow. System documentation 
should be kept in an accessible but secured library area with 
a checkout procedure. The documentation should be re
trieved by the programmer or analyst, updated, and replaced 
in the library. The amount and level of detail for controlled 
documentation must be maintainable, since obsolete, incor
rect documentation is more confusing than no documentation 
at all. 

User documentation should be composed of user manuals, 
error lists, and functional descriptions for the use of the sys
tem. A change in a system may very well change the way the 
system appears to the user. An increase in functions can in
crease the capabilities of the system. Remember: If users do 
not know how to use the system, they cannot use it and will 
not use it. Any change in a system should be evaluated for the 
possible necessity of correcting or updating user documen
tation. These modifications to the user documentation should 
be made before the system is released. 

Run documentation is the combination of materials (Job
Procedures, JCL, restart/recovery instructions, etc.) required 
by the data processing center to operate the system. There
fore, the minimal requirements need to be set by the data 
center. Often a system change will result in some modification 
in the way the system is run. This means that existing oper-



128 National Computer Conference, 1983 

ating instructions should be chap.ged at the time of release. 
If the data processing centers have standards or procedures, 
these should be followed for form and content of run 
information. 

Reviews by the project manager or systems analyst can 
help guarantee that all documentation is complete. The user 
of record should help determine if user documentation is 
thorough and clear. 

Training may not be required for reiativeiy smaii system 
changes, but it is certainly necessary for larger ones. If there 
is a functional change, users need to be retaught how to use 
the function. New operating procedures may need to be 
taught to the data processing center. The type and amount of 
training is very system-dependent. The development of good 
documentation can facilitate this training process. 

At Time Inc., documentation levels varied considerably 
among applications programming groups. Some groups had 
required comprehensive documentation, and very detailed 
user manuals were found to exist. For others, the manuals 
were out of date and had not been maintained. One data 
center had existing standards; for another they were still in 
development. The introduction of this methodology helped to 
standardize all documentation. 

The completion of the documentation phase is evidenced by 
signoffs on the change request form and in the tangible docu
ments themselves. The subsequent phase is the release phase. 

Release Phase Definition 

The release phase is the natural last step of the change 
process as well as the most critical step in the life cycle of a 
change. It is at this time that users become excited about the 
increased functionality that exists, programming is enthusi
astic about their system release, analysts become concerned 
about the unforeseen impacts of the change, and the data 
processing center looks for a clean, easy installation of the 
changes. This critical period can be greatly eased by a well
controlled and well-communicated release procedure. A pre
release review conducted by the Quality Assurance Depart
ment with the participation of all four groups can ease this 
process. Quality assurance should verify the following: 

1. System installation readiness 
2. Adequate system testing 
3. Adequate approval testing 
4. Completeness of documentation 
5. Installation requirements specified 
6. Transmittal form supplied 

Once these characteristics are verified, the system can be 
considered ready for release to production. These criteria 
should be presented punctually for review so that the review 
does not postpone the release process. After the review, the 
system is officially turned over to the data processing center, 
and the user is informed that the system is ready for use. 

A controlled release process insures the definitive release of 
systems. In the absence of this process, systems may never 
officially be turned over to production but continue to be run 
as tcst systems. This can lead to multiple versions and confuse 

users. At Time Inc. this controlled process eliminated some of 
these redundancies and solidified the release process. 

The turnover to production marks the completion of the 
release phase. This is signaled by the running of the pro
duction jobs by the new system, and also officially by the 
signatures on the change release transmittal. The last phase is 
the operation phase. 

Operation Phase Definition 

Operation is the day-to-day activities of any system. Even 
though a system is stable, various elements can cause the 
erosion of a system solely through its use. Not all these ele
ments can be planned for or controlled because of the vast, 
unknown combinations of actions that can occur. What is 
helpful, however, is to plan for an orderly description of the 
event if an error does occur. Users and the data processing 
center must be trained and educated about the functions and 
use of the system. The more operational aids written into and 
about the system, the more closely the environment can be 
handled by the users and the data processing center, and the 
less programmer assistance will be necessary. Testing should 
be planned. It is costly, but remember that thorough testing 
can improve the systems operation. 

After the system has gone through one complete pro
duction cycle, the four groups should convene and conduct a 
postrelease review, led by the project manager. 

A system in operation runs until it is outdated, is too diffi
cult and costly to support, no longer functionally serves its 
purpose, or needs extensive changes. A change leads back to 
the request phase; a need for a rewrite leads into a new system 
development process. 

As in most companies, Time Inc. has numerous systems in 
production and several in development. This process helped 
all groups by controlling the maintenance process and defin
ing its components. 

A phase included separately is emergency processing. Be
cause it is treated in a unique fashion, the process should be 
discussed by itself. 

EMERGENCY PROCESSING 

Every attempt should be made to keep emergency releases to 
a bare minimum. In fact, the by-product of a well-controlled 
maintenance cycle ought to be the practical elimination of 
emergency releases. However, they still exist in the real world 
and therefore must be planned for. An emergency is a change 
of such importance or impact it must be considered immedi
ately and out of the normal maintenance structure. Emer
gency processing expressed for the eight phases is described 
below. 

The emergency request phase can be originated by a change 
request form or a "midnight" phone call. A change request 
form is completed as soon as possible to record all work. 

The emergency estimate phase follows the standard struc
tured process if the emergency change does not need an imme
diate fix. The programmer or analyst must immediately evalu
ate the change, if it is a highly critical fix, and proceed directly 



Quality Assurance and Maintenance Application Systems 129 

to program and test. This can apply to both a temporary and 
a permanent fix. If the correction cannot be accomplished 
rapidly, a manager's approval is necessary. If the permanent 
fix must be made during extended working hours, the same 
phases should be followed; but the time can be compressed and 
the modifications can be installed outside the maintenance 
release. 

The schedule phase for emergency problems falls outside the 
scheduled release concept. The schedule and time will depend 
on the complexity of the change. 

The program phase is no different for emergency problems. 
A source still needs to be extracted from a library and modifi
cations made to it. 

The test phase is perhaps more important for emergency 
problems. Since a bad situation already exists, extreme care 
must be taken to make sure the fix improves the situation 
rather than aggravating it. For changes to be installed immedi
ately, all groups involved should approve the testing prior to its 
release. 

The emergency documentation phase must be conducted in 
the same manner. However, emergency changes may require 
different timing. Temporary documentation may need to be 
developed before the permanent updates are released. 

The emergency release phase will be under control of the 
data processing center once the proper approvals are received. 
The transmittal remains the same. 

The emergency operation phase follows the same guidelines 
once the emergency fix is in place. 

Thus, the description of the phases and the emergency phase 
give an understanding of the cyclical nature of maintenance 
systems. 

PROCEDURE FLOWS 

A visual representation of the phases of maintenance is best 
provided through diagrams and responsibility charts. The for
mat as shown in Figure 2 is used to describe visually the func
tions of the participants. The action column briefly describes 
the event in English text. This event is represented by a symbol, 
such as a listing, tape, or paper form, which is placed beside the 
heading of the participant. Lines drawn connecting the sym
bols indicate multiple participant input or output. In this way 
all interfaces are shown in a clearly serialized fashion. A chart 
should be constructed for each phase of the maintenance ap
proach. The level of detail is optional, depending on levels of 
need for anyone particular group or desired summary level for 
another. This form of phase representation clearly identifies 
each participant group's activities and their interface groups. 
The second portion shows the responsibilities of the partici
pants. Each title is listed and English text used to delineate 
their activities during each maintenance phase. A set of pro
cedure flows was constructed for Time Inc. 's environment. 

GUIDELINES 

Guidelines provide procedures for handling various aspects of 
the maintenance process. These guidelines should be some
what flexible in order to encompass subsequent suggestions or 
considerations for the maintenance process. They should not 

PROJECT MANAGER 

ANAL YST!PROGRAMMER 

DATA PROCESSING 

CENTER 

QUALITY ASSURANCE 

Figure 2-Procedure flows 

be hard-and-fast or demanding rules. As with any guidelines, 
they are not meant to be a replacement for good judgment. In 
many cases checklists are provided to help participants in
crease their level of understanding about their responsibility 
for the phase. In other cases, helpful hints and known areas of 
concern are identified for the participants. A set of guidelines 
for Time Inc. 's environment was constructed. 

IMPLEMENTATION 

For a methodology to be successful, planned action and atten
tion must be given to its installation. At Time Inc. a separate 
document was produced that addressed the implementation of 
the maintenance approach. Before the approach was imple
mented, program control library , automated tracking system, 
move to production procedures, and required system docu
mentation were addressed. 

The implementation document itself had the following 
chapters: 

1. Introduction 
2. Installing the Procedure 
3. Training the Participants 
4. Monitoring the Effort 
5. General Installation Schedule 

SUMMARY 

A controlled, phased maintenance approach can simplify and 
assist in the delivery of timely, correct versions of applications 
systems software. This process is defined as a circular life cycle 
with the collaboration of four groups to insure its success. 

Time Inc. has defined a methodology for its environment 
and is in the process of a successful installation and imple
mentation of the procedures. 





Human investment techniques for effective 
software maintenance 

by NICHOLAS L. MARSELOS 
Western Electric Company 
Lisle, Illinois 

ABSTRACT 

This paper presents methods for improving the maintenance of software by address
ing the psychological issues that impact on software maintenance personnel. The 
emphasis in this paper is on making software maintenance developers more effec
tive through goal setting, by using team-building approaches, through support 
personnel, and by using skill profiles to plan for their technical growth. 

131 





INTRODUCTION 

Today everyone recognizes the problems in software mainte
nance. Over half of the people now developing software are 
involved in maintaining it. This absorbs a great deal of the 
energy and creativity that we have in our software-develop
ment community. With increasing emphasis the question is 
being asked, "What can be done to solve this problem?" 

Unfortunately, the difficulties in software maintenance are 
not the result of a single problem, but of many. Many single 
solutions have been employed to make software-maintenance 
developers more effective. Most of these have been technical 
solutions that help the software-maintenance developer de
sign or program or control the software product more effec
tively. There has, however, been a real lack of emphasis on 
the human investment in software maintenance. Although the 
technical solutions are beneficial and important, the real gains 
in improving the productivity and effectiveness of software
maintenance developers are attained by improving their mo
tivation. This paper focuses on the psychological issues that 
plague software-maintenance developers. It offers multi
faceted solutions that, when applied, will improve their mo
tivation and provide many other benefits to their companies. 

MAINTENANCE IS A MULTIFACETED ACTIVITY 

The technical nature of software maintenance is a well-under
stood problem. The software-maintenance developer per
forms a variety of activities. These include defect correction, 
feature addition, and working with users. The software main
tenance developer must also keep current on the system and 
support environment in which his software product operates 
in order to change the product as required by changes made 
in the environment. 

The software maintenance developer must constantly use 
some of his creative energy to understand and get around the 
constraints of the software product he or she is maintaining. 
This product is usually poorly documented and in many cases 
written in an unstructured and very difficult to change man
ner. The software maintenance developer must also spend 
part of his or her time dealing with the user in a variety of roles 
that may include trainer, consultant, and complaint handler. 
All of this is usually done with time pressures resulting from 
very short development schedules. 

These parts of the software-maintenance developer's job 
are well understood, and many solutions have been offered to 
help in these areas. But there is an entire area in which very 
few solutions have been offered, and which creates more sig
nificant problems for the software-maintenance developer. 

Human Investment Techniques 133 

Psychological Issues of Software Maintenance 

The software-maintenance developer is in a position with a 
great deal of psychological pressure. This pressure comes 
from a variety of sources. One source is the feeling of being 
"stuck" in the job of maintaining a specific software product. 
Often developers feel that management is indifferent to their 
problems. The management passes down the message "Don't 
make waves, just get the job done." The management's atti
tude may be reflected in their lack of interest in the education 
and personal growth of the software-maintenance developers. 
This makes software-maintenance developers feel like second
class citizens in the organization. 

The evolution of software maintenance has resulted in an 
environment of independent islands. Each island supports 
one or a few software-maintenance developers working on 
their specific product, unattached and uninvolved with much 
of the rest of the development organization. In this environ
ment, the software-maintenance developer feels unsupported 
and that the job rests solely on his or her shoulders. 

The psychological pressures on software-maintenance de
velopers has a demotivating effect. Over a period of time, 
their productivity begins to diminish and this has bad effects 
on the cost and quality of the software products being main
tained. 

Administrative Problems 

The administrative problems of software maintenance as 
seen by management revolve around the issue of keeping cost 
to a minimum. This cost directly correlates with the number 
of people involved in maintaining the software products. Man
agement is faced with the problem of optimizing to the mini
mum number of software-maintenance personnel that can 
keep software products maintained in a healthy way. How
ever, this often creates the alienation and morale-lowering 
feelings experienced by software-maintenance developers. 

The rotation of software-maintenance developers to differ
ent assignments and the ability to provide backup for them is 
often a serious administrative problem. This problem stems 
from the long-learning curve required by the software mainte
nance developer to effectively maintain the software product. 
The lack of the effective documentation, which is common to 
most software products, is a major contributor to the prob
lem. In addition, the skeleton forces often put on mainte
nance projects makes it virtually impossible for maintenance 
personnel to back each other up on systems effectively. 



134 National Computer Conference, 1983 

MULTIFACETED SOLUTIONS TO THE 
MAINTENANCE PROBLEMS 

The overall effect of the administrative problems in software 
maintenance is to demoralize the software-maintenance de
veloper and to frustrate management. These problems have a 
negative impact on the software product, which over a period 
of time begins to degenerate. Software management sees a 
iarge investment siowiy dwindling away with little control on 
their part to effectively reverse the process. The software
maintenance developers feel pressed in the position of too 
little support and too few resources to do the job effectively. 

A key factor in improving the software-maintenance devel
opers' productivity and quality rests in motivating those de
velopers. An environment must be established in which the 
software-maintenance developers feel supported and can pro
ceed to do their job in the most effective way. This takes a 
commitment by management. It also requires a cultural 
change that is first initiated by defining the organizational 
objectives, and then enhanced by creating a supportive envi
ronment that meets the psychological needs of the software
maintenance developers. 

Goal-Setting for the Organization 

One of the most important needs in any organization is to 
have well-defined goals in which everyone in the organization 
supports. Software maintenance has its own set of goals. 
These goals can conflict with each other, as indicated in the 
experiment by Weinberg. 1 Table I identifies the goals and the 
negative effects of those goals. 

Software-maintenance goals must be set, then ranked to 
avoid conflicting goals. As Table I shows, setting the goal of 
timeliness, that is getting the products out on time, may jeop
ardize the efficiency and maintainability of the software prod
ucts being developed. This is true whether the products are in 
the initial development stage or in the maintenance-develop
ment stage of their life cycle. Table I also shows that an 
organization both placing emphasis on timeliness and de
manding high maintainability puts tremendous pressure on 
the software-maintenance developer, since these two goals are 
in direct conflict with each other. It is therefore important not 

TABLE I-Goals of Software Maintenance 

Goal 

Timeliness 

Operational efficiency 

Customer satisfaction 

Minimum costs 

Improve maintainability 

Negative Effects 

Inefficiency in operation 
Jeopardize maintainability 
Increased development costs 
May not be user friendly 
Development longer 
Greater resources required 
Schedules shortened 
Better project planning required 
User satisfaction can suffer 
Schedules longer 
More resources required 
More emphasis on documentation 
More emphasis on design 

only to establish the goal or goals that the organization would 
like to achieve but also to rank those goals to minimize 
conflicts. 

The process of establishing goals for the organization has to 
begin with management. The management should sit down 
and decide what goals they really seek, whether it is to have 
customer satisfaction or improved maintainability or timeli
ness of its products. The goals may be global to the organiza
tion or modified for each project. Once the goals are selected, 
they should be ordered in terms of priority, the most im
portant, the next most important, and so on. Once this list is 
created, it should be checked to make sure that conflicting 
items aren't adjacent. If they are, the management must then 
decide which is the most critical item of the two and move the 
conflicting item down on the priority list. Finally, the entire 
management must support these goals. 

After the goals are well defined and written, everyone in the 
organization must be informed what the goals are, and their 
support must be promoted. This can be done by having meet
ings of management and the software-maintenance develop
ers. These meetings should be used to stress the importance 
of these goals to the organization and to encourage sugges
tions on how best to achieve the goals. 

The success with which these goals will be accepted depends 
on whether achievement of these goals is rewarded. The re
wards can be of two forms. First, there must be recognition 
awards. These are publicized awards for software-mainte
nance developers who achieve the goals established by the 
organization. For example, if timeliness is a specific goal, then 
those developers that bring their products out on time would 
receive recognition for their accomplishments either in the 
organization's news bulletin or in memoranda. Second, there 
should be substantive awards given for achievement of the 
goals. These include pay raises and promotions or any other 
form of substantive award. In all cases, it should be made 
common knowledge that the award has direct correlation with 
achievement of the goals set by the organization. 

When goals are established and promoted in such a way, 
they will have a profound effect on the cultural aspects of the 
organization. The software-maintenance developers will be 
more motivated once they have clearly in mind what the or
ganization considers important in the performance of their 
activities. This will give the software-maintenance developers 
objectives to direct their energies toward. It will not, however, 
set up the type of supportive environment that is necessary for 
them to be effective in achieving their goals. For that, a more 
supportive team environment must be created. 

Instituting Team Consciousness 

Most software-maintenance developers are put in a situ
ation where they have few people to rely on for support. New 
project developments often have several team members work
ing in concert to complete the project. When the project is in 
its maintenance cycle, only a skeleton force, usually just a 
single individual, will maintain the project. The software
maintenance developer is left without having the benefit of 
sounding boards or other people's expertise to resolve prob-



lems. From a management perspective, this is necessary to 
keep the cost of maintenance low. There are, however, ways 
to solve this problem without substantially adding to the num
ber of software-maintenance developers. This can be done by 
creating teams that perform specialized functions which sup
port the software maintenance developer. 

Augment Groups 

Augment groups are informal teams chartered to propose 
solutions to problems or to suggest improvements for the 
organization. They are founded on the concepts employed in 
quality circles now popular in Japan. They differ from quality 
circles in that they are populated by professionals and that 
they can apply to any specific goal that the organization seeks. 

The charter of an augment group is implied by its name. 
The name and charter of the group should be chosen so as to 
be directed to a specific organizational goal. For example, 
there could be productivity groups or user-relationship groups 
or more-effective-documentation groups. Each group would 
be chartered to look into problems relating to one specific 
area. 

The process of organizing and conducting these groups is 
now well defined in the literature pertaining to quality circles. 2 

The groups should be formed on a volunteer basis. Software
maintenance developers should join the groups that most in
terest them. Several groups can be established within the or
ganization. In the case of multiple groups, a facilitator or 
coordinator should attend the group meetings to ensure that 
there is no significant overlap in the activities or the solutions 
of the groups. 

Augment groups in the area of software maintenance have 
to perform two vital functions. First, they offer an opportunity 
for some of the organization's problems to be addressed in a 
creative fashion; second, they give the software-maintenance 
developers an opportunity to participate in a team effort. The 
first benefit is one for the entire organization. Very often 
augment groups suggest substantial improvements that save 
the organization money or improve the productivity or quality 
of its products. The second benefit of augment groups is to 
provide a vehicle for the exchange of information among soft
ware maintenance developers. This gives them a feeling of 
team involvement even though their normal daily job might 
isolate them. 

Peer Review Units 

Two of the major problems facing software-maintenance 
developers are the lack of support in ensuring that a product 
they have developed is of good quality and will work effec
tively and second, the lack of backup personnel to relieve the 
load in pressure situations. Both of these problems can be 
relieved by the use of peer review units. A peer review unit is 
a group designated to review the work of the members within 
that group. The product can be the design documentation, the 
analysis documentation, or the program code itself. The 
group has a permanent membership. The membership is cho
sen to achieve the compatability conducive to fostering "ego-

Human Investment Techniques 135 

less," or defensiveless, participation as described by Wein
berg. 3 The review process could be conducted as a structured 
walkthrough. The review should have some formality, as de
scribed by Yourdon.4 At the minimum, it should include a 
signoff sheet to indicate that the reviewers have accepted the 
product being reviewed. 

The value of peer review units is in the improved quality of 
the program products being developed. The units also provide 
a backup situation by having the reviewers learn about the 
different systems that are involved. The results of field trials 
indicate that peer ratings of programs can be productively 
nonthreatening, and serve as incentives for programmers to 
produce higher quality code. 5 

Application Area Groups 

Another type of group that can help in the communication 
and information and the support of software-maintenance de
velopers is the application-area group. These are groups such 
as user-interface groups, or maintenance-developer groups, 
or birds-of-a-feather-type groups that work on problems or 
exchange information that is of common interest to the group. 
The group meets periodically to disCllSS either common prob
lems or solutions, or to present new features or ideas, or to be 
used as a sounding board for activities or plans within the 
organization. 

These types of groups are the easiest for an organization to 
establish. They are conducted as simple and informal sessions. 
They offer the software-maintenance developers an oppor
tunity to exchange information and experiences. If users are 
involved, it provides a mechanism in which the software
maintenance developers and the users can improve their re
lations by gaining a better understanding of each others' prob
lems and points of view. 

Improving the Effectiveness of the Maintenance Personnel 

The most significant qualification of software-maintenance 
personnel is that they have the technical capability to perform 
their job. This requires a well-planned training program. An
other very important aspect of training is that the software
maintenance developer feel they are personally growing in 
their technical expertise and are keeping up with the state of 
the art of their profession; (the substantially high need for 
growth by software professionals was shown by Cougar and 
Zanacki6

). Both of these are also important to the organiza
tion. Obviously, if the software-maintenance developers can
not cope with the technical aspects of their job, the product _ 
they are maintaining will suffer. If on the other hand, the 
software-maintenance developers have a strong desire to grow 
technically and that desire isn't met by an effective program 
for personal growth, then their morale becomes low and their 
productivity is negatively affected. 

The training of software-maintenance developers must be a 
well-planned and controlled activity. The first step is to under
stand the skills that the software maintenance developers al
ready have. This can be done by developing a profile of the 
skills they have acquired through education and on-the-job 



136 National Computer ~onference, 1983 

experiences. Next, the organization should profile the skills 
necessary for various jobs. Finally, the organization should 
profile the educational or training vehicles that can teach 
those skills. With this information, it's possible to develop an 
educational plan. This plan can be used for the rotation of 
software-maintenance personnel and also for planning their 
personal growth and training in a direction that benefits them 
and is suitable for the organization's needs. 

Support Personnel 

Many of the activities of the software-maintenance devel
oper are of a low-level clerical nature. These are repetitive 
and time-consuming activities that diminish the software
maintenance developers' overall effectiveness. Many of these 
jobs, however, can be delegated to support personnel. 

Software support personnel benefit the software-main
tenance developer. They perform functions at various levels 
depending on their own abilities and expertise. These can 
range from simple data-entry jobs to performing the software 
testing. A more skilled helper can provide the first-line inter
face with users by handling some of the simple operations and 
questions needed to support users. 

The organization will also benefit from having software 
support personnel. First, it reduces the cost of software main
tenance by making the software-maintenance developers 
more effective. It allows the software maintenance developers 
to have more time for their specific activities and relegates the 
clerical support work to a lower-salaried individual. The pres
ence of software support personnel also enforces a certain 
level of documentation: the documentation needed to help 
them do their job. Second, they provide continuity for the 
organization when new software-maintenance developers be
gin to maintain the product. Finally, a software assistant can 
be shared by several software-maintenance developers, pro
viding added cost savings to the organization. 

Software-maintenance developers can also be helped by 
expert technical support. This can be instituted by circulating 
a list of the persons in the organization who are most knowl
edgable about specific areas, for example, job-control lan
guage or program languages. The function of technical sup
port experts is to answer inquiries about specific problems in 
their particular areas of expertise. This can be done by setting 
up expert tables where maybe for an hour or two every day the 
expert would sit and field all questions. 

The use of technical experts within an organization works if 
the organization actively supports the policy of getting the job 
done in the most expedient and effective way. This means that 
the organization must discourage the not-invented-here syn
drome and must encourage software-maintenance developers 
to use their innovativeness to meet the organizations' stated 
goals and not simply waste their energies on problems where 
they lack expertise. Rewards must be established for both the 
technical support person and for those who seek his or her 
help. 

CONCLUSION 

Software-maintenance developers often find themselves in an 
unrewarding and stress-filled job. They may feel ignored by 
their management and alienated from the rest of the organiza
tion. They may suffer from not having a full understanding of 
the goals of the organization and from the lack of support 
personnel to help them do their job effectively. They may 
have the feeling that they are stuck in their jobs and limited 
in their professional growth. 

This paper describes several approaches that can be applied 
to making software maintenance developers more effective. 
The approaches deal with the psychological aspects of soft
ware-maintenance developers. The emphasis is on making 
them feel more a part of the organization and giving them 
more effective support. By using these approaches, the 
software-maintenance developer's motivation can be im
proved remarkably. Only when this is done is it possible to 
gain the maximum benefits from the technical tools and tech
niques for improving software maintenance. 

REFERENCES 

1. Weinberg, G. M., "The Psychology of Improved Programming Perfor
mance," Datamation, November 1972. 

2. "Quality Circles in EDP," System Development, July 1982, Vol. 2, Number 
5. 

3. Weinberg, G. M. The Psychology of Computer Programming (1st Ed.). 
London: Van Nostrand Reinhold, 1971. 

4. Yourdon, E. Structured Walkthroughs (2nd Ed.). New York: YOURDON 
Inc., 1970. 

5. Schneiderman, B. Software Psychology (1st Ed.). Cambridge, Mass.: Win
throp Publishers, 1980. 

6. Cougar, J. D., and R. A. Zanacki. "What Motivates DP Professionals?" 
Datamation, September 1978, pp. 116-123. 



Structured software maintenance 

by G. R. EUGENIA SCHNEIDER 
Naval Weapons Center 
China Lake, California 

ABSTRACT 

Many books are written about structured design and programming, but never about 
structured maintenance. True structured maintenance comprises four functional 
roles, called the manager, librarian, archivist, and programmer. The manager man
ages. The archivist protects contents of computer files and stores information about 
these files in an archive library. The librarian organizes and stores software docu
mentation in the form of a program documentation package. The programmer, of 
course, programs, using versions of the archive and library documents with slightly 
altered contents, and records day-to-day activities in the programmer's notebook. 
A special tool used by programmers is emergency takeover, which is a procedure 
for taking maintenance control of a new program. 

137 





INTRODUCTION 

In the universe generally depicted in the literature, software 
is carefully designed, written, tested, documented, used for a 
time, and then replaced by more up-to-date software created 
in the same way. Articles, books, and training programs have 
proliferated in support of this idealized environment. Un
fortunately, no one seems to write books for maintainers of 
ancient, unstructured, undocumented software. Indeed, few 
will even admit that such persons exist. 

This paper attempts to bridge the gap, to provide pro
cedures and guidelines for practitioners in this much-maligned 
and neglected area. It presents an overview of a comprehen
sive system for structured software maintenance. The com
plete system is outlined in the data-flow diagram in Figure l. 
The four sections of the diagram are for the four functional 
areas of structured software maintenance, and the abbrevi
ations along the information flow lines are record-keeping and 
documentary tools used by the maintenance staff. 

MEMBERS OF THE MAINTENANCE STAFF 

Introduction 

Because of the general disrespect for software mainte
nance, programming is often the only activity management 
sees as an appropriate maintenance function. So, no time or 
resources are allocated to many other crucial activities. In a 
fully-staffed maintenance group, resources must be assigned 
to roles called 

1. Manager-The manager sets priorities for maintenance 
tasks, makes task assignments, and reports to higher 
management levels. 

2. Archivist-The archivist keeps track of current contents 
of computer files and maintains back-up and retrieval 
procedures. 

3. Librarian-The librarian organizes storage and retrieval 
of documents and other records about the software 
being maintained. 

4. Programmer-The programmer trouble-shoots software 
failures, designs and tests program updates, and docu
ments maintenance projects. 

It is worthwhile to delineate the duties of each title separately 
(see Table I). The roles can be modified later if necessary to 
accommodate staffing limitations in a particular organization. 

Structured Software Maintenance 139 

Maintenance Manager 

The primary role of the maintenance manager is usually 
that of master psychologist because this person must conduct 
group therapy sessions to keep users, customers, operators, 
and programmers speaking to one another. 

Officially, however, the most important duty of the mainte
nance manager is to monitor incoming program-change re
quests and to keep some kind of centralized trouble log. When 
a program change is proposed, the manager arranges for a 
timely decision on the criticality and feasibility of the pro
posal. 

Table 1-5oftware maintenance functions 

Who Does It?* How often?t 

Activity Mgr. Arch. Libr. Prog. Int. Wk. Mon. Otr. 

Task Area 

Set/review priority x 
Assign tasks x 
Report to mgmt. x 
Make archive tapes 
Monitor file updates 
Store file lists 
Retrieve file lists 
Store documents 
Retrieve documents 
Forms management 
Word processing 

control 
Distribute doc. 

updates 
Update programs 
Update 

documentation 

Record-Keeping 

Status report x 
Archive library 

x 
x 
x 
x 

folder x 
Document 

library file 
Programmer's 

notebook 

x 
x 

x 
x 

x 
x 

x 
x x 
x x 
x x 

x x 

x x 
x x 

x x 

x 

x 

x x x 

x x 

*Who does it? Mgr.-Maintenance manager; Arch.-Archivist; Libr.-Docu
ment librarian; Prog.-Maintenance programmer. 

tHow often? Int.-Intermittent, as needed; Wk.-At least weekly, better 
daily; Mon.-At least monthly; Otr.-Once each quarter; (no entry-may 
never be done). 



[customer 

[ User 

Listings, dumps 
Test/benchmark Fter 
Archive tape run 

Abbreviations: 

ALF 
ATD 
CB 
DO 
FCT 
MAL 
MG 
PCR 
PO 
PDP 
PNB 
PSR 
PUO 
UG 

Archive Library File 
Arch ive Tape Description 
Computer Binder 
Data File Documentation 
File Control Table 
Monthly Activity Log 
Maintainer's Guide 
Program Change Request 
Patch Documentation 
Program Doc. Package 
Programmer's Notebook 
Program Status Record 
Program Update Descriptio 
User's Guide 

Run-~ 

streams 

Documents 

List of fi Ie changes 

Figure l-Data-flow diagram of the structured software maintenance system 



Finally, it may be useful to have the maintenance manager 
develop and maintain the company's disaster plan. This may 
not be particularly appropriate as a maintenance function, but 
experience has shown that, somehow, the maintenance shop 
is tacitly held responsible when the system crashes. 1 

Archivist 

The archivist is tasked with keeping up-to-date records of 
the contents of computer files. It doesn't matter what is in the 
files. The only criterion for inclusion in the archive library is 
that the information be in computer-readable form. 

The archivist maintains a documentary folder for each com
puter library (a library being defined here as a logically con
nected set of separately accessible files). This folder includes 

1. Current listings of the elements contained in the library 
2. Methods for retrieving the information contained in the 

library at each step of its evolution, starting from the first 
time it was known to the maintenance group. 

Note that the archivist does not keep track of which files are 
logically associated with particular programs or with each 
other. The only concern is with maintenance and protection of 
the physical files. 

The file-protection task is chiefly accomplished by period
ically generating back-up tapes, including all files that have 
been changed since the last time such a tape was written. 
When a computer file is updated in between the generation of 
these formal archive tapes, the archivist backs it up immedi
ateiy in such a way that the change can be reinstated if the 
updated file is lost or damaged. 

Document Librarian 

The major function of the document librarian is to system
atize storage and retrieval of documents and other written 
information of use to the maintenance staff. Then, at the end 
of each quarter, the librarian prints a list of all documents 
acquired and generated during the last quarter and distributes 
the list to the rest of the maintenance staff. 

Two other tasks, however, routinely become assigned to a 
document librarian. The first is forms management-storing 
master copies of all forms used in the shop and seeing to their 
copying and distribution. The second peripheral duty is as 
word-processing manager for the maintenance team: storing 
skeleton copies of typical documents on the computer. A 
documentor, then, need only copy the proper skeleton and fill 
in the blanks. This has two advantages: it improves motivation 
of documentors to produce the assigned reports, and it assures 
that all documents of the same type will have the same format. 

Maintenance Programmer 

The operational cycle of maintenance programming is on 
the order of: make a change, make a run, curse, scribble, and 
loop. 

Structured Software Maintenance 141 

Maintenance programming, however, is not the only task a 
programmer must attend to if the maintenance facility is to 
function effectively. There are three major types of informal 
documentation that must be generated by the maintenance 
programmer: 

1. Programmer's notebook 
2. Maintenance binder 
3. Appropriately structured code, enhanced with in-line or 

in-code documentation. 

This paper does not discuss the in-code or the in-line docu
mentation since these topics have already been extensively 
covered. The emphasis here is on the external documents
the programmer's notebook and the maintenance binder. 
These are productivity tools that aid the programmer in pro
ducing high-quality software updates. They are not produced 
after the fact; they must be updated daily. The use of these 
tools is described in the next section. 

RECORD-KEEPING IN A MAINTENANCE SHOP 

Introduction 

Many companies fail to recognize documentation as a cru
cial part of effective software maintenance. In a well-run 
maintenance group, as much as 75% of the time is spent in 
activities that can be loosely referred to as documenting.2 But 
most of this activity does not result in formal reports so it 
often is not recognized as documentation. Some of these less 
formal documentary formats are the following: 

1. Archive library file-A folder containing listings that 
define the contents of a computer library in sufficient 
detail so that the library's present or past contents can be 
retrieved. The archivist maintains these records. 

2. Program documentation package-A binder containing 
a standardized set of section dividers that hold semi
formal bits of information about a program and its inter
actions with other software and hardware. The docu
ment librarian keeps these packages up-to-date. 

3. Programmer's notebook-A collection of daily notes on 
computer runs, file updates, significant conversations, 
meetings, and so on. As is obvious from its name, this is 
the responsibility of the maintenance programmer. 

These record-keeping tools constitute complete and efficient, 
if informal, documentation of the maintenance function. They 
record lessons learned while programs are modified, and they 
pave the way for any formal reports that are later required. 

Before detailing these formats, a word "about terminology is 
in order. In this paper, there was a need to use words that have 
both common and "computerese" meanings. The reader is 
asked to assume that if any ambiguous term (e.g., file, library, 
record) is used without some qualifier that indicates a 
computer-readable entity, the common Engiish meaning is 
intended. 



142 National Computer Conference, 1983 

The Archive Library 

Within the archive library, documentary folders are filed 
primarily by the computer on which they reside, then alpha
betically by name. Tables of contents for the library are at the 
front of the folder, with the most recent listing first. The first 
section contains file lists, categorized as source code, run
streams, data, or text. Listings are stored in alphabetical order 
by file name and then by re'vision date, with the most recent 
on top. Another section contains information about using 
stored runstreams for documenting the library contents. An
other holds listings showing how the files are retrieved from 
back-up tapes, again with the most recent first. Another pos
sible division is for compile-link listings if executable program 
code is stored in the library. Finally, there is the omnipresent 
category of "Other." 

The format of an archive library folder is shown in Table II. 

Table II-The format of an archive library folder 

Table of Contents: Most recent table of contents of the library usually 
including, for each element: name, date when it was last changed, 
size in words or sectors, and so on 

Absolute elements: Compile-link lists for programs for which exe
cutable copies are stored in the library 

Current element listings: 
Source lists-program symbolic elements 
Runstreams-sets of control (JCL) commands, that are accessed 

and executed (by the OS) as a unit 
Data-sets of data records that are accessed and used (by a pro

gram) as a unit 
Text-a catch-all category for all other elements 

File Maintenance Records: Listings of runstreams used to document 
the library contents and information on how to retrieve the files 
from an archive tape 

Other: Essential in ANY folder, no matter what its purpose 

This is how the folders are organized in an actual archive 
library. For a programmer, however, the information may not 
be accessible in this form. The best solution for a programmer 
is to copy all files that relate to one program into a single 
library. Then the format is useful to both operatives. Some 
programmers decide instead to put all pertinent files in one 
archive library folder, regardless of where they are found on 
the machine. This is very frustrating if the group later acquires 
an archivist. 

The Document Library 

The document library contains whatever information is 
available, on paper, that is of interest to the maintenance 
team. The library is organized around a book of abstracts ,3 

each of which references one of the programs, data files, 
procedures, and so on, being maintained. Documents in the 
library are organized first by system, a system being a group 
of programs and procedures recognized as a logical tlDit by the 
users. The next lower category is a subsystem, a name in
vented by programmers to identify a group of programs on a 

single computer or performing a single function. Finally, there 
are binders for individual programs and sometimes for indi
vidual data files. 

There can never be a complete list of the documents that 
might be written about a program. As a start, the librarian 
stores information in a program documentation package, as 
shown in Table III. Whenever the contents under "Other" 
begin to overwhelm the rest of the package, it is time to be 
creative, to build a more specific set of dividers and to insert 
a sheet under "Other" to describe what was done. 

Table III shows how program documentation looks in a 
formal document library. The format is designed, however, so 
that if there is no librarian, only programmers, the program 
documentation package is transformed into a maintenance 
binder. Though it has somewhat less formal contents, such as 
tape dumps, the format is the same. If no formal documen
tation exists in some binder sections when the program first 
appears for maintenance, the maintainer may write some as a 
matter of course. Others will never be produced formally; 
they will be represented by notes, if at all. 

Daily Record-keeping Tools 

Everything that happens during a maintenance task must be 
recorded in the programmer's notebook: code changes and 
their effects, program runs and their outcomes, insights 
gained, information gleaned, summaries of conversations, 
milestones achieved, and so on, and the date on which the 
event occurred. This notebook must have the feature that, 
although the first entries are made now, the records can be 
straightforwardly extended backward in time as more infor
mation becomes available. The programmer's notebook is a 
daily hand-written log of everything the programmer does, 
learns, hears, or acquires that relates to the task at hand. 

Another important record-keeping tool, the maintenance 
binder, is quite formal by comparison. Recall that it is often 
synonymous with the program documentation package in the 
document library. When information is acquired that fits logi
cally in the maintenance binder (Le., it might be used some
day, almost as is, in a formal report), it should be stored there. 
The programmer must present an up-to-date maintenance 
binder to the document librarian at the end of a maintenance 

Table III-The format of a program documentation package 

Abstract: Formal definition, one page long3 

User's Guide: 
Analyst's Manual: (a design document might go here) 
Maintenance Information: Patch or maintenance documene 
Source Lists and Cross-References: 
Data Formats: Formal data file definitions4 

Benchmark Inputs and Outputs: 
Runstreams: "Canned" command files used in maintenance 
Related Software: Any available information about how the program 

interacts with other software that is significant in the system (e.g., 
the program that creates a file it will read, or one that uses a file it 
will write) 

Other: Anything that doesn't fit in another category 



project. This binder is frequently the only documentation in 
the universe for that program. So, the structure of the mainte
nance binder is (entirely by design) the skeleton on which to 
hang any documentary information that might later be 
included in a formal report. 

EMERGENCY TAKEOVER 

The previous section described the record-keeping activities 
that support maintenance on a long-term basis and that were 
portrayed as a flow diagram in Figure 1. But what if there is 
no long-term basis for maintenance as for instance when a 
program is transferred to the maintenance team for the first 
time? 

Emergency takeover is the name given to the steps involved 
in learning enough about a program to update it. Then, de
pending on the maintenance manager's decision, events p~o
ceed fairly evenly toward either a permanent program revision 
or a temporary patch. Since emergency takeover rarely ap
pears in the literature, some time will be taken to explain the 
steps. 

Suppose someone walks into the maintenance shop, and 
says, "XYZ didn't work last night ... Fix it!" Assuming that 
no one in the group has ever heard of XYZ, there is a pro
cedure to follow before beginning to make changes to the 
program. The steps are the following: 

1. Talk to the customer and the users. If the program has 
never been heard of by your group, sit down and talk to 
the person who requested the maintenance task. Then 
talk to any users you can find. Ask what the program 
does, how to find a complete set of inputs and outputs, 
under what circumstances the program is used, if there 
is any user documentation, and so on. 

2. Search the document library. If there is any information 
about XYZ in the library, find out who last worked on 
it and get the programmer's notebook and maintenance 
binder. Otherwise, have the librarian open a new file for 
the program and issue a set of dividers for creating its 
maintenance binder. 

3. Search the archive library. Locate tables of contents for 
all pertinent program, runstream, and data files in the 
archive library. If you do not already have them in a 
maintenance binder, print listings and cross-references 
of the program modules. If the archive library has no 
information on the program, prepare an archive package 
as soon as you locate the program on the computer so 
that the archivist can take over maintenance of the files. 

4. Start a programmer's notebook. Obtain and fill in what
ever forms are used to head a programmer's notebook. 
From this point on, document in the notebook every
thing that happens during the maintenance project. 

5. Assemble sample inputs and outputs. Find or create a 
complete set of sample inputs and outputs, including raw 
dumps (i.e., octal or hexadecimal, with no cleanup, 
decoding, or translation) of all data media (e.g., tapes, 
disk files) used by the program. Note: if the program is 
being changed because it aborted, the run that failed 

Structured Software Maintenance 143 

is needed to test the fix; but you also need bench
mark data, a data set that ran successfully BEFORE the 
failure. 

6. Write the program update description. This is a form 
defining the programmer's concept of the requested 
modification. The completed form is sent to the re
questor for comment, via the maintenance manager. Its 
function is to ensure that everyone-the programmer, 
the manager, and the customer--can agree on exactly 
what the proposed change will accomplish, what re
sources will be expended, and so on. Once it is ap
proved, the program update description becomes the 
nearest thing to a software specification that the mainte
nance shop is likely to encounter. 

7. Work backwards to fill in the programmer's notebook. 
Using whatever information was gleaned from file lists, 
sample I/O, and so on, work backwards from the present 
to fill in the programmer's notebook. (Begin notes for 
each month on a new page in case information surfaces 
later that must be incorporated in this history.) 

8. Start to design the update. When the program update 
description form comes back, approved or amended, it 
is time to stop the book work and start on the update. 
Translate the program update description steps into 
high-level pseudocode (sometimes called structured En
glish) or into a module flowchart. You will be amazed at 
how much you already know about the program after 
these few, simple steps. 

LAST WORD 

When is a maintenance task finished? The answer has the 
same parameters as the answer to a related question: When is 
a newly developed program ready for production? Curtly 
stated, a program is ready when a test run, using the prede
fined benchmark data, has been approved by the programmer 
and the customer. When the librarian and archivist have also 
closed their files and a post-implementation review has passed 
without new changes being required, then the maintenance 
project is truly finished. 

The purpose of this paper is to bridge the gap between the 
theoretical ideals expressed in the literature-structured de
sign and programming, tactical and strategic planning, config
uration management, formal documentation, and so on-and 
the real world we know, where decrepit, undocumented pro
grams are being maintained. Until all software is well struc
tured, reliable, maintainable, and documented, the methods 
outlined here will help maintenance practitioners to survive 
and succeed in an unfriendly universe. 

ACKNOWLEDGMENTS 

This paper is a condensation of a Master's thesis presented to 
California State University, Chico, in fall 1981. The thesis, in 
turn, was an expansion on an article for Auerbach Publishers. 
My thanks to both organizations for their help. 



144 National Computer Conference, 1983 

REFERENCES 

1. Keston, R. How to Develop an Effective Long-Range Data Processing Plan. 
Rockville, Md.: Keston Associates, 1978. 

2. Lientz, B. P., E. B. Swanson, and G. E. Tompkins. "Characteristics of 

Application Software Maintenance." Communications of the Association for 
Computing Machinery 21 (1978), 6, pp. 466-471. 

3. Schneider, G., D. French, and L. Lucas. "How to Document Software," 
Naval Weapons Center CCF-87, August 1977. 

4. Schneider, Goo "Format Guidelines for DRMM's," DRMM-74-9, 1974. 



Application maintenance: One shop's experience 
and organization 

by ROBERT E. MARSH 
Dow Corning Corporation 
Midland, Michigan 

ABSTRACT 

Several years of data on software support activity at Dow Corning are analyzed to 
illustrate the problems of managing this function. Most software changes are small 
from the user's point of view, but few changes are small from the maintenance point 
of view. Several organizational models have been tried for the management of 
support. None is entirely successful. 

145 





THE COMPUTING ENVIRONMENT 

Through formal logging and recording of support requests and 
applied personnel time since mid-1976, Dow Coming's sup
port group is able to report various characteristics of our 
applications support effort-about 60 person years of effort to 
date. 

The following facts will give an idea of the environment and 
context of this support history: 

• Each support person has been provided with a CRT and 
IBM's System Productivity Facility (SPF) timesharing 
software. 

• Access to production source code is administered 
through a library control function. 

• Batch turnaround time for compiles is usually less than 30 
minutes, and probably 30% of the time it has been less 
than 15 minutes. 

• Virtually all programming is done in PUl, with small 
amounts of report programs written in Pansophic's 
EASYTRIEVE language. 

• Administratively, requests are documented by the re
sponsible key analyst as they are received (or encoun
tered). 

• The individual(s) working on requests logs his/her time 
on a daily basis but the time sheets are collected monthly 
for recording. 

• About 50 individuals have had some part in this support 
activity over a period of 6~ years. About a third was done 
by contract programming people. 

• Table I gives some of the particulars as to the size and 
growth of Dow Coming's production environment. 

THE MAINTENANCE LOAD 

Some 60 person-years of data on support effort have been 
accrued over a 6~ year period. About 64% was logged to 

Application Maintenance: One Shop's Experience 147 

individual requests; about 16% was logged against two gener
al application support requests; about 20% was logged to 
nonproject time--e.g., vacation, holidays, and sick time. The 
following list of specifics relates to the 64% category of indi
vidual requests; it shows the important characteristics of the 
scheduling and performance of these requests. 

Total number of logged support requests 
to date 

Approximate number of open requests not 
completed (typically) 

Total number of logged person-days to date 
Total number of requests completed 
Total number of requests canceled 
Average size (in actual person-days) of 

completed requests. (See cumulative 
distribution curves, Figure 1) 

Standard deviation of size of completed 
requests 

Average turnover time (number of days from 
date request received until request was fully 
implemented and closed out) for all 
completed requests 

Average "queue" time (number of days a 
request waited before being assigned to 
a support person to implement) 

Average active time (number of elapsed days 
it took to complete a request on,ce it was 
assigned to a support person) 

Average age of current open request queue 

4,454 

250 
15,200 
3,690 

460 

2.6 

6.4 

73.4 days 

38.3 days 

35.1 
354 days 

Estimated backlog of work has ranged from 400 to 1300 
person-days. Typically, the backlog estimate is near 600 
person-days. 

The average size of a request measured in effort to com
pletion is 2.6 person-days; the average turnover time is 73.4 

TABLE I-Growth of Dow Corning's production environment 

Total Total 
Lines of Active Lines of Average Production 

Production JCL Code Production Program Code Lines of Runs per 
Date Jobs (thousands) Programs (thousands) Code/Program Month 

111173 647 37 N/A 256 N/A 2300 
9/1173 739 49 N/A 342 N/A 3230 
9/1176 1114 N/A 1863 440 236 5489 
5/1179 1444 164 2343 571 244 5523 
911/80 1576 N/A 2693 N/A N/A 6952 
911/81 1662 218 2895 876 302 72m 
911/82 1707 245 3282 1115 340 7793 



148 National Computer Conference, 1983 

<-- PERCENT OF REQlJBSTS 

E.G. 88" OF AIL REQUES'l'5 WERE lESS 
mAN 4.5 PERSON DA.i"S OF mOiT. 

P 
E 
R 
C 
E 
N 
T 
A 
G 
E 

50 
<-- PERCENT or SUPPORT EFFORT 

E.G. 50~ OF TOTAL EFFORT WAS SPENT ON REQUESTS 
LESS THAN 8.5 PERSON DAYS IN SIZE. 

25 

o 
40 

REQUEST SIZE IN PERSON DAYS 

Figure l-Cumulative distribution curves 

days. Of the turnover time, about half is spent in the queue 
and the rest is spent while the request is being actively worked 
on. There seem to be valid reasons for this disparity between 
the size of the change and the duration of the change process. 

First, changes in applications need to go through certain 
control and verification procedures before they can be consid
ered as complete. This usually involves a designated proba
tionary production period where the application is watched, 
and if unforeseen problems occur, the probationary time may 
be extended. Second, support people batch their effort by 
working on a number of requests concurrently. 

Maintenance by Category 

When requests are received or initiated, they are assessed 
as either mandatory or discretionary in nature. Mandatory 
requests require immediate attention--e.g., production appli
cation failures, executive edicts, and government require
ments. Discretionary requests are all the rest, i.e., not 
mandatory. 

Analysis of the most recent 19 person-years of support to 
distinguish mandatory versus discretionary effort is sum
marized in Table II. Individual comparisons of the last 2 years 
of the support group's efforts produced very comparable re
sults showing a rather constant relationship. 

The key analyst assigns a request type of code when re
quests are documented. The codes were established to catego
rize requests as to their primary reason for occurring, e.g., 

user request, consequence of some type of failure/problem, or 
preventive maintenance. Fourteen request type codes were 
used as follows: 

User request types: 
MI. Request for information about a system, e.g., how 

do I update this information? 
MM. Maintenance due to management decisions, e.g., 

department reorganization, and new marketing 
strategy. 

MP. Mass update of production files, e.g., change credit 
coding for a large group of customer types. 

TABLE II-Mandatory versus discretionary support 
(19 person-years' experience) 

Approxi-
mate 

Number 

Mandatory requests supported 435 
Discretionary requests supported 752 

Totals 1187 

Person-days expended on mandatory items 890 
Person-days expended on discretionary 

requests 3002 

Totals 3892 

% of 
Total 

36.6 
63.4 

100 

22.9 

77.1 

100 



Nl. New job development, e.g., develop some new ap
plication. 

RM. Request for discretionary modifications to existing 
production applications. 

SA. Stand-alone request, e.g., write a program to do a 
one-time analysis of sales activity. 

Consequences of some failure/problem: 
MO. Maintenance due to operations' problems, e.g., ran 

job out of sequence. 
MR. Maintenance in support of a restart, e.g., an applica

tion failed and the restart was not a minor experi
ence. The failure is not directly attributable to any 
specific problem area. 

MS. Maintenance due to systems design, e.g., a hard 
coded table ran out of space and caused a failure. 

MT. Maintenance due to technology changes, e.g., new 
printer requires changes be made to some report 
generating programs. 

MU. Maintenance due to user problems, e.g., user inad
vertently input the same data twice. 

MX. Maintenance due to user support function, e.g., in
adequate testing of a change causing problems in the 
production environment. 

Miscellaneous types: 
MA. General maintenance request. Not attributable to 

any identified problem area, yet it is necessary in 
order to keep an existing application functioning
e.g., routine restart support, make small corrective 
changes to a program. 

ME. Preventive maintenance--e.g., expand a field size 
before it causes a failure; correct edit logic oversight 
before erroneous data get passed into the system, 
etc. 

Table III reports on the distribution of completed requests 
and the associated effort, the portion of support that was 
logged to specific requests. This relates to 10,200 person-days 
of effort, 64% of the total time recorded over some 6 years of 
experience. The average and standard deviation columns re
late to completed requests only, leaving out canceled, with
drawn, and open requests. Completed request effort makes 
up 95% of the total effort reported. 

ORGANIZATIONS AND APPROACHES 

Like many healthy, growing companies, Dow Corning over 
the past decade has seen fit to reorganize its management 
information service (MIS) function many times. Each new or 
modified structure had its own rationale and was an attempt 
to improve the effectiveness of the MIS function. The or
ganizations that reflect the way maintenance effort was ad
dressed or managed will be described. 

About 11 years ago, the MIS function of Dow Corning had 
reached the point of a fairly respectable shop: 

1. Approximately 500 production batch applications with 
online order entry and customer file maintenance 

Application Maintenance: One Shop's Experience 149 

TABLE III-Distribution of support by request type 

Request Average 
Type % of % of Size Standard 
Code Time Requests (Person-Days) Deviation 

User Types 
1. MI 4.4 9.8 1.1 2.9 
2. MM 5.3 4.0 3.4 6.8 
3. MP .2 .4 1.4 2.2 
4. NJ 18.7 4.3 14.9 17.0 
5. RM 23.8 16.8 4.5 7.2 
6. SA 14.4 8.1 4.8 10.2 

TOTALS 66.9 43.4 4.4 9.0 

Failure Types 
7. MO 1.9 5.6 .8 1.2 
8. MR 2.0 3.2 1.6 3.7 
9. MS 6.0 8.8 1.7 4.4 

10. MT 1.7 3.8 1.1 1.6 
11. MU 4.9 9.8 1.2 2.8 
12. MX 3.5 4.6 1.9 3.9 

TOTALS 20.0 35.8 1.4 3.3 

Miscellaneous Types 
13. MA 12.4 18.6 1.7 3.9 
14. MB .7 2.2 .9 1.0 

TOTALS 13.1 20.8 1.6 3.7 

FINAL 
TOTALS 100% 100% 2.6 6.4 

2. IBM 360/50 computer; disk and tape drives 
3. Operating three shifts per day 
4. About 14 people providing technical programming and 

system design skills 
5. One of IBM's first PLll shops 

MIS Organization: 1971-1974 

Organizationally, (see Figure 2) MIS included within its 
domain three user representative positions entitled Functional 
System Supervisor. The staff had dotted line connection with 
the functional area they were associated with and with re
sponsibility for defining and specifying the user requirements 
for almost all application support requests, maintenance or 
otherwise. The maintenance programming group consisted of 
one or two former computer operators who were learning JCL 
and PL/1 programming on the job. Using Lientz and Swan
son'sl definition of maintenance, which "refers to all mod
ifications made to any existing application system, including 
enhancements and extensions," about 50 to 75% of all 
programming effort was maintenance. Perhaps a majority of 
this effort would better be described as incremental exten
sions of base systems, as opposed to corrective or other types 
of maintenance. 

The programming and analysis group consisted of about six 
or seven technical programming people who received require
ment specifications from the functional system supervisor af-



150 National Computer Conference, 1983 

IMANAGER OF MISI 
COMPUTER 

ACTION 
COMMITTEE 

"CAG" 

MGR. OPERATION 
AND SERVICES 

I 

I 

MGR. SYSTEMS 
DEVELOPMENT 

I 
I I 

SYSTEMS 
OPERATIONS 

TECHNICAL 
SUPPORT 

PROGRAMMING 
& 

ANALYSIS 

DATA 
BASE 

ARCHITECTURE 

FUNCTIONAL 
SUPERVISOR 

MKTG. 

FUNCTIONAL 
SUPERVISOR 

ACCTG. 

FUNCTIONAL 
SUPERVISOR 

MFG. 

I-- PROJECT 

MACHINE SCHEDULING MAINTENA NCE 
LEADER 

OPERATIONS AND REPORT PROGRAMM ING 
DISTRIBUTION 

I--
PROJECT 
LEADER 

PROJECT 
~ 

LEADER 

Figure 2-Basic MIS organization 1971-1974 

ter they were first approved by the supervisor of the pro
gramming and analysis group. Because the functional system 
supervisor was intended to be occupied with longer term and 
larger application activity, users in need of more immediate 
support of small projects were considered a detraction to the 
functional system supervisor. To provide for this, a small 
projects group was set up with a leader and a variable resource 
budget equivalent to a staff of one or two. This budget was 
reconsidered on a quarterly basis, by the Computer Action 
Committee. This committee consisted of a group of key user 
representatives from the main functional organizations of 
Dow Corning who approved the project plans and resource 

,-----------
I 
I 

schedule proposed by the systems development manager. This 
basic organization continued until the time frame of the oil 
embargo and the corresponding economic slowdown of 1974. 

MIS Organization: 1974-1976 

As a result of the slowdown, large project activity was cur
tailed, the functional system supervisor positions were elimi
nated and the systems development manager position was 
vacated and an expanded small projects group was renamed 
User Support Group (see Figure 3 for this organization struc-

DEPARTMENT MGR. 

I 
I 

MEETINGS & SPEC. SVCS.I------+-------1DEPARTMENT PLANNER 

! 
I 

Figure 3-Basic MIS organization i974-i976 



ture). Coupled with the establishment of this new group was 
the intent that all small projects activity (including operational 
maintenance support) would be done exclusively by this group 
of about six full-time and one part-time person. This repre
sented about 40% of the application programming resources 
in the department at that time. A 30 person-day maximum 
was defined as the threshold for classifying a request as a small 
project. 

The title, User Support Group, was picked to emphasize 
the user interface role of this group. This role included some 
technical consulting to aid users in learning their own systems, 
as well as learning elementary DP skills for creating their own 
reports from production files. 

The user interface with the User Support Group was with 
the four chairmen of the functionally aligned planning groups. 
Requests for small projects were received by the User Support 
Group supervisor and he made time estimates to accomplish 
the tasks. There was always a backlog of work requests, and 
on a quarterly basis, the User Support Group supervisor met 
with the Systems Planning Group representatives to commu
nicate progress and decide on priorities for all the open re
quests. This basic structure continued until late 1976. 

Small Projects Separated From Maintenance: 1977 

Better economic conditions allowed for a revitalization of 
the Systems Development Group, but the User Support 
Group was moved under the operations manager position (see 
Figure 4). Part of the reason for this move, was to 
enable systems development to concentrate on new systems 
exclusively. 

Another attempt was made to have the USG staff of eight 
responsible for small projects only, and a separate group of 
four responsible for maintenance, all under the operations 
manager. At this time, Systems Development had a staffing 

FUNCTIONAL 
SYSTEMS 

MANAGERS 

I 

Application Maintenance: One Shop's Experience 151 

level of fifteen. Maintenance was defined as any work (on a 
pre-existing system) necessary to keep the system functioning as 
it was intended at implementation. Such maintenance requests 
tended to average about one and one half person-days 
effort, whereas small project requests averaged about six 
person-days. 

The separation of a maintenance group from the small 
projects group came to be viewed as being inefficient. Both 
groups had a supervisor who separately communicated with 
the functional representatives now called functional system 
coordinators. The nature of the communications was the 
same, i.e., setting priorities and communicating progress or 
problems. Furthermore, the nature of the work was the same 
and there was confusion among all parties as to what category 
a particular request might fall under. Was it maintenance or 
was it a small project? A larger number of requests were 
addressed under this approach, compared to the years before 
and after. This may have been because more resources were 
concentrated on this category of support maintenance that 
typically required less effort per request to complete than the 
small project request. 

During this period an MIS departmental procedure was 
formally established that required User Support Group ap
proval of new applications before they were considered to be 
in a fully supported production status. Our shop started being 
more sensitized to the desirability of formally documented 
standards for production applications. 

One of the benefits of having the maintenance function 
under the operations side of the MIS organization was the 
degree of checks and balances that tended to consider the long· 
term operations concerns of an appiication: Was the job con
veniently restartable? Were there backup provisions identi
fied for permanently created fiies? Are the reports uniquely 
identifiable to enable their routine distribution? Are error 
interrupts appropriately reported? Does the job delete all its 
temporary files upon completion? 

DEPARTMENT 
MANAGER 

I I I 
I COMPUTER 

PLANNING AND 
TECHNICAL 

SYSTEMS DEV. OPERATIONS 
DATA BASE 

SUPPORT ADM. SUPPORT 

I (13-16) 
ADMINISTRATOR 

(4-6) (5) 
(3-5) 

I 
I 
I I I 

L -- USG OPERATIONS 
(10.5-121 (11.5-13) 

Figure 4--Basic MIS organization 1977 and onward 



152 National Computer Conference, 1983 

Small Projects and Maintenance Reconsolidated: 1978 

A divided maintenance group was reconsolidated and the 
work activity was viewed as being either mandatory or dis
cretionary aftei a year. The mandatory \vork activity \x/ould be 
addressed immediately in order to maintain or restore in
tegrity to the production applications, while discretionary re
quests would be prioritized by the user organization. The 
previous practice of meeting every couple of months with the 
systems coordinators was continued. A joint consensus was 
reached at these sessions as to what was most important to the 
corporation, rather than deciding according to a strict func
tional perspective. In practice, this caused dissatisfaction 
among some of the systems coordinators who could not plan 
on any particular program because their requests were super
seded by new, higher-priority needs in other functions. Some 
coordinators thought that their functions had had, and con
tinued to have legitimate needs, but could not compete favor
ably with the more visible and always-pressing needs of other 
functions. 

Current Approaches 

This led to the approach that Dow Corning has used for the 
last four years. Each function is allocated a percentage allo
cation of available user support resources. This percentage is 
renegotiated on an annual basis. In addition, the functionai 
systems managers (as the functional systems coordinators 
were renamed) could, on an individual basis, provide funds to 
augment their allocation with contract programming re
sources or they could negotiate with their functional counter
parts to trade resource time or temporarily acquire a larger 
percentage allocation. It was expected that this would enable 
the functional systems managers to better plan their own des
tiny and eliminate some of the haggling of group priority
setting sessions. This was largely accomplished, but not with
out some other effects. 

In 1977, Dow Corning management developed and for
malized the current organizational structure on the user side. 
The Systems Management Board is made up of top level 
executives from Dow Corning's key operating functions. Sub
ordinate to each of these executives is a functional systems 
manager. The Systems Management Board sets the broad 
direction for systems at Dow Corning. The functional systems 
manager coordinates the development and operation of infor
mation systems for his function and is the primary liaison with 
all MIS department managers.2 

Each functional systems manager was charged the time ex
pended on mandatory maintenance for their applications as 
they were encountered. This was somewhat predictable, 
based on historical averages of 20-25% of total support allo
cation. The annual exercise to establish new percentage allo
cations for the new year met with disagreement and the easy 
way out simply perpetuated the status quo. The inter
functional trading or surrendering of resource time has oc
curred only to a limited degree. This has resulted in an effec
tive reduction of the corporate perspective in our systems 
maintenance. Some functional areas have what appear to be 

important needs waiting while other functions might simply be 
using their time to provide only marginal benefits to the 
corporation. 

The User Support Group organized its activities along func
tionallines and the User Support Group name was exchanged 
for Production Systems Support. The word production was 
used to reflect the exclusive production emphasis of this group 
of resources. Support of documented and accepted pro
duction applications or support of new applications being de
veloped for documented production status could normally be 
considered valid activity for Production Systems Support. 
(The 30 person-day limit was still a limiting constraint for all 
requests or groups of related requests.) This meant that Pro
duction Systems Support would not provide consulting or pro
gramming services for individual users unless this criterion 
was met and the activity had been given priority approval by 
the associated functional system manager. There had not been 
that much non-production activity going on but with more and 
more user computing anticipated, it was recognized as a diffi
cult activity to support and control centrally and still keep up 
with the demands for support of production applications. 

The Production Systems Support Group organization (see 
Figure 5) identified a lead analyst role entitled key analyst. 
Each key analyst has primary responsibility to oversee all 
Production Systems Support efforts that affect hislher func
tions' applications, about 425 batch jobs and 2 online systems 
per analyst. The functional systems manager is the key ana
lyst's user contact for purposes of receiving change requests 
and receiving priority assignments for requests. Mandatory 
priority status can be assigned by the key analyst or the sys
tems manager. 

REMAINING PROBLEMS 
AND POTENTIAL SOLUTIONS 

Development of Production Systems Support staff in the latest 
technology is difficult and impractical. Ever present user de
mands and mandatory maintenance produce an environment 
that will quickly develop staff in the traditional DP technology 
used in existing systems, but it does not lend itself to learning 
the latest technology being implemented in the new systems. 
The movement of people between development and applica
tions support can alleviate this, but it does not naturally hap
pen, especially when groups are under different managers. 

I 
PROGRAMMING 

SUPPORT 
RESOURCES 

PRODUCTION SYSTEMS 
SUPPORT (PSS) 
SUPERVISOR 

H KEY ANALYST 1 

· · I · 
KEY ANALYST 4 r 

FUNCTIONAL 
SYSTEMS 

MANAGERS 

/-1 
/! 

/ / 
/. / .. / 

/ 
/ 

/ 

Figure 5-0rganization of the PSS group 



Personnel motivation and enthusiasm can be difficult under 
normal circumstances, but problems are compounded when 
the staff is given low priority work in the less active or over
budgeted functional areas. 

The intermediate sized project (30 to 100 person-days) is 
very awkward to handle. Such a project is too large for the 
support groups' resource level and too small to disturb the 
progress or plans of the systems development group who are 
usually involved in much larger projects. The problem of 
lengthy elapsed times from assignment to completion of even 
the small requests remains an undesirable characteristic of our 
experience. 

Consideration is now being given to a couple of changes 
that might serve to solve some of the past problems without 
introducing many new ones. One change would consolidate 
most of the Production Systems Support resources with the 
development resources, but retain the existing functional key 
analyst position of the support group. A small portion of the 
support group would stay in the operations structure to pro
vide basic operational maintenance support for failed 
applications. This change would help resolve the tech
nological development problem of support staff since rotation 
of support staff would be less difficult to arrange under the 
same manager. 

The second change deals with the manner in which re
sources are allocated to the functions. Rather than each func
tion having a percentage of the total support budget so that all 
the percentages sum to 100, a portion of the support budget 
would be allocated. This portion would be determined by 
what was considered slightly more than sufficient to handle all 
mandatory maintenance. The remaining portion would be ap
plied to support Production Systems Support projects as de
cided by periodic priority-setting meetings of the functional 
systems managers. This change would make it more practical 
to handle the intermediate size project, since if desirable, all 
the discretionary resources could be applied to the task so that 
it could be completed in a reasonable time frame. Further
more, all the functions would get some minimal level of re
source, but a good portion of the effort (about half) would be 
more consistently applied to the highest-priority corporate 
need. Another alternative to settling the resource allocation 
questions would be to charge back time directly to the func
tional departments, thus letting the buyer decide his/her 
budget. 

One potential weakness seen in consolidating the support 
resource with systems development is the organizational loss 

Application Maintenance: One Shop's Experience 153 

of commitment to operational concerns. Perhaps a strong 
operations representative on project review committees 
would alleviate this weakness. Another area that could intro
duce frustration and inefficiency is overlap of responsibilities. 
The operations support activity would have to be controlled 
and adequately distinguished from the production systems 
support activity. Perhaps making the operations role one of a 
short-term perspective (to keep applications running on 
schedule) would enable an adequate delineation of re
sponsibilities to be made. 

Chargeback of time could introduce difficulty in maintain
ing a stable staffing level-low budget years would probably 
translate into dramatic reductions in support purchases. 

WHAT IS THE ANSWER? 

Managing application support effort is fraught with dilemmas: 

1. A large demand for changes coexist with demands for 
new systems-how is an effective balance defined and 
achieved? 

2. Personnel development in new technology is not prac
tical when support people are fed a diet of traditional DP 
demands. 

3. How can support effort be distributed to effectively meet 
corporate needs while retaining viability with individual 
corporate functions? 

4. Where do you put support activity and still retain oper
ational interests along with personnel development 
needs? 

5. How do shops reduce the "active time" of a request and 
still retain needed verification and control features? 

Different DP organizations share these basic problems, al
though the size of the shop will alter the extent to which some 
of these areas actually cause serious concern. Are there any 
management models that have been developed and tested that 
address this business situation? Has a consensus of opinion or 
experience been identified? 

REFERENCES 

1. Lientz, B. P., and E. B. Swanson. Software Maintenance Management. 
Reading, Mass.: Addison-Wesley, 1980. 

2. Closs, J. P., and J. E. Randall. "Dow Corning Improves Group Commu
nications." INFOSYSTEMS, August 1980, pp. 70-72. 





Organizational issues of effective maintenance management 

by GARY L. RICHARDSON 
Texaco Inc. 
Houston, Texas 

and 

CHARLES W. BUTLER 
University of Arkansas 
Fayetteville, Arkansas 

ABSTRACT 

It is a continuing challenge to today's data processing (DP) organization to evolve 
a management structure that matches the technological advances of the system for 
which it is responsible. The goal of this paper is to synthesize the emerging role of 
a DP organization within its corporate environment, focusing particular attention 
on the issue of software maintenance. 

Attention is primarily on three dimensions of the required organization: the user 
view, organized by functional area; the technical view, organized by area of ex
pertise; and the organizational view, arranged by planning horizon. The conclusion 
is drawn that a single group should have responsibility for integration and enhance
ment of all installed applications. The tasks of this group comprise software con
figuration control, operational integrity, performance tuning, and requirements 
analysis and planning support for installed systems. 

155 





Organizational Issues of Effective Maintenance Management 157 

INTRODUCTION 

Today's data processing (DP) technology is headed in many 
different directions at once. This explosion in technology, 
together with twenty years of systems development, has sud
denly brought us to the exciting threshold of new organiza
tional strategies and direction. The goal of this paper is to 
present a generalized organization structure that facilitates 
development and enhancement of software, focusing particu
lar attention on the software maintenance function. The ideas 
raised here are meant to be independent of any single or
ganization and are designed to help the reader sort through 
the myriad of factors that affect a particular organization. 
However, it should be emphasized that the approach 
presented has been applied within a large DP organization. 

THE EMERGING DP ENVIRONMENT 

A practical framework for analyzing the DP function can be 
formulated by reviewing critical operational components and 
observing their unique pattern of evolution or growth. In the 
final analysis, organizational structure depends on three dis
tinctive factors: data resources, technological components, 
and the application environment. Because of the integration 
of various levels of technology, the organization generally 
evolves according to the pattern outlined in Table I. The driv
ing force in these evolutionary stages is hardware technology, 
which supports increasing capability, as demonstrated by 
today's complex network configurations and operating sys
tems. This fact is illustrated in Table I by the diagonal arrows, 
which indicate the pushing effect of technology on the applica
tion environment and organizational framework. When one 

TABLE I-DP Components and Organizational Trend 

Factors 

Organization 
Observation Data Technological Application Framework 

Point Resource Component Environment Required 

Records Mono- Application Narrow 
............ Programming (I/O) 

II Files ..... Multi- System Expanded 
Programming (i/plo) 

III Database Virtual ............. Multisystem Functional 
Machines Integration Specialization 

............ (1IPIO) 
IV Information Networks Virtual ....... Milltidimen-

Center Application sional 
Support 

compares it to these technological advances, it is apparent 
that the evolution of application software and organizational 
framework has lagged behind technical sophistication. 

Organizational growth is continuous, therefore difficult to 
describe in discrete intervals, but recognition of four points 
along the continuum provides critical insight into the emerg
ing organization. The four points are as follows: 

1. Narrow.-Low personnel requirements, data main
tained as a separate file for each application; focus is on 
input and output (I/O) and on replacing existing manual 
procedures. 

2. Expanded.-Extension of application functions or pro
cesses (ilp/o) and an accompanying growth of personnel 
resource requirements. Processing becomes more com
plex. 

3. Functional specialization.-Integrated systems com
posed of major functions and processes (liP/D); person
nel with specialized knowledge within critical functional 
areas. 

4. Multidimensional support.-Automated applications 
cover the firm's entire operating sphere; information 
centers emerge that focus on query and decision
oriented areas. 

In the past, applications such as payroll or accounts payable 
were designed with limited scope. Today, each of these is 
merely a subsystem, a single element of multisystem integra
tion. The firm is now operating these virtual applications. 
They are critical in that they are embedded in the firm's func
tional operating environment. However, even with this level 
of sophistication these systems are never quite finished, owing 
to the dynamic nature of business operations. 

Along with the existing virtual system complexity, most 
large organizations have also been expanding their services in 
mUltiple directions. A sample of these is as follows: 

1. Providing on-line access to users 
2. Installing nonprocedural software for users 
3. Directionally moving toward the information center 

concept 
4. Decentralizing installation of personal computers 
5. Installing text processing and/or electronic mail systems 
6. Connecting multiple processing and user nodes into dis

tributed networks 

It takes only a casual glance at this list to see that the scope of 
work undertaken has broadened considerably. It is not so 
obvious what pressure this brings on the traditional DP or
ganizational structure and on its procedures for maintaining 
existing software systems. The breadth of hardware and utility 



158 National Computer Conference, 1983 

software used is too much for one group to handle. In other 
words, the new environment demands a different organi
zational approach to meet the breadth and complexity of 
demands being placed on it. 

DESIGN FACTORS 

Operating Factors 

The fundamental issues affecting the structure of organi
zational units should be examined in such a way that the 
following five questions will be addressed: 

1. What is the perceived goal of the information systems 
department? 

2. Should software systems be carefully planned before 
coding, or is prototyping the best technique? 

3. Should development work units be organized primarily 
around skills or around user functions? 

4. Could your organization operate adequately if the com
puter system were lost through a catastrophe? 

5. What are the typical problems encountered by users? 

Obviously, these questions can be answered in a wide variety 
of ways. Collectively they indicate the continued need for an 
application development unit. 

First, the goal of the information systems department is 
more and more recognized to be the maximization of the 
value of corporate information (including data, graphics, 
video, and voice, as well as text). The chore of writing new 
traditional systems code is declining relative to the new sup
port services such as telecommunications (networks), training 
users, decentralizing hardware, and managing the orderly 
growth of computer technology within the total organization. 
This suggests that user involvement with the organization is 
broadening in scope beyond the functional systems specifica
tion activity. 

Second, if we can prove that the use of good software en
gineering practices does not adversely affect delivery times for 
new systems or enhancements, there will be increased justifi
cation for splitting system specification and analysis away 
from code construction. However, a large segment of DP 
professionals believes that proto typing is the only way to find 
out what users really want. Quite probably there will always 
have to be some prototyping in the process of collecting speci
fications; possibly skill in prototyping is needed in applica
tions development. 

Third, development work needs to be controlled by profes
sionals who understand both the user requirements and 
enough about code construction to make intelligent design 
tradeoffs. We propose that development groups be supplied 
with carefully described specifications, be predominantly skill 
oriented, and work from formal design blueprints, just as 
carpenters would in building a house. 

Fourth, if you feel that the computer is not indispensable, 
then your organization has not reached the evolutionary stage 
we have been describing. 

Fifth, from the list of user services developed from ques-

tion 1 you should observe a wide assortment of requests and 
problems, embracing such items as data availability, pur
chased software, micros, remote terminals, local training, and 
so on. The list should definitely include more than just simple 
application development system software concerns. The truth 
of this premise would mean that we really cannot simply or
ganize around user requirements. They would need the entire 
organization! Rather, we must consider techniques to provide 
a simplified organizational view to users while hiding the true 
organizational complexity away-in other words, a multi
dimensional structure. 

Human Factors 

Human factors are also important in the design of a DP 
organization. It is important to consider, for example, 
whether computer professionals naturally relate to users or to 
technology. Research evidence indicates that they are primar
ily technology oriented and that well-trained individuals can 
learn how to translate a reasonably well-defined user problem 
into a computerized system. This suggests that staffing is 
easier when it is based on skill groups, rather than on func
tional applications. If requisite skills within the organization 
were homogeneous this would be a moot point. That is not the 
case today, and the cost of broadly training individuals is 
becoming quite noticeable. In addition, there is a limit to the 
range of diverse technology an individual can be technically 
proficient in. A natural conclusion is that skill-centered units 
are the most natural organizations for the application devel
opment and technical-support functions. 

Organizations can hinder or help human productivity. In 
order for a professional to understand his or her role, the 
organization must provide a coherent structure for logically 
perceived work processes based on a division of labor. One 
more decade of developing and operating information systems 
with current techniques and philosophy will bring even 
greater chaos. Too many options are being generated by tech
nological development, and management is increasingly look
ing at computer technology as a tool, rather than a status 
symbol. The organization cannot tinker with technology and 
human resources; it must apply good business decision
making principles. 

THE IMPORTANCE OF SOFTWARE MAINTENANCE 

Is maintenance important? The answer to this question is 
unequivocably yes. We are now entering an era in which the 
operational nature of most software systems is so intermeshed 
with functional systems that large segments of the organiza
tion cannot perform their duties when the computer system is 
not operational. Changes to these systems are increasingly 
complex because of this and because of the integrated nature 
of the systems. Finally the investment that firms have in in
stalled systems is becoming widely recognized, as system 
retrofit activities highlight their replacement cost. In order to 
extend system life, the role of maintenance is critical; it is 
clearly significant for the system life cycle. As illustrated in 
Figure 1, the system life cycle can be viewed as a series of 



Organizational Issues of Effective Maintenance Management 159 

Resources 

6% 27% 67% TIME 

Req. I Construction I Maintenance and Enhancement 

Source: Zelkwitz, M.V. "Perspectives on Software Engineering.." 
ACM Computing Surveys, Vol. 10, No.2, 1978, pp 197·216. 

Figure I-System life cycle 

broad subprocesses: requirements definition, construction, 
and maintenance/enhancement. 

Another critical factor that helps to explain the importance 
of maintenance is the scope or impact of maintenance 
changes. Research by Swanson! and Boehm2 aids in sorting 
out the importance of change scope. They divide maintenance 
work into four levels of change scope: (1) corrective, (2) adap
tive, (3) perfective, and (4) expansive. Comprehensive under
standing of existing software is required for successful mainte
nance changes. Corrective and adaptive maintenance requires 
an understanding of existing software and is generally re
stricted to small segments of an existing system. As the scope 
of a change progresses into the perfective and expansive cate
gories, system performance and functional enhancement be
come the primary goal. In these instances, more knowledge of 
component interaction is needed, even though relatively small 
amounts of code are used for successful changes. In essence, 
reevaluation of system construction is performed. 

Three conclusions can be drawn regarding the nature of 
software maintenance. First, the demand on the maintenance 
function depends on the quality of products that are generated 
during the development phase of the life cycle. Second, re
gardless of the quality of the software product, maintenance 
success depends on a level of understanding of the existing 
system. Finally, even the smallest software change is signifi
cant because of the value of software as an asset. 

GENERALIZED ORGANIZATIONAL STRUCTURE 

A multidimensional organizational structure is required to 
assimilate technological innovation properly, address broad 
user needs, and manage the software life cycle properly. Each 
of these requirements is addressed in the organizational struc
ture illustrated in Figure 2. First, the horizontal axis repre
sents the technical scope of the DP organization. By or
ganizing along technical skill lines, specific skill requirements 
can be developed. Next, the vertical axis represents an appro
priate packaging of the key functions of the DP organization. 

APPLICATION 
DEVELOPMENT & SUPPORT 

TECHNICAL 
SUPPORT 

OPERATION ADMINISTRATION 

Figure 2-Multidimensional organization structure 

The various work units do not extend continually up the 
organization, because at higher levels less technical and more 
managerial skill is required. Finally, the third dimension rep
resents the extension of data processing into the firm's oper
ation and is a functional user view of the organization. 

Given the wide range of technological alternatives and 
diversity of user requirements, at least five major organi
zational units are required for multidimensional support. As 
shown in Figure 2, they are as follows: 

1. Planning-Development of strategic and tactical plans, 
including (a) the primary planning interface to the man
agement of operational departments and (b) evaluation 
of technical advances. 

2. Application development and support-Software devel
opment and support activities that are taken within the 
department. 

3. Technical support-Technical support functions re
quired for the department to perform its responsibilities 
(systems programming, DBA, telecommunications, 
etc.). 

4. Administration.-Administrative functions involving 
the personnel and financial activities within the de
partments' operation. 

5. Operational support.-Operation of the computer cen
ters and remote I/O stations. 

Salient to the issue of effective life cycle and maintenance 
management is the applications development and support 
unit. Our premise, which is supported by research conducted 
by Mooney3 and Canning,4 is that applications development 
and support will be composed of two distinct responsibilites: 
development and installed applications. Figure 3 is an exam
ple of application development with four skill environments 
(e.g., COBOL, PL/I, APL, and micros). The skill require
ments shown are intended to be development-oriented skill 
groupings. For instance, a COBOL group would be distinct 
from a PL/I group. The point is that skills are rarely inter
mingled within the same development work units. 

Note that the traditional maintenance function is retitled 



160 National Computer Conference, 1983 

Apphcation. 

Development .. 
Support 

, I 

~~~6G 
L:::J L:::J L::J l::J L:::J 

Figure 3-Application development overview 

"Installed Applications" and made responsible for the proper 
functioning of all installed systems, as well as for minor en
hancements. It focuses on software configuration control, 
operational integrity, performance tuning, and requirements 
analysis and planning support. It should be staffed with an 
appropriate mixture of professionals and senior personnel 
who can handle the broad range of tasks implicit in this func
tion. The installed applications will require managerial and 
technical skills critical to the activities of software mainte
nance. 

As a responsibility of the application development and sup
port unit, maintenance activity typically consumes more than 
half of the development function, and the growth of virtual 
applications will bring additional support requirements into 
the maintenance programming sector. In this environment, 
it is necessary to learn how to efficiently maintain installed 
systems to provide optimal resource allocations in new 
development areas and a stable data resource base for other 
applications to use in a decision support mode. The installed 
applications group concentrates on operational systems, 
which are a basis for shared data in the firm. The proposed 
structure offers the operational benefits of a wide range of 
technical skills within which maintenance is a significant 
component. 

MAINTENANCE MANAGEMENT BENEFITS 

As stated earlier, an organizational structure can only facili
tate productivity. It is up to management to optimize human 
and technological resources. Operating within the general or
ganizational structure, the installed applications unit presents 
a number of operational and managerial features for mainte
nance management: 

1. Quality assurance.-Experience reveals that the re
quirements definition (analysis) is heavily user de
pendent, while the construction (design, coding, and 
implementation) is more heavily slanted toward the 
hardware/software environment. After implementation, 
the operation/maintenance phase requires both user 
knowledge and technical skills at various times. In all 
circumstances, maintenance is performed on products 
originally developed through requirements definition 
and construction. A final system acceptance point is es
tablished between the two subprocesses; inferior prod
ucts can be rejected at that point. 

2. Low prestige factor .-Separation of functions can en-

hance image through top-level management recognition 
and participation. When a development project is com
pleted it is transferred into the installed applications unit 
along with a skeleton support staff. 

3. Resource level determination.-Resource allocations to 
a recognized function should result in equitable human 
resource allocation for maintaining the valuable soft
ware asset. 

4. Unique skin requirements.-Educationai and training 
programs can be established for the function, not the 
individual. Special tools can be developed or acquired to 
complement the function. 

5. Professional development.-Job rotation is handled at 
the planning level, aggregating individual needs and 
training objectives. Thus, a professional can perceive 
that he or she is not buried in the installed applications 
area. 

6. Change integrity.-Through orderly job rotation a con
stant base of knowledge is maintained. By organizing 
maintenance as a single function, better internal control 
can be implemented to ensure that changes are autho
rized. 

CONCLUSIONS 

From a practical point of view, installed applications are an 
unavoidable fact of life. It has been stated that "the main 
problem in the maintenance business is that you cannot just 
do maintenance on a system which wasn't designed for main
tenance. Unless we design for maintenance, we'll always be in 
a lot of trouble after a system goes into production.,,5 Recog
nition of this has legitimized many of the methodology devel
opments during the past decade. Unfortunately, it glosses 
over the major problems and fails to address yesterday's 
legacy of a voluminous software inventory that we are main
taining today. 

The primary objective of this paper was to focus on 
organizational factors that facilitate maintenance manage
ment. However, the complexity of the function and the re
lated sensitivity of the organization to the subject required 
that this discussion go beyond the single issue of maintenance. 
In particular, there are three major elements that must be 
integrated to effectively provide support for installed applica
tions; they have been identified as follows: 

1. Organizational structure.-a formal organization archi
tecture within which resources are distinctively re
sponsible for maintaining the firm's applications. 

2. Clearly defined work process.-an identified life cycle 
within which the natural growth of installed applications 
can be managed and controlled. 

3. Special technology-unique manual and automated aids 
which serve as diagnostic, investigative, and corrective 
mechanisms for today's complex applications. 

Within each of these areas, managerial expertise is required to 
overcome inherent problems of morale, professional devel
opment and training, coordination between work stages, 



Organizational Issues of Effective Maintenance Management 161 

assimilation of technical tools, and integration of multi
dimensional support. It is hoped that the reader can identify 
pertinent factors that apply to a local organization and use 
them in constructing a path for his own organization. 

Many well-read writers such as Martin and McCracken de
clare that the coming of fourth generation software is going to 
allow users "simply" to query mystical databases and answer 
whatever question is on their minds. This sounds neat, but our 
experience with approximately 1,000 such users suggests that 
user training, consulting, database design, and data migration 
are all left behind with the computer professional. While we 
hope that this approach will slow the growth of expensive 
maintenance for traditional software and cut user backlogs, 
we have recognized that maintaining corporate software assets 
is a critical DP function. 

ACKNOWLEDGMENTS 

The authors wish to acknowledge the contributions made by 

L. J. Crockett and D. W. Hutzelman of Texaco's Computer 
and Information Systems Department in Houston. Much of 
the structuring concepts presented here resulted from dis
cussions with them; their input helped shape many of the ideas 
expressed here. 

REFERENCES 

1. Swanson, E.B. "The Dimensions of Maintenance." Proceedings of the 
IEEEIFCM 2nd International Conference on Software Engineering, October 
1976, pp. 492-497. 

2. Boehm, B.W. "Software Engineering." IEEE Transactions on Computers. 
C-25 (1976), pp. 1226-1241. 

3. Mooney, J.W. "Organization Program Maintenance". Datamation. 21 
(February 1975), pp. 63-66. 

4. Canning, R. G. (ed.) "That Maintenance Iceberg." ED P Analyzer 10 (1972). 
5. Lientz, B.P., and E.B. Swanson. Software Maintenance Management. 

Reading, Mass.: Addison-Wesley, 1980. 





When a data processing department inherits software 

by JOAN R. ZAK 
Henry S. Miller Companies 
Dallas, Texas 

ABSTRACT 

This paper discusses some of the problems that occur in dealing with inherited 
software and some of the basic procedures necessary to manage successfully a data 
processing department or group that is converting and/or maintaining software that 
has been imposed on them and that they neither designed nor implemented. A 
significant constraint is the impossibility of contacting the author( s) for guidance 
and help. 

The two situations described are very different, yet they share some problems. 
The first involves an engineering company with a relatively scientific, real-time 
application-the design of a security system for a nuclear power plant. The second 
is a real estate management company with fairly typical business applications. 

This paper does not hope to provide all the answers, but instead to help raise 
some of the questions that arise when dealing with inherited software. 

163 





When a Data Processing Department Inherits Software 165 

INTRODUCTION 

Every maintenance programmer is faced with the problems of 
inherited software-trying to fix or improve a program that 
someone else wrote. However, a whole new level of complex
ity is introduced when the entire shop is working with software 
they neither wrote nor designed. In this case there is no one 
to go to who understands what the system does, no one who 
might have a clue about what the author was thinking when 
the program was written. The programmers can have diffi
culty in understanding some of the broader background issues 
involved at the time the system was written-issues which may 
or may not still be applicable. 1 The process is painful, and, if 
not well managed, can cost the company a lot of time and 
money. 

I have been in two situations where an entire group or data 
processing department has been working with inherited soft
ware; and I would like to share pitfalls, special problems, and 
my recommendations for working in this kind of environment. 

SITUATION I-THE DISASTER 

Background Information 

The first situation was an engineering company in Texas, 
whose sister company had won a bid to build a security system 
for a nuclear power plant. The sister company folded after 
working on the project for a year and collecting about 90% of 
the money. The programmers assured the people who were 
coming to take over the project that the system was almost 
complete. In fact, they grumbled that if they had just been 
given another month or two, the entire system would have 
been working. 

The security system was supposed to run on a PDP-11134 
with 256K bytes of memory and 15 megabytes of disk space. 
The system was badly underconfigured, since over 2,000 de
tection and alarm devices were supposed to be connected to 
it. The relations with the customer were very negative. The 
customer had been burned once by the other company and 
was going to make sure it didn't happen again. Therefore, the 
customer was not open to suggestions about buying more 
hardware. 

The engineering company that took over the project had a 
big problem with lack of expertise, especially in software. 
They hired, as programming manager, a woman who claimed 
she had 7 years' experience on a similar operating system, but 
who turned out to have very little knowledge about this 
system. They hired a number of consultants to work on the 
project, all claiming expertise in one part of the system or 

another. By the end of the project two company employees, 
nine consultants full time, a representative from the cus
tomer's company, and a Florida consulting firm were 
involved. 

The Scope of the Project 

Documentation consisted of the 300-page requirements 
document prepared for the customer by another consulting 
firm, a 300-page functional specification, and a system flow 
chart. The requirements document asked for things that were 
almost impossible to do, the functional specification was 
vague and contradictory, and the system flow chart was 
incomprehensible. 

Of course, there were the programs themselves, consisting 
basically of undocumented FORTRAN and assembly lan
guage code. 

Initial Attempts 

The primary directive for the first 9 months of the project 
was to use as much of the existing software as possible. One 
of the employees started the job with about 9 months' pro
gramming experience, then spent the first 6 months of her job 
reading the programs and trying to understand what they were 
trying to do. Another consultant spent 3 months trying to 
modify the existing alarms programs so they would work. He 
was unsuccessful. My solution was to look at the code for 
about 10 minutes, announce that it wasn't worth saving, and 
begin to write the program from scratch. Unfortunately, I was 
one of the more productive members of the group. 

In the long run just about every piece of software that the 
bestowing group had written was thrown out and completely 
rewritten. In some cases, although the program would have 
worked all right, it had to be discarded because it had been 
written in FORTRAN and was therefore too big to fit on the 
system. 

The system was finally delivered-8 months late, and not 
meeting all the performance criteria. 

Effects of the Decision to Use Existing Software 

The most devastating effect of the decision to try to live with 
the existing software was that no meaningful attempt was 
made to do system design. All design decisions made by the 
first group were kept, which meant that no one had a real, 
thorough understanding of how the individual pieces of the 
system composed an integrated whole. They also did not have 



- -{:". 

166 National Computer Conference, 1983 

the proper tools to make an adequate analysis of the system. 
In particular, the three basic maintenance productivity aids-
tools, techniques and training2-were almost totally ignored. 
For an asynchronous system, those involved were using syn
chronous toois, the system flow chart and the functionai spec
ification. 

This lack of coordination was felt in other areas. Although 
at one point there were 15 programmers working on the sys
tem (most of whom had not known each other, much less 
worked together before this project), there were no coding 
standards, and no teams were formed. This is somewhat sur
prising, considering that Lientz has found that almost 80% of 
the shops he surveyed used at least chief programmer teams. 3 

All programming was done on an individual basis, with no 
walkthroughs or group checking. One attempt by the pro
grammers to hold weekly status meetings met with manage
ment disapproval; and although the meetings were extremely 
useful when they were held, they finally disintegrated. Thus 
the system was coded in 15 different styles, which is going to 
be a real maintenance headache.4 

What Should Have Been Done 

Now that you have a picture of what the project devel
opment process was like, let me explore with you what 
should have been done. I left the project before it was fin
ished, so I don't know if a post-mortem evaluation was done, 
but I doubt it. 

Systems analysis 

First, the company should have evaluated the system re
quirements by using an analysis tool that could give them an 
overview of the entire system, such as Data Flows. 6 or 
Warnier-Orr' diagrams. This would have helped the managers 
and the participants to see what the system was doing. As it 
was, only one or two people (if any) had a reasonable idea of 
how the system fit together, which meant that a great deal of 
redundant and counterproductive code was generated. In a 
way this recommendation is rather silly, because none of the 
people on the project knew that these kinds of tools existed
or, if they did, wouldn't admit it. 

Evaluate system requirements 

The second step that should have been taken is to evaluate 
the limits of the system's requirements. The project started in 
October, and the following September I finally did a memory 
map showing which pieces of code needed to be in memory at 
the same time and what their size requirements would be. Not 
surprisingly, the amount of memory available was far less than 
the amount needed. Had an evaluation of the limits been 
made at the beginning, the company would have realized that 
FORTRAN was going to be impractical for most of the pro
grams in the system. 

Documentation 

The third step should have been to document the existing 
system. Using data flow diagrams, structure charts8 or data 
structure charts, and Chapin charts,9 the company couid 
quickly have documented what had been done and could im
mediately have seen which parts of the system were usable and 
which needed to be thrown away. 10 This would also have 
fostered a team approach to maintenance and development 
rather than the severely individual, egocentric programming 
that occurred. 

Determine staffing needs 

The fourth step should have been to consider the expertise 
the company had and what they needed, as well as to deter
mine how many people would be necessary for the project. 11 

They tried to do this on a gut-feeling basis and started with 
five people, ending with 17. They did a fairly good job of 
matching expertise with needs when they added people, al
though they never had anyone who excelled in systems design, 
maintenance, or documentation. Since they had so many con
sultants, who were not going to be responsible for the mainte
nance function, there was no attempt at standardization, and 
no consideration was given to maintainability. 

Set coding and design standards 

The fifth step would be to set up coding and, as necessary, 
design conventions. 1

,2 

Set up an implementation plan 

The final step would be to set up an implementation plan 
with review procedures. 1 Had structured methodology tools 
been used, this step would be fairly obvious. A Gantt chart 
was finally developed in July, but until then no one knew what 
was expected. Since there were no regular status meetings and 
little communication, the chart was meaningless when it was 
put up, especially since there was no faith in the reason
ableness of the estimates. The result was that several people 
sat around for many months not accomplishing much. One 
programmer sat from July to December before anyone 
wanted to see the results of his code. Predictably, when he ran 
his programs, it was discovered that they did not perform as 
required. This caused bad feelings and a significant loss of 
time. 

The plan should have included an evaluation period for 
each section of software to determine the extent of modifica
tions necessary. 1 By the end of that period a decision could be 
made about whether that section should be modified or re
written. As it was, some people spent far too much time trying 
to work with existing software, whereas others looked at it for 
about 15 minutes before deciding (and always deciding) to 
throw it away. 10 

The project had too many strikes against it from the begin
ning to ever be really successful; but had it been handled 
correctly, it could have been termed a valiant and effective 
salvation effort. 



When a Data Processing Department Inherits Software 167 

SITUATION II-AN ACCEPTABLE SITUATION 

Background Information 

The second situation makes a far happier story. This one 
takes place at my current place of employment, Henry S. 
Miller Co., in Dallas, Texas. Henry S. Miller is a real estate 
and property management company. The company's data 
processing systems were developed on a leased IBM System!3 
Model 10 during the period 1972 to 1976. In 1974 the process 
was contracted to a service bureau, which also assumed the 
hardware. In 1978 another company acquired the service bu
reau and assumed responsibility for providing processing and 
programming services to Henry S. Miller. The overall level of 
support and service recvied was not always satisfactory, so the 
company hired a local management consulting firm to review 
the support services. Over time the service requirements of 
users intensified to the point where an in-house computer was 
considered feasible. The consulting firm then helped Henry S. 
Miller write a request for proposal and select a hardware 
vendor. 12 

Despite the long association with IBM, a Data General 
computer was chosen. The choice was based on performance 
tests conducted, and it considered primarily current needs. 
The machine was delivered in late December 1981 and was 
operational in early January. (The staff, which consisted of a 
programmer/analyst and a nonprogramming data processing 
manager, had begun to use a computer at the Data General 
office starting in October.) 

Because data processing was being done by the service bu
reau, no data processing staff was in place. A data processing 
liaison, hired in mid-1979, learned all about the systems 
Henry S. Miller was using. Shen then hired a programmer/ 
analyst and became the data processing manager. The prob
lem they faced was converting systems neither of them had 
written from IBM to Data General. 

In December another programmer/analyst was hired, and a 
consultant who had Data General experience was engaged. 
The conversion schedule was tight. Everything was supposed 
to be converted by June 1982. Most of the systems were con
verted fairly close to their scheduled date, but there are still 
a few problems. The fact that they came close is amazing, 
considering that it has been said that "conversion estimates 
should not be attempted by persons who do not have access to 
a sizable data base of information and who do not do this on 
a regular basis."13 

The biggest problem is documentation:3 The systems are 
not well documented. There are a few system flow charts, and 
theoretically there are source listings for each program. Not 
only are the programs not printed one module per page; a 
program does not even necessarily start at the beginning of the 
page (see Appendix 1). Program names are not descriptive; 
therefore, which program goes with a given system has to be 
determined from the JCL, of which there are copious quan
tities (see Appendix 2). Unfortunately, this occurs in more 
cases than should be expected. 1, 15 

Deloitte, Haskins and Sells reviewed the accounting sys
tems and recommended that they be completely rewritten. 
This firm felt that there was little point in trying to modify 

undocumented RPG programs. Because of time and staff lim
its, however, this was not possible. 

I started with the company in May 1982 and immediately 
began lobbying for documentation to be done. The major 
drawback to this is user expectations. 1 Like many companies, 
we are operating in the crisis mode most of the time. Fast on 
the heels of the IBM-to-Data-General conversion has come a 
conversion of the manual and automated accounting systems 
to accrual from modified cash, which meant further changes 
to newly converted programs. 

Understanding the Systems 

To help myself understand the systems I was working on, I 
made a few data flow diagrams (DFDs). I found that in a 
relatively short period of time I became conversant with those 
systems. I have not made DFDs for most of the systems be
cause I have not had time; consequently, their operation re
mains far fuzzier to me than the systems for which I have data 
flow diagram documentation. 

Special Conversion Problems 

A troublesome problem in the conversion was the con
version of files. IBM sign conventions for packed fields are 
different from Data General conventions,14 and the records 
were not always created with a consistent sign character. The 
problem was not always immediately noticeable, and it caused 
problems that were hard to track. The conversion involved a 
painstaking process of looking at the data to see what was 
happening, and it consumed a lot of time. 

Another problem was that the programs seemed to be writ
ten by adherents of the Magic School of Programming. I, 13 

That is, we were frequently heard to exclaim, "How could that 
ever have worked?" I'm sure if we spent long enough thinking 
about it, we could have figured it out; but frequently we just 
rewrote that piece. This problem seems to occur any time that 
someone else has written a program and has not followed 
strict coding standards. 13 

Scope of the Project 

The primary directive, again, was to get the systems up and 
running as quickly as possible-in any way possible. The data 
processing manager gave the programmers a great deal of 
leeway in deciding whether to use an existing program; there
fore, on most of the systems, a decision was made fairly 
quickly about whether to convert or rewrite a program. Thus, 
not a lot of time was spent trying to use unworkable programs, 
but some time was wasted in rewriting programs that probably 
could have been converted. This has not been a problem for 
us so far, but it needs to be watched in the future as rewrite 
decisions become more expensive. 10,16 

Handling User Requests 

One recurring problem has been users' wanting "just a little 
change-and how soon can we get it?,,3 This had come about 



168 National Computer Conference, 1983 

because special user requests were taken into consideration as 
the systems were being converted. Users would come to each 
member of the data processing team with requests. As a re
sult, some priority work was not getting done and user re
quests were being forgotten. The solution was to institute a 
special request form (shown in Appendix 3) and to channel 
requests through the data processing manager. This has been 
a tremendous help to us and is extremely important in dealing 
with inherited software, since what on the surface looks like 
a simple change could turn out to be extremely difficult be
cause of the way the program is coded. 1 We are given the 
request and asked to estimate the amount of time it will take 
to make the change. On the basis of our estimates the requests 
can then be prioritized. As a result the users feel that they are 
getting better response to their requests. 

Prospects for Design 

Because the major effort has been the conversion of the 
systems, little design work has been done. Some of the sys
tems run inefficiently, and others are organized in such a way 
that modifications are extremely difficult to make. There are 
also redundant programs and files; and because our storage 
space needs are very cyclic, we almost run out of space at 
some times and use only about half our disk space at others. 

A thorough system design needs to be made. We need to 
get together with the users and find out everything that they 
would like to include in their systems. to The best way for us to 
do this is to make a set of data flow diagrams of the existing 
systems and then mini-models of the requested changes. 5 

From this we can tell which changes can be made in the 
existing systems and which will mean total redesign and 
rewrite. 

Comparison of the Two Situations 

To compare the Henry S. Miller situation with that of the 
engineering company shows decidedly that Henry S. Miller 
was in a much better situation to begin with than was the 
engineering company. The expertise of the two managers was 
roughly equal, but at Henry S. Miller the manager is aware of 
her lack of programming knowledge and has found reliable 
people to depend on for advice. She has been open to sug
gestions about documentation and respects programmer deci
sions involving rewrites. This has added tremendously to de
partment productivity. 

In both cases a lack of documentation has hurt the imple
mentation effort. In Henry S. Miller's case, however, at least 
the programs were demonstrably executing before the con
version effort began. In addition, at Henry S. Miller there is 
still the possibility of doing good documentation. 

Both companies made use of consultants, and both to some 
extent gave up some control to the consultants. In both cases 
the consultants were conscientious; however, the Henry S. 
Miller consultant has made some effort to write programs that 
are readable and maintainable. 

In generai, Henry S. Miner started with a better situation, 

and through reasonable management it has kept the con
version and maintenance effort under control. 

SUMMARY 

To summarize, there are several considerations involved when 
a data processing department is dealing with inherited soft
ware. First, a relatively experienced staff is required.2

, 3 The 
learning curve is high and fast, and the programmer doesn't 
have time to deal with language concepts. 16 Second, the staff 
needs to be virtually overwilling to do documentation, since 
most of the work involved in the conversion is documen
tation. 3

, 16 Third, just as in new development, much front-end 
planning needs to be done, including implementation plan
ning that specifies a time limit for evaluating existing software. 
This means that management has to accept the existing soft
ware as a sunk cost-if it works, great, but if not, rewrites are 
acceptable.1 

ACKNOWLEDGMENTS 

I would like to thank Patricia Cathey, my data processing 
manager, for supplying the background information and 
keeping me honest in my description of the Henry S. Miller 
situation. 

I would like to thank Ned Chapin of InfoSci for his guidance 
and encouragement, without which this paper would never 
have been written. 

I would like to thank LWFW, Inc., Group for the use of 
their word processor. 

Finally, I would like to thank my husband Bruce for doing 
online literature searches on this topic and for his encour
agement and suggestions. 

REFERENCES 

1. Liu, Chester C. "A Look at Software Maintenance." Datamation, 22 
(1976), 51-55. 

2. Parikh, Girish. "Three Is Key to Maintenance Productivity." Computer
world, 15 (1981), SRl40-SRl41. 

3. Lientz, Bennet P., and E. Burton Swanson. Software Maintenance Manage
ment. Reading, Mass.: Addison-Wesley, 1980. 

4. Parikh, Girish. "Cost-Effective Software Maintenance." Interface: Data 
Processing Management, 7 (1982), 37-39. 

5. DeMarco, Tom. Structured Analysis and Systems Specification. Englewood 
Cliffs, N.J.: Prentice-Hall, 1979. 

6. Gane, Chris, and Trish Sarson. Structured Systems Analysis: Tools and 
Techniques. Englewood Cliffs, N.J.: Prentice-Hall, 1979. 

7. Orr, Ken. Structured Requirements Definition. Topeka, Kans.: Ken Orr and 
Associates, Inc., 1981. 

8. Page-Jones, Meilir. The Practical Guide to Structured Systems Design. New 
York: Yourdon, 1980. 

9. Chapin, Ned. "Semi-Code in Design and Maintenance." Computers and 
People, 27 (1978), 17-27. 

10. Lyons, Michael J. "Salvaging Your Software Asset (Tools Based Mainte
nance)." AFIPS, Proceedings of the National Computer Conference 
(Vol. 50), 1981, pp. 337-341. 

11. Clark, David M. "Maintenance Programming." Computerworld, 14 (1980), 
27-30. 

12. LWFW, Inc., Group. Henry S. Miller Companies, Data Processing Request 
for Proposal. Private company document, May i98i. 



When a Data Processing Department Inherits Software 169 

13. Parikh, Garish. How to Measure Programmer Productivity. Chicago: Shetal 
Enterprises, 1981. 

ings of the National Computer Conference (Vol. 50), 1981, pp. 349-352. 

14. Hyman, Dale. Private communication, August 1982. 

16. Glass, Robert L. Software Maintenance Guidebook. Englewood Cliffs, 
N.J.: Prentice-Hall, 1981. 

15. Chapin, Ned. "Productivity in Software Maintenance." AFIPS, Proceed-

APPENDIX 1 

~ 'OWL 0- W - L SOU R C E PRO G R ,.. LIB R J\ R Y s Y S T E M 
;(V5nO.2) 
1M t E = 0 31 13/8 I • TI ME: 1 7. 1 2 . 5 j 

o USE 29 

.--.----- --.;;;g;--------------~~~~l = ;~ 
o SALPR M 69 
o 51UNM 78 

.. _.-.--- .--------g-~.-.-.-.~--. - ~f~~M.!.-c1~~-:--·-------
o OWNER 132 

I NFORM/d ION PRod 

000097 
000098 

·--000099------
000100 
000101 

----·----·--·---ggglgl--~·-----
000104 

·.~:~~_..Q~-O!!LP'tG-103 END HMCRLl 5T . PROD . REVsOO 1. BLKS=OO I. ACTST=OO l~pELST • ..::O..::O:..;:O:..;:O:....I:-______ _ 

OOOOIH COil 
00002FPR·OSP lP .FU~O 128 4AI:·: I tUSl<30 SVS02ts 

CRoal 

"--------.-. g g § § l~ ~ ~A~~---2s":~-~i" ~~~ ......... ___ .;,-.~,.!;~ .. 'it ~! .E.R~ v ~ L ~.l._ . . . -----_.------------
000051 I. 40SEQ 
000060PR1NT T 33 LR 

. ______ ._. __ ..Q~QcE.q. SJ:...:lgL..--__ ~60 

UI 

b i 02 - .. - - .. -------S~Q----·---4 
TYPE 8 
PROSP 30 

;gOR -~~.------.------~~------~------~-
CITY 105 

.: : Z J P I I 1 . 

-·"""---O·3-----02-69-~!:IQ~!-·_.I~5~.L.:..-.-L--:--Q~----------~-----.-----. 
D 12 02N69 

TRADE 30 



170 National Computer Conference, 1983 

APPENDIX 2 

P.HMGLAODS V.M 0.0 17 SLOCKS PRIvATE SOURCE-STATEMENT LISRARY 

Bi(ENO 

• SS/- CYCLE HMGLADoS ADDS GENE~AL LED~E~ TRANSA:i:ONS 08-26-81 
II PAUSE MOUNT M S M M S T ON ANy MO~ 1 

ASSGN SVSOO£.OlSK.VOL-HSMMST.SH~ 
II EXEC IPREST~T 
• SS DATA RESTART 
• SS/-
I I RESET ALL 

.JOB HMGU(EY 1 TRANSACTI ON KE YT APE 
• SXLST CLASSsu.oISP-0.COPY s01.CMPACT-IPOO.FCS-SSBFCE 
1/ PAUS~ ~OUNT K[YTAPE 'HMKT~L02' ON X'2B7' 
II ASSGN SVSLST.IGN 
II ASSGN SYS007.X'287' 
1/ TLBL EPKEYTP. '&01WORK1.W' 
II EXEC L.SKEYTP 
• SS DATA HMKTGL02 
• u/" 

INPUT HMKTGL.02 
OUTPUT 

______ ~(~f_*~ESET AL.L. 

.~ 
\ 

.J08 HMGL025# ADD TRANS TO WORK FILES 
• SXL.Si CLASS·U.OISP-0.COPV s 01.CMPACT-IPOO.FCS s stBFCB 
II TL.BL CAR096,'&01WO~K1.R' INPUT 
1/ oL.BL. GLWRK1T.'·-CPU--TEMP.C1' HMGLW~K1-0UTPUT 
II OL.BL. GAPDETT. '.-CPU--TEMP.C2' MMGAPDET-OUT~UT 
II DL.BL GAPOET:. 'HMGLGAPD'.O.SO INPUT 
// EXTENT SVS006 .. 1.0.2~32.0209 
/1 OLBL GL.WRK1I. 'HMGLWRK1' .O.SO 
1/ EXTENT SVS006 .. 1.0.2033.0399 
1/ EXEC HMGL.025. 

ItJPUT 

• sst· 
------~7Tr-;/ RE SET AL.L 

.JOB HMGLSRT1 RECREATE HMGL~RK1 MASTER 
• SXLST CL.ASS·U.OISP-o.COPV-Ol.CMPACT-IFOO.FCS-SSBFCB 
/1 ASSGN SYSLST.IGN 
II DLBL SO~TIN1.'··CPU--TEMP.C1(0)' MMGLwR~1 
1/ EXEC SORT 

OPTION PRINT-CRITICAL..FILNM.fGLW~K1).SO~TOUT·6 
SORT FIEL.OS·( 1.13. BI.A. 20. 8 .BI ,A) ,WOR"-1 
RECORD TVPE-F.L.ENGTH-SO 
INPFIL 6LKSIZE-eoo 
OUTFIL SLKS1ZE-eoo 
END 

---__ .L.ss/-

\ 

1/ RESET ALL. 
.JOB HMGLSRT2 RECREATE MMGAPOET MASTER 

- SXLST CL.ASS·U.OISP-0.COPY-01.CMPACT-IPOO.FCS-SSBFCB 
II ASSGN SYSLST.IGN 
II OL.BL SORTIN1. '.-CPU--TEMP.C2(O)' HMGAPDET 
II EXEC SORT 

OPTION PRINT-CRITICAL..FILNM-(GAPOET).SORTOUT-S 
SORT FIEL.OS-(1.14.S1.A.20,S.BI.AJ.WORK-1 
RECO~D TVPE-F.L.ENGTH-SO 
INPFIL. BLKSIZE-800 
DUTFIL BlKSIZE-aoo 
END 

----55/ .. 
II RESET AL.l 

uOB HMGLBKUP WESTINGHOUSE BACKUP 
- SXLST CLASS-U.OISP-O.COPY-01.CMPACT-IPOO.FCS-SSSFCB 
II EXEC OSCASSGN 
II ASSGN SvSOOO,OUMMY 
- SS/-
II TLBL SVSOOO.'HMGLBKUP.U' 
1/ ASSGN SVS003.SVS006 
1/ UPSI X11 
II EXEC COPVOT 

GL.BAL.IR 
GAPSAL.IR 
GLMST.IR 
GLBUD.l~ 
GLCOMPN II? 
OEPArHM. I R 
GLWRK 1. SO 
GAPO~T.SD 

.. SS/o 
- t~/· END OF' JOB 

RESTART-yES 

RESTA~T·YES 

RESTART-yES 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 

A 0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
00;2 
0023 
0020l 
CO~5 
0026 
0027 
0028 
0029 

A 0030 
0031 
0032 
0033 
0034 
0035 
0036 
00:;7 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 

A 0056 
0057 
oose 
OOS9 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
006S 
0069 
0070 
0071 75 
0072 
0073 



When a Data Processing Department Inherits Software 171 

APPENDIX 3 

DATA PROCESSING USER REQUEST 

System Date 

Reported By Charge Code 

••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

REQUEST DESCRIPTION (Please include report samples, program names, etc.) 

Requested Completion Date ______ _ 

•••••••••••••••••••••••••••••••••••••••••••••••••••••• * 

PROPOSED SOLUTION ______________________ _ 

Estimated Completion Date ______ _ 

••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

User Advised of Proposed Solution: 
Date By 

Completion Date: ________ _ 





Maintaining user participation throughout the systems 
development cycle 

by RANDY J. RAYNOR 
and 

LINDA D. SPECKMANN 
Texas Instruments 
Dallas, Texas 

ABSTRACT 

Effective user participation is well known to be an important aspect of good system 
development methodology. Specific tools and techniques for managing user par
ticipation in all phases of the systems development life cycle are illustrated by a large 
business system development project at Texas Instruments. Emphasis is placed on 
maintaining a constant level of communication between user and developer as the 
system design evolves. 

173 





INTRODUCTION 

During the past few years there has been an increased aware
ness of the importance of user involvement in every phase of 
systems development. 1 The approaches to achieving effective 
involvement vary from new tools usable by the end user to 
full-time assignment of a user to assist in the development 
process. Most of these techniques have some drawbacks be
cause the right kind of tools and personnel are not available. 

Many of the tools require either extensive training time or 
expensive application software. The user assigned to a full
time systems job is too often one who is not vital to the 
business operations. This user may not be the best source of 
information for the system developers and, because of detach
ment from the project, has no direct authority to implement 
the completed system in the project. 

This paper draws from recent experiences at Texas Instru
ments with the design of a large product configuration man
agement system to illustrate the selection of a requirements 
definition methodology easily understandable by the user 
community, as well as techniques for continued user partici
pation throughout detail design, construction, and testing. A 
brief overview of the initial phases of the systems development 
life cycle is presented, and additional information is cited 
from a prior paper. 2 The focus of this paper is on the later 
phases of the life cycle. The tools and techniques outlined 
require little training and no application software, allowing 
easy implementation in other ~nvironments. 

Case Study Background 

The need for a new configuration management system was 
widely recognized at Texas Instruments, especially for the 
highly complex radar and guidance products developed for 
the Department of Defense. The development was chartered 
as a part of the Engineering Information System-an imple
mentation of IBM's Administrative Engineering Information 
Management System (AEIMS) concept. 3 

At Texas Instruments, development of new products is or
ganized through projects operating like small companies, with 
a staff for engineering, drafting, and configuration manage
ment as well as other design support functional areas. There 
was no companywide configuration management organization 
or focal point through which to coordinate development of a 
functional requirements specification. Rather, there were a 
large number of independent configuration managers with an 
equally large number of approaches to product configuration 
management. Although some small systems did support con
figuration management functions, they were not widely used. 

Maintaining User Participation 175 

The configuration management system was required to con
trol and report product baseline evolution from concept for
mulation through production sustaining, including product 
drawing and specification development, change approval and 
tracking, data management, product as-built verification, and 
logistics support. Thus, this system would affect not just those 
independent configuration managers, but also every other dis
cipline involved in product development and manufacturing. 

THE SPECIFICATION APPROACH 

Historically, systems developers have often considered user 
involvement a necessary evil. With the configuration manage
ment system it is assumed that the user is the subject matter 
expert, the user's involvement and support in every phase of 
system development is required, the user's time is a valuable 
commodity, and without the user's commitment the system 
will probably fail. This assumption places a heavy responsi
bility on the team of users (which must effectively represent 
all users), and it explains the importance of techniques for 
efficient use of team resources. 

During the initial analysis of the configuration management 
system and team identification, it became evident that the 
players had widely differing opinions on what configuration 
management was and how it should be accomplished. This 
problem prompted an approach to system specification differ
ent from that typically followed. 

System specification was broken into three distinct phases: 
concept definition, functional requirements, and detail de
sign. The concept definition specification identified at a high 
level how configuration management should be accomplished. 
The functional requirements specification identified in more 
detail what functional steps and data were required to achieve 
the basic operations of the concept definition. Neither of 
these two specifications made reference to the computer sys
tems solution. The detail design specification then identified 
which functions should be computerized and gave the exact 
definition of the system design from the user's perspective. 

Selection of a Specification Methodology 

The selection of a system specification tool was based on the 
following requirements. It had to 

1. Be easy for users to learn, easy to use, and easy to 
change. 

2. Serve as an effective communication tool between sys
tems analysts and users. 

3. Support the top-down decomposition of concept/func
tion/detail design specifications. 



176 National Computer Conference, 1983 

DeMarco's data flow diagrams4 were selected. They had 
only a few simple syntax rules, which could be learned in an 
hour. The 8Yz x ll-inch size of each diagram was also con
venient for team review because an overhead projector could 
be used. 

Figure 1 represents the use of data flow diagrams to support 
the decomposition from the concept specification to the de
sign specification. The concept specification defined the top 
three to five levels of the data flow hierarchy. The functional 
specification added an additional one to three levels to the 
data flow hierarchy where required, until specific user tasks 
were identified. Then a functional task description was devel
oped for each. The design specification mapped the functional 
tasks to system modules and defined the design of these 
modules. 

CONCEPT DEVELOPMENT AND REVIEW 

The concept definition document defined the fundamentals 
of configuration management and the necessary procedures 
to accomplish them effectively. The following topics were 
covered: 

1. Concept Definition Overview-The configuration man
agement development history and the purpose, scope, 
and introduction of the concept definition 

2. Introduction to Configuration Management Concepts 
and Definitions-A definition of the major configura
tion management functions 

3. Present Operations-A discussion of systems and pro
cedures in each area 

4. Data Flow Diagrams-The diagrams depicting the prod
uct life cycle 

5. Benefits-A discussion of expected benefits from the 
implementation of a system 

6. Appendix-A list of key users, discussion of existing 
systems, and a keyword glossary 

CONCEPT 
SPECIFICATION 

FUNCl10NAL 
REQUIREMENTS 
SPEClFlCAl10N 

DETAiL ( DESIGN 
SPECIFlCAl10N 

PRODUCT UFE CYCLE 

CONCEPT 
FORMULATION 

ADVANCED 
DEVELOPMENT 

FUll-SCALE 
DEVELOPMENT 

Twenty members of the user community were selected by a 
company vice-president to participate in the review of the 
concept definition. The team was composed of representa
tives from 10 functional areas, with emphasis on configuration 
management, quality assurance, logistics, engineering, and 
manufacturing. 

To use the large team in the best way, the concept definition 
data flow diagrams were divided for review so that each set 
had a primary effect on one functional group. Subteams of 
about six members were formed, each led by an expert in the 
functional subject matter. 

The product of the review was a 73-page document that 
described the overall approach to the way configuration man
agement should be performed throughout the life cycle of a TI 
product. More important, however, the result of the review 
was a good working relationship between developer and user, 
based on mutual respect, and an appreciation by users and 
management for the effort that would be required over the 
next several years. 

FUNCTIONAL REQUIREMENTS DEVELOPMENT 
AND REVIEW 

The objective of the functional requirements document was to 
record data flow and process requirements down to the task 
level. The specification addressed the following topics: 

1. Functional Requirements Specification Overview-The 
objective and scope of the functional requirements 
document 

2. Configuration Management Overview-A brief discus
sion of the fundamentals as defined in the concept 
definition 

3. Configuration Management Subsystem Descriptions
An overview, set of data flow diagrams, and function 
descriptions for eight major areas 

4. Configuration Management System Development 

PRODUCl10N 
FABRICATION 

o~ 
-....Jf --.;II 

~ 
00000 
~ ~ 

--------00 
-.Jf 

CONCISE TASK 
SUMMARY 

TRANSACl10N 
SCREEN FORMATS 

PROCESSING 
LOGIC 

DEPLOYMENTI 
SUSTAINING 

~} 
00 
~ 

1 
DATA FLOW DIAGRAMS 

11-3 LEVEL) 

DATAFLOW 
DIAGRAMS 
13-5 LEVEL) 

Figure l-Speciiication approach 



Methodology-An explanation of the development life 
cycle 

5. Appendix 
a. Data flow diagrams and descriptions 
b. Survey trip reports 
c. Logical database views 
d. Data element glossary 
e. Keyword glossary 
f. Configuration management forms 
g. Review team minutes 

The draft functional requirements specification defined ad
ditional levels of data flow diagrams below those of the con
cept definition, emphasizing areas for potential system appli
cation. Task descriptions were then developed to define 
further many of the processes in the lower levels of the data 
flow diagram. The task descriptions defined an operation in 
terms of the input and output data and a set of processing 
steps. 

The functional specification review team was partially se
lected from the membership of the concept review team. 
Those retained were experts in their fields and had schedules 
that permitted participation. Other new members were added 
to strengthen representation from functional areas that were 
greatly affected by configuration management tasks. This re
view demanded a more detailed understanding of data associ
ated with daily tasks and therefore required representation 
from the users with a working knowledge of the function. 

The result of this review was an 1100-page document that 
defined the complete set of tasks required to accomplish con
figuration management. From this iist, tasks could be selected 
for detail design. 

Since the scope defined by the functional requirements 
specification would require 3 to 4 years to develop, an initial 
phase was defined for detail design and construction. The data 
flow diagrams developed in the functional requirements spec
ification played an important role in the first phase of detail 
design as well as subsequent phases. They provided the com-

DEVELOPMENT PHASE 

INVESTIGATIVE ANALYSIS 

CONCEPT SPECIFICATION 

FUNCTIONAL SPECIFICATION 

DESIGN SPECIFICATION (I) 

CONSTRUCTION (I) 

TESTING (I) 

IMPLEMENTATION (I) 

DESIGN SPECIFICATION (II) 

-

• • 
• 

30 I 40 10 

-1979 

• 
• 

Maintaining User Participation 177 

plete set of requirements used to prioritize later system re
leases. 

The relatively small scope of the initial phase not only pro
vided near-term system startup, but also improved user in
volvement and motivation by providing a goal requiring 
project level planning for implementation. The phased sched
ule is illustrated in Figure 2. 

DETAIL DESIGN SPECIFICATION 

The detail design specification defined the user interface to 
the application system, procedures for use of the system, over
all software architecture, and database design. The contents 
of the detail design specification were as follows: 

1. Introduction-The purpose and scope of the detail de
sign specification document 

2. System Description-An overview of the entire system's 
functional design 

3. Subsystem Description-Data flow diagrams of all sys
tem functions, procedural flows and narratives, and on
line transaction descriptions 

4. Changes to Existing Procedures-A step-by-step pro-
cedure describing manual and system operations 

5. Test Plan-Test objectives and methodology 
6. Training Plan 
7. Appendix-Logical database design, manual forms, re

view team minutes, and glossary 

Because of the detail required in the design specification, 
data flow diagrams were insufficient to represent the required 
information. The strength of the data flow diagram is its hier
archical illustration of a major problem. When a detail design 
is being made, procedural flows, control points, feedback 
loops, and organizational responsibilities become important. 
Therefore, procedural flows were chosen to show how the 
system would be used in day-to-day operations. However, as 

• 
• • 

• • 
• • 

• 
• ) 

I I 

20 I 30 
I 

40 10 
I 20 I 30 

I 

40 

1980 1981 

Figure 2-System life cycle 



178 National Computer Conference, 1983 

each phase of detail design was initiated, the data flow dia
grams were consulted for information on interfaces required 
within the configuration management system as well as for 
other systems. 

User Review 

The review team consisted of 12 members of the user com
munity representing five disciplines. Some of these members 
had been on the functional requirements team, but new team 
members were needed to challenge the work of the earlier 
team. 

As is typical in system design reviews, the format and usage 
of each online transaction was described and discussed in 
detail. User procedures, including manual and system oper
ations, were also presented during the eight-session review. 
Since the application was to be developed using a database 
management system, the database design was reviewed with 
users. Figure 3 illustrates how users were involved in such a 
system-oriented topic as database design. The database de
sign was presented by using colored dots relating each data 
item on every screen to its location in the database. The users 
were then asked to evaluate the database design to insure that 

DRAWING 
0 

1 

N 

REVISION 

* 
1 

1 

ECN 
0 

EIS-DRAWING ECN HISTORY 

DRAWING NO: 0 DRAWING TITLE: 0 

ECN DRAWING ECN REVISION 
NO. REVISION STATUS DESCRIPTION 

~ * 0 * 
~ * 0 * 
~ * 0 * 
~ * 0 * 
-1L * 0 * 

Figure 3-Database reviev,r 

1. All items of importance (entities) were identified. 
2. All attributes of each entity were identified. 
3. All relationships (one-to-one, one-to-many, many-to

many) between entities were properly identified. 
4. Potential future requirements would fit within the over

all structure. 

During the database review several attributes were found to 
be associated with the wrong entities, but the overail structure 
remained unchanged. The users did, however, express com
fort at having a better understanding of this hidden aspect of 
system design. 

Design Verification 

After the design review there was doubt that the design 
had been reviewed thoroughly enough to be certain it would 
function in an operational environment. The concern was due 
to the significant changes required in manual procedures, 
coupled with the users' lack of experience with the use of 
computer systems. An additional test was added to the design 
process to validate the approved design further. 

The design verification test manually simulated the system 
operation. The test goal was to determine whether all neces
sary data had been captured and the proposed manual pro
cedures would work. Six areas were chosen to participate; 
some representatives were not from the detail design team. By 
using paper versions of the proposed online transactions, 
users were asked to operate the system in parallel with their 
current procedures. Although execution of this test was ini
tially sporadic, the systems analyst was able to provide suf
ficient motivation to obtain a complete set of test results. The 
results are shown in Table I. 

Development Plan 

Before the system was constructed, the complete schedule 
was developed for the construction and user test phases of 
system development. The format of the schedule was such 
that the users would understand not only what was going on 
within the development organization, but also their responsi
bilities during the development cycle. At this time specific 
users were identified to assist in the construction and test 

TABLE I-Design verification test results 

NUMBER PER CENT NUMBER PER CENT 
IDENTIFIED OF TOTAL IMPLEMENTED OF TOTAL 

DESIGN 
PROBLEM 17 17% 16 19% 

DESIGN 
IMPROVEMENT 32 33% 26 31% 

PROCEDURAL 
PROBLEM 20 20% 17 21% 

PROCEDURAL 
IMPROVEMENT 9 9% 6 7% 

TRAINING 
PROBLEM 19 19% 16 19% 

TRAINING 
IMPROVEMENT 2 2% 2 3% 

TOTAL 99 83 



phases, and the first group was identified for initial production 
startup of the system. Joint commitments were made by devel
oper and user-the developer to meet the specification and 
the schedule and the user to implement the system on a 
project. User responsibility for the system had shifted from 
the user community at large to the specific users' own oper
ating organization. 

SYSTEM DEVELOPMENT 

The construction phase consisted of six major milestones for 
each transaction being developed. First, a preliminary design 
review was conducted between the analyst and the assigned 
programmer to insure that details of the design specification 
and the overall systems architecture were understood. The 
next step was the development of the user documentation for 
the transaction by the programmer. 

A review of user documentation was then conducted be
tween the developer and user identified in the development 
plan. This was a key review to insure that the programmer 
understood the design specification as well as any implications 
not detailed in the design specification. It also gave the user 
a final chance to make modifications to the design prior to 
coding, and it established a working rapport between the pro
grammer and the user. (Though user documentation is seldom 
written before coding, the method is widely recognized as a 
good one. In addition to the benefits mentioned above, it 
maintains user involvement at a point in the development 
cycle that is typically void of any involvement. In this case the 
maintenance of involvement was extremely beneficial in pre
venting the common attitude among users that after the spec
ification is complete, user participation stops.) 

The approved draft of the user documentation was sent to 
the technical writing staff for editing while the programmer 
continued with the construction phase. The next step was 
program design and pseudocoding, which concluded with a 
program design review. After source coding was completed, a 
code walkthrough was conducted with other members of the 
programming staff. Upon approval by the lead programmer 
the assigned programmer completed testing of the program 
and preparation of the test package for the user unit test. This 
test package consisted of the completed user documentation 
and transaction test instructions. 

User Test 

The test package was used by the user identified in the 
development plan to help in understanding the transaction 
and the purpose of the unit test. This test averaged a cycle 
time of less than 2 weeks for each transaction. 

Once all programs had passed the unit test, the users con-
ducted a system integration test to insure proper communica-
tion of data among all the transactions within the system. This 
test required about 2 weeks to complete. 

The final test was the parallel production test, which, unlike 
prior tests, used real data in the operational environment. 
Before beginning the parallel production test all users partici-
pated in a training class, which allowed a prototype test of the 

Maintaining User Participation 179 

training material. The parallel production test lasted for about 
6 weeks. 

During the entire testing cycle, weekly meetings were held 
in the user's area to review test results. All comments were 
documented for future disposition. User reaction to the test
ing was favorable. Users felt they could affect the design of the 
production system and therefore were motivated to complete 
the testing. The success of these efforts is presented in Table 
II, which displays the program changes identified during de
sign as compared to those identified during construction and 
test. The results show that the majority of changes were iden
tified during design, indicating a successful communication of 
the design between the developers and the users. 

Implementation and Fanout 

The development plan was executed on schedule, and the 
system was put into production with no major problems. Af
ter a month of use on the first project area, the system was 
installed in a second area. Several minor problems arose dur
ing the first month of use on the second project. However, 
users from the first project volunteered to meet with users 
from the second project to assist them in several procedural 
issues. This cross-communication between users was help
ful in achieving user acceptance of the new system and 
procedures. 

Several months into system operation a major procedural 
issue was identified by one of the functional user groups indi
rectly affected by the system. The issue should have been 
resolved during the review of the detail design specification. 
It was discovered that the user who represented the functional 
area affected had attended less than half of the design specifi
cation review meetings. Although this issue was resolved with
out any major impact, the occurrence did point out that par
ticular attention must be paid to insuring that the users accept 
the responsibility that goes along with the authority they have 
as team members representing their respective user commu
nities. 

RESULTS 

During the concept and functional requirements specification 
activities, data flow diagrams were a key in providing a struc-

TABLE II-Design changes by module 

CHANGES CHANGES 
LINES DURING DETAIL DURING 

OF SPECIFICATION CONSTRUCTION 
MODULE CODE USER REVIEW AND TEST 

2638 25% none 
2 1855 5% 5% 

3 1646 100% 0% 

4 1987 60% 10% 

5 1251 15% none 
6 1117 100% 1% 

7 1074 not in spec 100% 

8 2637 30% 1% 

9 2173 100% none 
10 4336 80% 10% 

11 3467 100% 5% 



180 National Computer Conference, 1983 

ture to maximize effective use of the users' time. Beginning 
with the detail design specification, use of procedural flow and 
control flow diagrams replaced the data flow diagrams. Fol
lowing the user review of the design specification, several ad 
hoc techniques were used to maintain a constant level of user 
involvement and interest during the construction and test 
cycle. These techniques included design verification test, de
velopment planning, user documentation walkthrough, and 
unit and parallel production test. 

The techniques communicated to the users progressively 
more detailed perspectives of the system design, allowing 
them to visualize and critique the system. The frequency of 
these milestones permitted the users to monitor the progress 
of the development activity. As the design evolved, the users 
saw the incorporation of their ideas into the system design and 
felt more sure that the system would succeed in solving the 
problems in their environment. 

The 50 to 60 users involved in the various development 
activities had a major stake in the successful implementation 
of the system. As shown in Figure 4, the user contribution was 
30% of the total effort and was spread across all phases of 
development. Since their involvement was voluntary (and in 
addition to their regular job), the amount of their contribu
tions illustrates their acceptance of responsibility for their role 
in the development activity. As the system design evolved, 
this responsibility grew-to such a degree that the users felt 
that the system was theirs by the time of implementation. 

CONCLUSION 

Tools and techniques for systems development should be se
lected to support frequent communication between the devel
opers and the users. It is not the particular tools that are 
important, but the selection of a set of tools that improve the 
users' understanding of the design as it evolves. 

CONCEPT 
DEFINITION 

FUNCTIONAL 
SPECIFICATION 

LL..~~~~.L..LI.:....£..L.l....L.L.L...L..!.4 DETAIL 

CONSTRUCTION AND 
PROGRAMMER TEST 

DESIGN 

D = DEVELOPER EFFORT 
o = USER EFFORT 

TOTAL EFFORT 
DEVELOPER: 80 MM 
USER: 37 MM 

Figure 4---System development effort by phase 

REFERENCES 

1. Jackson, James E. "The Role of the User at Standard Oil Company (Indi
ana) In The Development of Large-Scale Business Systems." AFIPS, Pro
ceedings of the National Computer Conference (Vol. 51), 1982, pp. 549-553. 

2. Raynor, R. J., and L. D. Speckmann. "Structured User Participation in 
Systems Requirements Specification." In Proceedings of the 26th Annual 
Conference of the Society for General Systems Research on Systems Meth
odology. Louisville, Ky.: The Society for General Systems Research, 1982, 
pp. 305-310. 

3. IBM. Administrative Engineering Information Management System: System 
Definition. New York: IBM Corporation, 1975. 

4. DeMarco, T. Structured Analysis and System Specification. New York: Your
don, 1979. 



Data processing project management: A practical approach 
for publishing a Project Expectations Document 

by LOIS ZELLS 
Yourdon, Inc. 
Scottsdale, Arizona 

ABSTRACT 

With the mounting demand for proficient personnel and the parallel increase in 
salaries, management is seeking ways to improve productivity in order to realize a 
higher return on their investment dollars. Knowing what to do, when to do it, and 
how to do it prevents costly retries. Given any kind of a project and 2 to N 
participants, there will be 2 to N views of the project. Furthermore, there are always 
dozens of subtle nuances floating like little puffs of smoke over every enterprise, and 
they are often not in agreement. It is necessary to crystallize the assumptions that 
each participant "understands" to be the accepted expectations, resolve the con
flicts, and disseminate this information to the community. This paper reflects a 
practical method for transforming facts and conflicts into an approved development 
approach and publishing the results in what will be called a Project Expectations 
Document. 

181 





INTRODUCTION 

Never underestimate the importance of managing organiza
tional expectations! In any data processing project, effective 
presentation of the many agreements and decisions is a must! 

Made during informal interviews and conversations on the 
phone, in the hall, and by the elevators, as well as in formal 
meetings, these agreements and decisions need to be docu
mented. This record starts as soon as the project is initiated 
and is continuously revised throughout the development 
cycle. 

A project, any project, is composed of four basic stages: 

1. Definition of the problem 
2. Design of the solution 
3. Development 
4. Implementation 

It is during the definition stage, before the "real" job of 
analysis, that developers have produced what has traditionally 
been called the statement of work, feasibility study, or survey. 

In its simplest form, a feasibility study may be an economic 
evaluation such as a costlbenefit analysis based on some high
level assumptions. A more complete definition recognizes 
that analysis of the existing system deficiencies and new sys
tem objectives is required as input to the survey. The likely 
output, the statement of work, may include the following: 

1. A cost/benefit analysis 
2. A narrative of the project and its deliverables 
3. A high-level project plan 
4. Preliminary solution alternatives 
5. The recommended approach 

Generally accepted essentials of the survey, the listed com
ponents meet the goals of a feasibility study. However, there 
are also many undefined and assumed attitudes and ex
pectations infused into every development effort. N number 
of people will have N number of perspectives pertaining to the 
project, and they are usually not all in agreement. It is neces
sary to crystallize these views, resolve the conflicts, and dissem
inate this information to the community. 

This paper proposes to restate the obvious, shift activities, 
integrate new ideas, and repackage the product. A practical 
approach will be provided for transforming the old, incom
plete feasibility study into a comprehensive preanalysis phase 
that illuminates the variations of expectations and concludes 
with the publication of a Project Expectations Document. 

Data Processing Project Management 183 

A PRACTICAL APPROACH FOR PUBLISHING A 
PROJECT EXPECTATIONS DOCUMENT 

What is so special about a Project Expectations Document 
(PED)? Why do we even want to publish a PED? The par
ticipants, who range from executive management to the 
hands-on operators of the system, need to have a clear under
standing of the project and its deliverables. This clarification 
must occur as soon as the project is initiated and must be 
maintained throughout the project development cycle. 

The PED will record all the philosophies, assumptions, 
dependencies, requirements, and constraints. Organizational 
expectations will be realistic, approved, documented, and dis
seminated. Furthermore, the red-flag issues will be brought 
into the open and dealt with immediately. Failures occur when 
project participants know that risks are being increased while 
visibility is being suppressed because management cannot (or 
will not) acknowledge the problems. However, even the most 
taciturn managers cannot refute facts that are clearly stated. 

To Begin 

The foundation for building a PED is the interview process. 
Information is gathered informally and formally. Informal 
interviews occur during phone conversations, at the water 
cooler, during lunch, and so forth. A notebook carried at all 
times to record the essentials of every conversation helps to 
identify individual expectations and conflicts. Thus, assump
tions, dependencies, constraints, and philosophies are quickly 
accumulated and documented. 

Procedurally, the formal fact-gathering process is much 
easier. At least three to four organizational levels should be 
interviewed, using a predeveloped questionnaire and allowing 
time to record the entire meeting after each interview. The 
interviewee should be allowed to verify and/or correct the 
interview report. After all the interviews have been recorded, 
reviewed, and revised, the results should be analyzed and 
summarized according to areas of agreement and conflict. 
Disagreements can be resolved in committee or by a selected 
group or individual. The original areas of agreement, the 
conflicts, and the resolutions constitute the final document. 

Publication of the PED Requires Time and Effort 

During this preanalysis Project Expectations Phase, the 
fact-gathering process just described is employed. A consoli
dated document is the deliverable, and the activities leading 
up to its completion are as follows: 



184 National Computer Conference, 1983 

1. Publish a draft PED. 
2. Select the reviewers of the draft PED. 
3. Distribute the draft PED. 
4. Schedule the review of the draft PED. 
5. Review the draft PED. 
6. Revise the draft PED. 
7. Publish the PED. 

Some of these jobs must be done sequentially; others can be 
done in parallel. Partitioning publication into smaller tasks 
and their dependencies allows better control and management 
of the entire process. 

A PED Addresses Many Issues 

It is impossible to develop a generic solution to all projects 
in all environments. Therefore, the following list with the 
subsequent discussion is offered as a menu of suggested areas 
of interest: 

1. Executive Overview 
2. Scope of the project 
3. Systems overview 
4. Analysis of alternatives 
5. Project management philosophies 
6. Constraints, assumptions, and dependencies 
7. Costs 
8. Completion criteria 
9. Success criteria 

10. Acceptance testing criteria 
11. Project plans 
12. Management reports 
13. Management summaries 

Executive Overview 

Senior managers are too busy to read a lengthy document. 
They want the information in an easy-to-absorb offering. Al
though it is the last job completed in the phase, the one-page 
Executive Overview is the first item in the document and 
describes the project history, the existing system efficiencies 
and deficiencies, the new system goals, the costs of the new 
system, a cost/benefit overview, and the estimated completion 
date. 

Also included in the Executive Overview is a brief descrip
tion assessing the effect on existing operations of doing/not 
doing the project. Impact assessment will be discussed in de
tail in the following section. 

Scope of the Project 

In this section of the PED the boundaries of the new system 
are set. The user organization is established, identifying the 
affected departments and describing their major areas and 
components. We decide what is to be built, what needs to be 
done, and how long it should take. It is also necessary to 
specify what the system will not do and to determine existing 
manuai and automated systems. 

Impact assessment 

With the introduction of the impact assessment, a helpful 
dimension is added to the Scope of the Project section. Often, 
as pioject managers, we assume that our project is pure good
ness, something akin to motherhood and apple pie. How can 
users fail to love and embrace it? The project may be com
pleted on time and within budget, yet the users are unhappy. 
Why? Can the project then be considered a success? 

If there is any chance of resistance, the situation should be 
assessed early in the project. Perhaps the condition can be 
overcome (publicity, user involvement, and so forth); but if 
the project will have a truly negative impact on the or
ganization, let us know about it now. If we cannot correct the 
problems, do we want to spend $N on a white elephant? 

The Impact Assessment answers such questions as these: 

1. How do the users feel about the new system? 
2. Where are the resistance pockets? 
3. Will operations change? 
4. Will departmental boundaries change? 
5. Will jobs be changed? Added? Eliminated? 
6. How will users react to new technology? 
7. What is the priority of the project in relationship to 

existing business operations? 
8. What is the effect of the project on existing business 

operations? 

Evaluating these issues early in the project enables informed 
and effective decision making. 

Systems Overview 

Although the project expectations phase is a preanalysis 
phase, it is nevertheless necessary to initiate some high-level 
analysis at this stage. The Systems Overview explains the 
current system's deficiencies, but in-depth study is postponed 
until the analysis phase. The key features of the new system 
are identified, new functions are described, and development 
costs are estimated in order to justify, prioritize, and recom
mend those that may be included, delayed, or excluded. The 
major inputs and outputs to the system are identified, and 
system interfaces are declared. Performance requirements 
may also be included, along with any pertinent comments on 
existing hardware or software. 

Analysis of Alternatives 

The project team is responsible for providing management 
with several solutions or proposals for the new system. Imme
diately following analysis there should be a special phase for 
in-depth evaluations of several implementation alternatives. 
However, some foundation work may begin during the project 
expectations phase. For each alternative, summarize the key 
features, major functions, assumptions, advantages/disadvan
tages, opportunities/risks, and estimated costs. Recommen
dations are aiso appropriate. 



Project Management Philosophies 

The desire to manage projects effectively and be perceived 
as exceptional contributors stimulates our interest in many 
issues, not the least of which is how much control and re
sponsibility is to be assumed and by whom. Relying on the 
psychological adage that involvement implies commitment, 
we propose that the selection and approval of the project 
management philosophies be a participative activity for the 
following items: 

1. Development life cycle, 
2. Planning philosophy, 
3. Problem management plan, 
4. Formal plan for review, 
5. Change management plan, 
6. Approval cycle plan, 
7. Organization plan, and 
8. Status reporting plan. 

The tasks described in the earlier sections, To Begin and Pub
lication of the PED Requires Time and Effort, should be ap
plied to producing a document for each item in this list. 

Development life cycle 

Traditional project development usually follows some set of 
steps from start to completion. The steps may be a series of ad 
hoc responses as needs are recognized, or the project may be 
completed using an accepted methodology. Furthermore, a 
given project may use only a limited number of steps chosen 
from the methodology. More enlightened data processing en
vironments may have a selection of several kinds of methodol
ogies, which enables the customization of a project develop
ment life cycle. It is unusual to solicit management and user 
involvement in the choice of the development approach. 
Nevertheless, that is precisely what we are advocating. 

Planning philosophy 

We must help the organization to understand that project 
planning is an iterative process. It is impossible to present a 
comprehensive and detailed schedule for implementation 
on the first day of a project. Furthermore, it is unlikely that 
a project plan that is precise can be completed before design 
is finished. Consequently, as we migrate through the devel
opment life cycle, our knowledge base of the project becomes 
broader and we are able to refine the plan continually. 

We will also advise the organization to employ the par
ticipative approach (those who are closest to the work will 
plan and estimate); and we will tell the organization the 
method of partitioning the work and the way in which we 
calculate dates. 

Problem management plan 

No project can go from start to completion without its share 
of problems. Contentions build gradually and often per-

Data Processing Project Management 185 

niciously. Usually it is not until a situation has become serious 
that its resolution becomes an issue. We recognize that prob
lems are unavoidable and will institute a problem manage
ment plan. 

Formal reviews 

The procedures and participants for walkthroughs and for
mal reviews are identified. 

Change management plan 

Change is inevitable. Any time we attempt to freeze a speci
fication, we are deceiving ourselves. We are only restricting 
the system's view of the real world. Admitting that we cannot 
control change, we will manage change by implementing easy
to-follow procedures. 

Approval cycle 

The final document from each phase must be approved, the 
project plans must be approved, the analysis specification 
must be approved, the design must be approved, and so on. 
It is advisable to itemize all the activities in the project that 
need ratification. A responsibility matrix is completed; it 
designates accountability and provides visibility to important 
activities. 

Organization plan 

The organization plan describes the partitioning of the 
project into specialty groups, the group charters, the assign
ment of participants to groups, and the group members' 
percentage of participation. 

Status reporting plan 

If a project control and accounting system is already in
stalled in the environment, it is important to indicate which 
reports will be used, who will be on the distribution lists, and 
how often the reports will be produced. 

If the organization has no reporting system, an evaluation 
of alternatives (which should include manual reporting, pur
chased packages, and internally developed software) should 
be presented, along with a recommended plan of action. 

Constraints, Assumptions, and Dependencies 

It is important to specify the subtle nuances that are usually 
floating like little puffs of smoke over every project. There are 
dozens of little assumptions that everyone "understands" are 
the accepted expectations of the project. Rarely, however, are 
these subtleties addressed until they become issues: 

1. User participation is cl~?!ied. 



186 National Computer Conference, 1983 

2. The four classic tradeoffs when a project is late are delin
eated. 

3. Computer requirements such as equipment availability 
and turnaround time are specified. 

4. Responsibility issues such as levels of control, skill 
levels, and conflict resolution are stated. 

5. Technical decisions pertaining to software packages, 
design tools, and development tools are made. 

6. Management overhead is detailed. 
7. Administrative support is defined. 

Costs 

The determination of costs is needed for informed decision 
making, evaluation against benefits, budgeting, and establish
ing the yield on the investment. 

Costs to date and projected costs to completion will be 
reported as each phase is completed so management can make 
informed go/no-go decisions to proceed. 

Development costs may be weighed against the benefits of 
anticipated operating savings, high returns, improved service, 
or tax savings. 

The payback period for return on investment, net present 
value, and internal rate of return may be used to compare the 
yield on the investment against other potential ventures. 

In our continued effort toward managing organizational 
expectations, it is important to stress that estimates at this 
stage may be misjudged by as much as 70% to 200%. 

Completion Criteria, Success Criteria, Acceptance Testing 
Criteria 

It is important to stipulate, early in the project, the condi
tions for determining that the project is finished, that the 
project is successful, and that the project is acceptable. 

Agreeing on a terminating landmark prevents project com
pletion from floating toward infinity. But how will we know 
when the project is finished? Will the conclusion of an activity 
such as acceptance testing or the shakedown period indicate 
completion? Will the system be considered delivered after it 
has run error-free for some prescribed period of time? The 
criteria for terminating the project must be specified now. 

Success criteria may be described from varying perspec
tives. Management, users, operations, and data processing 
each have their respective standards for success: 

1. Is the project on time and within budget? 
2. Is the system user-friendly? 
3. Does the system operate efficiently? 
4. Is the system easy to maintain? 
5. Is the system an asset to the organization? 

These and similar questions will be addressed in identifying 
the requirements for su~cess. 

Acceptance testing is the act of simulating a live environ
ment with conditions that will exist after Day 1 of imple
mentation. It is the final process that satisfies the users that 
the system is operationaL 

Although the development of the actual test cases for ac
ceptance is done in the testing group after the analysis phase, 
it is important to give the process of acceptance testing vis
ibility early in the project. The level of user participation and 
a demonstration plan will be defined at this time. 

Project Plans 

At the conclusion of the project expectation phase, the 
project may be continued or canceled. If the decision is made 
to carry on, the next phase will be the analysis phase. During 
the analysis phase a parallel group of activities for planning 
project completion will also be occurring. Restated, the next 
events that occur will be analysis and planning. 

The PED will contain three sets of plans: 

1. A detailed plan for analysis 
2. A detailed plan for planning 
3. A high-level plan for project completion after analysis 

Management Reports 

Major milestones, major responsiblities, and preliminary 
resource requirements are identified and high-level network 
diagrams such as PERT/ CPM or Gantt charts are drawn. 

Management Summaries 

Accumulating historical information on project develop
ment serves as a foundation for repeating successes and avoid
ing failures. Problems and their resolutions, possible pitfalls, 
and successful approaches are described in summaries of the 
current project expectations phase and the project history to 
date, and a narrative of the planning effort is written. 

IN CLOSING 

To document organizational expectations takes time and it 
takes people! Managers who resist dedicating time and re
sources to this project early are deceived into believing the 
effort will not be expended later in reacting to undefined 
expectations. A construction project would not be launched 
without defining the method of building as well as what was to 
be built. If it were, there would be misunderstandings and the 
necessity for demolition and reconstruction-time-consuming 
and costly-or living with the error. The same analogy can be 
brought to project planning. 

In attempting to introduce change in your organization, 
study your subject, know your facts, and provide supporting 
documentation. Cite problems in your environment and 
benefits to be derived from the new approach. Develop an 
action plan and provide recommendations. Choose a pilot 
project and establish a time and dollar range. Plan and sched
ule an orientation meeting and 

I 
GOOD LUCK! 



ACKNOWLEDGMENTS 

This paper has been written on airplanes, in hotel rooms, and 
other places where it is virtually impossible to carry reference 
material. Therefore, aside from using the outline from one 
chapter in the Workshop for Project Planning and Control 
that I developed for Yourdon, Inc., this paper is pure "stream 
of consciousness." 

Nevertheless, I would like to acknowledge that I could 
never be in this place without the help of all my professional 
colleagues, who forced me to crystallize my thoughts. 

That I bear the scars of managing many projects without 
managing expectations legitimized my underlying belief, 
"There has to be a better way." I am grateful to the organiza
tions that allowed me to test my hypotheses. 

I am also grateful to the literature (see the following list) 
that supports my belief and to the company that allows me to 
proselytize. 

Data Processing Project Management 187 

BIBLIOGRAPHY 

1. Yourdon, E. Managing the Structured Techniques. New York: Yourdon 
Press, 1979. 

2. Yourdon, E. Managing the System Life Cycle. New York: Yourdon Press. 
1982. 

3. Metzger, P. W. Managing a Programming Project. Englewood Cliffs, N.J.: 
Prentice-Hall, 1973. 

4. Burrill, c., and L. Ellsworth. Modern Project Management. New Jersey: 
Burrill-Ellsworth Associates, Inc., 1982. 

5. Thomsett, R. People and Project Management. New York: Yourdon Press, 
1980. 

6. Peters, L. Software Design: Methods & Techniques. New York: Yourdon 
Press, 1981. 

7. Brooks, Jr., F. P. Mythical Man Month. Reading, Mass.: Addison-Wesley, 
1972. 

8. Myers, G. J. The Art of Software Testing. New York: John Wiley & Sons, 
1979. 

9. Dickenson, B. Developing Structured Systems. New York: Yourdon Press, 
1981. 

10. Page-Jones, M. The Practical Guide to Structured Systems Design. New 
York: Yourdon Press, 1980. 

11. Wiest, J. D., and F. K. Levy. A Management Guide to PERTICPM. 
Englewood Cliffs, N.J.: Prentice-Hall, 1977. 





Donald R. Hyde 
IBM 
San Jose, California 

DATABASEIDISTRIBUTED SYSTEMS 

As we move into the mid-80s we see major advances in database technology. 
The sessions in this track will touch on the subjects that seem to offer the 
greatest potential in the future: 

A close look will be taken at what database management system options 
exist for the microcomputer user through the distribution of databases as parts 
of a large central data processing operation. 

New database technologies such as the much-awaited relational database 
systems will be explored, along with the often-discussed database machine for 
unloading the central processing complex. 

In our session on enterprise analysis, we will also take a look at the process 
one goes through in deciding how to describe business requirements in terms 
translatable into database systems. 





A distributed database design for a communications network 
control system 

by S. C. LO, S. L. KOTA, and M. H. ARONSON 
Ford Aerospace & Communications Corporation 
Palo Alto, California 

ABSTRACT 

A three-level distributed database concept is proposed to meet the high per
formance requirements of an integrated communications network control system. 
The three levels are source, user, and control. By using fully replicated subject 
databases in the source level, one regional operations center can serve as a backup 
for any other center. The applications database in each user level is a subset of the 
subject databases residing in the source level. Hence, the user level is localized and 
can respond to near real-time network control requirements. The control level 
coordinates updates to the distributed database copies. Interactions among the 
three levels are discussed and four operational stages are considered: initialization, 
continuous update, global synchronization, and data recovery. A broader usage of 
the data dictionary is proposed. Simplification of the replicated database design in 
terms of isolation of global and local data and some implementation considerations 
are provided. 

191 





INTRODUCTION 

With the growing demand for telecommunications services, 
network control of the communications resources has become 
vitally important. Network control consists of network man
agement (planning and analysis), resource control (asset allo
cation and configuration), traffic control (congestion control 
and routing), and technical control (performance and status 
monitoring). 

A comprehensive distributed database management system 
for the communications network control system is essential if 
the system is to react successfully to contingency situations. 
This applies to commercial communications networks, and 
even more so to military networks. A communications net
work control system can be organized hierarchically by geo
graphic regions (see Figure 1). A system operations center 
collects data for history and trend analysis, and also performs 
network control for communications links that cross one or 
more regional boundaries. The system operations center is 
connected to each regional operations center. Data regarding 
network configuration, status, and traffic flow are reported up 
to regional centers from the operating units; decisions, ac
tions, and controls are dispersed down for execution. The 
operating units are the control positions located at the trans
mission media facilities (e.g., satellite communications termi
nals, voice switch facilities, etc.). The regional operations 
centers must also be able to provide database information to 
all other regional centers. Whether this is accomplished by 
some form of ring or star architecture depends on require
ments for reliability, the number of regional centers, their 
location, and the associated recurring communications costs. 
In this paper, full connectivity between all control nodes is 
assumed. 

A Distributed Database Design 193 

Certain conditions exist in a network control system (partic
ularly one used in a military environment) that place special 
requirements on the distributed database. The architecture is 
classically hierarchical. The regional operations center con
trols all operating-unit resources within its geographic area. 
Status flows up to the regional center and control flows down 
to the operating units providing regional autonomy. If the 
regional center becomes isolated from the rest of the control 
system, local operation within the region will continue. If the 
regional operations center experiences a prolonged outage 
(severe equipment failure, power failure, flood, etc.), another 
center must take over control of the operating units in the 
area. The operating units will communicate with the backup 
regional center via dial-telephone connections. Further, any 
regional center can back up any other center (not just nearest 
neighbors) to maximize survivability of the control capability. 
Backup operation must occur concurrently with control pro
cessing for the normal geographic region assigned to that 
center. This implies that a regional operations center normally 
uses only a small portion of the system database (that associ
ated with its assigned region); however, under contingency 
conditions, that portion of the database normally used by 
another regional center is also accessed. To minimize software 
development costs and to minimize database configuration 
management problems, the entire system database is available 
at the system operations center and at each regional oper
ations center. Only parts of this database are used by a given 
center for real-time operations. However, data pertinent to 
operation of any other center is available should backup oper
ation be necessary. As described later in this paper, the real
time localized database is separated from the global database 
to avoid deadlock conditions during updates. The local data
base is implemented by creating region-peculiar views of the 
database components pertinent to a given center. 

SYSTEM 
OPERATIONS 
CENTER 

REGIONAL 
OPERATIONS 
CENTER 

Figure I-Hierarchical network control system 



194 National Computer Conference, 1983 

REGIONAL OPERATIONS CENTER 

SOURCE LEVEL DATA DICTIONARY 
AND SUBJECT 
DATA BASE MAP 

Lu 
TO SYSTEM 
OPERATIONS 
CENTER 

Figure 2-An integrated communications system 

To be optimally responsive to the traffic and configuration 
requirements placed on the communications system at any 
given time, it is necessary to allow all of the regional control 
facilities to access current information on the communications 
assets served by that center. It has been reportedl

,2 that by 
using replicated databases (i. e., all the control facilities have 
the same copy of the database), the near real-time functions 
such as traffic monitoring and control can be performed 
satisfactorily. Sanli et al. discusses control of one type of 
communications asset, satellite communications systems. 1 

The distributed traffic database proposed for the Japanese 
Telecommunications Network supports only one network 
control function, namely, traffic control. 2 This paper ad
dresses control of a multimedia communications system with 
a wide range of functional capability. 

Owing to the mixed-media transmission systems involved in 
an integrated communications system (e.g., terrestrial tele
phone, line-of-sight microwave, troposcatter, and satellite 
communications), thl:? network controrsystem described here 
has to perform several complex control functions. These in
clude resource control, traffic control, and technical control 
for data and voice transmission using different types of media. 
Because of the complexity of an integrated network control 
system, the traffic between the control facilities becomes 
much heavier than the systems referenced in the literature. 
Mohan provides an excellent outline of the research done so 
far on distributed database management. 3 The issues that are 
associated with distributed processing4 and, in particular, 
those that deal specifically with replicated databases5

, 6, 7 have 
put constraints on the network control database design. 

In brief, the constraints are 

1. Currency of the data. If the database is concurrently 
modified by more than one control facility, there is a 

danger that the database will be left in an ambiguous 
state. For the network control application, this situation 
becomes more serious because (a) Another control com
puter may need current information to back up a failed 
regional control center, and (b) The communications 
and protocol delays may severely impede the per
formance of the near real-time functions. 

2. Data recovery. Data may be lost because of the failure 
of data storage devices (e.g., a disk crash), loss of data 
communications, or incomplete database update. For 
the network control application, an additional constraint 
is put on data recovery because new updates may be 
flowing in while recovery is taking place. A different 
mechanism, other than using the approach of com
pleting one data transaction after another, 4 must be im
plemented to retain the consistency state of the global 
information. 

Advantages of using duplicate copies of the same database 
at all regional control facilities are 

1. Each regional control facility can serve as the backup for 
any other failed center. 

2. Up-to-date data are readily available to permit restora
tion of operation at a control center after failure. 

3. Near real-time functions have better performance be
cause all necessary data are locally available. 

4. Maintenance of the database becomes simpler owing to 
identical data definitions and schema throughout the 
system. 

This paper proposes a multilevel database model that con
sists of the source, user; and control levels applicable to a 
realistic network control problem. Mohan also discusses a 



TRANSMISSION LINK 
SUBJECT DATA BASE 

A Distributed Database Design 195 

I u 
FACILITY 
SUBJECT OA TA BASE 

Figure 3-Subject databases for interaction with network control elements 

multilevel database design along with a critical evaluation of 
the topic.8 The source level contains the global database rep
licated at each center. The user level contains the real-time 
database (region peculiar) that is a subset of the source-level 
global database. The control level permits updates received in 
the user database to be propagated upward to the source level 
and to the control level at other centers in case they ever need 
to perform backup control. This architecture attempts to max
imize the advantages just discussed, so that better system 
control performance can be achieved, and it reduces the im
pact of the constraints imposed on the distributed database. 

In the next section a distributed database design concept is 
discussed in more detail. Besides being used as a documen
tation tool, the data dictionary becomes an important element 
of the control level to maintain global synchronization of the 
distributed database. The data flow between the three levels 
of the database at local and remote regional control centers is 
discussed. The subsequent section provides implementation 
considerations. 

DISTRIBUTED DATABASE DESIGN CONCEPT 

Communications Network Model 

Figure 2 illustrates a control network for which a distributed 
database design concept is proposed. As shown in Figure 2, 
the digital transmission media may include telephone lines, 
line-of-sight microwave, tropospheric scatter, and satellite 
lines. The network control system consists of several fully
connected regional operations centers. The regional opera
tions centers are functionally equivalent, maintaining com-

mon capabilities and databases. They differ in that they 
control assets in a specific geographic area and may vary in 
required control functions. One given regional operations 
center may have control over terrestrial and line-of-sight com
munications links while another may have additional control 
over a satellite communications system. All centers are capa
ble of controlling all types of media; only the media in the 
center's geographic area are actively controlled. 

Typical functions of a network control system may be di
vided into two categories: network management and network 
operation (see Figure 3). Planning and analysis are the major 
functions in network management. Through planning and 
analysis, the control system is capable of deciding where, 
when, and how to optimally use existing communications 
assets and how to integrate (hypothetically or actually) new 
facilities. Near real-time network operations include tech
nical, traffic, and resource control. The technical control 
function includes testing, coordinating, and monitoring of 
communications assets to assure quality and continuity of 
communications. Given a transmission link that is identified 
by its origin, termination, and type of equipment, this func
tion has the capabilities to 

1. Perform loop tests between the originator and the 
terminator 

2. Obtain status of the communications equipment (e.g., 
multiplex equipment) 

3. Switch in and out, either manually or remotely, faulty or 
degraded equipment 

In short, the technical control function monitors and main
tains the health of the communications network. 



196 National Computer Conference, 1983 

LINK 
10 

CURRENT SCOPE 

I 

'-II ., 
nATA -,...",-, 

CHARACTE R ISTICS TYPE 

I CURRENT 
USAGE 

-- - -

UPDATE 

EXPANDED SCOPE 

I 

SOURCE ----._-

OF 
TIME 

OF 
VALUE UPDATE UPDATE 

L {
Condition 
Owner 
Date Created 
Date Entered 

• 
• • 

Terminating Sites Identification 
Link Type 
Number of Channels 
Channel Capacity 
Connectivity 
Availability 
Grade of Service 
Priority Level 
Security Level 

• • • 

Figure 4--An example of the transmission link subject database data dictionary 

Traffic control is a response (usually in the order of sec
onds) to traffic congestion on specific communications links 
and media. Traffic paths are dynamically rerouted based on 
routing algorithms. 9 Resource control is traffic control in a 
broader sense. The analysis and planning functions analyze 
and define a long-term traffic pattern. This configuration is 
passed on to the resource control function for imple
mentation. 

Assume that the transmission system has five voice-grade 
links, each of which is a standard frequency division multiplex 
(FDM) modulation group, that is the group is formed by 
mixing each of 12 voice channels with a particular carrier 
frequency associated with the channel. If one of the voice 
links (12 voice channels) is fully occupied, the traffic control 
function may distribute the incoming telephone calls to the 
other four trunk lines. If a new voice link is added to the 
transmission system, it becomes the responsibility of the re
source control function to reconfigure the traffic pattern. 

To support these network control functions, schema of the 
database may logically be organized into entities such as trans
mission link, facility status, switch connectivity, and alternate 
routing. 

Figure 3 also shows two of the many subschemas that are 
used by different applications (functions). A subschema is a 
tailored view of a specific database schema and is considered 
to be a subject database. Therefore, a subject database is an 
entity that supports application processing functions such as 
planning and analysis. The transmission-link and facility data
bases (two of many) are included in the diagram to illustrate 
how subject databases interact with individual functions. An 
example of data entries for the transmission-link subject data-

base data dictionary is shown in Figure 4. Because of the 
nature of regional control, data values for the entries are 
unique for every regional control center. Terminating-site 
identifiers in Figure 4, for example, are the names of switching 
nodes and are uniquely located at a certain geographical area 
inside a given control region and, by definition, are different 
from region to region. 

Database Configuration 

The database supporting the system operations center and 
the regional operations centers will have three levels (Figure 
2): the source, user, and control levels. 

The source level consists of a complete set of subject 
(global) databases. Data in this level are fully duplicated and 
synchronized among all regional operations centers to permit 
backup control operations. 

The user level consists of a subset of the subject databases 
that is retrieved from the source level and becomes the appli
cations (real-time) databases used by the various control pro
cessing functions for a specific regional operations center. 
Assume that one regional operations center does not perform 
the technical control function. Therefore, when this particular 
regional operations center is brought up for service, the appli
cations databases at that center will not include the facility 
database for that region (which is associated with the technical 
control function). In other words, the user level is localized to 
support the activities of a specific center. 

Note that if a specific subject database is required at an 
operations center to perform a network control function, the 



OATA 
OICTlONAAY 

SUBJECT OATA 
BASE MAP 

TRANSACTION 
PROCESSOR 

Figure 5---Database initialization 

control level creates a view constraint on the user level so that 
only that data in the applications database that is pertinent to 
the region is accessible (for read and write operations). Real
time changes in the applications database at one regional 
center do not require updates to the applications databases at 
other regional centers, since the other centers normally ignore 
(have no view of) those sections of the applications databases. 
The subject databases, however, are updated at all centers as 
described later in this paper (to permit backup operation). 
This permits standard relational database management sys
tems to be used in the source and user levels, simplifies the 
creation of the applications database copies, and restricts the 
authority for changing a specific data value to only one oper
ations center (avoids deadlock situations). 

The control level consists of four components: the trans
action processor, data dictionary, subject database map, and 
communications software. The transaction processor coordi
nates the data flow among the components of the control level 
and between the user and the source levels. Traditionally, a 
data dictionary has been used as a documentation mech
anism.lO Generally, it lists all data items that are used, their 
definitions, how and where they are used, and who is re
sponsible for them. However, the data dictionary may be 
expanded to include what data are being updated, as well as 
when and from where legitimate data updates may come. 
Figure 4 provides an example of such an expanded data dictio
nary. The data dictionary becomes the bookkeeping tool for 

A Distributed Database Design 197 

global data updates. Although the data dictionary is capable 
of recording where data reside geographically, the subject 
database map is more effective to record this type of informa
tion. When a regional operations center is requested to back 
up another center, it is much faster to search through the 
subject database map to get the appropriate subject databases 
pertinent to the expanded area rather than to use the data 
dictionary. The communications software handles the actual 
data communications among the regional operations centers 
and the system operations center. 

Data Flow 

Data flow among the three levels of the database and 
among the operations centers can be illustrated in terms of 
four operating states: initialization, continuous update, global 
synchronization, and data recovery. 

Initialization 

The flow of events that occurs when a specific regional 
operation center is first brought up is illustrated in Figure 5. 
The user level requests, via the transaction processor, that the 
source level provide a number of subject databases. This in
formation is recorded on the subject database map and the 
change in the map is passed on to the other regional oper
ations centers. Meanwhile, the source level initiates transfer 
of the subject databases to the user level. 

Continuous update 

When the regional operations centers are in operation, the 
applications databases are constantly updated to reflect the 
current situations at the various operating units within the 
region. Therefore, there are two streams of data coming into 
the control level as shown in Figure 6. From the local user 
level, data are directly fed to the transaction processor. Data 
that are being updated at other centers (which affects the 
subject databases at all centers but not the applications data
bases) are received via the communications software. Stan
dard data communication protocols, for example the Interna
tional Standards Organization (ISO) model, may be used for 
this purpose. 

Protocols such as ADCCP, HDLC, SDLC, and so on, may 
be used at the link level to ensure that updates are correctly 
received by each control center. Broadcast from the regional 
center that incurred the applications database change is used 
so that the same information can be disseminated to all cen
ters. Before the data are recorded in the data dictionary, the 
data elements are checked against the subject database map 
for validity. This step seems to be redundant; however, this 
procedure ensures that data are coming from a legitimate 
source and have not been distorted because of transmission 
errors or because of any other source of errors in a secured 
database environment. At this point permanent changes to 
the global (subject) databases have not yet been made. 



198 National Computer Conference, 1983 

II / / I / / / / / ' II! 1/ / / I / / / / II 1/ 'I / 
I 1/1 III ~~_t 1// (/;' I' /1 /11~~"h~~8ASESI f / / ! I 

/ I I / (SUBJECT DATA IIASCSI / / / / I I / , / 1/ / I / / / / / 
/ 1/ / / / /;' I I - 1/ I 1/ / I I I / 1/ /1 

f / 1/ / / / / I.. /1 I II 1/ / I / / / / · I 

II I I //!~J/I 

DATA 
DICTIONARY 

SUBJECT 
DATABASE 

MAP 

TRANSACTION 
PROCESSOR 

CONTROL LEVEl. 

Figure 6-Continuous global and local data update 

Global synchronization 

During normal operation, the source level of the distributed 
database remains isolated and unchanged. However, the sub
ject databases in the source level must be brought up to date 
periodically. Figure 7 illustrates how the subject databases in 
the source level are updated. The system operations center 
periodically broadcasts an update command to all other re
gional operations centers. The update command is the first 
part of a two-phase commit protocol. 5,6 This commit protocol 
is a data-concurrency protocol that allows global data to be 
updated simultaneously. When the update command is re
ceived, the control segment responds with an acknowledg
ment that it is ready to update the database. Within a prede
fined period of time, 5 seconds for example, all the other 
regional operations centers must also respond to the system 
operations center with positive acknowledgments to the up
date command. The commit message, the second part of the 
protocol, is then broadcast. The copy of the data dictionary 
is then used to update the subject databases in the source 
segment. ' 

Any subject database updates received after the first part of 
the commit protocol is received continue to be stored in the 
data dictionary until the next update cycle. This avoids con
flicts in updating the subject databases when several changes 
to a given data item occur over a short period of time. 

DATA 
DICTIONARY 

SUBJECT 
DATABASE 

MAP 

Figure 7-Global synchronization of the source segment 

It should now be clear why the broadcast method is chosen 
for data communications. The broadcast mechanism guaran
tees that the data updates and the protocol messages arrive at 
the regional control centers at nearly the same time. In doing 
so, the subject databases maintain currency and synchronism 
throughout the network control system. 

It has been reported in Reference 7 that the two-phase 
commit protocol has some drawbacks. That is, if any centers 
fail to respond to the protocol in either the first or the second 
phase, the data synchronization process may be kept in a wait 
state for a long time. However, in this application, since 
broadcast communication is chosen instead of a virtual ring ,7 

the long wait state can be eliminated by broadcasting an abort 
message after a known elapsed time. 

If one regional operations center fails to respond to the 
two-phase commit protocol, all the source levels of the distrib
uted database will not be updated. Center failure may be 
temporary or it may extend over a prolonged period of time. 
A typical temporary condition that normally lasts only a few 
minutes would be the loss of a satellite communication link 
because of a severe rainstorm. Such conditions will be over
come at the next periodic global synchronization. However, 
after several tries and failures (the number is a system tuning 
parameter determined during operation), some network 
operations decisions will be made. Since the network control 
system has backup capability, one of the other regional oper
ations center may be directed to assume the responsibility of 
controlling the geographical region that has repeatedly failed 



to respond to the commit protocol. On the other hand, failure 
may be caused by problems other than computer failure. In 
this case, the failing center may be excluded by the system 
operations center from the distributed network (manual entry 
at operator's console) and may be permitted to operate as an 
independent subnet within the network. Global syn
chronization, then, can resume among all other nodes. The 
next update/commit attempt will be successful within the re
maining network. In either event, when the excluded center is 
brought back into operation, the database can be syn
chronized via the recovery process to be discussed next. 

Note that regional operations are not affected by delays in 
successfully completing the update to the subject databases in 
the source level. Operations in a region use the applications 
databases in the user level, which always have the most cur
rent information about the region. Changes in the subject 
databases that arrive from other centers do not require imme
diate acceptance since, by definition, they are changes to 
database items pertinent to those other centers and are re
quired at all centers only to permit backup operations. 
. It is possible for some delay to occur before the system 
operations center removes a regional center that is not re
sponding to the commit protocol from the system, in order to 
permit the remaining sites to complete the subject database 
update cycle. Should it be necessary for one of the centers to 
back up the apparently failed center that did not respond, the 
latest subject database changes still in the data dictionary 
must be transferred to the source level (and then to the appli
cations level at the backup center) before the start of backup 
operations. If the update commands are issued by the system 
operations center frequently enough (the frequency is also a 
tuning parameter changeable by operator entry in the field), 
this delay in assuming backup operation will be minimal. 
Alternatively, the system operations center could issue an 
update command wherever backup operation is to be initiated 
as soon as the nonresponding center has been deleted from 
the active network. This ensures that all available database 
updates are incorporated into the subject database at the 
backup center. 

Data recovery 

Two types of data recovery may occur: 

1. Local recovery due to some short-term equipment fail
ures (e.g., power outage for a few seconds) where the 
subject databases remain intact 

2. Remote recovery supported by another center because 
the original center has been out of service for an extend
ed period of time 

Because the user level is oriented toward regional operation 
and functions independently, local recovery from short-term 
outage can be treated as a modified initialization process. 
Using the subject database map, the appropriate subject data
bases are copied down to the user level and the center be
comes operational again. There may be a difference between 
the database content and the current data values for that 

A Distributed Database Design 199 

region if the center has been inoperative for a period of time 
and a change in communication asset status occurs during this 
time. Impacts on network performance due to this time lag 
have not been investigated in detail. However, it has been 
reported that a system delay of 10 seconds results in a pre
blocking probability of 6 x 10-3 for a network control system 
with assumed customer traffic of 0.1 erlang. 2 (Whenever the 
called party is busy updating its database image, the telephone 
call is said to be preblocked.) In any case, for short outages 
this is not likely to occur, and the status reporting system from 
the operating units will eventually update the applications 
database. 

After scheduled maintenance or significant (long-term) 
hardware failure, a specific regional operations center must be 
brought back up for operation via a remote recovery process. 
The database of this center will be brought to the current state 
by that operations center temporarily serving as backup. The 
subject databases in the source level are slowly updated to the 
level of last global synchronization. Using the subject data
base map, which is also received from the backup center, the 
user level retrieves those needed subject databases from the 
source level. The center starts functioning but does not start 
operating online. It is recommended that the center remain 
hot standby to the backup center until two periodic global 
synchronizations have occurred. In so doing, the source level 

. is guaranteed to be truly synchronized with the rest of the 
distributed database and the user level will have the most 
current information to support regional activities. 

IMPLEMENTATION CONSIDERATIONS 

Figure 8 shows a computer hardware configuration for a 
planned implementation of the concept discussed in the pre
vious subsections. This configuration is only one of many that 
could implement the distributed database design discussed in 
previous sections. The figure shows that two separate pro
cessors are used at each center. The first contains communi
cations interfaces to that region's operating units. These 
interfaces are computer-to-computer for assets that have 
automated operating facilities and are computer-to-intelligent 
terminal for the assets with manual operating units. This 
processor also contains the network control applications pro
grams and peripheral storage for the user-level applications 
databases. Note that network control software at all regional 
centers is identical; during processor boot-up only the geo
graphic identification of the center need be entered to initiate 
operation. The applications database views applicable to that 
specific region are created automatically by the software. Pro
cessor 1 also contains the operator's console for personnel 
who control the region. 

The second computer contains communications interfaces 
to the system operations center and the other regional oper
ations centers. Updates to subject databases are broadcast to 
other centers. Update commands from the system operations 
center are received, acknowledgments to the update are sent 
back to the system operations center, and commit messages 
are subsequently received from that center. In addition, status 
is sent by each regional center to the system operations center 



200 National Computer Conference, 1983 

EXTeRNAL 
INTERFACES 
(OPERATING 
UNITS! 

Al'PLICA TIONS 
DATA BASES 

CPU 
t 

SUBJECT 
DATABASES 

CPU 
2 

DATA DICTIONARY 
AND 

SUBJECT DATA BASE MAP 

eXTERNAL 
INTERFACES 
(OTHER CENTERS) 

DATA BASE AOMINISTRATOR 
CONSOLE 

'-------~I------~~ 
SOURCE LEVEL 

AND 
CONTROL LEVEL 

Figure 8--Computer configuration for the regional operations center 

to permit long-term performance and trend analysis to be 
performed. These dynamic status data are not part of the 
subject databases and are transmitted on an infrequent but 
periodic basis. 

The source level (with subject databases) and the control 
level reside on peripheral storage accessed by this processor. 
The processor contains the database management software 
that creates the applications databases pertinent to the spe
cific region. Access to the database management system for 
manual entry or analysis of the database is possible from the 
administrator's console, although this does not normally 
occur. The schema, subschema, and views are created by the 
database administrator at the system operations center and 
are distributed as necessary to the regions on disk packs. After 
system checkout and test, these change only when regional 
centers are added or deleted, the geographic coverage be
tween centers changes, or communications assets are added or 
deleted from the network control system. The database 
administrator, under the direction of the system operations 
center operator, can update the applications databases in 
processor 1 to include additional views that cover data for a 
region requiring backup control. 

If central processing unit (CPU) 1 fails, another regional 
center will take over operation and control of the affected 
operating units. If CPU 2 remains operational, subject data
base updates from the other regional centers will continue to 
be processed (including those from the center acting in a 
backup capacity). When CPU 1 and its peripherals are re
stored to operation, a local recovery as previously described 
can occur. 

If CPU 2 or a critical peripheral fails, the system operations 
center could elect to permit the regional center to continue 
controlling its area using CPU 1. It would, however, be iso
lated from the rest of the network and would neither issue nor 

receive subject database updates. Alternatively, the system 
operations center could request that another regional center 
take control. In this case, remote recovery wouid occur when 
the faulted equipment is restored to operation. 

Figure 9 shows a computer configuration for the system 
operations center. Only one system center will be imple
mented; however, one regional center will be provided with 
sufficient dial network interfaces so that it can act as a backup 
to the system operations center. Two processors are used at 
the system center. The first contains network control appli
cations programs similar to those at the regional centers. The 
user-level applications databases consist of those assets that 
cross region boundaries. The applications databases are 
created from views of the subject databases in the source level 
in a manner similar to that employed at the regional centers. 
No operating units report directly to this center. Network 
control information is collected from operating units by the 
cognizant regional center, and if an interregional link is in
volved, these data are passed to the system operations center 
as part of a normal subject database update cycle. 

Unlike the regional centers, the system operations center 
relies entirely on subject database updates (as opposed to 
real-time inputs from the operating units) for change informa
tion. Therefore, the applications databases associated with 
processor 1 are periodically refreshed from the subject data
bases (also a tuning parameter). A lag could occur between 
the occurrence of a database change that affects an inter
regional link and the refreshing of the applications database. 
The system operator will tolerate any such potential discrep
ancies since anomalies that affect interregional links are infre
quent (compared to the frequency of intraregional faults), and 
the delay between the occurrence of a change and its propaga
tion into the applications databases at the system operations 
center is small (minutes). Processor 1 also contains software, 



APPLICATIONS 
DATA BASES 

CPU 
1 

PERFORMANCE 
DATA BASE 

SYSTEM CONTROL 
OPERATOR CONSOLE --....-

USER LEVEL AND 
SYSTEM CONTROL 

FUNCTIONS 

SUBJECT 
DATA BASES 

CPU 
2 

DATA DICTIONARY 
AND 

SUBJECT DATA BASE MAP 

EXTERNAL 
INTERFACES 
(OTHER CENTERS) 

DATA BASE ADMINISTRATOR 
CONSOLE 

~,------,v~------,/ 
SOURCE LEVEL 

AND 
CONTROL LEVEL 

Figure 9-Computer configuration for the system operations center 

activated only at the system operations center, that permits 
the operator to initiate subject database updates throughout 
the system via the commit protocol. This software exists at all 
centers (since one regional center will be designated as a 
backup to the systems center); however, it is loaded only at 
the center that has been initialized as the systems operation 
center. The operator also decides whether one regional center 
must back up another or whether a region is to operate inde
pendently. Implementation of backup operation is coordi
nated manually between the system operator and the regional 
center database administrator using voice orderwire channels 
(i.e., it is not automatically implemented via software). 

The second computer in Figure 9 contains communications 
interfaces to the regional operations centers. Updates to sub
ject databases are received (the system operations center does 
not originate changes to any subject database). Dynamic 
status data is also received on an asynchronous but periodic 
basis for long-term performance analysis. The communica
tions software also broadcasts the database update command, 
receives acknowledgments from the regional centers, and sub
sequently issues the commit command. The subject databases 
in the source level (identical to those at the regional centers) 
and in the control level reside on peripheral storage accessed 
by this processor. In addition, a series of performance and 
trend analysis programs can be exercised by the database 
administrator in a background, low-priority mode. These pro
grams recover selected status data reported by the regional 
centers from history files in the performance database. The 
analysis is performed to permit management to assess how 
well the network control system is performing and to support 
long-term planning. A number of additional considerations 
related to system realization are now discussed. 

A Distributed Database Design 201 

Cost 

Costs of hardware will increase because additional pro
cessing capability and mass storage capacity are required at 
each center. However, the number of control centers is rela
tively small, the total size of the subject databases is mod
erate, and the cost of processing and peripheral equipment is 
continually decreasing. Further, the three-level approach 
localizes the management functions of distributed databases 
to a particular level-the control level. This permits currently 
available database management systems to be used in the 
source and the user levels. This flexibility and use of exist
ing vendor software will offset some or all of the increased 
system cost. 

Data Dictionary 

Although the data dictionary has far more promising capa
bilities, it has traditionally been used as a documentation tool. 
Currently, work is progressing on expanded data dictionaries, 
as required by this application. 11 To implement the proposed 
distributed database system design, the development of en
hanced data dictionaries compatible with a variety of vendor 
database management systems is desirable. Some of the im
plementation considerations, such as cost tradeoffs and data 
dictionary development, need further examination and evalu
ation during project implementation. 12 

CONCLUSION 

In summary, a three-level distributed database concept is pro
posed to resolve the constraints imposed on fully replicated 
distributed databases. Functions of the three levels (source, 
control, and user) are discussed. Interactions among the three 
levels are also described by considering four operational 
stages: initialization, continuous update, global synchroniza
tion, and data recovery. 

Data are globally synchronized at the control level. To do 
this a broader usage of the data dictionary is proposed. Be
sides being used as a documentation tool, the data dictionary 
is also used as a bookkeeper to maintain records of global data 
updates. 

The distributed database concept discussed here is applica
ble to dissimilar, but analogous, applications. For example, 
consider a multinational corporation. Each division of the 
corporation resembles the regional operations centers. Local 
inventory can be updated locally from minute to minute while 
the same set of data is distributed and kept current throughout 
the corporation for other non-real-time processing. 

The database system design proposed in this paper allows 
currently available database management systems to be used 
in the source and user levels. Development of the components 
of the control level is necessary, and some progress has al
ready been reported. By introducing the three-level concept, 
the impacts on network control operations due to require
ments for database concurrency are minimized. 



202 National Computer Conference, 1983 

ACKNOWLEDGMENTS 

The authors wish to thank Carl Hellman, Edward Hirshfield, 
and Dr. Michael Sites of Ford Aerospace & Communications 
Corporation for their encouragement and continued support 
during the course of this work. 

REFERENCES 

1. Sanli, N., s. c. Lo, s. L. Kota, and M. H. Aronson. "The NATO III 
Satellite Communications System Control." Proceedings of the AIAA 
9th Communications Satellite Systems Conference, San Diego, Calif., 
March 7-11, 1982, pp. 255-262. 

2. Mase, K., M. Kajiwara, H. Yamamoto, and M. Shinohara. "Network 
Control System Using Traffic Databases." IEEE Proceedings of the Inter
national Communications Conference, Philadelphia, June 13-17, 1982, 
pp. IF. 1.1-1.F. 1.5. 

3. Mohan, C. "Distributed Data Base Management: Some Thoughts and 
Analysis." Proceedings ACM 1980, Annual Conference, Nashville, TN, 
October 1980. 

4. Ramamoorthy, C. V., S. T. Dong, S. L. Ganesh, C. H. Jen, and W. T. 
Tsai. "Architectural Issues in Distributed Systems." IEEE Computer Soci-

ety Workshop on Computer Architecture for Pattern Analysis and Image 
Database Management, Hot Springs, Va., November 11-13,1981, pp. 1-11. 

5. Garcia-Molina, H., and D. Barbara. "The Cost of Data Replication." 
Proceedings of the 7th Data Communications Symposium, Mexico City, 
October 27-29, 1981, pp. 193-198. 

6. Garcia-Molina, H. "Reliability Issues for Fully Replicated Distributed 
Databases." IEEE Computer Magazine, September (1982), pp. 34-42. 

7. Le Lann, G. "A Distributed System for Real-Time Transaction Process
ing." IEEE Computer Magazine, February (1981), pp. 43-48. 

8. Mohan, C. "Some Notes on Multi-Level Data Base Design." Technical 
Report TR-128, Department of Computer Sciences, University of Texas, 
Austin, TX, May 1979. 

9. Geria, M. "Routing and Flow Control." In Franklin Kuo (ed.), Protocols 
and Techniques for Data Communication Networks. Englewood Cliffs, 
N.J.: Prentice-Hall, 1981. 

10. Curtice, R. M. "DATA DICTIONARIES: An Assessment of Current 
Practices and Problems." Proceedings of the 7th International Confer
ence on Vey Large Data Bases, Cannes, France, September 9-11, 1981, 
pp. 564-570. 

11. Norman, A. "EMPACT (TM}-A Distributed Database Application." 
AFIPS, Proceedings of the National Computer Conference (Vol. 52), 1983. 

12. Aronson, M. H., and S. L. Kota. "A Network Control Capability for the 
NATO III Satellite Communications System Using HP/l000 Computers." 
HP 1000 International User Group Conference, EXPLOITATION 1983, 
London, April 1983. 



EMPACT™: A distributed database application 

by ALAN NORMAN and MARK ANDERTON 
TANDEM Computers Incorporated 
Cupertino, California 

ABSTRACT 

EMPACT", TANDEM Computers' manufacturing information control system, is 
an application that uses a distributed database. The requirements of the system 
include supporting multiple sites, providing continuous availability to the data, and 
controlling updates to communal information. The approach taken to satisfy these 
needs involves the use of both partitioned and replicated data. Presented in this 
paper is a discussion of the application requirements, the design and architecture of 
the database, and the algorithms used for updates and inserts. 

203 





INTRODUCTION 

EMPACT", TANDEM Computers' manufacturing informa
tion control system, is an application that makes use of a 
distributed database. The requirements of the system include 

1. Supporting multiple sites of independently managed 
machines. 

2. Providing the continuous availability of communal 
information. 

3. Permitting decentralization both of control of the appli
cation and management of the data. 

4. Allowing for centralized development of the application. 

This paper discusses the application requirements, the de
sign and architecture of the database, and the methods used 
for maintaining the database. 

APPLICATION REQUIREMENTS 

Application Functions 

EMP ACT was developed to satisfy the data processing re
quirements of TANDEM Computer's manufacturing division. 
It was initially designed as a centralized online application 
that would support a single manufacturing site. The functions 
contained within EMPACT pertain to all the standard assem
bly manufacturing needs. These functions are as follows: 

1. Parts master 
2. Bills of material 
3. Inventory control 
4. Purchasing/receiving 
5. Work in process 
6. Master scheduling 
7. Materials requirement planning 
8. Interplant material transfer (MART) 
9. J obllot tracking 

Database Size and Service Levels 

EMPACT was implemented on a TANDEM T/16 computer 
using TANDEM's distributed data management system, EN
COMPASS. The database size and the required service levels 
for the initial design were moderate-

1. Single manufacturing site 
2. Database of approximately 120 megabytes 

EMP ACT: A Distributed Database Application 205 

3. Database containing 500+ data elements and over 40 
record types 

4. A user community of 150 persons using 55 terminals 
5. Monthly transaction rates: 15,000 against the entire 

database, with 4,500 update transactions against the bill 
of material files and 1,000 against the item master file. 

6. A 6: 1 ratio of reads to writes against the item master and 
bill of materials files. 

7. Hardcopy batch reports generated nightly to supplement 
the online inquiry capabilities; these reports were cre
ated using ENFORM, TANDEM's query language. 

Business Environment 

TANDEM, as a company, anticipated high growth rates 
over the next several years. This meant that the size of the user 
community, the transaction volume, and database require
ments were expected to increase accordingly. Furthermore, 
the manufacturing management decided to decentralize its 
operations. The plan was and is to disperse the manufacturing 
effort into several plants, all performing similar operational 
functions although geographically distant. A growth rate of 
one new plant every 9 months was predicted. 

This need to support geographically distributed sites placed 
some new demands upon EMPACT. As a business require
ment, communal data such as item master or bill of materials 
information would have to be continuously available; the day
to-day business of the individual sites is highly dependent on 
this information. Also, owing to the decentralized manage
ment structure of TANDEM's manufacturing organization, 
the sites required as much autonomy as possible; the daily 
business of one site could not adversely affect or be affected 
by events or circumstances at other sites. Each site was also to 
be responsible for and have control over the data stored there. 

Initial Development Approach 

The conceptual approach taken was to divide the elements 
of the database into two major categories, global data and 
local data, and one additional category that must be acknowl
edged but does not enter into this analysis, private data-

1. Global data are information that would be common to 
and shared by all sites. Examples of global data are the 
list of parts that determine TANDEM's parts catalog 
(item master file) or the records that describe TAN
DEM's product structure (bill of materials file). 

2. Local data are information that is uniquely important to 
the individual site using it but accessible by all sites. 



206 National Computer Conference, 1983 

Examples of local data are stock status and work-in
process data. Local data have the same format as the 
corresponding data at other sites. 

3. Private data are information that is only used by the 
individual site and is not visible to other sites. This data 
consists of reports and data outside the EMPACT sys
tem. 

Global and local data are each segregated into record units 
that are themselves either global or local. This segregation is 
not a requirement of the distributed application but a means 
of simplifying certain aspects of the application. 

Figure 1 shows the division of the EMP ACT database into 
global and local portions. As previously stated, the major 
requirement addressed by distributed EMP ACT was site re
sponsibility for the maintenance of local information and pro
viding equal shares of control and responsibility for the main
tenance of global information. 

Global data are necessarily replicated because of the re
quirement for site independence. If global data are not repli
cated at all EMPACT sites, then disconnecting any nonglobal 
site from the network would mean that business activities at 
that site would be interrupted until the site rejoined the net-

work. Any scheme of centralized global data suffers from this 
unacceptable possibility. 

By our early reckoning, data would be either global (repli
cated at all sites) or local (single-site resident). However, 
another condition surfaced that called for only partial repli
cation of data. The interplant material transfer function, 
known by the acronym MART, permits a request by one site 
for material from another to be placed and processed, and 
monitors the subsequent transfer of material. The process 
requires that all data and status information pertaining to the 
request be resident at both sites. However, the information is 
unnecessary to any third party. Such data is classified as semi
global since it only requires partial replication. 

The next section provides a brief description of the TAN
DEM software products that are the foundation of distributed 
EMPACT. 

TANDEM'S SOFTWARE ENVIRONMENT-AN 
OVERVIEW OF ENCOMPASS-EXPAND 

The expansion of EMP ACT to support multiple sites was 
implemented using ENCOMPASS, TANDEM's data man-

+===============+ 

+============+ 
I Bill of I 
I Materials I 
+============+ 

+=============+ 
I Purchasing I 
I Receiving I 
+=============+ 

+=============+ 
Master 
Schedule 

+=============+ 

Global Data 

Bill of Materials 

Item Master 

Global data 
dictionary 

Global programs 

I Item Master I 
+===============+ 

************ 
* Data * 

* Dictionary * 
* * 

* Programs * 
* * 

************ 

+=============+ 
MART 

+=============+ 

Local Data 

Inventory 

Master Schedule 

Purchasing 

Work in Process 

Job/Lot Tracking 

Figure l-Structure of the EMPACf database 

+===========+ 
I Inventory I 
I I 
+===========+ 

+===========+ 
I Work in 
I Process 
+===========+ 

+============+ 
Job/Lot 
Tracking 

+============+ 

Semi-Global Data 

MART 



agement system, and EXPAND, TANDEM's network soft
ware. ENCOMPASS is a conglomerate of several major soft
ware products, included in which are ENSCRIBE, DDL, 
ENFORM, PATHWAY, and TMF, the transaction and re
covery manager. 

ENSCRIBE is a relational-database manager that supports 
three types of structured-file organizations: key-sequenced, 
relative, and entry-sequenced. Within these file types, data 
are organized into logical records. EMPACT restricts itself to 
fixed-length records and key-sequenced files. 

DDL is a data definition language used to define the data 
elements and record structures that make up an application. 
The output generated by DDL is stored in a data dictionary 
that is used by ENFORM, a high-level nonprocedural query 
language, to generate reports against the application data
base. 

PATHWAY provides a terminal-oriented interface for 
transaction design and control. Its primary components are a 
terminal control process (TCP) that provides screen format
ting and control, user-written programs, known as servers, 
that access and update the data files using ENSCRIBE pro
cedures, and PATHMON, a monitor process that dynamically 
manages and allocates application resources. 

An application's interface to the end-user is a set of pro
gram modules, or requestors, that are written in Screen
COBOL (a COBOL-like language with extensions for screen 
manipulation). The Screen-COBOL programs are interpreted 
by the TCP to perform screen sequencing, data mapping, and 
transaction control. The Screen-COBOL programs commu-

EMP ACT: A Distributed Database Application 207 

nicate with the servers by exchanging request and reply mes
sages, hence the names requestor and server. 

The servers are single-threaded programs that 

1. Read a request message 
2. Perform the database function requested 
3. Reply 

They must be context-free, meaning that they do not need 
a memory of past requests in order to execute the current 
request. 

A server is known to the requestor programs by its server 
class name. A server class is a group of server programs that 
perform identical functions. When a TCP needs to establish 
communication with a particular server class, it requests a 
'link' to an individual server within the given server class from 
PATHMON (see Figure 2). PATHMON responds by sending 
the TCP the process name of an already existing server or of 
a newly created one. How PATHMON decides to respond 
depends on parameters established when the system is started 
up. This is one aspect of the load balancing and resource 
management that PATHMON performs. 

Transactions in ENCOMPASS are defined as multistep 
operations that change the database from one consistent state 
to another. They are processed via the requestor/server rela
tionship. The end user initiates a transaction request at a 
terminal; the requestor module responds by sending a series 
of one or more requests to a set of servers; the servers perform 
the application function against the database; replies are re-

1=======\ 

Terminals TCP's 

1--\ 

I \ 
I PATHMON I 
\ I 

\=======1 

Servers Data base 

\- \ ************ 111111111111 
\-------\ +---------+ +--* SERVER *<--\ I $voll I 

*--1 TCP-l 1*-------1 ************ +-->1 80 mb I 
+---------+ I I 111111111111 

I ************ I 
+--* SERVER *<---1 

1--\ 
\- \ 
\-------\ I ************ I 111111111111 

I I I $vo12 I 
I 1-->1 80 mb I 

1--\ I I 111111111111 
\- \ I I 
\-------\ +---------+ 1 I 

1--\ 
\- \ 
\-------\ 

*--1 TCP-2 1*-------1 1 111111111111 
+---------+ 1 ************ I I $vo13 I 

+--* SERVER *<---+-->1 300 mb 1 
************ 111111111111 

Figure 2-Pathway configuration for EMPACT at a single site 



208 National Computer Conference, 1983 

turned to the requestor; and the end user is notified of the 
result at the terminal. Smith discusses the requestor/server 
relationship in more detail. 4 

TMF guarantees the consistency of the database by ensur
ing that precisely all or none of the changes that a transaction 
attempts to make are permanent. For a more detailed dis
cussion on TMF, refer to Borr's report. 1 

EXPAND, TANDEM's network software, has several fea
tures relevant to application design. Control is decentralized; 
it is characterized by the lack of a network master. Access to 
geographically distributed system resources is transparent to 
the system user. In fact, local and remote requests to servers 
or files look the same to those programs initiating the re
quests. Nodes in EXPAND network are defined by their sys
tem name, for example "-LA or "-SANFRAN. Interprocess 
communication across the network requires only that the sys
tem name be specified, all other aspects being managed by the 
operating system. The design of the EXPAND network is 
described in more detail by Katzman and Taylor. 2 

ENVIRONMENT -EMPACT 

EMPACT PATHWAY Configuration 

EMPACT, prior to becoming distributed, had over 120 re
questors and 40 server ciasses. There were over 200 transac
tion types and approximately 100 different reports. Typically, 
each subsystem, for example, bill of materials, would have 
three server classes associated with it: one for updates, one for 
online queries, and one for report generation. Figure 2 shows 
the EMPACT PATHWAY configuration. 

Application Development 

The program development environment consisted of a cen
tralized team of programmer/analysts working with manage
ment and manufacturing personnel throughout the company. 
It was agreed that the development of software that could 
modify the EMP ACT database should be controlled by the 
central team in order to prevent inconsistent alterations to the 
database. However, all other software, for example, for re
ports, could be developed anywhere and fall under the control 
of the intended end user. All released software is archived in 
a central and controlled repository; this decision aimed to 
protect the integrity of the released software. 

Preliminary Designs 

At the time the design for EMPACT's distribution was 
being considered, TANDEM had a 50-site corporate network. 
EMPACT is just one client of this corporate network, which 
is also used for electronic mail, text processing, program de
velopment, and many other EDP applications at TANDEM. 
The network has now grown to 150 sites and is expected to 
gro\v accordingly. Each manufacturing site 'vas to have its own 

system. The question that faced EMPACT's designers was 
how best to utilize this network to support multiple sites. 

The available options were: 

1. Remain centralized, have one central database under 
the control of a single PATHWAY system with remote 
users accessing the system over the network. 

2. Partially distribute the database, have a small number of 
geographically dispersed master sites running indepen
dent but identical versions of EMP ACT that supported 
users on sites within a defined region. 

3. Fully distribute the database and application: have com
plete copies of the database and software running at 
each site. 

The first option violated the requirement for continuous 
availability of the database. Despite TANDEM NonStop no 

system design, long-haul communications media are still sub
ject to occasional interruption. 

The second option was a compromise solution; vulner
ability to significant communications interruptions might, ar
guably, be reduced, but the principle of site autonomy would 
not be satisfied. Some individual site or sites would still be 
dependent on a particular master site. Furthermore, given the 
geographic dispersion of manufacturing sites, it was unclear 
whether sites would ever congregate in sufficient numbers to 
afford nonmaster sites. 

These considerations led to the decision to select the third 
option as the basis for implementing distributed EMPACf. 
The next section of this paper describes the specific approach 
taken. 

DISTRIBUTION APPROACH 

Data Qualification 

The primary components of the design of distributed EM
PACT are (see Figure 3) 

1. Each site has an independent PATHWAY system run
ning identical applications. 

2. The database structure for global and local data-as 
opposed to the data themselves-is global, hence identi
cal at each site. 

3. The global portion of the database is replicated at each 
site, that is, both the structure and the data of files with 
global information are identical at all sites. 

4. The local portion of the database is partitioned over the 
network, that is although the structure of files containing 
local information is identical at all sites, Austin stores 
the Texas data and Neufahrn stores the Germany data. 

Database Consistency Solutions 

This design satisfies some of the objectives of continuous 
availability and site autonomy. Because a user is concerned 
only with his/her portion of the local data and because the 
global portion is replicated everywhere, query access to the 



EMP ACT: A Distributed Database Application 209 

+=============+ +=============+ 
I I I 
I SANTA CLARA I --------------------------------- I RESTON 
I 1\ II I 
+=====-=======+ \ I +=============+ 

\ I 
\\\\\\\\\\\\\\ \\\\\\\\\\\\\\ 
\ Local \ \ Local \ 
\ Data \ \ Data \ 
\\\\\\\\\\\\\\ \\\\\\\\\\\\\\ 
\ Global \ \ Global \ 
\ Data \ \ Data \ 
\\\\\\\\\\\\\\ \ I \\\\\\\\\\\\\\ 

+=============+ 

\\\\\\\\\\\\\\ 
\ Global \ 
\ Data \ 
\\\\\\\\\\\\\\ 
\ Local \ 
\ Data \ 
\\\\\\\\\\\\\\ 

I 
I 

I 

\1 
1\ 

I \ \\\\\\\\\\\\\\ 
\ Global \ 
\ Data \ 
\\\\\\\\\\\\\\ 
\ Local \ 
\ Data \ 
\\\\\\\\\\\\\\ 

\ 
\ 

\+=============+ 
I I 

AUSTIN --------------------------------- I NEUFAHRN I 
I I 

+=============+ +=============+ 

Figure 3-Example of EMPACT network and database structure 

database is guaranteed regardless of the status of other sites 
in the network or the status of the network itself. However, 
the issue remains how to provide similar guarantees for up
date access to the global data yet still maintain consistency 
among the files. 

Maintaining the consistency of replicated files requires that 
any changes to an individual copy be made to the correspond
ing copies elsewhere in the network. Furthermore, the 
changes must preserve the consistency of the files in the event 
of failure. 

Preliminary Broadcast Transaction 

One method proposed was to modify the existing servers 
updating global files to broadcast the updates to all the sites 
in the network as a single transaction. The transaction would 
be performed under the auspices of TMF, hence there would 
be a guarantee, through the BACKOUT and/or ROLLFOR
WARD mechanisms of TMF, that the consistency of the data
base would be maintained in the event of failure. 1 

This proposal, however, has three drawbacks: servers that 
perform updates against global files require knowledge of the 
whereabouts of the file replicas; there is a long response time 
at the user terminal during an update to global data; and 
updates to the global files can only take place when all sites 
are available. 

Owing to the fact that the EMPACT sites have a variety of 
hardware and system configurations, the naming of global 
files (system name, volume, subvolume) is unique to each site. 
Because it accesses them directly, the server that performs 

updates to global files needs to know the names of all global
file copies to be updated. Sites in the network have to keep 
current with the naming changes of ali other sites-a probiem 
that becomes considerably worse as the number of EMPACT 
sites increases. 

The terminal response time is unacceptably long because an 
update to global data involves updating a larger number of file 
copies. On the basis of operator wait-time, daily business 
requests cannot rely exclusively on this method of update 
propagation. 

The availability of all sites is necessary because by design 
the broadcast transaction requires access to all affected files at 
the same time. Data integrity demands an all-or-nothing up
date. Entrusting the daily business of a site to this method 
alone sacrifices site autonomy, since legitimate global activity 
would have to be interrupted until communications were re
gained. Figure 4 shows the structure of the preliminary broad
cast transaction. 

Broadcast Transaction 

A refinement to this proposal defines servers at each site, 
known as associate servers, that upon receiving a request from 
an updating server at an initiating site, perform the updates 
against their copies of the global files. Furthermore, a new 
global file, known as the node file, contains a list of all EM
PACT nodes in the network and thus serves as a network map. 
A broadcast transaction now involves sending a request to 
servers at each of the sites listed in the node file. The servers 
at remote nodes have knowledge of all physical~file placement 



210 National Computer Conference, 1983 

\STCL 

+------------+ 
REQUESTOR I 

+------------+ 
I 
1 

(1) 1 (6) 
1 

v 
+------------+ 

SERVER 1 

+------------+ 
I 

( 2) I 
v 

IIIIIIIIIII 
I EMPACT 1 

I DATABASE I 
IIIIIIIIII 

(3) I 
I 

I 
I (4) 

IIIIIIIIIII 
__ >i \NEUFAHRN i 

1 DATABASE 1 

IIIIIIIIIII 

IIIIIIIIIII 
------*-----> I \RESTON I 

I DATABASE I 
IIIIIIIIIII \ 

\ 
(5) \ IIIIIIIIIII 

\ __ >1 \AUSTIN I 
1 DATABASE I 

IIIIIIIIIII 

Figure 4--Preliminary broadcast transaction: (1) Requestor sends 
transaction-request message to server; (2) server updates local copy of 

database; (3}-(5) server updates all known remote databases; 
(6) server replies to requestor. 

at their respective sites. TMF guarantees the consistency of 
the database by covering each broadcast. Figure 5 presents the 
structure of a broadcast transaction with node file and remote 
server. 

This method of broadcasting transactions resolves the prob
lem of naming, but it still violates the requirements of site 
autonomy and short terminal response time. A transaction 
that updates global data can only be performed when all sites 
in the network are available. Furthermore, as the number of 
sites in the network becomes large, the response time on the 
terminal becomes unreasonably long. 

\STCL 
+------------+ 
I REQUESTOR 1 

+------------+ 
1 

1 --> 
(1) 1 (10) I 

1 (4) I 
v I 

+------------+ I (6) 
SERVER 1<------*-----> 

+------------+ \ 
1 \ 

(2) 1 1 (3) (8) \ 
v 1 \ 

IIIIIIIIIII +------+ --> 
1 EMPACT 1 1 NODE 1 
1 DATABASE 1 1 FILE 1 
IIIIIIIIII +------+ 

Suspense Transaction 

The selected solution to both of these problems was to 
sacrifice the absolute consistency of the replicated files in 
exchange for site autonomy and short terminal response times 
by using a suspense mechanism to maintain database consis
tency. 

Instead of immediately broadcasting the transaction to all 
sites in the network, the server at the site where a global 
transaction is initiated first updates its copy of the global file 
and then posts the transaction message to a suspense, or 
queue, file. A dedicated process, known as the suspense mon
itor (SUSMON), asynchronously polls the suspense file for 
transactions and on an as-soon-as-possible (ASAP) basis 
sends the transaction messages to appropriate servers at re
mote sites, one at a time, as separate logical TMF trans
actions. The database is completely consistent only when the 
suspense files at all the sites are empty. Figure 6 shows the 
structure of a suspense transaction. 

The requirement of site autonomy is satisfied because up
dates to global files can be initiated regardless of the status of 
other sites in the network. The problem of unsatisfactory 
response time at the user's terminal is resolved because the 
server at the initiating site has only to update the local data
base before sending a reply back to the TCP. The propagation 
of the update to remote sites is performed asynchronously by 
SUSMON. All update and insert activity involving the sus
pense file is covered by TMF. 

Data Ownership and Key Ranges 

As with the broadcast method, TMF guarantees the consis
tency of the database. However, with TMF, unlike the broad
cast method, because the suspense mechanism introduces a 
time delay in the propagation of updates to remote sites, the 

IIIIIIIIIII 
+----------+ (5 ) 1 \NEUFAHRN 1 
1 \NEUFAHRNI --> 1 DATABASE 1 
1 SERVER 1 IIIIIIIIIII 
+----------+ 

IIIIIIIIIII 
+----------+ (7) 1 \ RESTON 1 
1 \RESTON --> 1 DATABASE 1 
1 SERVER IIIIIIIIIII 
+----------+ 

IIIIIIIIIII 
+----------+ (9 ) 1 \AUSTIN 1 
I \AUSTIN --> 1 DATABASE 1 
1 SERVER IIIIIIIIIII 
+----------+ 

Figure 5-Broadcast transaction: (1) Requestor sends request message to server; (2) server updates 
local copy of database; (3) server reads node file to determine where else to send transaction; 

(4), (6), (8) server sends request to associate servers at remote sites; (5), (7), (9) 
associate servers perform update; (10) servers reply to requestor. 



\STCL 

+------------+ 
REQUESTOR / 

+------------+ 

(1 ) (4) 

EMPACT: A Distributed Database Application 211 

I 
(6) I 

(7) IIIIIIIIII 
+----------+ /\NEUFAHRNI 
i \NEUFAHRN/ -->IDATABASE I 

--> / SERVER / IIIIIIIIIII 
+----------+ 

v 
+------------+ 

SERVER 
+------------+ 

I 
+--------+ I (8) 

1-->/ SUSMON /*----- > 
I +--------+ \ 

(9) IIIIIIIII 
+----------+ /\RESTON I 
/ \RESTON / --> I DATABASE I 
I SERVER I IIIIIIIIII 
+----------+ 

/ / I (5) \ (11) IIIIIIIII 
I\AUSTIN / 
! DATABASE I 
11111/1111 

(2) / / (3) I (10)\ +----------+ 
v v I \ ! \AUSTIN --> 

1/111111111 
/ EMPACT / 
/ DATABASE I 
IIIIIIIIIIII 

+----------+ 
I SUSPENSE / 
I FILE I 
+----------+ 

--> I SERVER 
+----------+ 

Figure 6-Suspense transaction: (1) Requestor sends request message to server; (2) server updates local copy of database; 
(3) server posts message in suspense file; (4) server replies to requestor; (5), (7), (9) SUSMON asynchronously sends transaction 

to remote servers; (6), (8) (10) remote server attempts update at remote database and responds to SUSMON. 

possibility of conflicting adds and updates among the sites 
. becomes a problem. 

Conflicting updates occur when two or more sites update 
their copies of the same data simultaneously. Similarly, con
flicting adds occur when two or more sites add records to a 
global file with the same key value, but different data. For 
example, a conflicting add would occur if Reston and Austin 
were to simultaneously add the same part number to their 
copies of the item-master file, but have different physical 
items associated with that number. 

To prevent this possibility, ownership (by site) is assigned to 
global records and the initiation of updates is restricted to only 
the owning site. To prevent conflicting adds, the ranges of key 
values are preassigned to the various sites and adds are limited 
to those ranges. 

Although only one site at a time can have add or update 
rights to a particular record or range of records, these rights 
could be given away to another site. The user community did 
not find this an unreasonable limitation. 

Stale Data 

Another problem introduced by the suspense mechanism is 
the problem of stale data. Stale data occur when an out-of
date copy of a global file is read. The data are out-of-date 
because an update to the file has been posted at a remote site 
but has not yet been propagated to the local site. However, 
because the propagation time for suspense updates is consid
erably less than the time the user community takes to act on 
the update, temporary staleness is not a problem. 

Before the implementation of distributed EMPACT, the 
various manufacturing sites were using shared information 
that was updated and reconciled on a weekly basis. In distrib-

uted EMPACT the elapsed time for the propagation of a 
transaction to all sites in the network is less than a minute; in 
the worst case, such as a catastrophic network line failure, it 
is several days. This is viewed as a major improvement. It was 
also pointed out that if indeed the most current information 
were absolutely needed, the read could be directed to the 
copy at the owner site. If a business emergency were to occur 
that could not wait on the suspense delay, an outside mech
anism such as a phone could be used. 

In short, the approach taken to satisfy the simultaneous 
requirements of site autonomy and database consistency is to 
replicate communcal information, use an ASAP update 
scheme to maintain the concurrency of the replicated informa
tion, and rely on the notion of record ownership to prevent 
conflicting updates. The favorable relation of propagation 
time to action time permits brief periods of stale data. 

The next section of this paper discusses some of the detaiis 
related to the implementation of this approach. 

IMPLEMENTATION 

The conversion of EMP ACT from a centralized application to 
a distributed application required 

1. Specific modifications to the structure of the database 
2. Developing the suspense-processing utility SUSMaN 
3. Identifying data consistency algorithms 
4. Developing a means to serialize transactions 
5. Deciding upon standard update and record-locking 

protocols 
6. Handling processing variations and exceptions 
7. Error processing 



212 National Computer Conference, 1983 

Database Restructur~ng 

The existing database was reorganized so that the local, 
global, and semiglobal information reside in distinct sets of 
fiies that themselves are solely global, local, or semiglobal. As 
was mentioned earlier, this restructuring simplifies the or
ganization and reduces the complexity of the update servers. 
The logic that updates global information can be separated 
from the relatively simpler logic that updates local informa
tion, easing the task of program conversion and maintenance. 
This conversion is necessary for all programs that access glob
al data. 

Suspense File Monitor 

The SUSMON process at each site, as shown in Figure 6, is 
designed to propagate any transaction posted in its suspense 
file to other sites in the network. Each site has its own sus
pense file and copy of SUSMON. SUSMON, in conjunction 
with the servers that update global data, maintains the consis
tency of replicated data. 

SUSMON's map of the network is the node file, which is 
replicated at all the EMPACT sites. This file contains the 
Guardian system names and statuses of all sites. 

Records in the suspense file contain a copy of the request 
message, the name of the server class that receives and acts on 
the message, and a bit mask that is matched against the list of 
sites in the node file to identify where the transaction has been 
sent or needs to be sent. 

SUSMON polls the suspense file looking for work. When 
finding a transaction that needs to be sent to a remote site, 
SUSMON performs the following actions: 

Initiating 
Site 

+-----+ 

1. Invokes TMF monitoring-initiates the transaction. 
2. Establishes communication with the appropriate server 

class at the remote site. 
3. Sends the request message to the server. 
4. Waits for a reply. 
5. If the reply is affirmative, updates the bit mask to indi

cate that the site has processed the transaction success
fully. 

6. If some site is not available, either because a network 
link was down or because a system is unavailable, the 
algorithm defers, intending to try again at a later time. 

7. When the bit mask indicates that all necessary sites have 
received the transaction, the process deletes the record 
from the suspense file. 

8. Ends TMF monitoring--commits the transaction. 

Figure 7 diagrams the information flow during suspense 
processing. 

Data Consistency Algorithms 

Given the restructured database and the development of 
SUSMON, the conversion task was directed towards modify
ing those servers that update global files. The design of a new 
update algorithm was required to resolve concurrency prob
lems and to provide a guarantee of data consistency within the 
replicated files. The original update algorithm, a protocol that 
was designed for a single-site application, plays an extended 
role in the distributed scheme; we will now describe it before 
moving on to its modifications. 

A standard two-step protocol of check and update is used 
for update transactions. As part of the first step, an end user 

Remote 
Site(s) 

+------+ 
1 A S 1 (3) 

sis E 1-------> IIIIIIIIIIII 
u I (2) -------------->1 S R 1-------> I EMPACT I 
S 1-------------\ I 0 V 1-------> I DATABASE I 
M I ICE 1-------> 1III1IIIIIII 
o I ---------------1 I R I 
N 1<------------\ (4) I A I 

I I T I 
+-----+ I E I 

I I I 
(l) I I (5) +------+ 

I V 

+----------+ 
I Suspense I 
I file I 
+----------+ 

Figure 7-Suspense processing: (1) SUSMaN obtains transaction from suspense file; (2) SUSMaN establishes 
communication with server at remote site and sends request message; (3) server updates local copy of 

database-may involve multiple records; (4) server replies to SUSMaN; (5) SUSMaN 
updates bit mask of record in suspense fiie. 



+----------------------------+ 

R E QUE S TOR 

+----------------------------+ 
I 

(l) I 
v 

I (3) 
I 

I 
(4) I 

v 
I (7) 
I 

+----------------------+ 
I S E R V E R (S) I 
+----------------------+ 

(2) I I (5) I I I I (6) 
v v v v v v 

111111111111111111111 
I EMPACT DATA BASE I 
11/111111/11/111//11/ 

Figure 8---Check and update protocol: (1) Requestor sends check message; 
(2) Server accesses database and verifies validity of transaction; (3) server 

replies; (4) requestor initiates update step; (5) server performs validity 
checks; (6) server updates database; (7) reply is returned to requestor. Note 
that each access to the database-steps (2), (5), and (6)--may be multiple. 

might access a screen and make a request to update a certain 
record or piece of information in order to add a component 
part to an existing bill of material structure. The requestor 
module servicing the end user then sends the appropriate 
server class a request for the record or piece of information 
specified. Next, the server verifies that such an update is 
possible or permitted, and it replies with the requested data. 
(See Figure 8.) 

To add a new component, the server needs to verify, among 
other things, that the assembly exists, that the component to 
be added is an existing part, and that the assembly is not a 
component of the component-bills of materials cannot be 
recursive. 

After the user is satisfied with the data entry, the requestor 
module initiates the second phase of the update process: a 
request to a server (not necessarily the process that handled 
the first request) asks that the update be performed against 
the database. The updating server again verifies that the up
date is possible, repeating the validity checks that were used 
in the first step. If all validation is affirmative, the database is 
updated, a successful reply is sent to the requestor, and ulti
mately to the end user. In the event of error, a negative reply 
is returned. 

The purpose of this two-step check and update protocol is 
to provide a reasonable level of user friendliness and concur
rency. The check allows the user to find out prior to perform
ing potentially unnecessary data entry whether or not a given 
change is actually needed and possible. A higher level of 
concurrent processing is achieved because data locks, which 
are handled at the record level, are only held while the actual 
update is being performed by the server, and not while data 
are being entered. 

Conflicting updates within a site are prevented because an 
old-datalnew-data comparison is performed before update. If 
the current copy of the data in the database matches the old 

EMP ACT: A Distributed Database Application 213 

copy of the data in the update request message, then the new 
updated data are written to the database. Otherwise the up
date request is rejected because a legitimate update has taken 
place between the time the check request was issued and the 
time the update request was made. 

This two-step method for performing updates still applies 
within the environment of suspense processing. The check 
portion of the transaction remains unchanged, but the update 
portion requires additional logic to make use of SUSMON. 

Upon successful completion of an update, instead of simply 
replying affirmatively to the requestor, the updating server 
first writes a copy of the update request message to the sus
pense file, then replies. SUSMON asynchronously sends the 
message, as posted, to identical servers at each of the remote 
sites. These servers perform the same processing logic that is 
performed at the initiating site, including validity checks; 
however, no copy of the message is posted in the local 
suspense file, since the destination of the update has been 
reached. 

Using identical versions of the update server to process a 
given request at both the initiating site and the receiving nodes 
minimizes program maintenance; there is no need for multiple 
servers with nearly identical logic. Moreover, the consistency 
of the replicated copies of the data is continually being veri
fied. If a replica becomes inconsistent, this mechanism will 
detect the circumstance. 

This second feature, however, places several additional 
constraints on the structure of updates to global data. 
SUSMON sends requests to remote sites serially, that is, re
quests are sent to remote nodes one at a time and only after 
the previous one has successfully completed. Because the 
validity checks are also being performed at remote sites, 
the success of a global request at a remote node is guaranteed 
only if the transactions processed at the initiating site are 
serializable. 

Transaction Serialization 

A set of transactions is considered serializable even though 
it is processed in an interleaved or concurrent fashion, if there 
exists some serial order that will produce equivalent results. 

The method chosen to accomplish this ordering at a node 
initiating global updates is a counter called the SUSMON
TRANS-ID. The counter is a 32-bit field residing on a single 
record in the database. Initially the counter is set to zero. 
Servers processing global transactions are required to read, 
lock, and increment the counter prior to posting the request 
message in the suspense file but subsequent to the completion 
of all standard processing. 

Serialization is achieved using the SUSMON-TRANS-ID if 

1. All records read and written are locked from the time of 
access to the time that the transaction is committed. 

2. All records written (added, updated, or deleted) are 
locked prior to the write operation. 

3. All records read are global. 

This last clause simply implies that there can be no dependen
cies on nonglobal information, because the condition of non-



214 National Computer Conference, 1983 

* 
* 

* 
* 

* 
* 

* 
* +----------------------------------------*---> Time 

I 
\ /\ /\_~.".,.._-/ I 
(1) ------r(---2"T""")---- (3) (4) 

(I) TMF transaction initiated. 

(2) Reads and writes performed for standard processing, 
all locks held. 

(3) Obtain SUSMON-TRANS-ID and post message in suspense file. 
(Only one transaction per site is in this step at one time) 

(4) Commit transaction and release locks. 

Figure 9--Resource acquisition as a function of time during a global transaction 

global data, by definition, may vary from site to node. Figure 
9 charts the resource acquisition required for serialization. 

The suspense file is key sequenced. The value obtained by 
incrementing the SUSMON-TRANS-ID counter determines 
the relative position of the record in the suspense file; this 
value is used as the primary record key. The order derived is 
the order in which the transactions will be propagated to other 
nodes. 

Record-Locking Protocol 

The first step of the locking protocol requires that all global 
records that are read also be locked; this ensures data consis
tency through the duration of database accesses. The second 
step of the locking protocol requires that the SUSMON
TRANS-ID be locked by any server process that uses the 
suspense file; this guarantees serialization of outbound trans
actions. The TMF Transid, however unique, is not capable of 
being used to serialize transactions; it is acquired at the time 
that the transaction is initiated, and not at the time that the 
suspense file is written to. Figure 9 clarifies this point. 

Variations and Exceptions 

The majority of the transactions in EMPACf easily adhere 
to this structure. There are three notable exceptions, how
ever: the deletion of a part from the item-master, the addition 
of new global records, and the interplant transfer of material. 

Part information in EMPACf resides in the item master 
record, which is defined to be global. Deleting an individual 
part from the database involves deleting the associated record 
from the item master file, but only after inactivity for the part 
has been established. A part is considered active if inventory 

records show a stock quantity for the item, or if the part is 
called out by any assemblies in the bill of materials records. In 
short, the activity of a part is defined by both global and local 
information, and it is this dependence on local information 
that undoes the algorithm outlined above. 

The resolution to this problem was the implementation of 
part deletion as a broadcast transaction. Because the fre
quency of this transaction is historically low and because the 
day-to-day business of the individual sites does not depend on 
their being able to perform this transaction, the fundamental 
vulnerabilities of broadcast transactions are acceptable. The 
lesson learned by the designers of EMP ACf was that if a 
particular transaction did not fit the structure required for 
suspense processing, broadcasting could serve to perform it. 

The decision to assign ranges of key values in order to 
prevent conflicting adds was also the result of an informative 
debate. Replication requires a common recognition of a 
record's global uniqueness; for example, a part number can 
only identify one kind of part throughout the system. If any 
site were permitted to add a global record by means of a 
suspense transaction, then the possibility would exist of simul
taneous and independent additions of the same record at dif
ferent sites. On the other hand, if the addition of global data 
were performed through broadcast transactions, then a crit
ical aspect of daily business, the addition of a new part, would 
depend on the availability of all sites. 

The solution reached was the creation of a range file that 
restricts the add capability of any site to a nonoverlapping set 
of values. The range file is replicated at all sites, and adds can 
be performed using the suspense mechanism so long as the 
key value falls within a valid range. Following our example, 
each site is permitted to add parts within a unique range of 
part numbers. 

The range fiie is maintained using broadcast transactions. 



EMP ACT: A Distributed Database Application 215 

Initiating 
Site 

+-----+ 

Remote 
Site(s) 

+------+ 

S 
U 
S 
M 
o 
N 

I A S I 
1 S E 1 

1 (2) --------------> 1 SRI (3) 
111111111111 
1 EMPACT I 

1-------------\ 1 0 V 1-------> 
I 1 C E I 

1 DATABASE I 
I11111111111 

I ---------------1 I R I 
1<------------\ (4) 1 A 1 
liT 1 

+-----+ I E I 
I 1 1 

(1) 1 

I 
I (5) +------+ 
v 

+--------------------------------------------------------+ 
1 Suspense I Suspense record key I msg 
1 file ICounter value Sequence Number 1 

lin 0 I New Trans 
I 1 n+l 0 I New Trans 
I 1 n+2 0 I New Trans 
+--------------------------------------------------------+ 

Figure 10-Suspense processing: (1) SUSMON obtains transaction nO from the suspense field; (2) SUSMON 
establishes communication with server at remote site and sends transaction message; (3) server updates 

local copy of database; (4) server replies to SUSMON; (5) SUSMON updates the bit mask of nO 

Initiating 
Site 

+-----+ 

in the suspense file and begins processing transaction (n + 1)0. 

Remote 
Site(s) 

+------+ 
A S 1 

S 
U 
S 
M 
o 
N 

1 

1 

I -------------->1 
S E 1 111111111111 
S R 1 I EMPACT I 

1-------------\ 1 0 V 1-------> I DATABASE I 
I (2) 1 C E I 111111111111 
I ---------------1 I R I 
1<------------\ 1 A I 
I 1 T I 

+-----+ I 
1 

E I 

(1) 1 

1 

I 
I (3) 
v 

I 
+------+ 

+--------------------------------------------------------+ 
Suspense I Suspense record key I msg 
file ICounter value Sequence number I 

I nIl New Trans 
I n 2 I 2nd request 
I n 3 I 3rd request 
I n+l 0 I New Trans 

+--------------------------------------------------------+ 

Figure ll-Suspense processing: (1) SUSMON polls the suspense file and observes that the sequence number 
in the suspense key of the first record identifies the first record of a multirequest transaction; SUSMON 

recognizes that the unit of work demanded in this case requires that all entries for transaction 
n be processed before completion is reached; (2) SUSMON processes the requests serially in 

the usual manner; (3) if the server has replied successfully to all requests involving 
transaction n, completion has been reached, the bit mask of n 1 is updated 

and SUSMON begins processing transaction (n + 1)0. 



216 National Computer Conference, 1983 

Paired with suspense processing, the range file concept satis
fies all requirements for uniqueness, site autonomy, and user 
friendliness. 

The interplant transfer of material posed a somewhat differ
ent probiem. As noted eariier, the interplant transfer data are 
considered semiglobal because the information is relevant 
only to the sites involved in the exchange of material, which 
may be two or more sites but need not be all. The events of 
a typical interplant transfer of material are as follows: one site 
requests material from another in the form of a requisition; 
the supplying site acknowledges the requisition and deter
mines whether there is sufficient available inventory to fulfill 
the request; if so, the supplying site ships the requested mate
rial, and upon receipt the requisition is closed. 

A decision was made to implement the interplant transfer 
functions, or MART subsystem, by replicating the interplant 
transfer data at the sites involved in the transaction and using 
the suspense mechanism to move the data from one site to the 
other. 

Suspense transactions in the MART application are com
posed of potentially multiple requests. The proper processing 
of these requests at the destination site requires a precise 
sequencing at the sending site. The internal serialization of a 
multiple-request transaction can be obtained by incorporating 
a sequence number into the key of the suspense record; the 
key is now formed by a counter that contains the value of the 
SUSMON-TRANS-ID and a sequence number that directs 
internal order. SUSMON then treats all records associated 
with a particular counter value as a single transaction but 
sends the requests, one at a time, to a specified server. The 
result of these modifications was the evolution of SUSMON 
from a tool intended solely for broadcasting transactions to a 
general-purpose transport mechanism. 

Figures 10 and 11 describe the differences between a stan
dard SUSMON transaction and a MART SUSMON trans
action in terms of the SUSMON-TRANS-ID. 

Error determination and handling in a distributed environ
ment requires a level of clarity and coordination that may be 
unnecessary in a nondistributed setting. A distributed data
base without a strategy for identifying and resolving errors is 
singularly vulnerable. SUSMON was chosen as central coordi
nator of error detection within the distributed EMPACT. 

Error Processing 

SUSMON's interpretation of error conditions determines 
the subsequent suspense processing to be followed. SUSMON 
identifies an error as belonging to one of two distinct catego
ries; either the error is retryable or nonretryable. The selec
tion of a category is based on the following criteria: 

1. Retryable.-The error was caused by an unanticipated 
system restriction or problem. Possibilities include com
munications disruption between SUSMON and a remote 
server, site unavailability, or isolated system failures 
within the remote system. 
Solution. -The sending SUSMON will report the prob
lem, defer any suspense processing to that site for an 

ordained amount of time, continue processing to other 
sites, and eventually retry the transactions. 

2. Nonretryable.-The error was related to data inconsis
tency and was reported by the remote server that had 
attempted to satisfy the request. Possibilities include 
failure during the remote server's old-datalnew-data 
check or any other consistency evaluation, or media 
damage such as an uncorrectable parity error within a 
record accessed by the remote server. 
Solution. -The remote server will report the problem 
on the remote site, and the sending SUSMON will do 
likewise locally. SUSMON will indefinitely suspend all 
activity directed to the site reporting the failure. Resolu
tion of the problem will require a degree of human inter
vention. 

Any problem reporting is done to a hard-copy logging con
sole. It is, moreover, essential that SUSMON suspend all 
activity to any site that is in error; the serial interdependence 
of transactions requires the serial processing of any suspense 
file requests destined to a site. A nonretryable failure of a 
single transaction to a site effectively interrupts the serial flow 
of data. Processing to all unaffected sites can continue, since 
the situation does not imply an error condition outside that 
reported in the problem site. 

EXPERIENCE 

The development schedule for distributed EMP ACT spans a 
period of 2 years. The project was commissioned in January 
1981 and it was not until September of that same year that the 
preliminary design was agreed upon. External and internal 
specifications were completed 3 months later, and in January 
1982 coding began. 

The development of SUSMON and the conversion of 
MART to use SUSMON were completed in April 1982. The 
conversion of the item master subsystem and bill of materials 
subsystem, along with the restructuring of the database are 
scheduled to be finished in December 1982. MART and 
SUSMON were installed in May 1982 for limited production 
use. Until the final conversion effort is completed, weekly 
tapes are being sent to all the sites to maintain concurrent 
copies of the global information. 

The results of the limited production use of MART and 
SUSMON are encouraging. The software has responded well 
to the demands placed on it, and the assumptions made during 
the design phase have proven accurate. Operationally, how
ever, the need for a centrally located network management 
function has become apparent; events that require the cooper
ation of all the different sites, such as the addition of a new site 
to the network, are very difficult to manage manually in a 
distributed environment. 

This need was evidenced during the first attempt to quiesce 
a three-site EMPACT network. Quiescing a network requires 
that all servers across the EMP ACT network be denied access 
to their suspense files, and that each SUSMON empty its 
suspense file of any outbound transactions. 

The strategy chOSen for this first attempt was to coordinate 



the activity over the telephone. The exercise demonstrated 
that the operational complexity of a distributed application 
demands a high level of training and skill at both the system 
manager and computer operator positions. 

To relieve these difficulties, software was developed to aid 
in the management of the network, especially in the areas of 
control and configuration. Its capabilities include 

1. The addition and deletion of sites to and from the 
network 

2. The quiescing of all global transactions 
3. Inquiry into the status of global-transaction processing 

throughout the network 

It should be noted that SUSMON was used to implement 
the network management software. 

CONCLUSIONS 

Distributed EMP ACT is an example of an application where 
the requirements of a business call for a distributed solution. 
The application is considered successful because the structure 
and organization of the database and software closely parallel 
the structure and organization of TANDEM's business envi
ronment. 

The design of distributed EMP ACT illustrates some of the 
techniques that can be used in a distributed database applica
tion, and the actual implementation of distributed EMPACT 

EMPACT: A Distributed Database Application 217 

demonstrates the feasibility of developing a truly distributed 
application on the TANDEM T/16 system. 

ACKNOWLEDGMENTS 

We would like to acknowledge the contributions of Vince Sian 
and Jim Gray to the initial design of Distributed EMPACT. 
Further thanks are due to Betty Buhr, Rick Burgess, Bob 
Plummer, Kathy Welch, and to the entire Manufacturing In
formation Systems staff for their ideas and advice. We also 
wish to recognize Carl Goldman and Mike Sanders for the 
management support that they provided. We are grateful for 
the help and guidance given us by many members of the 
TANDEM Software Development and Software Education 
groups, particularly Andrea Borr, Bob Jones, and Jim Col
lins. Finally, we would like to thank Jim Gray and Rikki 
Westerschulte for their editorial advice. 

REFERENCES 

1. Borr, A. "Transaction Monitoring in ENCOMPASS: Reliable Distributed 
Transaction Processing," TANDEM Technical Report TR 81.2, 1981. 

2. Katzman, J., and R. Taylor. "GUARDIAN/EXPAND, a Nonstop Net
work," TANDEM Technical Report, 1978. 

3. Selinger, P. "Replicated Data." In LW. Draffan and F. Poole (Ed), Distrib
uted Data Bases, An Advanced Course. Cambridge: Cambridge University 
Press, 1980, pp. 223-231. 

4. Smith, L. "Designing a Network-Based Transaction Processing System." 
SEDS-002, TANDEM Computers Incorporated, 1982. 





Dynamic replication, an overview 

by T.P. DANIELL, R.C. HARDING JR., and S.H. NAUCKHOFF 
IBM 
Palo Alto, California 

ABSTRACT 

Dynamic replication is a new technique for managing data in a distributed pro
cessing environment. It is a simple yet powerful scheme that addresses the major 
problems of distributing databases. 

This paper discusses dynamic replication and database distribution in three parts: 
First, several aspects of database distribution common to various techniques are 
described. Second, some capabilities of dynamic replication are emphasized, inas
much as they are not available with other techniques. Third, an overview descrip
tion of dynamic replication is given. 

219 





INTRODUCTION 

A key characteristic of distributed data environments today is 
diversity-diversity of applications requirements and diversity 
of distribution techniques. Some of today's distributed data 
techniques require the user to bury data management function 
in application programs, operational procedures, or applica
tion restrictions.3 Other techniques require synchronized 
clocks, centralized locking, predefined transaction work sets, 
or that all or a majority of nodes vote on each node's up
dates. 1,2 

Dynamic replication is a new technique for managing data 
in a distributed-processing environment. It is a simple yet 
powerful scheme that addresses the major problems of distrib
uting databases. It can satisfy a wide variety of application 
requirements and generally it subsumes or improves upon the 
consistency, performance, and availability characteristics of 
other techniques. 

This overview consists of three parts. First, several aspects 
of database distribution common to various techniques are 
discussed. Second, some capabilities of dynamic replication 
are emphasized inasmuch as they are not available with other 
techniques. Third, an overview description of dynamic repli
cation is given. 

ASPECTS OF DATABASE DISTRIBUTION 

This section covers 

1. Data access needs from the point of view of an enterprise 
2. Teleprocessing network design problems 
3. Various ways data access needs can be satisfied via the 

teleprocessing network using current data management 
technology 

Data Access Characteristics 

Data are information abstracted from some aspect of busi
ness important to an enterprise. The challenge is to give end 
users access to the data with an availability, performance, and 
cost commensurate with their business requirements. System 
considerations that unnecessarily interfere in the use of the 
data can be costly to the enterprise. 

The end users of the data are assumed to be geographically 
dispersed. They need access to the data. Neither end users nor 
application programmers should be required to be aware that 
the data are distributed or to know their location. 

The need for database management is accepted. Access to 
the data must be controlled to ensure authorization of access 
and to ensure the consistency and integrity of the data. 

Dynamic Replication 221 

Additionally, data accesses in a distributed environment 
may have certain affinities, as follows: 

1. Geographic affinity.-Accesses to a given data item tend 
to cluster geographically. Data items that have been ac
cessed at a given node are more likely to be accessed 
again at that node than other items are. This is the basis 
for improved performance and availability for all distrib
uted data schemes. 

2. Temporal affinity.-Accesses to a given data item tend 
to cluster in time. Data items that have been accessed 
recently are more likely to be accessed in the near future 
than data items not recently accessed. 

The dynamic replication technique is designed to take advan
tage of these affinities. 

The node at which accesses for a given data item tend to 
cluster is called the affinity node. With dynamic replication 
the affinity node for a given data item need not be known 
ahead of time; furthermore, the affinity node for a given data 
item may vary with time. 

Teleprocessing Network Design 

For the purposes of this discussion, the teleprocessing net
work design includes determination of the number of nodes, 
their geographic placement, the communication paths and 
capacities between nodes, the connection of user terminals to 
particular nodes, determination of which applications will ex
ecute at which nodes, and so on. The dynamic replication 
scheme is not concerned with this design problem; dynamic 
replication will work with any teleprocessing network. The 
discussions that follow assume that the teleprocessing network 
has been designed already. 

Aids are available today to help users design their tele
processing networks. The communication and processing load 
that results when dynamic replication is used to manage the 
distributed data is likely to be quite different from the load 
when other techniques are used. Therefore, the network de
sign aids used should allow for the capabilities of dynamic 
replication in their design algorithms. 

The dynamic replication technique is independent of the 
teleprocessing network topology. Dynamic replication uses 
current communications technology to transfer data and con
trol information between nodes. 

Data Distribution Technology 

Distributed data technology has been categorized according 
to various attributes, including 



222 National Computer Conference, 1983 

1. Data location (centralized, partitioned, and replicated) 
2. Degree of data sharing (centralized, decentralized, and 

distributed) 
3. The degree to which database management control is 

provided network-wide (distributed data and distributed 
database) 

4. Type of data access (transaction shipping, function ship
ping, data shipping) 

The dynamic replication technique provides distributed data
base management based on the shipping of replicated data. 

CAPABILITIES UNIQUE TO DYNAMIC 
REPLICATION 

Dynamic replication generally subsumes the essential char
acteristics of other data distribution methods. Furthermore, 
dynamic replication has significant capabilities that are not 
available with the other methods. These capabilities include 

1. Increased flexibility in the use of node resources 
2. Trade-offs among data access performance, data con

sistency, and availability of data 

Flexible Use of Node Resources 

With dynamic replication, adding disk capacity, CPU 
power, or additional CPUs can be accomplished with less 
disruption at other sites than other methods cause. This flex
ibility allows the user to accommodate application growth and 
changes in load patterns easily. Growth beyond the top of the 
CPU line (central or remote) can be accommodated. 

Disk capacity at a dynamic replication node affects per
formance and availability rather than the functional capability 
available at the node. With other methods, enough storage 
must be available at a node to hold the replica or partition for 
use at that node. If there is not enough storage available, then 
the application cannot run. If additional storage is available, 
it cannot be effectively used to improve the application per
formance. In contrast, dynamic replication can use whatever 
disk storage is available for replica storage. The more storage 
available, the higher the probability that a given data item will 
be available locally when it is next required. Adding disk 
storage at a dynamic replication node improves performance 
and data availability at that node. 

It is relatively easy to add another CPU to a network of 
dynamic replication nodes. With dynamic replication, only 
the nodes that will directly relate to the new node need be 
aware of the new CPU. No special update procedures need to 
be devised as they must in the case of static replication. The 
affinity information at each node (in the application pro
grams, declarations, or system programmer exits) need not be 
revised as it must for partitioned-data schemes. 

Adding another node is simply a performance and avail
ability factor with dynamic replication. Having two small 
CPUs next to each other rather than one larger CPU is a valid 
possibility. CPUs should be located (and teiminals attached to 

them) to take advantage of the geographic and temporal affin
ity of the database accesses. A poor topographical choice is 
one for which different nodes tend to access the same data at 
the same time and with high currency requirements. If this 
consideration is ignored, adding a new node might reduce 
rather than increase performance. 

Consistency! Performance/Availability Tradeoffs 

Different applications have different consistency require
ments for the data they access. In dynamic replication, data 
consistency is defined in terms of the data currency and data 
stability requirements of an application. This is illustrated by 
the EMPLOYEE database shown in Figure 1. An application 

EMPLOYEE 

PAYROLL JOBHIST 

(CLEAN) (PRIOR) 

Figure I-Data consistency 

program that is updating the payroll information (to compute 
a raise, for example) for a given employee needs to work with 
the most current value of the PAYROLL data (called clean in 
dynamic replication). However, another application program 
that is preparing a report on job statistics by location is proba
bly content with JOBHIST data values that may not be the 
most current (called prior in dynamic replication). 

The dynamic replication scheme allows the user to make a 
tradeoff among performance, availability, and data consis
tency. This tradeoff can be made for each application. Thus, 
database integrity is ensured by providing clean data to those 
applications that require it; on the other hand, performance 
and availability gains can be achieved for those applications 
with less demanding currency requirements. 

The extent to which a user can make tradeoffs among per
formance, availability, and consistency is unique to dynamic 
replication among current data distribution schemes. With 
static-replication or partitioning schemes, this tradeoff is 
made once and for all when the scheme is chosen-and all 
applications must live with the tradeoff. 

Dynamic replication also has options that allow the user to 
make a tradeoff between performance and availability for 
each location. Furthermore, a tradeoff can be made, for each 
data item, between performance and availability at an item's 
affinity node versus other nodes. 

Unlike partitioning, dynamic replication does not require 



the user to provide any affinity information. The dynamic 
replication data placement algorithms are adaptive; data tend 
to move to the locations where they are accessed. However, if 
data affinity information is available, it can be used by the 
dynamic replication technique. Dynamic replication will use 
the affinity information to improve performance and avail
ability at the affinity node (for a given data item). The other 
benefits of dynamic replication are not sacrificed. 

THE DYNAMIC REPLICATION TECHNIQUE 

In this section the components of a dynamic replication sys
tem are defined and their interactions are described. 

Dynamic Replication Components 

The major components of a dynamic replication system are 
shown in Figure 2. The components that are new in a dynamic 
replication system are defined in this section. 

Every node in the network has the capability of storing 
some number of data items. Copies of data items are dynam
ically created at a node as required to support the processing 
that occurs at it. 

There is a replica file manager at each node, which is re
sponsible for the data items stored there. Also at each node 
is a replica distribution manager (RDM). The RDMs at the 
various nodes are responsible for controlling the distribution 
of data. RDM intercepts data access calls and makes requests 
to other nodes, if necessary, for the data and authorities re
quired to honor the data access call. 

CF - COMMUNICATIONS FACILITY 
RDM - REPLICA DISTRIBUTION MANAGER 
RF - REPLICA FILE 
SACF - STATUS AND CONTROL FILE 
TM - TRANSACTION MANAGER 

Figure 2-Components in a dynamic replication network 

Dynamic Replication 223 

Each dynamic replication node can store some number of 
data items. These data items may be held uniquely at the node 
or may be replicas of data items held at one or more other 
nodes. These replica data are stored in the replica file. Data 
that are required to honor an application database call can be 
requested from another node and stored in the replica file. 
Existing data in the replica file may have to be removed to 
make room for the new data. 

The RDM insures data integrity and consistency by oper
ations at two levels. Access conflicts between application pro
grams running in the same node are managed by using locks 
held on behalf of the application programs. Data item locking 
is managed independently at each dynamic replication node. 

Access conflicts between appiication programs running at 
different nodes are managed using control information in a 
format called dipoles. A dipole describes the relationship be
tween two nodes with respect to one or more data items. Each 
of the two nodes holds one half of the dipole. That half de
scribes the other node's status for the data items. It describes, 
for example, whether the other node has a copy of the data 
items, the currency (clean or prior) it is assuming for its copy, 
and whether it is possibly making updates to the data items. 

The set of all dipole halves held at a node for a data item 
provides the RDM with the necessary information about the 
status of the data item. This information is called the data state 
for the item. Data state information is held in the status and 
control file (SAC file). The RDM can determine from the 
SAC file whether or not applications at its node can safely 
reference or update a data item, as well as find in it informa
tion about the currency of the data item. 

Any time an application program inserts, deletes, or re
places a data item, a record of the update is placed in the SAC 
file. Update status information is stored in the SAC file until 
it is required for transmission to other locations. It is not 

Figure 3-Application request processing 



224 National Computer Conference, 1983 

necessary to inform other locations of the updates as they 
occur. 

Application Request Processing 

The dynamic replication processing for an application pro
gram database request is diagrammed in Figure 3. When a 
database request is made at node 2, the request is intercepted 
by the RDM. The RDM interrogates the SAC file to deter
mine whether the node holds the necessary data and author
izations to satisfy the request. If it does, then the request is 
simply passed on to the replica file manager and the results are 
returned to the application program. 

On the other hand, the RDM may determine that one or 
more existing dipoles conflict with the requirements of the 
application request. For example, a related node may be au
thorized to update the same data item that this application 
wants to update. In this case the RDM makes a request for a 
dipole change to the node (or nodes) with which it shares a 
conflicting dipole. 

The request is passed through the communication facility to 
the RDM at the related node. The related RDM must inter
rogate its SAC file to be sure no dipoles exist with still other 
nodes that conflict with the request. If necessary, requests are 
sent to other RDMs to change their conflicting dipole halves. 

When this conflict processing is complete, the related RDM 
can change its dipole half and give a positive response (with 
data, if required) to the originating RDM. The originating 
RDM stores any received data in its replica file, records its 
half of the new dipole in its SAC file, and passes the applica
tion request on to the replica file manager. 

Once data are stored in the replica file, they normally stay 
there until the space is needed for some other data item. Thus 
the data are available for satisfying subsequent data requests 
without further network interactions. This contrasts with par
titioned database schemes, where data must be re-retrieved 
for subsequent requests. 

Several examples of dynamic replication processing will 
now be described, using the database illustrated in Figure 4. 
The replica file at node 1 contains four records (keys A, J, K, 
and S). Node 2 has replicas of records A and J in its replica 
file. Node 3 has replicas of records J and K. Record J has been 
modified at node 3. 

Example 1: Shared clean data. The ability to share clean 
data among nodes is illustrated with record A. Node l's SAC 
file reveals that node 1 understands that both node 2 and node 
3 have copies of record A, which each is assuming to be clean. 
This is shown as a status of SHARE in the figure. If clean data 
are shared, then none of the parties involved can modify the 
data without first getting the other nodes to change their view 
(as represented in the dipole half) of the data state. 

A dipole describes the relationship between two nodes for 
a data item. Each of those nodes may have additional re
lationships for the same item with other nodes as long as the 
additional relationships do not conflict. For example, node 2 
is aware that it is sharing clean data with node 1 but is unaware 
that node 1 has also shared the record with node 3. 

Figure 4--A dynamic replication example 

If an application program attempts to read record A at node 
2, then the access request will be passed to the replica file 
manager since node 2 is sharing clean data for record A with 
node 1. No network interactions are required. 

Example 2: Updates and prior data. A dipole situation in 
which data updates can be taking place is shown for Record J. 
The dipole half for Record J at Node 2 shows that Node 1 has 
a unique clean view of Record J. This tells Node 2 that Node 
1, or some node related to Node 1, may be making updates to 
Record J. Thus, Node 2 must assume that its replica of Record 

Figure 5-0btaining clean data 



J is prior data. Update activity cannot be permitted at Node 
2 unless a change to the dipole with Node 1 is negotiated. 

Node 1 has passed along the unique clean view of record J 
to Node 3. Node 3 has, in fact, already modified record J. 

If an application program attempts to read Record· J at 
Node 2, the access request will be passed to the replica file 
manager only if the application has indicated that it is accept
ing prior data. The data at Node 2 must be considered prior, 
since Node 1 (or a node attached to Node 1) may be making 
updates to Record J. 

Example 3: Obtaining clean data. Figure 5 illustrates a re
trieval call for Record K made by an application program at 
Node 2. For this example, the program is assumed to be 
requiring clean currency for the data it accesses. 

Node 2 does not have a specific dipole half for Record K 
with any node. However, the last dipole half in the SAC file 
at Node 2 indicates that all records that are not otherwise 
described by dipole halves are assumed to be held exclusively 
at Node 1. Data state management is therefore required be
fore the application call can proceed. 

The processing is outlined as follows: 

1. A request is made by the RDM at Node 2 to the RDM 
at Node 1 for the data to be shared with clean currency. 

2. The only dipole half at Node 1 for Record K is with Node 
3. The dipole half with Node 3 does not conflict with the 
Node 2 request. Node 3 is assuming that its copy is prior; 
therefore it cannot be making updates to Record K. The 
new dipole half with Node 2 is recorded in the SAC file 
at Node 1. 

3. Node 1 sends a positive response to the request, along 
with a copy of Record K. This response acknowledges 
that Node 1 (and possibly other nodes related to Node 
1) is still assuming its copy is shared clean. 

Figure 6-Retrieval with intent to update 

Dynamic Replication 225 

4. The RDM at Node 2 stores its copy of Record K in its 
replica file. 

5. The RDM records the new dipole half in the SAC file. 

Now the original application program request can be passed 
on to the replica file manager. 

Example 4: Retrieval with intent to update-No conflicts. 
Figure 6 illustrates a retrieval call for Record K with intent to 
modify the record. The call is made by an application program 
at Node 2. Since Record K is not replicated at Node 2, 
dynamic-replication data state management is required. 

The processing is outlined as follows: 

1. A request is made by the RDM at node 2 to the RDM 
at Node 1. Since the application has specified an intent 
to modify the record, a unique clean copy of the data is 
requested. 

2. The only dipole half for Record K does not conflict with 
the request; therefore the RDM records the new dipole 
half with Node 2 in the SAC file. 

3. The RDM sends a positive response to the request, 
along with a copy of Record K. This response acknowl
edges that Node 1 (and all other nodes related to Node 
1) is now assuming its copy of Record K to be prior. 

4. The RDM at node 2 stores its copy of Record K in its 
replica file. 

5. The RDM records the new dipole half in the SAC file. 

Now the original application program request can be passed 
on to the replica file manager. 

Example 5: Retrieval with intent to update-Existing con
flicts. Figure 7 illustrates a retrieval call for Record J with 

Figure 7-Conflict processing 



226 National Computer Conference, 1983 

intent to modify the record. The call is made by an application 
program at Node 2. A copy of Record J is already held at 
Node 2, but the dipole half indicates that Node 1 (or some 
node related to Node 1) may be making changes to Record J. 
Dynamic-replication data state management is required. 

The processing is outlined as follows: 

1. A request is made by the RDM at Node 2 to the RDM 
at Node 1. Since the application has specified an intent 
to modify the record, a unique clean copy of the data is 
requested. 

2. Node 3 has the unique clean view of Record J. This 
conflicts with the request from Node 2. 
The RDM at Node 1 requests Node 3 to surrender the 
unique clean view of Record J. The RDM at Node 3 can 
retain its replica at an assumed currency of prior. 

3. The Node 3 RDM surrenders its view as required. This 
action may have to wait for the completion of an appli
cation program running at Node 3 if the application 
program is positioned on Record J, has locked it, or is 
modifying it. 

4. The Node 3 RDM eventually gives a positive response 
to the request from Node 1. This response acknowl
edges that Node 3 is now assuming its copy of Record 
J to be prior. Since at least one change to Record J has 
been performed at Node 3, the most recent value of the 
record is sent with the reply. 

5. The Node 1 RDM saves the new value of Record J in 
its replica file. 

6. The Node 1 RDM records the Node 3 dipole half 
change in its SAC file. 

7. The Node 1 RDM records the new dipole half for Node 
2 in its SAC file. 

8. The Node 1 RDM sends a positive response to the 
original Node 2 request, along with a new copy of 
Record J. This response acknowledges that Node 1 
(and all other nodes related to Node 1) is now assuming 
its copy of Record J to be prior. 

9. The Node 2 RDM replaces its copy of Record J in its 
replica file. 

10. The Node 2 RDM records the Node 1 dipole half 
change in its SAC file. 

Now the original application program request can be passed 
on to the replica file manager. 

Conformation 

When a database update is made at one node, this update 
may need to be reflected at other nodes in the network. This 
process is called conformation, since the networkwide data
base is made to conform to an update made at one location. 
The conformation process is diagrammed in Figure 8. Since 
dynamic replication insures that conflicting data state dipoles 
never exist in the network, database integrity is not affected 
by when, or even whether, conformation occurs. Performance 
and availability, however, are affected by the scheduling of 
conformation. 

Figure 8-Update conformation 

Conformation can be initiated in several ways: 

1. When the authority to update a data item is given up by 
a node, any modifications to the data item made by the 
node are conformed at that time. This may occur in 
response to a request from another node or because 
space in the replica file is needed for some other data 
item. 

2. Conformation can result from the initiation of the 
dynamic-replication change queue transaction. The 
change queue transaction can be initiated by any mech
anism available for scheduling application transactions 
at the replica node: time-of-day, time interval, operator 
command, work to be done, and so on. 

The first step of conformation is to read the update status 
information in the SAC file and transmit the modified data to 
one or more nodes that are related to this node for the data 
item. The replica and SAC files at the related nodes are made 
to reflect the change. Each of the related nodes can in turn 
conform the updates to still other nodes with which it is 
related. 

Data Distribution Network Topology 

Previously it was stated that dynamic replication is indepen
dent of the teleprocessing network topology. The teleprocess
ing network topology describes how the nodes are related for 
the purposes of communication. However, another network 
topology is central to the dynamic replication scheme-the 
data distribution network topology. The data distribution 
topology describes how the nodes are related for the purpose 
of distributing a particular database. 

If a node is not otherwise related to other nodes for a 



(A) (B) 

• 
(C) (D) 

.£;t.N 
Figure 9-Data distribution network topology 

particular data item, then the data distribution network deter
mines to which node it will direct its request for that data item. 
Some typical data distribution network topologies are shown 
in Figure 9. The network in Figure 9(a) is a two-level hier
archy. This means that all nodes that require any data item 
will request it from one node (called the primary node). The 
primary node will intermediate with the other nodes as re
quired. A full-peer network is diagrammed in Figure 9( d). In 
this case each node directs its requests to a node that is deter
mined by some criterion such as key range. That node then 
intermediates as required with other nodes. The other net
works shown lie between these two extremes. 

Different choices of data distribution topology can be made 
for different databases that are distributed on the same com
munications network. The choice affects performance and 
availability of the data as well as the degree to which cen
tralization of the database administration function is to be 
imposed. 

CONCLUSION 

Dynamic replication manages to avoid the disadvantages of 
other methods for distributing data while maintaining their 
advantages: 

1. It improves availability and performance for data that 
are held at the node where it is accessed. 

2. It increases availability and performance for application 
programs that can accept data which are possibly not the 
most current. 

3. It provides data location transparency; application pro
grammers and end users need not be aware of data lo
cation or even of a data-partitioning algorithm. The 
database appears to be the same as in the single-system 
approach. 

4. A partitioning algorithm is not required in dynamic rep-

Dynamic Replication 227 

lication. Dynamic replication automatically moves data 
to the location(s) where they are being accessed . 

5. It provides good performance for programs that access 
the database uniformly. For example, a given node can 
have a copy of every data item in the database. These 
data need not be the most current. A summary program 
can run at such a node with minimal performance 
degradation. 

6. No special update procedures or windows are required; 
updates are managed networkwide by dynamic repli
cation. 

7. Database integrity is ensured by dynamic replication in 
cooperation with the replica file managers. Multiple up
dates are prevented. Application programs receive data 
as current as they require. 

8. The teleprocessing network may be unstable. Unlike 
some methodologies, dynamic replication does not re
quire that communication with all nodes, with a given 
percentage of nodes, or to any particular node be avail
able at transaction termination time. 

The advantages of dynamic replication result from the main
tenance of control information on a data item basis in the form 
of dipoles in the SAC file. The chief disadvantages of dynamic 
replication are the costs of storing and accessing that informa
tion: 

1. Disk storage is required at all locations for the SAC file. 
Furthermore, disk storage for data is greater for dy
namic replication than for partitioning. However, disk 
storage for data for dynamic replication is less than it is 
for static replication, or about the same. 

2. The access time for data that are stored locally may be 
longer for dynamic replication than for some other 
methods. This effect may be more than offset by the 
reduced need for accessing the data via the network 
compared to partitioned data schemes. 

The dynamic replication technique has wide application. It 
is a simple but powerful technique that generally subsumes 
and improves upon the consistency, performance, and avail
ability characteristics of other schemes. It also provides sig
nificant operational, availability, and performance benefits 
not otherwise available. 

Dynamic replication solves many of the basic problems of 
distributing data by managing the database networkwide. This 
unified approach can be used to improve application pro
grammer productivity, reduce operational costs, and improve 
the availability of data and the performance of database 
accesses. 

REFERENCES 

1. Bernstein, P.A., and N. Goodman. "Concurrency Control in Replica 
Distributionbase Systems." Computing Surveys, 13, no. 2 (June 1981), 
pp. 185-221. 

2. Kohler, W.H. "A Survey of Techniques for Synchronization and Recovery 
in Decentralized Computer Systems." Computing Surveys, 13, no. 2 (June 
1981), pp. 149-183. 

3. Martin, J. Design and Strategy for Replica Distribution Processing. Engle
wood Cliffs, N.J.: Prentice-Hall, 1981. 





Local query translation and optimization in a distributed 
system 

by EMMANUEL ONUEGBE and SAID RAHIMI 
Honeywell Corporate Computer Sciences Center 
Bloomington, Minnesota 

and 

ALAN R. HEVNER 
College of Business and Management 
University of Maryland 
College Park, Maryland 

ABSTRACT 

A new query translation and optimization algorithm is presented. The algorithm is 
being implemented as the local query translation and optimization technique of 
Honeywell's Distributed Database Testbed System (DDTS). The algorithm trans
lates local queries expressed in representational schemas (relational) to their equiv
alent internal schemas (network). The technique is new in that it does not translate 
each relational command in isolation, but rather attempts to find a collection of 
relational commands for which an optimized sequence of CODASYL DML com
mands can be generated. The optimization minimizes the number of disk accesses 
by taking advantage of the access paths available to the CODASYL local database 
management systems and the relationship information of the variables used in the 
relational commands. 

229 





INTRODUCTION 

In a distributed database system, portions of the data are 
stored at different nodes in the network. All of the data are 
regarded as one database, because internode communication 
and resource sharing permit access to the data resident at 
other nodes (subject to the access constraints of the network). 
A system-wide discipline is needed to enforce or facilitate 
security, data access, resource use, operating procedures, 
database definition, and data and program transfer among 
system nodes. At each node, a local database management 
system provides access to the resident data. These local data
base management systems may be heterogeneous within the 
network. It is necessary, therefore, to provide users with a 
general transaction processing interface that processes user 
requests while hiding the heterogeneity of the system from the 
user. 

The ANSIISP ARC Study Group on Database Management 
Systems 1 has proposed a framework consisting of three levels 
of schema definitions. These levels consist of: 

1. external schema: the description of the user view 
2. conceptual schema: the description of the logical view of 

the data 
3. internal schema: the local DBMS implementation of the 

database. 

In order to model distributed databases, a recent proposaf 
generalizes the ANSIISPARC framework to five levels (see 
Figure 1). This proposal extends the internal schema to: 

3.1. global representation schema: the description of the 
global representation of data 

3.2. local representation schema: the description of the 
database at a given node 

3.3. local internal schema: the local DBMS implementa
tion of the database. 

A different data model may be needed to perform the func
tions at each different schema level. This means that multi
schema architectures may entail multimodel architectures. At 
the external schema level, for instance, different data models 
may be used to describe different user views of the data. The 
conceptual schema level requires a semantic data model that 
is not cluttered by implementation details. The representation 
schema levels require a data model that possesses powerful 
data manipulation operators (e.g., the relational data model). 
The internal schemas are defined in terms of the models sup
ported by the Local DBMSs (e.g., the CODASYL DBTG 
Model). Thus, in a DDBS that incorporates a multischemal 

Local Query Translation and Optimization 231 

multimodel architecture, various phases of translation are 
needed in order to express a user view of data in one or more 
local DBMS representations of that data. Also, in order to 
achieve reasonable system performance, optimization tech
niques must be employed in these translations and for access 
to the data at the local nodes. 

The purpose of this paper is to describe a general method 
of translating and optimizing a database query from the local 
representation schema level to the local internal schema level. 
A number of other papers have described methods of query 
translation and optimization from the external level to the 
global representational levee, 4 and from the global represen
tationallevel to the local representational level. 5 The methods 
described in these papers and in this one are being imple
mented in the Distributed Database Testbed System (DDTS) 
at Honeywell's Corporate Computer Sciences Center.6

,7 The 
external level and conceptual level of the database are de
scribed by the Entity-Category-Relationship Model. 4 The 
representational schemas in DDTS use an extended relational 
model of data. 8 The local database management systems are 
Honeywell IDS/II systems, which use a CODASYL network 
model. 14 Thus, the goal of this work is to describe methods of 
translating and optimizing relational subqueries at local nodes 
with CODASYL database management systems. 

Other work on this problem is taking place at several re
search centers where distributed database systems are being 
constructed. The differences in translation and optimization 
methods among these centers are due to the different data 
models used at the representational levels and the local in
ternal level of the systems. A recent paper by Dayal and 
Goodman9 addresses a translation and optimization environ
ment similar to that of DDTS. A major difference exists in 
that their proposed methodology interpretively generates a 
database access strategy for each query entered into the sys
tem. A cost formula is optimized in order to derive efficient 
local processing strategies. Although this method produces an 
optimal access strategy, the complexity of this derivation is 
exponential with respect to the query size and thus could be 
quite costly to execute at run time. In contrast, the object of 
the methodology in this paper is to rapidly recognize only the 
query access patterns that are potentially beneficial for opti
mization. These patterns are preprocessed and are readily 
available for execution. 

The second section discusses the translation of sub queries 
from the relational data model to the CODASYL network 
data model. During this translation, the sub query is optimized 
to take the best advantage of the implemented access paths on 
the local DBMSs. In the third section we discuss methods for 
recognizing these optimization opportunities. The fourth sec
tion describes the implementation of the translation and opti-



232 National Computer Conference, 1983 

* ~ 
" External 

Schema 
1 

" 

* 
External 
Schema 
2 ••• 

/ 
Conceptual 
Schema 

External 
Schema 
M 

l 0 User View 

> 0 Different j Models 

}

o Enterpr i se. 
View 

a ECR Model 

i - ~~::!!entation ~ ~ ~:~ ~~ = ~ -a:-b: ~ ~ -1 - - - - - -1 
I I Representat io irector I I 

I I 
Schema I a Representationl 

I I I (Globa 1 & I 

/ 

Views, I 

I I I Loca 1) I 
I I I 0 Relational I 
I ~ I ~~~!sentat i on ~~~!sentat ion ~~~~!sentat ion! Mode 

1 I : ~ L:ema 
____ JChema f -J _·~·_ISCh~ t J) I 

I ~ I 
I C I 

II Local Local Local}O ~~~:! DBM ! 
Internal Internal Internal \ 

I Schema 1 Schema 2 ••• Schema N 0 Network I 
Model L___ _ ______ J 

••• 

figure I-five-schema architecture 

mization methods in DDTS. We conclude the paper by briefly 
describing planned performance studies of our methodology 
and suggesting future extensions. 

LOCAL TRANSLATION AND OPTIMIZATION 

A query, received by a local node for processing (compilation 
and/or execution), is a list of relational commands on a set of 
base or temporary relations in a database. Local queries are 
composed of relational operations that can be executed com
pletely on a local relational schema. Since we assume that the 
local database management systems are based on CODASYL 
specifications (IDS/II), 10 the system must transform local re
lational schemas into local network schemas and relational 

commands into an equivalent sequence of network DML 
statements, which can be executed on the network schemas. 
The transformation of schemas (relational to network and 
network to relational) is done at database design time and is 
stored in local data dictionaries for use in later translation and 
optimization. 

This transformation is based on a one-to-one correspon
dence between relations and record types and between attri
butes and data items. II Stated more formally, the relational to 
network transformation is: 

Let S be a relational schema with K relations, then: 

1. For each relation Ri, 1::5 i ::5 K define a record type Ni 
such that (a) Ni contains one data item for each attribute 



of Ri, and (b) for every key of Ri, define a key for Ni 
equal to the key of Ri. 

2. For each key of Ri that appears as an attribute of Rj (a 
foreign key of Rj), define the set Lij between Ni and Nj 
(Ni owner and Nj member) as optional if the foreign key 
of Rj could be null, and mandatory if the foreign key of 
Rj cannot be null. 

The transformation of a network schema to a relational 
schema is done similarly. Note that since CODASYL records 
do not have to have keys, we may have to use database keys 
instead. A database key is a system-added item to every 
record with unique values. 

Query translation is done at compile time for compiled 
queries and at execution time for interactive queries. A com
piled query is stored in the data dictionary for execution at a 
later time. There are two approaches for translating relational 
commands into network DML statements. The first approach 
is to translate relational commands one by one, as described 
in Vassilou and Lochovskyll and Zaniolo. 12 The second ap
proach, used in this paper, is to translate a collection of re
lational commands as one optimization unit. 

In the first translation approach each relational command is 
mapped into a set of DML commands, which have the same 
effect as the relational command, but on the network schema. 
This approach has the drawback of not taking full advantage 
of the optimization potential of the query being translated. 
An example can clearly illustrate this point. Consider the 
following relational schema and query: 

SCHEMA: 
DEPT(DNAME, HEAD, BUDGET) 
STUDENT(SNAME, SSN, DEPT~AME, SEX) 
(DNAME and SNAME are keys, DEPT_NAME is a foreign 
key) 

QUERY: 
Print all information about all female students in departments 
with budgets less than $1,000,000. 

The relational solution for this query could be: 

T1~SELECT(STUDENT) where SEX = "female." 
TI~SELECT(DEPT) where BUDGET < 1000000. 
RESULT~JOIN (T1, TI) 
where DNAME = DEPT~AME. 

The straightforward translation of these relational com
mands is a set of DML statements that searches all student 
records selecting only the female students, searches all de
partment records selecting only the ones that have a budget 
smaller than $1,000,000, and joins the records from the two 
resulting sets if they have the same department name. Even 
though straightforward, this solution does not take into ac
count the fact that there is a one-to-many relationship be
tween relations DEPT and STUDENT. This relationship im
plies that a department can have many students, but each 
student belongs to only one department. Using the schema 

Local Query Translation and Optimization 233 

transformation rules previously explained, the relational 
schema is transformed into the networK schema shown below. 

DEPT 

DEPT_STUDENT Set 1 
STUDENT 

Note that in this schema the relationship between the 
DEPT and STUDENT record types is explicitly shown as a set 
with DEPT record type being the owner and STUDENT 
record type as the member (set DEPT_STUDENT). Because 
of the availability of this set in a CODASYL database, we can 
combine the translation and optimization of the given query 
as follows: 

1. Locate those department records that have BUD
GET<1000000. 

2. Search only the members of these departments, select
ing the female students. 

Note that this solution does not search the student records 
that are not members of departments with BUD
GET<1000000. If the number of departments in the database 
is large, but only a few satisfy the stated condition, then the 
savings in the search time could be considerable. 

Two important points should be noted in the above exam
ple. First, there is a specific pattern of relational commands in 
the query (i.e., SELECT, SELECT, JOIN). Second, there is 
a set of conditions among the variables (relations) used in the 
pattern of commands. For this example the conditions are that 
the DEPT record type must be the owner of a STUDENT 
record type and the join attribute is the attribute upon which 
the set type is defined. If either one of these criteria were not 
satisfied, we could not have optimized the query in this man
ner. The combination of a pattern and its associated set of 
conditions on the pattern variables are called a template. 

One could find other templates of relational commands, 
similar to the template in the given example, that can be 
optimized and translated as a unit. These templates are de
fined at database design time, based upon the implementation 
of the local CODASYL databases. Optimized DML code for 
processing records that match each template is stored as the 
body of a subroutine, possibly in the data dictionary. The 
inputs to each subroutine are the relation and temporary re
lation names used in the commands and the output is a tempo
rary relation that contains the results of each pattern. Having 
done this, the query translation and optimization procedure 
must look for patterns in the queries that match a template. 
Whenever it finds a match, it replaces the pattern with a 
temporary relation that represents the results of the optimized 
template. For each template found, a call to the subroutine 
corresponding to the template is generated in the code that 
will eventually be executed for the query. We call this code the 
query strategy table and store it in the data dictionary as well. 

The process of looking for more templates is continued 
until either the query is reduced to a temporary relation or 
there are no more templates to be found. In the first case, the 



234 National Computer Conference, 1983 

query strategy table contains all of the subroutine calls for 
execution of the query. In the second case, a one-by-one 
translation of the unmatched commands left in the query must 
also be integrated into the query strategy table. We describe 
how we define templates in our optimization scheme more 
fully in the next section. 

To facilitate the template recognition phase of the optimi
zation at compile time, the relational command list is trans
formed into a tree, called query tree. A query tree is a binary 
tree in which the nodes represent base and temporary re
lations and unary and binary operations on them. Examples of 
unary operations are SELECT, PROJECT, and UPDATE 
and examples of binary operations are JOIN, UNION, and 
INTERSECT. Figure 2 shows the query tree for the example 
query given above. In this figure DEPT and STUDENT are 
restricted to produce temporary relations T1 and T2, re
spectively. A JOIN of the two temporary relations T1 and T2 
produces the results in RESULT. 

LOCAL OPTIMIZATION 

Our optimization approach emphasizes the matching of pre
defined patterns that can be processed as a unit on a 
CODASYL database. To illustrate this, we have defined a set 
of templates shown in Figures 3 to 5. The smallest of these 
templates consists of three nodes: two unary operations on R1 
and R2 that are in a set and one binary operation on the 
results of the unary operations. In Figure 4, the only binary 
operations now specified for the templates are JOINs over the 
attributes that define sets. In this template, R1 is an owner/ 
member of R2, which in turn is an owner/member of R3. 
Figure 5 shows the largest template defined. Larger and more 
complex templates can be defined. By increasing the number 
of templates defined on the local databases, a more thorough 
optimization can be done. However, the price of adding more 
templates is the additional storage cost of the patterns and the 
cost of matching these patterns to the query tree. We believe 
that a relatively small number of patterns will capture a high 
percentage of the optimization potential of query trees. 

The code that executes a general template of n record types 
has the form: 

STUDENT DEPT 

T3 

Figure 2-STUDE~'T-DEPARTMENT query tree 

For each r1 in R1 where PI (r1) 
Get owner/member from R2 

For each r2 in R2 where PI (r2) 
Get owner/member from R3 

end for. 
end for. 

b (r1, r2 ... rn) 
write (results) 

Some Ri's have selection predicates, Pi, whose semantics can 
help access the Ri in an optimal way if Ri has a CALC key or 
is indexed. It is worthwhile to exploit the semantics of Pi in 
order to avoid unnecessary set walking. This is especially im
portant in the case of R1 which is at the topmost level in the 
program and is, therefore, an entry point into the whole 
linked structure. The algorithm to determine the best avail
able access path to r1 of R1 is as follows: 

1. If the CODASYL schema information gives the access 
mode of R1 as CALC or INDEX and if the CALC key 
is a nonexistentially qualified attribute, ai, in PI, then 
determine whether R1 is accessible using the CALC key 
or index. 13 If R1 is accessible using the CALC key or 
index, then store this information in an access strategy 
structure for R1 for use at execution time. 

R2 Rl 

J Rl 

S orne Set 

'v 
R2 

A 3-Node Template 
Bachman Representation 
of Relationship Between 
Rl and R2. 

Legend: 
S Select 
J Join 

Ui Unary Operation 
Bi Binary Operation 
Ri Record type/Relation 
Ti Temporary Results 

Figure 3-3-node example 



Local Query Translation and Optimization 235 

R2 R3 Rl R2 

5-Node Templates 

Rl 

Some Set 

Some Set 

Bachman Diagram of the Rl_R2_R3 Relationship 

Figure 4--5-node example 

2. Else, if the access mode of Rl is the VIA SET mode and 
if the CALC key or index of an owner of RI is also a 
nonexistentially qualified attribute, ai, in PI, then deter
mine, as in step 1, if the owner of RI is accessible using 
the CALC key or index. If true, then store this informa
tion concerning RI's owner in a strategy table for RI. 
The rI's will be located at execution time by first hashing 
or indexing to the owner and then retrieving the d's. 

3. Else, each rl must be retrieved by sequential access 
across the realms where RI resides. 

An algorithm for pattern matching is used to match subtrees 
of the query tree against the predefined templates. In version 

o of DDTS, we have employed a finite state automaton to 
recognize these optimizable subtrees. 15 The algorithm to gen
erate an optimized query execution strategy is as follows: 

1. Use the finite state automaton to match the largest pos
sible pattern contained in the query tree. 

2. Generate a call to the appropriate precompiled routine 
that processes this pattern and store that call in the query 
strategy table. The input parameters are RI ... Rn of 
the pattern plus the Pi's. 

3. Replace the recognized pattern with a dummy node 
(i.e., a SELECT ALL node on resulting temporary rela
tion). 



236 National Computer Conference, 1983 

R3 R2 

~ ~ 

7-Node Templates 

Bachman Diagram of Rl_R2_R3_R4 Relationship 

Figure 5-7-node example 

4. Repeat steps 1 to 4 on the reduced tree until no more 
patterns can be matched. 

5. Step through the remaining query tree node by node and 
translate each relational operation into an operation on 
the network database. 11 These operations are integrated 
into the code that calls the predefined routines that pro
cess the patterns. 

IMPLEMENTATION 

We mentioned earlier that the extended relational model of 
data is used to describe both the global representation sche
mas and the local representation schemas. Tuples of relations 
in these schemas are uniquely identified by system-assigned 
values in surrogate attributes. These surrogate keys also de-



fine the CODASYL sets of the local internal schema in 
DDTS. During the translation of groups of user queries to 
their equivalent relational algebra operations, we found that 
approximately 95 percent of the JOIN operations are over 
these surrogate keys. This is because the query language at the 
external schema level in DDTS is a graph-oriented language, 
GORDAS. 4 Data selection in GORDAS is influenced by the 
dependencies among entities. An example will illustrate the 
processing of a transaction or subpart of a transaction in 
DDTS. 

A school library maintains records of overdue books in the 
following way: Students are grouped according to their de
partments; each student's overdue collections are recorded 
against his or her name. This information is modeled by using 
the extended relational schema as the conceptual model. The 
local database is, however, a CODASYL network database. 
Queries are expressed in relational algebra and must be trans
lated and optimized to operate on the database. Here we 
process a user request to find and list all overdue books (along 
with the names of the defaulting students) held by graduating 
seniors (i.e., SEMESTER = 8) in the computer science 
department. 

The conceptual schema is given below. Note that DEPT#, 
S#, and B# are the surrogate attributes of DEPARTMENT, 
STUDENT, and OD-BOOKS relations, respectively. 

DEPARTMENT (DEPT#, DEPTNAME, DEPTHEAD) 
STUDENT (S#, SNAME, DEPT#, SEMESTER) 
OD-BOOKS (B#, S#, BNAME) 

The transaction in SEQUEL-like form would be: 

Tl ~ Select DEPARTMENT where DEPTNAME 
= "Computer Science". 

T2~Select STUDENT where SEMESTER = 8. 
T3 ~Join Tl and T2 over DEPT#. 
T4~Join OD-BOOKS and T3 over S#. 
T5 ~ Project T4 over SNAME, BNAME. 

Figure 6 shows the query tree for this user request. Note 
that the initial selection on OD-BOOKS is a trivial SELECT 
ALL operation, thus, no temporary needs to be formed. Fig
ure 7 is a Bachman diagram of the CODASYL version of the 
local internal schema. Up to the final PROJECT operation 
the query matches the template found in Figure 4. The pattern 
can be optimized as a unit. Let us assume that the DEPART
MENT record type is calced on DEPTNAME and that the 
other record types have the VIA SET location mode. In addi
tion we assume the following functions. Function "concat" 
concatenates records. Function "retain" retains only the 
named fields and therefore is equivalent to the relational 
project. Function "write" is self-explanatory. The functions 
"geLfirSLmember" and "geLnexLmember" return the first 
record occurrence and subsequent record occurrences, re
spectively. The "geLfirst" function is used to retrieve the 
DEPARTMENT record(s) and returns them either by se
quential scan or by using the CALC or index keys. 

Local Query Translation and Optimization 237 

DEPARTMENT STUDENT 

Figure 6-Example query tree 

The optimized query strategy is generated as follows: 

rl = geLfirst (DEPARTMENT) 
while (rl exists) do 

if (rl.DEP1NAME = "Computer Science") then 
r2 = geLfirSLmember (STUDENT) 
while (r2 exists) do 

if (r2.SEMESTER = 8) then 
r3 = geLfirsLmember (OD-BOOKS) 
while (r3 exists) do 

TEMP = concat(rl,r2,r3) 
TEMP = retain(BNAME, 

SNAME). 
write (TEMP) 
r3 = geLnexLmember 

(OD-BOOKS) 
end while 

end if 
r2 = geLnexLmember (STUDENT) 

end while 
end if 
rl = geLnexLmember (DEPARTMENT) 

end while 

PERFORMANCE ANALYSIS 

We will analyze the effectiveness of the local optimization 
techniques described in this paper by monitoring the per
formance of DDTS. We have designed a detailed study where
in two parameters will be varied. The local optimization can 



238 National Computer Conference, 1983 

DEPARTMENT 

DEPARTMENT_STUDENT set 

STUDENT BOOK set 

Figure 7-A Bachman diagram of the relationship between 
DEPARTMENT-STUDENT-BOOKS 

be turned on and off by a software switch at each DBMS in the 
system. If no local optimization is performed, then a straight
forward relational operation to network operation( s) trans
lation will be performed. The second parameter will be the 
selection of a query stream to run on the system. By defining 
different query streams as to their primary processing pur
pose, we will be able to measure the effect of local opti
mization on retrieval intensive queries, update intensive quer
ies, insertion/delete queries, and various query mixes. The 
results of this study will provide valuable information for im
proving future versions of the local translation and opti
mization module. 

SUMMARY AND FUTURE EXTENSIONS 

We have described a general method of translating and opti
mizing a database query, expressed in relational algebra, to 
network DML commands. Our optimization approach rapidly 
recognizes the query access patterns that are potentially bene
ficial for optimization. This is in contrast to other proposed 
schemes that translate each individual relational command 
without regard to the interrelationship of the commands and 
the variables used in these commands. The algorithm has 
been implemented as the local query optimization and trans
lation of Honeywell's distributed database testbed system, 
DDTS. 

Our future plans call for 

1. Integrating other data models and local DBMSs into 
DDTS: Our methods of translation and optimization can 
readily be extended to handle other systems with a net
work model, systems with a hierarchical data model, and 
systems based on the relational data model. Pattern 
matching and predefined access path recognition will 
remain the critical features of the methodology. 

2. Sharing local optimization information on the network: 
Data access paths may be reorganized and enhanced 
(e.g., by adding new indexes) at a local DBMS. This 
information should be broadcast on the network. The 
nodes that handle the distributed query optimization can 
then send subqueries to the most effective nodes for 
local translation and optimization. 

3. Designing better methods of handling procedural con
straints in queries: Pattern matching is difficult when 
decision structures are included in a query. In the third 
section, we proposed a simple, but less than satisfactory, 
method of dealing with this problem. Any pattern that 
could not be directly matched was translated operation 
by operation for processing in the local DBMS. We are 
studying ways to make pattern matching more general in 
future versions of DDTS. 

4. Using a more powerful pattern recognition algorithm to 
match patterns: The patterns can be matched using a 
recursive procedure that will recognize any pattern of 
any complexity. So, in the future, such a recursive algo
rithm will replace the simple finite state automaton we 
have used. This means that the pattern recognition algo
rithm will also generate code for processing any pattern 
recognized. 

ACKNOWLEDGMENTS 

This work was supported in part by the National Science 
Foundation under Grant #ECS-8007683. 

REFERENCES 

1. Tsichritzis, D., and A. Klug (eds.). "The ANSIIX3ISPARC DBMS Frame
work Report of the Study Group on Data Base Management Systems." 
AFIPS Press, Montvale, N.J.: AFIPS Press, 1977. 

2. Devor, C., and J. Weeldreyer. "DDTS: A Testbed for Distributed Data
base Research." Technical Report HR-80-268, Honeywell CCSC, Bloom
ington, Minnesota, August 1980. 

3. Wong, E. "The Design of Representation Schemas." Technical Report 
HR-80-265, Honeywell CCSC, Bloomington, Minnesota, July 1980. 

4. Elmasri, R. "GORDAS: A Data Definition, Query and Update Language 
for the Entity-Category-Relationship Model of Data." Technical Report 
HR-81-250, Honeywell CCSC, Bloomington, Minnesota, January 1981. 

5. Hevner, A. "Transaction Optimization Techniques in a Distributed Data
base System." Technical Report HR-81-259, Honeywell CCSC, Bloom
ington, Minnesota, June 1981. 

6. Devor, C. "Experience with Distributed System Design in DDTS." Pro
ceedings of IEEE Third International Conference on Distributed Computing 
Systems, Fort Lauderdale, Florida, October 1982. 

7. Elmasri, R., Devor, c., and Rahimi, S. "Notes on DDTS: An Apparatus 
for Experimental Research in Distributed Database Systems." ACM SIG
MOD Record, July 1981. 

8. Codd, E. "Extending the Relational Model to Capture More Meaning." 
ACM Transactions on Database Systems, Volume 4, Number 4, December 
1979, pp. 397-434. 

9. Dayal, U. and N. Goodman. "Query Optimization for CODASYL Data
base Systems." Proceedings of the International Conference on the Manage
ment of Data, ACM SIGMOD 1982, Orlando, Florida, pp. 138-150. 

10. Honeywell Information Systems. Integrated Data Store (IDS) Reference 
Manual, Wellesley, Massachusetts, 1972. 

11. Vassiliou, Y., and F. Lochovsky. "DBMS Transaction Translation." Pro
ceedings of IEEE COi'ytPSAC '80, Chicago, 1980, pp. 89-96. 



12. Zaniolo, C. "Design of Relational Views Over Network Schemas," Pro
ceedings of the International Conference on the Management of Data, ACM 
SIGMOD '79, Boston, June 1979. 

13. Astrahan, M., and D. Chamberlain. "Implementation of a Structured En
glish Query Language." CACM, Volume 18, Number 10,1975. 

Local Query Translation and Optimization 239 

14. Committee on Data Systems Languages. CODASYL Data Base Task 
Group Revised Report, ACM, 1978. 

15. Hoffman, C., and J. O'Donnell. "Pattern Matching in Trees," JACM, Vol. 
29, No.1, January 1982. 





Progress towards database management standards 

by DONALD R. DEUTSCH 
General Electric Information Services Co. 
Nashville, Tennessee 

ABSTRACT 

The first proposals for database management standards appeared in the late 1960s. 
Work began on a U.S. national standard in 1978. Today there are no domestic or 
international database management standards, although organizations throughout 
the world are working toward this goal. This paper describes these various or
ganizations and the current status of their work. It outlines recent changes in the 
structure and scope of American database management standardization activities 
that have substantially improved the outlook for timely results. 

241 





INTRODUCTION 

Information processing professionals have been anticipating 
database management standards for over a decade. In the late 
1960s and early 1970s, a flurry of reports surveyed and ana
lyzed features of then extant database management systems 
(DBMS), detailed requirements for future DBMS products, 
and proposed specific languages for describing and manipu
lating databases.1

, 2, 3, 4 While the Conference on Data Systems 
Languages (CODASYL) candidate for a standard database 
management language interface was evolving, the next decade 
saw a proliferation of DBMS approaches, products, and appli
cations. This increasing diversity and pervasiveness of data
base management software motivated renewed interest in 
standard approaches for database management. 5 

Today, there are no domestic or international database 
management standards. Work that began in 1978 on the first 
American database management standard is still ongoing; but 
recent changes in the way DBMS standards are being devel
oped, in their scope and in their relationships with other stan
dards, have substantially improved the outlook for database 
management standardization. This paper describes the cur= 
rent state of DBMS standardization and updates a 1980 pub
lication describing the various organizations addressing 
DBMS standards. 6 

STANDARDIZATION BODIES 

Standards for database management software, like those for 
other information processing components, are developed in a 
vast world-wide environment that includes thousands of indi
viduals working within many organizations. The following 
paragraphs briefly describe the groups and committees most 
instrumental in developing database management standards 
today and the current status of their work. A more complete 
discussion of how EDP standards of all types are developed 
appears in Prigge.7 

International Standards Organizations 

The International Standards Organization (ISO) develops 
standards to facilitate the international exchange of goods and 
services and to promote intellectual, scientific, technological, 
and economic cooperation. International standards are in
creasingly essential for world-wide trade; in the absence of 
international standards, differing national technical require
ments rival trade tariffs as barriers to international commerce. 
ISO member bodies are responsible for standardization in 
their respective countries; for instance, the United States is 

Progress Towards Database Management Standards 243 

represented by the American National Standards Institute 
(ANSI). ISO work is carried out in technical committees com
posed of interested member bodies with one member body 
serving as secretariat. The United States holds the secretariat 
for ISO technical committee TC 97-Computers and Informa
tion Processing. 

Three groups working within the SC 5 Programming Lan
guages subcommittee of TC 97 are currently addressing data
base management issues. The Conceptual Schema Working 
Group, WG 3, issued a report on concepts and terminology in 
April 1982.8 The DBMS Coordination Working Group is 
charged with evaluating, planning, and coordinating future 
TC 97 efforts in the area of database management. Finally, an 
international database experts group was convened in Decem
ber 1982 to advise the ANSI X3H2 Database Committee on 
international standardization issues. In addition to these three 
bodies primarily concerned with database management, ex
perts groups for COBOL and FORTRAN advise their ANSI 
counterparts on the development of international standards, 
including facilities for using future ISO database language 
standards. 

National Organizations 

To participate properly in international standardization ac
tivities and to develop consensus domestic standards, national 
bodies must provide mechanisms for coordinating diverse in
terests within their respective countries. Although the basic 
responsibilities of national standardization bodies are similar 
from country to country, their organizational structures and 
levels of participation for government, industrial, and con
sumer interests vary widely. Three organizations frequently 
are associated with database management standardization in 
the United States; each has a distinct role in developing 
DBMS standards. 

CODASYL 

The Conference on Data Systems Languages (CODASYL) 
is dedicated to the development of computer languages inde
pendent of specific hardware characteristics. Participation in 
CODASYL committees is not limited by nationality, but 
CODASYL's COBOL and network database management 
specifications have been the basis of major standardization 
efforts within the United States. CODASYL, a developmen
tal body that produces language specifications, is not directly 
involved in establishing standards, Each CODASYL commit
tee periodically publishes the results of its language devel
opment efforts in a Journal of Development (lOD). Other 



244 National Computer Conference, 1983 

organizations can use JOD specifications as a basis for imple
mentation and standardization efforts. 

CODASYL bodies with database management responsi
bilities include the Data Description Language Committee 
(DDLC), the COBOL committee, and the FORTRAN Data
base Language Committee (FDBLC). DDLC and COBOL 
last published their JOD's in 1981. Neither group has actively 
addressed database management standardization issues in re
cent months. FDBLC published its second JOD in January 
1980; it has been dormant since. 

ANSI 

The American National Standards Institute (ANSI) is a 
federation of more than 180 organizations representing trade, 
professional, commercial, labor, and consumer interests. 
ANSI is the official representative of the United States in 
international standardization efforts, and in its capacity as 
secretariat it directs the work of many ISO technical commit
tees. The Computer and Business Equipment Manufacturers 
Association (CBEMA) holds the secretariat for the ANSI X3 
Committee on Computers and Information Processing. Work 
is carried out within X3 by standing and technical committees. 
Standing committees advise X3 on the administration, evalu
ation, allocation, and scheduling of standards projects. Tech
nical committees are charged with developing draft standards 
on assigned topics; members representing a wide range of 
organizations are selected based on their individual technical 
expertise. 

Four technical committees and an advisory body within X3 
are working on database management. They are X3H2, 
X3H4, X3J3, X3J4, and the SPARC Database Systems Study 
Group. 

X3H2. The X3H2 Database Committee is charged with 
developing American national standards (ANS) for database 
management facilities based on the network and relational 
data models, including both data definition languages and 
generic operations on DDL-defined structures. The X3H2 
network database language (NDL) specification is derived 
from the CODASYL COBOL and DDLC JOD's of January 
1978. X3H2 adopted a formal specification for SQL as its base 
document for a relational database language (RDL) standard
ization effort initiated in October 1982. Originally charged 
with developing a draft standard for a network data descrip
tion language (with access languages to be provided by the 
COBOL and FORTRAN committees), X3H2's charter was 
expanded in the past 18 months to include generic operations 
and the relational model. This broadening of scope and elim
ination of dependency on multiple technical committees 
greatly improves the prognosis for an early ANS database 
language. 

X3H4. Established in 1980, this committee is charged with 
developing an ANSI standard for an information resource 
dictionary system (IRDS). To date, X3H4 has produced a 
dynamic requirements document and a skeletal functional 
specification for an IRDS standard. It is working to evolve a 
draft proposed standard for review by X3 within the next year. 

X3J3. This committee is developing a revision for the cur
rent ANSI FORTRAN standard. The X3J3.1 Database Task 
Group, established in 1979 to consider DML and subschema 
languages for the next FORTRAN standard, has not met in 
more than two years. This recent lack of progress in the data
base area reflects X3J3's belief that it is premature to consider 
incorporation of specific database capabilities in FORTRAN. 
However, recognition of the potential impact from the incor
poration of database functionality in FORTRAN motivated 
much of the restructuring and enhancing of the language for 
the revised standard currently being developed. 

X3J4. The COBOL committee is working to revise the 
current ANSI standard; COBOL 198X will not include sub
schema and data manipulation language (DML) facilities as 
once planned. Instead, X3J4 is considering X3H2 database 
specifications for possible inclusion in future revisions of ANS 
COBOL. A newly established task group, X3J4.1, is responsi
ble for defining the COBOL syntax to interface with the 
X3H2 NDL. X3J4 will not delay release 'Of a revised standard 
until mechanisms have been defined for integrating the X3H2 
database facility into COBOL. The recent decoupling of pro
gramming language syntax from DBMS operators (now being 
defined generically by X3H2) means that interfaces to 
COBOL and other programming languages can be specified 
whenever programming language committees so desire; the 
timely availability of a database language standard is not de
pendent on their action. 

Database Systems Study Group. Acting as an advisor to the 
X3 Standards Planning and Requirements Committee 
(SPARC), the Database Systems Study Group (DBSSG) is 
charged with planning and coordinating future ANSI data
base standardization efforts. Prior to 1980, X3 was consider
ing standards for CODASYL-network database languages 
only; X3H2 was charged with developing a DDL, with X3J3 
and X3J4 responsible for defining DML and subschema lan
guages for FORTRAN and COBOL, respectively. In the past 
three years, ANSI restructured and broadened its database 
standards development effort in response to DBSSG sugges
tions. Today, ANSI is addressing relational database manage
ment as well as the CODASYL-network approach. X3 has 
clearly defined and separated responsibilities for program
ming language syntax and generic DBMS operators. A single 
committee, X3H2, has responsibility for defining both struc
ture definition languages and operations on those structures, 
while programming language committees are charged with 
defining the specific syntax for accessing databases. Finally, 
data dictionary/directory standardization is well underway 
within X3H4. 

United States Government 

The U.S. Government depends on standards for competi
tive procurement of computer hardware, software, and ser
vices. The Institute for Computer Sciences and Technology 
(lCST) of the National Bureau of Standards (NBS) develops 
federal standards and guidelines for effectively using comput
ers in the government. Federal Information Processing Stan-



dards (FIPS) cover all aspects of computer use; FIPS stan
dards and guidelines issued by NBS apply to procurement and 
management practices of federal agencies. To facilitate devel
opment of industry standards for database management sys
tems that can be applied to government problems, NBS par
ticipates along with other federal agencies in many of the 
database standardization bodies previously described. 

Other Organizations 

The European Computer Manufacturers Association 
(ECMA) is a nonprofit association of computer manufac
turers whose purpose is to develop standards for European 
data-processing systems. Over the past several years, 
ECMA's database technical committee, TC22 , has actively 
followed the work of CODASYL and ANSI, publishing con
structive critiques and enumerating incompatibilities among 
related specifications. 

The International Federation for Information Processing 
(IFIP) is not a standards development body per se, but it 
sponsors studies that can form the basis for international stan
dards. IFIP is a federation of technical societies concerned 
with information processing. More than 30 countries are rep
resented in IFIP. The American Federation of Information 
Processing Societies (AFIPS) represents the United States; 
the ACM, the IEEE, and other professional organizations are 
members of AFIPS. 

Progress Towards Database Management Standards 245 

CONCLUSION 

Although there are no existing domestic or international data
base management standards, recent changes in the structure 
and scope of American DBMS standardization activities have 
improved the prognosis for timely results. The preceding 
paragraphs briefly surveyed the international and American 
groups most often associated with DBMS standardization. 

REFERENCES 

1. CODASYL Systems Committee. A Survey of Generalized Database Man
agement Systems, Association for Computing Machinery, May 1969. 

2. CODASYL Database Task Group Report, Association for Computing Ma
chinery, April 1971. 

3. CODASYL Systems Committee. Feature Analysis of Generalized Database 
Management Systems, Association for Computing Machinery, May 1971. 

4. Sibley, Edgar H. "Standardization and Database Systems." Proceedings of 
the Third International Conference on Very Large Databases, IEEE and 
ACM, October 1977. 

5. Joint GUIDE-SHARE Database Requirements Group. Database Manage
ment System Requirements, November 1970. 

6. Deutsch, D. R., and E. K. Clemons. "DBMS Standards: Current Status and 
Future Directions." Proceedings of the Sixth International Conference on 
Very Large Databases, IEEE, ACM, and CIPS, October 1980, Long Beach, 
Cal.: IEEE, pp. 431-433. 

7. Prigge, R. D. et al. The World of EDP Standards. Blue Bell, Pa.: Sperry 
Univac, 1978. 

8. Van Grithuysen, J. J., ed. Concepts and Terminology for the Conceptual 
Schema and the Information Base. New York: ISOITC97/SC5IWG3, April 
1982. 





Command use in a relational database system 

by JOHN D. JOYCE and DAVID R. WARN 
General Motors Research Laboratories 
Warren, Michigan 

ABSTRACT 

A study of commands in a relational database system was undertaken to provide a 
basis for improving future implementations of relational techniques. The use of 
Regis (Relational General Information System), an interactive relational database 
system developed at General Motors Research Laboratories, was monitored to 
accumulate a large amount of data about distribution of command uses across a 
variety of applications developed by users with a diverse set of capabilities. Of the 
basic relational commands, it is important that searching, PROJECTION, and 
JOIN operations be efficient. However, optimizing INTERSECTION and "exclu
sive or" may not warrant the time and effort it would require. Although proportions 
of use varied, the ran kings of use of relational operations were reasonably indepen
dent of applications and the programming expertise level of the users. 

247 





INTRODUCTION 

An interactive relational system has been measured to deter
mine relative use of different kinds of commands by industrial 
users. This information was gathered to gain some insight into 
where emphasis should be placed for efficient implementation 
of future relational systems, either in hardware or software. 
Data have been acquired over a 6-month period by mon
itoring all completed sessions on one computer system. 

Descriptions of the salient characteristics of the system, the 
command language, the monitoring facilities, and the major 
applications are presented in following sections. The charac
teristics of command use will be presented by command cate
gories and by application area. 

REGIS DATABASE SYSTEM 

Regis (Relational General Information System1
) is an inter

active relational database system developed at the General 
Motors Research Laboratories. Since 1975 it has been in 
production use by many GM divisions and staffs. The system 
is designed to provide convenient, powerful, and flexible in
formation manipulation facilities for information storage, re
trieval, and analysis. All data are represented in a simple 
tabular form to provide an easily understandable and easily 
manipulated view of data. Graphical display facilities to plot 
the data and statistical functions to analyze the data are also 
incorporated in the package. 

Regis is designed for the interactive user who asks ques
tions, receives answers, and then asks further questions based 
on the answers. It is particularly well suited to applications in 
which the queries cannot be defined in advance. Regis, 
however, also provides the ability to package commands in 
parameterized command files with sufficient logic control 
commands to permit the development of sophisticated 
applications. 

HIGHLIGHTS OF THE COMMAND LANGUAGE 

Regis uses an interpreted algebraic command language. The 
command name appears as the first word of each command 
except when the results of the command are stored in a table 
different from the source table. In that case the command 
name is preceded by "table-Ilame = ". 

There are in total 66 commands. These have been grouped 
into six major categories for analysis in this paper. 

Basic Relational Commands 

Eight basic relational commands were selected as the focus 
for analysis in this paper because they correspond most closely 

Command Use in a Relational Database System 249 

to the relational operations described in the literature. 2 This 
group consists of SUBSET, PROJECTION, JOIN, JOIN
ALL, UNION, INTERSECTION, DIFFERENCE, and 
XOR. An explanation of how these commands relate to, or 
differ from, relational terminology will be given. 

The SUBSET command selects rows from a table using a 
boolean expression of column relationships to be satisfied by 
the selected rows. An extensive set of pattern-matching func
tions is provided for text columns in addition to the typical 
functions for numeric relationships. The selected rows are 
placed in a result table, which has the same form (columns) as 
the source table. The SUBSET command is sometimes re
ferred to in the literature as "selection" or "restriction." 
SUBSET is a "search" command. 

The PROJECTION command selects specified columns 
from a table. There are options for reordering of columns, 
sorting of rows and eliminating duplicate rows. 

JOIN and JOINALL combine columns from two source 
tables into a new target table where values match in specified 
columns. The resulting table will contain all columns from 
both source tables, except that the columns being matched 
occur only once. There are a number of variations in termi
nology in the literature describing various facets of the join 
capability. The Regis implementation of JOIN is usually re
ferred to as a natural join. 2 A minor extension is that the 
named columns (domains or attributes) that are being 
matched to perform the join operation in the two source ta
bles need not have the same names, although the data types 
must match. The theta-join operations (where theta can be 
any of the comparison operators =, >, <, ... ) are not sup
ported, except for =. M -way joins where M > 2 are also not 
supported directly.3 Users can, of course, repeatedly apply a 
join operator to the results of a previous "join" to simulate an 
M -way join. Neither the users nor the implementors during 
seven years of use have perceived much need for these kinds 
of additional primitive operations. M -way joins would be a 
convenience at times, however. 

A different extension of join, however, was often requested 
by users. The JOINALL command is an implementation of 
the generalized symmetric natural join as defined by Lacroix 
and Pirotte. 4 It differs from this natural join in cases where a 
match does not exist on the columns being joined; the target 
row (tuple) will be augmented by null values for the columns 
of the appropriate source table. 

DIFFERENCE, INTERSECTION, UNION, and XOR 
(exclusive or, i.e., symmetric difference) perform the normal 
set operations on two tables. The Regis implementation per
mits the comparisons to be made on the entire row (all col
umns) or on selected columns whose values are to be 
matched. UNION and XOR require both tables to have the 
same form for all columns. DIFFERENCE and INTER-



250 National Computer Conference, 1983 

SECTION always take rows from the first source table only so 
that the second source table has only to have the same data 
types for the columns whose values are to be matched. There 
can be any number or type of additional columns in the second 
source table. 

Logic Control Commands 

The logic control commands provide the ability to package 
Regis commands in a command file with optional parameters. 
The command procedures can be used to implement new 
functions or to provide a complete application system. The 
commands include conditional execution, repeated execution 
of a group of commands, parameter definition, and local vari
ables. An extensive set of built-in functions complements 
these commands and provides string manipulation, access to 
table, column, and row information, arithmetic operations, 
and so on. 

Analysis and Modification Commands 

A variety of commands are provided to analyze and modify 
tables. Table modification functions include sorting a table on 
one or more columns, performing arithmetic on columns, 
replacing particular values in a column, appending one table 
to another, and transposing a table to interchange rows and 
columns. Analysis functions are available to generate statistics 
such as minimum, maximum, average, count, sum, and stan
dard deviation for numerical columns of a table. These statis
tics can be obtained for all rows of a table or for groups of rows 
within a table where each group has equal values in one or 
more selected columns. Curves for trend prediction can be 
fitted to data using polynomial or least-squares fit. Other 
commands are available to perform multivariate regression 
analysis and to generate bivariate multiple correlation 
coefficients. 

Table and File-Handling Commands 

The table-handling commands provide the ability to create, 
delete, or rename tables or columns and to add or delete rows 
or columns. File functions include reading, writing, releasing 
and backing up files. 

Printed and Graphical-Output Commands 

A variety of output commands are provided for both 
printed and graphical formats. Printed output ranges from a 
simple listing of a table at the terminal to a completely for
matted report. Simple bar charts and plots may also be 
printed. Graphical output is produced through a tightly cou
pled interface to SIMON (a GMR-developed interactive 
graph-plotting package) and a command interface with data 
transfer by a disk file to a commercial interactive package. 
These packages can be used to produce high-quality graphs 
from data contained in Regis tables. Other output commands 

display messages to the terminal, clear the terminal display 
and control pagination of printed output. 

Miscellaneous Commands 

Other commands are provided to display debugging infor
mation about tables and files, set Regis default values, invoke 
DO-IT Menu System,S establish command synonyms, and 
terminate a Regis session. A HELP command will display the 
syntax for any command, and a NEWS command will display 
announcements for the users. An OBEY command can be 
used to issue operating system commands without leaving 
Regis. 

INSTRUMENTATION CAPABILITIES 

Monitoring capabilities had previously been incorporated in 
Regis to provide information on every Regis session.6 A I-row 
table is created to describe a session: the user ID, total com
mands, total central processing unit (cpu) time, total elapsed 
time, and so on. For every session that terminates normally, 
this table is written to a file that is periodically analyzed to 
provide a global summary of Regis use. 

For purposes of the current study, the command interpreter 
was modified to maintain an array containing the number of 
times each command is executed during a session. At the end 
of each session the array of command counts was put into a 
table and written out along with the session data. These data 
were collected for all Regis sessions on one computer over a 
6-month period. 

CHARACTERISTICS OF INTERACTIVE USAGE 

As background for the study on relational command use, 
some characteristics of the interactive sessions will be out
lined. The distribution of the durations of the on-line inter
active sessions is shown in Figure 1. There is a high proportion 

III c 
.9 
III 
III 

~ 

1000 

800 

600 

o 

787 2466 Sessions Represented By Bar Chart 

2816 Tota Sessions Recorded 

348 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Tenths of an Hour 

Figure I--Distribution of durations of interactive sessions 



of sessions in which the total duration is much shorter than 
expected. We theorize that either there are numerous short 
sessions for the purposes of updating databases with small 
amounts of data, or there are numerous requests for small 
amounts of information. 

The number of commands used per session varies greatly 
because commands are used in two basic modes. One mode is 
to key in each command at an interactive terminal for imme
diate execution. In this mode a relatively small number of 
commands are issued in an interactive session. In the second 
mode commands are executed from command files. Some 
user applications rely heavily on prepackaged command files. 
Between the two extremes, there is a fairly smooth distribu
tion. (See Figure 2.) To some extent this gives an indication of 
the degree to which ad hoc and preplanned procedures are 
used. 

USE OF BASIC RELATIONAL COMMANDS 

Use Across All Applications 

Regis applications come from a variety of areas, including 
workload scheduling, engineering tests, quality control, ma
chine failure analysis, and analysis of business operations. For 
most long-term applications, users have developed extensive 
collections of command files to handle routine database func-' 
tions and produce standard reports. In addition, two major 
functions of Regis have been implemented in command files. 
A composite analysis of all command executions will be 
presented first. 

The data in Figure 3 include all the sessions that were mon
itored beginning December 1980 through May 1981. The 
TOTALS value for the number of sessions column in Figure 
3 is the total number of sessions that were monitored; it is not 
the sum of the number-of-sessions entries tabulated for each 
command. Clearly, searching of tables (SUBSET) is the most 
heavily used relational function. PROJECTION and JOIN 
are also very important in the total of uses. UNION, DIF
FERENCE, and JOINALL are used considerably less often, 
but are still important capabilities for a number of applica
tions. Both the XOR command and the INTERSECTION 
command could reasonably be implemented as command files 
of UNION or DIFFERENCE commands. 

Relational Command Usage in Two Regis Extensions 

The next analysis focuses on relational commands used in 
providing two major extensions to Regis, the Regis Report 
Generator and the DO-IT Menu System.5 Both are imple
mented with Regis command files. For that reason, the use of 
either facility could potentially distort the interactive charac
teristics and distribution of command uses for a session, be
cause many commands are executed for each command that 
is issued by a user. 

The Regis Report Generator provides controls to format 
reports from Regis tables for printing or display at a terminal. 
This facility has proven to be very popular with users for 

Command Use in a Relational Database System 251 

2000 

o 

1595 2576 Sessions Represented By Bar Chart 

2816 Total Sessions Recorded 

351 

o 1 2 345 6 7 8 9 ~ 

Thousand Commands Per Session 

Figure 2-Distribution of number of commands per session 

preparing reports suitable for presentation or publication. 
The DO-IT Menu System provides a menu interface to almost 
all Regis commands. Instead of having to learn or remember 
the syntax of commands, users make selections from a menu. 
The capabilities of the system are evident in the choices dis
played and there is far less typing involved. A custom-menu 
facility provides the ability to create, modify, and execute 
specialized menus adapted to the needs and terminology of an 
application. 

Regis commands were used to implement these extensions 
because it took much less effort than it would to use a con
ventional programming language such as PL/I. Sessions that 
used either of these extensions were separated for analysis to 
determine whether their characteristics or the programming 
experience of the implementors would make any significant 
differences in the uses distribution of relational commands. 
User application commands may also be present in these ses
sions, but it is assumed that the two major Regis extensions 
dominate these data. 

The distribution of uses of basic relational commands for 
these two extensions is quite similar to the distribution for all 

COMMAND NUMBER NUMBER PERCENT OF 
NAME OF OF RELATIONAL 

SESSIONS COMMANDS COMMANDS 

SUBSET 1 901 182 213 72.4 
PROJECTION 1 623 38 990 15.5 
JOIN 836 18 601 7.4 
UNION 568 5 460 2.2 
DIFFERENCE 477 3 498 1.4 
JOINALL 190 2 418 1.0 
INTERSECTION 27 275 0.1 
XOR 1 1 0.0 
--------------------------------------------------
TOTALS 2816 251 456 100.0 

TOTAL NUMBER OF ALL COMMANDS FOR THESE SESSIONS = 14 094 675 

Figure 3-Basic relational commands sorted by usage 



252 National Computer Conference, 1983 

COMMAND NUMBER NUMBER PERCENT OF 
NAME OF OF RELATIONAL 

SESSIONS COMMANDS COMMANDS 

SUBSET 839 54 098 58.2 
PROJECTION 797 24 075 25.9 
JOIN 507 6 937 7.4 
UNION 472 5 327 5.7 
DIFFERENCE 356 1 827 2.0 
JOINALL 65 585 0.6 
INTERSECTION 13 140 0.2 
XOR 0 0 0.0 
--------------------------------------------------
TOTALS 843 92 989 100.0 

TOTAL NUMBER OF ALL COMMANDS FOR THESE SESSIONS = 7 214 195 

Figure 4-Sessions using DO-IT menu and report generator 

applications. The order of frequency of use of relational com
mands is identical. See Figure 4. 

Analysis of User Applications 

The next analysis includes only the sessions that did not 
have any DO-IT menu or Regis report generator commands. 
These results are shown in Figure 5. These data would seem 
to indicate that users in normal user applications do more 
searching of tables than is done in the Regis extensions and 
that fewer PROJECTION operations are done. However, 
subsequent examination of some of the major applications 
shows that there is sufficient variability in the use of relational 
commands that this conclusion would not be valid. One can 
also observe that both the JOIN and JOINALL operations 
are used much more than any of the INTERSECTION, 
UNION, or XOR operations. For these user applications, the 
latter three commands are little used. Thus, nonoptimized 
implementations of these three commands would be 
tolerable. 

Four of the largest user applications have also been sum
marized. For each application, there is a group of anywhere 
from 5 to 15 users so that no application represents the char
acteristics of any individual. Application A is an application 
run by manufacturing people who are tracking quality control 
for the manufacture of small parts. Application B is the mon-

COMMAND NUMBER NUMBER PERCENT OF 
NAME OF OF RELATIONAL 

SESSIONS COMMANDS COMMANDS 

SUBSET 1062 128 115 80.8 
PROJECTION 826 14 915 9.4 
JOIN 329 11 664 7.4 
JOINALL 125 1 833 1.2 
DIFFERENCE 121 1 671 1.0 
INTERSECTION 14 135 0.1 
UNION 96 133 0.1 
XOR 1 1 0.0 
--------------------------------------------------
TOTALS 1973 158 467 100.0 

TOTAL NUMBER OF ALL COMMANDS FOR THESE SESSIONS = 6 880 480 

Figure 5-Relationa! commands in user applications 

COMMAND 
NAME 

ALL 
APPLI
CATIONS 

% 

MENU, 
REPORT 
EXTEN
SIONS 

% 

APPLI
CATION 

A 
% 

APPLI
CATION 

B 
% 

APPLI
CATION 

C 
% 

APPLI
CATION 

D 
% 

;~~i;TION i~:i ~~:~ iti 9~:~ ~t~ ~i:~ 
~~i~N 2.2 5.7 .0 .0 .4 8.5 
DIFFERENCE 1.4 2.0 4.0 .1 1.5 2:6 
JOINALL 1.0 .6 5.0 .0 .7 .0 
INTERSECTION .1 .2 :~ :g :~ .0 

:~~----------------:~--------:~------------------------------------------
~:!~IONAL 251,456 92.989 38.594 115,948 9,959 61,492 

~~~~:-----------------------------------------------------------------
~~AL OF 14,094,675 7,214,195 401,910 950,192 1,193.309 3,328,123 

~~~~:-----------------------------------------------------------------
~:~~~N~F 2,816 843 376 421 421 932 
-------------------------------------------------------------------------

Figure 6-Proportion of relational commands by application 

itoring oftrends of failures in major automotive. assemblies i?, 
another manufacturing division. Application C IS the analYSIS 
of sales forecasts to make plans periodically for future capital, 
tooling, space, and other plant requirements ~or ~ompon.ent 
manufacturing. Application D consists of momtonng project 
schedules, computing effects on workloads when plans for 
new project target dates are shifted, and minimizing overtime 
of a variety of skilled people working on various facets of 
these projects. 

The variations in use of relational commands are portrayed 
in Figure 6. Note that the applications A, B, C, and D include 
some of the menu and report generator commands sum
marized in the second column. The four applications listed 
separately account for 41.6% of all the monitored c~mmands. 
In examining individual applications, the trend of hIgh use of 
SUBSET (searching) continues across all applications. In 
most cases, PROJECTION is the next most used operation. 
The proportion of SUBSET to PROJECTION operations 
varies considerably from one application to another. The 
JOIN operation is generally the third most popular relatio~al 
command. In the six summaries shown in Figure 6, the first 
three operations account for a low of 88.8% to a high of 
99.9% of the basic relational commands in use. Generally, the 
next three operations, UNION, DIFFERENCE, and JOIN
ALL are used rather sparingly, though enough to be an im
portant part of many applications. 

USE OF ALL COMMANDS 

Command use by categories has been summarized in Figure 7. 
Use of prepackaged command files built either by users for 
their own applications or general functions provided by the 
implementors dominates the distribution of all commands ex
ecuted. Seventy-nine percent of the commands executed are 
logic control commands, which can only be executed from 
command files. The single most used command is an IF com
mand to do conditional testing, which constitutes over 34% of 
command frequency. 

In prior studies of computer execution time resource use, 



NUMBER OF NUMBER PERCENT 
CATEGORIES OF COMMANDS COMMANDS EXECUTED EXECUTED 
---------------------------- -------- ---------- --------
BASIC RELATIONAL 8 251 456 1.8 
LOGIC CONTROL 9 11 136 528 79.0 
ANALYSIS AND MODIFICATION 15 878 935 6.2 
TABLE AND FILE HANDLING 13 758 046 5.4 
PRINTED AND GRAPHICAL OUTPUT 11 685 039 4.9 
MISCELLANEOUS 10 384 671 2.7 

--------
66 14 094 675 100.0% 

Figure 7-Summary of all commands by categories 

we observed that the logic control commands make up only a 
small percentage of the total for an application. The basic 
relational commands category and the analysis and mod
ification categories constitute the heaviest resource use. Im
pie mentors need to pay close attention to the efficiency of the 
commands in these two categories. Even though their fre
quency is low, they place a heavy load on the system. 

Although some of the database input/output (I/O) oper
ations are represented by the commands in the table and file 
handling category, most of the actual I/O is carried out direct
ly and implicitly by the operating system through virtual
memory paging operations. Data are referenced directly in 
virtual memory. This has proven to be a fast and efficient 

Command Use in a Relational Database System 253 

mechanism for accessing data, since it uses an optimized path 
through the operating system and avoids continually having to 
manage record buffers and copy data to and from buffer 
areas. This indicates why, in the case of Regis, the frequency 
of I/O commands is relatively small. One normally expects a 
database system to have vast numbers of conventional I/O 
operations, although they still might be buried inside other 
functions with explicit subroutine calls and not appear as ex
plicit I/O commands. 

REFERENCES 

1. Joyce, J. D., and N. N. Oliver, "REGIS-A Relational Information System 
with Graphics and Statistics," AFIPS Proceedings o/the National Computer 
Conference (Vol. 45), 1976, pp. 839-844. 

2. Ullman, J. D. Principles of Database Systems. Computer Science Press, 
1980, pp. 105-109. 

3. Hsiao, D. K., and M. J. Menon, "Design and Analysis of Relational Join 
Operations of a Database Computer (DBC)," Report OSU-CISRC-TR-80-
8, The Ohio State University, Columbus, Ohio, September 1980. 

4. Lacroix, M., and A. Pirotte. "Generalized Joins." ACM SIGMOD Record, 
8 (September 1976), pp. 14-15. 

5. Warn, D.R. "DO-IT: A Menu Approach to Data Management," Publica
tion GMR-3956, General Motors Research Laboratories, Warren, Michi
gan, 1982. 

6. Oliver, N. N., and J. D. Joyce. "Performance Monitor for a Relational 
Information System." ACM 1976 Proceedings of the Annual Conference, 
Houston, Texas, pp. 329-333. 





Generating requirements from enterprise analysis 

by DAVID V. KERNER 
IBM DP Professional Center 
San Francisco, California 

and 

ASHOK MALHOTRA 
IBM Research 
Yorktown Heights, New York 

ABSTRACT 

BICS is an enterprise analysis methodology based on a normative, top-down model 
of the information requirements of a corporation. This paper provides an overview 
of BICS and introduces REQGEN, an extension of the BICS methodology that 
generates definitions for the data required to manage the organization and specifi
cations for the processes required to maintain the data. 

255 





INTRODUCTION 

Most of the activity in the area of requirements for data pro
cessing applications has been in the definition of languages for 
specifying and analyzing requirements.1

,3,9 We feel that from 
an analysis of the goals and policies of an organization it 
should be possible to generate its data processing require
ments. In this paper we discuss REQGEN a system that at
tempts to do this. REQGEN (requirements generator) is an 
extension of BICS, 5 an enterprise analysis methodology based 
on a normative, top-down model of the information require
ments of a corporation. 

The paper begins by describing BICS and a language called 
EAS-E6

,7 that was used to implement the BICS methodology 
and has heavily influenced the requirements work. It then 
discusses a BICS study. Finally, in the largest section, it dis
cusses the extension of the methodology for generating re
quirements. 

BICS 

BICS (Business Information Control Study), a development 
of BIAIT, 2 is an enterprise analysis methodology that builds 
a vehicle for communicating information requirements from 
the end user to the data processing function. This is accom
plished by building an information model of the organization 
that is based on the options it selects to manage the orders it 
receives. The methodology and the model have been success
fully validated in more than 20 studies all over the world. 

Orders, in BICS terms, are requests made from outside the 
organization that the organization must respond to. The re
sponse consists of supplying a product or a service. The prod
uct may be something manufactured (such as a CPU), a re
port, or even a verbal response. For each type of order the 
organization has certain management options, such as wheth
er to produce to order or to stock, or whether the customer is 
billed or pays cash. 

After the order types have been identified, a set of ques
tions is asked about each order type to determine the manage
ment options. The answers to these questions identify the 
business functions. The business functions are (1) Payment: 
"Do you bill the customer?" (2) Delivery: "Do you keep 
records for use in processing the order?" (3) Customer pro
file: "Do you keep records, by individual customer for plan
ning purposes?" (4) Ownership: "Do you keep title to the 
ordered product after delivery?" (5) Tracking: "Do you ini
tiate service, change, or recall of a product after it has left 
your organization?" (6) Specification: "Do you create 
product/service specifications?" (7) Manufacture: "Do you 

Generating Requirements from Enterprise Analysis 257 

make the product or service?" (8) Stock finished goods: "Do 
you stock the ordered product?" 

A "Yes" answer to anyone of the questions implies a set of 
data classes that must be present in the organization for the 
particular order type. 

Next the study team takes each order type and determines 
which organizational units are actually accountable for the 
data in the data classes associated with that order type. Ac
countability has four aspects: i.e. accountability for (a) defini
tion of data, (b) content of data, (c) usage of data, and (d) 
control over access to data. 

After the relationships of organizational unit to data class 
are established, the study team maps organization problems, 
organization objectives, applications planned and installed, 
and databases planned and installed to the data classes. 

BICS AND EAS-E 

The BICS methodology described above was originally imple
mented manually. Apart from the sheer volume of data to be 
analyzed, there was also a desire to compare many organiza
tions and suborganizations. For these and other reasons, the 
BICS model was implemented in EAS-E. 

EAS-E is an application development system based on the 
entity, attribute, and set (EAS) view of system modeling. 
Webster's Unabridged Dictionary (second edition) defines an 
entity as "that which has reality and distinctness of being 
either in fact or for thought. ... " In an EAS-E representation, 
it is usually some thing (account, check, job) of the real world 
to be represented in the database. It may also be a less tan
gible thing, like a task to be performed, which we find con
venient to postulate as an entity. 

The attributes of an entity can be considered to be its prop
erties or characteristics. At any instant in time an attribute has 
at most one value; it may also be undefined. 

In EAS-E, a set is an ordered collection of zero, one, or 
more entities owned by some entity. To illustrate, each ac
count owns a set of current transactions, i.e., checks and 
deposits that have come in since the last monthly statement. 
Thus, the account for John Smith owns one such set, that for 
Mary Jones owns another such set, etc. In general, we say that 
each account owns its current transaction set. Accounts may 
also own a set of old transactions, outstanding loans, etc. 

An entity may have any number of attributes, own any 
number of sets, and belong to any number of sets. An entity 
can both own a set of a given name and belong to a set with 
the same name. 

These general facilities allow more specialized structures, 
such as trees and networks, to be expressed more or less 



258 National Computer Conference, 1983 

trivially within the general framework of entities, attributes, 
and sets. 

EAS-E requires that the system to be implemented be mod
eled in terms of the entities, attributes, and sets that describe 
its status at a point in time. The EAS-E procedural language 
and nonprocedural facilities can then be used to manipulate 
these entities, attributes, and sets in main storage and in the 
database. 

The BICS implementation consists of (1) programs that 
generate data classes from the business functions and (2) pro
grams that capture, display, and analyze the accountability 
information. 

A BICS STUDY 

A large U.S. corporation was concerned about how well its 
information systems (liS) plans were tracking the cor
poration's business plans, and furthermore how well liS re
sponded to changes in the business environment. The cor
poration's worldwide distribution headquarters was selected 
as a test. The goal was to come up with a transferable manage
ment tool that would analyze the relationship between the liS 
plans and the corporation's business plans. 

The distribution study differed from most other BICS stud
ies in that the area examined was a headquarters function and 
not an operational area. Headquarters did not move and store 
products, but did the overall planning for such activities. Nor
mally, BICS information models are related to the organiza
tional units of the entire business. This provides the analyst 
with the means to analyze information flow as data passes 
from one organizational unit to another and to identify areas 
where the data are potentially out of control. In the distribu
tion example the information models were related to the func
tions of distribution. At headquarters there was no people or 
organization involvement in the information flow, and thus 
there could be no identification of potential data management 
problems. 

The internal functions identified for distribution were distri
bution support (this included liS and engineering), plans and 
control, purchasing, domestic traffic, export, import, and 
warehousing. The external functions identified were govern
ment, corporate finance, product service, sales, manufac
turing, suppliers/vendors, and other (this included all other 
corporate functions outside the boundaries of distribution, 
such as personnel). Product service, sales, and manufacturing 
were, in BICS terms, the customers of distribution: They 
placed orders on the distribution function. 

All the orders received by distribution were either for paper 
work to support movement of products, in which case the 
report or form is the product, or for the movement of the 
products, which is a service. Some of the orders were Request 
to Export, Generate Proforma, Storage Instructions, and 
Movement Request. For each order, the eight order manage
ment questions were asked and an information model was 
built. A "Yes" answer to a question generated a set of data 
classes from the generic BICS model stored in an EAS-E 
database. 

The relationship between the information models and the 

internal and external distribution functions was now estab
lished by determining who was accountable for each aspect of 
each data class. 

Using EAS-E, we were able to deepen the information 
analysis by modeling individual distribution functions. For 
example, we expanded warehousing into four subfunctions 
and built, through order analysis, information models to show 
information flow within the warehousing function. This was 
done for several other distribution functions as well. 

To determine whether the BICS models could be used as a 
bridge between the business and liS, we took a strategic state
ment from the corporation's business plans and related it to 
the information models. Since we had earlier built relation
ships between the information models and the distribution 
functions, we were able to determine which functions were 
affected by the strategic statement. If the area of the business 
studied had installed or planned applications, we were able to 
analyze the impact of the business change on existing and 
planned software. 

The results of the study were positive. The management of 
the distribution function is carrying on the work, and we are 
now expanding BICS to enable us to generate more complete 
information processing requirements. This expansion is dis
cussed in the following section. 

GENERATING INFORMATION PROCESSING 
REQUIREMENTS 

To generate requirements, the process begins, as before, by 
identifying the types of orders received by the organization. 
The eight order-handling questions are asked for each order. 
The answers to these questions identify the business func
tions. The business functions, in tum, determine the data they 
require and the information processes required to set up and 
maintain these data. These are based on the BICS data classes 
that have been validated in several studies. 

REQGEN generates requirements on the assumption that 
the data are stored as entities in a central database. In other 
words, it generates definitions for entities, attributes, and sets 
that must be maintained; and for each process it specifies the 
operations that it performs on the EAS structures. These may 
be considered conceptual requirements-i.e., the data defini
tions can be translated into alternate-access method or data
base representations, and the processes can be implemented 
as interactive or batch programs in a conventional program
ming language. Alternately, the specifications can be con
sidered EAS-E specifications: The data can be stored in an 
EAS-E database, and the processes can be implemented as 
EAS-E programs that operate directly on EAS structures. 

REQGEN generates the entire data processing require
ments of the organization or suborganization for which the 
analysis is made. If the organization has no data processing 
facilities, all the software can be created expediently from 
the REQGEN specifications. In most cases, however, the 
organization will already have some software in place. The 
REQGEN specifications will, therefore, be used to define 
changes that must be made incrementally to existing software. 



The Data Definitions 

As mentioned above, the data required depends on the 
business functions. For example, every organization must 
maintain entities that represent EMPLOYEEs and AC
COUNTs. Organizations that select the tracking option-i.e., 
initiate service, change, or recall of the product after it leaves 
the organization-must also maintain entities that represent 
DELIVERED PRODUCTs. 

The data definitions specify attributes of each entity type 
and the mode (integer, text, etc.) of each attribute. They also 
specify the sets that the entity type owns and the sets it belongs 
to. The generic definition for entity type VENDOR is shown 
below: 

ATIRIBUTE MODE OWNS BELONGS 

NAME Text 

ADDRESS Text 

RATING Class 

OFFERINGS 

PLANNED ORDERS 

OUTSTANDING ORDERS 

PAYMENTS OUTSTANDING 

VENDORS 

COMMENT 

Product, price, qty 

Owned by product 

The mode class identifies a class of attributes. Members of 
this class are specified elsewhere. 

The organization may use these definitions as they are pro
vided by REQGEN, but it will usually want to modify them 
to some extent. Let us consider an example. REQGEN rec
ommends that the entities of type EMPLOYEE have a class 
of attributes called personal attributes, whose function is to 
store personal information about the employee. This class 
includes the attributes NAME, ADDRESS, HOME TELE
PHONE, and EMERGENCY CONTACT. A particular or
ganization may choose to add NUMBER OF CHILDREN to 
this class. Or it may choose to delete some of the attributes 
recommended by REQGEN. 

The organization also has the prerogative of changing 
names of entity types, attributes, and sets. This seemingly 
minor facility is, in fact, of great importance. The entity, 
attribute, and sets generate a representation of the orga
nization. The entities in the database represent real entities in 
the organization. Thus, it is beneficial if data can be referred 
to by familiar names-e.g., WORKER instead of EM
PLOYEE or COMPENSATION instead of SALARY. 

There are still other degrees of freedom in the data defini
tion phase. The organization can choose, for reasons of con
venience or security, to maintain some of its information 
manually. The information processes that maintain this infor
mation also become manual. A computer-based process that 
uses this information would need to have it entered, perhaps 
from a terminal. 

Two other decisions must be made at this. time: The organi
zation must decide whether it will run essentially separate 
systems for each order type, a combined system for all order 
types, or some combination. Organizations that have several 
plants must decide whether to segregate the data geographi
cally. If the various plants handle different kinds of orders, 

Generating Requirements from Enterprise Analysis 259 

these two decisions become interlinked. After the organiza
tion decides how the data must be aggregated, REQGEN 
prepares data definition files for each separate system. 

To recapitulate: On the basis of the business functions for 
each order, REQGEN recommends the data to be main
tained. The organization modifies the data according to its 
business needs and policies and decides how the data should 
be aggregated. The final data definition files can now be 
produced. After this is done, the data definitions can be trans
lated into records and fields, relations, or entities and rela
tionships, as desired; or they may be left as entities, attributes, 
and sets. 

The Processes 

There are three basic kinds of processes: processes that set 
up the data structures, processes that maintain the data struc
tures, and processes that report the current state of the 
database. 

REQGEN provides specifications for the setup processes 
and the maintenance processes. It does not provide specifica
tions for the report processes. Report processes read data 
from the database and present it, suitably formatted for man
agement action. Their timing, content, and, especially, for
mat are dependent on the individual manager and are ex
tremely variable. A query language can be used to generate 
many of these reports. If a program does have to be written, 
report programs are often the simplest programs to write. 

The few processes that set up the database are used initially, 
for example, to set up the various ACCOUNTs. Subsequently 
they are used infrequently-for example, as when a new AC
COUNT is added. Setup programs are particularly simple in 
structure. Typically, they create an entity, give values to a few 
attributes, and file it into a single set. Because of their simple 
nature, EAS-E programs to implement these processes could 
be generated by a future version of REQGEN. 

The majority of the process specifications generated by 
REQGEN are for maintenance processes. For each process 
REQGEN specifies generic operations to be performed on 
the EAS structures-i.e., the entities that must be created or 
destroyed or filed into or removed from sets, and the attribute 
values that must be updated. In most cases it cannot specify 
the algorithm to carry out the updating, since this will depend 
on the nature of the organization and its style of management. 

For example, every organization that manufactures the 
product must have a process to produce a production plan. 
This process gives values to attributes that represent the pro
duction of each product by month, quarter, or other appropri
ate period. The production planning process must also give 
values to these attributes for every component of each prod
uct. Some of these components may, however, be purchased 
instead of being manufactured. If the component is pur
chased, the process must give values to attributes that specify 
the vendor, the quantity, etc. For each process REQGEN 
provides a text description similar to the one above. It also 
provides a list of the entity type it creates, the entity types it 
destroys, the attributes it reads and writes, and the sets it files 
and removes from. 



260 National Computer Conference, 1983 

REQGEN specifies that the production planning process 
is necessary if manufacturing is the type of work being done. 
It also specifies the entities, attributes, and sets that it works 
with. It does not insist that the process be carried out on the 
computer; and it does not specify the algorithm that must 
be used. A job shop may use a bill of materials explosion, 
whereas an oil refinery may use a linear programming 
approach. 

Each process is triggered by an event-an external one, 
such as the receipt of an order or a payment, or an internal 
one, such as a change in product formulation or the gener
ation of a facilities plan for the next year. Some of these events 
are periodic-quarterly preparation of financial statements, 
annual physical inventory of facilities, etc. 

When an event occurs, the programs that implement the 
appropriate processes must be invoked. This is generally con
trolled manually, and manual procedures must be put in place 
to do so. REQGEN specifies the events that trigger each 
process and the organizational unit responsible for it, but it 
does not address the installation management procedures. 

SUMMARY 

Starting from an identification of the types of orders received 
by the organization, REQGEN generates data definitions in 
terms of entity, attribute, and set structures. It also generates 
specifications for the processes required to maintain the data 
and lists the events that trigger each process. 

FURTHER WORK 

The next step is to validate and tune REQGEN in real orga
nizations. In a more theoretical direction, we would like to 
understand the causes underlying the variation in process al
gorithms and attempt to specify them insofar as possible. We 
know that one cause of variation is technology, and we feel 

that we can specify some of the algorithms for some of the 
technologies. If the algorithms can be specified, then it is not 
very difficult to generate the actual programs. There are 
precedents in this direction. Markowitz8 describes a job shop 
simulation generator that captures most of the complexity 
(excluding accounting) of activity scheduling in a job shop. 
The IBM Application Customizer4 also went a long way in 
generating commercial programs for specific industries. Our 
ultimate goal is to prepare a complete package of manage
ment software based on a description of the goals and policies 
of the organization. REQGEN is a first step in this direction. 

REFERENCES 

1. Berthaud, M. "Towards a Formal Language for Functional Specifications." 
In Proceedings of IFIP Working Conference on Constructing Quality Soft
ware. New York: North Holland, 1977, pp. 379-396. 

2. Carlson, W. M. "Business Information Analysis and Integration Technique 
(BIAIT)-The New Horizon." Data Base, 10 (1979), 3-9. 

3. Teichroew, D., & E. A. Hersey. "PSUPSA: A Computer-aided Technique 
for Structured Documentation and Analysis of Computer-based Information 
Systems." IEEE Transactions of Software Engineering, SE-3 (1977), 41-48. 

4. IBM Corporation. Hardgoods Distributers Management Accounting Sys
tem. ZR30-OO59-0. Available from General Systems Division, P.O. Box 
2150, Atlanta, Ga. 1975. 

5. Kerner, D. V. "Introduction to Business Information Control Study Meth
odology (BICS)." Paper presented at Symposium on the Economics of Infor
mation Processing, IBM Systems Research Institute, New York, December 
15-19, 1980. Also in The Economics of Information Processing, vol. 1, 
Management Perspectives, New York: John Wiley, 1982, pp. 71-83. 

6. Malhotra, A., H. M. Markowitz, and D. P. Pazel. "EAS-E: An Integrated 
Approach to Application Development." ACM Transactions on Database 
Systems. Accepted for publication. Also available as RC 8457, IBM T. J. 
Watson Research Center, Yorktown Heights, N.Y. 10598, 1982. 

7. Malhotra, A., H. M. Markowitz, and D. P. Pazel. "The EAS-E Program
ming Language." RC 8935, available from IBM T. J. Watson Research 
Center, Yorktown Heights, N.Y. 10598, 1981. 

8. Markowitz, H. M. "A Oassification of Job Shop Simulation Models." RC 
9301, available from IBM T. J. Watson Research Center, Yorktown Heights, 
N.Y. 10598, 1982. 

9. Zilles, S. N., and P. G. Hebalker. "Graphical Representation and Analysis 
of Information Systems Design." Data Base, 11 (1980), 93-98. 



Developing a long-range information architecture 

by JAMES C. WETHERBE and GORDON B. DAVIS 
University of Minnesota 
Minneapolis, Minnesota 

ABSTRACT 

A methodology is presented for eliciting enterprise information requirements and 
developing a long-range information architecture. The methodology is based on a 
combination of business system planning, critical success factors, and ends/means 
analysis. The methodology is independent of organizational structure, personnel, 
and hardware and software; and it has been successfully implemented in a variety 
of organizational settings. 

261 





INTRODUCTION 

Few argue that good planning is not difficult. Planning for 
organizationwide management information systems can be 
overwhelming. The Management Information Systems (MIS) 
Research Center at the University of Minnesota conducts an 
annual survey of the major corporations that sponsor it to 
determine the key issues that concern MIS executives. MIS 
planning is consistently among the top three issues. 

Accordingly, the MIS Research Center conducts ongoing 
research in MIS planning. In earlier research conducted by 
the authors, a stage model of MIS planning was developed 
that prescribes the major steps of MIS planning and provides 
a framework for the more popular planning methodolo
gies. 1

,2,3 Figure 1 is an illustration of the model that catego
rizes well-known planning techniques in the stages of the 
model. 

In this paper a brief overview of the planning model is 
provided. The second stage of the planning model, organiza
tional information requirements analysis, is further examined; 
and techniques for co,nducting it are described. An approach 
to developing a long-range information architecture from th~ 
requirements is then presented. 

OVERVIEW OF MIS PLANNING MODEL 

The major problems of MIS planning can be defined as 
follows: 

1. Alignment of MIS strategy with organizational strategy 
2. Developing an information architecture 
3. Resource allocation 

Generi c 
Activity 

STRATEGIC 
PLANNING 

"-
", 

· Developing a Long-Range Information Architecture 263 

4. Selecting appropriate methodologies for the previous 
three steps 

These problems are addressed directly by the MIS planning 
model. The first three problems correspond to the three 
stages of the model. Given the framework of the model, the 
set of appropriate methodologies is specified for each stage; 
this process aids in selecting a methodology for each stage. 

Practical guidance for MIS planning can be gained from the 
model. It can help in recognizing the nature of the MIS plan
ning problems and in selecting the appropriate stage of plan
ning. Too often, however, these processes are not carried out. 
For example, some organizations may view their MIS func
tions as making minimal contributions to organizational ob
jectives. In seeking to resolve this problem, some organiza
tions have installed a chargeout system (resource allocation 
planning) to make MIS pay its own way. Other organizations 
have conducted a business systems planning (BSP: a type of 
organization information requirements analysis planning) ex
ercise to resolve the same problem. Though these activities 
may result in improved MIS services, the MIS planning model 
suggests they are probably not the appropriate methods in this 
situation. If the MIS effort is not responsive to the organiza
tion, the three-stage MIS planning model indicates that a 
strategically oriented planning effort should precede organi
zational information requirements planning and resource allo
cation planning exercises. 

SELECTING A PLANNING METHODOLOGY 

The three-stage planning model provides considerable insight 
into MIS planning issues and reduces confusion among com-

ORGANIZATIOIlAL 
INFORMATION 

"-
RESOURCE 

REQUIREMENTS ", 

ALLOCATION 
ANALYSIS 

Alternative { Strategy Set Transformation 
Methodologies 

Business Systems Planning (BSP) 

Critical Success Factors (CSF) 

Ends/Means Analysis (E/M) 

Chargeout 

Return on Investment (ROI) 

Zero-Based Budgeting (ZBB) 

Breakeven Analysis 

Steeri ng Corrmittee Ranking 

Figure 1-Alternative MIS planning methodologies classified by stage of MIS planning 



264 National Computer Conference, 1983 

peting planning methodologies. However, the planning model 
does not indicate which of several methodologies categorized 
in a planning stage should be used for that planning stage. 

Almost no research has evaluated the comparative advan
tages of one technique or combination of techniques. The 
methodology for conducting the organizational information 
requirements analysis (OIRA) stage presented in this paper is 
based on comparative research involving three methods of 
enterprise requirements analysis: BSP, 5 critical success factors 
(CSF),6 and ends/means analysis. 2 

CONDUCfING AN OIRA 

Figure 2 portrays the model for conducting an OIRA. To 
make the methodology concrete, the results of a case study 
are used to illustrate documents generated during the study. 
The company agreeing to share the results of an OIRA study 
is EPIC Realty Services Inc., lessors of single-family dwell
ings. Headquartered in Washington, D.C., with offices in 
major cities throughout the United States, the company man
ages over 6,000 homes. 

Define Underlying Organizational Subsystems 

The first phase of the OIRA is to define underlying organi
zational subsystems. An organizational subsystem is a funda
mental organizational activity necessary to the operation of 
the organization. For EPIC Realty Services Inc., the major 
subsystems are as follows: 

Define 
Underlying 
Organizational 
Subsystems 

Develop Manager 
2 by 

Subsystem Matrix 

3 

Define and Evaluate 
Information Requirements 
for Organizational 
Subsystems 

4 

Define Major Categories 
of Information and ~·1ap 
Interview Results into 
Them 

Develop Information 
5 Categories by 

Subsystem Matrix 

Figure 2--Organizational information requirements pianning modei 

1. Credit 
2. Leasing 
3. Maintenance 
4. Evictions/delinquency 
5. Marketing 
6. Advertising 
7. Accounts receivable/collections 
8. Corporate accounting 
9. Market and product analysis 

10. Client reporting 
11. Appraisal 
12. Insurance 
13. Sales 
14. Personnel/administration 
15. Inspections 
16. Audit 
17. Inventory 
18. Legal 

These subsystems are obtained by an iterative process of 
discussing all organizational activities and defining them as 
belonging to broad categories of subsystems. As new activities 
are considered, they should either be placed in categories 
previously defined or in a newly created category. 

Develop Subsystem/Manager Matrix 

Once the underlying organizational subsystems are defined, 
the next phase of the OIRA planning exercise is to relate 
specific managers to organizational subsystems. The resulting 
document, called a manager subsystem matrix, is illustrated in 
Figure 3. Note that the subsystems across the top of the matrix 
are the same as those identified in Phase 1. 

The matrix is developed by reviewing the major decision 
responsibilities of each middle to top manager and relating the 
decision making to specific subsystems. The matrix docu
ments the managers having major decision-making responsi
bility for each specific subsystem. Note that personnel 
changes or organizational changes can easily be reflected in an 
adjusted matrix. 

Define and Evaluate Information Requirements for 
Organizational Subsystems 

This phase of the planning model obtains the information 
requirements of each organizational subsystem by group in
terviews of managers having major decision-making responsi
bility for each subsystem. Merely asking managers to define 
their information requirements is frequently not satisfactory. 
The reasons for this are the limits of human beings as informa
tion processors. 4 Because of these limitations it is necessary to 
provide some structure to aid the managers in thinking about 
information requirements. Various methods for eliciting in
formation requirements are basically different structures for 
aiding managers in the process of formulating requirements. 

Research has been conducted to evaluate three approaches 
to structuring the set of questions for information require
ments interviews. Questions based on three methods-BSP, 



Developing a Long-Range Information Architecture 265 

ORGANIZATIONAL SUBSYSTEM 

s:: 
0 ..... 

0: ~ 

-~ s:: s:: _ttl 0: 
III s:: 0 >, 0: ..... 0) r- r- s- O) s:: 0: 
s:: 0) s- s:: III U ttl O)~ o<:S III ~ ..... s:: 
0:::1 ~ 0 ~ ~ 

s:: III s:: III +J ..... ttl~ 
~~ ~ ..... 0" U +J ttl ..... s:: ..... +JU III s- s:: ..... ~s:: 0) s:: 0) s- s- +J ItS 0 s:: r- 0) :::I>, 0:::1 s:: s-

"'0 u· ... 0. 0) ~ 0) :::I 0) ..... s- Ill· .... ttl ~"'Or- 0.0 0) 0 
0:: 0) III > s- > III r- "'0 0. s- E en S-Ottl s-u ..... c.. - s- >0) s:: s:: ttl "'0 s:: ttl :::I 0. 0)"'0 0) ttl s- s:: OU r-O) 

ct: U I.J..JO ..... ..... ::E ct: ..... V') ct: ct: c...ct: ....J ::Ec...ct: uct: U 0:: 

Managers 

Manager 1 X X 

Manager 2 X X 

Manager 3 X X X X 

Manager 4 X X 

• 
• 
• 

• 
• 

Manager n x X x X 

Figure 3-Manager-by-subsystem matrix 

CSF, and ends/means analysis-were tested. The conclusions 
were interesting: 

1. Different managers liked different methods. No one 
method was dominant. 

2. The methods were additive. Using more than one ap
proach (in any order), the first method obtains the most 
requirements, but each additional method brings out 
additional requirements. 

3. Since it is not possible (at this time) to know in advance 
the method that the manager will favor, the most effi
cient procedure is to use all three methods. 

4. The order of use of the three techniques is in order of 
cognitive difficulty (the strain it puts on the managers' 
thought processes) and comprehensiveness. 

The interview method is therefore a structured interview 
using questions based on BSP, CSF, and ends/means analysis. 
Interviews typically take 2 to 4 hours per subsystem. The 
maintenance subsystem at EPIC illustrates the steps of the 
structured interview. 

Statement of purpose 

The first step of the interview is to get the managers to agree 
on a statement of purpose for the subsystem under consider
ation. For example, the purpose of maintenance was defined 
as follows: Maintain rental property at satisfactory availability 
level with minimal cost and process vendor payments. 

Subsystem mapping 

The second step of the group interview is to define the 
relationship of the subsystem to all other subsystems internal 
to the organization or entities external to the organization. It 
is constructed by drawing the subsystems under consideration 
in the center of a chalkboard or flip chart pad and around 
them drawing the subsystems and entities with which they 
interact. Next, directional arrows are labeled and used to 
define the types of transactions or information flow that oc
curs (Figure 4). 

The subsystem mapping serves as an excellent tool for mak
ing the managers aware of the full scope of the subsystem 
under consideration. Most interviews of this nature provide 
considerable enlightenment to the managers involved, since 
they are usually not aware of the array of activities that occur 
with subsystems they are familiar with. 

BSP; CSF; ends/means questionnaires 

After the subsystem mapping is complete, information re
quirements are elicited by using questions based on BSP, 
CSF, and ends/means analysis. The specific questions and the 
way they are asked are a key issue. 

After interviewing several hundred managers in different 
organizations, we have found that the obvious question
What information do you need?-is the wrong question. It is 
the less obvious but properly asked indirect questions that do 
the job. For example, a good series of questions to ask is as 



266 National Computer Conference, 1983 

AlP MAINTENANCE 
Maintain rental property to satisfactory availability level with minimal cost 
and to process vendor payments. 

ORIGINAL 
BUILDER 

C_) 
I I 

c:J 
Other organiza
tional subsystems 

Entities external 
to the organization 

CLIENT 
REPORTING 

~ 
.j..) V) 

~+o) 
QJ.,... 
o..e 
0·"" 
~,.... 

0.. 

~~ 
o::s 
'I- .j..) 

U 
cm 
O~ 

.,...+0) 
+o)c 
mo 
NU 
.~ QJ 

0> 
.s:::0 
.j..) .0 
::sm 
m 

-s 
Cl) 

::r 
Q.I 0 
V) c 

V) 

M- Cl) 
0 

-S 
::r Cl) 
0 -0 
c Q.I 
V) 

Cl) -S 

-S ::r 
Cl) 

-0 V) 

Q.I M-
0 

-S -S 
'< ::r ...... 

V) 

M-
0 
-S 
'< 

::s 
Cl) 

:E: 

3 
Q.I ...... 
::s 
M-
Cl) 
::s 
Q.I 
::s 
n 
Cl) 

V) 

Cl) 

-S 
< ..... 
n 
Cl) 

Figure 4-Subsystem mapping for maintenance 

TENANT 



follows: (1) What are the major problems that this subsystem 
has in accomplishing its purpose? (2) How could they best be 
solved? (3) Can better information help? The third question 
reveals information requirements, but the preceding ques
tions set the stage for the third question. 

Figure 5 portrays the framework for the information re
quirements interview, using the three techniques: BSP, CSF, 
or ends/means analysis. Note that all questioning leads to the 
information required. The specific questions asked during the 
group interview are as follows: 

1. Business systems planning (problems and decisions) 
a. What are the major problems encountered in accom

plishing the purposes of this subsystem? 
(1) What are good solutions to those problems? 
(2) How can information playa role in any of those 

solutions? 
b. What are the major decisions in managing this sub

system? 
(1) What improvements in information could result 

in better decisions? 
2. Critical success factors 

a. What are the critical success factors of this subsys
tem? (Most executives have four to eight of these.) 

b. What information is needed to insure that critical 
success factors are under control? 

3. Ends/means analysis 
a. What makes goods or services provided by this sub

system effective to users? 
(1) What information is needed to insure that the 

subsystem is being effective at providing those 
goods or services? 

b. How do you define efficiency in providing goods or 
services in this subsystem? 

Developing a Long-Range Information Architecture 267 

(1) What information is needed to evaluate the effi
ciency of this subsystem? 

The interview will result in the citing of a variety of informa
tion requirements as being needed by the subsystem. A sepa
rate interview is conducted for each organizational subsystem. 

Define Major Information Categories and Map Interviews 
into Them 

The process of categorizing information is an iterative one 
similar to that used for defining organizational subsystems. By 
placing the information categories that were defined in the 
organizational subsystem interviews into broad, generic cate
gories of information, an overall profile of information cate
gories needed by the organization can be developed. Figure 6 
illustrates this process. 

Develop Information/Subsystem Matrix 

By mapping information categories against the organiza
tional subsystems, an information-categories-by-organiza
tional-subsystem matrix can be developed. Figure 7 illustrates 
such a matrix for EPIC. 

Note that at the intersections of information categories and 
subsystems there are coded values, defined as follows: 

Utilization/Source 
S = Source 
U=Use 
B = Both 

Priority 
1 = Low priority 
2 = Medium priority 
3 = High priority 

Managers are asked during the interview the value of differ
ent types of information and where it might be acquired, and 

<
PRoBLEMS----)~SOLUTIONS----)~INFORMATION 

BSP 

DECISIONS-----------~) INFORMATION 

CSF--->~CRITICAL SUCCESS FACTORS ------>-7' I NFORMATI ON 

<
ENDS----)~EFFECTIVENESS---->~INFORMATION 

ElM 

t1EANS---->~EFFICIENCY------>-3J>INFORt1ATION 

Figure 5---Framework for information requirements interview 



268 National Computer Conference, 1983 

IrITEfNIEWS 

(BSP J CSF J ElM) 

IrfOOtA.TIcr~ 

CATE(I.)RIES 

• • • 

Figure Cr-Interviews mapped to information categories 

their responses can be coded into the table. The scores can be 
totaled and used as a rough indicator of the composite value 
of a category of information to all subsystems with which it 
intersects. The utilization/source also indicates whether a sub
system can generate the information needed within its own 
boundaries or whether it needs to obtain the information from 
another subsystem. 

As shown in Figure 7, the source and use of information 
involves different subsystems. This stresses the importance of 
an organizationwide planning effort for information require
ments analysis to avoid redundant internal generation of in
formation among subsystems. 

USE OF THE OIRA PLANNING RESULTS 

The results of the OIRA exercise are twofold: 

1. It identifies high payoff information categories. 
2. It provides an architecture for information projects. 

Identifying High Payoffs 

By evaluating composite scores for information categories, 
the categories with the highest scores can be given first consid
eration for feasibility studies. Note that the information-cate
gory-by-subsystem matrix does not tell the user whether it is 
technically, economically, or operationally feasible to im
prove an information category. The matrix only indicates the 

relative value of the information. Feasibility studies and 
project definitions must still be made as usual. 

Providing Architecture 

By clearly defining the intersection of information and sub
systems, an organization can avoid the problem of building 
separate, redundant information systems for different organi
zational subsystems. When an organization decides to im
prove information for one organizational subsystem, other 
subsystems that need such information can be taken into con
sideration. This avoids building separate information systems 
for each subsystem, which often requires reworking or dupli
cating what has already been done. By doing the conceptual 
work first an organization can identify information system 
projects that will do the most good and lead to cohesive, 
integrated systems. This is far better than randomly selecting 
projects that result in fragmented, piecemeal systems that are 
continually being reworked or abandoned because they do not 
mesh with the organization's overall requirements. This 
means planning from the top down rather than from the bot
tom up. 

Executive's Perspective 

Perhaps the best way to illustrate the value of an organiza
tion's having an organizational information architecture for 
MIS is to quote the president of EPIC a year after he person
ally led the development of their architecture: 

I had worked in top management in one of our other sub
sidiaries and experienced the disappointment that comes from 
developing systems in the traditional FIFO, piecemeal way with 
the consequences of redundant, non-integrated and inaccessible 
information. 

When I took over a new subsidiary, I decided there must be a 
better way. There was. By developing an information architec
ture before developing systems we have been able to pull all our 
systems together. Our short run system decisions are dovetailing 
into our long range systems. We know where we are going and 
getting there. 

Beyond that, just the process of going through an organiza
tional information requirements analysis gave me and my man
agement invaluable insight into our business. 

REFERENCES 

1. Bowman, B., G. B. Davis, and J. C. Wetherbe. "Modeling for MIS." Data
mation, July 1980, pp. 155-162. 

2. Bowman, B., G. B. Davis, and J. C. Wetherbe. "Three Stage Model of MIS 
Planning." Information and Management, forthcoming. 

3. Bowman, B., G. B. Davis, andJ. C. Wetherbe. "Taxonomy of MIS Planning 
Methodologies." Proceedings of the Conference on Information Systems 
Planning, Chicago: Society for Information Management, 1982. 

4. Davis, G. B. "Strategies for Information Requirements Determination." 
IBM Systems Journal, 22 (1982), 4-30. 

5. IBM Corporation. Business Systems Planning-Information Systems Plan
ning Guide. Publication No. GE20-0527, Armonk, N.Y.: 1981. 

6. Rockart, J. F. "Chief Executives Define Their Own Data Needs." Harvard 
Business Review, March-April 1979, pp. 81-93. 



ORGANIZATIONAL SUBSYSTEMS 

s:: 
0 

Q) 01 :::; 
U ......... ...., s:: s:: ......... 10 0" 
s:: III s:: 0 >, 01 'r- Q) 

~ 
r-~ Q)S:: 01 

10 s::Q) :::; s_ s:: III U Q)"'" ~ III ...., 'r- s:: 
01 s:: 0:::::1 () :::; :::; s:: III S::1Il ...., 'r- 10"'" ....,.~ 
s:: Q) ...., .,... 0- U .p 10 'r- S::'r- ""'UIIl ~s:: 

:;; ...., 'r- ....,S:: Q) C Q) ~ ~ ...., 10 os:: r- Q):::::I~ 0:::::1 s:: ~ 

Information s:: "'0 U'r- 0.. W ..::.:: Q) :::::I Q) 
:0 ~ 1Il'r- 10 ..::.:: "'0 r- o..o Q) 0 

10 'r- a:: Q) .s: (jj III :> ~ > III r- 0.. ~ E 01 ~Oltl ~ U 'r- 0.. 

Categories 
Q) 10 ......... ~ s:: ,: 10 "'0 s:: 10 :::::I 0.. Q)"'O Q) 1tI~s:: OU r-Q) 
-l ::E ex: u w C) 1---4 ::E ex: 1---4 (/') ex: ex: c.. ex: -l ::Ec..ex: uex: u a:: 

Contract B/3 U/3 U/3 B/2 U/3 U/~~ B/3 B/3 U/l U/3 B/3 U/3 B/3 B/3 B/3 U/3 U/3 

Policy/Training U/3 U/3 U/2 B/3 B/3 U/:3 U/3 U/3 U/3 U/3 U/3 B/3 B/2 U/2 U/2 U/2 

Customer Financial 8/3 8/3 B/3 8/3 8/3 U/3 B/3 U/2 B/3 

Customer Demographics B/3 U/2 U/2 U/2 B/3 U/3 B/3 B/3 

Complaint S/2 B/3 B/2 U/2 B/3 B/3 U/2 B/3 U/3 S/2 B/2 U/2 B/3 B/2 B/2 
0 

Leasing/ ~ 
Transactions B/2 U/3 S/3 U/2 U/2 U/3 U/3 ("1) 

0' 
"0 

Vendor B/3 B/2 B/3 B/3 B/3 B/3 B/2 B/3 U/2 B/3 B/3 B/3 S· 
(JQ 

Pol 

A/P U/2 B/l B/2 B/3 U/2 U/3 U/3 S/3 B/2 B/3 B/3 ~ 
0 
::l 

A/R U/l B/3 S/3 B/3 B/3 S/3 S/3 U/3 U/3 B/3 B/3 C1? 
~ 
Pol 

Maintenance S/3 S/3 B/3 B/3 B/3 B/3 S/3 U/3 S/2 U/l S/2 U/2 B/2 ::l 
(JQ 

("1) 

""'"" Warranty B/2 B/2 B/3 B/3 U/2 U/2 U/2 ::l 
8' 
""I 

Inventory B/3 U/2 B/2 B/3 B/3 B/3 B/3 U/2 B/3 U/l U/3 B/3 B/2 8 
Pol ..... o· 
::l 

> 
Key: S=Supply l=low ""I 

(") 

::l" U=Use 2=medium :=,: 
B=Both 3=high ("1) 

(") ..... c:: 
""I 

Figure 7-Information categories by organizational subsystems matrix 
("1) 

N 
0\ 
\0 





A reconfigurable VLSI architecture for a 
database processor 

by KEMAL OFLAZER 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

ABSTRACT 

This work brings together the processing potential offered by regularly structured 
VLSI processing units and the architecture of a database processor-the Relational 
Associative Processor (RAP). The main motivations are to integrate a RAP cell 
processor on a few VLSI chips and improve performance by employing procedures 
exploiting these VLSI chips and the system level reconfigurability of processing 
resources. The resulting VLSI database processor consists of parallel processing 
cells that can be reconfigured into a large processor to execute the hard operations 
of projection and semijoin efficiently. It is shown that such a configuration can 
provide 2 to 3 orders of magnitude of performance improvement over previous 
implementations of the RAP system in the execution of such operations. 

271 





A Reconfigurable VLSI Architecture for a Database Processor 273 

INTRODUCTION 

In recent years, various architectures for special-purpose pro
cessors supporting database management system (DBMS) 
operations directly and efficiently in hardware have been pro
posed. 1

-
10 Almost all these processors support the relational 

model of data 11 and provide primitives to execute the re
lational algebra operations on the data stored as relations. 
Among these database processors, the Relational Associative 
Processor (RAP) seems to be prominent, providing a com
plete set of high-level machine primitives to retrieve and 
manipulate data. Although the features of RAP have been 
described in detail elsewhere in literature, 3,7,12,13 its basic fea
tures will be summarized in the next section to aid in the 
upcoming discussions. 

The RAP System 

The RAP system hardware consists of a linear array of cells 
where each cell consists of a cell processor and a cell memory 
(eM). The tuples of the relations in the database are stored 
on these CMs, each of which typically holds 103 to 104 tuples, 
depending on tuple lengths, and all CMs are processed in 
parallel. The earlier prototype implementations of the RAP 
system have been based on head-per-track disks or CCDs; 
however, since high-density RAMs are becoming available 
(64 Kbits to 256 Kbits in the near future), it is possible to 
implement the CMs by using such RAM chips together with 
an appropriate secondary storage that will act as a virtual 
memory for the system. 14 The array of cell processors is con
trolled by an array controller, whose main functions are to 
broadcast search and update instructions to cells, receive the 
result of query programs executed over the CM contents, and 
interface the RAP system to a front-end system through which 
users of the DBMS submit queries. Figure 1 shows the struc
ture of the RAP system. The cell processors execute the high
level instructions broadcast by the array controller on the 
contents of their CM usually within one scan of the memory, 
as the tuples in their CM are passed through the processors. 
Since all processors operate in parallel, the resident portion of 
the database can be scanned in a very short time. 

The RAP logical and physical data structure is a relation 
consisting of tuples each augmented with several mark bit 
fields that act as the work space during instruction executions. 
These mark bits are used to denote subsets of a relation that 
are created as results of search operations, and the delete flag 
denotes deleted tuples. A typical tuple structure is shown in 
Figure 2. The RAP instruction set consists of simple- and 
cross-retrieval instructions, update instructions, and instruc-

User System 

Figure I-The structure of the RAP system 

tions for computing set functions. For more details on features 
of the RAP system, one can refer to various earlier papers in 
the literature. 3, 7,12,13 

The VLSI Opportunity 

In recent years the developments in microelectronics have 
made possible the design and implementation of VLSI com
puting systems based on chips that contain a large number of 
transistors. However, in order to use the silicon area effec
tively, the VLSI processing elements should be based on reg
ular circuit structures, preferably with neighbor-to-neighbor 
communication. Furthermore, regular structures are simpler 
to design and easily extensible. Highly concurrent algorithms 
can be executed on such regular structures, providing very 
efficient solutions for computationally expensive operations. 15 

The processing potential offered by VLSI is not necessarily in 
the speed of the individual circuits, but rather in the concur
rency that can be obtained from the multiplicity of computing 
elements. 

Previous Work on Application of VLSI to Database 
Processors ' 

There has been some earlier work in applying VLSI to the 
domain of high-performance database processors. VLSI ar
rays that execute various relational operations have been pro
posed by Kung and Lehman. 16 These arrays are an outcome 
of the concept of systolic processing. 17 The proposed arrays 
have indicated a potential for high-performance relational 
database processing. A database processor consisting of such 
systolic processing subsystems can be built by connecting 



274 National Computer Conference, 1983 

Cell i-I Cell I Cell i+l 

I 

MIU 

VCA 

a) The VLSI cell structure 

b) The VLSI Comparator Array (VCA) c) The Buffer and Update Unit (BUU) 

Figure 2-The RAP data structure 

the memories and processors through an interconnection 
network. 

In conjunction with the above work, systolic processing 
concepts have been applied to high-speed, pipelined pro
cessing of simple relational queries and updates, which are 
claimed to be the more frequently executed operations on 
transaction-oriented database systems. 18 The proposed sys
tem is based on a multitude of systolic query arrays (SQA), 
each of which consists of many regularly connected pro
cessors. In this system, once a large number of simple queries 
are accumulated (in a very short amount of time), they are 
loaded into the SQAs and the appropriate relations are passed 
through the processors. Hence, with one pass over the re
lations, many simple transactions are executed. 

The tree machinel9
,2o is a structurally different approach to 

applying VLSI concepts to database processing. The pro
posed system consists of a set of processors organized into a 
tree structure and connected to a general-purpose computer. 
The tree machine stores and processes the database in the leaf 
nodes, and the internal nodes are used to route data into and 
out of the leaf nodes and also perform some computations. 
This organization can efficiently execute relational operations 
and sorting on data stored in the leaf nodes. 

Scope and Outline of this Work 

This work applies VLSI concepts to the architecture of an 
existing system-RAP-with the intention of (1) integrating a 
cell processor into a few VLSI chips, thereby decreasing cost, 
and (2) increasing the performance of the system in the exe
cution of the relational operations of projection and semi join , 
using system-level reconfigurability and the concurrency pro
vided by VLSI. 

After the potential bottlenecks in the RAP hardware archi
tecture for execution of these common hard operations are 
discussed, a cell structure based on VLSI chips is proposed. It 

is then shown how dynamic reconfiguration of cell processors 
can dramatically increase the performance of the execution of 
hard operations by 2 to 3 orders of magnitude compared to 
earlier implementations of RAP. 

The motivation for applying VLSI concepts to the RAP cell 
processor stems also from the fact that these cell processors 
are large in terms of the IC packages they use. The initial 
realizations of RAP cell processors7

,21 have used around 400 
MSI ICs to implement a cell excluding the eM. This number 
has been reduced to around 160 MSI and LSI ICs in a sub
sequent design and implementation, resulting in a smaller and 
more functional system. 12, 22 However, these numbers are 
large, if a large-scale robust system consisting of a large num
ber of cells hosting a large DBMS is to be implemented cost
effectively. Larger physical size implies more power con
sumption and susceptibility to more hardware failures. 

Given these considerations, it is certainly desirable to im
plement the cell processors with· a very small number of cus
tom VLSI chips. Concepts of regularity and modularity help 
reduce the complexity of designing such chips. This approach 
is also very cost effective: A chip, once designed and de
bugged, can be produced in large quantities cheaply; and 
system integration overheads, such as boards, cables, and 
cooling, are markedly reduced. 

POTENTIAL BOTTLENECKS IN THE RAP 
ARCHITECTURE 

A performance evaluation study23 has indicated that a 100-cell 
RAP system can perform up to 3 orders of magnitude better 
than a fast uniprocessor in supporting most relational data
base retrieval and update operations. However, there is an 
important class of queries involving semijoin and projection 
operations where the performance of RAP is almost the same 
as or worse than that of a uniprocessor, despite all its parallel 
processing capabiiity. The benchmarks used in two recent 



A Reconfigurable VLSI Architecture for a Database Processor 275 

performance analyses of database processors24
,25 indicate this 

performance deficiency. 

Reasons for Performance Degradation 

Naive implementations of projection and semijoin oper
ations basically involve comparing all the tuples of a relation 
to the tuples of another relation (or the same one, in the case 
of projection). On uniprocessor implementations, most such 
operations can be implemented by either processing the ac
cess path information or sorting the relations and then pro
cessing them. Since sorting hardware is not common in most 
database processors, these and other similar operations are 
implemented straightforwardly by iterating on one of the re
lations sequentially and scanning the other (or the same) re
lation by using the parallel processing hardware. Thus the size 
of the data that can be passed to the parallel scan" phase in 
each iteration determines the number of iterations and hence 
performance. 

The following reasons account for the performance de
gradation of RAP in these common hard operations: 

1. Although there is parallelism at the system level (i.e., 
many cell processors), there is very little parallelism at 
the tuple processing level in every cell to help in hard 
operations. 

2. Data that have to be communicated between cells during 
the execution of these operations are transferred over a 
centrally controlled bus, and there is no overlap between 
execution and data transfer. 

3. During the execution of such operations, the cells with 
CM storing relations not referenced in the current in
struction are idle, and their processors are not used in 
the execution of these operations. 

A VLSI ARCHITECfURE FOR THE RAP CELL 
PROCESSOR 

The VLSI-based RAP cell processor consists of three mod
ules, each of which can be realized as a single VLSI chip. The 
CM is to be implemented by using high-density RAM chips 
that are currently available (64-Kbit chips) or that will be 
available in the near future (256-Kbit chips or larger). 

The three VLSI chips that constitute the cell processor are 
the following (cf. Figure 3): 

1. The VLSI Comparator Array (VCA): The VCA consists 
of a series of identical intelligent comparator units, each 

DF Delete Flag 
Ti Mark Bits 

Relations Vi Attribute Values 

Figure 3---A cell of the reconfigurable RAP system 

of which is made up of 8 to 16 bytes of comparand store 
(which can be implemented with a small RAM or a shift 
register), a bytewide comparator, delimiter-sensing cir
cui try , and a state register that keeps track of the state 
and configuration of the comparator. Preliminary calcu
lations show that, depending on the technology and the 
comparand store size, between 20 and 80 such compara
tors can fit on a single VLSI chip. If necessary, similar 
chips can be cascaded to form comparator arrays of 
larger sizes. Various forms of data qualifications can be 
evaluated by these comparators after they are initialized 
by the appropriate delimiters and comparison parame
ters by the array controller. The high-level data qual
ifications of RAP instructions3 can be evaluated on this 
unit. Since the emphasis of this presentation is on the 
execution of the hard relational operations, the details of 
evaluation of qualifications will not be discussed here. It 
is, however, necessary to state that once a tuple's values 
enter the comparator array (in a byte-serial fashion), 
they travel through all the comparators in a pipelined 
fashion, comparing themselves to the comparands in the 
comparators sensitive to their delimiters. It should also 
be noted that instructions that perform simple searches 
over tuples would need a small number of comparators 
(typically one to five); hence a large number of compara
tors in each cell would not be of much help. However, 
the contribution of a large number of comparators will 
be made evident in later sections. 

2. The Buffer and Update Unit (BUU): This unit contains 
two LIFO buffers, to store tuples coming out of the VCA 
until the result of the qualification evaluation over that 
tuple is known. As the tuple's closing delimiter leaves 
the VCA, bringing along the qualification result with 
itself, the tuple starts entering the ALU in a reversed 
fashion, and necessary mark and attribute value mod
ifications can be made. The second LIFO reverses the 
tuple once again so that it goes back to the memory in 
the correct sequence. These LIFOs need to be large 
enough to hold a reasonably large tuple* and can be 
implemented with either RAMs or shift registers. The 
ALU is a bytewide unit with the standard functions. It 
also keeps track of various cell states during instruction 
execution. 

3. The Memory Interface Unit (MIU): This unit interfaces 
the two processing components to the CM of the cell by 
performing the data transfers between them and the 
CM. It receives controls from the array controller. Its 
main functions are 
a. To read and write sections of tuples that are relevant 

to the current instruction being executed. Since a giv
en RAP instruction references a small number of the 
attribute values in a tuple, reading and writing selec
tive portions of tuples reduces the memory scan time 
considerably. We will assume that each instruction 
accesses the mark bit field (typically two bytes) and 
some additional attribute values from each tuple for 
comparison and if necessary for modification. 

*Typically, 1 Kbyte to 4 Kbytes would be sufficient for most systems. 



276 National Computer Conference, 1983 

b. To insert and delete tuple and attribute delimiters to 
the tuple data being transferred between the CM and 
the two other units. All the processing circuitry in the 
other units is delimiter-sensitive. Hence, before data 
(e.g., mark bits and relevant attribute values) are 
passed to the processing units, they are pre- and post
fixed by tuple and attribute delimiters and accom
panied by other control signals. Delimited tuples 
coming back to the memory are stripped off. 

c. To test mark bit fields of tuples so that tuples that do 
not qualify for the current instruction on the basis of 
their mark status are accompanied by a status bit 
denoting that they should just pass through the pro
cessing units without being processed. 

d. In addition to the above functions, during the exe
cution of the hard operations MIU acts as a switch to 
reconfigure the resources. However, when all the cells 
are working independently in parallel, the MIU dis
connects its cell from the neighboring cells, passing 
only its CM's contents through the processing units. 
This will be detailed later. 

EXECUTING THE HARD OPERATIONS 

This section will present structural and functional innovations 
that can be incorporated into a multicell RAP system based on 
a VLSI cell processor. It will be shown that by (1) introducing 
dynamic reconfigurability at the cell level and (2) employing 
new procedures exploiting this reconfigurability, the per
formance of the projection and the semijoin operations can be 
markedly improved, with a corresponding decrease in the 
execution time of the database queries using such operations 
frequently. 

Reconfiguring the Cell Array 

In this section two reconfigurations in the cell array will be 
presented so that the discussions in the following sections will 
be clearer. Let C be the number of cells in the RAP cell array. 
We label each cell with an integer from 1 to C, where the 
leftmost cell has label 1 and the rightmost cell has label C. A 
relation R is distributed to CR cells having labels r1, ... ,rCR 
where rj < r;+1 (i = 1, ... , CR - 1). t We also define 

REL (i) = Q 

to indicate that the CM of the cell labeled i contains tuples 
from relation Q. We define two reconfigurations on the cell 
array: 

1. Processor-Reconfigure: This reconfiguration causes all 
the cells in the array of C cells to connect their VCAs to 
form a large VLSI comparator array. The connections in 
the cells are established as follows: For Cell i : 1 :s i :s C, 

tThe cells over which a relation's tuples are distributed need not necessarily be 
consecutively labeled. 

the MIU passes its NCn input to the Dour output, hence 
to the input of its VCA. 

2. Memory-Reconfigure (Q, qi, qj) (qi:S qj): This re
configuration connects all or some of the eMs contain
ing tuples of relation Q in order to form a iarge memory. 
The connections in the cells are established as follows: 

a. For all cells with label I, if 

2 :s 1 :s qi - 1 or 

qj + 1 :s 1 :s C or 

qi :s 1 :s qj and REL (l) =1= Q, 

then the MIU passes NMin to NMout as a shift regis
ter, bypassing the cell's CM. 

b. For all cells with label I such that qi :s 1 :s qj and 
REL (l) = Q, when that cell's eM is selected for 
processing during execution by the controller, tu
ples read from the eM are passed to NMout , and 
tuples coming from NMin are written to the eM. If 
the cell's eM is not selected for processing, then the 
MIU passes NM;n to NMout as a shift register. 

c. For Cell 1, the MIU connects its NMout to NCn 
internally and hence to the input of its VeA (via the 
processor reconfiguration). 

d. For Cell C, the MIU connects its BUU output to 
NMin internally so that this point becomes the write 
port for the large memory. 

As a result of this logical reconfiguration, all or some of the 
cells containing tuples of relation Q are selectively enabled for 
processing by the large cell during the execution of hard oper
ations. 

Figure 4 presents a four-cell VLSI-based RAP system in 
which the cell processors are connected to form a large cell. 
The CMs holding tuples from relation Q belong to the cur
rently reconfigured large memory, and currently Cell 3's CM 
is selected for processing. The tuples in that CM are being sent 
to the large VCA via the MIUs of Cells 1 and 2, and the tuples 
returning from the processor are coming back to the eM from 
the BUU and MIU of Cell 4. 

The Projection Operation 

If a relation is viewed as a table, the projection operation 
removes some columns (attributes) from a relation and then 
removes the duplicate rows in the remaining table.26 This 
operation can be implemented on uniprocessors by first sort
ing the columns of the relation over which the projection is to 
be performed and then making one pass over the sorted se
quence to discard the duplicates. If access path information on 
the attributes is available, then such information or hashing 
techniques can also be used. 

In the RAP architecture, this operation is programmed as 
an explicit iteration by using the more general GET-FIRST 
and RESET instructions. 3,21 At each step of the iteration, the 
GET-FIRST instruction gets the next unique value in the 
projection attribute's column, and then the RESET instruc-



A Reconfigurable VLSI Architecture for a Database Processor 277 

Cell # 

Relation P o 
2 
Q 

~ 

3 
Q 

4 
P o 

* The BUUs of the first three cells are disconnected. 

Figure 4--An example of reconfiguration 

tion eliminates all other tuples with the same value in that 
attribute by scanning all the cells in parallel and resetting their 
mark bits. Hence the running time of this operation is 
2· v . Tscan , where v is the number of unique values in the 
projection attributes of the tuples and Tscan is the time to scan 
a cell memory completely. Before presenting the way in which 
projection is performed on the VLSI architecture, we intro
duce another primitive that is executed within the recon
figured large cell, under the control of the array controller. 

Extract-Uniques (P, ap , Ml, M2): The currently recon
figured large memory is passed through the reconfigured large 
cell, and the first m . C unique values from the ap attributes of 
Ml:j: marked tuples are loaded into the comparators where m 
is the number of comparators in each cell's VCA. Details are 
as follows: 

1. Initially, all the comparators are "empty"-i.e., they 
have no comparands in their comparators stores, but the 
comparators are initialized to be triggered by the delim
iter of the attribute ap • 

2. '''hen the memory scan begins, tuples (consisting of de
limited attributed values) start entering the large com
parator array. The value in the ap field is compared to 
the comparands of the full comparators (none if all are 
empty) while moving through the array in a pipelined 
fashion. (Note that in a given instance, an attribute value 
of n bytes moving through the VCA is involved in up to 
n different comparisons in n consecutive comparators of 
the large VCA and there are up to lm· CIT] such attri
bute values being processed in the array, where T is the 
length of relevant portions of tuples in bytes.) The value 
settles into the comparand store of the first empty com
parator it encounters, changing the comparator state to 
"temporary-full," and the tuple proceeds to the BUU of 
the large cell without filling up any other comparator. 

3. If before settling the value matches any of the values on 
the way, then it is a duplicate value. As that tuple's 
closing delimiter passes over the comparators, it senses 
this condition and changes the status of the temporary
full comparator back to empty. Eventually, the tuple's 
Ml bit is turned off in the BUU of the last cell. 

4. If, however, the value does not match any of the values 
and the tuple has its Ml bit set, then as the delimiter 
passes over the comparators the status of the temporary-

tMl is a generic name for some mark bit of the tuple; it does not specify any 
specific bit. 

full comparator is changed to full. Eventually, the tu
ple's Ml bit is turned off in the BUU, and its M2 bit is 
set to indicate that this tuple contains a unique value. 

5. If a tuple has a unique value but all the comparators are 
full, then the tuple's closing delimiter generates a com
parator-overflow status as it exits the comparator array. 
The label of the cell from which this tuple came 
(overflow-cell) is returned to the array controller at the 
end of the memory scan. A 0 is returned if no su.ch 
condition is generated. (We can also view this primitive 
as a function returning this value, in addition to per
forming the duplicate elimination.) 

The example in Table I shows informally how the procedure 
described above works. In this example we assume that we 
have three cells in the array and a total of m . C = 3 compara
tors. Initially, all the comparators are empty but sensitive to 
delimiter ap • When processing starts, Tuple 1 finds the first 
comparator empty, and A settles there while the tuple's Ml 
mark is reset and its M2 mark is set. Meanwhile, the second 
tuple enters the comparator array and compares itself \Vith the 
full comparator that contains A, and then its value B settles 
into the second comparator. Following Tuple 2, Tuple 3 enters 
the comparator array and while passing finds that its value A 
matches the one in Comparator 1. Meanwhile the tuple goes 
on to settle temporarily in Comparator 3. The tuple's closing 
delimiter, ), changes the state of this comparator back to 
empty. The Ml mark of this tuple is reset later in the BUU. 
Then the second cell is selected for processing, Tuple 4 passes 
over Comparators 1 and 2, and C settles in Comparator 3. 
Following it, the next tuple's value B would match the value 
in Comparator 2; hence its Ml mark would be reset. The next 
tuple would pass over all the three full comparators but would 
not be able to find an empty comparator; and hence none of 
the mark bits would be reset. Thus, the cell number 2 will be 
passed to the Controller, denoting the cell causing the over
flow. In the remaining part of this pass, Tuple 7's Ml mark bit 
will be reset, and the others will pass through unchanged. The 
state of the CMs will be as shown in Table I. 

The second pass will start with Cell 2, and the values of 
Tuples 6, 8, and 10 will settle in the comparators in the manner 
described above. Next, Tuple lO's Ml mark bit will be reset, 
since while passing over the comparators it matches the value 
in Comparator 2. There will be no overflow, and the iteration 
will terminate. The state of the CMs at the end of the oper
ation is shown in Table I. 

Using this and the two previously defined primitives, the 



278 National Computer Conference, 1983 

TABLE I-Example for the EXTRACf-UNIQUES operation 

Initial State After First Pass 

T# (MI Ml ap ) T# (Ml 

1 0 A 1 0 
2 1 0 B 2 0 
3 1 0 A 3 0 

4 1 0 C 4 0 
5 1 0 B 5 0 
6 1 0 E 6 

7 1 0 B 7 0 
8 1 0 D 8 1 
9 1 0 F 9 1 

10 1 0 E 10 1 

procedure for performing projection over M1-marked tuples 
of a relation P, over an attribute ap , leaving tuples with the 
unique values marked with their M2 mark bits, is presented 
below. 

PROJECT (P, ap , M1, M2) = 
PROCESSOR-RECONFIGURE; 
overflow-cell: = PI; 
repeat 

MEMORY-RECONFIGURE (P, 
overflow-cell, Pcp); 

overflow-cell: = EXTRACT-UNIQUES 
(P,ap ,M1,M2); 

until (overflow-cell = 0); 

After this operation is performed, the relevant columns of the 
relation can be read out to the front-end system. 

Once the processors and the cell memories are recon
figured, the above procedure essentially passes the tuples of 
relation P through the comparators until the comparator array 
"overflows." Then for the next iteration, only the memories 
of the overflow-cell and those to the right of it are recon
figured to form a smaller large memory, and this memory is 
processed during the execution of the next Extract-Uniques 
primitive. The iterations continue until no more unprocessed 
unique values remain. 

To compute the running time of the above procedure we 
first define ki - 1 ( ~ ki ~ C P ) to be the cumulative number 
of CMs that can be skipped in the (i + 1 )th iteration. § Each 
iteration of the above procedure takes time c . Tscan, ram, where 
c is the number of memories dynamically reconfigured in that 
iteration and Tscan, ram is the time to read the relevant section 
of r bytes of t byte tuples and is equal to (r It ) . Tscan (r ac
counts also for the delimiters). Hence, the total time the 
above procedure takes is 

§More formally ki (1:5 k i :5 Cp ) is the index j of cell label Pj of the cell 
(remember that cells of relation P have labels PI' ... ,Pc ) whose CM contains 
the tuple having the first occurrence ( imC )th unique vafue based on the order
ing of the tuples of that relation with respect to their cell labels and then the 
obvious sequence number within the cell's CM. 

M2 

1 
1 
0 

1 
0 
0 

0 
0 
0 
0 

After Second Pass 

ap ) T# (Ml M2 ap ) 

A 1 0 1 A 
B 2 0 1 B CellI 
A 3 0 0 A 

C 4 0 1 C 
B 5 0 0 B Cell 2 
E 6 0 1 E 

B 7 0 0 B 
D 8 0 1 D Cell 3 
F 9 0 1 F 
E 10 0 1 E 

Tproj, vlsi = Tscan, ram· (Cp + ( Cp - kl + 1) + ... 

(Cp - k[vl(mC)l-1 + 1», 

since the ith: 

iteration scans ki - 1 - l1ess CMs than the initial iteration. The 
above expression can be rewritten as 

( r 1 
(vl(mC)J-l ) 

Tproj, vlsi = Tscan, ram . ~ C . C p - L (ki - 1) . 
.m i=1 

The Semijoin Operation 

RAP uses the semijoin (also known as implicit-join) oper
ation to answer most queries requiring the relational join 
operation in order to avoid generation of temporary relations. 
The semijoin operation is equivalent to performing the re
lational join26 of the T(arget) and S(ource) relations and then 
projecting the resulting relation on the attributes of the re
lation T (the implementation does not perform the relational 
join, of course). Hence it selects those tuples in Tthat match 
some tuple in S. Formal treatment of the properties of this 
operation and a classification of relational queries that can be 
solved by using this operation have been analyzed earlier. 27 

In RAP this operation is implemented by using the CROSS
MARK type of instructions, which iteratively take a small 
number of join attribute values from the source relation and 
pass it to the target relation cells, marking those target tuples 
with a value matching any of the source values. 3,21 In order to 
reduce the number of such iterations, a project operation on 
the source relation may be performed prior to the CROSS
MARK so that duplicate source values can be discarded. 
However, projection itself takes considerable time. * * 

""For example in RAP.27 projection over the source relation prior to the 
semi-join helps only when the ratio of the unique values to the number of tuples 
is iess than O. i. 



A Reconfigurable VLSI Architecture for a Database Processor 279 

In the proposed VLSI architecture, the semijoin operation 
is to be executed iteratively as follows: We assume that the 
source and target relations, Sand T, occupy Cs and CT cells 
respectively (CS +CT :5 C). Initially, all the cell processors 
are reconfigured into a single cell. In each iteration, the eMs 
of cells occupied by the yet unprocessed tuples of the source 
relation S are reconfigured into a large eM, and the next 
group of unique source values is loaded into the comparators 
of the reconfigured large cell as in the project operation. Then 
all the eMs of target relation cells are reconfigured into a 
large eM, and the target tuples are passed through the com
parators. Target tuples with an attribute value that matches 
any of those values in the comparators are marked by the 
BUU of the last cell. The following primitive is required for 
the execution of this operation in addition to the previously 
presented ones. 

Mark- Target (T, aj, M3): The tuples of relation T in the 
currently reconfigured memory are passed through the com
parator array that contains join comparand values from the 
source relation that are left by the preceding Extract-Uniques 
operation. Any target tuple that has a value of its aj field 
matching one of the values in the comparator array is marked 
with the mark bit M3 in the BUU of the large cell. 

The following is a more formal description of the above 
procedure, assuming that the source tuples to take part in the 
semijoin are marked with M1 bits and the resulting target 
tuples will be marked with the M3 bits. 

CROSS-MARK (T,S,aj,M1,M2,M3) = 
PROCESSOR-RECONFIGURE; 
overflow-cell: = S1; 

repeat 
--MEMORY-RECONFIGURE 

(S ,overflow-cell ,scs); 
overflow-cell: = EXTRACf-UNIQUES 

(S, aj, M1, M2); 
MEMORY-RECONFIGURE (T, t1, tCT ); 

MARK-TARGET (T,aj,M3); 
until (overflow-cell = 0); 

The running time of this procedure is the sum of the 
projection time of the source relation and the marking time of 
the target relation. Hence it can be written as 

~Oin,vlsi = 

([ 1 
rUsl(mC) 1-1 ) 

T scan, ram 0 mU~ C 0 (CS+CT ) - ~ (ki -1) 

where Us is the number of unique values in the join attribute 
of the source relation. 

Performance Improvement with the VLSI Architecture 

It was stated earlier that the cell processor provides only a 
marginal performance improvement in the execution of sim
ple single-relation retrieval instructions. The reasons for this 

are that (1) such instructions require a very small amount of 
processing per tuple and hence do not benefit from the extra 
processing resources in the cell, and (2) the overall processing 
time depends on how fast the cell memory can be scanned, no 
matter how fast or powerful the cell processors are. However, 
the VLSI cell processors, together with reconfiguration, can 
provide substantial performance improvements in the exe
cution of the projection and semijoin operations. In this sec
tion the performance improvements that can be obtained by 
employing VLSI and reconfigurability will be demonstrated 
by comparing the projection and semijoin performance of the 
proposed system with the earlier RAP systems' performance. 

Performance Improvement in the Projection Operation 

As stated earlier, RAP executes the project operation on a 
relation with u unique values in the projection attribute, in 
timett 

T proj = 2 0 u 0 Tscan 

To evaluate the running time of the projection operation 
with the VLSI architecture, we need to estimate the magni
tude of the summation in the expression for T proj, vlsi. For this, 
we present the following analysis: 

Let N be the number of tuples on a single eM of the relation 
to be projected. Then, we can write 

since in the worst case all the first m 0 C tuples have unique 
values. In general, 

[i 0 m 0 Cl . rm 0 Cl . r u 1 ki~ ~ ~lO --,r 1=1, ... , moC -1. 

Hence 

[uI(mC) 1-1 ([m 0 Cl rU/(mC)1-1.) ([ u 1 ) 2: ki-1~ _02: 1---1, 
~1 N ~1 moC 

which results in 

[u/(mC) 1-1 

2: ki -1 
i=1 

::> [m 0 Cl
o 

(fu/(m 0 C) 1- 2) 0 ( fu/(m 0 C) 1- 1) 
- N 2 . 

Therefore, the time for the projection operation can be writ
ten as 

ttWe will assume that the eM sizes in both systems are the same, but the 
proposed VLSI-based system exploits the RAM by reading out relevant por
tions of tuples; however, this will not be used in the performance comparisons. 



280 National Computer Conference, 1983 

Tproj, vlsi :5 Tscan . ( r m ~ C 1· C p -

rm~TC1.(fu/(m.C) 1-2~( ru/(m.C)1-1») 
I 1 ~ I ... , 

The performance improvement (ignoring the ceiling func
tion and the second term in the above expression) would be 

Tproj 2· m . C . t 
Improvementproj, vlsi = -'1'-- C 

.1 proj, vlsi P • r 

where t is the length of the tuples and r is the length of the 
mark and projection attribute values. 

To convey the magnitude of this improvement, we can pro
vide the following example: Assume a VLSI-based RAP sys
tem with the following parameters: C = 64, CM size = 256 
KBytes, m = 50. The performance improvement over the ear
lier RAP systems in the execution of a projection operation 
over a relation with 128-byte tuples occupying Cp = 8 cells 
would be 

2·50·64 
ImprovementprOj, vlsi = 8 800-fold 

assuming that the RAMs are not read out selectively 
(i.e., r = t = 128). The improvement would be at least an 
order of magnitude larger if selective accessing to RAMs is 
also considered. 

Performance Improvement in the Semijoin Operation 

The time that RAP takes to execute the CROSS-MARK 
instruction to implement the semijoin operation is given as23 

where Ns is the total number of source tuples in each source 
CM, n is the number of source values that can be processed in 
every target relation scan, and C is the number of cells. The 
time the proposed VLSI approach takes was given earlier as 

TjOin, vlsi = 

( r 1 
r"s/(mC) 1-1 ) 

Tscan,ram· mU~C . (Cs+CT ) - ~ (ki -1) . 

The improvement for a C -cell RAP system based on VLSI 
cells (again ignoring the second term and the ceiling function) 
would be 

T-oin C . m • (1 + C + Nxln) . t 
Improvement jOin, vlsi = ~ = . 

join, Y!si Us· (Cs+ C T)· r 

Ignoring the 1 and C compared to Nsln, we can note that the 
speedup has four components: 

I Ns m C 
mprovementjoin,vlsi = Vs ·n· C

T 
+ C

s 
·r· 

The first factor indicates the speedup resulting from the char
acteristic of the join attribute. If the number of unique source 
values is very small compared to the total number of source 
tuples being joined, the proposed procedure will benefit. The 
second factor indicates the speedup due to the comparators in 
each cell processor. The third factor indicates the speedup due 
to the reconfigurability of the VLSI cell processor array. This 
speedup depends on the number of cells in the processor 
array; the maximum is C/2 when the source and target rela
tions occupy 1 cell each. Finally, the fourth factor reflects the 
utility of reading the tuples selectively from a RAM. 

To convey the magnitude of the improvement in the exe
cution of the semijoin operation, we again give an example 
based on the parameters of the previous section. We further 
assume that Cs=Cr = 16 and Nslus =lO. The improvement 
over the RAP.2 system 7 where n = 5 would be 

Improvement join, vlsi = 10·10·2 = 200-fold, 

again without exploiting the RAM. The improvement over 
the most recent implementation of the RAP.3 cell processor, 
designed by the author, 12,13,22 which performs semijoin with 
customized microcode (n = 100 for 16-bit numerical values) 
would still be at least lO-fold. However, in this case the per
formance improvement is mainly due to reconfiguration 
rather than to the large number of comparators in each cell. 

Implementing Other Hard Operations 

Up to this point the paper has presented performance im
provements in two of the computationally expensive relational 
operations commonly used on the RAP system. It is also 
possible to implement other hard operations like union, inter
section, and difference by using the same concepts and to 
obtain similar performance improvements, since such oper
ations can be implemented by using the projection and semi
join operations. For example, the union operation on two 
relations P and Q can be implemented by treating them as a 
single relation and projecting them over the union attributes. 
The intersection of P and Q could be implemented by per
forming a semijoin from P to Q and then projecting the re
maining marked tuples of Q over the intersection attributes. 
Difference of P and Q (P - Q ) can be implemented by per
forming a semijoin from Q to P and then projecting the tuples 
of P that remain unmarked after the semijoin. 

CONCLUSION 

This work presents a new approach to employing the pro
cessing potential provided by VLSI to relational database pro
cessing. It is proposed that a cell processor of the RAP data-



A Reconfigurable VLSI Architecture for a Database Processor 281 

base processor with increased processing resources can be 
integrated onto three VLSI chips, each with a well-defined 
function. It is also demonstrated that new procedures for 
reconfiguring system resources during hard operations, to
gether with the processing power provided by VLSI, can in
crease system performance by 2 to 3 orders of magnitude in the 
execution of the hard operations compared to the current 
implementation. More important, the processors of a large
scale RAP system (say of 100 cells) can be implemented with 
a small number of processor chips (300 VLSI chips). This 
number is almost the same as that now required for the imple
mentation of two cell processors of RAP.3 and less than the 
amount required by the earlier RAP cell processors. The 
savings in the auxiliary costs of boards, cables, sockets, pow
er, and maintenance would also be considerably higher. 

The operations proposed here are expected to be com
plementary to the RAP instructions, replacing some very 
common constructs that have to be implemented with more 
general but less efficient primitives of the RAP instruction set. 

ACKNOWLEDGMENTS 

This research is supported in part by the Office of Naval 
Research under Contracts NOO0l4-76-C-0370,NR 044-0422 
and NOO0l4-80-C-0236,NR 048-659, in part by the National 
Science Foundation under Grant MCS 78-236-76, and in part 
by the Defense Advanced Research Projects Agency (DOD), 
ARPA Order No. 3597, monitored by the Air Force Avionics 
Laboratory under Contract F33615-81-K-1539. 

I would like to thank Prof. Esen. A. Ozkarahan of Arizona 
State University, Varol Akman of Rensselaer Polytechnic In
stitute, and Richard Korf of Carnegie-Mellon University for 
their comments on an earlier draft of this paper. 

REFERENCES 

1. Babb, E. "Implementing a Relational Database by Means of Specialized 
Hardware." ACM Transactions on Database Systems. 4, (1979), 1-29. 

2. DeWitt, D. J. "DIRECT-A Multiprocessor Organization for Supporting 
Relational Database Management Systems." IEEE Transactions on Com
puters. C-28, (1979), 395-406. 

3. Ozkarahan, E. A., S. A. Schuster, and K. C. Smith. "RAP-An Associa
tive Processor for Database Management."AFIPS, Proceedings of the Na
tional Computer Conference (Vol. 44), 1975, pp. 379-387. 

4. Lin, S. c., D. C. P. Smith, and J. M. Smith. "The Design of a Rotating 
Associative Memory for Relational Database Applications." ACM Trans
actions on Database Systems, (1976), pp. 53-75. 

5. Lipovski, G. J. "Architectural Features of CASSM-A Context Addressed 
Segment Sequential Memory." Proceedings of 5th Annual Symposium on 
Computer Architecture, April 1978, pp. 53-75. 

6. Baum, R. I., D. K. Hsiao, and K. Kannan. "The Architecture of a Data
base Computer-Part I: Concepts and Capabilities." Tech. Report OSU
CISRC-TR-76-1, Computer and Information Science Research Center, 
Ohio State University, Columbus, Ohio, 1976. 

7. Schuster, S. A., H. B. Nguyen, E. A. Ozkarahan, and K. C. Smith. 
"RAP-2, An Associative Processor for Databases and its Application." 
IEEE Transactions on Computers, C-28, (1979), pp. 

8. Hsiao, D. K. (Ed.). "Special Issue On Database Machines." IEEE Com
puter Magazine, 12 (1979), pp. 

9. Langdon, G. G. (Ed.). "Special Issue On Database Machines." IEEE 
Transactions on Computers. C-28, (1979), pp. 

10. Hsiao, D. K. "Database Computers." In Advances In Computers (Vol. 19). 
New York: Academic Press, 1980. 

11. Codd, E. F. "A Relational Model for Large Shared Data Banks." Commu
nications of ACM, 13 (1970), pp. 377-387. 

12. Oflazer, K., E. A. Ozkarahan, and K. C. Smith. "RAP.3-A Multi
microprocessor Cell Architecture for the RAP Database Machine." Pro
ceedings of the Second International Workshop on High-level Language 
Computer Architecture, pp. 108-119. 

13. Myers, G. Advances in Computer Architecture. New York: Wiley, 1982, 
pp. 429-446. 

14. Schuster, S. A., E. A. Ozkarahan, and K. C. Smith. "A Virtual Memory 
System for a Relational Associative Processor. AFIPS, Proceedings of the 
National Computer Conference (Vol. 44), 1975, pp. 291-296. 

15. Kung, H. T. "Why Systolic Architectures?" IEEE Computer Magazine, 
January 1982, pp. 37-46. 

16. Kung, H. T., and P. L. Lehman. "Systolic (VLSI) Arrays for Relational 
Database Operations." Proceedings of ACM-SIGMOD 1980 International 
Conference on Management of Data. New York: ACM, 1980, pp. 105-116. 
Also available as a Computer Science Department technical report, 
Carnegie-Mellon University, Pittsburgh, Pa., August 1979. 

17. Kung, H. T., and C. E. Leiserson. "Systolic Arrays (for VLSI)." In I. S. 
Duff and G. W. Stewart (eds.), Sparse Matrix Proceedings. Philadelphia: 
Society for Industrial and Applied Mathematics, 1978, pp. 256-282. Also 
appears as Section 8.3 in Introduction to VLSI Systems by Mead and 
Conway. 

18. Lehman, P. L. "A Systolic (VLSI) Array for Processing Simple Relational 
Queries." In H. T. Kung, R. F. Sproull, and G. I. Steele, Jr. (eds.), VLSI 
Systems and Computations. Pittsburgh: Computer Science Press (Computer 
Science Department, Carnegie-Mellon University), 1981, pp. 285-295. 

19. Song, S. W. "A Highly Concurrent Tree Machine for Database Applica
tions." Proceedings of the 1980 International Conference on Parallel Pro
cessing. IEEE Computer Society, 1980, pp. 259-268. 

20. Song, S. W. On a High-Performance VLSI Solution to Database Problems. 
Doctoral dissertation, Carnegie-Mellon University, Computer Science De
partment, July 1981. Also available as a Computer Science Department 
technical report, Carnegie-Mellon University, Pittsburgh, Pa., August 
1981. 

21. Ozkarahan, Esen. An Associative Processor for Relational Databases. Doc
toral dissertation, University of Toronto, January 1976. 

22. Oflazer, Kemal. "A Microprocessor Based Approach to RAP Database 
Machine Cell Structure-Design and Analysis." Master's thesis, Middle 
East Technical University, Ankara, Turkey, June 1979. 

23. Ozkarahan, E. A., S. A. Schuster, and K. C. Sevcik. "Performance Eval
uation of a Relational Associative Processor." ACM Transactions on Data
base Systems. (1977), pp. 175-195. 

24. Hawthorn, P. B., and D. J. DeWitt. "Performance Analysis of Alternative 
Database Machine Architectures." IEEE Transactions on Software En
gineering, SE-8, (1982), pp. 61-75. 

25. Shultz, R. K., and R. J. Zingg. "A Performance Analysis of Database 
Computers." Tech. Report 82-02, Department of Computer Science, The 
University of Iowa, February 1982. 

26. Ullman, J. D. Principles of Database Systems. In Computer Software En
gineering Series. Pittsburgh: Computer Science Press, (Computer Science 
Department, Carnegie-Mellon University), 1980. 

27. Bernstein, P. A., and D. W. Chiu. "Using Semi-Joins to Solve Relational 
Queries." Journal of Association for Computing Machinery, 28 (1981), 
pp.25-40. 





Implementing set-theoretic relational-query functions using 
highly parallel index-processing hardware 

by SAKTI PRAMANIK 
Michigan State University 
East Lansing, Michigan 

ABSTRACT 

Hardware organizations for processing set-theoretic database query functions are 
presented. These,organizations implement the functions by processing index trees. 
One advantage of this approach is that the index trees can be merged in a highly 
parallel fashion. Hardware organizations proposed here use the database machine 
approach, thus processing the index-trees on the fly. Experimental results giving the 
performances of these organizations are presented. Finally, a slight variation of the 
index tree representation, requiring much less storage for the index, is given. 

283 





INTRODUCTION 

One important advantage of relational data models is that a 
relation is treated as a set of tuples, so a set-theoretic database 
query language can be designed for it. 4 These set-theoretic 
database query functions are a powerful tool for the data
base's users. But the implementation3 of such functions on a 
von Neumann architecture is not efficient. This inefficiency is 
caused by the disk input/output (I/O) bottleneck and the lack 
of multiprocessing capability.12 Several database machine ar
chitectures and architectures for very-large-scale integration 
(VLSI) have been proposed. 1, 2, 5--14 They all have multi
processing capability. But the problem of disk I/O bottleneck 
for a large database still remains. This paper proposes some 
hardware organization suitable for implementing set-theoretic 
query functions. The architecture proposed here is based on 
processing tree type index structure. This processing is done 
on the fly as the indexes are being read off the secondary 
storage. 

STRUCTURE OF INDEX TREES AND THEIR USE 
IN IMPLEMENTING SET~THEORETIC QUERY 
FUNCTIONS 

One of the many ways of representing an index for a file (a set 
of entities) is by storing the keys in a tree structure. An 
example of such an index tree is given in Figure 1. Here every 
character of the key is represented by a node of the tree. 
There are two distinct advantages of structuring an index in 
this fashion. First, this is a more compressed representation of 
an index than storing each key separately would produce. 
Second, and more important, this tree structure allows a con
venient and fast way of merging two or more indexes; thus it 
provides an efficient way of implementing set-theoretic data
base query functions, such as intersection, difference, and 
union. For example, the intersection function can be imple
mented by traveling through the index trees of both relations, 
and comparing their nodes. This is shown in Figure 2. Here we 
compare the root nodes of both trees, and find that only the 

Keys 

A B 

A C A 

A C B 

D A 

Corresponding Index-Tree 

~ 
A B 

Figure I-Index tree 

Set-Theoretic Relational-Query Functions 285 

M 
m 
~ 

~:I 
~ ~ 

EJcJl ~~~ <D~ 
::s bO 
cts.. 
<D <D 

E CIl:S 

[> [> 
parallel parallel 
merging merging 

Figure 2-Direction of sequential and parallel merging on index trees 

character A matches. In the next level, only the children of 
node A need to be compared. The interesting fact is that we 
can discard all the subtrees under the nodes that do not match. 
Further, the algorithm to merge two or more index trees, can 
be highly parallel. The merger is sequential along the depth of 
the tree and parallel along its width. 

This paper presents processor and memory architecture 
that exploits this inherent parallelism of merging two or 
more index trees. We also give a slight variation of this tree 
index that reduces the storage requirement for the trees 
considerably. 

DIFFICULTIES OF MERGING INDEX-TREES 
IN PARALLEL 

One difficulty of merging these index-trees is that a tree itself 
can be very big, big enough that only a part of it can be fetched 
into main memory at a time. Another is that it is difficult to 
exploit the inherent parallelism mentioned above, because the 
many subtrees that are to be merged in parallel need to be 
determined first, dynamically, and then loaded into the 
processors in parallel. We will give a database machine ap
proach to solve this problem, where the subtrees will be deter
mined first and then merged on the fly, as they are being read 
off the disk. Before we discuss this approach in detail, we 
would like to mention that a hierarchical sequential-storage 
structure will be used for storing the subtrees of an index. An 
example of hierarchical sequential storage is given in Figure 3. 
Here a tree is represented by a linear list of nodes of the index 

A 
~~ 

riliI1B1211D i3ITE13( tCl21 
~el# . 

storage Structure 

Figure 3-Hierarchical sequential storage structure 



286 National Computer Conference, 1983 

tree. Thus we can merge two index-trees by scanning the 
corresponding two lists, sequen~ially. The advantage of this 
storage structure is that the subtrees are readily available, 
right next to their parent node, in the same memory block. 
Also, the twin pointers help in skipping portions of the list, 
which accelerates the merger process. 

SEQUENTIAL MERGING 

The number of nodes of an index-tree of the names of 50,000 
randomly chosen persons has been computed; it was found to 
be about 1,000,000. Though this is only an estimate, un
loading data of this magnitude requires a lot of disk accesses. 
We will process data directly on the disk, as they are being 
read from it. First, we will consider sequential processing, 
requiring only one data stream per relation. Thus, to merge 
two relations we will have two data streams, each representing 
the nodes of the index-tree in a hierarchical sequential 
fashion. Each node contains the character and its level 
number in the tree. The level numbers are coded by a single 
bit as follows. A ° indicates that the level number is one higher 
than the preceding node's. A bit 1 indicates that the number 
following is the level number of the node. An illustration of 
this coding scheme is given in .Figure 4. The advantage of this 
coding scheme is that the nodes are stored in a hierarchical 
sequential order; thus the level numbers increase consecu
tively in the order in which the nodes are stored. 

We use the algorithm of Figure 5 to merge two such 
streams. The twin pointers mentioned before are not needed, 
because the scanning will be sequential in a stream. In the 
figure, level 1 and level 2 represent the levels of the current 
nodes being compared in stream 1 and stream 2, and SCAN 1 
and SCAN 2 represent the functions to get the next node of 
stream 1 and stream 2. ChI and Ch2 are the characters being 
compared. 

One problem of merging the data streams at the rate of data 
flow is that we need to freeze a node of one stream when we 
compare it against a corresponding node in the other stream 
that has not arrived yet. Since both trees are ordered, all the 
intervening nodes in the second stream are discarded. We can 
freeze a node by using some buffer memory. The size of this 
buffer memory, in the worst case, must be as big as the largest 
index-tree; though the probability of this worst case happen
ing is very low. We can reduce this buffer to any arbitrary size 
by stopping the data flow of an incoming stream when the 
buffer overflows. The data flow is allowed to start again when 
the buffer becomes available. For a disk type storage device 
this means a loss of a few revolutions. There is a tradeoff 

~ IBrol @EJ [i[IIJI 00 
~level# 

level code 

Hierarchical Sequential Storage 

Figure 4--Coded level numbers for hierarchicai sequential storage 

While (not end of stream 1 or stream 2) do 

IF (level 1 = level 2) then do 

IF (Chl = Ch2) then do 

IF (end of a key on) then do output record pointers 
both streams 

Endo 

SCAN 1 

SCAN 2 

Endo 

ELSE IF (Chl( Ch2) Then SCAN 1 

ELSE SCAN 2 

End IF 

Endo 

ELSEIF (level l~ level 2) Then SCAN 1 

ELSE SCAN 2 

Endo 

End While 

Figure 5-Algorithm to merge two hierarchical sequential index trees 

between the buffer size and the number of revolutions lost. 
We could, however, reduce this time loss by clustering the 
children nodes as shown in Figure 6. The advantage of this 
clustering is that the clustered nodes are the twin nodes, and 
all of them are available for comparison without any loss of 
revolution. Of course, now we will need to freeze a cluster but 
this will require less buffering because some tracks may now 
be skipped altogether. 

PARALLEL MERGING 

Instead of merging the index-trees in a hierarchical sequential 
fashion, we could also merge them level by level. Thus, we 
compare the characters of level 1 of both index-trees, first. 
Next we compare the children of these matched nodes, and so 
on. One serious problem of implementing this algorithm is to 
select from storage only the children of these matched nodes, 
and load them into the appropriate processors. Parallel load
ing is important, because the amount of data to be loaded can 
be very large. 

Here again we will use a database machine approach to 
merge the index-trees. We will do this by storing an index-tree 

Index-Tree 

Index-Tree after clustering 

L4iJ 1illl!!J~kJ 
Hierarchical-Sequential 

Storage Structure 

Figure 6-Clustcicd index and its storage structure 



in secondary memory, in two parts, and processing each part 
separately. The first part consists of the first K levels of the 
index-tree, starting with the root level. The second part con
tains the rest of the nodes. This is shown in Figure 7. Thus we 
will have as many index-subtrees in the second part as there 
are leaf nodes in the first part. We will store these index 
subtrees on the disk tracks for processing in parallel, on the 
fly. The extent of this parallel operation depends on the num
ber of index subtrees there are in the second part. On the 
other hand, if we can read N tracks from the storage, simul
taneously, there can be N parallel data flows, giving us a 
maximum of N parallel processings. 

In merging two index trees we will first compare the first 
part of both the indexes. The size of the first part will be rather 
small and can be merged by fetching the page containing it. 
Typically the first part will consist of the first three or four 
levels, containing only about 500 to 2,000 nodes. (For a 
26-character alphabet, the maximum number of nodes ever 
possible will be 26 for level 1 and 676 for level 2.) By merging 
these nodes of the first part we are able to determine which 
index subtrees in the second part are to be merged. We then 
load the appropriate instructions into the track processors for 
merging these index-subtrees. We assume a processor per 
track architecture for merging the second part. Each index 
subtree will be processed sequentially; they are stored on the 
tracks in hierarchical sequential fashion. 

There are two problems with this processor-per-track archi
tecture. The first problem is that the two index subtrees to be 
merged may reside on two different tracks. We need data
paths to transfer index subtrees of one track into the processor 
of an. other. Second, the two subtrees to be merged may not 
arrive at a processor at the same time. We solve this problem 
by using some buffer memory in each processor; it will be 
shown that the buffer size is reduced considerably by ordering 
the index-subtrees on the tracks, and by a proper track allo
cation strategy, that is, how subtrees are stored across the 
tracks. 

DATAPATH BETWEEN ADJACENT PROCESSORS 
AND DISTRIBUTED TRACK ALLOCATION 

Two different datapath organizations, each suitable for a par
ticular type of track allocation scheme, are presented. The 
first organization provides a datapath between each adjacent 

First Part ~ 
Il-~~ ~ 

Figure 7-Partitioning index tree into two parts and creating subtrees 
for parallel processing 

Set-Theoretic Relational-Query Functions 287 

(i-l)th. 
track 

ith. 
track 

(i+-l)th. 
track 

---B~9~; 2;~---
r:raCk Data path 

Processor 

Figure 8--Hardware organization using data path between adjacent processors 

processor. This is shown in Figure 8. When an index subtree 
is read from a track, it is transferred to the appropriate 
processor through this path. To avoid any path overlap of two 
simultaneous transfers, we schedule the merging of index sub
trees. For example, there is an overlap of path 1 and path 2 in 
Figure 8, because the path through processor i is shared by 
both. We avoid this overlap by scheduling the merger, using 
path 1 first and then path 2 in the second revolutaion. We are 
able to schedule them because the track position of each of the 
index subtrees is known. This serialization process increases 
the number of disk revolutions required. But this again can be 
minimized considerably by ordering the index subtrees on the 
tracks, as well as by using a distributed track allocation 
scheme. In distributed allocation, all the subtrees of an index
tree are spread across as many tracks as possible. Ideally, in 
distributed allocation, the first K subtrees will be on the first 
track, the next K subtrees on the second track, and so on, 
where K is the ratio of the number of subtrees to the number 
of tracks available. Table I shows the dependence of the 
selectivity ratio* and the value of K on the data path con
gestion. It is seen that the data path congestion increases with 

TABLE I-The number of disk revolutions required for selected 
values of K and the selectivity ratio (400 tracks) 

Selectivity 
Ratio K = 1* K=2 k=4 

.025 2 5 7 

.125 7 9 13 

.250 10 17 20 

.500 12 13 14 

.750 10 12 13 

.880 4 6 8 

*For K < 1, the number of disk revolutions could be further reduced. 

selectivity ratio initially, but starts decreasing again with fur
ther increase in selectivity ratio. The reason for this decrease 
is that the higher selectivity ratio means more likelihood of the 
matching subtrees being resident on adjacent tracks or on the 
same track. In this experiment we avoided data path con
gestion by scheduling only one subtree per track per revolu
tion and having no two tracks with overlapping paths in the 

*The selectivity ratio is the ratio of the number of joined tuples to the number 
of tuples in the joining relations. 



288 National Computer Conference, 1983 

same revolution. We could, however, schedule more than one 
subtree on a track in the same revolution if we knew the 
relative rotational positions of the subtrees. This would have 
reduced the number of revolutions required even further. 

The worst-case buffer requirement on each track depends 
on the numer of subtrees on a track that belong to the same 
index-tree. By distributing them over many tracks, we are 
able to reduce the size of the worst-case buffer requirement. 
Further, this distribution also helps in reducing the number of 
subtrees competing for a particular segment of the path. This 
helps in reducing the data path congestion also. 

TRANSFER PATH BY COMMON BUFFER POOL 
AND CLUSTERED TRACK ALLOCATION 

Though this distributed track allocation helps in reducing the 
worst-case buffer size as well as the data path congestion, 
distributing the subtrees uniformly over all the tracks may be 
a problem. This uniform distribution is important because it 
reduces the amount of buffer required per track. This is dis
cussed in the next section. Second, path congestion may still 
be a problem for large numbers of subtrees. 

On the other hand, transfer path by comm-on buffer pool 
helps in reducing this congestion problem by clustering the 
subtrees within a few tracks. In this allocation scheme we 
store the subtrees of an index tree on the same track, and if 
it overflows, we allocate another track, and so on. Thus we 
will have as few tracks as possible for storing the subtrees of 
a single index tree. We use a different mechanism for data 
transfer between tracks here, because at anyone revolution 
only these few tracks will be passing data back and forth, as 
opposed to all the tracks in the distributed track allocation. 
The hardware organization for data transfer path is given in 
Figure 9. Here we use a common transfer path between all the 
processors and schedule this common path sequentially 
among the processors by a circular priority line. Each 
processor keeps control of the path for no more than a preset 
maximum time period, and passes control to the next 
processor as soon as it is done with its transfer. When a 
processor gets control of the path, it can read from or write 

Selectivity K;l K=2 k=4 
Ratio 

.025 2 5 7 -

.125 7 9 13 

.250 10 17 20 

.500 12 13 14 

.750 10 12 13 

.880 4 6 8 

Note: The value of each entry in the table represents the number of disk 
revolutions. For K = 1, this value could be further reduced. (The number of 
tracks was assumed to be 400 in the experiment.) 

Figure 9-Data transfer by a transfer bus 

into a random-access buffer memory through this path. The 
idea here is to collect the subtrees and save them in the buffer 
pool until the corresponding subtrees have arrived in a 
processor, at which point we can start merging them in this 
processor. One advantage of this scheme is that we can use a 
common buffer pool instead of having separate buffer pools, 
statically, before the actual processing on the disk starts. We 
load each processor with the addresses in the common pool 
where these subtrees will be stored. Of course, these ad
dresses will be overlapping because the memory for the sub
trees that have been completely processed in the early part of 
the disk revolution can be reused in the later part. 

A TRADEOFF BETWEEN THE SPEED OF THIS 
TRANSFER PATH AND THE NUMBER OF 
REVOLUTIONS REQUIRED 

One serious problem of using such a path is the high transfer 
rate it requires. For example, if there are N tracks containing 
the subtrees of the two index trees to be merged, we will in the 
worst case need a path that is N times faster than the transfer 
rate of each of these tracks. Though the probability of this 
situation occurring is rather low, we can use a relatively slow 
transfer path by processing only a few tracks at a time. This 
will need a few extra revolutions to complete the merger of all 
the subtrees. Another advantage of processing a few tracks at 
a time is that the size of the buffer pool required will be even 
smaller. 

EXPERIMENTAL RESULTS TO COMPARE THE 
PERFORMANCES OF THESE TWO APPROACHES OF 
DATA TRANSFERS 

Experiments were performed to measure and compare the 
performances of these two organizations. We simulated the 
two systems with the following assumptions: only one of the 
two subtrees to be merged needs to be transferred to another 
processor; each subtree is assumed to be of the same size. 
These are rather simplifying assumptions, and the actual size 
of these subtrees depends on such factors as the type of data
base and the number of levels in the subtrees. We also assume 
that the pointers to the tuples are stored following each key in 
the index tree. 

Table II shows the amount of common buffer pool needed 

TABLE II-Buffer tree size (in number of subtrees) for selected 
values of the selectivity ratio and number of subtrees per track 

Selectivity Subtree per track 

ratio 240 120 60 30 20 15 

.01 8 9 10 10 10 7 

.10 42 59 75 81 80 84 

.30 84 144 219 206 197 212 

.50 95 169 282 350 326 315 

.70 75 136 243 433 484 442 

.90 66 99 181 318 393 410 



for different selectivity ratios. First of all, it is interesting to 
see from column 2 that only 9.5% of the subtrees storage of 
an index is needed for the buffer pool. This size is very small 
compared to the total index database size. It is also interesting 
to note that the buffer pool size increases with decreasing 
number of subtrees per track. This is because the number of 
tracks required to store the subtrees increases but the buffer 
required per track does not decrease in proportion. We also 
see from this table that the buffer-pool size increases with 
increasing selectivity ratio at first, and then starts decreasing 
again with a further increase in selectivity ratio. The reason 
for this decrease is that the higher selectivity ratio means more 
likelihood of two matching subtrees being in the same relative 
positions on the tracks. 

In distributed track allocation the buffer size per track is 
equal to the largest possible storage needed on a track for all 
subtrees of a single index. Thus, if we can distribute the sub
trees of an index uniformly over the tracks, it will result in a 
reasonably sized buffer. Wide variations in subtree sizes, how
ever, make this uniform distribution difficult. We can force 
these subtree sizes to be more uniformly distributed by mak
ing the subtrees start at a higher level in the index tree. This 
will create more subtrees, each one being smaller in size. 

The distributed track approach will require more buffer 
than the clustered approach because the former allocates 
buffer statically among the tracks. The storage requirement as 
well as the data path congestion can be reduced considerably 
if extra revolutions are allowed. This was shown in Figure 9. 
Extra revolutions also help the clustered approach in reducing 
the buffer size and the memory speed requirement. 

BINARY INDEX TREE 

A slight variation of the index tree approach, mentioned 
earlier, will now be described. This approach requires signifi
cantly less storage, and the underlying data structure is still a 
tree. Further, it can be a basis for parallel merging along the 
width, as well as along the depth ofthe tree. This new tree will 
be called the binary index tree. We will first describe the 
mechanics of this binary-index-tree, and then show by experi
mental results the significance of this approach in saving a 
large amount of storage. Finally, in the Appendix, we will 
present a proof of this result. 

It has been seen that an index tree fans out more in the first 
few levels of the tree than in later levels. Consequently, the 
index tree will have a large width at higher levels, which will 
therefore have a lot of nodes. We can reduce the number of 
nodes by partitioning the index tree vertically, as shown in 
Figure 10, and forming independent trees for each partition. 
The tree size for each partition will be very small, but we will 
now need a mapping between these trees. We accomplish this 
mapping by adding extra nodes to these trees at a logarithmic 
rate. These added nodes contain pointers to the correspond
ing nodes in the other trees. For example, an index tree can 
be split vertically, as shown in Figure 10, with each partition 
having two levels. Thus, an index tree with M levels will 
produce M 12 smaller trees. Each one of these trees, in fact, 
will be an index tree for keys, as if the keys are each of length 

Set-Theoretic Relational-Query Functions 289 

Track 

Priority Line 

Track 
Processor 

Transfer Bus 
Buffer Pool 

Figure 10-An example of a binary index tree 

two; the first two characters of each key produce tree one, the 
next two characters produce tree two, and so on. Now we map 
a pair of these trees at a time by adding an extra level of nodes 
to one of them. Each of these nodes points to the leaf nodes 
of the other tree in the pair. Thus, we have M 14 trees with 
three levels. Next, we map these M 14 trees only, again a pair 
at a time, creating M 18 trees, with four levels each. We con
tinue this process until we have one tree with (log2M) + 1 
levels. An example of this is shown in Figure 10. 

A SIMPLIFIED MODEL AND 
EXPERIMENTAL RESULTS 

We assume that the average fan-out of a node at the ith level 
is Ni + 1. The number of nodes at the root level (i.e., level 1) 
is Nl, say. Then in the ith level the number of nodes will be 
Nl x N2 x ... x Ni. Thus the total number of nodes, S, for 
an index tree M levels deep, is: 

s~f(n M). 
i=1 j=1 

(1) 

The number of nodes, S 1, for a binary index tree will be 

M logZM M ( 2i ) 

S 1 = N12 + 2: 2i n Nj • 

z=1 J=1 

(2) 

Using these two formulas we have computed the values of S 
and SI, for different values of the sequences Nl x 
N2 x ... x NM. These are given in Table IV. Each group size 
is defined in Table III. It is seen that the amount of storage 
needed in binary index tree is less than in the index tree ap
proach. Further, this saving increases with increasing length of 
the keys. For example, the saving is 66.4% for keys of length 
16, and is 72.53% for keys of length 32. It is also seen from 
Table IV that the percentage gain for the binary index tree is 
less for faster growth of the sequences Nl, N2, ... , NM. 

It is important to note here that the number of nodes re
quired in the binary index tree approach is considerably less 
but some of the nodes need extra storage for the mapping. It 
turns out, though, that the amount of this extra storage is 
much less than the large amount saved by reducing the num
ber of nodes. Finally, it is shown in the appendix that for any 
value ofthe sequence Nl, N2, ... , NM, the number of nodes 
for the binary index tree is less than or equal to the number 
of nodes for the index-tree. 



290 National Computer Conference, 1983 

TABLE III-Average fanout at each level of the index tree of a group 

Group# N1 N2 N3 N4 N5 N6 N7 

1 26 11 7 4 2 1.4 1.2 
2 26 11 8 A 1 A A 1 "'1<::: 1.3 't L't't L':'J 

3 26 12 8 4 2.4 1.4 1.1 
4 26 18 10 5 1.5 1.1 1.2 
5 26 18 12 8 1.113 1. 1. 

* An index with 50,000 keys is assumed. 

APPENDIX 

Proposition The number of nodes, S, of an index tree is 
greater than or equal to the number of nodes, Sl, of a binary 
index tree for any values of the sequence N1, N2, ... , NM. 

Proof. From (1) and (2) we have 

i=1 j=1 

In general, for a large number of keys, Sand Sl are fairly 
large, and we ignore the first term from both Sand S 1. Thus 
we have 

Note that the last terms of Sand S 1 are the same. Since we 
want to compare the values of Sand S 1, we can ignore this 
similar term from both. Thus from S we get 

and from S 1 we get 

(Iog2M)-1 M ( 2; ) 

S l' = 2: 2i P Nj • 
i=1 J=l 

Now S' can be rewritten as 

TABLE IV-Percentage savings in number or nodes achieved by 
using binary index trees, by key size and group 

Key size 

Group 16 32 64 

1 66.4 72.53 74.37 
2 66.24 73.2 75.2 
3 68.33 71.11 72.11 
4 58.65 61.03 61.9 
5 48.75 50.56 51.3 

N8 N9 N10 N11 N12 N13 N14 N15 Nl6-N64 

1.1 1.01 1.1 1.05 1.1 1.05 1.2 1.045 1. 
1.1 1.01 1.10 1.2 1.3 1.1 1.113 1. 1. 
1. 1.15 1.10 1. 1.05 1.02 1. 1. 1. 
1.08 1. 1. 1. 1. 1. 1. 1. 1. 
1. 1. 1. 1. 1. 1. 1. 1. 1. 

II2; 

Thus the term j=tNj is same as in S 1'. We abbreviate this 
term as Ci• Thus, 

2; 

C=n Nj • 

j=1 

It should be noted that C ::s; Ci + 1 for all is, because Ni 2: 1 
for all is. 
Now we can write S' and S l' as 

(log2M)-1 ( 2i-1 (2n
i
+.

j (N
k
»)) 

S'= 2: C 1+2: 
i=1 j=1 k=2'+1 

(logzM)-1 M 
Sl' = 2: 2i c. 

i=1 

The term within parentheses foJ' S' satisfies the following 
condition, 

because there are 2i - 1 terms in the summation, each of 
which is greater than or equal to one. Thus we have 

(\og2M )-1 

S' 2: S" = 2: 2i C. (AI) 
i=1 

By subtracting S l' from S" we get 

(\og2M) -1 ( M) 
S" - S l' = 2: Ci 2i - 2i 

.=1 

The absolute values of 2i - M 12i for i = 1 through (log2M) - 1 
form a duplicating sequence. For example, its values for i = 1 
and i = (log2M) - 1 are 2 - M 12 and -(2 - M 12), respec
tively. Similarly, for i = 2 and i = (log2M) - 2 the values are 
(4 - M14) and -(4 - MI4), respectively, and so on. Thus, we 
can write 

where N = (log2M - 1)/2. 
For this range of values of i we have 

and 

(C2N+ I - i - C;) 2: o. 



Thus 

sit - Sl' ;;:: O. (A2) 

From relations (AI) and (A2) we get 

S'-Sl';;::O, 

which was to be demonstrated. 

REFERENCES 

1. Babb, E. "Implementing a Relational Database by Means of Specialized 
Hardware."ACM TODS, (1979), No. 1. 

2. Banerjee, J., D.K. Hsiao, and K. Kanna. "DBC-A Database Computer 
for Very Large Dtabases." IEEE Transactions on Computers, C-28 (1979), 
No.6. 

3. Blasgen, M.W., and K.P. Eswaran. "Storage and Access in Relational 
Databases." IBM Systems Journal, 16 (1977), No.4. 

4. Date, C.J. An Introduction to Database Systems (3rd ed). Reading, Mass.: 
Addison-Wesley, 1981. 

5. DeWitt, D.J. "Direct-A Multiprocessor Organization for Supporting Re
lational Database Management Systems," IEEE Transactions on Comput
ers, C-28 (1979), No.6. 

Set-Theoretic Relational-Query Functions 291 

6. Hawthorn, P., and D.J. DeWitt. "Performance Evaluation of Database 
Machine Architectures." Proceedings of the Seventh International 
Conference on Very Large Date Bases, 1981. 

7. Kung, H.T., and D.L. Lehman. "Systolic (VLSI) Arrays for Relational 
Database Operations." Proceedings of the ACM-SIGMOND Conference, 
1980. 

8. Menon, M.J. and D.K. Hsiao. "Design and Analysis of a Relational Join 
Operation for VLSI." Proceedings of the Seventh International Conference 
on Very Large Data Bases, 1981. 

9. Ozkarahan, E.A., S.A. Schuster, and K.C. Smith. "RAP-Associative 
Processor for Database Management." AFIPS, Proceedings of the National 
Computer Conference (Vol. 44), 1975. 

10. Pramanik, S. "Implementing Relational Join by Database Filters," 
Technical Report, Computer Science Department, Michigan State 
University, 1982. 

11. Shaw, D. "A Relational Database Machine Architecture," Proceedings of 
the Fifth Annual Workshop on Computer Architecture for Non-numeric 
Processing, Pacific Grove, California, 1980. 

12. Song, S.W. "A Survey and Taxonomy of Database ~chines," Quarterly 
Bulletin, IEEE Computer Society Technical Committee on Database 
Engineering, December 1981. 

13. Su, Stanley Y.W., and G. Jack Lipovsky. "CASSM: A Cellular System for 
Very Large Databases," Proceedings of the International Conference on 
Very Large Databases, 1975. 

14. Yao, S.B., and Fu Tong. "Design of a Two-Dimensional Join Processor 
Array. Proceedings of the Sixth Annual Workshop on Computer 
Architecture for Non-Numerical Processing, Hyeres, France, 1981. 





Cost-effective ways of improving database 
computer performance 

by DAVID K. HSIAO 
Naval Postgraduate School 
Monterey, California 

ABSTRACT 

In this paper the hardware features that characterize the performance bottlenecks 
of conventional database computers are identified. Motivations for and proposals 
of new architectures for overcoming the bottlenecks for future database computers 
are given. 

293 





BACKGROUND 

According to the 1974 publication on its database computer as 
a backend of the mainframe host computer for database man
agement,1 XDMS was aimed to provide the following: 

1. Cost-saving and performance gain through dedicated 
software and backend hardware 

2. Shared databases 
3. Centralized protection 
4. Ease in software development on a standalone backend 

and for the backend 

The last three aims had largely been achieved. For example, 
XDMS was able to communicate not only with the original 
host, a Univac 1108, but also with a new host, an IBM 360. In 
other words, XDMS allowed two host computers (more spe
cifically, their respective application programs) to access the 
same database, even though the application programs running 
on the one host cannot be run on the other host. Obviously, 
XDMS was provided with multiuser and multirequest sup
ports and update locks. By allowing only the backend to con
trol, manage, and access the database store, namely the disks, 
XDMS achieved the aim of centralized protection. For the 
first time, the disks of the database could be physically pro
tected from the disks of the mainframe. The only possible way 
of compromising the protected database was by way of the 
"front door," through the host-backend communications. 
Data security employing encryption could ease such "frontal" 
attack. Finally, it was obvious for the developer that software 
development could always be accommodated readily if the 
machine for which the software was aimed was present and if 
a new machine could be used for software development. What 
was not clear at the time was the success of achieving the first 
aim-the cost saving and performance gain through dedicated 
software and hardware. 

Cost saving was arguable. The software development and 
purchase cost had been shown to be, at worst, comparable to 
the software development and purchase cost of the database 
management system (DBMS) for the mainframe. The hard
ware cost of the backend had not been higher than the hard
ware cost of mainframe upgrade for the DBMS. For example, 
the original backend of XDMS was a 16-bit minicomputer 
known as Meta-4, which cost $60K in 1974. Since the cost of 
minis is rapidly coming down, the same minicomputer should 
cost less than $30K now. In fact, it would be cheaper than a 
disk controller. Disks for the database were needed whether 
the backend was utilized or not. On the other hand, if the 
backend were not employed, the DBMS acutely needed the 
addition of main memory, processing power, and channel 

Improving Database Computer Performance 295 

capacity for its support in the mainframe. Thus, the cost sav
ing by way of the database management backend was indeed 
arguable. 

The major disappointment was in performance gain. Per
formance may be measured in terms of the following: (a) the 
communication and transmission times between the backend 
and its host, and (b) the transaction execution time. XDMS 
was reported to have very low degradation due to commu
nication and transmission. It was also reported to have good 
performance for complex queries. The latter report was diffi
cult to justify in view of the small size (i.e., 1,500 records) of 
the database involved. Most database system designers knew 
that the time complexity of certain queries (e.g., relational 
joins) was proportional to the size of the database involved 
(e.g., cardinality of the relations involved). The time com
plexity of a query was a determining factor of the query exe
cution time. Thus, the larger the database there was, the 
longer the transaction time would be. Perhaps the argument 
on performance gain was made in terms of the relative per
formance of the transaction execution time; that is, given the 
same set of transactions, the transaction set was first executed 
in a host without a backend and then executed in the backend. 
By comparing their response times (i.e. the communication 
and transmission time, plus the transaction execution time) 
relative to each other, we could then conclude one's gain ove~ 
the other. Subsequent experiments with XDMS-like backends 
yielded no appreciable performance gain over the conven
tional mainframe-oriented ones. This lack of performance 
gain was due to two factors: First, it was difficult, if not impos
sible, to come up with software design that ran appreciably 
faster in the backend but not in the mainframe. Second, the 
backend, as a general-purpose minicomputer, was inherently 
slower in speed and meager in resources than the well
endowed host. Thus, database management software did not 
necessarily run faster on the backend. 

Others attempted to introduce, instead of a dedicated mini, 
specially configured hardware to speed up the transaction 
execution time. These new backends, such as Britten-Lee's 
IDM 500 and Intel's iDBP are mostly microprocessor
based hardware with a generous use of random-access memo
ries. However, even with these attempts, \tQ.e performance 
gain may still be elusive. Let us examine the architecture of 
current database computers and identify their performance 
bottlenecks. 

WHERE ARE THE PERFORMANCE BOTTLENECKS? 

Consider the architecture of a backend computer depicted in 
Figure 1, where conventional disks are used for the database 



296 National Computer Conference, 1983 

(1- 8) 

Major 

atabase 

High-speed Bus 

Minor 

Database 

Processor 

(256K", 8 megabytes) 

(1 ..... 4) 

The Database 

(up to 4 disks per 
controller) 

Figure 1-Typical configuration of a microprocessor-based 
database computer 

store. It is important to note that everything is hung on the 
high-speed bus. In other words, for the data coming off the 
disk and going into the random-access memories, coming off 
the memories and going toward the hosts or terminals, or 
being accessed by the major database processor and other 
minor database processors~ the high-speed bus is the only 
throughway for the data movement and access. Consequently, 
the performance of the backend cannot exceed the capacity of 
the high-speed bus. Presently, a typical high-speed bus has a 
transfer rate of 20 to 320 megabits/sec. 

For a database computer with four disk controllers, each of 
which has four disk drives, assuming that the disk is of me
dium capacity, 300 megabytes/drive, we have the following 
calculations: 

4 (controllers) x 4 (drives) x 300 x 106 (bytes/drive) 
= 48 x 108 bytes of the database 
= 384 x 108 bits, 

384 x 108 
/ (20 X 106

) = 1,920 seconds to read out the 
entire database 

= 32 minutes. 
384 x 108 

/ (320 X 106
) = 120 seconds = 2 minutes. 

This indicates to us that for text search and retrieval, an im
portant application of database management, it takes at least 
2 to 32 minutes to search and retrieve the entire textual data
base. Even if the search and retrieval is restricted to a 
fraction-say a quarter-of the database, it will require at 
least one-half minute to 8 minutes. Consequently, conven
tional database computers are not suitable for text search and 
retrieval. 

For formatted database management, where indices are 
used and accesses to the database are more selective, we do 
not use disk drives as the basis for calculation. Instead, we 
condder that the physical records correspond to disk tracks, 
which are the units of data access and transfer. Assume that 
a track is of 24 Kbytes. We then have the following: 

(20 X 106 
/ 8) / 103 = 2,500 byte/msec (the bus capacity), 

24K / 2.5K = 10 msec 

to piace a track of data in the main memories. Sirnilarly, at the 
higher rate of 320 x 106 bits/sec, we need .6 msec to place a 
track of data in the main memories. We assume the optimal 
situation, that only one track of data is needed from each disk 
drive and that all the track seeks have been overlapped. Thus, 
all 16 disk tracks coming from 16 separate drives can be read 
back-to-back at the maximal bus rate. We then need 

16 x 10 = 160 msec and 16 x .6 = 9.6 msec. 

Since, for formatted databases, it uses indices and auxiliary 
information to select data tracks, the database computer must 
access the indices and auxiliary information that are also 
stored on the disks. Thus we need another 9.6 to 160 msec. 
Altogether, then, we need a minimum of 9.6 to 160 msec to 
get a unit of data into main memories for processing. As
suming that the CPUs, with cycles ranging from 200 nsec to 1 
f.Lsec, of most of the 16-bit microprocessors and minicom
puters can keep up with the incoming data by executing short 
system programs, we quickly see that to improve the per
formance we must improve the transfer rate of the high-speed 
bus, that is reduce the time needed to transfer a unit of data. 

Although a higher speed (say, beyondj20 megabits/sec) of 
the bus is attainable at higher cost, the gain in bus speed is 
nevertheless offset by the higher capacity of the disk (say, of 
1.25 gigabytes/drive, which would make a database of 20 giga
bytes a reality). Larger-capacity disks imply larger databases; 
in turn, these imply wider distributions of related data on the 
disks, which in turn imply more data pages needed in the main 
memories. Consequently, the higher-speed bus is used for 
disks of ever larger capacity. With these new figures and as
sumptions, we may go through the same calculation again. We 
then discover that a backend is required to pay a fixed "cost" 
(of approximately 9.6 to 160 msec) for a unit of data manage
ment and data transfer, despite the large (i.e., gigabyte) 
capacity of the disks and the high cost of the faster bus used 
for the backend. In fact, the use of such an expensive bus with 
large disks will not show any performance gain over the use of 
a less-expensive bus with medium disks. By now, we learn that 
our earlier conclusion is not valid. The cost-effective way of 
improving the database computer performance does not lie in 
the expensive higher-speed bus, since larger-capacity disks for 
very large databases will offset any possible reduction of the 
fixed overhead in data management and transfer. The ques
tion is therefore whether or not we can improve the database 
computer performance, despite the presence of the fixed 
overhead and the lack of any prospect of taking advantage of 
the advancement of bus and disk technology. 

ARCHITECTURAL SOLUTIONS FOR IMPROVING 
THE PERFORMANCE 

There are two proposals. Although they are different in their 
architectural approaches and technological choices, these pro-



posals use the same principle. The principle is sharing the 
same fixed cost (overhead) by using a multiplicity of identical 
hardware and by processing the data on the identical hard
ware concurrently. 

Database Stores with Built-in Parallel Processing Logic 

Consider our first proposal, which is depicted in Figure 2. 
In this proposal, the moving-head disks are modified so that 
they can perform parallel read-out and write-in operations. 
Such technology was reported as early as 1978? The disk 
controller is also modified so that there is a processing unit for 
each data steam coming from the track. Therefore, there are 
as many processing units in the controller as there are tracks 
in a cylinder. Assuming 20 tracks per cylinder, we need only 
20 processing units in a controller. Each one ofthe 20 process
ing units has an identical microprocessor-based architecture 
with considerable use of random-access or shift-register-like 
memories. Each unit is essentially a major database processor 
of the sort depicted in Figure 1. The differences between 
Figure 1 and Figure 2 are that 

1. The same major database processor is multiplied 20 
times in the new disk controllers. 

2. Different processing units process their own data 
streams coming from different tracks. 

The first difference has been to some extent overcome, since 
the manufacturer of the controllers has already incorporated 
processing logic for defect detecting and error decoding into 
the controller, as well as logic for executing the software on
line I/O routines (known as access methods). There is no rea
son why the disk manufacturers cannot make the controller 

New Disk Controller with 
Built-in Logic Processing 
the entire cylinder in 
one revolution 

New Disk Drive with 
parallel read-out or write-in 
of an entire cylinder in one 
revolution 

Figure 2-High-performance disk system 

Improving Database Computer Performance 297 

even more intelligent. The second difference can be overcome 
since we can achieve a microprocessor-based architecture 
where single-instruction-and-multiple-data-stream (SIMD) 
and multiple-instruction-and-multiple-data-stream (MIMD) 
modes of database management become a reality. Thus, all 
the data streams "share" the same fixed overhead; mean
while, 20 times as much data access, transfer and processing 
may be accomplished. 

This approach to reducing overhead and improving per
formance is cost-effective because the disk technology for 
parallel read-out and write-in is here, the controller tech
nology for built-in logic is also here, and the addition of iden
tical hardware is proportional' to the performance gains. We 
observe that in multiplying the hardware in the controller we 
are asking not for ever-faster buses, but for multiplication of 
the existing bus and processor structure. This proposal has 
been thoroughly analyzed and studied.3 

Software Multibackends 

Consider our second proposal, which is depicted in Figure 
3. This proposal is aimed at addressing the following question. 
Is it possible to use a multiplicity of minicomputers and their 
disk systems, unconventional hardware configuration, and in
novative software design for achieving improvements in 
throughput and response-time for large and growing data
bases over what conventional and single-backend database 
management can provide? 

One 
VAX-11 

witli 
large 

memory 
box 

To host computer 

I 
CPU J--H+t----j 

Primary 
memory 

Six PDP 11-44s 
with six 
',geparate 

disk drives 
and 

memory boxes 

Figure 3---Multibacker database management system 

--B 
disks 

---EJ 
disks 

--B 
disks 

--e 
disks 

---EJ 
disks 

--B 
disks 



298 National Computer Conference, 1983 

Measures of a good multibackend database system are that 

1. The throughput improvement is proportional to the mul
tiplicity of the backends. 

2. The response time is inversely proportional to the multi= 
plicity of backends. 

3. The system is extensible for capacity growth and/or per
formance improvement. 

The cost -effective ways of extending the software and hard
ware of the multibackend system with one controller (Le., 
master) and several backends (i.e., slaves) are to 

1. Allow the addition of more backends of the same type, 
instead of the replacement of the present backends with 
more powerful models 

2. Require identical software in each of the backends and 
replicate the existing software on new backends 

3. Minimize the role of the controller of the backends 

We note that the addition of the same type of minis and disk 
systems, our first way, will incur few system interruptions. 
Intuitively, for the same database we double the number of 
minis if we want to double the performance gain. For a grow
ing database, say, that will double the current database size, 
we would double the hardware to maintain the present per
formance. Our second way of extending the system, software 
replication, can be easily accomplished on the new hardware 
by doing a system-generation (i.e., SYSGEN); furthermore, 
the increase of software replication does not imply the in
crease of software complexity, since all the software repli
cated in the slaves is identical. Finally, the master should not 
become the bottleneck of the new and existing slaves, else 
there will be little extension of the system capacity and little 
improvement in system performance. To keep the master 
from becoming a potential bottleneck, we require that the 

controller (i.e., master) perform minimal (yet necessary) 
work. Presently, a software multibackend prototype is being 
implemented. 4

,5 Projected performance gain (or loss) will 
soon be validated (or invalidated). 

CONCLUDING REMARKS 

In this short paper, we attempt to show that cost-effective 
ways of improving database computer performance do not lie 
in the single backend system. Instead, the ways may be found 
either in multibackend systems or in disk systems with parallel 
read/write and processing capability. Either way is within the 
state of the art of hardware and software technologies. What 
we must do IS try these cost-effective ways. 

ACKNOWLEDGMENTS 

The work reported herein is supported by the Office of Naval 
Research under Contract NOOO14-75-C-0573 and, in part, by 
an equipment grant from the Digital Equipment Corporation. 

REFERENCES 

1. Canady, R.H., R.D. Harrison, E.L. Ivie, J.L. Ryder, and L.A. Wehr. "A 
Backend Computer for Database Management." Communications of the 
ACM, 17 (1974), 575-582. 

2. "Ampex Parallel Transfer Disk Drive," (DM·PTD9) product announce· 
ment, Ampex Corp., Redwood City, Calif., 1977. 

3. Banerjee, J., D.K. Hsiao, and K. Kannan. "DBC-A Database Computer 
for Very Large Databases." IEEE Transactions on Computers, C-28 (1979), 
414-429. 

4. Hsiao, D.K., et al. "The Implementation of a Multi-backend Database 
System (MDBS): Part I-An Exercise in Database Software Engineering." 
In Advanced Database Machine Architecture. New York: Prentice-Hall, 
1983. 

5. He, S.G., et al. "The Implementation of a Multi-Backend Database System 
(MDBS): Part II-The Design of a Prototype MDBS." In Advanced Data
base Machine Architecture. New York: Prentice-Hall, 1983. 



Application of the massively parallel processor to database 
management systems 

by EDWARD W. DAVIS 
North Carolina State University 
Raleigh, North Carolina 

ABSTRACT 

The Goodyear massively parallel processor (MPP) represents a new architecture 
with the potential for providing improved solutions to applications benefiting from 
highly parallel operation. In this paper, application of the MPP to database manage
ment systems is examined. Specifically, the relational database model is considered. 
Database management has been selected as a candidate application of the MPP 
because of the positive results achieved in previous work related to parallel architec
tures and database systems. The relational model has been selected for its applica
bility to parallel processing, its mathematical foundation, and its general recog
nition as a model that is superior in many respects to the hierarchical and network 
models. The paper concentrates on a comparative evaluation of the MPP and an 
abstract conventional computer by examining specific database management func
tions rather than an entire database management system. 

299 





INTRODUCTION 

New digital computer architectures offer the potential for 
finding improved solutions to computer-based applications. 
The massively parallel processor (MPP) represents a new ar
chitecture with such potential. 1

,2,3,4 In contrast to many archi
tectural ideas, it is important to note that a physical realization 
of the MPP is being produced under a contract between 
NASA and Goodyear Aerospace Corporation. 

The MPP is motivated by the necessity to process very large 
amounts of two-dimensional image data, a problem ap
proaching intractability on conventional machines. MPP sys
tem design supports the processing, interprocessor commu
nication, memory, and input/output bandwidth requirements 
of high-performance image processing. Since the machine is 
fully programmable, it is reasonable to examine additional 
applications for which the highly parallel properties are poten
tially advantageous. That is, it is reasonable to determine 
applications where the MPP can provide better solutions than 
those currently available. 

In this paper, application of the MPP to database manage
ment systems is examined. Specifically, the relational data
base ~odel is considered. D~tabase ~anagement has been 
selected as a candidate application of the MPP because of the 
positive results achieved in previous work related to parallel 
architectures and database systems. 5,6,7 The relational model 
has been selected for its applicability to parallel processing, its 
mathematical foundation, and its general recognition as a 
model that is superior in many respects to the hierarchical and 
network models. 8,9 The paper concentrates on a comparative 
evaluation of the MPP and an abstract conventional computer 
by examining specific database management functions rather 
than an entire database management system. This is consis
tent with the commonly held view of the parallel array portion 
of the MPP as handling certain functions on receipt of a com
mand, whereas the MPP control processor or a host machine 
generates commands. 

MPP FEATURES 

Relational database systems can be implemented on con
ventional uniprocessor computing equipment. They do not 
require any unique functional capability. However, database 
system performance can be affected greatly by features of the 
underlying computer architecture. Thus several machines 
have been designed specifically for database applications but 
few have been built. Three design examples are RAP,6 
DBC, 10 and DIRECT. 11 The MPP design, although motivated 
by image processing rather than by database tasks, never
theless has features that nicely support the relational database 

Application of the Massively Parallel Processor 301 

model. Essentially, the massive parallelism can be used to 
great advantage for fundamental relational operations. 

System Organization 

Major components of the MPP, as shown in Figure 1, are 
(1) a program and data management unit, (2) an array control 
unit, (3) an array unit, (4) a staging memory, and (5) periph
eral devices. Processing parallelism occurs in the array unit, a 
128 x 128 array of processing elements (PEs). I/O parallelism 
is supported by the staging memory, its input and output 
ports, and an I/O plane formed by a register in each pro- . 
cessing element. 

Overall supervision of the MPP is exercised by the program 
and data management unit. This unit provides an external 
interface to the MPP, responds to high-level commands for 
MPP use, and initiates activity in the array control unit. 

A significant architectural feature of the MPP is the incor
poration of three distinct control units and two control memo
ries into a single major component called an array control 
unit. Application programmers develop software for main 
control and I/O control units. The software for both resides in 
main control memory. Systems engineers and programmers 
develop microprograms for the processing element control 
unit, which executes out of PE control memory. Main control 
directly executes scalar operations and passes requests 
for parallel array operations to the PE control unit via a 
request queue. Scalar and array operations can proceed 
simultaneously. 

Massive parallelism occurs in the array unit with 16,384 PEs 
capable of operating in parallel. Each PE is a bit-serial pro
cessor. All PE operations, including memory access, take 
place at a lO-MHz clock rate for a lOa-nanosecond operation 
time. Each PE has a bit-wide random access memory (RAM) 
with a 16-bit address space. The first MPP will provide 1,024 
bits of RAM per PE, expandable to the design limit of 64K, 
corresponding to 16 address bits. In addition to PE inter
connection as an array, a separate unidirectional path allows 
I/O data movement along all 128 array rows in parallel. Data 
movement on the I/O path is independent of other PE oper
ations and can occur simultaneously with processing. 

Random access memory associated with each PE in the 
array unit represents the primary level of memory hierarchy. 
The staging memory, a level in the memory hierarchy, pro
vides both data storage and certain permutations useful in 
accessing multidimensional data structures. The staging 
memory is also an integral part of the MPP I/O system for 
array data. The interface between the staging memory and the 
array unit is a 128-bit-wide path that also operates at 10 MHz. 
That is, I/O bandwidth is 160 megabytes per second. 



302 National Computer Conference, 1983 

128 - BIT 
INPUT 
INTERFACE 

~ 

-3: 
V') 

-- I---
~ 

T - I I 

T)II 

I I 
1 I 

ARRAY UNIT 

(16,384 PEls) 
(128 X128) 

l' , 

[If11, 
,...i----.. -......-.~ 

128 - BIT 
OUTPUT 
INTERFACE 

........... ~I-+-f"~E 
~~ __ ~ ____ ~~i~~~~V 

- f0- r I -~ 

"'V= ! 1 
t 

r~ / 
STAGING 
MEMORY 

V 

CONTROL~ STATUS 

/ ... ~ SCI STATUS 
t - --4 EXTERNAL I CONTROL 

SWITCHING r _ ~ INTERFACE 
V CONTROL 

~--pop_ ........ .T 

CO~STA;S 

ARRAY CONTROL 
UNIT (ACU) 

"'---___ ...,---..,..rVl/ 

PROGRAMS H STATUS 
DATA ~T~ 

r~7 

STAGING 
MEMORY 

~"--U-~/""l 
~----------.~-------~-----------------1~~------~_--------------~J 

MAGNETIC 
TAPE 

DISK 

PROGR.AM & DATA 
MANAGEMENT UNIT r 

~_(-~PD~M_U_)~ ______ ~~ 

(1-/_---1'7 r 
~ ALPHA

NUMERIC 
TERMINAL 

'--_---"V 

EXTERNAL COMPUTER 
Figure 1-Block diagram of the MPp2 

LINE 
PRINTER 



System Operation 

Processing in the MPP array unit takes place in SIMD fash
ion. That is, a single instruction stream is executed on multiple 
(parallel) data streams. All enabled processing elements exe
cute the current instruction. Processing is enabled or disabled 
within each PE according to the state of a mask register. 
Masking allows selection of a subset of PEs that will take part 
in further processing, a feature that is very useful in query and 
update functions on databases. 

Processing elements and their memories are one-bit-wide 
units; thus processing takes place in a bit-serial fashion. Since 
each PE in the entire array can operate simultaneously, a 
128 x 128 plane of bits can be processed in parallel. A bit 
plane is simply one bit from the same location in each PE. 
Processing speed derives from the high degree of parallelism. 
If an instruction requires a data memory access, each PE 
accesses the same address in its own RAM. Thus the data 
streams to be processed in parallel must be mapped onto 
addresses in parallel memories. 

Highly parallel array unit I/O data movement involves I/O 
ports of the staging memory and a shift register I/O bit plane 
in the array. A single bit register in each PE is interconnected 
to form 128 row-oriented right-shift registers. The staging 
memory presents 128 bits of data at the leftmost edge, one bit 
per row, for input via shifting. Repeating the input shift step 
128 times results in a bit plane with an input data bit at each 
PE. One write operation can transfer the plane into random 
access memory. 

Output proceeds by reading memory to load the I/O bit 
plane, then shifting to the staging memory port. Input and 
output can occur simultaneously in the plane since data shift
ing in on the left fills columns vacated by data shifting to the 
right for output. 

RELATIONAL DATABASES IN THE MPP 

The Relational Model 

An important feature of the relational model of data is that 
the user's view involves just one data structure: the relation. 
Essentially a tabular structure, a relation consists of rows 
called tuples and columns called attributes. A database con
sists of one or more relations. Operations on the data struc
tures result in modification of attribute values or construction 
of new relations. In other terms, the operations on relations 
include queries and updates. A query is a search of attributes 
to identify or select certain tuples. Update operations can 
include modification of values as well as tuple insertion or 
deletion. 

Figure 2 is an example database in relational form. It is 
adapted from the Date text. 9 This small example is used to 
illustrate the tabular nature. The database concerns suppliers 
of parts. Relation S contains information about suppliers, 
relation P contains information about parts, and SP provides 
an association between suppliers and parts based on supplier 
numbers and part numbers. 

Application of the Massively Parallel Processor 303 

S: S# SNAME STATUS SCITY 

SI SMITH 20 LONDON 
S2 JONES 10 PARIS 
S3 BLAKE 30 PARIS 
S4 CLARK 20 LONDON 
S5 ADAMS 30 ATHENS 

P: P# PNAME COLOR wr PCITY 

PI NUT RED 12 LONDON 
P2 BOLT GREEN 17 PARIS 
P3 SCREW BLUE 17 ROME 
P4 SCREW RED 17 LONDON 
P5 CAM BLUE 12 PARIS 
P6 COG RED 19 LONDON 

SP: S# P# QTY 

SI PI 300 
SI P2 200 
SI P3 400 
SI P4 200 
SI P5 100 
SI P6 100 
S2 PI 300 
S2 P2 400 
S3 P2 200 
S4 P2 200 
S4 P4 300 
S4 P5 400 

Figure 2-A relational database 

Relations in MPP Memory 

Processing parallelism in the MPP occurs when an oper
ation takes place on a bit plane distributed over many pro
cessors. That is, the same operation is performed on many bits 
of data. Typically this will be a single bit of data from each of 
many data items. Data must be accessible in parallel to be 
processed in parallel. 

Database queries involve operations on attribute fields of 
tuples in relations. Since a given operation occurs on the same 
attribute of many tuples, parallel processing potential is great. 
The structure of data in the MPP can allow exploitation of this 
potential. A relation stored with one tuple per PE has a par
allelism factor limited only by the number of tuples in the 
relation (its cardinality) or the number of PEs. In the MPP, 
the 16,384 PEs represent the hardware limit on parallelism. 

A good data structure for a relation will have an individual 
tuple stored in an individual PE memory. Such a mapping 
places corresponding attributes of tuples in corresponding 
memory addresses for parallel, bit-plane accessing. If tuple 
length exceeds the realized memory size, a single tuple can be 
mapped into more than one PE memory. Alternatively, se
lected attribute fields, rather than the entire tuple, can be 
stored in PE memory. 

MPP Memory Hierarchy 

Recall that primary data memory capacity in the MPP 
ranges from 2 Mbytes in the first realization to 128 Mbytes as 
a design limit. Primary memory is supported by a hierarchy of 



304 National Computer Conference, 1983 

memory components. Next to primary memory, the staging 
memory provides up to 64 Mbytes of solid state memory with 
a 160-megabytes-per-second access rate. It is designed to buf
fer data to and from the next level in the hierarchy. As a 
second major function it can be used to reformat data. The 
staging memory is designed to be useful in handling access to 
rows and columns of multidimensional data structures. For 
example, it can provide columns of attributes as needed for 
array unit I/O, and it can provide rows of tuples as may be 
needed for the host or a peripheral. 

The next level in the memory hierarchy are devices periph
eral to the MPP, such as a disk memory system. All levels of 
the hierarchy provide physical storage for relations that is very 
similar to the user's logical view. On disks, a relation is a file 
with tuples as records. The close fit between the user's view of 
relations and their physical storage simplifies the conceptual 
design of a relational database system for the MPP. Software 
to manage the data and to access it is correspondingly 
simplified. 

DATABASE OPERATIONS 

This section describes implementation of selected database 
operations in the MPP and provides a performance com
parison of the MPP and an abstract conventional sequential 
processor (CSP). Processing operations on data in primary 
memory are considered as is treatment of larger databases 
using I/O and the memory hierarchy. Performance benefits 
related to the parallel architecture are emphasized. Relative 
dollar cost is not considered since the comparison involves an 
abstract conventional processor and a developmental parallel 
processor. 

Certain assumptions are made to provide a basis for per
formance comparisons. Both the MPP and the conventional 
machine are assumed to have the same execution-cycle time. 
In the MPP an execution cycle is a bit-level operation in each 
PE. In the conventional machine a word-level operation oc
curs, regardless of the word length. It is also assumed that 
primary memory available for data storage is equivalent in 
each machine. That is, the conventional machine has 2 
Mbytes of primary memory, in addition to that used for the 
operating system and programs, to match the MPP minimum 
configuration. 

Query Operations 

The implementation and performance of queries on a data
base resident within PE array memory is described. MPP 
primary memory, that solid-state random access memory di
rectly connected to the PEs, is capable of containing a mod
erately sized database. Using 1K-bit chips as in the first real
ization provides 16 Mbits of data memory. At the design limit 
64 Kbits per PE, memory capacity exceeds 109 bits. Although 
a few bit planes are reserved for system use, none of the space 
is used for program storage. 

Selection of tuples that satisfy a query corresponds to the 
select operation in relational terminology. The result of such 
operations, a horizontai subset of the originai reiation, is indi-

cated by a flag bit in each PE. Further processing could in
volve retrieving information from selected tuples, counting 
responders, and so on. 

A query on a single attribute of one relation is the simplest 
query. It is implemented as a comparison of a single com-
parand and the attribute field of all tuples. MPP design sup
ports this operation as an instruction at the application 
programmer's level. Using the database from Figure 2 as an 
example, suppose the query is to find all suppliers located in 
London. The single instruction to achieve this is: 

EQSA,S 'LONDON', S.SCITY, RESULT 

Interpretation of the instruction is to perform an equality 
comparison of a scalar and an array in PEs enabled by logical 
'1' in the relation S flag bit. The scalar value is 'LONDON'. 
The vector is the field in memory defined for relation Sand 
attribute field SCITY. PEs with tuples satisfying the search 
should set the bit symbolically named RESULT. 

Within the array, at the microprogram level, the operation 
is a loop whose iteration count depends on attribute-field bit 
length. Response time is proportional to attribute-field length 
but independent of the number of tuples. In a conventional 
sequential processor (CSP) the operation also involves loop
ing. Since comparisons occur sequentially, the iteration count 
is dependent on the number of tuples. CSP response time is 
proportional to the number of tuples but independent of 
attribute-field length. 

Based on items that determine query response time, a first
order performance evaluation is that the MPP will be faster 
than the CSP whenever the number of tuples in a relation 
exceeds the number of bits in the attribute field. Figure 3 is a 
graph of relative query timing on a log-log scale for a 32-bit 

16K 

4K 

w 
:::E: lK 
~ 

256 

64 

32 

32 bit attribute field 

CSP 

MPP 

64 256 1 K 4K 16K 

NUMBER OF TUPLES 

Figure 3--Simpie query timing comparison 



attribute-field length. It shows the significant performance 
difference resulting from increasing parallelism as the number 
of tuples increases. 

A query involving multiple attributes of one relation may be 
expressed either as a logical combination of single-attribute 
queries or as a comparison of pairs of attribute fields. Logical 
combinations can be readily achieved in the MPP via logical 
operations among bit planes resulting from single-attribute 
queries. A comparison of pairs of attribute fields within a 
tuple, for all tuples, can be characterized as a comparison of 
corresponding elements of two single-dimension arrays. The 
MPP application program needs just one instruction to carry 
out such an array-to-array search. Execution time is propor
tional to attribute-field length. 

Queries discussed up to now were limited to a single rela
tion. Query responses could be totally determined from infor
mation in the relation. Databases typically use several re
lations, making it necessary to be able to combine information 
in the operation known as join. This is a more complex query 
for both MPP and CSP machines. 

Using the database from Figure 2 as an example, suppose 
the query is to find all suppliers of bolts. The supplier relation 
(S) does not specify what is supplied. The parts relation (P) 
does not specify the supplier of each part. The supplier-part 
relation (SP) associates supplier and part numbers but does 
not identify the type of part. An outline of a method used in 
the MPP to arrive at the result is: 

Search P.PNAME for 'BOLT', flagging all responders. 
While responders remain do: 

Retrieve one responder's P.P# and reset its flag. 
Search SP.P# for the retrieved P.P# value. 
Logically OR result into a result bit plane. 

End. 

In this method both parallel and sequential activities are 
used. Searches are highly parallel. Resolving responders and 
retrieving one can be done with a minimum value search on 
P.P# and some sequential scalar operations. Iterations of the 
while-do loop occur sequentially. A very similar method can 
be used in a esp. It is necessary to sequentially search all 
tuples of P.PNAME for 'BOLT', followed by a search of SP 
for each tuple representing a bolt. 

Timing considerations show again that MPP performance is 
proportional to attribute-field lengths while CSP performance 
is proportional to the number of tuples. For large databases, 
the number of tuples will certainly be much greater than 
attribute-field lengths, yielding longer operation time for the 
esp. That is, the MPP demonstrates a large performance 
increase for the join operation. 

Result Retrieval 

Ultimately, it will be necessary to retrieve results of queries. 
When an attribute value from a relatively large number of 
tuples must be output, the I/O plane provides a parallel, high 
bandwidth path. The method is to move one bit of the attri
bute from each selected tuple out of the PE array in parallel, 

Application of the Massively Parallel Processor 305 

then to iterate the process through all bits of the attribute. 
Output of the bit requires a PE memory access to load the I/O 
plane register, followed by right shifting out of the array and 
into a staging memory port. Shift count depends on the posi
tion of selected tuples in the PE array. If all selected tuples are 
located in the rightmost column, a shift of one completes 
output. In the worst case, a selected tuple may be located in 
the leftmost column requiring a full 128-position shift. Output 
time, at 100 nsec per shift, is thus based on the column posi
tion of tuples selected for output and on the number of bits in 
the field. 

Using the I/O plane method just described, output time is 
independent of the number of selected tuples in the columns 
being output. Thus, while output of an n -bit attribute from 
one tuple can take as long as 12.8 n f.Lsec, many more attri
bute values could be output in the same time. An effective 
output rate can be determined for an assumed percentage of 
selected tuples. Figure 4 shows the effective rate under the 
assumption that result attributes are distributed over all PE 
columns, requiring a full 128-position shift. When results are 
present in 3% of all tuples, for example, the effective 32-bit 
attribute output time is an excellent 0.8 f.Lsec. 

When an attribute value from one or a few tuples must be 
output, the use of special sum-OR logic is better than the I/O 
plane. Figure 4 shows an increase in effective output time 
using the I/O plane method as the percent of potential output 
items decreases. The parallel register output paths are not 
efficient when the parallelism factor is small. Alternatively, 
sum-OR logic provides an efficient path from one enabled PE 
to a scalar register in the PE control unit, which is accessible 
by the main controi unit. 

Update Operations 

Databases are dynamic. The capability to change the infor
mation in a database by adding new information, removing 
that which is no longer needed, and changing existing infor
mation is necessary. This section is concerned with the dy
namic nature of a database. 

102.4 

25.6 

~ 
(/) 

6.4 ;::1 

w 
::;;: 

I- 1.6 

.4 
n=32 

.1 
n=8 

.1 .2 .4 .8 1.6 3.2 6.4 12.8 

% OF TOTAL ITEMS 

Figure 4-Effective attribute output timing 



306 National Computer Conference, 1983 

Increasing the size of a relation by inserting tuples is a 
straightforward process in the MPP. The definition of a re
lation is a set of tuples with no implied order of set members. 
Query processing in the MPP also does not depend on an 
ordering. Again, the user's logical view of a relation matches 
the MPP physical implementation. A tuple can be inserted by 
simply appending it to the existing relation. A flag bit in each 
PE memory can indicate PEs with tuples belonging to a given 
relation. The use of flag bits to enable PEs via the mask 
register and the ability to handle unordered relations reduces 
complexity of the system design and software. 

Parallelism, as discussed for query processing, can also be 
used for modifying attributes of tuples. The MPP is capable of 
performing arithmetic and logical operations on data in all 
enabled PEs in parallel. Modification of an attribute field by 
a single value is similar to a simple query on an attribute. It is 
a scalar-to-array operation. Timing relationships are similar to 
the query case with MPP timing proportional to the field 
length in bits and CSP timing proportional to the number of 
tuples to be modified. Functional operations between fields of 
selected tuples in a relation are implemented as array-to-array 
operations. Corresponding elements in each array are func
tionally combined for all tuples simultaneously. The pro
cessing is bit serial but tuple parallel. 

Very Large Databases 

Prior discussion centered on a primary-memory resident 
database. For larger databases, 110 involved in moving the 
database between secondary memory and the PE array must 
be considered. 

In the MPP, processing and 110 can be almost totally over
lapped in time. Processing uses data paths that are indepen
dent of those used for I/O. When the staging memory is oper
ating at its normal transfer rate, 100 nsec per 128-bit column, 
a 16K-bit plane can be input in 12.9 /-Lsec. The time is based 
on 128 shifts and one write, each taking 100 nsec. For an n-bit 
field, input time is (n )(12.9 /-Lsec). The given time holds for 
any number of tuples up to the 16K PE array size. In excess 
of 16K, the input process must be repeated once for each 
integral multiple of the 16K size. Thus, MPP input time for a 
set of r tuples of length n bits is: 

tMPP = (n )(12.9 /-Lsec) (ceiling(r/16384» 

To arrive at a time comparison, input time in a CSP is 
similarly defined. Assume input occurs at a 100-nsec rate for 
each 32-bit item. For an r-tuple relation, input time is (r )(0.1 
/-Lsec). The given time holds for any number of bits in the field 
length up to the 32-bit memory-access size. In excess of 32 
bits, the input process must be repeated. Thus CSP input time 
for r tuples of length n is: 

tcsp = (r)(O.l /-Lsec)(ceiling(n/32» 

If the time expressions for both machines are equated, 
values of rand n that satisfy the equation represent the break
even graph piotted in Figure 5. This figure shows that MPP 

6K 

1 
Vl 5K MPP FASTER 
w 
-' 
0.. 
=> 
t-

4K 

vvv~ 
u... 
0 

~ 3K 
?5 
z 

2K CSP FASTER 

1K 

16 32 48 64 80 96 112 128 144 160 

TUPLE LENGTH, BITS 

Figure 5---Relation input timing breakeven dimensions 

input is faster than CSP input, regardless of tuple length, 
when the number of tuples exceeds 4,128. MPP input per
formance is obviously well suited for large relations. 

Emphasis in thIS section has been on input data movement. 
However, because of 110 plane and staging-memory design, 
output can occur simultaneously. The only difference from a 
pure input process is that one memory access is used to load 
the 110 plane with output data prior to the input actions. 
Right shifting to input data from the left simultaneously out
puts data on the right. Both input and output are between the 
array unit and the staging memory. The additional memory 
access used for output adds 100 nsec to 110 time. That is, one 
bit plane can be output and a different plane input in a total 
time of 13.0 /-Lsec. This amount of time per bit plane allows 
complex queries or functional processing to take place on data 
in the PE array. 

CONCLUSION 

This paper shows that MPP performance is better than a high
performance conventional sequential processor for relational 
database query and update operations. Parallelism in the 
MPP architecture results in processing and 110 speed. It also 
provides a direct model of the tabular data structure used in 
relational systems. Close correspondence of the implemen
ter's logical view of a database with the machine's physical 
structure will simplify database system design and software. 

ACKNOWLEDGMENT 

The cooperation and support of Goodyear Aerospace Cor
poration in the conduct of this work is appreciated. 

REFERENCES 

1. Fung, L-W. "A Massively Parallel Processing Computer." In D. J. Kuck et 
al. (eds.), Proceedings of the Symposium on High Speed Computer and 
Algorithm Organization. New York: Academic Press, 1977, pp. 203-204. 

2. Batcher, K. E. "Design of a Massively Parallel Processor." IEEE Trans
actions on Computers, C-29 (1980), pp. 336-340. 



3. Tsoras, J. "The Massively Parallel Processor (MPP)-Innovation in High 
Speed Processors." Proceedings of the AIAA Computers in Aerospace III 
Conference, October 1981. 

4. Batcher, K. E. "Bit-Serial Parallel Processing Systems." IEEE Trans
actions on Computers, C-31 (1982), pp. 377-384. 

5. Moulder, R. "An Implementation of a Data Management System on an 
Associative Processor." AFIPS Proceedings of the National Computer Con
ference, (Vol. 42), 1973, pp. 171-176. 

6. Ozkarahan, E. A., S. A. Schuster, and K. C. Sevcik. "Performance Eval
uation of a Relational Associative Processor." ACM Transactions on Data
base Systems, 2 (1977), pp. 175-195. 

7. Capraro, G. T., and P. B. Berra. "A Data Base Management Modeling 

Application of the Massively Parallel Processor 307 

Technique and Special Function Hardware Architecture," TR-79-14, Rome 
Air Development Center, Griffiss AFB, New York, January 1979. 

8. Babb, E. "Implementing a Relational Database by Means of Specialized 
Hardware." ACM Transactions on Database Systems, 4 (1979), pp. 1-29. 

9. Date, C. J. An Introduction to Database Systems (3rd ed.). Reading, Mass.: 
Addison-Wesley, 1981. 

10. Banerjee, J., D. K. Hsiao, and R. I. Baum. "Concepts and Capabilities of 
a Database Computer." ACM Transactions on Database Systems, 4 (1979), 
pp.I-29. 

11. DeWitt, D. J. "DIRECT-A Multiprocessor Organization for Supporting 
Relational Database Management Systems." IEEE Transactions on Com
puters, 28 (1979), pp. 395-406. 





Panacea or pitfall? The impact of relational databases on 
your environment 

by WILLEM STOELLER 
Arthur Andersen & Co. 
Chicago, Illinois 

ABSTRACT 

This paper discusses the impact of relational database management systems 
(DBMSs) on systems development. It states conditions and characteristics for which 
relational DBMSs are most applicable and appropriate. Finally, it suggests im
provements in relational DBMSs in the areas of performance, data integrity, stan
dardization, and a user-friendly interface. 

Appendixes define relational system terms and compare DBMSs with two other 
data models. 

309 





INTRODUCTION 

The use of database management systems (DBMSs) during 
the last five years has increased at a significant rate. A DBMS 
provides users with a more controlled and flexibie environ
ment than that offered by the basic access methods within the 
operating system. Since DBMSs are the caretakers and de
livery mechanisms for data, their evolution will affect all 
information-processing disciplines and business areas. Rela
tional DBMSs, commercially available since around 1978, 
could playa dramatic role within the DBMS area. These are 
the only DBMSs based on a theoretical data model (the re
lational model, which was developed by E. F. Codd in the 
early 1970s). Because of its mathematical foundation, the 
relational model's simple architecture can accommodate new 
features without the sharp increase in complexity common in 
most software systems. The most well-known products on the 
market today are INGRESS, NOMAD, ORACLE, QBE, 
and SQL/DS. Some are basic data management systems, 
while others offer additional facilities such as screen painting, 
report writing, and graphics. Implementations for the busi
ness environment, however, have lagged, primarily because of 
fear of poor performance. However, the current industry em
phasis is on management systems that use query-oriented or 
end-user "fourth generation" data manipulation languages 
rather than on transaction systems. This trend has pushed 
relational systems into the spotlight and made relational a 
popular buzzword in the trade press and in vendor marketing 
strategies. 

This presentation outlines the potential impact of these 
relational products on your application development and 
operations. Further, it presents suggestions for improvement 
of these products. 

KEY ISSUES 

How will the impact of relational databases relate to the key 
issues in your environment? 

The major issues in the DBMS area include 

1. The large applications backlog. Estimates set the aver
age backlog at between two and ten years. 

2. The quality of many existing applications and related 
databases. Current development techniques are ineffec
tive and inefficient in meeting the end-user needs. 

3. The inflexible data structures of traditional databases 
and lack of logical data independence of applications. 
Changing data structures of existing databases is costly 
and time consuming. 

The Impact of Relational Databases 311 

4. The difficulty of proper physical database design. Data
base design for products such as IMS and IDMS is com
plex and costly to adjust. Highly skilled people are 
required. 

5. The design and testing of applications using traditional 
databases. Applications that must specify navigation 
through the database are error prone and hard to 
maintain. 

6. The long development time of applications. Today's 
complex business environment often tolerates only short 
lead times for information. 

PANACEA OR PITFALL? 

Characteristics 

The Relational Task Group of the American National Stan
dards Institute developed a set of criteria to define relational 
database systems. These include the following: 

1. All data in the database are represented as values in 
tables. 

2. The data manipulation language does not contain ex
plicit navigation links between tables. 

3. The command set allows selection of subsets of tables 
and joining of data from different tables. 

(Appendixes A and B cover some terminology and a com
parison of different data models.) 

In addition, most relational systems have at least the follow
ing components: 

1. A data definition and a data manipulation language 
based on the relational data model. 

2. A user-friendly interface with interactive command exe
cution; an editor for entered commands; and help func
tions to support the user. The commands can be used in 
several host languages and utilities in addition to the 
user-friendly interface. 

IMPACT ON THE DEVELOPMENT AND 
OPERATION 

Analysis and Design 

After initial analysis of the user's information needs, a pro
totype of the relational database and the application can be 
developed with the aid of the user-friendly interface. 



312 National Computer Conference, 1983 

End users will be more able to learn about their real infor
mation requirements. Armed wit~ this feedback, analysts and 
programmers can adapt the design of the application. The end 
result is an application and database that more closely meet 
the users' information requirements with fewer design bugs. 

The preparation of program specifications will be simpler 
since access to the database can be specified without consid
eration for navigation or the underlying physical design of the 
database. 

Programming 

Programmer productivity will be higher because 

1. Parts of the application can be created using procedures 
based on the user-friendly interface. 

2. The database sublanguage is set instead of record
oriented and contains very powerful selection capabili
ties. This will simplify the logic of the host-language 
part. 

3. The data manipulation language contains only four basic 
facilities: data access, add rows (records), change ele
ments, and delete rows. 

4. Navigation does not need to be specified and strong 
physical and logical data independence are provided. 

5. Training will be much faster than it is for the traditional 
database sublanguages. 

Data Administration 

Data administration is a particularly critical function with 
relational systems because of the emphasis on data rather than 
on processing logic. A central coordinator is crucial since 
different user groups use existing data and create new data for 
particular business needs. The data administrator must keep 
track of these developments to ensure that data is used consis
tently, is properly validated, and is not redundant. The ad
ministrator must ensure that end users understand and use 
good, basic data-analysis techniques. The data administrator 
must find ways to get information about the database to the 
interactive user. The end user must have access to the current 
data structure, validation rules, column domains, and data
base status. 

With relational systems, data definition commands are very 
straightforward. Any knowledgeable user can easily create or 
change table structures. Restricting this capability is the only 
way the administration function can exercise control over the 
database. 

Relational DBMSs offer excellent, easy-to-use tools for ad
ministration of data security and privacy, usually on the ele
ment and row (record) occurrence level. 

The most important aid to effective data administration is 
the data dictionary. Although most relational systems have no 
fully integrated dictionary, many of the same features are 
offered by the system catalogs. (The system catalogs are 
tables used and updated by the system to keep track of infor
mation about the database.) 

Database Administration 

Database administration is considerably easier with re
lational systems. In a hierarchial DBMS such as IMS, the 
database administrator must coordinate multiple databases, 
select efficient access methods for each, and choose pointers 
and other parameters to define the access path a user may 
follow. With relational systems, these tasks are eliminated 
since the database software will automatically optimize access 
to the data. Database performance tuning is reduced to defin
ing or dropping indexes for specific tables and requesting 
clustering of frequently linked tables. 

Changes to the data structures are easy to implement with
out a lengthy unload/reload procedure. Existing applications 
are often unaffected by data structure changes owing to a high 
degree of physical and logical data independence. 

End Users 

Because of the powerful user-friendly interfaces, many non
DP professionals can use most of the data-manipulation com
mands with a small training investment. 

For data definition and update procedures, end users still 
need the guidance of DP professionals. 

APPLICABILITY OF CURRENT PRODUCTS 

Relational DBMSs should be considered a viable possibility 
for applications with the following characteristics: 

1. Table sizes are less than 500,000 rows (records) and per
formance requirements are modest. 

2. Transaction volumes are low, even in peak periods. 
3. Interactive and/or ad hoc, database queries are funda

mental. 

The applications also should have one or more of the follow
ing characteristics: 

1. Data must be accessed dynamically-data requirements 
and combinations are not known until execution time. 

2. Data structure may evolve over time. 
3. Data integrity, data security, data privacy, and data 

sharing are important. 
4. Data will be updated on line. 
s. Prototyping of database and query functions is needed to 

properly define complex requests or to communicate 
effectively with users. 

These latter five conditions are indicators of how appropriate 
the situation may be for usage of current relational products. 
They do not all need to be true for the relational systems to 
be a good fit. 

Relational systems, as they stand today, have some limita
tions that make them inappropriate for applications with one 
or more of these characteristics: 



1. Data volume is large (over a million rows) and/or per
formance requirements critical. 

2. Transaction volumes are large. 
3. Data structure is naturally hierarchical, with consid

erable hierarchical reporting expected. 
4. Users of interactive query facility will be casual (less 

than once a week). 

SUGGESTED IMPROVEMENTS 

Performance 

Relational systems can accommodate medium-volume 
databases, but their performance will be questionable. 

Since relational products are all fairly new, further software 
enhancements will improve performance. Some new storage 
media, such as content addressable files (CAF from ICL) may 
provide a solution. 

Data Integrity 

As with the traditional DBMSs, data integrity relationships 
between tables are weak in current products. (This is where a 
row/column value in one table is verified against a required 
key value in another table.) 

Standardization 

Standardization of the relational sublanguage will stimulate 
development and use of relational systems. Currently, rela
tional database standards are being developed by the ANSI 
Database Standards Committee. 

User-Friendly Interface 

To appeal to the large community of non-DP professionals, 
the user-friendly interface needs improvement in the follow
ing areas: 

1. Syntax. QBE showed that a totally different approach is 
feasible. 

2. Editing. Easy-to-use full-screen editing is desirable. 
3. Guidance for interactive users. They should be provided 

with prompting and menu facilities, clear warnings and 
help functions, and more forgiving software. 

CONCLUSION 

Relational systems will claim a sizable database market share 
in the next five years. 

Simple, flexible data structures and supporting English-like 
command language are what the industry is looking for. 

The Impact of Relational Databases 313 

APPENDIX A: RELATIONAL SYSTEM TERMS 

Introduction 

The area of relational systems has emerged with its own 
unique language. The mathematical terms reflect the theo
retical origins of the relational model. This appendix explains 
some of the common concepts and terms of relational models. 

Relation 

A relation is a normalized data aggregate represented by a 
table. (The terms relation and table can be used interchange
ably.) A relation consists of any number of columns in any 
order and rows in any order. Figure A-I shows an example of 
an Employee relation. 

Row 

Each row is one occurrence of the relation. A row gives a 
complete piece of information about the relation. No two 
rows are completely identical, and the unique portion of each 
row can be in one column or may span several columns. A row 
(sometimes called a tuple) is similar to a record in a file. The 
Employee relation in Figure A-I contains two rows. The 
meaning of a relation does not change when rows are added 
or deleted. 

ElvtPLOYEE: 

Column 

NAME SALARY 

61256 Jones 8000 
38972 Anderson 6000 

Figure A-I-Employee table 

DEPT 

Household 
Toy 

Each column is a single data item and represents an attri
bute of the relation. Repeating groups of data items is not 
allowed within a column or be repeating columns. A column 
is similar to the name of a field on a record. The Employee 
relation in Figure A-I contains four columns: NUMBER, 
NAME, SALARY, and DEPT. The meaning of a relation 
changes when columns are added or deleted. 

Domain 

The collection of all possible allowable values for each col
umn is called its domain. The domain of the NAME column 
in the Employee relation is the last name of all employees. 

Relational Database 

A relational database is simply a collection of relations. The 
relational database used as an example for the relational 
operations discussed here. 



314 National Computer Conference, 1983 

EMPLOYEE: NUMBER NAME SALARY DEPT 

61256 Jones 8000 Household 
38972 Anderson 6000 Toy 
09181 Morgan 10000 Cosmetics 
22318 Murphy 9000 Toy 

MANAGER: DEPT MANAGER 

Toy Murphy 
Household Smith 
Cosmetics Hoffman 

Figure A-2-Manager table 

Relational Operations 

Relational operations access and manipulate the relations 
of a relational database. These operations are nonprocedural 
since they define what to do but not how to do it. In a re
lational system, data can be accessed only by matching data 
values. The database user defines what values to match and 
the system determines the access path to the desired data. 

Relational operators work on entire tables (rather than on 
individual records) and result in new relations. The three 
principal operations are 

1. Project 
2. Select 
3. Join 

Project 

The project operation extracts columns from a relation to 
create a new relation. Duplicate rows are dropped. The fol
lowing list demonstrates the project operation where the 
NAME and SALARY columns were selected from the Em
ployee relation in Figure A-2. 

NAME SALARY 

Jones 8000 
Anderson 6000 
Morgan 10000 
Murphy 9000 

Select 

The select operation extracts from a relation to create a 
new relation. The database user defines the criteria to use in 
the selection by describing desired data values. The example 
in Figure A-3 shows a select operation on the Employee 
relation where only employees in the Toy Department are 
selected. 

NUMBER 

38972 
22318 

NAME 

Anderson 
Murphy 

SALARY 

6000 
9000 

Figure A-3--Example of a selection 

DEPT 

Toy 
Toy 

Join 

The join operation combines two or more relations to 
create a new relation. One column in each table must share a 
common domain to make the join meaningful. Figure i\-4 
shows an example where the Employee and Manager relations 
from Figure A-2 are joined on the basis of the DEPT column 
in each table. 

NUMBER NAME SALARY DEPT MGR 

61256 Jones 8000 Household Smith 
38972 Anderson 6000 Toy Murphy 
09181 Morgan 10000 Cosmetics Hoffman 
22318 Murphy 9000 Toy Murphy 

Figure A-4-Example of a join 

Other Terms 

An element is a single field value in a relation. It is the 
intersection of a row and column. 

The degree of a relation is the number of columns it has. An 
N-ary relation is one with N columns. A relation with two 
columns is a binary relation. 

The number of rows in a relation is called its cardinality. 
A row or record occurrence is sometimes called a tuple. An 

N-tuple is a row from a relation of N columns. 

APPENDIX B: COMPARISON 
WITH OTHER DATA MODELS 

Introduction 

A database usually fits one of the three data models: hier
archical, network, or relational. This appendix compares the 
relational model to the hierarchical and network models. 

Access Path 

In a hierarchical or network data model, the connections 
and relationships between data aggregates remain in the data 
structure. The data designer must carefully predict all data 
access to ensure that needed data can be extracted via some 
access path. Two techniques used in that process are to iden
tify alternate entry points and to use unidirectional business
function data models. 

With relational systems, access paths are not prede
termined. The relationships between data aggregates are 
considered in design but are not implemented in the database. 
'Since join operations simply combine tables, the direction of 
access is irrelevant. 

This flexibility in accessing data is the main reason why 
relational systems excel in unplanned (ad hoc) data requests. 

Navigation 

The hierarchical or network database user must enter the 
database at an acceptable entry point and then navigate from 



aggregate to aggregate through the structure to get the needed 
data. This usually requires the data manipulation language to 
be coded in a language such as COBOL and embedded in 
program logic. Conventional programs are needed just to pro
vide the logic to navigate to the data. 

Relational database users can manipulate each relation in
dependently or can join relations together as needed. Because 
the data can be directly accessed, the relational model lends 
itself to fourth-generation languages. The access logic is in the 
DBMS, not in the application. 

Level of Access 

The data manipulation languages for hierarchical and net
work systems generally return one record at a time. There
fore, the application logic must interact frequently with the 
DBMS to obtain multiple records. 

Relational operations manipulate entire relations in a single 
request to the DBMS. The relational system always creates a 
new relation as a result of an operation. The fact that table 
operations create tables is called the closure property. 

Maintenance 

Even a small change to a data aggregate in a hierarchical or 
network system may have a significant impact on the physical 
implementation and application programs. Programs may 
need to be recompiled, database definition utilities rerun, and 
the entire database reloaded. This maintenance is almost al
ways performed via batch processing. 

Relational systems generally allow new relations to be de
fined interactively and new columns to be added to existing 
tables. Since columns do not have any inherent sequence, 
each operation can order the columns in any sequence. 

Physical Database 

Hierarchical and network systems use indexes, required 
pointers, and key fields to keep occurrences of an aggregate 
in sequence. Physical database design uses the concept of 
physical proximity of related records to improve performance. 
Application program logic must know about and properly use 
indexes to support processing and database structuring. 

Indexes are never required in a relational system. Rows are 

The Impact of Relational Databases 315 

not physically stored in any particular order, so the sequence 
of occurrences cannot be used to store information about the 
rows or their relationship. Rows may be sequenced when a 
relational operation is used. Physical design is shielded from 
the database user. 

Language 

Hierarchical and network systems have a data-manipulation 
language to access data and a distinct data-definition language 
to create the data structures. The data-definition process typi
cally consists of a set of control cards that are input to a batch 
job, and the data manipulation syntax is programmer oriented 
and embedded in application programs. 

In contrast, the data-definition and data-manipulation lan
guages for a relational system are one and the same. The 
syntax is end-user oriented and can be used either inter
actively or embedded in source programs. 

Conclusion 

Relational systems separate logical data design from phys
ical design. This data independence gives relational systems 
more flexibility in accessing data, allows user of higher-level 
languages, and lessens the impact of database changes. Hier
archical and network systems provide less data independence, 
so changes to the physical database affect the logical data 
design. 

BIBLIOGRAPHY 

1. Date, C. J. An Introduction to Data Base Systems (3rd ed.). Reading, Mass.: 
Addison-Wesley, 1981. 

2. Date, C. J. An Introduction ot Data Base Systems, Volume 2. Reading, 
Mass.: Addison-Wesley, 1982. 

3. Advanced Computer Techniques Corporation. Advanced Computer 
Techniques/Industry Measures Vol. 3, No.2, MarchiApril1981. 

4. Codd, E. F. "SQLlDS What It Means." Computerworld, 16 March 1981. 
5. Kim, W. "Relational Database Systems." Computing Surveys, 11 (1979). 
6. Canning Publications. "Relational Data Systems Are Here!" EDP Analyzer, 

October 1982. 
7. Sanberg, G. "A Primer on Relational Data Base Concepts." IBM Systems 

Journal, 20 (1981). 
8. Special Report: "Real Benefits of Data Base Technology," Computerworld, 

October 25, 1982. 





David L. Holzman 
Holzman & Associates, Inc. 
Manhattan Beach, California 

HUMAN AND SOCIAL ISSUES 

For the first time, the National Computer Conference devotes an entire pro
gram track to the human, organizational, and social effects of computers. This 
provides an opportunity to bring together an outstanding group of speakers, 
many of whom have spent years studying the computer's impact on work, 
organizations, human behavior, and society in general. The theme running 
through their presentations is that by understanding and responding to these 
impacts, systems, organizations, and society become more effective. 

The program begins with "Organizations, Information Systems, and Office 
Effectiveness." The panel will present the results of two recent National 
Science Foundation studies on the use of organizational design models to 
insure effective implementation and adaptation of systems. Their findings 
support the use of organizational redesign as a tool for increasing systems' 
effectiveness. 

The next panel takes a more futuristic and international view in exploring 
the impact of "Fifth Generation Computers." The panel will assess Japan's 
recently announced projects and present U.S. industry leaders' plans for 
building up our technology base for the 1990s. They will discuss why, when, 
how, by whom, and how much. 

The panel "Managing Computer Change" brings together an experienced 
group of panelists who will address the problems of change and uncertainty 
between managers and the system, managers and their personnel, and system 
developers and users. The speakers wW give illustrations of how system devel
opers and managers must appear not to manipulate while they help the users 
to deal with uncertainty. 

The next panel, "Measuring the Impact of Information Techniques," will 
discuss and present case studies on the effect of computers in the office 
environment. They will go beyond the narrow "productivity" measures to 
throw light on the broader organizational impacts and how they can be 
measured. 

For the panel "Living with Computers: The Multi-Societal Effects," the 
panelists will present current research findings on socioeconomic impacts 
within the computer industry, organizational impacts within local govern
ment, and impacts on individual behavior within organizations. 

"Computerized Society-Resilient or Vulnerable?" will discuss whether a 
new and serious vulnerability to disruptions or computer unavailability exists, 
or whether the society has an intrinsic resiliency to major disruptions. 

The ergonomic and human factor issues are discussed in the "Man-Machine 
Interaction" panel. The presentations will cover current ergonomic problems 
and their solutions, plus improved interface aids to mainframe IBM systems. 

The panel "Computer Aids to the Handicapped" presents three applica
tions: (1) sensory and information processing aids for the blind; (2) commu
nications aids for the nonvocal; and (3) a lip-reading aid for the deaf. The 
applications' possible wider use in office automation systems will be explored. 

The final panel is titled "The Institutional Dimensions of Computing in 
Organizations and Society"; it will discuss dimensions such as persistence and 
rigidity that can be introduced by computers. The pros and cons of such 
dimensions will be explored in organizations and in the larger society, includ
ing the Soviet Union. 





Advanced office systems: An empirical look at use and 
satisfaction 

by T. K. BIKSON and B. A. GUTEK 
The Rand Corporation 
Santa Monica, California 

ABSTRACT 

Preliminary research findings from a study of advanced office systems in varied user 
contexts are summarized here. The research, funded by the National Science Foun
dation Productivity Improvement Research Section, is intended to determine how 
information technology is successfully incorporated into white-collar work. Par
ticipating in the study were 55 offices. They ranged in size from four to 37 employees 
and represented 26 different organizations that ranged in size from a total of eight 
employees to multinational operations. The data reported here come from ques
tionnaires administered to 530 employees in the 55 offices. 

Findings reported here address several issues relevant to implementing advanced 
office systems: (1) White-collar office employees can be classified into four types: 
management and administration, data-oriented professionals, text-oriented profes
sionals, and support staff. (2) White-collar work forms a systematic cluster of 
information-handling activities, some of which are performed by nearly everyone in 
the office. (3) A large percentage of employees, including senior managers and 
professionals, already use computers in their work; and most nonusers expect to use 
them in the near future. (4) Four aspects of computer systems underlie user satis
faction: functionality, equipment performance, interaction features, and office en
vironments. (5) Satisfaction with functionality is the best predictor of use of the 
system. (6) The most important organizational influences on use of and satisfaction 
with information technology are variety in work and the organization's approach to 
technological change. 

319 



, 



INTRODUCTION 

Preliminary research findings from a study of advanced office 
systems in varied user contexts are summarized here. The 
research was funded by the National Science Foundation's 
Productivity Improvement Research Section; its goal is to 
identify major factors that determine how successfully infor
mation technology is incorporated into white-collar work. * 

A general understanding of how advanced office systems 
affect white-collar work is urgently needed-

1. White-collar employees, who already constitute more 
than 50% of the nation's labor force, are its most rapidly 
growing subpopulation. And within any organization, 
whether product or service oriented, "office work" is 
highly labor intensive and relatively costly. 

2. Of the estimated 3.5 million offices in the U.S., about 
1.5 million are currently large enough for some sort of 
advanced information system. That figure will increase 
as small, flexible systems become more available and 
entry costs decline. 

3. Although computer technology is viewed as a way to 
improve productivity and decrease labor costs, very little 
is known about either the nature of white-collar work or 
information systems in that context. 

Consequently, we undertook a study of how computerized 
procedures are being introduced in private-sector office set
tings where users are not computer experts. Our hypothesis 
was that the sequence of implementation decisions--decisions 
about the kind of system to introduce and especially about 
how to introduce it-would have important short-term impli
cations for use and satisfaction, with long-term impact on 
organizations and their productivity. Our basic research ques
tions were 

1. What is the nature of white-collar work, and into what 
patterns do its tasks fall? 

2. Who is using computers in office work, and what kinds 
of procedures are being computerized? 

3. What do users like and not like about their computer 
systems? Do certain features of the systems and their 
implementation predict users' reactions? 

4. Are there any organizational characteristics that affect 
the implementation of an information system? 

*This note reports research in progress on computerized procedures in office 
settings supported by NSF Division of Industrial Science and Technological 
Innovation, Grant Number ISI-8110792, T. K. Bikson, Principal Investigator. 

Advanced Office Systems: Use and Satisfaction 321 

For purposes of this research, office settings were defined as 
organized white-collar work units of four or more employees. 
Depending on the firm, these units may be called depart
ments, teams, sections, and the like. But all the units have 
a skill mix that may range from senior executive to entry 
level clerk, and all have information handling as a chief 
responsibility. 

The advanced information technology of interest in this 
setting is the multifunction interactive computer system de
ployed to replace or enhance traditional office tasks. By multi
function we mean that the system is appropriate for a variety 
of white-collar tasks; by interactive we mean that to some 
extent the user guides the system's activities online. The tech
nological focus is broad, encompassing both standalone com
puters and multiple terminals linked to mainframe computers, 
as well as a number of intermediate options. 

To examine the implementation of advanced office systems, 
we solicited the cooperation of organizations in which such 
technology had been installed for at least 6 months. In each 
participating office we administered a survey to all members 
of the work group, whether or not they worked directly with 
the computer. The survey inquired about information han
dling tasks, computer system features and usage, and effects 
on work. In addition, the survey included a number of stan
dard measures of organization characteristics. 

To supplement the survey information, we also collected 
descriptions of computer equipment and software, and 
related-staffing and budgeting patterns. Finally we conducted 
a structured interview with the individuals responsible for 
managing the work group. 

Outcomes reported here represent analyses of survey data. 
The basic findings are 

1. White-collar work can be analyzed in terms of systematic 
clusters of information-handling activities; some of these 
tasks are performed by nearly everyone in the organiza
tional hierarchy. 

2. White-collar workers are well educated and typically 
have some keyboarding skill; a substantial minority have 
had some contact with a computer in prior jobs. 

3. A large percent of senior managers and professionals 
already use computers in their work, and most nonusers 
expect to use them in the near future. 

4. Four summary dimensions underlie users' satisfaction 
with their systems: functionality, equipment perfor
mance, system interaction, and office environment. 

5. Users are generally pleased with their system's func
tionality but give low ratings to the office environment 
and to some aspects of system interaction such as user 
manuals. 



322 National Computer Conference, 1983 

6. Users believe that the technology has positive effects on 
the quality of their work and also on their productivity. 

7. User satisfaction with functionality is the best predictor 
of system use; functionality coupled with an adequate 
office environment constitute the best predictors of 
overall satisfaction with the new technology. 

8. The most important organizational determinants of em
ployees' use of and satisfaction with technology are vari
ety in work and the organization's approach to tech
nological change. 

In what follows we discuss the survey and its results in detail. 

RESEARCH PARTICIPANTS 

Characteristics of our research sample are listed below. 

26 organizations 
50% Manufacturing 
50% Service 

55 work groups 
24% Management, administration 
29% Professional, text-oriented 
20% Professional, data-oriented 
27% Secretarial, clerical, technical support 

530 employees 

Fifty-five offices from 26 different organizations partici
pated in the research. The organizations ranged from those 
with as few as 10 employees to multinational operations. 
About half the organizations were engaged in manufacturing. 
The remainder provided a variety of services, such as public 
information, financial management, research, and banking. 

The sample is not a random one; thus, it is not representa
tive of office work groups in general. Rather, organizations 
were selected because they were early adopters of new tech
nology. They either volunteered to participate or agreed to do 
so when asked. Nevertheless, the sample is diverse and shows 
the range of office functions that may involve computer use. 

The focus of the study is the work group rather than the 
individual. A work group is a group of four or more employ
ees who share an information-handling function--for exam
ple, writing and editing text, or preparing economic forecasts. 
The group might contain workers from several different 
occupations-for example, a writer, a manager, and a secre
tary. A group focus is appropriate because we are interested 
in how computer systems are implemented to assist certain 
white-collar work functions rather than how secretaries or 
managers or professionals, as individuals, use such systems. 

The 55 work groups in our sample can be classified by 
organizational mission as follows: 

1. Management and administration, including personnel, 
contracts and grants, and financial management 
(Group I); 

2. Text-oriented professionals, including public informa
tion, law, report wiiting and editing (Group II) 

3. Data-oriented professionals, including economic model
ing and forecasting, engineering design, and systems 
analysis (Group III) 

4. Secretarial, clerical, and technical support, including res
ervations, payroll, order entry, and inventory control 
(Group IV) 

The work groups ranged in size from 4 to 37; the average size 
was 10. While we cannot yet make causal inferences, it is 
interesting to note that in comparison with national data 
about white-collar work, these groups contain a substantially 
smaller proportion of support staff relative to professionals 
and managers. 

Table I-Education level of employees 

Education 

Less than high school 
High school 
Some college 
College degree 
Masters or other equivalent degree 
Ph.D., M.D. or equivalent degree 

% 

0.2 
16.0 
33.8 
19.5 
24.2 
6.2 

As Table I shows, the office employees in this sample are 
well educated. Almost a third have a graduate degree of some 
kind; only 16 percent have never attended college. These data 
suggest that implementing a computer system in an office with 
a work force of this kind should not be viewed as parallel to 
factory automation of a century ago, where poorly educated 
workers performed routine, low-level tasks. t Indeed, we 
found that the variety in work permitted by an office system 
was a significant predictor of its use and success. 

Almost half these workers can keyboard quickly, and a 
sizable proportion have had some contact with a computer in 
a previous job. However, as Table II shows, background 
varies considerably by work group type. For example, none of 
the support group had regular prior experience with a com
puter while one-third of the data-oriented professionals had. 
The most proficient typists belong to the management/ 
administration and to the text-oriented professional groups. 

WHAT INFORMATION WORKERS DO 

One of the research goals was to learn what kinds of tasks 
information workers perform. We wanted to know whether 
these tasks fall into clusters that could become focal points in 
implementing information systems. In addition, we wanted to 
identify any tasks, or clusters of tasks, that virtually every
one-from managers to clerks-performs. 

tSome open-ended comments in the survey suggest, however, that computer 
systems are being implemented in some offices as if the office workers were only 
capable of performing routine tasks. Workers complain that training sessions 
explain only key functions rather than describing the system function. As a 
result, new users don't know enough about the system's real capabilities to 
exploit them efficiently or to solve problems \vhen they arise. 



Advanced Office Systems: Use and Satisfaction 323 

Previous Experience 

Previous work with computers 
None 
Occasional 
Regular 

Proficiency in keyboarding or typing 
Not at all 
A few fingers, slowly 
A few fingers, quickly 
Touch typing, slowly 
Touch typing, quickly 

Key to Groups: I=Management, administration 
II=Text-oriented professionals 

III = Data-oriented professionals 
IV=Support staff 

Table II-Previous keyboard experience (percent of employees) 

Overall Group I Group II Group III 

53.4 61.3 51.1 42.4 
24.2 19.3 33.8 24.2 
22.4 19.3 15.0 33.3 

0.9 1.0 0.0 1.0 
8.5 9.9 6.7 11.1 

16.6 12.4 12.6 24.2 
25.5 19.0 23.0 32.3 
48.5 57.9 57.8 31.3 

Table III-Information-related activities of office employees (percent who do each) 

Information Activity Factors Overall Group I Group II Group III 

Activities: Factor 1 (Clerical work) 
Maintain files (.71) 56.9 58.5 48.5 55.6 
Handle messages (.65) 48.5 53.7 36.8 37.4 
Fill in forms (.62) 47.7 51.2 32.3 43.4 
Process records (.59) 28.1 39.8 14.0 23.2 
Keep activity logs (.55) 30.9 35.8 22.8 29.3 
Maintain inventory (.55) 16.4 19.5 7.3 14.1 
Keyboard text or data supplied 

by someone else (.53) 35.5 39.0 39.7 23.2 
Administrative support (.37) 24.4 22.8 29.4 25.3 

Activities: Factor 2 (Text manipulation) 
Write original material (.84) 65.9 67.5 77.9 77.8 
Proofread and correct (.77) 63.1 61.8 77.9 60.6 
Edit and rewrite (.85) 56.5 52.0 74.3 70.7 

Activities: Factor 3 (Programming) 
Programming (.76) 20.2 14.6 18.4 47.5 
Maintain a database (.70) 25.0 31.7 32.4 24.2 
Statistical computation (.47) 27.1 35.0 36.0 26.3 

Activities: Factor 4 (Numeric data manipulation) 
Fiscal operations (.78) 24.0 30.1 34.6 18.2 
Distribute information (.61) 46.5 59.3 47.1 43.4 
Statistical computation (.52)* 27.1 35.0 36.0 26.3 
Develop forms (.45) 35.5 36.6 43.4 35.3 
Administrative support (.38) * 24.4 22.8 29.4 25.3 

Number of activities performed 
3 or fewer 20.0 14.6 13.2 18.2 
4 to 6 30.3 27.6 34.6 31.3 
7 to 10 29.1 35.0 33.8 24.2 
11 or more 20.6 22.8 18.4 26.3 

100.0 100.0 .100.0 100.0 

'When a task loads on two different factors, the stronger loading is starred. 
Key to Groups: I = Management, administration 

II=Text-oriented professionals 
III = Data-oriented professionals 
IV=Support staff 

Group IV 

75.0 
25.0 
0.0 

0.0 
0.0 
0.0 

50.0 
50.0 

Group IV 

64.3 
62.9 
62.2 
35.0 
36.3 
23.8 

37.1 
20.3 

44.8 
51.7 
33.6 

7.7 
13.3 
12.6 

12.6 
37.1 
12.6 
27.3 
20.3 

32.2 
28.0 
23.0 
16.8 

100.0 



324 National Computer Conference, 1983 

We asked our respondents whether they performed each of 
17 different activities; we chose these activities because they 
are thought to occur frequently- in white-collar work and be
cause they may be done with or without a terminal. Table III 
summarizes the results. Some tasks are performed by almost 
everyone; for example, the majority of workers in the sample 
at least occasionally write original material, proofread and 
correct, edit and rewrite, and maintain files. The tasks least 
widely performed are maintaining an inventory and pro
gramming.:j: 

To determine whether the 17 different tasks formed clus
ters, we used a factor analysis procedure. Factor analysis de
termines statistically whether some tasks are usually done in 
conjunction with others.§ This analysis generated four groups 
out of the 17 tasks (two tasks-administrative support and 
statistical computation-figure in two different groups). 
These task groups are shown in Table III along with the factor 
loadings. These numbers, given in parentheses after each of 
the tasks, show the strength of each item; the higher the factor 
loading, the more central that task is to the factor. For exam
ple, programming and maintaining a database are more cen
tral to Factor 3 than is statistical computation. Together the 
four factors account for about 60% of the variation in office 
work. 

The factor analysis shows that white-collar employees tend 
to perform groups of tasks. For example, people who write 
original material also proofread and edit, but they tend not to 
program, maintain a database, or do statistical computation. 

The four factors bear some resemblance to the four work 
group types. Factor 1 describes clerical and administrative 
activities and includes many tasks performed by the manage
ment/administration and by the support groups. These tasks 
primarily involve the management of text information. In con
trast, Factor 2 involves creating and altering text, activities 
associated with the text-oriented professionals. Factor 3 sug
gests a more sophisticated knowledge of computers and 
re~ects comp~ter use by engineering and other applied
SCIence professlOnals. Factor 4 involves the sophisticated ma
nipulation of numeric data. Together Factors 3 and 4 reflect 
the activities of the data-oriented professionals. 
. ~ince .th~ defined clusters of activities are at least super

fictally SImIlar to the group types, it is not surprising to learn 
that the groups perform these tasks at different rates. For 
example, almost half of the data-oriented professionals do 
programming, in contrast to less than 8% of the support group 
employees. A less obvious example is processing records. 
Forty percent of the management group and 35% of the sup
port group perform this task, but only 14% of the text
o.riented professionals and 23% of the data-oriented profes
slOnals undertake records processing. 

The lower portion of Table III shows how many different 
activities the members of each work group perform. More 
than 20% of the employees perform 11 or more of the 17 tasks 
and about an equal number perform 3 or fewer. Not sur-

:j:Groups for whom programming was a central function were not included in 
the research project . 

. §An orthogonal varimax rotation was employed, and only factors with an 
eIgenvalue ~ 1 \vere accepted. 

prisingly, management groups perform the widest range of 
tasks; those in support groups have the least diverse activities. 

The figures reported in Table III should not be construed as 
measures of computer use. What they reflect is both the vari
ety and the patterning in information handling activities 
among office workers. Successful implementation of informa
tion systems must reflect the patterning while accommodating 
the variety. 

COMPUTER USE AND USER SATISFACTION 

The task analysis just described suggests that a substantial 
number of the activities carried out by most white-collar 
workers could potentially be aided by a computer. In fact, 
67% of the employees in this sample do interact directly with 
a computer during the regular course of their work, and an
other 26% expect to do so in the near future. Table IV breaks 
down the proportion of current users, expected users, and 
committed nonusers by specific occupational level in the or
ganization. In contrast to widely publicized speculations 
about managerial and professional resistance, we found that 
employees at these occupational levels were both willing and 
able to convert to computerized systems; indeed, their re
~~onses to information technology are significantly more pos
ItI~e than those of support staff. It is noteworthy that, in 
offI~e~ where the technology is available, the overwhelming 
maJo~ty of employees in all occupational categories expect to 
be usmg computers as work tools in the near future. 

~urrent users vary widely in the amount of time that they 
typIcally spend at a terminal. About half use the computer 
30% or les~ o~ their working time; another fourth spend up to 
70% of theu time at a terminal; and the remaining fourth may 
use a computer up to full time. Forty percent of the users have 
their own terminal; the others use shared workstations. Very 
few (only 17%) have a printer near their desk. 

The equipment in use represents many different models, 
makes, and vendors. Most sites have at least two different 
types of terminals and printers, and system architectures and 
configurations are quite diverse. Software choices are even 
more varied. Given this heterogeneity, we sought to discover 
whether there are generic characteristics of advanced office 
systems-summary dimensions-that would capture user 
satisfaction. 

Table IV-Percentage of employees who use or will use 
computers at work 

Currently Expect to Do Not Ex-
Use a Use a pect to Use 

Occupational Category Computer Computer a Computer 

Executive 36 46 18 
Managerial 71 26 3 
Professional 79 18 3 
Technical 81 18 1 
Secretarial 64 23 13 
Clerical 73 21 6 

Average 67 26 7 



Advanced Office Systems: Use and Satisfaction 325 

Table V-Mean scores on satisfaction with features of the office computer system (4 = very satisfied, 1 = very dissatisfied) 

Feature Overall 

Features: Factor 1 (Functionality) 
Text or data alteration capability (.79) 3.4 
Text or data entry capability (.75) 3.5 
Organization of stored information (.74) 3.4 
Information retrieval capability (.66) 3.3 
Computer system's appropriateness for assisting 

your own particular job functions (.63) 3.3 
Error detection and correction (.60) 3.2 
Back-up to prevent accidental file loss (.55)* 3.1 
Keyboard layout (.53) 3.5 

Features: Factor 2 (Equipment performance) 
Promptness of maintenance (.82) 2.9 
Quality of maintenance (.80) 3.0 
Quality of printout (.67) 3.4 
Quality of the video display (.53) 3.5 
Back-up to prevent accidental file loss (.50) 3.1 

Features: Factor 3 (Interaction) 
Quality of the operating manual (.78) 2.5 
Type of dialog with the computer (.71) 3.3 
Response time of the computer (.60) 2.8 

Features: Factor 4 (Environment) 
Convenience and comfort of office furniture (.89) 3.1 
Arrangement of equipment, furniture and space (.84) 2.8 

Overall friendliness of the computer system 3.3 

'When a task loads on two different factors, the stronger loading is starred. 
Key to Groups: I=Management. administration 

II = Text-oriented professionals 
III=Data-oriented professionals 
IV=Support staff 

To investigate this question, we asked respondents to indi
cate their level of satisfaction with a number of very general 
features of their computer system, using 4-point rating scales. 
Table V lists these general characteristics and the average 
ratings for the entire sample and for each type of work group. 

To learn whether computer system features could be or
ganized to form major dimensions underlying user satis
faction, we again performed a factor analysis. That analysis 
generated the four factors under which system characteristics 
are listed in Table V. The factor loading appears in parenthe
ses after each characteristic. 

The factors can be interpreted as follows: 

1. Functionality: how the system enters, alters, organizes, 
and stores information 

2. Equipment performance, including speed and quality of 
maintenance 

3. Interaction: whether the user has what is needed to 
interact effectively with the computer 

4. Environment: adequacy, convenience, and comfort of 
equipment, furniture, and space. 

Together, these four factors account for more than 60% of the 
variation in user satisfaction with computer system features. 

Group I Group II Group III Group IV 

3.4 3.5 3.4 3.2 
3.5 3.5 3.3 3.4 
3.5 3.3 3.3 3.3 
3.4 3.4 3.1 3.2 

3.5 3.4 3.2 3.4 
3.2 3.0 2.9 3.4 
3.4 3.0 3.0 3.0 
3.6 3.6 3.2 3.6 

2.8 2.9 2.6 3.0 
3.1 2.9 2.8 3.2 
3.5 3.4 3.2 3.6 
3.6 3.5 3.2 3.6 
3.4 3.0 3.0 3.0 

2.7 2.5 2.4 2.7 
3.4 3.3 3.0 3.3 
2.9 2.9 2.3 2.9 

3.1 3.0 2.6 3.2 
2.9 2.8 2.5 3.0 

3.4 3.2 3.0 3.4 

Mean satisfaction scores in Table V show clearly that users 
are relatively happy with the functionality of their computer 
systems, especially with the text or data entry and editing 
capabilities. Reactions to equipment performance are mixed. 
The quality of printout and of video display get high marks, 
but promptness and quality of maintenance are given less 
satisfactory ratings. And, although users are unanimously un
happy about the environment in which they operate, user 
manuals get the worst ratings of any individual characteristic. 

Within these general patterns, there are statistically signifi
cant differences between user groups. For example, support 
groups are relatively pleased with the error detection and 
correction capabilities of the system, but data-oriented pro
fessionals find the system unsatisfactory in this respect. Man
agement groups are more pleased with backup features than 
are any other groups. II 

In part, the differences in user judgments appear to be 
influenced by previous experience with computers. The data
oriented professionals are clearly the most dissatisfied with 
their computer systems; yet they are the heaviest users and 

IIIn Table VI and following tables where mean scores are provided, differences 
on the order of .2 to .3 may generally be regarded as statistically significant. 



326 National Computer Conference, 1983 

Table VI-Mean scores on assessments of work performance (4 = very positive or satisfactory, 1 = very negative or unsatisfactory) 

Computer Effects on Overall 
Work and on Performance Mean 

On Work 
On speed of work 3.5 
On quantity of work 3.4 
On type of work 3.4 
On quality of work 3.5 
On quality of working life 3.4 

On Performance 
Perceived productivity in own work 3.7 
Perceived quality of own work 3.7 

Key to Groups: I = Management, administration 
II = Text -oriented professionals 

III = Data-oriented professionals 
IV=Support staff 

more than a third of them regularly used computers in pre
vious jobs. In contrast, the text-oriented professionals, more 
than half of whom had no prior computer experience, are the 
most satisfied with features of their office system. 

We may surmise that the previous computer experience of 
the data-oriented workers makes them more critical and de
manding of system performance. They are probably more 
knowledgeable about potential applications and compare 
their equipment with the more sophisticated and flexible sys
tems now becoming available. Computers are not new work 
tools for them, and although they have high expectations of 
how systems should work, they are more likely than other 
employees to be using older, patchwork systems not really 
designed to handle interactive work. 

On the other hand, the majority of text-oriented profes
sionals are getting their first taste of the speed and con
venience that computers can bring to their basic tasks
writing and editing text. The contrast with the tedious process 
of preparing material on the typewriter is indeed striking, and 
the computer provides a welcome increase in their ability to 
control production and meet deadlines. In addition, their 
briefer and more limited exposure to alternative computer 
systems tends to leave them contented with the one they have. 
This interpretation implies that organizations would do well to 
implement systems that can be upgraded as users become 
more experienced and as new options become available. 

Since . the -four dimensions-functionality, equipment 
performance, interaction, and environment-seemed to sum
marize user satisfaction quite well, we wanted to see whether 
they would serve as general predictors of overall system 
friendliness, utilization levels, and satisfaction with the new 
technology. 

We excluded overall friendliness, the last item listed in 
Table V, from the factor analysis because we regarded it as a 
product of all four system factors rather than as a specific 
feature. We used standard statistical regression procedures to 
test this hypothesis.# As we expected, all four factors were 

#We used standard linear regression techniques, with derived factor scores 
used as predictors of overall friendliness ratings, reported utilization levels, and 
satisfaction with the new Lechnoiogy. 

Group I Group II Group III Group IV 
Mean Mean Mean Mean 

3.4 3.6 3.3 3.5 
3.3 3.6 3.4 3.4 
3.3 3.5 3.3 3.5 
3.4 3.7 3.5 3.4 
3.2 3.4 3.3 3.4 

3.7 3.7 3.5 3.8 
3.7 3.7 3.7 3.7 

significantly related to ratings of overall system friendliness, 
but the association was statistically weakest for the environ
mental factor (Factor 4). 

Next, we sought to determine whether satisfaction on the 
four summary dimensions could predict reported levels of 
computer use. Employing similar statistical procedures to test 
this relationship, we discovered that utilization is significantly 
associated only with functionality. That is, among the sets of 
features studied, user satisfaction with system functionality is 
what predicts the extent to which information technology is 
incorporated into regular work. 

Finally, we investigated the degree to which satisfaction on 
these four dimensions could predict overall satisfaction with 
the new technology. For this outcome, we found two factors 
to be significant: functionality and environment. 

These results support the following suggestions for imple
menting advanced information systems. 

1. Successful implementation requires high ratings on all 
four computer system dimensions. 

2. The implementation problems identified in the pre
ceding discussion are not inherent computer problems
users are basically happy with system functionality. They 
are unhappy with system characteristics that manage
ment can readily fix, such as unhelpful technical manuals 
and unaccommodating office environments. 

EFFECTS OF COMPUTER USE ON PERFORMANCE 
AT WORK 

Ultimately, investigations of advanced information tech
nology in private-sector contexts are expected to address the 
issue of how computer use affects work performance. A major 
incentive for investing in office computer systems, according 
to our sample respondents and to reports in other literature, 
is the expectation of increased productivity or decreased labor 
costs. In our survey we therefore asked respondents to esti
mate two sorts of outcomes: 

1. The effects of computer use on the speed, quantity, 
type, and quality of white collar work of the sort done in 



Advanced Office Systems: Use and Satisfaction 327 

Table VII-Mean scores on level of technology use and satisfaction 

Overall 
Use and Satisfaction Mean 

Extent of incorporation of new technology into daily work 2.2 
(3 = high level, 1 = low level) 

Extent of satisfaction with new technology 3.2 
(4 = high level, 1 = low level) 

Key to Groups: I=Management, administration 
II=Text-oriented professionals 

III = Data-oriented professionals 
IV=Support staff 

their office as well as its effects on the general quality of 
working life 

2. The effects of computer use on the quality and the pro
ductivity of their own work 

Table VI summarizes the average responses for the entire 
sample and for each type of work group. It is evident that most 
employees think computer use will have a favorable effect on 
various aspects of work performance. Mean estimates in the 
upper portion of the table range from 3.4 to 3.7 on a 4-point 
scale. However, as the bottom half of Table VI shows, re
spondents were even more positive about the effects of com
puter use on the quality and productivity of their own work. 
These are self-report results that need to be supplemented by 
archival data and other objective measures. We will pursue 
such analyses in later stages of this research project. However, 
it is interesting to note that respondents were significantly 
more positive about how the computer might affect the quan
tity and quality of their own work than they were about how 
it might affect the quality of working life. 

Between-group differences in judgments about work effects 
shown in Table VI mirror previously reported differences in 
computer system satisfaction. The data-oriented professionals 
are less positive than other groups, while the text-oriented 
professionals are the most enthusiastic. Not surprisingly, sup
port groups report the greatest positive effect of computer use 
on productivity. Their estimate is consistent with the conclu
sions of others (e.g., Johnson and Taylor,z) that productivity 
gains through computerization of office work are most rapidly 
and easily achieved in secretarial and other support tasks. 

We have described how satisfaction on the four summary 
dimensions of computer systems predicts the level of utiliza
tion and overall satisfaction with the new work tool. It is 
appropriate to end this preliminary discussion of research 
results by asking whether level of utilization and degree of 
satisfaction are directly linked to assessment of productivity. 
For the time being, the answer is No. Table VII shows how 
work groups rated the extent to which they had incorporated 
the new technology into their daily work and their satisfaction 
with it. All groups report only intermediate levels of utiliza
tion. Moreover, statistical tests show no significant relation
ship between levels of use and levels of satisfaction with the 
technology. Nor is there a significant relationship between 
either of these variables and the very high estimate (3.7) of the 

Group I 
Mean 

2.0 

3.1 

Group II 
Mean 

2.2 

3.4 

Group III 
Mean 

2.3 

3.1 

Group IV 
Mean 

2.3 

3.1 

computer's effect on worker productivity. In one sense, the 
lack of a connection is not surprising; decades of organiza
tional research have been unable to demonstrate a consistent 
relationship between satisfaction and productivity at work 
(see, e.g. Brayfield and Crockete). On the other hand, given 
the billion-dollar cost problems associated with white-collar 
absenteeism, satisfaction with work would appear to be a 
necessary although not sufficient condition for productivity. 

ORGANIZATIONAL CHARACTERISTICS THAT 
AFFECT IMPLEMENTATION 

In order to link our characterization of activity in computer
ized offices with other national studies of the quality of work
ing life, we included in our survey some standard measures of 
organizational characteristics. * * These measures tapped such 
aspects of organizations as centralization of decision making, 
employee autonomy, variety in work, challenge in work, and 
the organization'S orientation toward change. Our hypothesis 
was that the organizational context for substantial change, 
such as the introduction of innovative office technology, 
would certainly affect implementation success. 

Survey results showed that two features of organizations do 
predict how completely users integrate information systems 
into their daily work and how happy they are with them. 

1. Variety in work significantly predicts the level of system 
use. This finding, coupled with the relatively high edu
cation level of the workers who will be using office com
puters, reinforces our concern that implementing infor
mation systems in the white-collar environment not be 
patterned on automating routine factory work. 

2. An organization'S orientation toward change signifi
cantly predicts both level of system use and user satis
faction with the new technology. White-collar workers 
appear to adapt more readily to innovative information 
systems when they work for organizations where such 
change is viewed as a positive, problem-solving, and 
achievable goal. 

**These measures were developed by the University of Michigan Survey 
Research Center and have been widely used in organizational research (e.g., 
Quinn and Shepard3). 



328 National Computer Conference, 1983 

Because an organization's change orientation plays such an 
important role in implementing an information system, we 
will explore it more thoroughly in subsequent research. Inter
view data and other descriptive information will help in deter
mining the ingredieints of positive change orientation and 
suggest how organizations can best manage the process of 
embedding technology in information-related work. 

These organizational findings, coupled with analyses of user 
satisfaction and dissatisfaction described above, strengthen 
our belief that problems with implementing computer systems 
in white-collar settings are not technological in nature. Users 
think the technology itself is fine. What affects how much and 
how well it is used are organizational, environmental, and 
training matters that organizations should be able to address. 

CONCLUSIONS 

White-collar work can be described in terms of four system
atic clusters of information-handling activities. They are car
ried out by well-educated employees who, across sex and 
occupational category, have some keyboarding skills. Many 
have used a computer in a previous job. 

Contrary to popular reports, senior managers and profes
sionals are not resistant to using computers in organizations 
where advanced office technology has been installed. Indeed, 
more than two-thirds of them already use a computer, and 
almost all of the rest expect to do so in the near future. 

For the most part, workers give the new technology per se 
high marks. They are, for the most part, satisfied with the 
functionality of the applications available to them. However, 
they are distinctly unhappy with some features that affect the 
user interface-for example, user manuals and promptness of 

maintenance. And they find the environment in which the 
system is configured uncomfortable or inappropriate. 

Four basic dimensions were found to summarize user reac
tions to the new systems and to predict both how much the 
system is uSed and how well users like it. Among them, func
tionality features predict how thoroughly the system is incor
porated into daily work, and together with environmental 
characteristics they predict overall satisfaction with the new 
technology. 

Surveyed employees estimate that the computer will have 
very positive effects on the quality and productivity of their 
own work. However, they are less enthusiastic in their assess
ment of how it will affect the quality of working life. 

Organizational characteristics appear to be as important as 
computer characteristics in the successful implementation of 
an innovative office system. In particular, variety of work and 
the organization's orientation toward change are significant 
predictors of how much the new system will be used and how 
satisfied users will be. 

These findings suggest that the most critical problems in 
implementing information systems are not technological ones. 
Instead, they involve basic characteristics of the organization: 
how its structures work, how it responds to change, and how 
adequately it considers employee needs in designing the user
computer interface. 

REFERENCES 

1. Brayfield, A., and W. Crockett. "Employee Attitudes and Employee Per
formance." Psychological Bulletin, 52 (1955), pp. 415-422. 

2. Johnson, B., and J. Taylor. "Innovation in Word Processing," Interim Re
port to the National Science Foundation, Grant No. ISI-8110791, 1982. 

3. Quinn, R., and L. Shepard. The Quality of Employment Survey. Ann Arbor: 
Institute for Social Research, 1974. 



An Interactive Display Environment, or knitting sheep's 
clothing for a wolf 

by ROBERT P. O'HARA 
The IBM Corporation 
Yorktown Heights, New York 

ABSTRACT 

AIDE, An Interactive Display Environment, attempts to improve the usability of 
a traditional timesharing system by exploiting the use of a powerful personal com
puter with a large, high-resolution all-points-addressable (APA) display as a termi
nal. No changes to the timesharing system are required, and existing application 
programs dependent on alphanumeric display terminals run unchanged. A sample 
terminal session illustrates AIDE in use. Ways in which the timesharing system 
might be modified to further exploit the display are suggested. 

329 





MOTIVATION 

The display interface of an interactive system represents a 
major part of the face the system presents to the user. Most 
traditional timesharing systems such as VMJ370 CMS4

,11 (VMJ 
CMS) and UNIXlo were designed with typewriter terminals as 
the assumed user terminal. In such systems the user types 
commands as strings of words; the system types back a re
sponse that may be many lines long. This conversation is 
recorded on the typewriter terminal's paper. If the user wishes 
to review an earlier portion of the conversation, it is readily 
available. 

Display terminals (hereafter called displays) have sup
planted typewriter terminals as the standard interactive termi
nal. They offer advantages such as very high speed operation 
and the ability to present a formatted display. Programs that 
use these formatted fullscreen displays, such as visual editors 
and menu-driven applications, offer increased ease of use and 
productivity over the previous typewriter-mode programs, but 
typically fit poorly with the rest of the system. The user 
switches between typewriter mode and fullscreen mode dur
ing the interactive session, losing whatever was on the screen 
during a mode switch. The typewriter-mode interface at a 
display is essentially unchanged from that at a typewriter ter
minal. The conversation that previously was recorded on the 
typewriter paper now scrolls off the screen and is lost, as if 
someone came along and tore off the paper every 24 lines. In 
other words, a valuable function (that of review of previous 
commands and responses) has been lost. 

Several window/terminal management systems that provide 
more than "typewriter mode on a display" have been imple
mented. Notable for support of alphanumeric displays are the 
IBM TSO Session Manager,7 the RIG Virtual Terminal Man
agement System at the University of Rochester,S BRUWIN at 
Brown University,S the Automated Desk/4 and Hartman's 
TOY system.3 

I believe that large-screen all-points-addressable (APA) 
displays are as important an advance in function and usability 
as alphanumeric displays were over typewriter terminals. Far 
more information can be displayed on them, and their APA 
capability allows the use of multiple fonts, graphics, and 
images. Systems such as Smalltalk12 and the Xerox Star6 have 
been designed with APA displays in mind. These systems are 
visually oriented, designed around a pointing device such as a 
mouse. They do not offer either a traditional command lan
guage interface or a "fill in the blanks" menu interface, but 
rather they define new paradigms for the user-system inter
face, based on the capabilities of an APA display and a pow
erful personal computer. 

In this project I chose to explore how one can use such 

An Interactive Display Environment 331 

displays with an existing interactive system. It is often not 
practical to rewrite the system to support an AP A display. 
Existing programs, many with dependencies on alphanumeric 
displays, must continue to operate. 

GOALS 

The goals of the project were to 

• enhance the usability and function of the system by fully 
exploiting the AP A display. 

• provide a base for an evolution to new modes of display 
usage and user interfaces. 

• allow all existing programs of the interactive system to 
run unchanged, including "fullscreen" programs. 

• not modify the existing interactive system. 

GUIDING PRINCIPLES 

So how does one go about designing a better user interface? 
The approach used in developing AIDE was to develop a list 
of principles to guide the design. The intent was to have these 
principles embody good human factors, and thus assist in 
achieving that better interface. The design principles were the 
following: 

• Preserve the context of the user's conversation with the 
system. This is important because the relationships 
among commands entered during a session are often as 
important as the commands themselves; there is con
tinuity to the user/system conversation. 

Show more of it. The typical display terminal has 24 
lines of 80 characters. Note that this is not even one page 
of text. When the screen is split into two or more win
dows, very little information can be displayed in each 
window. It's difficult to be productive when one views the 
world through a keyhole. Large-screen displays such as 
the one used by AIDE can display over 90 rows of 100 
characters, and even this is not too big! 

Avoid its loss. Most systems clear the screen when 
entering and leaving the editor. It is not uncommon to 
observe users copying information from the screen with 
pencil and paper before it is lost. AIDE creates a sepa
rate window for the editor or other fullscreen programs, 
preserving the information displayed in the typewriter
mode window. 

Avoid its disruption. Asynchronous messages from 
other users and programs are typically displayed immedi
ately on the screen, interspersed with and interrupting 



332 National Computer Conference, 1983 

whatever else is there. If the user is within an editor, the 
editing session is typically interrupted, the screen 
cleared, and the message displayed. Before resuming the 
editing session, the user must copy the message on paper 
if it is not to be lost. AIDE places asynchronous messages 
in a separate window to avoid disrupting the current 
context. 

• Provide feedback to user actions. Norman emphasizes 
the importance of feedback in preventing many classes of 
user errors. 9 AIDE provides instant feedback within pop
up menus by using reverse video to highlight the com
mand pointed at by the user. Smooth scrolling of the 
message window one raster line at a time gives the user 
instant feedback and easy control of the amount of scroll
ing desired. It seems to eliminate the problem of window
ing versus scrolling common on many systems. 1 

• Don't hide the state of the system. Norman also observes 
that "mode errors occur when the person believes the 
system is in one state (mode), whereas it is actually in 
another." AIDE indicates the modes of the system in 
several different ways: 
1. Different cursor shapes are used to indicate the differ

ent states of the system and terminal: 
Insert/replace mode of the character cursor. AIDE 

changes the shape of the character cursor itself, from 
an underscore (replace mode) to a reverse-video box 
(insert mode). 

Typewriterlfullscreen mode. The pointing cursor on 
the screen changes shape when fullscreen mode is 
entered, indicating that it may now be used to move 
the character cursor within the fullscreen window. 

Screen manipulation menus. A different pointing 
cursor appears when the screen manipulation menus 
are active. This informs the user that the pointing 
cursor is now to be used to make a selection from the 
menu. 

2. Separate windows are used for alphanumeric full
screen programs. Displaying the full screen editor in a 
separate window superimposed on the typewriter
mode window clearly indicates that the user has en
tered a different environment. Burying the fullscreen 
window upon leaving the editor clearly shows the re
turn to the system level. 

3. Recursion levels in the system, such as within the 
editor, are shown by surfacing additional windows, 
with the current level of recursion displayed in the 
topmost window. With a minor change to the editor 
an additional fullscreen window is created when addi
tional files are edited. This has been a very useful 
approach with VMlCMS, for many of the most used 
programs such as electronic-mail sending and reading, 
file-list manipulations, system help information and so 
on are based on the editor. 

• Eliminate modes where possible. The typewriter mode of 
VM/CMS at a display terminal presents six different 
states to the user. The rules governing which key to press 
when are very complex. AIDE simplifies life at the termi
nal by handling typewriter mode for the user. For exam
pIe, the CLEAR key is preSsed when needed. 

IMPLEMENTATION OVERVIEW 

Connecting non-IBM equipment to IBM computers is often a 
challenge; connecting the personal computer on which AIDE 
is implemented to the IBM host system proved no exception. 

A Three Rivers Perq computer is the terminal used by 
AIDE. The Perq has a specially microcoded processor that 
executes PASCAL intermediate code at up to 1 million in
structions per second and a 24-megabyte hard disk. A 
768 x 1024 100 points-per-inch black and white APA display 
directly displays 96k of the 1 megabyte of memory. A Ras
terop instruction copies any size area of memory, including 
the memory displayed on the screen, to any other area of 
memory in one refresh cycle of the display. This allows for 
very fast screen operations. The Perq also has a keyboard and 
tablet with a pointing device. The pointing device is a Sum
magraphics Bit Pad tablet and puck. The Perq connects to an 
IBM Seriesll computer over a 9600 baud full-duplex asyn
chronous line. The Series/1 connects to an IBM S/370 model 
3031 AP computer through a block-multiplex channel. 

Software 

AIDE is written in PASCAL and runs on the Perq. It uses 
a window management system called JAWS (Jaws A Window 
System? that is also written in PASCAL. In fact, all of the 
software running on the Perq is written in PASCAL, including 
the operating system, since the Perq is microcoded to effi
ciently execute PASCAL intermediate code. 

AIDE makes the Perq appear as an IBM 3101 ascii teletype 
display terminal, which is one of the terminals supported by 
the IBM Seriesll Yale Ascii Terminal Communications Sys
tem Installed User Program (the Yale IUP, program number 
5796-RBT) running on the Series/I. The Yale IUP in turn 
makes the IBM 3101 look like an IBM 3277 display terminal 
to the System/370 model 3031 computer. The 3031 is running 
the VM/CMS operating system, and it is to CMS that the user 
finally logs on. 

Operation 

The result of all this deception is that CMS believes the user 
is at a locally attached IBM 3277 alphanumeric display termi
nal. AIDE views the terminal screen as a 24 by 80 character 
array. When the terminal is in typewriter mode (line at a time 
operation) AIDE interprets this screen and displays user in
put, system output, and messages in various windows, as illus
trated in the sample terminal session below. When a full
screen program is invoked, AIDE recognizes this and creates 
a 24 by 80 screen and program function (PF) key pad. 

AIDE also has a small repertoire of actions that can be 
invoked from programs running on the host computer. These 
actions include creating and hiding fullscreen and line-mode 
windows. 

SAMPLE TERMINAL SESSION 

This sample terminal session illustrates the facilities provided 
by AIDE. It is a series of snapshots of the display screen. 



Unfortunately the printer used does not copy the right half
inch of the display screen, so some clipping of the images has 
occurred. 

Figure 1 shows the terminal screen shortly after the user has 
logged on to VMlCMS. There are three windows visible on a 
restful gray background. In the upper right-hand corner is a 
window that displays the current date and time. The largest 
window is titled "VMlCMS Console Log." It displays user 
input and system output of the session while in typewriter 
mode. It is analogous to the roll of paper in a typewriter 
terminal. When the window fills with data, the data are 
scrolled up to allow new lines to be displayed. The window at 
the bottom of the screen is titled "VM/CMS Console Input." 
The character cursor is displayed in this window; here the user 
enters commands and other input. In the lower right-hand 
corner of this window a status message is displayed. This 
status message is generated by VMlCMS, not by AIDE. The 
console input window is simply viewing the bottom two lines 
of the simulated display terminal, which is the command entry 
area for VM/CMS. 

Near the center of the screen is a small arrow pointing to the 
upper left. This is the pointing cursor that follows the position 
of the pointing device on the Perq's tablet. Its image on the 
screen is maintained by special hardware in the Perq. 

The other user has responded to the initial message of 
"howdy" by sending several messages of his own. These are 
displayed in a separate window titled "External Messages." 
This window surfaces automatically whenever a new message 
is received from another user or system. VM/CMS prefixes 
each message with a timestamp and its origin. 

Since this window overlies the console window, the user 
may wish to bury it beneath the console window. To do this 
the pointing device is used to move the cursor (pictured as an 
arrow on the screen) so that it points at the message window. 
Then one of the buttons on the pointing device is pressed. 

Instantly, a pop-up menu appears (Figure 2) at the position 
of the cursor. The cursor's shape is changed to signal that a 
selection is to be made from the menu. As the cursor is moved 
over the menu, the commands are displayed in reverse video, 
providing the user with instant feedback as to what command 
will be issued. Since the user wishes to bury the message 
window, Bury is selected by pressing the pointing device. The 
menu disappears and the window is buried beneath all other 
windows. Its location on the screen has not changed. Had the 
user chosen instead not to select any of the commands, press
ing the pointing device while the cursor is outside of the menu 
would remove it from the screen without executing any 
commands. 

In Figure 3 the user has issued the rl command (a synonym 
for RDRLIST) which lists the files in the user's mailbox (vir
tual card reader). This command uses the system editor to edit 
the list of files in a full screen manner. AIDE recognizes that 
a full screen program has been invoked and in response it 
creates a window the size of the simulated terminal display 
screen (24 by 80 characters) and a program function key pad 
with the 12 PF keys arranged as they are on an IBM 327f 
terminal. The typewriter-mode input window has disappeared 
because it is not useful while in the editor. The cursor's shape 
has changed to indicate that a fullscreen program is active. 

An Interactive Display Environment 333 

The pointing device can be used to directly position the char
acter cursor on the simulated 3277 screen, avoiding the use of 
the traditional cursor movement keys. Positioning the charac
ter cursor in this manner is much faster than holding a key and 
waiting for the cursor to crawl across the screen. However, for 
small cursor movements of a couple of characters or so the 
cursor movement keys on the Perq keyboard are faster than 
the pointing device. This is especially true if other control keys 
such as insert and delete are being used. 

The same pointing device is used to press the PF keys dis
played on the screen: the pointing cursor is moved to the 
PF key and pressed. Thus PF key oriented programs like 
RDRLIST become very easy to use. To view a file in the list, 
the user points at the file name and presses to move the 
character cursor, then points at PF 11 and presses to press the 
PF key. 
--- The -PEEK command thus invoked calls the editor recur
sively. With a small change to the profile of the PEEK com
mand AIDE is requested to create another fullscreen window, 
visualizing the recursive call to the user. The first fullscreen 
window is now inactive, because the RDRLIST program is 
now dormant until the PEEK command returns to it. The user 
has decided to reply to the note displayed by PEEK. From the 
PEEK screen the NOTE command is issued (Figure 4), which 
invokes the editor in a recursive manner. AIDE again creates 
another fullscreen window. 

Looking at Figure 4, the reader might conclude that the 
display screen appears rather cluttered with windows, and 
that AIDE has made the terminal environment more con
fusing than before. For the user at the terminal, this does not 
appear as a problem. The windows appear in direct response 
to user actions, under control of the user, over time as the 
session proceeds. An analogy to working at a desk can be 
drawn. During the course of the day, a person places papers 
and opens books on the desk. Someone else viewing the desk 
might see a clutter, but to the person at the desk it is manage
able and useful to have many pieces of information partially 
visible at once. 

It is important to contrast the screen image shown here with 
that of a standard display terminal. With AIDE, the user sees 
exactly where he or she is in the interactive session. At a 
standard terminal the user would view only the current screen 
image, and the contents of the screen prior to entering the 
fullscreen program, including all external messages, would 
have been lost. 

Later in the session the user displays the file sent from the 
colleague he or she earlier conversed with. Wishing to review 
that conversation, the user points at the buried message win
dow and presses the pointing device. The menu pops up and 
the user points at the Surface command. 

Pressing the pointing device again causes the window to 
surface instantly (Figure 5). To scroll back to view the pre
vious messages, the user points to the scroll arrow on the right 
side of the window. Pressing the pointing device causes the 
window to scroll smoothly one raster line at a time over the 
data. The speed of scrolling is related to where on the scroll 
arrow the user points. The scroll arrow is located on the 
right-hand side of the message window. Close to the center 
the rate is slow; at the heads it is quite fast. The smooth 



334 National Computer Conference, 1983 

CCCCCCCCCC SSSSSSSSSS CCCCCCCCCC 
EEccccccccEE ggssssssss~~ EEccccccccEE 2 7 Aug 82 1 3: 58: 33 
cc ss cc cc vv SSVV MM CCMM 
CC VV SSSSSSSSSSS CCMM 
CC VV SSSSSSSSSSS CCMM 
CC W W MMSSM ~lCCMM 
CC W W MMSSMM~lMCCMM 
CC WCC ssw MMSS M~l CCMM CC 
CCCCCCCCCCCC SSSSSSSSSSSS CCCCCCCCCCCC cccccccccc SSSSSSSSSS CCCCCCCCCC 

W W MM MM 
W W MM MM 

WVV ~lM MM 
W MM MM 

OHARA 
ER PASSWORD: 

FILES: 010 RDR NO PRT NO PUN 
RECONNECTED AT' 13: 58: 01 'EDT FRIDA~) 08/27/82 

I CMS 
CMSSP 1. 08 12/10/81 

Y (19E) R/O 
DASD 1A4 LINKED R/O; R/W BY TOOLS; R/O BY 041 USERS 
DASD 1A6 LI NKED R/O; R/W BY TOOLS; R/O BY 029 USERS 

190 LI NKED R/O; R/W BY TOOLS; R/O BY 013 USERS 
~.r-.r,,,,ri'-n.., user"s out of 055 vi rtua 1 mach i nes. 

:::":'._.-.'Z;:r"'- _ 4A4 AGI LBERT - 48C con - 4DA CSGNAT - 401 DAVID 
- "262 FANTASY - 509 FESSEL - 4A6 GOULD - 48B GRAHAM 

GRUNT - 4A~3 HARDY - 481 HSQ - 406 I BM-CSC - 264 LOVE 
MARTY - 4DE OHARA - 265 OPERATOR - 484 PRAGER - 482 RGAGE 
ROBMITRO - 100E RODMAX - 4A0 ROSATO - 4C8 RSEBOK - 48E SAB 
SCCPE1 - 010 SHEFRIN - 48F SHERRY - 4CC SHIRL - 4A1 SLG 
SPRINGER - 261 SUCHKO - 4DF TIGER - 409 1475103 - 0AC 

REX Exec interactive tracing is OFF ("TRACER 7" for details) 
REX is in TEST mode 

Ri T=1.91/3.34 13:58:24 
Ready; 0.05/0.06 1:58pm 27 Aug 1982 rdr=9 
m dlckm howdV ... 

Sent to local user 0 i ck MacK i nncln (l BM-CSc) 
Readv; 0.13/0.23 1:59pm 27 Aug 1982 rdr=9 , 

Figure 1-Shortly after logon to VMJCMS 

RUNNING 



CCCCCCCCCC SSSSSSSSSS CCCCCCCCCC 
CCCCCCCCCCCC SSSSSSSSSSSS CCCCCCCCCCCC 
CC CC SS SS CC CC 
CC SS CC 
CC VV SSVV MM CCMM 
CC VV SSSSSSSSSSS CCMM 
CC VV SSSSSSSSSSS CCMM 
CC W W MMSSM ~tCCMM 
CC VV VV MMSSMMMMCCMM 
CC VVCC SSVV MMSS MM CCMM CC 
CCCCCCCCCCCC SSSSSSSSSSSS CCCCCCCCCCCC 

CCCCCCCCCC SSSSSSSSSS CCCCCCCCCC 
W W MM MM 

VV VV MM MM 
VWV MM MM 

W MM MM 
L OHARA 
ENTER PASSWORD: 

FILES: 010 RDR, NO PRT, NO PUN 
RECONNECTED AT 13:58:01 EDT FRIDAY 08/27/82 

I CMS 
CMSSP 1. 08 12110/81 

Y (19E) RIO 

An Interactive Display Environment 335 

DASD lA4 LIt~KED RIO, RIW BY TOOLS; RIO BY 041 USERS 
DASD lA6 LINKED RIO, RIW BY TOOLS, RIO BY 029 USERS 
DASD 190 LINKED RIO, RIW BY TOOLS, RIO BY 013 USERS 
34 logged-on users out of 055 virtual machines. 
ADENAH - 4A4 AGILBERT - 48C COYT- 4DA CSGNAT - 401 DAVID 
DNSAUL - 262 FANTASY - 509 FESSEL - 4A6 GOULD - 48B GRAHAM 

. GRUNT - 4A9 HARDY - 481 HSQ - 406 I BM-CSC - 264 LOVE 
MARTY - 4DE OHARA - 265 OPERATOR - 484 PRAGER - 482 RGAGE 
ROBMITRO - 100E RODMAX - 4A0 ROSATO - 4C8 RSEBOK - 48E SAB 
SCCPEl - 010 SHEFRIN - 48F SHERRY - 4CC SHIRL - 4Al SLG 
SPRINGER - 261 SUCHKO - 4DF TIGER - 409 1475103 - 0AC 

REX Exec interactive tracing is OFF ("TRACER?" for details) 
REX is in TEST mode 

: R, T=1.91/3.34 13:58:24 
Read,¥i 0.05/0.06 1:58pm 27 Aug 1982 rdr=9 
m dlckm howdV ... 

Sent to local user Dick MacKinnon (IBM-CSC) 
Read,¥i 0.13/0.23 1:59pm 27 Aug 1982 rdr=9 
m dlckm how can I be of assistance? 

Sent to local user Dick MacKinnon (IBM-CSC) 
. Readv; 0.06/0.13 2:02pm 27 Aug 1982 rdr=9 

13 59 49 IBM-CSC I NEED YOUR HELP 
14 02 47 IBM-CSC YOU THERE? 
14 02 59 IBM-CSC I AM GOING TO GIVE A TALK AT SEAS .. 
14 03 07 IBM-CSC THE ABSTRACT I't1 SENDING YOU .. 
14 03 20 IBM-CSC WILL REFERENCE YOUR PHILOSOPHY AND APPROACH .. 
14 03 33 IBM-CSC CAN I GET SOME PERQ FOILS THAT SHOW AN IMPROVED INTERFACE? 
1403 41 IBM-CSC TAKE A LOOK AT MY ABSTRACT, OKAY? 
14 04 25 IBM-CSC WHAT ARE YOU TALKING ON? 

Figure 2-The message window and pop-up menu 



336 National Computer Conference, 1983 

CCCCCCCCCC 
CCCCCCCCCCCC 
CC CC 
cc 
CC w 
CC w 
CC w 
CC w 
CC w 

Cmd 

D, 

SSSSSSSSSS CCCCCCCCCC 
SSSSSSSSSSSS CCCCCCCCCCCC 
SS SS CC CC 
~~ cc 
SSVV MM CCMM 
SSSSSSSSSSS CCMM 

SSSSSSSSSSS CCMM 
VV MMSSM MCCMM 

MMC:~r-ll'1t1Mlrrr1M 

Filename Fi letr,pe Class User at Node Hold 
VMSG GLIED PUN A GLIEDT WINH6 NONE 
KAY00 NOTE PUN A KAY00 MSNVMl NONE 
CKI14 TARVM PUN A CKI14 TARVM NONE 
ZEIGER NOTE PUN A ZEIGER KGNVM7 NONE 
R621HLSC NOTE PUN A R621HLSC RALVM6 NONE 
888 RCHVMl PUN A 888 RCHVMl NONE 
LE7NTOOL LAGMl PUN A LE7NTOOL LAGMl NONE 

clALMSLEY ~OT E 
PUN P GLIEDT WINH6 NONE 
PUN A WALMSLEY UKFSC NONE 

GUSSIN MAIL PUN A GUSSIN PALOALTO NONE 

Records Date T i r 
1 08/19 06:2: 

23 08/19 18:2; 
18 08/23 17:5e 
9 08/25 10:0~ 

18 08/26 11: 1: 
11 08/26 14:0: 
4 08/27 04:4~ 
3 08/27 06:2E 
9 08/27 12:5E 

15 08/27 13:5~ 
FUTURES SCRIPT received from 18M-CSC at CAM8RIDG. 

1= Help 2= Refresh 3= Quit 7= 8ackward 8= Forward~= Recei 
4= Sort(tvpe) 5= Sort(date) 6= Sort(user) 10= Execute 11= Peek 1~= Curse 
===> 

m di ckm ves; dOloJnstai rs ... 
to local user Dick MacKinnon (I8M-CSC) 
; 0.06/0.08 2:02pm 27 Aug 1982 rdr=9 

m ckm I'm gai ng to SEAS too ... 
, Sent to 1 oca 1 user Dick MacK i nncln (! 8M-CSc) 
Read~; 0.07/0.13 2:03pm 27 Aug 1982 rdr=9 
PUN FILE 0378 FROM 18M-CSC COpy 001 NOHOLD 
m dickm I'm working on the foils now ... I'm not going to talk; Just to listen. 

to 1 aca 1 user' 0 i ck MacK i nnon ( I 8M-CSC) 

rl 
; 0.0710.13 2:05pm 27 Aug 1982 rdr=10 

Figure 3-The Rdrlist fuliscreen program is invoked. 

XED! T IRS 1 FIl 



MARTY 
ROBMITRO -
SCCPE1 -
SPRINGER -

REX Exec i 
REX i5 in 

R; T=1.9 
Ready; 0. 
m dlckrn 

Sent to 1 
Ready; 0. 
m dlckm 

to 1 
; 0. 

rn dickrn 
to 1 
; 0. 
ckm 

An Interactive Display Environment 337 

CCCCCCCCCC 
CCCCCCCCCCCC 
CC CC 

SSSSSSSSSS 
SSSSSSSSSSSS 
SS SS 
SS 

CCCCCCCCCC 
CCCCCCCCCCCC 
CC CC 
CC CC 

CC 
CC 
CC 
CC 

SSW MM CCMM 
CCMM 
CCMM 

~lCCMM 

F i 1 ename F i 1 et¥pe Cl a55 U5er at Node 
VMSG GLIED PUN A GLIEDT lJINH6 
KAY 00 NOTE PUN A KAY00 MSNVMl 
CKI14 TARVM PUN A CKI14 TARVM 
ZEIGER NOiE has been di5carded. 
R621HLSC NOTE PUt~ A R621HLSC RALVM6 
BBB RCHVMl PUN A BBB RCHVM1 
LE7NTOOL LAGMl PUN A LE7NTOOL LAGM1 

Hold 
NONE 
NOt~E 
NONE 

NONE 
NONE 
t~ONE 

IBM 3277 Fullscreen Emulation Screen 2 

Recor-d5 Date 
1 08!19 

23 08119 
18 08!2::: 

18 08!26 
11 08!26 
4 08!27 

PEEK A0 V 80 TRUNC=80 SIZE=17 LINE=0 COL=1 ALT=17 

Note R621HLSC NOTE from R621HLSC at RALVM6. For-mat i 5 PUt~CH . 
• • • TOP OF FILE •• • 

Time 
06:21:08 
18:27:54 
17:56:00 

11:11:14 
14:01:41 
04:44:19 

Date: 26 AUgU5t 1982, 10:29:05 EDT 
From: H. L. Stuck Tie Li ne 441-6988 R621HLSC at RALVM6 
To: OHARA at CAMBR IDG 

SHORT Nm~OT EBOOK ALL 

27 AugU5t 1982. 14:15:17 EDT 
Robert P. 0 ~Har--a Tiel i ne 249-9274 OHARA at CAMBRIDG 
R621HLSC at RALVM6 

REPLY 50unds good. It probably 5hould be coded a5 an exec (command) so that it 
could be invoked fr-c,m both i n51 de and OUt5 i de of Xed it. IJh':,.l don ~t ':,.Iou 
adver-ti ze it in the next V~l new5letter? Bob 

PS. Plea5e 5end me a COP':,.l!_ 

R d t00l 2= Add line 3= ~uit 7= Backward 8= Forward 9= = 
pB~ ~iLE' 5= Send 6= , 10= Spl i t 11= Jo in 12= Power- input 
m dickrn INPUT ZONE • • • 

Sent to 1~?~~~~~=-~~~~r-~~~ ______________________ I_N_PU_T_-_MO_D~E __ 1_F_I_L_E~ 
Read':); 0. 
rl 

Figure 4--The Note command invokes the editor recursively_ 



338 National Computer Conference, 1983 

6670PROF SCRIPT R1 
'Readv; 0.14/0.33 2:46pm 27 Aug 1982 

dir lIE scriEt a 
FILENAME FI ETYPE FM FORMAT LRECL 

; AIDE SCRiPT Ai V 62 

rdr=5 

RECS 
29 

306 
65 

1171 
1235 
349 

44 
103 
914 

6 

BLOCKS OAT 27 Aug 82 14:48:51 
1 8/ i'(l::~~~~"'T'I!I"=T.r" 

24 6/17/82 14:07 
! E~~~~T ~~I~t ~i ~ ~~ 

CMSOBJ SCRIPT A1 V 78 
,CMSXA SCRI PT A1 V 122 
: COMMANDS SCRIPT A1 V 83 
: COVER SCRI PT A1 F 72 

SCRIPT A1 V 68 
SCRIPT A1 V 80 
SCRIPT A1 V 83 
SCRIPT A1 F 132 

:"=:.~:"::=:;:"_ SCRIPT A1 V 68 
SCRIPT A1 V 84 
SCRIPT A1 V 103 
SCRIPT A1 V 72 

RES SCRIPT A0 V 123 
SCRIPT A0 V 73 
SCRIPT A1 V 65 

TE SCRIPT A1 V 77 
SCRIPT A1 V 77 

LOTS SCRIPT A1 V 120 
NUSA SCRIPT A0 V 74 

SCRIPT A1 V 69 
SCRIPT A1 V 76 

1 SCRIPT A1 V 70 
SCRIPT A1 V 73 

CH SCRIPT A1 V 73 

600 
33 

2094 
173 
55 
53 

119 
36 

357 
275 

17 

6 .6/22/82 9:08 56 RP0191 
43 6/23/82 15:25 53 RP0191 
47 6/02/82 10:51 42 RP0191 
15 6/08/82 18:50 02 RP0191 
4 7/17/82 11:53 39 RP0191 
6 11/30/81 8:05 00 RP0191 

35 3/29/82 14:29 00 RP019 
1 8/02/82 8:52 00 RP0191 0 

78 6/18/82 15:33 54 RP0191 08'I~ 
1 8/27/82 13:45 00 RP0191 081 

84 7117/82 11:53 44 RP0191 08/~§ 
7 4/15/82 9:58 18 RP0191 ~81 
3 8/13/82 10:45 33 RP0191 ~ 27 
2 12/06/81 15:38 00 RP0191 08/27 
4 8101/82 18:43 06 RP0191 
1 8117/82 14:46 41 RP0191 

13 1/28182 14:11 00 RP0191 
13 7/29/82 16:02 38 RP0191 
1 11/24/81 13:00 00 RP0191 

15 8/10/81 11:33 00 RP0191 
2 4/15/82 17~22 09 RP0191 
2 2/16/82 13:38 00 RP0191 
7 6/02/82 15:55 20 RP0191 
3 11/17/81 23:31 00 RP0191 
7 5/26/82 10:44 51 RP0191 

Time 
06:21:08 
18:27:54 
17:56:00 
14:28:25 
14:28:39 

TITLE SCRIPT A1 V 43 
TOOLS SCRIPT A1 V 71 

SCRIPT A1 V ?2 

351 
44 
56 

175 
53 

297 
12 

132 
94 
92 
47 

1 8/13/82 11:13 16 RP0191 
6 12/11/81 14:18 00 RP0191 
4 6/03/81 8:56 00 RP0191 
3 8/12/82 15:26 00 RP019 
3 7/01/82 2:11 52 RP0191 

d 9= Receive 
12= CurSOt~ 

SCRIPT A1 V 79 
lonl.l~"'~~c" SCRI PT A1 V 79 

.08/0.25 2:46pm 27 Aug 1982 rdr=5 

: Release 2.0 - 82/05/07 12:22 

rdr=5 

Future Directions for CMS 

Richard A. MacKinnon, Acting Director 

United States Scientific Centers and 

Manager, IBM Cambridge Scientific Center 

SEAS Conference - September 30, 1982 

WILL REFERENCE YOUR PHILOSOPHY AND APPROACH .. 
CAN I GET SOME PERQ FOILS THAT SHOW AN IMPROVED INTERFACE? 
TAKE A LOOK AT MY ABSTRACT, OKAl'? 
WHAT ARE YOU TALKING ON? 
I'LL STOP BY .. 

14:05:36 IBM-CSC: DON'T DO ANY WORK YET UNLESS . 
14:05:41 IBM-CSC: IT'S TO GIVE ME A FEEL 
14 : 18: 22 FILE 0408 (0408) ENQUEUED ON L I t~K KGtWMN 
14: 18:27 SENT FILE 0408 (0401::l) O~I LINK KGtNMN TO RALVM6 R621HLSC 
14:18:34 KGNVMN: SENT FILE 0096 (0408) ON LINK RALVM82 TO RAVM6 R621HLSC 
14:18:36 RALVM8: SENT FILE 6385 (0408) ON LINK RALVM6 TO RALM6 R621HLSC 
14:21:20 £~1?1) E~9~E~!=;o, 9N"1l~L!9£sY§3~~,,,, ... 

RUNNING 

Figure 5-Smooth scrolling of the message window 



scrolling allows the data in the window to be read while it is 
being scrolled, and gives instant feedback as to the direction 
of scrolling. 

CONCLUSIONS 

Unfortunately, my sabbatical assignment ended after AIDE 
had been operationally stable for little over a month. During 
that time I used AIDE regularly at my desk to access 
VMlCMS. (I even gave up my regular alphanumeric display 
terminal!) Based on that short experience the following 
thoughts are offered. 

It is practical to build an improved user interface as a "front 
end" to an existing interactive system without modifying that 
system. Such an interface can run existing alphanumeric
display application programs and yet provide a superior user 
environment. 

The large screen is wonderful. In comparison, a standard 24 
by 80 display terminal is like trying to view the world through 
a keyhole. 

The font used in AIDE can display more than 90 lines of 
more than 100 columns of characters on the screen. Yet even 
this is not large enough. As can be seen in the sample terminal 
session, the display can become crowded with windows. 

Multiple overlapping windows are an effective way to orga
nize the information displayed on a large screen. Displaying 
additional windows instead of clearing the screen seems to 
reduce confusion about where one is. Since the screen is never 
cleared, as so often it would be on a standard display terminal, 
the need for copying information off of the screen onto paper 
is greatly reduced. 

Pointing devices are a very natural way to select from menus 
or position a cursor. The use of pointing devices and instanta
neous pop-up menus can reduce the need for many commands 
and modes that are common in most systems. 

Areas for Further Study 

There are many possible areas for additional work. The 
following items were planned for AIDE but were not imple
mented owing to lack of time. 

Add additional functions to the windows. It would be nice 
to shrink windows that are not of current interest to make 
them occupy less of the display screen. Windows that are 
inactive might be indicated as such by shading them. 
Typewriter-mode windows might copy their contents to disk 
so that a complete session log could be retained. 

Provide soft program function keys for 3277 -based pro
grams. With little change to most programs, the names of the 
functions performed by pressing the PF keys could be sent to 
the Perq, and AIDE could thus dynamically label the PF keys. 
The PF key pad could be displayed and operated as a pop-up 
menu, thus providing more immediate feedback to the user. 

Provide separate windows for system status functions such 
as mailbox files, terminal and system status settings, current 

An Interactive Display Environment 339 

disk links, directory settings, and search paths. These win
dows would always show the current status of their functions, 
and a setting could be changed by directly altering the win
dow. This approach is similar to the property and option 
sheets of the Xerox Star. 

Provide graphic displays of system information. Most sys
tems display information such as load, utilization, and search 
orders as tabular lists. The graphic capabilities of the AP A 
display could be easily exploited to provide this information in 
a more comprehensible form such as bar charts for load infor
mation and tree graphs for directory structures. 

ACKNOWLEDGMENTS 

This work was done while I was on assignment at the IBM 
Cambridge Scientific Center in Cambridge, Massachusetts. I 
would like to gratefully acknowledge Dick MacKinnon for 
inviting me to the IBM Cambridge Scientific Center, my man
ager Alex Chandra and my director Dick Kelisky for spon
soring my sabbatical assignment. I also thank my colleagues at 
the Scientific Center for their advice and support during my 
stay, especially Sheldon Borkin, John Prager, John Gonzalez, 
John Webster, Ray Fessel, and Peter Hardy. 

REFERENCES 

1. Bury, K. F., J. M. Boyle, R. J. Evey, and A. S. Neal. "Windowing vs. 
Scrolling on a Visual Display Terminal." Proceedings of Human Factors in 
Computer Systems, (March 15-17, 1982), pp. 41-44. 

2. Gonzalez, J. C. Implementing A Window System for an All-Points
Addressable Display, Bachelor's Thesis, MIT (June 1982). 

3. Hartman, J. P. The TOY System, Presentation at SEAS Spring Meeting, 
Noordwijkerhout, The Netherlands, (May 3-7, 1982). 

4. IBM Virtual Machine/System Product: CMS Command and Macro Refer
ence, IBM Systems Library, order number SC19-6209-1, International 
Business Machines Corporation, 1980. 

5. Lantz, K. A. and R. F. Rashid. "Virtual Terminal Management In a Mul
tiple Process Environment." Proceedings of the Seventh Symposium on 
Operating Systems Principles, (December 10-12, 1979), pp. 86-97. 

6. Lipkie, D. E., S. R. Evans, J. K. Newlin, and R. L. Weissman. "Star 
Graphics: An Object-Oriented Implementation." Computer Grahpics, 16, 
3 (July 1982), pp. 115-124. 

7. McCrossin, J. M., R. P. O'Hara, and L. R. Koster. "A Time-Sharing 
Display Terminal Session Manager." IBM Systems Journal, 17,3(1978), 
pp. 260-275. 

8. Meyrowitz, N., and M. Moser. "BRUWIN: An Adaptable Design Strategy 
for Window ManagerNirtual Terminal Systems." Proceedings of the Eighth 
Symposium on Operating Systems PrinCiples, (December 14-16, 1981), 
pp. 180-189. 

9. Norman, D. A. "Steps toward a Cognitive Engineering: Design Rules 
Based on Analyses of Human Error." Proceedings of Human Factors in 
Computer Systems, (March 15-17, 1982), pp. 378-382. 

10. Ritchie, D. M., and K. A. Thompson. "The UNIX Timesharing System." 
Communications of the ACM, 17, 7 (July 1974), pp. 365-375. 

11. Seawright, L. H., and R. A. MacKinnon. "VMl370-A Study of Multi
plicity and Usefulness." IBM Systems Journal, 18,1 (1979), pp. 4-17. 

12. Tesler, L. "The Small talk Environment." Byte, 6, 8 (August 1980), 
pp.90-147. 

13. Yedwab, L., C. Herot, R. Rosenburg, and C. Gross. "The Automated 
Desk." Joint Proceedings of the Symposium on Small Systems and 
the Workshop on Small Data Base Systems, (October 13-15, 1981), 
pp. 102-108. 





Resiliency of the computerized society* 

by REIN TURN 
California State University 
Northridge, California 

and 

ERIC J. NOVOTNY 
Communications Satellite Corporation 
Washington, D.C. 

ABSTRACT 

Computers support nearly every functional area of a modern society. Consequently, 
when malfunctions or software errors occur, or when computing support is not 
available for other reasons, disruptions may result. In networked systems, disrup
tions may spread and seriously impair an entire functional area of the country. Has 
computerization produced a new vulnerability for society? Or is society intrinsically 
resilient and able to absorb large disruptions without grave and lasting societal 
consequences? This paper analyzes these and related questions. The conclusion is 
that modern societies (at least the United States) still appear to be resilient. Sug
gestions for maintaining resiliency are made. 

*Based in part, on R. Turn, E. 1. Novotny, 1. 1. Geraghty, E. H. Sibley, and W. H. Ware, Observations on the Resiliency 
of the U.S. Information Society (Arlington, Va.: AFIPS Press, 1982). 

341 





INTRODUCTION 

In 1951 the first commercial electronic digital computer, the 
UNIVAC, appeared on the marketplace, and the first step 
was taken toward a computerized society. Today over a hun
dred thousand computers in the United States are used by 
businesses, industry, and government; many more are in pri
vate homes as personal computers. Millions of microproces
sors are found in pocket calculators, video games, household 
appliances, automobiles, and other products. In 1981, sales of 
computer-related products in the United States exceeded $38 
billion,l and hundreds of thousands of people were employed 
as programmers, computer operators, or data entry oper
ators. In 1976 it was estimated that over 45% ofthe U.S. work 
force could be categorized as employees of the information 
sector.2 

It is clear that the United States has already become a 
computerized society. In such a society, production and distri
bution of information is central to the economic, political, and 
social life; and the benefits accrued through the availability of 
information make the society even more dependent on timely 
information. This requires extensive automation of informa
tion processing, including its dissemination and use in deci
sion-making functions. Examples are management informa
tion systems (MIS) and decision support systems (DSS) in 
business, record-keeping systems in government, automated 
process control and manufacturing, electronic fund-transfer 
systems (EFTS), office automation, electronic mail, various 
reservation systems, and the like. Indeed, it would be difficult 
to operate a modern society in the manner to which we have 
become accustomed without computerized information 
systems. 

Strong economic and technological forces continue to exert 
pressure for increased computerization and thus for increased 
societal dependency on automated information processing. 
For example, domestic and international competition is driv
ing computer manufacturers to produce more capable yet less 
expensive computers, storage devices, terminals, and net
works. The need for productivity improvement drives indus
trial automation. Energy problems accentuate the need for 
new working patterns, such as working at a terminal at home 
instead of traveling to work, or substituting teleconferencing 
for business trips. The increased complexity of management 
and decision making and of coping with daily life itself call for 
more information and more capable information processing 
systems. Computerization of the society continues unabated. 

As early as the mid-1960s, when the total computer popu
lation in the United States was only 20,000, concern was 
voiced over the apparent dependence of the society on com
puter systems. 3

,4 The financial industry, manufacturing and 

Resiliency of the Computerized Society 343 

process control, and national defense were pointed out as 
especially critical areas in case of computer failure. Regularly 
reported in the media were cases of computer crime, viola
tions of individual privacy in computerized record-keeping 
systems, ineffective and unreliable computer applications, 
and problems in the design and operation of national com
mand and control systems. Although these were viewed as 
weaknesses of individual systems, collectively they were be
ginning to be regarded as a new potential technological vul
nerability of the society. Much has been done to correct ear
lier technological weaknesses, but new ones arise from the 
very complexity of the new interconnected systems. 

Computerization is an international phenomenon and, cor
respondingly, concerns over societal vulnerabilities that may 
be created thereby are international in scope. Thus, in 1979 
Sweden released the results of a review of the computer vul
nerability of the Swedish society, 5 and the Organization for 
Economic Cooperation and Development (OECD) held an 
international workshop on the vulnerability of the computer
ized society in Siguenza, Spain, in 1981.6 The results of these 
efforts are discussed later in this paper. It is also clear that the 
integration of computer and communications systems-infor
matics and telematics are the terms used abroad-is regarded 
as a promising means by which industrial societies as well as 
developing countries may overcome their economic and soci
etal problems. In France, the report by Nora and Minc7 ob
served that "the increasing computerization is a key issue in 
[the French] crisis and could either worsen or help to solve it." 
At a meeting on informatics in 19788 the developing nations 
observed that "information is more than power, it is a power 
system through which other developments will result" and 
that "any country that is not independent in informatics is not 
sovereign. " 

This paper examines the issues that underlie the question of 
whether computerization increases societal vulnerability, 
summarizes the results of the Swedish vulnerability review 
and the OECD workshop, and examines the resiliency and 
vulnerability of the United States as a computerized society. 
It is based in part on material prepared by the authors for an 
AFIPS brief on the resiliency of the information society. 9 

VULNERABILITY FACTORS AND CONCERNS 

In common use, vulnerability refers to a weakness or a flaw or 
to a state of being open for abuse, misuse, or damaging ac
tions. Resiliency is defined as the ability to rebound after a 
disruption or setback without lasting ill effects. Threat is de
fined as an occurrence or an action, deliberate or inadvertent, 
that exploits vulnerabilities to cause undesirable effects .. 



344 National Computer Conference, 1983 

Threats can be gradual or indirect as well as sudden or direct. 
In the context of the present analysis the postulated vulner
ability is the computerization of society: the possibility that 
because of using computers, there is an increase of threats that 
may cause significant short-term disruptions, losses, or crises; 
or long-term adverse changes that affect a very substantial 
part of the society in question. Thus, the size of the society is 
an impprtant consideration, as is the geographical area this 
group inhabits. For example, the power blackout in the north
eastern United States a few years ago affected a region and a 
population greater than quite a few countries in Europe, but 
it was not viewed as a nationwide disruption in the United 
States. 

Generic Factors 

Before the threats that may exploit the computerization of 
society can be examined, a taxonomy of societally adverse 
effects is needed. However, an objective taxonomy is difficult 
to produce, since an effect that may be judged adverse by one 
group in the society may be judged beneficial by another. The 
following list suffers from this problem and therefore must be 
regarded only as illustrative; the effects listed are not in any 
particular order of severity or importance, nor is the list com
plete: 

1. A severe disruption of national economy and large 
losses that are only partially recoverable. 

2. A paralyzing disruption of the functioning of the na
tional financial system. 

3. Severe disturbance of the daily life, and of the ability to 
obtain the necessities of life, of a large part of the 
population, with attendant social unrest. 

4. A large decline in the productive capacity of an im
portant industrial sector and/or a large fraction of the 
work force. 

5. A drastic decline in the standard of living for the entire 
population or large subpopulations. 

6. Massive wasting of resources, with associated severe 
shortages in sectors where these resources should have 
been used. 

7. The institution of governmental policies that have 
harmful effects on large parts of the society. 

8. The erosion of citizens' constitutional or human rights. 
9. Increased dependence on foreign powers in economy, 

finance, or politics. 
10. Substantial decline of the educational level of large 

segments of the population. 
11. Decline of individual values of the society toward a lack 

of interest in personal or societal advancement. 
12. War or nuclear conflict. 

Is it possible for computerization to cause directly, or to 
contribute substantially to, the occurrence of some of these 
harmful effects? If not, computerization should not be re
garded as a potential nationwide societal vulnerability but, at 
most, as one that might have local or regional effects on 
society or individual organizations. Indeed, there are com
puter applications that support societal functions that, in turn, 

either could cause harmful effects or could be subject to such 
effects themselves. Examples of such computer applications 
are the following: 

1. Command and control systems for national defense and 
for weapons control. 

2. Real-time process control systems (manufacturing, 
transportation, power distribution, telecommunica
tions). 

3. Distribution of merchandise, food, raw materials, and 
supplies. 

4. Record-keeping systems of personal information about 
individuals. 

5. Financial and fund transfer systems, such as EFTS. 
6. MIS and DSS for strategic planning; computer-based 

models. 

The threat mechanisms that may cause these computer ap
plications to contribute to societally harmful effects may in
clude the following: 

1. Sudden loss of computers in large numbers, crippling an 
entire societal function for a prolonged period of time. 
Such a loss may occur as a result of large-scale failure of 
electrical power, destruction from hostile or terrorist 
actions, subversion, contamination of data or programs 
in large networked systems, or labor strife. 

2. Capture by terrorists of critical computer systems in an 
operational state. 

3. Subversion of computer systems to sabotage their func
tioning systematically so as to cause widespread adverse 
effects or so as to cause incorrect decisions to be made 
because subverted systems are being used. 

4. Accumulation in databases of erroneous information 
that cannot be identified or located and that over time 
renders such systems unusable (if this condition is dis
covered) or its products incorrect. 

5. Accumulation of program flaws that eventually produce 
false results, causing them to become untrusted and un
used if this condition is discovered. 

6. Overdependence, on a large scale, on the use of com
puter systems (for example, to reduce below critical level 
the number of people who could perform the automated 
tasks manually or who know how they should be 
performed). 

7. Deliberate misuse of the computer system for societally 
detrimental purposes by owners or users; misuse for 
fraudulent purposes and personal gain. 

The above lists attempt to lay a foundation for assessing 
computer applications in a given society to determine whether 
the society is vulnerable or resilient. The assessment meth
odology is still to be developed, but certain risk assessment 
techniques have been proposed. 10 

The Swedish Vulnerability Review 

In the case of a society considerably smaller than the United 
States-Sweden-a preliminary review of societal vulner-



ability was made by a Ministry of Defense committee, SARK, 
from 1977 through 1979.5 The premise of the SARK review 
was that a "technologically developed society cannot do 
without ADP," and its conclusion was that (for Sweden) the 
"vulnerability is unacceptably high in today's computerized 
society." This conclusion was reached by an analysis of the 
following "vulnerability factors," which are similar to the 
"threat mechanisms" discussed earlier: 

1. Criminal acts involving computer systems---espionage, 
sabotage, crimes against property and resources, and 
terrorism with a political aim that. in the future may 
become a means of aggression between states apart 
from conventional wars. 

2. Misuse for political purposes-threats of economic 
sanctions, which may in the future be an increasingly 
common means of pressure to attain political aims. 
(E.g., when a country is highly dependent on imports 
of computer equipment or services, a blockade against 
their import, as well as of spart parts, may very quickly 
have serious effects.) 

3. Acts of war-including the loss of parts of inter
connected systems to the enemy; destruction of sys
tems; requirements for curtailing data processing for 
civilian purposes; and problems with obtaining equip
ment, spare parts, or services from abroad. Electro
magnetic pulses from nuclear detonations far away may 
destroy or damage computers and communications 
systems. 

4. Catastrophes or accidents-due to natural causes, ex
plosions of hazardous materials, fire, or external 
events. Power outages can produce lengthy disruptions 
of ADP service. 

5. Registers containing information of a confidential 
nature-vulnerable to misuse of information about, or 
to bringing undesirable pressure against, the data 
subjects. 

6. Functionally sensitive systems-used for financial activ
ities, production management, process control, and the 
like, where misuse or attacks may result in drainage of 
resources, reduced production of goods, disruption in 
transportation, or other problems that may have im
portant economic effects. 

7. Concentration-geographic or functional, where accu
mulation of computer systems in a particular geograph
ic area may make them an attractive target and increase 
damage from attacks or catastrophes; centralization of 
function which may make an entire functional area sub
ject to severe disruption as a result of a single attack or 
catastrophe. Dispersion and decentralization can re
duce these vulnerabilities. 

8. Integration and interdependence-the existing infor
mation flows between systems, including sharing of 
databases or processing functions, which creates situ
ations where disturbances in or loss of one system prop
agates to other systems. Accidentally or deliberately 
introduced erroneous data in these systems can quickly 
spread throughout the system. 

Resiliency of the Computerized Society 345 

9. Accumulation of large quantities of data-large com
pilations of data items that may be insensitive them
selves but may offer new intelligence-gathering oppor
tunities when accumulated. 

10. Deficient education-inadequate education with re
spect to vulnerability and security, resulting in a lack of 
awareness of potential problems. 

11. Low quality of hardware and software-faults in equip
ment or errors in software that may lead to accidents 
immediately or that may cause long-term damage that 
may be hard to detect and impossible to repair. 

12. Key persons in computer operation-system engineers 
or programmers, who often develop systems that only 
they can understand, thus putting the users into a de
pendent position. Dissatisfied employees have dam
aged systems or planted program changes that can dis
rupt a system at a later time. Key persons themselves 
are vulnerable to actions against them as a means of 
disrupting systems. 

13. Documentation-lack of adequate documentation of 
system changes, causing problems to surface when 
changing the system, personnel, or operational require
ments; unnecessary costs are accrued in terms of system 
unavailability or loss of productivity. 

14. Emergency planning-failure to plan adequately for 
packup and resumption of data processing in case of 
disasters or in emergency situations. 

15. Dependence on foreign sources-the need for com
ponents, spare parts, and services from abroad, which 
makes Sweden dependent on an undisturbed flow of 
trade. Existing supplies would last for oniy a brief 
period of time were they interrupted by war, blockade, 
trade embargo, or the like. 

16. International data flows--causing security and vulner
ability problems of dimensions other than those exist
ing under purely national conditions. If data processing 
[for a country] is done in another country or on another 
continent, and if input and output are to pass through 
several countries, the misappropriation risks of various 
kinds increase. Protecting against events abroad is nat
urally more difficult than building up a domestic system 
of protection. 

The SARK review concludes that the vulnerability of exist
ing systems (in Sweden) can be limited and that by assessment 
of vulnerabilities it should be possible to build new systems in 
a different, more resilient way. This could be done by provid
ing adequate information and consultation for some cases, but 
in other systems "more far-reaching measures, including li
censing" would be needed. In 1981 Sweden established a new 
group, the Vulnerability Board (SARB) to study the question 
further. 

The OEeD Workshop Findings 

The OECD workshop on computer vulnerability examined 
three themes:1:l) protection of computer and telecommunica
tion installations, (2) design and management of information 



346 National Computer Conference, 1983 

installations, and (3) societal dependence on information 
technology. The first theme has been treated extensively in 
literaturell

,12 and is not central to this paper. The other two 
themes are of interest, however. In the design and manage
ment of information systems the following issues were identi
fied: 

1. The need for research on the question whether there are 
limits to the areas or functions of society where com
puters should be used. 

2. The need to make contingency planning an integral part 
of the system design process. 

3. In information systems with international scope, the 
need for a legal framework to cover nontechnical aspects 
of the vulnerability issue. 

4. Effects on vulnerability of the increased complexity of 
systems and of the software maintenance problem. 

5. The apparent lack of computer auditing in many or
ganizations, which represents a major risk and thus im
plies a potential vulnerability. 

At the OECD workshop, vulnerability was defined as "the 
possibility of loss, injury, or denial of equal rights to a signifi
cant segment of the population, the weakening of social sta
bility, or the risk to national sovereignty due to dependence 
on computer-based information technology." The following 
issues were identified that involved societal dependence on 
information technology: 

1. Citizens' inequality of access to computerized media, 
databases, and knowledge necessary for using informa
tion machines. 

2. The need for anonymous methods for effecting commer
cial transactions in computerized systems to protect citi
zens from (1) overzealous or malicious statistical data 
collections and (2) construction of profiles of personal 
traits by tracking or inference. 

3. Ways must be found for protecting consumers against 
misuses of computer programs that compute shopping 
bills or debit bank accounts. A parallel to "inspectors of 
weights and measures" must be developed for use in 
these systems. 

4. The need to discover measures to prevent the growth of 
new monopolies based on computer systems. 

5. The apparent lack of knowledge by nontechnical people 
of what computers and computer networks are capable 
of doing, which may be an underlying source of society'S 
computer vulnerability. All citizens should be provided 
the opportunity of adequate training in the use of com
puters as a part of their basic education. 

6. The importance of educating decision makers about the 
potentials, limitations, and actual use of computers to 
reduce the danger of misinterpretation of computer
produced results. 

7. The need to investigate the cultural effects of computer
ization more thorougly (e.g., possible effects on family 
Hie, thinking patterns, or sociai behavior). 

The workshop concluded (1) that computer and commu
nication technologies represent positive developments that 
contribute to social and economic progress, but (2) that the 
question facing policy makers is how to ensure that the exten
sive use of these technologies occurs to the best advantage of 
society while minimizing disadvantages or dangers to it. The 
consensus was that the OECD is a suitable international fo
rum for studies and exchanges of experience in this area. 

SOCIETAL RESILIENCY 

Resiliency is the ability to absorb disruptions and damages 
without suffering long-lasting or irreversible ill effects. In the 
present context it is the ability to recover from failures of 
computerized systems or from their misuse without lasting, 
societywide ill effects such as described in the previous sec
tion. The following factors appear to enhance resiliency in a 
computerized society or a modern computerized nation: 

1. Geographic and demographic aspects of the society
territorial size, population size and distribution, and size 
and geographic distribution of industries and commerce 
activities supported by computerized systems. Large 
societies tend to be more resilient. 

2. The degree of multiplicity in providing societal functions 
and services and the amount of redundancy in support
ing systems-Societal functions served by multiple, 
overlapping, competing, decentralized, and heterogen
eous organizations and systems are more resilient. 

3. High levels of functional-level and society-level pre
paredness; contingency planning; and establishment of 
tested backup and recovery agreements, procedures, 
and systems will enhance resiliency. 

4. Maintenance of domestic capabilities or nondisruptable 
channels to reliable foreign suppliers of data processing 
equipment, spare parts, maintenance support, or ser
vices is important for resiliency in computational sup
port systems. 

5. Preservation of "corporate memory" of how functions 
were performed and supported prior to computeriza
tion; and deliberate maintenance of adequate manual 
backup capability in organizations, as well as in entire 
functional areas, is necessary for resiliency. 

6. A population used to a technological environment with 
hands-on experience with technical devices, and literate 
in computer and communications technology, tends to 
be inventive and innovative in disruptions and crises. 
Thus this population is a very important contributor to 
societal resiliency in technical matters. 

7. Continuous monitoring of new developments and sys
tems and of the degree of computerization from the 
vulnerability/resiliency point of view is important for 
resiliency. 

8. Legal safeguards against misuses of computerized 
systems-such as those for privacy protection and 
against computer abuse-and legal requirements for ex
amining the vulnerability/resiliency aspects of new com-



puter system applications provide essential foundations 
for achieving and maintaining societal resiliency. 

9. A national information policy that includes the achieve
ment of an acceptable level of resiliency of the comput
erized society is required for resiliency. 

The vulnerability factors of the previous sections and the 
resiliency factors listed above should be used together to as
sess the degree of vulnerability and the degree of resiliency of 
a society. Applied to Sweden by the SARK committee, the 
conclusion was concern over Sweden's high degree of vulner
ability. The same factors applied to the United States, for 
example, appear to produce a different result.9,13 There are 
differences in the size of the society, in the mUltiplicity of 
nearly all business, industrial, and societal activities; in depen
dence on foreign sources for data processing equipment or 
support; in possibilities of foreign invasion, and the like. The 
geographical and geopolitical situations of the two countries 
are vastly different. The United States' society at the present 
time appears to be reasonably resilient regarding lasting detri
mental effects of failures of computer systems, even on a large 
scale, or disruptions of computer-based services as in financial 
systems, even for an extended period of time. There may be 
transitory local or regional problems and losses, but not na
tionwide effects or losses. 

More specifically, using the vulnerability factors identified 
by the Swedish SARK committee, the following observations 
can be made about the resiliency of the computerized U.S. 
society:9 

1. Computer crime or computer abuse cases have oc
curred in the United States with substantial losses to 
individual businesses, but their true extent is not 
known. It is not likely that computer crime will grow to 
cause significant societywide losses, even if targeted 
against EFTS. Resiliency will be provided through 
advances in computer-communications security tech
niques. 

2. Political pressure on the United States by curtailing 
imports into the United States of computer equipment 
or services is not an issue at present. But one must note 
that many U.S. computer manufacturers operate fo
reign-based manufacturing and assembly plants. A 
well-orchestrated action by several foreign countries 
would be required to cause a significant disruption. 

3. Computers are an integral part of the U.S. military 
systems and are critical for national defense. Nuclear 
explosions generate electromagnetic pulses which, 
when coupled into computer communications systems, 
can damage circuitry. 14 Countermeasures against EMP 
effects include shielding and the use of fiberoptics. 

4. Natural catastrophes in the U.S. will be localized and 
cannot cause system outages that will cause nationwide 
disruptions. 

5. Privacy protection in personal information "registers" 
is provided by the Privacy Act of 1974 on the Federal 
level, and in some 13 states. Much less protection is 
provided in the private sector. Enactment of the recom-

Resiliency of the Computerized Society 347 

mendations of the Privacy Protection Study Commis
sion 15 would substantially increase resiliency in this 
area. However, continued monitoring of new proposals 
for collecting or interchanging personal information is 
required lest the present rather minimal resiliency be 
lost. 

6. Many computer-based systems in the United States 
may be regarded as functionally sensitive: transporta
tion, process control, telecommunications; distribution 
of power or goods and services, banking, law enforce
ment. But each area includes numerous independent 
providers of services, and simultaneous loss of all is 
highly unlikely. As in the case of labor strife, some 
region may be inconvenienced for a while, but no na
tionally impairing disruption is likely. With reduction 
of service providers and integration of systems this 
prognosis may change, however. Functional-area con
tingency and backup plans are needed for improved, 
continued resiliency. 

7. Concentration of computer systems into a few locations 
is a possible vulnerability. In the United States there 
are many computers in large cities. Power outages can 
disrupt their services and cause regional problems. The 
trend toward distributed systems is alleviating this 
factor, as is the increased acquisition of emergency 
backup power supplies by private and governmental 
organizations. 

8. Integration and interdependence of systems tend to be 
increasing, but they are not nationwide in scope (except 
certain systems such as the air traffic control, interbank 
funds transfer systems, and various reservation sys
tems). Technical means can be used to guard against 
accidental or deliberately induced deadlocking of these 
systems, and against spreading of erroneous data. Cau
tion must be exercised in the design and operation of 
these systems. 

9. Accumulation of very large databases of personal or 
business information raises privacy concerns and possi
bilities of (indirect) manipulation. There is a latent dan
ger under some scenarios, but resiliency is provided by 
the United States' open society and democratic system 
of government. 

10. Lack of security awareness continues to be a problem in 
the United States, especially in private sector systems; 
and only a few organizations are taking steps to im
prove security features or security awareness. This may 
permit more incidents of computer crime. 

11. Defects in hardware occur and cause malfunctioning of 
individual systems or networks of systems, but tech
nical means are available and are increasingly applied 
to reduce this problem. However, it is imperative that 
certain critical systems be protected against erroneous 
behavior caused by hardware malfunctions or software 
errors. 

12. The capability of key personnel in computer facilities, 
such as system programmers, operators, and certain 
applications programmers, to disrupt computer oper
ations maliciously, or misuse systems, continues to be 
a problem internationally. Personnel procedures and 



348 National Computer Conference, 1983 

technical means are available, and should be used, to 
ensure that no single employee is in absolute oper
ational control of a critical computer system. 

13. The importance of adequate documentation of com
puter system and software designs and implementa
tions is well known. Computer models and simulations 
used in designing other systems or in supporting deci
sion making must be well documented and show explic
itly any simplifying assumptions or aggregations that 
may have been made. Improper use of models may 
indeed produce serious societal impacts, especially if 
long-term policies are involved. 

14. The importance of emergency planning is self-evident. 
It must be expanded from organizational-level planning 
to functional-level planning to increase societal 
resiliency. 

15. The United States tends to be a supplier rather than a 
user of/data processing equipment or services abroad. 
However, U.S. manufacturers own and operate manu
facturing facilities abroad and use parts manufactured 
by foreign vendors. Thus, there is an element of de
pendence and there are possibilities for the disruption 
of supplies. Though this vulnerability factor should not 
be ignored and should be monitored, it is not seriously 
undermining resiliency at this time. 

16. The question of international data flows is of great 
importance to the United States. Many multinational 
corporations are U.S. business firms with operating 
units in many countries. Restrictions on data flows can 
interfere with their operations and adversely affect 
U.S. commerce. Such restrictions may result, in part, 
from rigorous application of foreign data protection 
laws. 16 Such restrictions have not yet been applied to 
any significant degree, but the U.S. support of the 
doctrine of free flow of information is not shared by 
countries that perceive an imbalance of data flows and 
economic losses to their domestic data processing 
industries. 

The above observations strive to support in qualitative
perhaps even in intuitive-terms the claim that the computer
ized U.S. society is still resilient. But a systematic, quantita
tive analysis is needed to answer the question credibly. 17, 18 

CONCLUDING REMARKS 

A computerized society is not necessarily a vulnerable one. 
Indeed, the United States appears to be resilient to all but 
large-scale hostile actions. But there is nothing in this conclu
sion that ensures any permanence for this apparent resiliency. 
Deliberate efforts are required by all sectors of the society
the general public, the government, and the information pro
cessing profession and industry. 

The Need for Public Awareness 

Complex technologies tend to engender myths that some
times obscure the reality. Nuclear technology is a case in 

point. Incidents such as the Three Mile Island nuclear power 
plant accident jolt people into opposing their technology, 
even though these incidents do not cause damage. They create 
visions of future highly damaging catastrophes. The in
creasing use of computer technology, likewise, may lead the 
public to believe that malfunctioning or loss of an important 
computer center could cascade throughout a computer net
work and affect the entire country. Local disruptions in com
puter systems are certain to occur and thus reinforce the ex
pectation of a major computer-based or computer-generated 
disaster. Even if such a major event does not occur, public 
confidence in all computer or telecommunication systems may 
erode. Should the event actually occur (e.g., an airliner crash 
due to malfunctioning of the air traffic control system), the 
public reaction may lead to drastic control of the data pro
cessing profession and industry. 

Improved computer literacy among users and the general 
public can foster a more realistic, less mystified attitude to
ward computer technology and its applications and develop a 
healthy skepticism regarding the power of computer technol
ogy and a realistic understanding of its limitations. For this 
purpose it is important to study and report on all computer-re
lated disruptions, to explain the roles of computers and their 
uses in these incidents, and to distinguish human errors from 
machine-induced errors. It is equally important to explain and 
publicize the capabilities and roles of computer systems in 
preventing disruptions from occurring in computer systems 
themselves or in other systems. These tasks are largely the 
responsibilities of the information processing profession, es
pecially the professional societies. 

Information processing professionals must also accept the 
responsibility for another element of public awareness--con
tinuous monitoring of the computerization process for any 
technological or societal disruptions or losses, studying these 
for symptoms of the erosion of resiliency, and ensuring that 
computer systems and applications are designed with societal 
resiliency in mind. 

Governmental Obligations and Opportunities 

A major governmental obligation is to include the resiliency 
question as an important part of the overall information policy 
of the United States. Thereby it can be made an important 
system design criterion. This approach has already been 
proved effective in the area of protecting individual privacy; 
no one would today propose a personal information record
keeping system without considering privacy protection and 
data security. 

Another important role for the Federal government is set
ting and promoting standards on information resiliency for the 
information processing field as a whole, as well as individual 
functional areas of the society. In addition to focusing atten
tion on the need for resiliency and providing guidelines for 
resiliency improvement, publication of standards also serves 
an imporant educational goal. The Federal government can 
also contribute by supporting research and development ef
forts on vulnerability topics. Some results arise naturally (1) 
from defense-related programs involving system survivability; 



fault tolerance, backup and recovery techniques and (2) from 
the work on trusted/secure systems and software. 19, 20 Other 
results will require specially targeted research efforts. 

Finally, should large-scale disruptions of information-based 
economic functions actually occur, the government may have 
to assume a role in providing assistance and relief, as it does 
already in the case of natural disasters. The objective of such 
relief would be to restore the interrupted service quickly (e.g., 
by making available information processing support) and then 
to assist in reestablishing the service. Further studies of this 
concept are needed, however. 

Private Sector Opportunities and Obligations 

Most of the responsibility for information resiliency in the 
United States lies in the private sector. User organizations, as 
well as providers of information systems or services, must 
decide on reasonable protective measures and be willing to 
pay for them. Backup and recovery plans and exercises, data 
quality control checks, and data security controls are the best 
insurance against adverse events. Taken collectively, these 
actions enhance societal resiliency. 

Further improvement of resiliency requires industrywide 
cooperation. Organizations should work to ensure continuity 
of critical societal functions by establishing systemwide con
tingency planning, backup, and recovery. Industry associ
ations have the important role of promoting such cooperation, 
as well as promoting industry-sponsored research and devel
opment in resiliency techniques. 

In summary, the United States apparently has in place (per
haps as a vestige of the manual operation age) an in
frastructure that provides societal functions and controls the 
necessary information services. At present this structure can 
provide an acceptable degree of resiliency against failure of 
information systems that support such functions. However, 
this structure is not so robust as to continue providing re
siliency indefinitely. It is imperative that the information sys
tems now in operation be evaluated from time to time con
cerning their impact on and contributions to resiliency and 
that maintenance of resiliency be an important design crite
rion for new systems. 

ACKNOWLEDGMENTS 

The authors are grateful for permission from the AFIPS Gov
ernmental Activities Committee (J. Gosden, chairman) to use 
in this paper material from the AFIPS Brief Observations on 
the Resiliency of the U. S. Information Society, prepared by the 
AFIPS Panel on the Resiliency of the U.S. Information Soci-

Resiliency of the Computerized Society 349 

ety (R. Turn, chairman). The authors, who are also the prin
cipal authors of the brief, acknowledge important contribu
tions to the brief by panel members or advisers E. H. Sibley 
of Alpha Omega Group; W. H. Ware of The Rand Corpora
tion; D. Brandin and D. B. Parker of SRI International; J. 
Geraghty of the IBM Corporation; S. H. Nycum, Esq., of 
Gaston, Snow, and Eli Barlett; A. Roth, Esq., formerly of the 
AFIPS Washington Office; and R. G. Canning of Canning 
Publications. 

REFERENCES 

1. "World Markets Forecast for 1982: U.S. Markets." Elecironics, January 13, 
1982. 

2. Dolatta, T. A., M. I. Bernstein, R. S. Dickson, N. A. France, B. A. 
Rosenblatt, D. M. Smith, and T. B. Steel, Jr. Data Processing in 
1980-1985. New York: John Wiley & Sons, 1976. 

3. Weiss, H. "The Weeks the Computers Stopped." Datamation, April 1967. 
4. "Is the Computer Running Wild?" U.S. News & World Report, February 

24, 1964. 
5. Ministry of Defense, Sweden. The Vulnerability of the Computerized Soci

ety: Considerations and Proposals. (Translation.) Stockholm: The Ministry, 
December 1979. 

6. "Workshop Stresses Dependence on Comptuers." Transnational Data Re
port, July/August 1981. 

7. Nora, S., and A. Minc. The Computerization of Society: A Report to the 
President of France (Translation of 1978 Report). Cambridge, Mass.: MIT 
Press, 1980. 

8. "SPIN Conference Resolutions." IBI Newsletter, No. 27. Rome: Interna
tional Bureau of Informatics, 1978. 

9. Turn, R., E. J. Novotny, J. J. Geraghty, E. H. Sibley, and W. H. Ware. 
Observations on the Resiliency of the U.S. Information Society. Arlington, 
Va.: AFIPS Press, 1982. 

10. Hoffman, L. J. "Impacts of Information System Vulnerabilities on 
Society." AFIPS, Proceedings of the National Computer Conference 
(Vol. 51), 1982, pp. 461-467. 

11. Hsiao, D. A., D. S. Kerr, and S. E. Madnick. Computer Security. New 
York: Academic Press, 1979. 

12. Turn, R. (ed.). Advances in Computer System Security. Dedham, Mass.: 
Artech House, 1981. 

13. Kirchner, J. "AFIPS Finds U.S. Not Vulnerable in DP Disasters." Comput
erworld, June 28, 1982, p. 23. 

14. Lerner, E. J. "Electromagnetic Pulses: Potential Crippler." IEEE Spec
trum, May 1981, pp. 41-46. 

15. Privacy Protection Study Commission. Personal Privacy in an Information 
Society. Report of the Commission (D. Linowes, Chairman). Washington, 
D.C.: Government Printing Office, 1977. 

16. Turn, R. (ed.). Transborder Data Flows: Privacy Protection and Free Flow 
of Information. Arlington, Va.: AFIPS Press, 1979. 

17. Zientra, M. "Risk Analyses Said Needed to Determine Technology's Ef
fects." Computerworld, June 28, 1982, p. 27. 

18. Brandin, D. H. "The Horse or the Herring." ACM Communications, Sep
tember 1982, pp. 597-598. 

19. Walker, S. T. "The Advent of Trusted Operating Systems." AFIPS, Pro
ceedings of the National Computer Conference (Vol. 49), 1980, pp. 655-665. 

20.\ Turn, R. "Private Sector Needs for Trusted/Secure Computer Systems." 
AFIPS, Proceedings of the National Computer Conference (Vol. 51),1982, 
pp.449-460. 





Daniel J. Drageset 
Atlantic Richfield Co. 
Los Angeles, California 

OFFICE AUTOMATION 

The Office Automation track will focus on critical issues related to the imple
mentation and effective use of this rapidly emerging technology. The track will 
begin with an overview of the technology and the current state of the art, 
which will be of value to the uninitiated as well as to the practitioner. This will 
be followed by sessions dealing with pressing issues for the practitioner or 
manager: organization, implementation, and productivity. Additional ses
sions will focus on specific aspects of the technology, concentrating on where 
we are today and where we are going, emphasizing requirements based on 
experience. The track will conclude with a vision of where the technology is 
headed and its potential to significantly change the way knowledge workers 
work and extend their effectiveness. 





Interfacing people with their machines 

by NANCY B. FINN 
Boston University 
Boston, Massachusetts 

ABSTRACT 

As computer technology proliferates, the techniques applied to the interface of 
people with their machines will assume great importance if the large dollar in
vestments in equipment are to be recouped in the form of increased productivity. 

This paper propounds the theory that change in any form is difficult for people 
to accept, especially in the office environment, and that it is essential to involve the 
work force in the change to automated information processing if new technology is 
to succeed. 

The paper outlines several ways to accomplish this, including polls and individual 
interviews with all employees before the system is purchased and the design of a 
public relations effort to help employees understand the applications of automation 
to their personal roles. The paper also covers various ergonomic questions related 
to computer systems, such as noise, heat, illumination, static, terminal design, and 
general environmental questions. 

The issue of accommodating people in an office to office automation is a complex 
one, requiring a concerted effort on the part of all managers involved with the 
implementation. 

353 





INTRODUCTION 

The implementation of office automation in a company is a 
change far different from any that has preceded it. Unlike the 
opening of a new plant, the shifting of a division, the reorgan
ization of a department, or the implementation of a specific 
new procedure that attempts to accomplish a single goal, auto
mating the office changes an entire information processing 
scheme, altering the daily tasks and chores of individuals and 
rearranging not only people's lives but the physical design of 
an organization as well. In other words, office automation, if 
properly implemented, ultimately restructures the office envi
ronment, requiring a shift in management tactics as well as in 
management procedures. 

With automation, new roles and responsibilities are cre
ated, forcing office workers to reshape the patterns of their 
day and to assume new, specific chores related to the com
puter systems they must now learn to use. The familiar tools 
of the typewriter and the telephone are shunted aside, and 
workers are told to learn to operate these terminals through 
short training sessions and by struggling with complex docu
mentation. They often find themselves moved from private 
cubicles to an open space, where they share a terminal with 
other office workers. Personal relationships between secre
tarial workers and managers are dissipated as managers are 
forced to reassign the workload and in some cases are re
quired to keyboard original documents themselves. In theory, 
the task is to use the finest applications of computer tech
nology to increase productivity. In reality, when dealing with 
human beings, it does not often work easily. 

IS CHANGE A POSITIVE OR A NEGATIVE? 

Research in human behavior has clearly indicated that human 
beings react poorly to change, though in varying degrees. 

Interfacing People with Their Machines 355 

Studies have shown that humans view change with a mixture 
of fear, ambivalence, lack of interest, and downright unwill
ingness to modify their behavior. People resist change be
cause they fear they will not be able to develop the new skills 
and behavior required. They resist change because it is differ
ent from the established patterns with which they have be
come comfortable. Some groups have even been known to 
engage in direct action to block the implementation of some
thing new. 

If automation is to succeed-if it is to fulfill its promise of 
increasing productivity and making information processing a 
manageable, viable facet of office operations-then manage
ment must develop a basic understanding of what it takes to 
keep the elements of change under control. 

THE OFFICE STRUCTURE 

Most offices are structured with an executive/manager at the 
top and several managers reporting, each in hierarchical 
steps, to the person above. Secretaries and clerks are assigned 
to managers at various intervals in the spectrum. 

Sociological studies have shown that there are two levels of 
jobs in an office environment: primary jobs, or those that 
offer substantial pay, opportunities for training and advance
ment, considerable supervision, and a degree of job security; 
and secondary jobs, which offer low pay, little training or 
advancement, little job security, and constant supervision 
from someone above. Implementation of office automation 
will have an effect on both primary- and secondary-level jobs, 
since information flow in tl:!e hierarchy is accomplished step 
by step, with very little direct information contact between the 
bottom levels and the top. Messages are passed from one level 
to the next in an extremely cumbersome fashion, and both 
primary- and secondary-level employees are involved in the 
process. 

A COMPUTER ON EVERY DESK 

In the early 1950s there were approximately 1,000 computers 
in America and no microcomputers, microprocessors, or 
chips. By 1976, there were more than 220,000 computers and 
three-quarters of a million microcomputers in use. By 1980 
Americans were using over 10 million microprocessors. It is 
estimated that the market for intelligent terminals will grow at 
a rate of 25% each year throughout this decade. 

With the placement of terminals on the desks of virtually 
every manager and secretary in the office environment, infor
mation flow will change radically. Vocal and telephone com
munications, face-to-face meetings, and many written mes-



356 National Computer Conference, 1983 

11 I4ELI.O, 
I'M '{OU~ WEW COMPUTER ••• 
LET'S laETml<NOW EAcHOTHE'R.. 

sages currently processed will disappear. In their place will 
be shared databases, common electronic mail/messaging sys
tems, and common files that will open up new avenues of 
communication among the individuals in an organization. 
Each individual user will be able to supervise more closely the 
dissemination of his/her messages. New pathways of commu
nication will be established. Interpersonal roles will change as 
well. Clerical workers will become an unknown entity as such 
highly routine work as filing, mail sorting, mail delivery, and 
voluminous copying tasks are handled electronically by com
puter systems that perform these tasks by the mere push of a 
button or the command of a voice. 

Out of the labor force will come a group of paraprofes
sionals who will assume semi-management positions in the 
office, using computer technology to monitor and control a 
variety of processing chores currently performed manually. 
Managers and executives will use computer conferencing to 
replace time-consuming travel. They will have decision sup
port systems to handle budget preparation, sophisticated 
modeling tasks, and maintenance of their calendar and to give 
them access to a variety of databases. 

Knowing that this is ahead, workers at all levels of the office 
hierarchy are fearful when they hear that office automation is 
coming. How to implement automation with a minimum of 
dissent and disarray is the question that must be addressed if 
electronic processing in the office is to meet with success. 

INFORMATION MANAGEMENT IS 
EVERYONE'S CONCERN 

The first hurdle to be passed when office automation is consid
ered is for an office to take a close look at its information 
processing and determine where, when, and how automation 
might fit into the scheme. This information management 
study must be undertaken with all members of an office staff 
participating, not just a selected few, as has been the practice 
in the past. To insure that the information management study 
is handled properly, a team of individuals should review office 
procedures as they relate to the following: 

1. The kinds of documents typed or handwritten 
2. Filing procedures and how the files are organized 

3. Sorting and retrieval of documents 
4. Copying chores and the numbers of copies generated 
5. Mail volume, reception, and distribution 
6. The volume of telephone calling and how calls are 

channeled 
7. Final document preparation: Is it via Xerox, mimeo

graph, phototypesetting? 
8. Budget preparation, access to budget information, ma

nipulation of data 
9. Planning and forecasting tasks 

10. The allocation of time to these tasks by executives, 
managers, secretaries, clerks, typists, bookkeepers, 
etc. 

The results of the study must present an overall picture of 
the nature of the work being done daily in the office. It must 
determine how technology can be used most effectively to 
improve productivity and bring about beneficial change. 

In the information management study, each member of the 
office staff should be individually interviewed and asked to 
analyze items to be included in the review as they relate to 
his/her job. During the same interview, individuals should be 
asked for opinions about the impending change and should be 
encouraged to express any of the fears and anxieties about 
automation they may have as well as to express any helpful 
ideas. 

For the sake of efficiency, especially in a large office, a 
questionnaire might be used to complement personal inter
views. The questionnaire will provide more extensive feed
back on each individual's role in the information processing 
scheme than the interviews alone will reveal. They should not, 
however, replace the interviews. (See Figure 1.) 

Many companies have totally dispensed with an informa
tion management study, charging the computer department 
with the task of evaluating needs and determining equipment 
configurations. Generally, computer departments require 
that individual offices justify their requests for a system by 
maintaining a daily work log for each individual. The informal 
discussions encouraging employees to voice their feelings 
about automation are ignored. In their place, hostility builds 
among both managers and cierical workers who are being 



Figure 1 

Sample Questionnaire 

1. Could you please analyze your work day into segments and 

indicate the percent of time you spend with the following 

activities: 

Handwritten work 

Typing 

Mail sorting 

Mail answering 

Telephone usage 

copying 

Filing activities 

Retrieval 

Calendar Maintenance 

Meetings 

Calculating 

Reading/review 

Original work 

2. Are you in favor of office automation? 

Yes 

No 

3. Would you personally use a computer: 

Yes 

No 

4. Please rank in order those chores where you feel a 

computer would help you the most: 

Typing 

Filing 

Retrieval 

Elimination of telephone 

calls 

Elimination of meetings 

Original work 

Budget maihtenance 

Calendar maintenance 

Record maintenance 

5. Do you produce finished (typeset) documents? 

Yes 

No 

6. Do you feel that a computer will help you become more 

efficient at your job? 

Yes 

No 

7. Can a computer terminal be placed at your current work-

station? 

Yes 

No 

8. Have you ever used a computer terminal? 

Yes 

No 

Interfacing PeQple with Their Machines 357 

asked to account for their time without receiving a proper 
explanation of why or how the information is needed. This 
intrusion into work operations is considered an invasion of 
privacy by office workers. As a result, office automation is 
resented before it ever has a chance to prove its worth. 

There is reason to believe that change is coming. Central
ized data processing departments are slowly losing clout in 
large organizations. No longer are companies looking to their 
corporate data processing managers to provide the leadership 
needed to bring computing power out of the back room and 
into the hands of all employees. Steering committees whose 
members come from all levels of the corporate hierarchy are 
assuming this role, insuring that each faction in the company 
is represented. 

In offices where automation has previously been installed, 
but where a proper information management study was never 
completed and where employees are disgruntled and grum
bling about their computers, a study should be undertaken. It 
is never unreasonable to review information processing prac
tices and attempt to formulate an organized, sensible, and 
easier-to-use database. Although it is more difficult to con
vince already unhappy employees that automation has a pos
itive aspect, the problem is not unsolvable. Involving employ
ees in change at any step in the process is better than not 
including them at all. 

AUTOMATION DOES NOT EQUAL JOB LOSS 

Another way to avoid negative reactions to office automation 
is to dispel the myth that automation in and of itself will create 
job loss and unemployment. Automation generally has not 
resulted in mass layoffs in most companies. Although it is true 
that the elimination of personnel is one factor to cost-justify 
office automation, reducing the work force usually takes place 
through attrition rather than through wholesale firing. Initial
ly, computers have even made it necessary to increase a work 
force, since massive information reorganization must occur 
when a database is input. Once a computer system is up and 
working, employees generally find that they are freed from 
the burdens of paper work and many routine tasks, enabling 
them to perform administrative work and to participate in 
decision making more effectively. Thus computers have not 
eliminated jobs but have made them more interesting, chal
lenging, and fruitful. 

A PUBLIC RELATIONS PLAN 

Companies that have most successfully brought automation to 
the office environment while maintaining harmony and good 
will among the office workers in the initial stages have em
barked on an active public relations program to market this 
concept to their employees. All companies that are auto
mating can benefit from a plan of action incorporating all the 
media of communication (including words, visuals, and other 
tools) to keep open channels of communication and to create 
acceptance of office automation as a beneficial tool. This 
mammoth effort to launch and maintain an aggressive public 



358 National Computer Conference, 1983 

relations campaign will payoff in-positive employee attitudes 
and in the increase in productivity that is being sought through 
computing power. 

The public relations plan should include several facets. 
Most companies have working communication media, such as 
house organs and weekly newsletters, that can feature ex
planatory general articles about the applications of office 
automation tools. In addition to established publications, 
companies might want to issue an office automation bulletin 
or newsletter, biweekly or monthly, with articles of specific 
interest-for example, news about new software packages and 
contributions from employees about new applications for 
their computer terminals. 

Another tool that could be used is bulletin boards, which 
offer a good place to corroborate information with brief mes
sages, appropriate posters, and drawings. A dynamic bulletin 
board, effectively designed, with imaginative posters, cartoon 
drawings, and well-displayed notices on office automation, 
can be a considerable asset in propounding the idea that auto
mation is a concern of all members of the organization. 

Information racks (installed in many companies primarily 
for morale and employee education) can provide easy access 
to written materials describing office automation tools. These 
racks should be placed in lunchrooms and corridors so that 
everyone has access to them. 

A common device in large corporations, which has received 
favorable reception, is the use of telephone newslines to link 
managers with various empioyees in the hierarchy. Estabiish
ment of a newsline update on office automation is another way 
of keeping employees informed. 

Displays of equipment, set up before a computer system is 
installed, may make employees feel more familiar with termi
nals. Even the use of closed-circuit television in large organi
zations where it is often difficult to reach everyone is a helpful 
feature in communicating the need for and the importance of 
office automation. 

Most essential in the public relations effort is the establish
ment of regular departmental meetings involving all the em
ployees in open discussion about the changes and the uses of 
computer systems. This is the most important element in the 
attempt to assuage ruffled feelings and emotions and remove 
a sense of alienation among employees, who often feel that 
they are not consulted about major changes in the office 
where they spend the largest part of their day. 

ERGONOMICS 

Ergonomics is the science that studies the relationship be
tween people and machines. It focuses on the design of com
puter terminals and the ease with which the user is able to 
adapt to computers, including a concern for structural and 
physical design elements. All the public relations strategies 
and attention to information management before a computer 
system starts operating will be fruitless if installed systems do 
not solve the user interface problems that have hampered the 
industry in the past. Some of the problems that have to be 
addressed are discussed in the following sections. 

Noise 

The increasing acquisition of computer equipment, along 
with new office design encouraging an open landscape, has 
resulted in an environment that is not conducive to concen
trated work. The noise generated by clacking printers and the 
ringing of telecommunications devices is an irritant to workers 
whose enclosures have been removed in many offices, as well 
as to workers who are in close to a printer. The use of acoustic 
panels to absorb distracting sounds and the installation of 
plush carpeting have provided partial solutions to the prob
lem. Improvements in printer technology are slow in coming; 
but there will be a gradual change, which should alleviate the 
problem. 

Static 

Computers generate static electricity that can make an of
fice an uncomfortable place to work. Antistatic mats and 
sprays are a partial solution to this irritant. Vendors are work
ing to eliminate some of the static at its source. 

Illumination 

The placement of a computer terminal near adequate light
ing seems to be another problem. The installation of lights in 
panels and other pieces of furniture designed for the auto
mated work station promises to help in that situation. 

Heat 

Computer terminals also emit heat and must be placed in 
an atmosphere that is neither too hot nor too cold. Adequate 
air conditioning must be planned for and provided. 

Design 

The general design of the office, and especially the chair 
and table used by the terminal operator, is extremely im
portant for comfort. A recent trend in vendors of smaller 
systems has been to provide terminals that are set on tables 
and contain the disk drives so that all users buy their fur
nishings with the system. 

As computer technology proliferates in the office, the ergo
nomics of a system will be yet another determinant in its 
acceptance by the workforce. The ability of an individual user 
to adapt easily to the equipment and to accept it as a pro
ductive tool depends on ease of use. Attention to the elements 
of noise, static, illumination, heat, and design is essential to an 
appropriate interface. 

CONCLUSIONS 

Acceptance; use; and, most important, the establishment of a 
new pattern for information processing in the office will be 



realized only if new technology is implemented with concern 
for the human reaction to change. Even if all the creativity 
and imaginative selling technique that a company puts into the 
promotion of a new product is directed to the selling of com
puter power to their employees, the system will not succeed 
unless employees are directly involved in bringing about the 
changes that will come with office automation. 

The most sophisticated management studies in human be
havior have revealed that the greatest productivity booster is 
the willingness of employees to give 8 hours of work for 8 
hours of pay. By accepting as a given that employees will not 
welcome change with open arms, but need to be introduced to 
it tactfully and gradually; by accepting as a given that manage
ment must include the employees in the decision-making pro
cess; by accepting as a given that a thorough understanding of 
information management is an essential first step toward the 
implementation of computer power; by accepting as a given 
that an aggressive campaign to influence, to educate, and to 
inform all employees about office automation is important 

Interfacing People with Their Machines 359 

to its adoption-organizations can fulfill the promise of 
electronics. 

BIBLIOGRAPHY 

1. Cribbin, James J. Leadership, Strategies for Organizational Effectiveness. 
AMACOM, 1981. New York: American Management Association, 1981. 

2. Cutlip, Scott, M. and Allen H. Center. Effective Public Relations (5th ed.). 
Englewood Cliffs, N.J.: Prentice-Hall, 1982. 

3. Finn, Nancy B. The Electronic Office. Englewood Cliffs, N.J.: Prentice-Hall, 
1982. 

4. Yankee Group. Office Automation: The Human Dimension (Volume X, CIS 
Planning Service). Yankee Group, Boston, Mass., July 1980. 

5. Zachman, William F. "Key To Enhancing System Development Pro
ductivity." AMACOM, 1981. New York: American Management Associ
ation, 1981. 

6. Kotter, John P., and Leonard A. Schlesinger. "Choosing Strategies for 
Change." Harvard Business Review, March-April 1979, p. 106. 

7. Nolan, Richard L. "Managing Information Systems by Committee." Har
vard Business Review, July-August 1982, p. 72. 

8. Judson, Arnold S. "The Awkward Truth About Productivity." Harvard 
Business Review, September-October 1982, p. 93. 

9. Zuboff, Shoshana. "New Worlds of Computer-Mediated Work." Harvard 
Business Review, September-October 1982, p. 142. 





Current issues in electronic mail-Heralding a new era 

by WALTER ULRICH 
Walter E. Ulrich Consultif}g 
Houston, Texas 

ABSTRACT 

Electronic mail is a quick, convenient, and low-cost way to handle people-to-people 
communications. Each form of electronic mail-computer message systems, com
municating word processors, facsimile, and voice mail-is successfully serving or
ganizations and individuals. The ultimate integration of these forms of electronic 
mail will be far more useful functionally than each one taken independently. This 
paper discusses the integration of electronic mail and introduces three companion 
papers; the four together make up the 1983 session on electronic mail. 

361 





INTRODUCTION 

Electronic mail is approaching its 162nd anniversary. Each 
stage in the development of electronic mail has enhanced 
communications and made the world a smaller place. This was 
true in 1844 when the telegraph was first demonstrated, and 
it is true today. 

Over the years, electronic mail has moved closer to the 
individual: 

• The experiments of the 1820's served a handful of the 
scientific intelligentsia. 

• The telegraph office of the 1850's served a community. 
• The teletype of the 1920's served an organization. 
• The computer message of the 1970's served a de

partment. * 
• Today, computer message systems and voice mail sys

tems are serving individuals. 

Once only remotely available, electronic mail is now acces
sible to individuals on their desks and in their homes. There 
are several forms of electronic mail, including computer mail, 
communicating word processors (CWP), facsimile, and voice 
mail. Advances in anyone over the last 12 months could fill 
a volume. 

Throughout its first era, electronic mail has moved closer to 
the individuals. Technically at least, personal electronic mail 
is a reality. Socially, it is becoming better accepted and more 
prevalent. The era of personalization has arrived. 

In 1983, however, we stand at the threshold of an important 
development in electronic mail. Various forms of electronic 
mail are becoming integrated. We will be able to prepare, 
transmit, and receive messages that combine the elements of 
text, image, and voice as required. Separately, each form of 
electronic mail is suitable for only selected applications. To
gether, integrated electronic mail can handle a broad array of 
business communications. 

This paper serves as the introduction for the 1983 National 
Computer Conference Session on Electronic Mail. Current 
issues in electronic mail are discussed and the new era of 
integrated electronic mail is described. 

WHAT ROLE FOR ELECTRONIC MAIL? 

Electronic mail is the transmission of message text by elec
tronic means. By definition, electronic mail is well-suited for 

*Throughout the 1970's high technology companies and the ARPA project 
team used computer mail for personal messaging. However, many commercial 
users would establish an electronic mail box for departments and branch offices 
rather than for individuals. 

Current Issues in Electronic Mail 363 

one-way transfer of information. Other forms of communi
cations are better suited for interactive communications, as 
Table I indicates. 

Traditional methods of one-way communications have been 
either slow (the U.S. Postal Service) or inconvenient (like 
internal memos and TWXJTelex).l Therefore, two-way com
munication methods have been misused for one-way informa
tion transfers. Half of all telephone calls could be replaced by 
an appropriate message system. 

The total cost of a message transaction includes its handling 
at both ends. Computer-based electronic mail makes it pos
sible to process messages as well as exchange them. For some 
companies, electronic transmission costs are already competi
tive with the first-class stamp.2,3 When you include the econ
omies from easier message handling at both ends, the econo
mies in favor of electronic mail are even better. Add to those 
benefits the immediacy of electronic delivery, and the justifi
cation for electronic mail is overwhelming. According to a 
recent projection by the Office of Technology Assessment ,4 

which is excerpted in Table II, electronic-related mail will 
reach 23 billion pieces in 1990 and 86 billion pieces in the year 
2000. 

Electronic mail is a quick and inexpensive way to transmit 
information. It complements advances in data processing, 
data management, and office systems. Computer processing is 
getting 25% to 30% cheaper every year, and electronic mail 
rides free on this fortunate technological wave. 5 Its potential 
is to displace half the business telephone calls and a third of 
the traditional mail volume over the next two decades. 

Types of Electronic Mail 

Different types of electronic mail serve different purposes. 
Computer mail (also known as computer-based message sys
tems) is designed to provide a text message facility for execu
tives and professionals. Communicating word processors 

TABLE I-Types and uses of forms of communication 

Communication 
Technology 

First class mail 
Teletype 
Telephone 

Meeting 
Electronic mail 

One-Way or 
Two-Way 

One-way 
One-way 
Two-way 

Two-way 
One-way 

Example 

Requesting information 
Placing an order 
Clarifying complex 

information 
Negotiations 
Requesting or 

providing information 



364 National Computer Conference, 1983 

TABLE II-Projections of growth in types of mail* 

Volume in Billions 

Type of Mail 

Conventional mail 
Computer-assisted 
Electronic funds 

transfer 

End-to-end 
electronic mail 

Total volume 

Examples 

Letter 
E-COM 

Telephone 
bill payment 

Computer mail, 
teletext 

1990 

109 
9 

5 

9 
132 

2000 

75 
13 

25 

48 
161 

*Chart is adapted from the OTA report on Electronic Mail and Message Sys
tems.4 See page 38 of the report for details of the assumptions. 

(CWPs) allow secretaries to transmit formal correspondence 
and documents. Both computer mail and CWPs send the mes
sage content as digitally encoded characters. One character 
takes one byte. 

Facsimile sends the page image. Each page is broken down 
into a number of spots. The number of spots varies from 6,000 
to 160,000 spots (or picture elements-pixels) per square 
inch, depending on image quality. The spots then are sent as 
an analog signal or as a stream of bits indicating whether the 
spot is black or white. t 

With voice mail, the speech waveform is encoded into its 
digital representation. 32,000 to 64,000 bits are typically 
needed to encode one second of speech. Stored on disk, the 
message can be sent to one or more recipients, edited, or 
saved for later use. The natural inflection and emphasis is 
preserved. 

Each form of electronic mail is best suited for specific pur
poses. Table III reviews these. 

THE NEED FOR INTEGRATION 

Modern business is complex, as the following scenario indi
cates. Owen, the president, asks Jack for a review of one 
competitor's new product for next month's planning meeting. 
Jack, the marketing vice-president, requests that Melinda, 
who is in charge of competitive analysis, estimate the sales 
volume and compare its features with their company's top-of
the-line product. He asks Howard, the chief engineer, to esti
mate the production cost. Finally, he asks Joe, the western 
region sales manager, if the product is being pitched to a key 
customer in Los Angeles. Except for Joe, each of them assigns 
all or some part of the task to subordinates. 

Jack gets a formal report from Melinda, a text message 
from Howard, and a voice message from Joe. With his admin
istrative assistant, he prepares a formal report for Owen and 
transmits copies to the other attendees of the upcoming plan
ning meeting. 

tModern facsimile machines will use numerical methods to reduce (compress) 
the actual number of bits transmitted. 

TABLE III-Appropriate uses of electronic mail (EM) 

Type of EM 

Computer mail 
(CBMS) 

Communicating 
word processors 
(CWP) 

Facsimile 

Voice mail 

Format 

Text 

Text 

Text 

Speech 

Application 

Messages between profes
sionals and administrators. 
Mostly informal. Requests 
for complex information. 
Providing information with 
figures. 

Formal memoranda and 
correspondence. Lengthy 
reports and documents. 

Pictures and charts. Other 
information already pre
pared but not in digital 
format. 

Short messages. Requests 
for simple information. 
Confirming travel plans 
and meeting schedules. 
Simple instructions and 
brief answers to requests 
for information. 

Throughout the process, numerous verbal and written com
ments and messages are exchanged. Anyone style of commu
nication by itself would be insufficient. Multiple styles are 
required. 

THE INTEGRATION OF ELECTRONIC MAIL 

The new era of electronic mail will provide that integration. 
Graphs and charts will be routine parts of text messages. 6 

Documents will be annotated with voice comments, and voice 
messages will refer to text. 7 Data in computer messages will be 
brought into formal documents being prepared on word pro
cessors. 

Office requirements will go beyond integrating electronic 
mail. Spread sheets from personal computers and information 
in public and private databases will also become a transparent 
part of the information infrastructure. 

Even control mechanisms will become integrated. The inte
grated message facility (IMF) will provide for a single inter
face for controlling all message facilities and the telephone 
system. For example, a window on the user's workstation will 
provide a complete status for that user on 

• The telephone (incoming calls, camp on, queueing, etc.) 
• Text and voice messages (electronic in-basket) 
• Operator messages 
• Secretarial intercom. 

The workstation to support that user will provide trans
parent interface to all the communications facilities needed. 
The basic integrated terminal telephone (ITT) is shown in 
Figure 1. For many users, the workstation will meet the indi
vidual's personal computation and data-storage needs as well. 
And in some cases, powerful graphics will be available. 



Detachable 
Speakerphone 

Dialer/Numeric 
Pad 

.......... .J--"r.llIoIII'ch Sensitive Screen 

~~~iiiim~r-T:!elePhone Control Buttons 

Standard (QWERTY) Keyboard 
in Drawer 

Figure I-Basic integrated terminal telephone 

Various workstations have their proponents. Will the office 
of the future be populated by Tymshare Scanset terminals, 
Osborne "portable" computers, Wang'-s Alliance, Xerox 
Stars, or whatever? Tnere is no one answer. Everybody's 
needs are different and computerization makes it possible to 
tailor the workstation to the user. 

CURRENT ISSUES IN ELECTRONIC MAIL 

This paper introduces the session on electronic mail. This 
session focuses on the most critical issues in electronic mail for 
1983. 

Voice mail first became .available early in this decade. Voice 
Mail International is one of only a few vendors of voice mail 
systems. They have focused on providing store-and-forward 
voice systems to meet specific application needs. By targeting 
applications, they expect to demonstrate measurable benefits. 
A companion paper in this volume describes voice-mail sys
tems and discusses the state of the art of this newest form of 
electronic mail. 

Most computer-based electronic mail systems are used 
within a company, and in the continental United States elec
tronic mail spans four time zones and three thousand miles. 
When looked at in the perspective of world-wide commerce, 
four time zones are insignificant. Europeans are home from 
work before their counterparts in California eat breakfast. 
The Yankee Group has been a colorful and controversial ob
server of technological change. In a companion paper in this 
volume, one of their consultants discusses both intercompany 
and international considerations in electronic mail. 

Electronic mail has been viewed as character-oriented 
throughout most of its history. Only recently have voice impli
cations been seriously considered. The perspective on elec
tronic mail of a company with traditional grounding in voice 

Current Issues in Electronic Mail 365 

communications is valuable indeed. This is specially true 
when that company has recently renounced its traditional 
roots in favor of the brave new world of the future. American 
Bell, born by Caesarian section from AT&T, has promised to 
bring together enhanced message and data services. The third 
companion paper is by their executive director of research and 
development. His focus is on the integration of electronic 
mail. 

Collectively, this introduction and the three related papers 
represent the state of the technology in 1983. The justification 
for electronic mail is no longer in doubt. Personal electronic 
messaging is indeed available in text and in voice. Integration 
of function is the promise yet to be fulfilled in this decade. 

ELECTRONIC MAIL IN THE NEW ERA 

Electronic mail will provide the user with powerful voice, text, 
and image functions. Compound messages will include ele
ments of each. The workstation will be a multipurpose device 
and act as the window to all communications and information 
services. The proper electronic mail combination(s) will al
ways be available to meet the specific requirement(s) at hand. 
These facilities will be used in ways we cannot predict, but 
they will cut costs and increase productivity. This will happen 
so fast and yet evolve so naturally that we will hardly realize 
what happened. 

REFERENCES 

1. Holden, J. B. "Experiences of an Electronic Mail Vendor."AFIPS Pro
ceedings of the National Computer Conference (Vol. 49), 1980, pp. 493-497. 

2. White, J. W. "Texas Instruments Computer Communication Network and 
its Support for the Automated Office." AFIPS Proceedings of the National 
Computer Conference (Vol. 49), 1980, pp. 515-526. 

3. Taylor, H. D. "HP Communication System." National Telecommunication 
Conference Record 77 (Vol. 3), 1977, pp. 21:6-1-21:6-5. 

4. Office of Technology Assessment. "Implications of Electronic Mail and 
Message Systems for the U.S. Postal Service." GPO stock number 
052-003-00885-8, September 1982. 

5. Noyce, R. N. "Microelectronics." Scientific American. 327, September 1977, 
pp.63-69. 

6. Hasiuke, K., K. Konishi, T. Asami, and A. Kurematsu. "Text and Facsimile 
Integrated Terminal." National Telecommunications Conference Record 80 
(Vol. 3), 1977, pp. 60:5.1-60:5-5. 

7. Maxemchuk, N. F., and H. A. Wilder. "Experiments in Merging Text and 
Stored Speech." National Telecommunications Conference Record (Vol. 1), 
1980, pp. 16.1.1-16.1.6. 





The integration of multimedia communications 

by B. P. DONOHUE, III 
American Bell, Inc. 
Lincroft, New Jersey 

ABSTRACT 

Effective integration of multimedia communications requires a unified electronic 
work station. The unified work capabilities that must be provided are information 
access translation, information processing, information storage, and information 
movement. This paper describes the current issues involved in providing these 
unified capabilities. Examples of current multimedia communications systems are 
also given. 

367 





INTRODUCTION 

The challenge of the next generation of communications sys
tems is to maximize user access to the myriad of information 
sources and information processing in a. cost-effective and 
user-friendly manner. Meeting this challenge will require a 
unified multimedia electronic work capability for knowledge 
and clerical workers. The purpose of this paper is to review 
the major issues in providing such a unified work capability 
that spans voice, text, and graphics and that is capable of 
improving productivity in the office. 

Multimedia communications are considered here in the 
context of four generic user work-station functions as well as 
specific applications such as voice messaging and electronic 
mail. Descriptions of these generic functions and specific ap
plications are given in the next section. This is followed by a 
discussion of the issues in the integration of multimedia com
munications for each of the four generic work-station func
tions. Finally, some current examples of multimedia commu
nications systems will be described. 

ELECTRONIC WORK STATION FUNCTIONS 

Work Station Overview 

The electronic work-station functions to be considered are 
shown in Figure 1. Note that the work station uses four ge
neric capabilities: information access translation, information 

ELEMENTS OF A MULTIMEDIA 
WORK CAPABILITY 

I 
I 
I 
I 

Voice I 
I 

Text I 

GraPhics: 

• 
,. 

Control .. 
.. 

User 
I 
I 
I 

Information 

User 
Interface 

Information 
Processing 

Information 
Information 

Access Storage 

Translation 

Information 
Movement 

Figure I-Electronic work station functions 

Specific 
Functions 

Voice 
Messaging 

Electronic 
Mail 

Electronic 
Documents 

Data 
Processing 

Applications 

Video text 

The Integration of Multimedia Communications 369 

processing, information storage, and information movement. 
Note also that both control and user information can cross the 
user interface in multimedia form. Specific electronic work 
functions are built from these generic capabilities. These elec
tronic work functions will now be described in the context of 
current examples and the desired multimedia communications 
capabilities that arise naturally from them. 

Voice Messaging 

The telephone call is the dominant form of electronic com
munication today, and it is likely to remain so for many years 
to come. The telephone call has been viewed by the user as a 
single-medium information movement process. However, this 
process is rapidly changing with the introduction of informa
tion processing and storage capabilities. Typical of the capa
bilities being added are the ability to send voice store and 
forward messages or to leave voice messages for busy or un
answered telephones. An early service example of voice store 
and forward capability was the Bell System Customer Calling 
Trial. 1 A currently available voice store and forward service is 
the Voice Mailbox Service (VMS) of ECS Telecommunica
tions, Inc. Today voice mail capabilities are also available in 
customer premises systems that come with user control op
tions allowing message management based on a rich set of 
commands. The commands typically allow message editing, 
filing, retrieval, sending, and deletion. 

The second major way in which telephone communication 
is changing for the user is by the addition of data and control 
capabilities to aid in making the telephone call. Examples of 
these capabilities include station sets with programmable 
function keys for automatic number selection and data termi
nals with data entry capabilities for directory functions. 

Voice messaging can be usefully integrated with all of the 
remaining work functions to be described. The remaining 
work functions are performed primarily in text or graphical 
form, so multimedia integration is required. 

Electronic Mail 

Electronic mail or electronic messaging systems exist in a 
wide variety of public and private network forms today. 2,3 

They are designed to accept text input, provide text editing 
functions, and allow message distribution and finally message 
reception and filing. Today electronic mail systems are used as 
separate text-only systems. In the future it will be desirable to 
integrate them in at least three ways._ 

First, the control information from electronic mail and 
voice messaging could be coupled so that a message received 



370 National Computer Conference, 1983 

in one form could be easily responded to in another. For 
example, a useful command to accompany the reading of 
electronic mail would place a voice call to the originator of 
the text message. A related capability might allow a secretary 
to use electronic mail to create memos of telephone calls and 
then provide automatic dialing of the party that left the 
message. 

The second way of integrating electronic mail and voice 
messaging would be to couple user information so that com
posite messages can be created. For example, an electronic 
text message could be annotated with a voice message and 
forwarded to a third party. 

The third form of integration of electronic mail and voice 
messaging could be through media conversion or information 
access translation. An example of this is speech synthesis of a 
text message. Translation from speech to text is also desirable, 
but will be a more limited capability for some time to come. 
Hence this translation will probably be limited to small vocab
ularies such as control information. An example of such an 
integrated translation would be the use of verbal commands to 
scan messages on an associated text display. 

Electronic Documents 

Electronic documents are larger-volume text and graphics 
units that are handled differently than electronic mail today 
because of their size. The document is often created in elec
tronic form through word processing and then mayor may not 
be proofread and distributed electronically. There is a clear 
trend towards all-electronic distribution and filing. 4,5 As this 
trend progresses there will be an increasing need for multi
media integration. For example, voice annotation of text will 
be an effective way of proofreading documents. Note that at 
this point electronic documents and electronic mail will likely 
share many of the same multimedia integnition needs. 

Data-Processing Applications 

The electronic work station requires access to a wide variety 
of data-processing applications. These applications are usu
ally tailored to the business using them and private electronic 
records of such things as financial data, customer data, or 
product data. These data are usually managed through a data
base facility. 

Today data-processing applications are usually dealt with in 
a text-only form. However, there are a number of ways multi
media communications can increase the effectiveness of the 
application. One example is to allow simple voice retrieval of 
information stored in text form. Such information access 
translation using Touch-Tone or voice recognition for input 
commands can greatly increase the number of terminal de
vices (telephones) capable of accessing a data processing 
application. 

Videotext 

Videotext is an inexpensive form of graphical information 
access that was initially targeted at residentiai customers. 

Recently, however, there has been increasing interest in it for 
internal business use. 6 The primary use of videotext is likely 
to be database access and simple information entry. As such 
it will be another form of communication desirable in the 
electronic work station. The introduction of videotext capabil
ities will require additional information access translation 
capabilities. 

ISSUES IN MULTIMEDIA INTEGRATION 

Referring back to Figure 1, it should be noted that the specific 
functions to be integrated are all available today in some form. 
What is missing is a unifying framework for user interfaces, 
information access translations, information processing, in
formation storage, and information movement. The central 
problem in multimedia communications is to provide such a 
unifying, yet robust framework. Each aspect of the framework 
will now be examined separately. 

User Interface 

The user interface is the aspect of multimedia communica
tions that will determine whether the added automation actu
ally increases productivity. An integrated user interface must 
allow easier access to multiple functions than separate inter
faces do if it is to increase productivity. 

A prime requirement for the integrated user interface is 
that there be a common command structure across functions. 
For example, users should not have to learn n different ways 
to delete an item if they are accessing n different functions. 
Work on this issue is in progress. 7 In addition to a common 
command structure, it is desirable to present the user with 
menus. Menus allow the user to easily select the next action 
from a predefined set and thereby reduce the number of com
mands whose details (such as command structure) need be 
remembered. Examples of the use of menus are given 
in.7,8,9, 10,11 

A second major requirement for the user interface is that it 
allow the user to work on or see information from mUltiple 
sources simultaneously. On a display screen this is often called 
windowing. 7,12 It is important because many work functions 
require the user to access two information sources and then 
process them together. For example, to fill out one electronic 
form, it may be necessary to read another electronic file. 
Ideally, the relevant information from the file would be trans
ferred to the form without retyping. The ability to do such 
multitasking is needed even for such simple jobs as reading a 
document. For example, two parts of a document may have to 
be compared in order to obtain complete comprehension of it. 

The multitasking referred to above is also required for 
multimedia communications. For example, if a display is used 
both to receive electronic mail and to provide telephone direc
tory information for subsequent calls, the user may want to 
see both types of information simultaneously. 

A third requirement for the user interface is that it provide 
integrated status information across multiple functions. For 
example, a message-waiting indication should be provided 
across ail messaging systems. 



Information Access Translation 

The information access translation capability of an inte
grated multimedia system will have to be rich if it is to allow 
access to the wide variety of information systems available. 
This is well known in the data or text-communications area, 
where protocol conversion is a standard problem. By com
parison, in the voice-communications area there used to be 
relatively few standards for transmission and signaling. Digital 
systems such as voice messaging are changing that, since many 
use special digital voice encoding to store voice messages. 
These digital encoding schemes are often not directly com
patible and require conversion back to an analog signal to 
send messages between systems. This is undesirable, as the 
goal in the future will be to make each of the four information
handling building blocks digital. 

A second major issue in the area of information access 
translation is the need to effectively support single-medium 
terminals as well as multimedia terminals. Even when multi
media terminals can be readily purchased, there will be a large 
installed base of single-medium terminals that need to access 
a given application. That application must, therefore, work 
well with both types of access. 

Information Processing, Storage, and Movement 

The functions of information processing, storage, and 
movement are considered together, because they all involve 
the same central problem of multimedia integration. The cen
tral problem is that while all of the media forms discussed here 
can be represented digitally, that is, by bit strings, the pro
cessing, storage, and movement technology most cost effec
tive for each of them may be different. This is most clearly 
seen by way of examples. 

Voice and data (text) information movement can both be 
accomplished by digital transmission facilities. However, the 
error performance required by the two information types is 
different. Voice information can accept modest error rates 
because of the natural redundancy of speech. Data or text 
information, however, must have an extremely low error rate, 
since each letter or number must be correct (especially in 
financial transactions). The result of this is that the most 
cost-effective systems for voice and data are not the same. 

Voice and data information can also both be stored digitally 
in a database. However, the desired database operations to be 
performed on these types of information and the basic sizes of 
the records are usually not identical. Again this leads to the 
result that the most cost effective systems for voice and data 
are not the same. 

There are other illustrations of this issue that can be given. 
The important point, however, is that cost considerations will 
mean that multimedia systems may have coupled processing, 
storage, and movement, rather than a single underlying tech
nology that supports all media in the same way. 

The Integration of Multimedia Communications 371 

CURRENT EXAMPLES OF MULTIMEDIA 
COMMUNICATIONS 

Successful integration of voice and data (text) terminals has 
been demonstrated. A series of efforts at Bell Laboratories8-15 
illustrates what can be done using a data terminal tightly 
coupled with a voice terminal. The data terminal serves to 
provide voice-terminal control functions while at the same 
time providing access to data-only applications. This systein
has been successfully demonstrated in a number of settings, 
including the executive office. 14 

The ability to have coupled simultaneous voice and data 
channels is becoming available in a number of PBX products. 
This provides part of the basis for effective integrated multi
media communications. As described in this paper, the chal
lenge is to provide a unifying foundation of user interfaces, 
information access translations, information processing, in
formation storage, and information movement. 

REFERENCES 

1. Bergland, G. D., E. R. Kerkeslager, R. J. Nacon, and G. W. Smith, Jr. 
"New Custom Calling Services." International Switching Symposium '79 
Conference Record, Paris, France, May 1979, pp. 1256-1262. 

2. Ulrich, W. E. "Introduction to electronic mail." AFIPS, Proceedings of the 
National Computer Conference (Vol. 49), 1980, pp. 485-488. 

3. Panko, R. R. "A Survey of Electronic Message Systems." Proceedings of 
the Pacific Telecommunications Conference, 1981, pp. A3-1-A3-10. 

4. Schick, T., and R. F. Brockish. "The Document Interchange Architecture: 
A member of the family of architectures in the SNA environment." IBM 
System Journal, 1982, pp. 220-244. 

5. IBM Distributed Office Support System General Information, GH12-5124, 
IBM Corporation Document. 

6. Davis, D. B. "U.S. businesses targeted as major videotext market." Mini
Micro Systems, Sept. 1982, pp. 145-15l. 

7. Zloof, M. M. "Office-by-Example: A business language that unifies data 
and word processing and electronic mail." IBM System Journal, 1982, 
pp. 272-304. 

8. Thompson, R. A. "Accessing Experimental Telecommunications Serv
ices." Proceedings of the National Telecommunications Conference, 1981, 
pp. F2.2.1-F2.2.5. 

9. Thompson, R. A. "User's Perceptions with Experimental Services and 
Terminals." Proceedings of the National Telecommunications Conference, 
1981, pp. F2.6.1-F.2.6.5. 

10. Allen, R. B. "Cognitive Factors in the Use of Menus and Trees: An Experi
ment." Proceedings of the National Telecommunications Conference, 1981, 
pp. F2.5.1-F2.5.5. 

11. Smith, D. L., and R. D. Gordon. "An Access Tree Editor." Proceedings 
of the National Telecommunications Conference, 1981, pp. F2.7.1-F2.7.5. 

12. Schell, W. M. "Control Software for an Experimental Teleterminal." 
Proceedings of the National Telecommunications Conference, 1981, 
pp. F.2.3.1-F.2.3.5 

13. Hagelbarger, D. W., R. V. Anderson, and P. S. Kubik. "Experiments with 
Teleterminals." Proceedings of the National Telecommunications Confer
ence, 1981, pp. F2.1.1-F2.1.5. 

14. Klavan, R. N. "Enhanced Communications in an Executive Office." 
Proceedings of the National Telecommunications Conference, 1981, 
pp. F2.4.1-F2.4.5. 

15. Bergland, G. D. "An Experimental Telecommunications Test Bed." 
Proceedings of the National Telecommunications Conference, 1981, 
pp. F2.8.1-F2.8.5. 





Voice mail 

by PAUL F. FINNIGAN 
Voicemail International, Inc. 
Santa Clara, California 

ABSTRACT 

If you think 1982 brought us revolutionary advances in communications technology, 
then hold on to your hats-1984 is just around the corner, and the growth of the 
voice store and forward market will start to prove everyone was right: The voice 
mail race is on. There have been survivors and losers-the real winners will be the 
users. Vendors that don't understand the dynamics of customer acceptance and 
don't engineer a usable method of applying voice mail will lose the fundamental 
opportunities of this technology. Voice mail is not as complicated as it looks. You 
pick up any telephone, anywhere in the world, and record a message for someone 
else in your own voice. It's a new medium of communicating. Voice mail is a fast, 
convenient way to tell someone something when you can't reach them directiy. 
Everyone will use voice mail. 

373 





In the very near future every telephone will have voice record
ing. You'll be able to call a friend, and if the line is busy, or 
if no one answers the telephone, you'll be able to touch a key, 
hear a tone, record a message, and hang up. When your friend 
gets home, he'll go to his phone and touch a key to have the 
message played back. 

For the last four years I have been able to go to any tele
phone and send a voice message to anyone in the world. 

The potential for voice store and forward is just beginning 
to be realized. The Yankee Group once reported it would be 
a 500-million-dollar-a-year industry by 1985. Last year, less 
than $10 million was realized in voice store and forward ser
vices and systems. Who is going to make the projections we've 
read come into focus? Where are the opportunities? 

The opportunities are real. The projections are under
stated. The movement has begun. Name any business-they 
are using or will be using voice mail. If you have a telephone, 
you need voice mail. Voice store and forward is a product 
of the computer industry; another computer technology, 
another type of computer looking for ways to be used. 

After sitting through several national symposiums and 
s~minars on electronic mail, you realize that about half the 
speakers dwell on voice store and forward. The PABX, data 
processing, paging, electronic mail, and voice mail companies 
display genuine ingenuity linking voice mail services to every 
conceivable office-of-the-future use that one could imagine. 
Projections of increased productivity and cost savings-and 
their respective quantitative methods, for the most part
ignore end users' perception of voice mail and the commu
nications dynamics resulting from it. 

lt is surprising when you look at the vendor list. There's a 
healthy representation of heavyweights who've diversified 
into voicemail.lt.s even more surprising that less than 100 
systems were installed last year, and only a few thousand 
companies were using voice mail services*-not a significant 
number compared to those who should be active users. Their 
needs are to improve communications and reduce telecommu
nications-related costs. Economic realities are going to drive 
those needs to greater levels. That's the opportunity. 

Large systems, small systems, dedicated systems, general 
systems, and networked, interfaced, linked, expandable sys
tems will be rolling off the assembly line, presumably on a 
direct line to eager customers. The demand for services these 
computers provide will be there. Functionality will be more 
streamlined. But will people understand what voice mail is? 
Can anyone say they have a grip on its dynamics, beyond 
pushing the buttons on the phone? 

* According to presentations at a Probe Research seminar New York, Septem
ber 15-16, 1982. 

Voice Mail 375 

We have a rule at Voicemail International: "Don't tell any
one about voice mail; show them." Understanding when to 
use voice mail is paramount. Plumbers, real estate people, 
lawyers, bankers, doctors, pilots, stockbrokers, and lonely 
hearts have understood. Through an international voice mail 
network, thousands are using voice mail worldwide. We have 
found it extremely important to show them when, and where, 
they will use these services. 

On the other hand, we have found thousands of people who 
won't use voice mail. We've performed a considerable amount 
of research examining this phenomenon. The microphone 
syndrome and the "Rockford syndrome" give us two glimpses 
into the way people perceive what voice mail is and why they 
hesitate at first even to consider its use. Behavioral consid
erations are fascinating: Many of the measurable criteria can 
be directly correlated to what has been found in the usage 
characteristics of other electronic mail users. Many differ
ences have been witnessed in the acceptance patterns of vari
ous voice mail users. 

The microphone syndrome occurs when you call a number 
and someone tries to put a microphone in front of your 
mouth. One company that risked its existence, and lost, tried 
to introduce voice recording into a medical answering service. 
Most callers needed to leave messages that were difficult to 
talk about, even in a real-time conversation: For example, 
Mrs. Jones, who wasn't feeling very well at all, called the 
doctor and was unexpectedly asked, by a computer, to leave 
a recorded message. This was something new, different, and 
difficult compared to what she had been doing. She didn't like 
it.-Isn't voice mail supposed to be convenient and user
friendly? In this application, it wasn't. 

Give the same person the means to leave a message for her 
husband-whose office phone is always busy or rings without 
an answer-and you have an application that works. She ex
pects the recording service; and she is not speaking to a pro
fessional office or a stranger. By dialing the star button twice, 
she can leave a message in her own voice for later pickup by 
her husband. She doesn't own a system, she's not a subscriber 
to any voice mail service, and she's not calling a telephone
answering type of number-she's just making a call over a 
telecommunications carriers' lines whose switch has a special
ized voice mail enhancement. The carrier provides the capa
bility, the convenience, and the means to use voice mail
when she needs it, not when someone else wants to make her 
use it. 

The "Rockford syndrome" is named after the TV series, 
"The Rockford Files." A phone-answering machine is in the 
background. James Gamer, in the company of a woman, 
listens to a caller recording a message. A significant number 
of people have the impression that when you record a mes-



376 National Computer Conference, 1983 

sage, uninvited ears will be able to listen. In the business 
world, the political consequences of passing messages on to 
someone else can be devastating to one's future. 

There are many situations where voice mail is just not appli
cable. But often voice recording and delivery capability can 
bring what you want to the party. Voice mail that provides 
specific solutions for specific problems has shown most clearly 
its benefits in terms of cost reduction, time saving, and time 
recapture. 

Understanding end users' needs and identifying who can 
best benefit from using a voice mail service is the point to start 
at. Then consider the large number of people who have gener
al and specific needs to obtain information. 

One example would be airlines; some supply flight informa
tion, vacation tips, automated reservation services, and many 
travel-related services toll-free to callers through the special
ized services a voice mail network can provide. Within the 
airlines themselves, flight crew scheduling, flight attendant 
scheduling, cargo information, and emergency notifications 
can be provided by the same voice mail computer. 

One major airline uses voice mail to tell its reservations 
centers that its main computer has slowed down-in effect, a 
specialized computer tells people that another specialized 
computer isn't working. Numerous applications in the com
puter and data processing industries are handled by voice mail 
services. 

Voice mail is ideal in the service industries. A service per
son can receive scheduiing assignments by voice mail while on 
the road, even directly from the customer who needs service 
immediately. The service dispatcher can keep track of who is 
doing what and can get up-to-the-minute reports on the status 
of the calls their service people are making. Voice mail im
proves communications effectiveness whenever you have peo
ple on the move and their activity creates value. 

Voice mail can give engineering changes and delivery re
ports to both the service staff and the sales force. In just about 
every organization we've spoken with, sales, marketing, and 
customer service divisions qualify as the best types of voice 
mail clients we've seen. 

With one call a regional marketing director can send im
portant, time-critical information to the entire sales staff. 
Hundreds upon hundreds of individuals, all away from their 
phones, get the same message. Their customers can leave 
orders through voice mail. Numerous companies in the auto 
parts, computer systems, and catalogue order entry industries 
take orders by the thousands through voice mail. And they all 
have one thing in common: They add value to what they do 
without giving up anything. 

For direct-response marketing campaigns, voice mail 
increases the capture rate. Voice mail services are being 
streamlined for specialized uses. The needs of virtually every 
conceivable approach can be served effectively. We have wit
nessed tremendous acceptance of direct-response types of ap
plications for direct mail, print media advertisements, and 
classified ads. All of the callers are nonsubscribers, effectively 
using voice mail-by the thousands. 

One regional airline extensively analyzed customer accept
ance after an introductory program and found that more 
than 90% of those who used voice mail liked it and would use 

it regularly. And the results were predictable. The service 
was convenient, and timely information could be delivered 
flawlessly. 

Ih a similar type of application, financial advisors, stock
brokers, and portfolio managers can give their customers in
formation at less cost, with better results, and with more 
accuracy than ever before. Portfolio status reports, buy and 
sell orders, and trade confirmations can be sent and received 
through voice mail. Many national brokerage and trading 
organizations use voice mail to give better service to their 
customers. 

Accounting firms and management consultants use voice 
mail for both internal project status reporting and commu
nicating with their clients. In an environment where everyone 
is away from the telephone, voice mail is indispensable. 

Internal communication within large organizations has 
many behavioral dynamics attached. Voice mail solves the 
problems of real-time confrontation or intimidation and the 
problem of telling someone bad news directly. The end user 
now has a way to tell someone something without having to do 
it directly; and it gives everybody the option of thinking about 
the message until a time when they are better prepared to 
respond. 

The costs associated with telephone tag are highly over
stated. Voice mail does indeed save time spent making un
successful direct calls. This can lead to substantial savings in 
the cost of long-distance calls, but the net effect only offsets 
the cost of using voice maiL The real benefit voice mail can 
provide in the telephone-tag situation is that it can lead to 
revenue opportunities and to a better competitive position. 

At Voicemail International we have developed extensive 
analytical capabilities and sophisticated econometric models of 
the true costs of telephone tag. Our clients struggled to find 
ways to come up with cost/benefit figures to justify the use of 
voice mail. Predictions were made that voice mail could reduce 
the cost of telephone tag from 60% to 90% in toll and time
spent equivalents. The results after voice mail was fully imple
mented are important to note: 

We found that for every call placed through voice mail, time 
and toll-charge savings were indeed impressive, often exceed
ing predicted savings. However, overall savings did not filter 
down to the bottom line. Operating costs commingled too 
many other variables to prove any measurable benefits, except 
in one case-revenue growth showed a measurable increase. In 
this case, the oftener voice mail was used, the more time could 
be spent being productive. People using voice mail now had 
more time to spend-time they soon began using effectively to 
add value to what they did. The phone bill, in several cases, 
actually increased after making the decision to use voice mail ; 
but the cost of adding voice mail was offset by hard dollar sav
ings, and the real benefits came in the form of better produc
tivity and added convenience. These factors are virtually im
possible to quantify and measure on a short-term basis. In the 
long term, when voice mail has been effectively implemented 
and the right people are using it, it really works. 

An important element in a voice mail system is the flexibility 
it has for serving both subscribers and nonsubscribers. More 
than 60% of the telephones in this country do not have touch
tone-generating capability. Portable touch-tone generators are 



virtually useless from pay phones and most hotels because of 
the poor quality of phone microphones. We provide 24-hour
a-day operator assistance for callers to sign on and use the var
ious features. This live intervention maximizes the results, 
especially the first time a nonsubscriber calls. 

Earlier it was mentioned that economic realities are going to 
drive decision makers to implement voice mail programs with
in their organizations. The decision maker today looks at cost 
reduction; but what companies will get with voice mail is reve
nue opportunities. Voice mail is a supplementary, or alterna
tive, method of communication-a whole new medium that is 
just beginning to be understood. 

Security of message handling, simplicity of operation, and 
user-friendly characteristics tell us that the technology is func
tionally capable of serving many diversified needs. What is de
veloping now is the understanding that the entire global popu-

Voice Mail 377 

lation must have access. Voicemail International is on that 
track, to link the entire international public switch so that it can 
be voice-mail-capable. 

Another key factor to open up the world of voice mail is the 
ability to be open-ended. This means that two nonsubscribers 
can communicate by voice mail with each other. Toll-free ac
cess to the caller, and the ability to charge it to a variety of bank 
or travel cards, gives the necessary flexibility. Delivery of the 
voice message to any person at any telephone on a deferred 
basis gives the service people need. And it doesn't have to be a 
one-to-one type of call; one nonsubscriber can send a message 
to any number of people. 

As advocates of this technology, our goal is to network the 
entire global telephone system with voice mail services. Voice 
mail will mobilize the world's information resources. By 1990, 
it will be a household word. 





Electronic mail: Evolving from intracompany 
to intercompany 

by H. PARIS BURSTYN 
The Yankee Group 
Boston, Massachusetts 

ABSTRACT 

The roots of electronic mail technology go back to the first facsimile systems, but 
most people today think of electronic mail as computer-based message systems 
(CBMS)-either remote electronic mail services or electronic mail software pack
ages running on in-house computers. Systems and services providing access to 
databases and data processing as well as simple command and menu structures will 
attract new users. Over the next five years, as electronic mail use grows, the people 
who communicate within companies (intracorporate communications) will want to 
contact people outside their company (intercorporate communications). Value
added services that provide private messaging systems must begin providing access 
between organizations' private networks and the value-added networks. They must 
also make possible user-transparent access between organizations that subscribe to 
their services. Today only a few services provide this facility, and then only by 
special arrangement. Eventually it will not matter which network a user signs onto 
to receive mail; gateways will provide transparent access between the networks to 
make it possible to have internetwork and international electronic mail. 

379 





INTRODUCTION 

Electronic mail technology traces its roots to the first facsimile 
systems. But most people today think of electronic mail as 
computer-based message systems (CBMS). These systems 
stem from the first remote timesharing service bureaus and 
have evolved into software packages for in-house computers. 
Users can now meet their messaging needs by choosing re
mote electronic mail services, electronic mail software pack
ages that run on their computers or turnkey systems. 

In the early days of data processing, hardware vendors of
fered users little in the way of applications software. The 
third-party software industry evolved to address that market. 
Some companies provided software for customer-owned hard
ware; others offered to run programs on their computers
either interactively from terminals at the user site or as batch 
jobs. To compete with this new industry, hardware vendors 
began offering more sophisticated programs. The timesharing 
companies countered with additional programs. Among these 
programs were electronic mail systems. 

With the advent of electronic mail, timesharing companies 
held an initial advantage over hardware vendors: They were 
communications-oriented from the start. In many cases they 
had to interconnect multiple sites. Although hardware ven
dors also sold to multiple sites, they did not connect them. 

The first timeshared messaging systems-Comet, from the 
Computer Corporation of America (Cambridge, Massachu
setts) and OnTyme from Tymshare (Cupertino, California)
and their followers aimed at meeting the over 80% of business 
communications between people in the same company. The 
systems allow messaging between all those at the corporation 
who have access to the service. These services help users 
escape telephone tag and USPS delays by providing a simple 
means to send short (4- to 6-line) messages. 

Recognizing that in-house computers could more effec
tively, in cost and usage, meet intracorporate communications 
needs than could outside services, computer vendors and 
some software houses developed electronic mail programs for 
~nstalled hardware. To send a message within a single facility, 
It makes more sense to take advantage of the on-site computer 
than it does to dial up a remote computer, which involves 
ad~itional communications and timesharing costs. Employing 
an Ill-house computer for electronic mail allows users to add 
an application to help justify the cost of the computer and its 
peripherals. 

Recently, hardware manufacturers began offering software 
programs that run on the computers they sell to end users. 
Third-party software houses also wrote programs for specific 
hardware located at customer sites. 

Now virtually every major hardware and software vendor 

Electronic Mail: Evolving 381 

and value-added carrier and a number of timesharing compa
nies offer electronic mail packages. 

TRENDS IN ELECTRONIC MAIL 

During the next five years, electronic mail use will skyrocket. 
As it does, the people who communicate within companies 
will want to contact outside people and therefore will want to 
bring the conveniences of intracorporate electronic mail to 
intercorporate communications. Intercorporate links can 
speed order processing, improve inventory control, and estab
lish direct-payment channels for various transactions. This 
usage growth (See Table I) will spark the development of 
bridges and gateways between services and in-house software. 

Market growth projections show that the number of service
bureau-resident mailboxes will double each year through the 
end of 1984 and that growth will then slow to 50% each year 
during 1985 and 1986. Private-system mailboxes will increase 
by 50% each year through 1984 and then by 75% in both 1985 
and 1986. 

Concurrent with this spectacular growth, the market will 
see a major shift in use and applications. The 200,000 service
based mailboxes in use during 1983 will see heavy intra
corporate messaging applications, and internal mail systems 
will experience a mixture of messaging and management sup
port applications (like calendars and reminders). 

After 1983 there will be a change in the way that systems 
and services are applied. Private electronic mail systems will 
pick up the bulk of intracorporate messaging, and public 
services will provide intercorporate messaging. Public and pri
vate telephone systems provide a good comparison. Cor
porations install tieline networks for intracorporate commu
nications and use the public-switched telephone network 
(PSlN) for outside communications. Employees receive two 
telephone numbers, one for the tieline-based system and one 
for the PSlN. Similar communications systems will evolve for 

TABLE I-CBMS mailbox growth projections 

1981 
1982 
1983 
1984 
1985 
1986 

Year 

Source: The Yankee Group. 

Service 
Users 

49,000 
98,000 

196,000 
392,000 
588,000 
882,000 

Private 
Users 

80,000 
100,000 
150,000 
225,000 
393,750 
690,000 



382 National Computer Conference, 1983 

electronic mail. Employees win have IDs on their company's 
internal mail system as well as on at least one public system. 
They will use the internal system for intracorporatemail and 
the external system for intercorporate mail. They might re
quire multiple public mailboxes to accommodate correspond
ents who have mailboxes on different systems. 

With this evolution will come growth in mailbox numbers 
for the services, but a drop in traffic, as users tum to their 
internal systems for the majority of their communications. To 
counter this trend and to make up for the fact that they ad
dress only 20% of business communications applications, not 
80%, public electronic mail services must provide additional 
capabilities. The Yankee Group expects the electronic mail 
services to start with public databases (as some already have), 
like news wires and stock quotations. Later, they will provide 
communications links for specific applications between user 
groups on their services. These applications will include 
customer/supplier communications like invoices, purchase or
ders, and electronic funds transfers. Finally, intersystem per
sonal communications will take place. Today some of the 
public electronic mail services allow intercorporate commu
nications; in most cases it requires making special arrange
ments between the two companies and the service provider. 

Historically, electronic mail services have not been very 
user-friendly. Even the most recent market entries deliver 
only minor improvements in the user-service interface. All the 
services require cumbersome sign-on procedures, and mes
sage editing requires the skills of a safecracker. 

Since electronic mail is usually aimed at managers and pro
fessionals, these difficulties combine to keep usage low. Since 
it is a new technology, getting people to try it is halfthe battle. 
Because the services are difficult to use, vendors have fre
quently lost the battle. 

Increasing market pressure will change this situation, be
cause it will contribute to the development of new features 
and capabilities by the services. Under the influence of 
recently introduced electronic mail packages-such as Bolt, 
Beranek, and Newman's InfoMail; Digital Equipment's 
DEC-mail; and IBM's Professional Office System (PROFS)-
services such as Comet, Dia1com, InfoPlex, and Telemail are 
extending their capabilities and becoming easier to use. 

As electronic mail systems gain a· wider range of capabili
ties--database and data processing access as well as simple 
command and menu structures-more users will find the var
ious alternatives increasingly attractive. Concomitant with an 
increase in users comes increased use and demand for more 
features. Further, during the last year sufficient market pres
sure developed to drive suppliers to provide more functional 
systems. 

Electronic mail no longer refers to simple messaging capa
bilities. Today's systems deliver sophisticated mailing features 
like message forwarding, note attachments (buck slips), multi
ple copies, and mailing lists. Additionally, the systems pro
vide management support functions, like word processing, 
hierarchical filing, calendar management, tickler files, and 
reminders. The services are just beginning to provide capabil
ities like calendar services and access to public databases. 

Although the services remain the functionally simplest of 
electronic mail media, constant pressure from software ven-

dors will force them to provide comparable functions. 
Increased user-friendly functionality will promote higher 
usage levels, especially when systems improve management 
efficiency, elminate telephone tag, and speed effective 
communications. 

As usage increases, intracompany electronic mail users will 
want to bring their electronics-based benefits to intercorpor
ate messaging-benefits like bill paying, order entry, and in
ventory updates. Just as people today know they can reach 
almost anyone through paper-based mail services, people 
using electronic mail systems will eventually want to connect 
individual systems so that they can exchange intercorporate as 
well as intracorporate mail. Therefore, the value-added ser
vices that provide private messaging systems will begin provid
ing access between organizations' private networks and the 
value-added networks (VANs) as well as between organiza
tions subscribing to their services (this can be specially ar
ranged today on some services). The step following that will 
be gateways between networks, which will overcome today's 
networking Tower of Babel. 

It will not matter which network a user signs onto to receive 
mail. Gateways will provide transparent access between the 
networks to allow internetwork electronic mail. Today it is 
hard to imagine representatives of the different VANs getting 
together to discuss gateways between their networks, but the 
business pressures that will force such meetings are already 
evolving. 

The IBM Information Network and American Bell's AIS/ 
Net 1000 aim specifically at intercorporate communications. 
And American Bell goes so far as to state a desire to be a 
"network of networks." 

Last October IBM's Information Network won a major 
contract from the Insurance Institute for Research to provide 
a value-added network that will allow property and casualty 
insurance companies to communicate with their independent 
insurance agents. This Insurance Value Added Network Ser
vices (IVANS) will deliver communications capabilities be
tween some 70 different computers and terminals, including 
many non-IBM devices. 

IV ANS will provide a range of communication processing 
functions beginning in mid-1983: 

1. Store-and-forward message switching, both presched
uled and on demand 

2. Interactive access to network-resident application 
programming 

3. Access to an insurance industry database 
4. Speed, protocol, and data format conversions to allow 

dissimilar terminals to communicate 
5. Storage of messages and data 
6. Support for user-written programs 
7. Network security, management, and documentation 

IVANS is an ambitious project for bringing an entire indus
tryon line. IBM has combined communication processing 
with timeshared application processing and has also offered 
the network on an intercompany basis. Many other such in
dustry networks will be implemented in the near future for 



trucking/transportation companies, airline and hotel reserva
tions, banking, retailing, and similar fields. Vendors com
peting to provide these quasi-private networks include not 
only IBM and American Bell, but hardware vendors like Tan
dem and Control Data, service bureaus like Tymshare and 
NCSS, and carriers like Isacomm and SBS. 

The forerunner of these systems, the Transportation Data 
Coordinating Committee, has developed standards for elec
tronically communicating purchase orders and invoices for the 
trucking industry. The grocery industry has also established a 
data communications standard (the Uniform Communication 
Standard) for orders and shipments between major food 
processors/manufacturers and large warehousing/wholesale 
organizations. 

To further international and intersystem communication, 
the CCITT formed a study group to develop international 
standard protocols for connecting existing and future CBMS 
and document distribution systems. It is called the CCITT 
Special Rapporteur Group on Message-Handling, Study 
Group VII. 

Among recent decisions, this group drafted access proto
cols to enable users of teletex, facsimile, and related systems 
to make use of CBMS-based message transfer services. It also 
refined and extended existing specifications for the relay pro
tocol governing message exchange between separate domestic 
and/or foreign CBMS systems. This specification now includes 
the control information that acts as an electronic "envelope" 
for messages in transit. 

These CCITT steps follow the recently-agreed-upon Na
tional Bureau of Standards Specification for Message Format 
for Computer Based Message Systems, Bolt, Beranek, and 

Electronic Mail: Evolving 383 

Newman; Computer Corporation of America; Dia1com Inc.; 
Digital Equipment Corp.; GTE Telenet Communications 
Corp.; and Tymnet have all agreed to support that standard. 
Other electronic mail service and system providers have said 
they will back the standard if enough demand develops. 

IBM has seriously considered document communications 
integrity between its systems. Its philosophy takes shape in the 
Document Interchange Architecture, Document Composi
tion Architecture, and Graphic Codepoint Definitions. IBM 
supports these blueprints on the 5520 administrative system, 
the Displaywriter word processor, and the 8100 computer 
under the Distributed Office Support Facility (DOSF) and the 
Distributed Office Support Systems (DISOSS) software pro
grams. Recently these architectures were spread to the major
ity of IBM's office systems, most notably the Professional 
Office System (PROFS). 

Outside IBM, standards currently agreed upon and those 
under discussion cover only message addressing; message for
mat integrity remains to be formalized. Current standards like 
HDLC and X.25 do not guarantee that a message formatted 
and sent from one system will appear the same way at the 
recipient's terminal. This issue has just started to be ad
dressed. In 1984 the CCITT is scheduled to formalize the 
Group 4 facsimile standard. Group 4 will be teletex com
patible, and the two systems will allow text and graphics to be 
transferred between systems with full integrity. 

Increasing system/service sophistication and compatibility 
will lead to new applications and to growing numbers of users. 
These developments augur the advanced, interconnected 
electronic mail systems that will evolve from today's individ
ual systems and services. 





Todd Ziesing 
Ross Systems, Inc. 
New York, New York 

DECISION SUPPORT SYSTEMS 

The series of sessions on Decision Support Systems (DSS) tackle the questions 
that DSS faces in the 1980s. How does a manager today effectively use the 
technology of mainframe, minicomputer, and microcomputer to produce cost
effective solutions for decision support? Several sessions directly address this 
question and come to some very different conclusions. 

1. The first proposes that "Micros Can Do It All." 
2. The second tells convincingly why only custom, micro-based decision 

support systems can address this problem. 
3. Two sessions cover all aspects of designing systems of this kind. 
4. A fifth session presents micros, minis, and large computers in a distrib

uted financial planning/decision support environment. 
5. A final session discusses how these technologies are all being integrated 

into executive information systems for senior corporate executives. 

These sessions meet the most puzzling questions of the micro versus main
frame debate head on. There is substantial material here for both the manage
ment information system user and the non-computer-oriented decision maker 
in any corporation. 





A new look at existence dependency in databases 

by T. C. CHIANG* 
American Bell Inc. 
Piscataway, New Jersey 

ABSTRACT 

To ensure data consistency, existence dependencies between records must be pre
served when the records are updated. It is necessary to identify such dependencies 
when the system is designed, so that update operations can be performed correctly. 

This paper presents a new look at existence dependencies in databases. It identi
fies a set of basic update rules that can be incorporated into a database management 
system (DBMS) to preserve existence dependencies between records. The paper 
shows that the existence dependencies supported by other existing commercially 
available DBMSs can be defined precisely in terms of the basic rules. Furthermore, 
a combination of these basic rules captures new existence dependency semantics 
that are not handled by the commercially available systems. This paper also dis
cusses solutions to the "interference" problems associated with closely related 
records. These interference problems have never been discussed in the literature 
before, but are important to system operations. 

*This paper was written while T. C. Chiang was working at Bell Laboratories, Whippany, New Jersey. 

387 





A. INTRODUCTION 

In an enterprise that has complicated relationships among 
entities, the existence of one entity often depends on that of 
others. Since a database represents a real world, existence 
dependencies in that world are reflected on the database as 
existence dependencies among data records. For an applica
tion that requires frequent deletion and insertion of records, 
existence dependency in the database must be handled cor
rectly to avoid data inconsistency. 

A reasonable place in a database system to handle existence 
dependency is in the database management system (DBMS) 
(as opposed to in the user's programs). Most of the commer
cial DBMSs such as IBMlIMS or other CODASYL-based 
systems handle a few kinds of existence dependency. For ex
ample, in IMS, a deletion of a root segment instance will 
trigger the deletions of all child segments instances under the 
root segment. In CODASYL based systems, there are 
AUTOMATIC and MANUAL, and MANDATORY and 
OPTIONAL declarations for memberships in a CODASYL 
set, which define certain kinds of dependency among records. 
For example, if a member is inserted into a set, it cannot be 
deleted independent of the set. These mechanisms are not 
rich enough to capture other kinds of existence dependency in 
most databases. 

In the research community, little attention has been given 
to the theory of existence dependency. For example, in the 
early work on relational data model, much attention was given 
to functional dependency and normalization. The term update 
anomaly was used to define all the problems related to exis
tence dependency. However, in reality, many of the cases of 
anomaly are not really anomalous but are expected existence 
dependency and should be handled as such. In the recent 
years, some attention has been paid to the problems of exis
tence dependency. 1-5, 7-8 Chen defined the concepts of regular 
and weak entities to capture some semantics of existence de
pendency among entities. 1 In a later paper, Dogac and Chen 
mentioned the concepts of update propagation.2 Similarly, 
Smith and Smith talked about the ideas of triggered updates 
that involve automatical updating of dependent records. 3 Kel
ler and Wiederhold listed a number of existence dependencies 
that were considered important in keeping the database con
sistent. 4 None of these papers treated the problems of exis
tence dependency extensively enough to capture most of the 
dependency semantics. Chiang and Bergeron described a sys
tem that handles a set of existence dependencies. 5 However, 
no detail on other problems related to existence dependency 
has been presented. Navathe and Schkolnick7 talked about 
update rules in the framework of view representation, and 
Date defined a rich language to describe existence dependen-

A New Look at Existence Dependency in Databases 389 

cies as referential integrity for the relational data model. 8 

However, neither of these papers broke down the existence 
dependency semantics into atomic units or mentioned the 
interference problems. 

In this paper, existence dependency and its related prob
lems are intensively discussed. Existence dependency is 
viewed as a property of a relationship among entities. A coup
ling factor is defined as a set of update rules for handling 
existence dependencies between entities. This paper shows 
that update rules supported by the commercial systems (e.g., 
IMS and CODASYL systems) and by others can be described 
in terms of the coupling factors. 2,4 Furthermore, the new look 
of the existence dependency problems enables us to discover 
new dependency semantics. A DBMS will enforce the rules 
for handling existence dependency, so that record deletions 
and insertions will not tum the database into an inconsistent 
state. Problems arise when two relationships exist within the 
same set of entities and the existence dependencies of the 
relationships interfere with each other. Later sections. of this 
paper will define the sets of various kinds of existence de
pendency and of their interferences, and will present an algo
rithm to detect the interferences. 

The result described in this paper is actually implemented 
in a DBMS for telephone business applications in the Bell 
telephone companies over the United States.5 

B. EXISTENCE DEPENDENCY 

An extended entity-relationship (E-R) data model is used as 
a basis for dealing with existence dependency. Roughly speak
ing, a basic E-R model views a database consisting of files that 
are sets of records and relationships among records. 1 In the 
extended E-R model, a set of relationships is referred to as an 
association.5 An association has a coupling factor as one of its 
properties. A coupling factor is a set of existence dependen
cies. To simplify the representation, only the existence depen
dencies of binary associations are discussed in the rest of this 
paper. Therefore, the term association will mean binary asso
ciation from now on. Also, an association will be viewed as a 
binary relation with the two files involved as its domains. 

Although there may exist many kinds of existence depen
dency, four basic ones are identified; the definitions are given 
as follows. Let E1 and E2 be two files, and A an association 
between E1 and E2. Let e1 be any record in E1 and e2 a 
record in E2 type associated with e 1 via A; then eland e2 are 
referred to as A -associated. The basic existence dependencies 
can be defined as the following update rules: 

1. An e 2 cannot be inserted unless there already exists an 



390 National Computer Conference, 1983 

A-associated e1. An insertion of e2 implies establishing 
a relationship between e 1- and e2. 

2. The deletion of an e 1 implies the deletions of all A
associated e2s. 

3. 1:\°1n e2 cannot be deleted, if there exist an A -associated 
e1. 

4. A relationship cannot be deleted, unless e1 or e2 is 
deleted. 

Note that normally deletion of e1 or e2 implies the deletion 
of the relationship between e 1 and e2. The insertion of a 
relationship is allowed only if both e 1 and e2 exist. Also, the 
dependencies specified by the rules are directional and transi
tive. For example, in the descriptions of the rules above, E2 
depends on E1. Furthermore, if E2 depends on E1 and E1 
depends on E3, it implies that E2 depends on E3. 

A set of coupling factors can be defined as the power set of 
the basic rules. Thus, there are 16 possible coupling factors, 
including the null coupling factor that has none of the above 
dependencies. By Chiang and Bergeron, a "very tight" 
coupling factor is defined as one that has all four depen
dencies. 5 The other coupling factors represent various kinds 
of dependencies between records. The coupling factors are 
unidirectional, that is, all the rules of the coupling factor have 
the same direction, which is defined as the direction of the 
coupling factor. Coupling factors are also transitive. The tran
sitive property of coupling factors is the key to the propaga
tion of updates. 

With these definitions of coupling factor, we can show how 
update rules supported by others can be described in terms of 
coupling factors. 

B.l IMS 

The update rules for IMS are defined by its hierarchical 
structure. Therefore, the deletion of one node in the hier
archy implies the deletion of all its child nodes. An insertion 
of a node into the hierarchy requires the existence of its parent 
node. 

The IMS update rules can be viewed as the coupling factor 
consisting of rule 1, rule 2, and rule 4 above. For example, 
consider a subset of the education database presented by 
Date.6 Figure 1 shows the structure for the educational data
base. 

A student segment can be inserted only if there is an offer
ing of a course (i.e., rule 1), and the deletion of an offering of 
a course implies the deletion of all student segments associ
ated with the offering (i.e., rule 2). Furthermore, IMS does 
not allow the breaking up of hierarchical relationships (e.g., 
rule 4). Note that IMS does not support rule 3. 

B.2 CODASYL Systems 

In CODASYL systems, membership class in a set,6 is used 
to describe the update rules. Let Owner (0) and Member 
(M) be two record types, and OM be the set defined between 
o and M. The membership for m of At in OA1 is said to be 

course 

course # title description 

offering 

date location format 

student 

emp # name grade 

Figure 1-Education database structure 

mandatory, if m cannot be removed from the set and deletion 
of an owner 0 implies the deletion of all members. If the 
membership is optional, m can be removed from OM without 
deleting m from the database. If the membership of M in OM 
is automatic, the DBMS will automatically establish the mem
bership in OM when an m of M is inserted. If the membership 
is manual, then the programmer has to establish the mem
bership explicitly. There are four kinds of memberships: (1) 
mandatory-automatic, (2) optional-automatic, (3) manda
tory-manual, and (4) optional-manual. We can use coupling 
factors to describe these memberships precisely. Mandatory
automatic is the coupling factor containing rules 2, 4, and 1; 
optional-automatic is the coupling factor containing rules 
2 and 1; mandatory-manual is the coupling factor containing 
rules 2 and 4; and optional-manual is rule 2. 

B.3 Relational Systems 

In relational systems, there are no comparable update 
rules. Existence dependency is treated as anomaly in the 
context of normalization. For example, consider a supplier 
relation: 

S' (S#, SNAME, STATUS, CITY) 

S' is in 2nd normal form,6 because all non-key attributes de
pend on the key and STATUS depends on CITY. This implies 
that information about STATUS cannot be inserted until 
some supplier in the city is in the database, and deletion of the 
only supplier in a CITY will delete all STATUS and CITY 
information. These are considered to be anomalies by Date. 6 

However, they may be valid existence dependencies for some 
applications. The coupling factor in this case contains rule 1 
and the rule to be described in Section D. 

To show the problems in dealing with existence dependency 
in a relational system, let us consider another example. Con-



sider a database consisting of three relations: (1) suppliers 
(SUPP), (2) parts (PART), and (3) shipments (SHIP). Each 
of the relations has a set of attributes and a set of tuples as 
follows: 

SUPP (S#, 

sl 
s2 
s3 

PART (P#, 

pI 
p2 
p3 

SHIP (S#, 

sl 
sl 
s2 
s2 

SNAME, 

adams 
baker 
chang 

PNAME, 

chip 
LED 
fan 

P#, QTY) 

pI 10 
p3 5 
p2 20 
p3 8 

STATUS, 

20 
10 
30 

COLOR) 

red 
green 
red 

CITY) 

Chicago 
Newark 
L.A. 

Suppose we want to delete all red parts from the database 
(from both PART and SHIP). Using a pseudorelationallan
guage, we can express the deletion operations as follows: 

1. delete SHIP tuples, where SHIP.p# = PART.p#, and 
2. delete PART tuples, where PART.color = "red". 

Now, if we reversed the order to do step 2 first, then step 1, 
the deletion of the SHIP tuples would not be possible, because 
the information about red parts would not be available at that 
point. Currently, there is no relational system to prevent dele
tions in a wrong order. If we consider SHIP as an association 
between PART and SUPP, then the deletion of red parts will 
trigger the deletions of the SHIP relationship tuples. 

We have shown that the idea of coupling factor can be used 
to describe the existence dependency supported by some 
existing systems and to capture other dependency semantics 
that are not recognized by the existing systems. Coupling 
factors have many other interesting properties; one of them 
will be discussed in the next section. The problems discussed 
in the next section have never been handled by the existing 
systems. 

C. INTERFERENCES 

An interference occurs when two adjacent associations have 
coupling factors that interfere with each other. For example, 

A New Look at Existence Dependency in Databases 391 

suppose that we have a database consisting of a department 
file, an employee file, and a project file, and that the update 
rules for the data base are as follows: 

1. An employee record cannot be inserted, if there is no 
department that the employee can work for 

2. A project record cannot be inserted if there is no em
ployee in department that can handle the project 

3. A department record cannot be inserted, if there is no 
project for it. 

If these update rules are enforced, then no record can be 
inserted into the database. In a system that supports more 
complex relationships between records, the interference be
tween two coupling factors becomes a problem. In this sec
tion, we shall talk about this kind of interference. We shall use 
the first three coupling factors that were presented in Section 
B to illustrate the problem. More detailed definitions are 
given as follows. 

Adjacency.-An association A is said to be adjacent to 
another association B, and vice versa, if and only if A and B 
have a domain in common. 

Parallel adjacency. -Associations A and B are said to be 
parallel adjacent if and only if they have the same set of two 
perhaps distinct domains. 

Serial adjacency. -Associations A and B are said to be 
serial adjacent if and only if A and B have exactly one domain 
in common. 

Interference state.-Two adjacent associations are said to be 
in an interference state if and only if no record can be inserted 
in or deleted from any of their domains. 

Interfering coupling factors. -Two coupling factors are said 
to be interfering with each other if and only if assigning them 
to two adjacent associations would cause an interference 
state. 

Now we are ready to look at all possible interference states 
generated by pairings of the eight possible coupling factors. 

C.1 Parallel Interferences 

Parallel interference occurs when two parallel adjacent as
sociations have interfering coupling factors. It can occur only 
when two coupling factors have opposite directions. There
fore, all theorems in this section assume that the coupling 
factors are in opposite directions. e1 and e2 are used to repre
sent records in the two domains, El and E2, of an association:. 
The rules are to be assigned to two distinct associations. 

Theorem 1. Rule 1 interferes with rule 1. 
Proof. Since the insertion of e 1 depends on the existence of 

e2, and vice-versa, the associations would be in an inter
ference state. 

Theorem 2. Rule 3 interferes with rule 3. 
Proof. Since e 1 cannot be deleted without first deleting e2, 

and vice-versa, the association would be in an interference 
state. 



392 National Computer Conference, 1983 

Clearly two coupling factors are interfering with each other 
if they contain one interfering rule. 

To identify all the possible interference states, we use three 
Boolean variables, X, Y, and Z, to represent the presence of 
rules 3,2, and 1, respectively, in a coupling factor. A Boolean 
variable has the value 1, if a rule is present. Thus, the eight 
coupling factors can be represented as 

XYZ 

000 
001 
010 
011 
100 
101 
110 
111 

A matrix that represents all the possible states is shown in 
Figure 2, where an x indicates an interference state. A null 
coupling factor, which contains none of the rules, does not 
interfere with any other coupling factors. From Figure 2, it 
can be seen that there are in total 28 interference states, which 
are easy to detect: one performs an intersection on the 
coupling factors involved; if the resulting set contains either 
rule 1 or rule 3, there is an interference. By considering each 
coupling factor to be represented by three Boolean variables, 
one can even set up a hardware machine to realize the 
Boolean function represented by the matrix in Figure 2. 

C.2 Circuit Interference 

The concept of parallel interference can be generalized to 
produce concepts of other interferences. Defining an E-R 
diagram with respect to existence dependency as a labeled 
directed graph, we use nodes to represent files and edges to 
represent associations. A label on an edge represents the 
association name (which uniquely identifies the edge), and the 
coupling factor. Figure 3 shows an example of an E-R diagram 

000 001 010 all 100 101 110 111 

000 

001 x x x x 

010 

011 x x x x 

100 x x x x 

101 x x x x x x 

110 x x x X 

111 x x x x x X 

Figure 2-Intcrference states 

Figure 3-E-R diagram with dependency 

conveying dependency information, where El and E2 are 
nodes representing files, A is an association, and C is the 
coupling factor of A. The arrow on an edge represents the 
direction of the coupling factor. Since the arrow is pointing 
from El to E2, El depends on E2 via NC. El is referred to 
as the initial node and E2 the final node. 

A path in an E-R diagram is a sequence of serial adjacent 
edges, where the final node of one edge is the initial node of 
another. Figure 4 shows an example of a path, where AI, 
A2, ... , An are names of the associations. A circuit is a path 
AI, A2, ... , An in which the initial node of Al is the final 
node of An. 

A circuit interference is defined as an interference -state 
caused by the interfering coupling factors of a circuit of asso
ciations. With the algorithm in Section 1 and the transitive 
property of the dependency rules, we can reduce the problems 
of circuit interference to those of parallel interference. For 
example, Figure 5 shows a circuit interference. 

To detect such a state, one could 

1. Detect a circuit. 
2. Starting at a node of the circuit, reduce two serial adja

cent edges and the common node to a "virtual" edge, V, 
with a coupling factor that is the intersection of the two 
original associations. 

3. Repeat step 2 until two parallel adjacent associations 
result. 

4. Check parallel interference using the algorithm in Sec
tion c.1. 

D. FUTURE WORK 

There are many interesting problems related to existence de
pendency. 

1. To identify more existence dependence rules. For exam-
pIe, a variation of rule 2 can be stated as follows: The 
deletion of an e 1 implies the deletion of all A-associated 
e2s, if el is the only A-associated el of the e2s. This rule 
captures new semantics of dependency and will generate 
more interference states when it is paired with other 
rules. 

2. To extend the definitions of coupling factors to n -nary 
associations. 

AI/CI A2/C2 An/Cn 

... ---<>+--G 
Figure 4-Exampie of a paih 



V/OOI 

Figure 5----Circuit interference 

3. To apply the concept of coupling factor to update de
pendency in general. Existence dependency is one kind 
of update dependency. The other kind is modification 
dependency. Modification dependency occurs when the 
modification of a data item depends on the modification 
or existence of other data items. For example, a deletion 
of an employee record may trigger the modification of 
the total number of employees in a company. 

D. CONCLUSION 

We have considered existence dependency as a set of data 
semantics that has the same importance as that of functional 
dependency has in relational theory. We have described the 
problems of existence dependency in databases. We have 

A New Look at Existence Dependency in Databases 393 

identified a set of existence dependency rules from which a 
coupling factor of an association can be defined. We have 
described some interesting properties of the coupling factors 
and identified many interference states and the algorithms to 
detect them. We believe that there are still many interesting 
problems in existence dependency left to be discovered. 

REFERENCES 

1. Chen, P.P. "The Entity-Relationship Model-Towards a Unified View of 
Data." ACM Transactions on Database Systems, 1 (1976), pp. 9-36. 

2. Dogac, A., and P.P. Chen. "Entity-Relationship Model in the 
ANSIISP ARC Framework." Proceedings of the Second International 
Conference on Entity-Relationship Approach (October 1981), pp. 361-378. 

3. Smith, J.M., and D.C.P. Smith. "Database Abstractions: Aggregation 
and Generalization." ACM Transactions on Database Systems, 2 (1977), 
pp. 105-133. 

4. Keller, A.M., and G. Wiederhold. "Validation of Updates Against the 
Structure Database Model." Proceedings of the Symposium on Reliability in 
Distributed Software and Database Systems (July 1981), pp. 195-199. 

5. Chiang, T.C., and R.F. Bergeron. "A Data Base Management System with 
an E-R Conceptual Model." Proceedings of the First International Con
ference on the Entity-Relationship Approach (December 1979), pp. 467-476. 

6. Date, c.J. An Introduction to Data Base Systems, Reading, Mass.: 
Addison-Wesley, 1976. 

7. Navathe, Shamkant B., and Mario Schkolnick. "View Representation in 
Logical Database Design." Proceedings of the SIGMOD Conference 
(May 1976), pp. 144-156. 

8. Date, C.J. "Referential Integrity." Proceedings of the VLDB Conference 
(October 1981), pp. 2-12. 





Issues in the design of relational model management systems 

by ROBERT W. BLANNING 
Vanderbilt University 
Nashville, Tennessee 

ABSTRACT 

One component of the literature on model management in decision support systems 
(DSSs) suggests that the relational framework for data management be extended to 
the management of decision models. This paper examines three important design 
issues in relational model management: the organization of relational model banks, 
relational completeness of model query languages, and system implementation. 

395 





Issues in the Design of Relational Model Management Systems 397 

INTRODUCTION 

The growing use of decision models in decision support sys
tems (DSSS)1, 14, 15,22,30 and the successfu! implementation of 
database management systems (DBMSs) have given rise to 
suggestions that (1) decision models, like data, are an im
portant information resource that should be managed effec
tively, (2) a discipline of model management be developed to 
help DSS users to make more effective use of models, and (3) 
model management systems be developed to implement im
portant model management concepts. 17, 18,24,25,30,31,33 Exam-
ples of such models are mathematical programming models 
for production and distribution scheduling, Monte Carlo sim
ulations of transportation networks, and deterministic simu
lations of the financial structure of an enterprise. Although no 
model management systems now exist, it can be argued that 
the systems that support such financial planning languages as 
EMPIRE13 and IFPS19,23 are forerunners of the model man
agement systems that will eventually be implemented, just as 
the file processing systems of the 1960s were forerunners of 
DBMSs. 

One of the frameworks proposed for model management is 
a relational framework: it is suggested that a model bank may 
be viewed as a set of (virtual) relations with input and output 
attributes and functional dependencies between them, just as 
a database may be viewed as a set of relations with key and 
content attributes.4,5,6,7,8,10 Two advantages are offered for 
such a perspective. First, since some of the operations per
formed with models have counterparts in relational data man
agement, important concepts in the latter area may be useful 
in the former. For example, the execution of a model is similar 
to selection or restriction of a data relation. Similarly, when
ever several models are used to respond to a query such that 
the outputs of some models are inputs to others, an operation 
similar to a join is performed. Clearly there are substantial 
differences between relational data and model management at 
the level of system implementation and program execution, 
but we are concerned here only with the user view of models, 
not with the procedures for model execution. The second 
possible advantage is that it may eventually be possible to 
synthesize the relational frameworks for data and model man
agement to produce a single relational framework for infor
mation management in DSSS.8 

Three principal issues have been identified for relational 
model management: 

1. Model bank organization. Should a model bank be 
viewed by a DSS user as a single "universal" model or as 
a set of separate models? If the latter, what are the 
criteria for partitioning the universal model? Are there 

normal forms for relational model banks as there are for 
relational databases? 

2. Relational completeness o/model query languages. What 
operations should be specified by a query language for 
relational model management? How do they differ from 
those of relational data management? What are the lin
guistic properties (e.g., position on the Chomsky hier
archy) of a relation ally complete model query language? 

3. Implementation issues. What are the issues with regard 
to security, integrity, query optimization, and the imple
mentation of joins in relational model management? 
With regard to the latter, if an output of one model is an 
input to another and vice versa, how is a consistent solu
tion for the model bank to be found? 

These three issues will be examined in the following three 
sections, after which we will discuss the broader issue of mod
el management in DSSs. 

MODEL BANK ORGANIZATION 

The question of whether several interrelated operations (such 
as preparing a sales forecast and then simulating the impact of 
the resulting sales volume on production processes) should be 
performed by one model or by several models has been raised 
in the model management literature. It has been suggested 
that models be decomposed by organizational function (fi
nance, marketing, etc.), 33 organizational level (the strategic, 
tactical, and operational levels),29 model solution technique 
(simulation, linear programming, etc.),3,9 or a combination of 
these. 12 

Another approach, similar to that taken in relational data 
management, consists of identifying anomalies that can arise 
in using models and then deriving normal forms that result in 
the elimination of these anomalies.6 The anomalies of interest 
in relational data management are update anomalies
problems that can arise in adding, deleting, or changing tuples 
in a relation. Such anomalies do not arise in relational model 
management, because the tuples in a model relation do not 
exist in stored form; rather, they are generated as needed in 
response to user queries. However, other anomalies, called 
processing anomalies, are found in model management, and 
they give rise to normal forms similar to, but not identical 
with, those of relational data management. 

There are three types of processing anomaly, which lead to 
three types of normal forms, called the alpha, beta, and gam
ma forms. These anomalies are 

1. Input anomalies. -An input anomaly occurs whenever a 
user, in order to require that an output of a model be 



398 National Computer Conference, 1983 

calculated, must enter at least one input that is not 
needed for the calculation of that output. Input anoma
lies are similar to (but not identical with) the anomalies 
that lead to the second normal form in relational data 
management. 

2. Search anomalies. -A search anomaly occurs whenever 
there is a transitive dependency in a relation, for exam
ple of the form {price=>sales volume, sales volume=>pro
duction cost}; this requires that the user who wishes to 
determine the production cost resulting from a given 
sales volume enter different values of the price until that 
volume is realized, and with it the corresponding pro
duction cost. The anomaly is eliminated by projecting 
the relation into the two relations {price=>sales volume} 
and {sales volume=>production cost}; this projection is 
equivalent to the third normal form in relational data 
management. 

3. Output anomalies. -An output anomaly is a nondeter
ministic response to a user query. One cause of non
determinism is the presence of two or more identical 
output attributes in different models (e.g., in two mod
els, both of which calculate production cost). The elimi
nation of such anomalies leads to a normal form in which 
the output attributes of all of the models are pairwise 
disjoint. Such a normal form could not be implemented 
in relational data management, because some output 
attributes, such as a city name, can be associated with 
suppliers, customers, regional offices, and so on. 
Another cause of nondeterminism, which cannot be re
solved by projection into a normal form, arises during 
the implementation of joins. This is explained below. 

These normal forms, like the normal forms of relational 
data management, often provide useful guidance in the design 
of model banks, but there are circumstances in which it is 
reasonable to violate them. For example, corporate financial 
simulations calculate the values of revenue and expense cate
gories that would result from the implementation of corporate 
financial or marketing strategies. 16, 26 These simulations con
tain many transitive dependencies, in the form of column 
totals, row totals and subtotals, financial ratios, and the like. 
Yet it is not clear that users should think of such a model as 
a sequence of two models, one of which calculates the detailed 
data and the other the summary and financial statistics, and 
corporate models are certainly not programmed in such a 
fashion. Thus, in structuring a model bank according to one 
set of criteria, such as the elimination of a certain type of 
anomaly, one should not lose sight of other important criteria, 
such as the efficiency of processing or psychological and es
thetic criteria. 

RELATIONAL COMPLETENESS OF MODEL QUERY 
LANGUAGES 

The need for a convenient user interface is well recognized in 
the model management literature. 17, 18,31,33 It has even been 
proposed that a dialogue management system, separate from 
the data and model management systems of a DSS, be impie-

men ted to manage all of the interactions between a DSS and 
its users.29

,30 However, we are concerned here only with the 
criteria for relational completeness in model managemene 
and with the properties of a relationally complete model 
query language. 4 

The only operation in relational data management that is 
also useful in model management is selection. The other re
lational operations of projection and join are not needed. 
Projection is not needed because the only projections per
formed with a model are those in which each input attribute 
is either included in the projection or is specified by a previous 
selection operation, since a DSS user will not wish to know the 
output of a model without knowing all of the inputs. This kind 
of projection can be accomplished by a selection operator and 
a report writer that prints only those attributes that are of 
interest. The join operation is not needed, because in re
lational model management joins can be implemented by the 
model management system, hence they are transparent to the 
user. This is explained in the following section. The set and 
maintenance operations are not needed, because model 
relations are not union compatible (i.e., a model bank will 
not contain two models with identical input and output 
attributes) . 

In addition to selection (called "execution" in relational 
model management), there are two further criteria for re
lational completeness. The first is optimization: the user iden
tifies a nonvoid subset of the input attributes of a relation, a 
single output attribute, and a maximum or minimum designa
tor. The result of this operation is a relation whose tuples 
contain the optimal values of (1) the identified input attributes 
and (2) the output attributes for all values of the remaining 
input attributes. The second criterion is sensitivity analysis. 
This is not a relational operation-that is, the output is not a 
relation but rather a set of sensitivity measures (e.g., partial 
derivatives or increments in one attribute resulting from in
crements in another attribute) of an output attribute with 
respect to an input attribute. More complex sensitivity mea
sures exist and have been described. 4,7,8 

The articulation of these criteria has led to the design, but 
not yet the implementation of MQL, a SEQUEL-like re
lationally complete model query language.4 Consider for ex
ample, the relation REL = (P, R; E, N), whose input attri
butes are a sale price P and a raw-material price R, and whose 
output attributes are the resulting raw-material expense E and 
net income N. To calculate the sale price that will maximize 
net income when the raw material price is 5, we write 

MAXIMIZE N 
OVERP 
WITH (R, = ,5) 
USING REL 
PUT RPT 

where RPT is the name of a report writer. (The reserved 
words are underlined.) To find the optimal value of P for each 
value of R, we eliminate the WITH statement. 

A more interesting operation is an embedded optimization. 
Suppose a raw-material supplier with access to this model 
(i.e., a modei of his customer) wishes to find the value of R 



Issues in the Design of Relational Model Management Systems 399 

that would maximize E (the raw-material expense of the cus
tomer, hence the revenues of the supplier), assuming that the 
customer will then set its sale price to maximize its net income 
for that raw-material price. The request statement is 

MAXIMIZE E 
OVERR 
USING 
MAXIMIZEN 

OVERP 
USING REL 

PUT RPT 

This type of operation, which is a relational mapping, is of 
special interest because of its self-referential property. In this 
respect it is similar to an unofficial test query often used in 
relational data management: "Find all employees who earn 
more than their supervisor," applied to a data relation whose 
tuples contain an employee identifier, the employee's salary, 
and the identifier of the employee's supervisor. Embedded 
optimization of this type may perform a similar function in 
relational data management, namely to serve as an unofficial 
test query to determine the ease of use of a model query 
language. 

Three linguistic properties of MQL have been identified: it 
is context-free, it is of star height one, and, although it is of 
infinite order, a simple extension of the language (to allow for 
an unlimited concatenation of request statements in a single 
sentence) is of first order and so possesses the finite-power 
property. These properties suggest that MQL will not be a 
difficult language to implement and use. 

IMPLEMENTATION ISSUES 

Implementation issues have not been adequately addressed in 
the literature. Questions of security, integrity, query opti
mization, and the like have received at best passing reference. 
One issue that has received brief treatment is the implementa
tion of joins. 

In the previous section, we used REL to denote a relation 
accessed by MQL, with the implicit assumption that REL 
denoted a model. However, it may denote a set of models that 
are collectively needed to respond to a query. There are three 
ways in which the set of models may be accessed. First, if the 
models are independent-that is, if there is no input to any of 
the models that is also an output of another model-then the 
models can be executed in any order and the values of their 
output attributes assembled to produce a report. Second, if 
there is at least one input to a model that is an output of 
another model, but the models, ordered by their input/output 
relationships, form a partially ordered set (i.e., there are no 
cycles), then there is at least one sequence in which the mod
els can be executed. In both of these cases implementation is 
straightforward: the models are executed in an appropriate 
sequence, with data files presumably used as a medium of 
communication. 11,20 

The difficulty occurs in the third case, in which the set of 
models needed to respond to the query is not partially or-

dered. Consider, for example, two economic models, a supply 
model and a demand model. The input to the supply model is 
a vector of supply quantities (presumably for several products 
in several regions), and the output is a vector of prices at 
which suppliers will find it economical to supply these quan
tities; the input to the demand model is a vector of prices to 
be charged for the products in the regions, and the output is 
the vector of consumer demands that will be realized at these 
prices. In general there will be other inputs to the models 
(e.g., levels of economic activity that affect the supply and/or 
the demand for the products) and possibly other outputs as 
well. A consistent set of product prices and product quantities 
is obtained by entering a proposed value for one of the two 
vectors (e.g., the prices) into the appropriate (demand) mod
el, calculating the output (demand vector) and entering this 
into the other (supply) model to calculate its output (vector of 
supply prices). The process is continued until the vector of 
supply prices calculated at the end of the process is sufficiently 
close to the set of demand prices used to initiate the process. 21 

There are four issues to be dealt with in regard to the 
implementation of joins in this case: 

1. Identification of cycles. The first issue is the determina
tion of whether there are any cycles in the set of models 
and, if so, what model attributes (e.g., either the prices 
or the quantities in the previous example) must be re
moved and used in the search for a consistent solution. 
If there are only a few models in the set, this can be 
determined by inspection, and methods exist for making 
the determination in more complex cases. 7 

2. Aigorithm development. The second issue concerns the 
development of an algorithm for adjusting the appropri
ate attribute values at each stage of the iterative process 
(in the previous example, the rule for adjusting the 
prices to be entered into the demand model). In prac
tice, this appears not to be difficult. A supply/demand 
model configuration of the type described above, with 
substantial nonlinearities, has been found to converge in 
six to ten iterations using a simple adjustment rule. 21 

However, there are a variety of sophisticated fixed-point 
algorithms that may be useful whenever the simple rules 
are ineffective. 20,27 

3. Existence. The third issue is the existence of a consistent 
solution for the set of models (i.e., the existence of fixed 
points). A generalization of the Brouwer fixed-point 
theorem states that a continuous mapping from a 
convex-compact (i.e., closed and bounded) subset of Rn 
into itself contains at least one fixed pOint. 28 Unfor
tunately, these conditions are often not met in model 
management. For example, production cost may be a 
discontinuous function of production quantity, a 
Boolean variable may represent the decision to invest or 
not to invest, and many variables-such as costs and 
revenues-are not bounded. Little work has been done 
to establish existence conditions for more general cases 
such as these. 

4. Uniqueness. The final issue is the uniqueness of consis
tent solutions for the set of models (i.e., the uniqueness 
of fixed points). This is important, because lack of 



400 National Computer Conference, 1983 

uniqueness means that a set of deterministic models may 
be a nondeterministic set, and the users of a DSS should 
be made aware that there may be more than one possible 
outcome of their decisions.5 A classical uniqueness re
suit, known as the contraction mapping theorem,28 does 
not appear to be useful here. More recent results, based 
on monotonicity conditions2 and curvature conditions 
(in which certain variables exhibit consistent increasing 
or decreasing returns to scale)5 are relevant, but the 
work in this area is far from complete. 

One can best summarize the state of the art in the imple
mentation of relational model management systems by saying 
that much needs to be done, not only in the practice of imple
menting these systems, but also in the development of the
ories that will guide implementation. 

INFORMATION MANAGEMENT IN DSS 

It was suggested in the Introduction that one reason for view
ing a model bank as a set of relations is that such a view may 
eventually be combined with the established relational view of 
data to yield a unified framework for information manage
ment in DSSs, in which the information of interest may be 
retrieved from a file or calculated by a model solution pro
cedure.s With regard to the user view of information (as op
posed to the obvious differences in system implementation), 
data and models compare as follows: 

1. Organization.-The normal forms for data management 
and model management, although not identical, are 
quite similar. This is surprising, because the criteria for 
constructing normal forms for data relations-the elimi
nation of update anomalies-do not apply in model 
management. Even so, the anomalies encountered in 
updating tuples in a data relation do not differ substan
tially from those encountered in processing a model 
relation. 

2. Relational completeness. -As might be expected, the 
criteria for relational completeness in model manage
ment are not at all like those for data management. The 
only operation they have in common is selection. It is 
interesting to note that relational mapping appears in 
both data and model management, but for different rea
sons. In data management it is used to execute joins, in 
model management to execute embedded optimizations. 

One may ask whether a relational framework is the most 
appropriate one in which to achieve a synthesis of data and 
model management-especially since the CODASYL frame
work also has been extended to support model description 
and manipulation. 24

,32 The advantage of a relational frame
work in model management and, more generally, in in
formation management is the same as the advantage in data 
management: its simplicity and elegance. The mathematical 
principles that lie at the heart of relational algebra are the 
results of centuries of attempts by natural philosophers and 
scientists to understand the world around them, and it would 

not be surprising to find that such a framework is also useful 
to managers and staff analysts who wish to understand and 
control their world. A final determination of the usefulness of 
this framework must await the implementation and operation 
of modei management systems and their integration with data 
management systems, but this appears to be a good starting 
point for the integration of information management in DSSs. 

REFERENCES 

1. Alter, Steven L. Decision Support Systems: Current Practice and Con
tinuing Challenges. Reading, Mass.: Addison-Wesley, 1980. 

2. Ahn, Byong-hun and William W. Hogan. "On Convergence of the PIES 
Algorithm for Computing Equilibria." Operations Research, 30 (1982), pp. 
281-300. 

3. Blanning, Robert W. "A Decision Support Language for Corporate Plan
ning." Policy Analysis and Information Systems, to appear (1983). 

4. Blanning, Robert W. "Language Design for Relational Model Manage
ment." In S. K. Chang (ed.), Management and Office Information Systems. 
New York: Plenum Press, 1982. 

5. Blanning, Robert W. "The Existence and Uniqueness of Joins in Relational 
Model Banks," Owen Graduate School of Management, Vanderbilt Uni
versity, Nashville, 1982. 

6. Blanning, Robert W. "Normal Forms for Relational Model Banks," Owen 
Graduate School of Management, Vanderbilt University, Nashville, 1982. 

7. Blanning, Robert W. "A Relational Framework for Model Management in 
Decision Support Systems." DSS-82 Transactions, June 1982, pp. 16-28. 

8. Blanning, Robert W. "Data Management and Model Management: A Re
lational Synthesis." Proceedings of the 1982 Southeast ACM Regional Con
ference, April 1982. pp. 139-147. 

9. Blanning, Robert W. "Ambiguity and Paraphrase in a Transformational 
Grammar for Decision Support Systems." Proceedings of the Fifteenth 
Hawaii International Conference on System Sciences (Vol. 1), 1982, pp. 
765-774. 

10. Blanning, Robert W. "Model Structure and User Interface in Decision 
Support Systems." DSS-81 Transactions, June 1981, pp. 1-7. 

11. Blanning, Robert W. "Model-Based and Data-Based Planning Systems." 
Omega, 9 (1981), pp. 163-168. 

12. Blanning, Robert W. "The Functions of a Decision Support System." Infor
mation and Management, 2 (1979), pp. 87-93. 

13. Boer, Germain. "A Beginner's Guide to EMPIRE." Applied Data Re
search, Inc., Princeton, N.J., 1980. 

14. Bonczek, Robert H., Clyde W. Holsapple, and Andrew B. Whinston. 
Foundations of Decision Support Systems. New York: Academic Press, 
1981. 

15. Bonczek, Robert H., Clyde W. Holsapple, and Andrew B. Whinston. "The 
Evolving Role of Models in Decision Support Systems." Decision Sciences, 
11 (1980), pp. 337-356. 

16. Boulden, James B. Computer-assisted Planning Systems. New York: 
McGraw-Hill, 1975. 

17. Elam, Joyce J. "Model Management Systems: A Framework for Devel
opment." Proceedings 1980 SEAIDS, February 1980, pp. 35-38. 

18. Elam, Joyce J., John C. Henderson, and Louis W. Miller. "Model Manage
ment Systems: An Approach to Decision Support in Complex Or
ganizations." Proceedings of the First International Conference on Informa
tion Systems, December 1980, pp. 98-110. 

19. Execucom. "An Introduction to Computer-Assisted Planning Using the 
Interactive Financial Planning System," Austin, 1978. 

20. Filius, Lidia. "Combinatorial Fixed Point Algorithms." In O. Moeschlin 
and D. Pallaschke (eds.), Game Theory and Related Topics. Amsterdam: 
North-Holland, 1979, pp. 165-172. 

21. Hogan, William W. "Energy Policy Models for Project Independence." 
Computers and Operations Research (1975), pp. 251-271. 

22. Keen, Peter G. W., and Michael S. Scott Morton. Decision Support Sys
tems: An Organizational Perspective. Reading, Mass.: Addison-Wesley, 
1978. 

23. Keen, P. G., and G. R. Wagner. "DSS: An Executive Mind Support 
System." Datamation, Vol. 25, No. 12 (November 1979), pp. 117-122. 

24. Konsynski, Benn B. "On the Structure of a Generalized Model Manage-



Issues in the Design of Relational Model Management Systems 401 

ment System." Proceedings of the Fourteenth Hawaii International Confer
ence on System Sciences (Vol. 1), January 1981, pp. 630-638. 

25. Konsynski, Benn, and Dan Dolk. "Knowledge Abstractions in Model Man
agement." DSS-82 Transactions, June 1982, pp. 187-202. 

26. Naylor, Thomas H. Corporate Planning Models. Reading, Mass.: Addison
Wesley, 1979. 

27. Scarf, Herbert E. The Computation of Economic Equilibria. New Haven: 
Yale University Press, 1973. 

28. Smart, D. R. Fixed Point Theorems, Cambridge: Cambridge University 
Press, 1974. 

29. Sprague, Ralph. "A Framework for the Development of Decision Support 

Systems." MIS Quarterly, 4 (1980), pp. 1-26. 
30. Sprague, Ralph H., Jr., and Eric D. Carlson. Building Effective Decision 

Support Systems. Englewood Cliffs, N.J.: Prentice-Hall, 1982. 
31. Sprague, Ralph H., Jr., and Hugh D. Watson. "Model Management in 

MIS." Proceedings of the 7th National AIDS, November 1975, pp. 213-215. 
32. Stohr, Edward A., and Mohan Tanniru. "A Database for Operations Re

search Models." Policy Analysis and Information Systems, 4 (1980), pp. 
105-121. 

33. Will, Hartmut J. "Model Management Systems." In E. Grochla and N. 
Szyperski (eds.), Information Systems and Organization Structure. Berlin: 
Walter de Gruyter, 1975, pp. 467-482. 





Focal points for DSS effectiveness 

by CARL HARRINGTON 
Nationwide Insurance Company 
Columbus, Ohio 

ABSTRACT 

The primary emphasis in this presentation is to take a top-down view of a decision 
support system (DSS) and to see how the mere existence of DSS causes improve
ment in management effectiveness. The areas covered include development of 
information needs, requirement of consistency in using information, discipline in 
decision making, and the integration of decisions toward goals. 

The improved effectiveness from these areas is inherent in the information re
quirements that are set up during the development of a DSS. Can there be any 
doubt that improved information consistency and discipline in decision making 
improves management effectiveness? In other words, no matter the computational 
advantages and the efficiency of computers to manipulate and display numbers, a 
DSS automatically results in the identification of issues, begs for the resolution of 
those issues, and thus produces more consistent and integrated decisions in the 
choices of action plans and programs for the achievement of corporate goals. 

403 





MANAGEMENT EFFECTIVENESS THROUGH DSS 

For my presentation I have selected what I believe to be some 
of the more critical areas that will improve management effec
tiveness through decision support systems (DSS). These areas 
are identified by viewing the decision process and the DSS as 
a totality for the organization rather than as a single functional 
decision area. Looking at the decision process in this way 
brings to light many of the attributes of a DSS that are not 
present or not nearly as effective before a DSS is imple
mented. The focal points for DSS effectiveness from this view
point are 

1. Development of information needs for decision making 
2. Consistency in using information by more managers 
3. Discipline in decision making through a well-constructed 

process 
4. Integration of decisions toward corporate goals 

As I review each of these focal points I'll present an exam
ple of how a Nationwide DSS application improved manage
ment effectiveness, and I'll wind up with a few conclusions. 

Development of Information Needs 

First, DSS improves management effectiveness by focusing 
attention on the development of information for making deci
sions. You could say with a great deal of confidence that to 
manage effectively is to manage with adequate information. 
Here's where computers, computer software, and the design 
of a DSS provide the basis for improved management effec
tiveness. 

Useful information, when it can be made available at an 
acceptable cost, will be used. In strategic or long-range plan
ning before the availability of a computer support system, 
much of the desired information could not realistically be 
obtained. Nor was it practical to develop many alternative 
action plans as the basis for evaluating the potential-effects 
bottom line. 

With the what if and goal-seeking capability of a DSS, 
alternatives can be discussed, information can be obtained, 
and choices can be made in less time than it would take to do 
the traditional one-plan-only planning. 

Can there be any doubt that effectiveness is enhanced when 
management can get definitive answers to their what-if ques
tions before making decisions on what goals should be estab
lished? Our experience is that the answers change opinions, 
and final decisions change a high percentage of the time. 

In one of our operating units, when the usual projections 
had been done manually and goals established by intuition 

Focal Points for DSS Effectiveness 405 

and judgment, the five-year plan called for a compound 
growth of 11 %. When the computer support system was es
tablished, the possible growth trend could be developed in 
different ways more quickly than one projected case could be 
developed before. Now the manager could look at 

1. compound growth 
2. linearly accelerated compound growth 
3. linear interpolation 

and determine the most realistic goal based on the most real
istic growth trends. With the additional information the 
growth rate was adjusted by year to a new goal that was higher 
than it was before. This improved management effectiveness 
by providing valuable information previously not available. 

Consistency in Using Information 

Now let's look at the advantages a DSS brings to manage
ment decision making in terms of consistency in use of infor
mation. 

One of the most frustrating problems of management in 
reviewing results, in reviewing proposed projects, and in 
evaluating performance is to have two different figures from 
two sources for the same item. Much of this is due to dif
ferent definitions of certain terms and different databases 
developed to answer the same question or to provide the same 
information. 

A DSS by the very nature of its construction must 

1. have one definition for a specific term 
2. have the same database from which to get information 
3. follow the same sequence of using input 
4. produce output in a standard form 

All of these DSS characteristics cause management to look at 
definitions, use of data, input requirements, and how output 
is best provided to be useful to management. 

In many instances, initial problems are created because 
different management groups have historically used different 
definitions and many times have developed their own data
bases to provide their own functional reports. 

At Nationwide, when we started developing the strategic 
planning model, we developed a set of terms and equations to 
be used for strategic planning. The overall design used a dia
gram and set of insurance equations for which each functional 
office provided input. The result was that we resolved several 
differences of opinion on definitions that had lingered for 
years. For instance, the equation for earned premium for 



406 National Computer Conference, 1983 

strategic planning was uniformly used company-wide for the 
first time. 

Discipline in Decision Making 

Next let's consider discipline. This factor in many ways is 
similar to the effectiveness improvement caused by forcing 
greater consistency. Discipline has an additional dimension, 
however, in that it is self-imposed on the decision maker, 
whereas consistency is caused by the influence of others or by 
a group as a whole. 

Managers vary a great deal in the discipline they bring to 
most aspects of their jobs. But, decision making may be the 
least disciplined if there is no special structure or framework 
established to provide the discipline of orderly consideration 
of all important facts. Again, it is hard to refute the im
provement in management effectiveness when orderliness and 
a structure for reviewing all important information are 
brought into the picture, and that is what DSS does. 

For example, our Marketing Office for years annually dis
tributed what was called the marketing direction. This docu
ment provided the rest of management with the outlook for 
the next three to five years. It became the basis for the plan
ning and administrative decisions of other offices. The mar
keting direction included such items as premium goals by 
product, mix of business, sales manpower, turnover in the 
agency, and training requirements for new agents. 

Before a DSS was developed the markets research and 
product managers extrapolated and adjusted one plan to 
come up with the marketing direction based on the pertinent 
facts they had. When the DSS for developing the marketing 
direction was initiated as part of strategic planning, each vari
able was identified and historic information developed. It 
turned out that the information input to produce the market
ing direction was better organized and the basic decisions 
were focused on arriving at agreement on the parameters that 
were manageable. These included any loss of policies in force, 
the new sales of agents with varying lengths of service, and 
desired growth rates relative to the market. 

Some significant improvements were made in the decision 
process used to arrive at the marketing direction. 

1. Information requirements were developed on all ele
ments of the equation and projected for reasonableness 
before the decisions were made on premium goals. 

2. The process for developing and getting agreement on the 
direction was more logical and systematic. 

3. A more defensible explanation of the goals was estab
lished because each of the elements was covered as inter
related parts of the whole. Therefore, understanding 
and acceptance by other functions was improved. 

This caused a discipline in decision making that had not 
existed in the past. The end-product goals in any given year 
might not be very different but the understanding and disci
pline involved in the process of deciding on the goals must 
definitely enhance the management effectiveness. This would 
not have happened without the DSS. 

Integration of Decisions 

Last, let's cover integration of decision making. I guess 
better integration of decision making is a natural outgrowth of 
better information, more consistency in use of information; 
and better discipline in the decision process. But why does 
DSS cause better integration? 

The main reason is that the whole system is designed to 
achieve a specific objective. The attention to detail and the 
focus of the DSS on providing information for a specific deci
sion or series of decisions causes an integration of the parts 
into a meaningful whole. This is not to say manual or other 
systems don't do this, it is just to point out that DSS improves 
on the integration of information for decision making. 

There are innumerable examples of how a DSS eliminates 
small errors. Each error on its own is a small thing, but this 
gets back to consistency of definitions. Once a DSS is in place 
for the business' information hierarchy there are no longer 
inconsistencies in aggregations, and to get consistent aggre
gations there must be better integration of decisions. The 
parts of an organization are no longer independent parts; they 
are a subset of the total DSS, which includes overall goals, 
plans, definitions, parameters, equations, and so on. The end 
result is a better integration of the various parts of the or
ganization in making those decisions that contribute to 
achievement of the corporate goals. 

Illustrations 

A little more can be shown, in the way of example and 
illustrations, of the enhancements that a DSS can make to
ward the effectiveness of management. 

I have mentioned our strategic planning activities mostly in 
the previous examples. These improvements come primariliy 
in an area where there was not much activity in the past. This 
in many ways made improvements easier to introduce because 
nothing was being replaced. 

In our operational planning, however, this was not the case. 
Budgeting and annual planning had been around for years and 
in many ways were a security blanket that managers did not 
want to give up. 

The point of mentioning this difference is that the same 
forces for improvement are evident in the latter situation. 
When an old tool or friendly (mostly manual) system is re
placed, the potential exists for improvement in management 
effectiveness. When the DSS becomes available the improve
ments are so obvious that the enhancements to management 
effectiveness are forced or readily accepted by the demand for 
the system. 

We consider that we have now developed both a supply 
push (the strategic planning DSS) and a demand pull (the 
operational planning DSS). There are a few smaller projects 
that have been completed where the demand pull comes into 
play. 

1. We developed a reporting system for our commercial 
underwriting information in about 30 days; 

2. We developed a marketing growth model to test market 
options in about two days; 



3. We are constantly adding modules to our financial eval
uation model on demand (many times with a few days 
notice). 

Each of the DSS applications have the elements for manage
ment effectiveness enhancement through DSS. 

CONCLUSION 

The value of DSS to enhancement of management effec
tiveness comes about through the dynamics of the total or-

Focal Points for DSS Effectiveness 407 

ganization. When decisions are viewed from the perspective 
of the total organization there are many ways that individual 
management decisions are forced or motivated toward better 
development of information needs, consistency in using the 
information, discipline in following a well-structured decision 
process, and integration of decisions toward better individual 
contributions to the achievement of the corporate goals. 

DSS can take a lot of credit for enhancement of manage
ment effectiveness, not only because the system is so much 
more effective, but also because it allows the natural motiva
tion and dynamics of decision making to be more obvious, 
understandable, and acceptable. 





Information resource management for 
corporate decision support 

by WILLIAM H. GRUBER 
Research and Planning, Inc. 
Cambridge, Massachusetts 

and 

GEORGESONNEMANN 
Nationwide Insurance Company 
Columbus, Ohio 

ABSTRACT 

Decision support systems were a major force that ended the monopoly of informa
tion processing resources once held by the traditional corporate data processing 
function. In order to gain direct access to the data and models that the decision 
makers needed but could not get from data processing, users increasingly turned to 
the microprocessor and the use of timesharing from outside vendors. This created 
a proliferation of information technology to support management deCisions. During 
the very early history of this move toward decision support systems, the corporate 
data processing function remained focused on its initial mission of processing ac
counting transactions. 

This paper traces the next stage in the management of decision support systems, 
whereby both corporate data processing, or the information systems function, and 
the user share the responsibility for decision support as a team. This new integration 
of the information systems function and users provides an extraordinary improve
ment in the effectiveness of decision support via the sharing of data and modeling; 
the integration of decision makers' and corporate functions; and the teaming of 
information systems professionals knowledgeable in the technology with users who 
are experts in the management of the business. A case study demonstrates the 
effectiveness of this integration between information systems and the users and the 
management of corporate decision support services. 

409 





Information Resource Management for Corporate Decision Support 411 

PROLIFERATION OF INFORMATION RESOURCES 

During the last decade, there has been a proliferation of infor
mation technology to support management decisions. The 
field of data processing has evolved from one in which the 
primary focus was the processing of accounting transactions to 
one that focuses on support for management decisions and 
other kinds of professional and secretarial functions. This 
proliferation of information resources has resulted in a num
ber of new concepts and acronyms such as decision support 
systems (DSSs), management support systems (MSSs), execu
tive information systems (EISs), the information center, end
users, hybrids, executive information room, office technology 
and office automation (OT/OA), teleconferencing, graphics, 
micros, and the micro mainframe. 

Thus the power of the technology to support management 
decision making has improved at an extraordinary rate during 
the last decade. The proliferation of information resources to 
support management activity has been purchased at a huge 
expense by many companies. It has been largely uncontrolled 
in the vast majority of the companies with which we have 
worked. The management issues created by the proliferation 
of DSS activity are listed in Table I. 

TABLE I-Management issues in corporate decision support 
systems (DSSs) 

1. Management responsibility for the corporate decision support 
systems capability 

2. Adequacy of DSS by major corporate function/decision 
category 

3. Data adequacy/access/security 
4. Sharing of DSS resources 
5. Hardware/software resources 
6. Staff resources 
7. Security for DSS models 

INFORMATION RESOURCE MANAGEMENT 

It is now timely to focus on the role of information resource 
management (IRM) for corporate decision support. Out of 
the chaos that resulted from the proliferation of information 
technologies has emerged this concept of information re
source management. The primary mission of information 
resource management is the effective use of information re
sources. Information is today one of the largest categories of 
corporate assets. In fact, it can be said that information and 
people are the two most important kinds of corporate assets. 
In response to the extraordinary importance of information 

and the very large investments in information assets and infor
mation processing, leading companies have implemented in
formation resource management to achieve greater pro
ductivity and more effective use of information resources. The 
scope of the IRM function can be seen from the list of its 
responsibilities in Table II. 

TABLE II-Information systems management responsibilities 

1. Hardware 
2. Software 
3. Information-based company products 
4. Information-based customer relations 
5. Traditional application systems 
6. Technical staff 
7. Data and information management 
8. Telecommunications 
9. Office technology/office automation 

to. Corporate policies/procedures 
11. Micros 
12. Graphics 
13. Executive information room 
14. Information center 
15. Decision support systems 
16. Management support systems 

This transformation from traditional data processing to 
information resource management requires new roles for pro
fessionals who have been trained in data processing tech
nology.1 The information management function of the 1980's, 
in contrast to the ADP/EDP function of the 1950's and 1960's 
or the information systems function of the 1970's, proactively 
assists business managers in improving their effectiveness 
through improved use of information resource management
the decision support and management support roles of the 
modern corporate information management function. 

USING A DSS 

The initial history of the use of DSS is one that Peter Keen has 
called "cherry picking." Relatively simple problems were 
solved using inexpensive technology such as Apples and Visi
Calc. The more difficult management problems involving 
strong data architecture, sizeable databases, links to the cor
porate management information systems, and integration 
among several corporate functions were not attempted. In 
Figure 1 we present a more complete structure of a decision 
support system than was used in most of the early applications 
of DSS technology. In this view of DSS, the manager has a 



412 National Computer Conference, 1983 

E DSS 

MANAGER 

HISTORICAL 
RESULTS --~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~: ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~:: k ~ : ~ ~:: ~ ~~ > : <:: ~ 

ENVIRONMENT ~---..... 

Figure 1-Using a DSS 

direct link to a CRT terminal that provides links to databases, 
linkage to the external environment of the company, and 
high-level software supporting statistics and decision models. 
A decision made by the manager is sent to a monitoring 
system that in turn feeds back into the corporate database and 
also links to consequences in the external environment. 

The technology is now available to support the kind of DSS 
utiiization that is iiiustrated in Figure 1. We find in the better 
managed companies that there are now a number of powerful 
decision support systems that are making a fundamental 
change in the practice of management. These second
generation DSSs were implemented by teams of corporate 
information managers and the business managers. 

CASE EXAMPLE 

The experience of Nationwide Insurance Company in the im
plementation of decision support systems provides a useful 
case example for this evolutionary movement toward more 
effective management practices. Nationwide is similar to 
other companies in the financial services industry in that cor
porate management must respond to the highly volatile ex
ternal environment of deregulation and the entry of new com
petitors from brokerage and banking. Strategic planning has 
become a much more important management responsibility in 
the insurance industry, and it is now absolutely essential for 
insurance companies to have a strong information system to 
link the external environment to corporate strategic planning; 
this is then integrated with operational planning (budgeting) 
and the management information comparing actual experi
ence with budget. 

This cycle of the annual planning cycle implemented at 
Nationwide Insurance Company is diagrammed in Figure 2. 
In fact, the process of planning continues all year long, and 
work on the external environment is a management re
sponsibility that continues throughout the calendar year. 
However, at the start of the annual planning cycle in January, 
the results of analyses of the external environment become_ 

---------l.~ TIME IN ANNUAL PLANNING CYCLE 

Figure 2-DSSIMIS in the annual planning cycle 

inputs into strategic planning; the outputs of strategic plan
ning are key inputs for the operational planning that begins in 
June. This cycle continues on to the monitoring of the actual 
performance in the management information module, which, 
like the evaluation of the external environment, is a con
tinuing process throughout the calendar year. 

In order to control the proliferating use of decision support 
systems, Nationwide initiated a high-level modeling commit
tee with responsibility for the overall fostering and manage
ment of decision support systems. This committee was given 
the mission to authorize investments in the resources needed 
for decision support systems, such as hardware, software, and 
staff. The many issues involved, such as data collection, data
base security, the documentation and security of models, 
functional integration, and sharing of DSS resources were all 

I PRESIDENT's I 
STAFF 

I 
I 

PLANNING a TREASURERS 
MANAGEMENT REGIONAL AND MARKETING 

INFORMATION MANAGERS CONTROLLERS STAFF 
STAFF STAFF 

............................... 
ii:::~~~~:~:~:~~~::::: n--··CO·Rp·ORATE····n 

1,:;~~~g~~:"I,4-+;;~J;,~~~i:1,I[:~;:~ii 
.;:: .. : ... ~~T~~:.::: ;i jI:~ oP~~~~~~~L & :. 

.::::.:::.: .:::.:: .. : .. ::.. . MODELS .. 

:: STATE . . ..•. 

STRATEGIC 

. .. ::::::~~:~:~:~~:: ..... 

Figure 3-Long-range and strategic financial evaluation DSS 



Information Resource Management for Corporate Decision Support 413 

part of the mission of the Nationwide modeling committee. 
The contribution of this Nationwide committee can be seen 
from the structure of modeling used at Nationwide, which is 
illustrated in Figure 3. It can be seen that a significant number 
of Nationwide management functions are now supported by 
corporate modeling capabilities. These models are processed 
on hardware dedicated to modeling; the processing uses very 
effective software packages. There has been extensive edu
cation of professional staffs to support modeling, and a size
able number of business managers have also been trained in 
the utilization of corporate models. 

In the competitive jungle of the financial services industry 
in the 1980's, this kind of more effective management capabil
ity is clearly needed, and the Nationwide experience in rapidly 
moving forward with this kind of capability indicates that the 
technology is now available to provide needed management 
support. 

CONCLUSION 

We are now moving into an information era in which man
agers are supported in ways that were rarely attempted even 
a few years ago. The discontinuity in the external environment 
of business, the difficult economy, and the rapid progress of 
information technologies for management and decision sup-

port are all factors that have encouraged corporations to 
invest in this kind of support capability. 

The major change that has occurred in the utilization of 
decision support and management support capabilities during 
the last five years has been the acceptance in the better man
aged companies of a new role for information managers. In 
contrast to even five years ago, when business managers dis
regarded the skills of data processing experts and did their 
own thing in decision support, today in the better managed 
companies there is an impressive integration of information 
management and business management to achieve the more 
effective use of information resources in support of manage
ment decisions. The experience achieved in leading compa
nies has demonstrated the feasibility and effectiveness of this 
integrated strategy for using modern information resources. 
The experience of the last few years has been sufficiently 
impressive to justify a forecast of very rapid acceptance of 
information resource management for decision support and 
management support during the 1980's as companies improve 
in their ability to use modern information resources. 

REFERENCES 

1. Synnott, William R., and William H. Gruber. Information Recources Man
agement: Opportunities and Strategies for the 1980's. New York: John Wiley, 
1981. 





Developing a strategy profile for management 
support systems 

by GARY K. GULDEN and EEVELYN S. ARKUSH 
Index Systems, Inc. 
Cambridge, Massachusetts 

ABSTRACT 

In most business organizations today, a new era in the application of information
systems technology has been entered: The era of management support systems 
(MSS). In fact, there is much evidence to support the claim that management 
support systems (as distinct from conventional transaction processing or MIS sys
tems) is the fastest growing segment of the information systems portfolio. This 
paper explores the urgent need for MSS planning and presents a practical method
ology to approaching this very different planning problem. 

415 





THE EXPLOSIVE DEMAND FOR MANAGEMENT 
SUPPORT SYSTEMS 

In most business organizations today, a new era in the applica
tion of information-systems technology has been entered: The 
era of management support systems (MSS). In fact, there is 
much evidence to support the claim that management support 
systems (as distinct from conventional transaction processing 
or MIS Systems) is the fastest growing segment of the infor
mation systems portfolio. 

The pressures behind the explosive growth in demand for 
management support systems are severalfold: 

1. First, managing in the eighties presents more challenges 
to executives than ever before. The pace at which busi
ness is conducted and the speed with which the com
petitive and economic environment can change are ex
traordinary, even by the standard of 10 or 15 years ago. 
New and complex businesses hit the ground running at a 
scale unheard of even a decade or two ago. 

2. Managers in today's environment recognize that im
proved access to information regarding their market
place, and their own performance within it, are essential 
for success and may even represent sources of strategic 
gain. 

3. With the availability of fourth-generation MSS tools and 
powerful personal microcomputers, managers' frustra
tions over the failure of traditional (efficiency-oriented) 
systems to be able to respond to their effectiveness
oriented requirements are being offered a powerful and 
constructive outlet. 

4. Finally, demand for management support systems has 
been heightened by the fact that, in many organizations, 
the vast majority of information systems resources are 
being cornered in order to replace 10- or 15-year-old 
transaction-based systems-in many cases, the same sys
tems that promised at their inception, but never deliv
ered, valuable management information! 

THE PUSHERS AND THE CONTROLLERS 

In the face of this explosive demand growth, information
systems managers are exhibiting two very different kinds of 
behavior: Pushing and controlling. 

1. Those who are pushing correctly perceive that the de
mand for management support systems is strong, valid, 

Copyright © Index Systems, Inc., 1982. 

A Strategy for MSS 417 

and won't go away. Thus, they have taken the posture of 
aggressively providing and promoting the use of MSS 
technology. 

2. Those who are controlling correctly perceive that the 
explosive growth and demand in management support 
systems carries with it the unpleasant opportunity to 
learn all over again the uncomfortable lessons of the 
stages-of-growth problems they experienced over the 
last two decades. Thus, they have taken a posture that 
applies a go-slow attitude, coupled with a variety of stan
dards and rules for the purchase and use of MSS tech
nology in their organizations. 

The contrast is clear: Pushing organizations are characterized 
by lots of doing in the MSS area but not much managing; 
where controlling is the approach, there is lots of managing, 
but not much doing! What is most noteworthy, is that in 
neither case is there much overall planning going on any
where! 

Both the pushers and the controllers are responding to valid 
pressures and risks but are failing to recognize that doing and 
controlling are separate pieces of an overall process that starts 
with planning. (See the illustration below.) 

PLANNING DOING CONTROLLING 

PLANNING FOR MSS? 

In the world of conventional transaction processing, oper
ational, or management information systems, managers in
creasingly devote very substantial effort to the development of 
comprehensive long- and short-range systems plans. But prac
tically no one makes this same sort of effort for MSS planning! 

For most organizations, planning for MSS is not a current 
pressing issue principally because MSS activity and end-user 
computing typically represent a small proportion of present 
information-systems expenditures and because the very na
ture of MSS (its end-user orientation) does not produce much 
contention for liS staff resources. MSS hence generates no 
real pressure for the rationing that is an objective of many 
systems plans. 

But the growth rate of MSS and end-user computing 
activity--once it begins in an organization-is extremely 
rapid, aided and abetted by a growing supply of "friendly" 
tools available as mainframe packages on inexpensive person
al computers or on outside timesharing services. If one looks 
ahead, it is not difficult to see the day approaching when, in 
many organizations, management support systems activity 
and its attendant end-user computing will represent a clear 



418 National Computer Conference, 1983 

majority of information-systems expenditure and usage. Even 
today there are a few information systems/resources managers 
who have already allowed this sort of growth to occur in a 
poorly planned fashion and, as a consequence, have either 
had their management clamp a tight lid on their budgets or 
have seen the MSS/end-user area taken over entirely by an
other part of the organization. 

The point is, it is essential to have strategies and plans for 
MSS, and the time to get started on them is now, while there 
is some hope of keeping at least a half-step ahead of the rising 
water. 

THE ELEMENTS OF AN MSS STRATEGY 

Because MSS and end-user computing are so radically differ
ent from traditional transaction or MIS systems, it is no sur
prise that the dimensions of MSS strategies and plans look 
different also. In developing an MSS strategy, it appears that 
there are five interrelated strategy elements or areas in which 
one must make some choices of direction. They are as follows: 

1. Marketing-Who are the customers and how do I reach 
them? 

2. Products-What do the customers need? 
3. Customer support-What is our approach to delivering 

and servicing our "products?" 
4. Delivery technology-What type of technical environ

ment is to be employed? 
5. Management/policy-What are the rules that need to be 

in place to provide appropriate management control? 

For each of the strategy elements, there are one or more sets 
of ranges or spectra of possible strategic positions, as shown 
below. (Others may also occur to you as you think through 
your own situation.) 

Marketing 

An MSS marketing strategy can be either proactive (with an 
active marketing program to attract important new custom
ers) or reactive (providing support for those who ask). The 
spectrum would thus look like this: 

PROACTIVE REACTIVE 

The hierarchical target markets, or the potential customers 
for MSS, tend to fall into three types: 

1. Operational decision makers who may require support 
for routine decisions, as in scheduling or purchasing ac
tivities, for example. 

2. Analytical staff who are providing staff support to exec
utives. 

3. Executive decisionmakers who prefer or require support 
tools for their personal use in managing and decision
making. 

The spectrum is consequently 

OPERATIONAL 
DECISIOOMAKERS 

ANALYTICAL 
STAFF 

EXECUTIVE 
DEC IS I ONMAKERS 

and one's MSS strategy needs to recognize the market or 
markets that are presently being served and that will be served 
in the future. Additional spectra for target markets may in
clude functional areas (i.e., marketing, finance, etc.) and the 
organizational areas (corporate, division, subsidiary). 

Please note that the spectrum device proposed here is in
tended only to emphasize a range of possibilities but not an 
implied direction. Moreover, one's strategy may be at a point 
on the spectrum, a series of points, or within a band on the 
spectrum. 

Products 

The strategy spectrum for products can be depicted as a 
range from highly-focused, single-purpose MSS applications 
at one end, to extensive general-purpose data-plus-software
tools environments at the other. 

SINGLE
PURPOSE 
MSS 

Customer Support 

GENERALIZED 
DATA & TOOLS 

MSS FACILITIES 

There are two strategy spectra here, one dealing with the 
nature of the support and the other with its organizational 
location. 

With respect to the nature of support, the spectrum ranges 
from a cadre of specialists who are proficient in the technology 
and perform all the applications work themselves (MSS high 
priests), to personnel who view their roles as teachers and 
coaches of end users, to people who provide assistance over 
the telephone (the hotline) and perform no applications work 
whatever. 

MSS 
HIGH 
PRIESTS 

COACHES HOTLINE 

Location of the support may be within the information
systems organization, in a separate group matrixed to liS and 
user organizations, or in one or more user organizations. 

l/S SEPARATE 
(MATRIXED) 

USER 

The information-center concept is a user-support concept 
that addresses both the type and location of the support and 
frequently addresses the hardware issue. 

Delivery Technology 

There are two strategy spectra here concerning the variety 
and location of the hardware: 



CENTRALIZED 
TIMESHARING 

SHARED 
HARrMARE 

HYBRID 

Management/Policy Groundrules 

STANDALONE 
PERSONAL COMPUTER 

DEDICATED MSS 
HARDWARE 

There are a variety of possible strategy spectra in this area. 
The major decision for each depends on the degree of disci
pline and control that is to be exercised. Management policies 
and procedures that can be addressed using the spectra 
include: 

1. Data administration 
2. Security 
3. Development and documentation life cycles 
4. Eligibility (application screening) (To separate out ap

plications that may end up as production transaction
based systems.) 

5. Cost justification 
6. Chargeout 

The preceding discussion of strategy spectra may convey, by 
its brevity, that you should simply sit down and begin to 
identify the points or bands on each spectrum where you want 

TARGET 
MARKET 

OPERATIONAL 
DECISIONMAKERS 

ANALYTICAL 
STAFF 

EXECUTIVE 
DECISIONMAKERS 

PRODUCTS I ~S~rn~G~L~E-~P~UR=P~O~S=E----------------------G-E-N-ERAL---IZ-E-D~ 

CUSTOMER 
SUPPORT 

DELIVERY 
TECHNOLOGY 

MANAGEMENT 
POLICY 
GROUNDRULES 

MSS MSS FACILITIES 

HIGH 
PRIESTS 
I 
WITHIN 

I/S 

SPECIALIZED 
TECHNICIAN'S 

TOOLS 
I 
CENTRALIZED 
TIMESHARING 
I 

SHARED 
HARDWARE 

APPLICATION-BASED 
DATA ADMINISTRATION 
I 
APPLICATION-BASED 

SECURITY 

TRADITIONAL 
DEVELOPMENT 
LIFECYCLE & 

DOCUMENTATION 
I 

FORMAL 
APPLICATIONS 
SCREENING & 
JUSTIFICATION 
I 
FULL RECOVERY 

CHARGEOUT 

COACHES 

MATRIXED 

HYBRID 

HOTLINE 

WITHIN 
USER ORG. 

GENERALIZED 
END-USER 

TOOLS 

STANDALONE 
PERSONAL COMPUTER 

I 
DEDICATED 

MSS HARDWARE 

CENTRAL I ZED 
DATA ADMINISTRATION 

I 
FORMAL 

SECURITY 
SYSTEM 

I 
FREE-FORM 

USER DEFINED 
STANDARDS 

LAISSEZ 
FAIRB 

COMMON 
"FREE" 
UTILITY 

Figure I-MSS strategy-proftle worksheet 

A Strategy for MSS 419 

your strategy to be. Nothing could be farther from the truth. 
Each decision on strategic positioning should be made after 
careful fact gathering and thoughtful analysis. What can be 
done fairly quickly, however, is to use the spectra as a tool to 
record where you stand today with respect to each strategy 
element. That can be a very useful initial diagnostic and de
scriptive exercise. 

An MSS Strategy Profile 

Either as part of an initial diagnostic process, or once you 
have drawn some preliminary conclusions about the individu
ai spectrum point or points at which you wish to direct your 
MSS strategies, it is helpful to have a way to visualize the 
collective profile of those individual decisions. Arraying the 
various strategy elements and their spectra on a single sheet of 
paper can aid the checking of completeness and internal con
sistency (see Figure 1). Clearly there is no one right pattern or 
profile of points or bands, but an unusually skewed or scat
tered pattern may suggest the value of some additional exam
ination and thought. 

Once the strategic destinations, or strategy profile is devel
oped, a plan can be developed to reach this destination. Fig
ures 2 and 3 are two examples of profiles drawn from actual 
Index client situations, accompanied by some interpretive 
comments. 

TARGET 
MARKET 

PRODUCTS 

CUSTOMER 
SUPPORT 

DELIVERY 
TECHNOLOGY 

MANAGEMENT 
POLICY 

OPERATIONAL 
DEC!S!ON~_"'!<.ERS 

I ,. 
SINGLE-PURPOSE 

MSS 

HIGH 
PRIESTS 
I I 
WITHIN 

I/S 

I T 
SPECIALIZED 
TECHNICIAN'S 

TOOLS 
I 

CENTRALIZED 
TIMESHARING 

I I 
SHARED 

HARDWARE 

ANALYTICAL 
STAFF 

COACHES 

MATRIXED 

HYBRID 

EXECUTIVE 
DECISIONMAKERS 

GENERALIZED 
KSS FACILITIES 

HOTLINE 

WITHIN 
USER ORG. 

GENE RAL I ZED 
END-USER 

TOOLS 

STANDALONE 
PERSONAL COMPUTER 

I 
DEDICATED 

MSS HARDWARE 

GROUNDRULES I I 
~AP~P~L~IC~A~T~I~ON~-~B7A~SE~D~--------------~C~E=NT~RAL~~IZ=E=D--~ 
DATA ADMINISTRATION DATA ADMINISTRATION 
I I I 
APPL ICATION-BASED 

SECURITY 

TRADITIONAL 
DEVELOPMENT 
LIFECYCLE & 

rcUMENTATION 

FORMAL 
APPLICATIONS 
SCREENING & 
JUSTIFICATION 
I I 
FULL REOOVERY 

CIi.UGEOUT 

FORMAL 
SECURITY 

SYSTEM 
I I 

FREE-FORM 
USER DEFINED 

STANDARDS 

T I 
LAISSEZ 

FAlRE 

Figure 2-MSS strategy profile of company A 



420 National Computer Conference, 1983 

TARGET I MARKET 
OPERATIONAL ANALYTICAL EXECUTIVE 

DECISIONMAKERS STAFF DECISIONMAKERS 

PRODUCTS I 
SINGLE-PURPOSE GENERALIZED 

MSS MSS FACILITIES 

CUSTOMER 
SUPPORT I T I 

HIGH COACHES HOTLINE 

[RIES1S I 
WITHIN MATRIXED WITHIN 

I/S USER ORG. 

DELIVERY 
I I TECHNOLOGY 
SPECIALIZED GENERALI ZED 
TECHNICIAN'S END-USER 

TOOLS TOOLS 

I I 
CENTRALIZED HYBRID STANDALONE 
TIMESHARING PERSONAL COMPUTER 

I I I 
SHARED DEDICATED 

HARDWARE MSS HARDWARE 

MANAGEMENT 
POLICY 
GROUNDRULES , 

APPLICATION-BASED CENTRALIZED 
DATA ADMINISTRATION DATA ADMINISTRATION 

I I 
APPLICATION-BASED FORMAL 

SECURITY SECURITY 
SYSTEM 

I 
TRADITIONAL FREE-FORM 
DEVELOPMENT USER DEFINED 
LIFECYCLE & STANDARDS 

DOCUMENTATION 
I I I 

FORMAL LAISSEZ 
APPLICATIONS FAIRE 
SCREENING & 

JUSTIFICATION 
I ! I 
FULL RECOVERY COM!'.DN 

CHARGE OUT -FREE-

UTILITY 

Figure 3-MSS strategy profile of company B 

Company A 

As shown in Figure 2, the approach that Company A is 
taking is fairly clear. The MSS applications are highly focused 
and performed by a group of specialists using specialist's tools 
(a highly-enhanced APL-based tool in this particular case). 
The company is trying to serve a broad array of customers, 
however, and that contrasts fairly sharply with its more nar
row choices in the other elements. This suggests there may be 
some potential pressures for change-and in the actual situ
ation there are. Customers at all levels are becoming increas
ingly frustrated at having to wait their turn and to compete for 
the attention of one of the MSS specialists. Moreover, the 
customers are concerned that they are not developing any of 
their own MSS capabilities and that they lack the sorts of 
end-user tools that might allow them to do so. 

Company B 

As shown in Figure 3, Company B has taken the approach 
of providing a powerful tools-plus-data environment aimed at 

providing support primarily for staff personnel. The delivery 
environment offers a broad range of capabilities, and the 
analysts use it very heavily (volume is growing at about 50% 
per year and now accounts for about 25%, which is 30 percent 
of computer usage in the entire company). There are several 
pressures for change, however: 

1. Executive-level personnel are beginning to have diffi
culty identifying what benefit they have received from 
their growing MSS timesharing bills. Some are con
cerned that an expensive "analysts sandbox" has been 
created, and they are clamping down on computer-usage 
budgets in response. 

2. The people who run the central computer utility are 
forecasting large, expensive capacity additions but are 
also being questioned harder about where the benefit is. 

3. Operational decisionmakers are feeling poorly support
ed, because most of the analytical work is in the planning 
arena. 

The pressures for change in this case appear to boil down to 
the need for diversifying Company B's portfolio of MSS cus
tomers and products-particularly to find ways to provide 
specific high-value support to operating and executive levels. 

There are two additional points to make on the use of the 
strategy-profile technique. 

1. The strategy profile worksheet is intended to be flexible 
and to be tailored to a given organization. Hence the 
precise definition and number of possible strategy spec
tra are not fixed and should be altered as appropriate. 

2. The strategy profile developed should be used to create 
a plan for reaching the strategic destinations envisioned. 
It is also an excellent vehicle to communicate the or
ganization's position on management support systems. 

SUMMARY 

The central messages of this paper are 

1. Management can and should do planning for MSS and 
end-user computing. 

2. There are at least five major strategy elements for which 
directional decisions need to be made. 

3. It is important to examine these strategy directions in 
relation to each other to check for internal consistency 
and to anticipate where pressures for subsequent change 
are likely to occur. 

4. The strategy-profile technique is one way to visualize 
your MSS strategy and should be used both diagnostic
ally (to look at what you are presently doing-your de 
facto strategy) and prospectively (to indicate intended 
directions or shifts in MSS strategies). 



The DSS development system 

by ROBERT H. BONCZEK 
Purdue University 
West Lafayette, Indiana 

NASIR GHIASEDDIN 
University of Notre Dame 
Notre Dame, Indiana 

CLYDE W. HOLSAPPLE 
University of Illinois 
Champaign, Illinois 

and 

ANDREW B. WHINSTON 
Purdue University 
West Lafayette, Indiana 

ABSTRACT 

As decision support systems become more commonplace, the demand for auto
matic and semiautomatic DSS development systems increases proportionately. 
Such systems provide a set of tools that guide the construction of models in response 
to a user's query. This paper describes a set of such tools that provide capabilities 
for analysis, design, module management, and report and graphics generation. 

421 





INTRODUCTION 

In recent years, the need for increased productivity in mana
gerial decision-making activities has beenJelt both in private 
and in public sectors. This need is mainly motivated by the 
competitive nature of the business world, which calls for more 
and more efficiency as an essential ingredient for business 
survival. Decision support systems (DSS) have been shown to 
increase management's effectiveness and productivity in han
dling decision problems. The potential benefits of decision 
support systems have created an ever-increasing need for 
these systems. This need has accelerated the efforts to build 
more and more such systems. As the potential benefits of 
decision support systems are realized by more decision mak
ers in various fields, the need for such systems will increase 
even more. In 1978 only 20% of all applications developed 
were for management control, planning, and analysis (which 
roughly falls into the area of DSS), while 80% were oper
ational. However, since then this breakdown has changed 
dramatically and it is estimated! that by 1983, 55% of the new 
programs will be written for management control, planning, 
and analysis, and only 45% of the new applications will be 
operational. The foregoing discussion suggests that there is a 
serious need for many new decision support systems to aid 
decision makers in various fields. 

Although the computer industry now has some 35 years of 
experience, the process of software development is still slow, 
difficult, costly, and error-prone. The process of DSS devel
opment is no exception to this and perhaps it is even more 
difficult than the development of many other systems. This is 
due to the following reasons: (1) many problems that the DSS 
is intended to help solve cannot by nature be prespecified, (2) 
the problem itself or the user's perception and/or conception 
of the problem will change over time, (3) often the user does 
not know his/her true needs, and (4) the DSS often should 
support various needs of many users. That is, it should sup
port the solving of many problems through various decision
making styles and in many different problem situations. 

The need to find more productive ways of software devel
opment in general and application software development in 
particular is discussed in2 in some detail. We can identify four 
basic approaches that yield higher productivity in the process 
of software development. These are: structured design and 
programming, higher-level languages and special tools, the 
use of prefabricated pieces in construction of a new system, 
and automatic program generation. The complete automation 
of the software development process is yet a few years away, 
but it is certainly very desirable to move closer and closer to 
this ultimate goal. It seems reasonable to assume that the 
ultimate goal of complete automation will not be reached 

The DSS Development System 423 

through one revolutionary step; rather it will happen through 
many evolutionary steps. Before complete automation is pos
sible, many specialized tools must be developed to facilitate 
the process of software development through a semiautomatic 
process. 

If we accept the hypothesis that many new decision support 
systems will be needed in the near future, it seems reasonable 
to focus all of our efforts on building a facility that will enable 
us to develop such systems with great efficiency, rather than 
on building individual systems in the traditional ways. This is 
the direction that we would like to follow. 

This paper discusses the design of an environment for the 
development of decision support systems. We call this envi
ronment the decision support system development system or 
DSSDS. The system we propose will be a semiautomatic sys
tem within which a collection of highly specialized tools will be 
used to manufacture the individual components of a DSS from 
prefabricated pieces, from scratch, or from a combination of 
these two techniques. The individual components then could 
be assembled to create an integrated system. Moreover, the 
system would be capable of supporting the product (i.e., the 
developed DSS) throughout its entire life cycle. 

DSS DEVELOPMENT PROCESS 

Development of a decision support system requires all phases 
of a systems' life cycle; however, the iterations between vari
ous phases of the life cycle happen at a much faster rate. In 
other words, since the problem space for a DSS is continually 
changing, modifications and extensions of a DSS should be 
regarded as a norm rather than as an exception. This certainly 
imposes a serious constraint on the development process of a 
DSS. To deal with this problem we propose the following 
characteristics as essential features of any DSS development 
system (DSSDS) that is intended for the production of a suc
cessful decision support system. 

1. The DSSDS should support quick production of decision 
support systems. 

2. The decision support systems should be produced with 
inherent features of modifiability as well as extensibility. 

3. The DSSDS should support rapid modification and 
production of extensions to the DSS. 

The imposition of the first requirement on the DSSDS stems 
from a more profound reason than just the productivity gains. 
Since the problem itself and the user's conception and/or per
ception of the problem are continually changing, the DSS 
should be produced rather quickly, otherwise it will be obso-



424 National Computer Conference, 1983 

lete as soon as the development process is finished. The sec
ond requirement simply states that the DSS should be built in 
such a way that it can be expanded (ideally indefinitely). The 
third requirement states that the rate of implementation of 
modifications and extensions should be faster than the rate of 
generation of needs for new modification, otherwise the sys
tem will never keep up with needs of its users and becomes 
obsolete very soon. 

It is 'obvious that these requirements cannot be satisfied 
through traditional system development processes. There is a 
serious need for a more powerful facility to help satisfy these 
requirements. The design of such a facility will be discussed in 
later sections, but before that we need to talk about another 
very important issue in the system development process, 
which is prototyping. 

PROTOTYPING 

The key to the development of a successful system is the 
correct understanding of the problem by the developer. The 
understanding of the problem takes place in the analysis phase 
of the system's life cycle. At the end of this phase a formal 
specification of requirements is written by the analyst; which 
must then be reviewed and approved by the client before the 
design can begin. The importance of the requirements specifi
cation stems from the fact that experience has shown that 
errors in requirements specification are usually the last to be 
detected and the most costly to correct. 3

,4 The importance of 
this stage in the system's life cycle has been well understood 
from the early years in the field of systems analysis and design. 
To overcome the problems in requirements specification, var
ious methods and tools have been developed to assist the 
developer in this stage of the development. The system spec
ification tools such as problem statement language (PSL)5 and 
requirements specification language (RSL)6 will help the 
analyst in checking the consistency and clarity of the 
specification. 

The main problem with these techniques is that they rely 
heavily on the user to verify the accuracy and completeness of 
the problem specification by looking at the formal specifica
tion of the requirements. It is often difficult for the users to 
visualize what they see on paper as solving their problems. 
Besides, many users, especially the DSS users, do not have a 
clear understanding of their true needs prior to actual use of 
the system. 

A second group of tools, developed with the realization of 
the potential difficulty of the users in verifying a printed spec
ification of the requirements, provides graphical means to 
overcome this problem. Among these tools are structured 
analysis and design technique (SADT) 7 and SAMM. 8 Graph
ical representations are usually better understood by the user, 
provide a better picture of the system the way it has been 
understood by the developer, and enhance productive feed
backs. However, the user never becomes certain whether a 
system will satisfy his/her true needs until he/she actually 
starts using it. 

The understanding of the true needs of the user by the 
developer and the user hirrJherself can be greatly enhanced 

through the development of a prototype of the proposed sys
tem. Using a prototype the user can more accurately examine 
whether the right problem is being solved and also if he/she 
has been understood correctly by the developer. That is, the 
answer to the two ,ital questions of the success of the system 
are provided with the most accuracy possible. The user, by 
exercising the prototype, can provide vital feedbacks to the 
developer. These feedbacks can be used by the developer to 
finalize the requirements specification. By developing a pro
totype the developer also will experience the difficulties and 
potential problems in the development process. 

Thus it is clear that a prototype is a valuable learning vehicle 
both to the user and to the developer. In practice, however, 
prototypes are not built very often because of their high cost 
of development and also because of the additional time re
quired for their development. 

These problems of prototyping could be overcome through 
the use of a set of powerful tools that facilitate a relatively 
cheap and speedy development of a prototype. * 

The DSS development system to be discussed in the next 
section will, among other things, provide such tools. Note that 
the emphasis in prototyping should not be on producing a very 
efficient system; rather, the emphasis should be on rapid 
production of a prototype that accurately reflects the require
ments of the proposed system as perceived by the developer. 
A word of caution concerning the development of prototypes 
is in order: It is often necessary to make changes to the proto
type in order to observe the user's reactions to modified ver
sions. These changes should be stopped the moment no new 
knowledge can be learned from modification, or the cost of 
modification outweighs the benefits gained from it. In any 
event, the temptation to carry on the development of the 
prototype in order to turn it into the delivered system should 
be strongly resisted. 

Prototyping in no way conflicts with the use of other 
systems-analysis tools and techniques. In fact, we propose 
that tools should be provided to the developer to help capture 
pertinent information from the user. This information should 
be stored in an organized way in a database. Automatic check
ing of the data's consistency and completeness should be per
formed, and finally, tools should be provided to the designer 
so that he/she can retrieve the data pertinent to each oper
ation both quickly and in a convenient format. The developer 
can use this information to build a prototype with an accept
able level of accuracy for examination by the user. The re
quirements specification is finalized when the user is con
vinced the proposed system will indeed satisfy his/her needs. 

THE DSS DEVELOPMENT SYSTEM 

The DSS development system (DSSDS) is an environment for 
the development of decision support systems. The environ
ment consists of highly specialized tools to be used by the DSS 

* A good example of an existing system for rapid prototyping is Knowledge
Man,9 which is available inexpensively on microcomputers. KnowledgeMan has 
facilities for data management, ad hoc inquiry, statistical analyses, spreadsheet 
analysis, customized 110 screen forms, report management, and model build
ing. Here, we are proposing an eVen more powerful set of tools. 



developer throughout the development process to facilitate 
the development of a successful system. The DSSDS will in
crease the productivity of the developer and help him/her to 
produce with a moderate cost a DSS based on the true needs 
of the user. The philosophy of the DSSDS is based on two 
very simple, but also very important concepts: the use of 
highly automated tools throughout the development process 
and the use of prefabricated pieces in the manufacturing of a 
whole piece whenever it is possible. The first concept in
creases the productivity of the developer in the same wayan 
electric saw improves the productivity of a carpenter using a 
hand saw. The second concept increases the productivity of 
the developer analogous to the way a prefabricated wall in
creases the productivity of the carpenter building a house. 

Although many of the tools that DSSDS provides could be 
used in the development of any application system, our em
phasis would be towards tools that are helpful in the devel
opment of a DSS in particular. By specializing we expect to 
gain efficiency in the development process because there will 
be a real need in the future for the development of many 
decision support systems. Design of any large system for the 
first time is a major task. To insure the success of the system, 
it is not recommended that a gigantic system be designed from 
the beginning, in the expectation of supporting the develop
ment of every detail of the system. Rather, in the design of a 
DSSDS we follow the evolving characteristic. That is, we 
think that a nucleus DSSDS should first be designed and 
developed to support the essential needs of the developer. 
However, the system should be extensible so other features 
can be added to it when the need for them becomes apparent. 
Nevertheless, the DSSDS should have the foilowing 
characteristics: 

1. The DSSDS should support the development of a suc
cessful DSS. 

2. The DSSDS should support the development process 
throughout the entire life cycle of the system, that is, it 
should support capturing of the requirements from the 
user, development of the prototypes, design and imple
mentation of the delivered system, testing, and finally 
the maintenance of the DSS. 

3. The DSSDS should support the development of differ
ent decision support systems in different programming 
languages and possibly for different target computers. 

4. Various tools of the DSSDS should be relatively easy to 
use and independently available. 

5. The DSSDS should be capable of evolving over time. 

In this context the independence of various tools implies only 
the functional independency; however, coordination of vari
ous tools is essential. The evolving feature of DSSDS here 
means that the system should allow new tools to be added to 
the system as well as allow old tools to be improved or re
placed by more advanced tools. 

AN OVERVIEW OF THE DSSDS ENVIRONMENT 

The DSSDS environment can be thought of as a workshop 
with many tools and prefabricated parts that the developer 

The DSS Development System 425 

can use throughout the process of building a new DSS or to 
upgrade or repair an existing DSS. The environment of the 
DSSDS is shown in Figure 1. The developer is provided with 
a development language (DL), which is basically a powerful 
command language. Modules can be written in command lan
guage or in any other programming languages such as 
FORTRAN, COBOL, or PASCAL. By module we mean any 
set of executable lines of code that has a name and is written 
to do a certain job. A module can be used independently, or 
it can be used in conjunction with other modules to build a 
more complex module. A module can do computation, per
form read and write operations, transform data, or perform 
any other computer operations in order to achieve a certain 
objective. 

In addition to the development language, a number of other 
facilities are available to the developer. These are systems 
analysis and design facility (SAD F) , a model management 
language (MML), a screen management language (SML), a 
source code manager (SCM), a report generator (RG) , a 
graphics generator (GG), and a request handler (RH). Each 
of these facilities can be used through the command language 
or independently. 

The Development Language (DL) 

The development language is a command language. Its 
function is to provide a host to other facilities, as well as to 
provide a collection of useful functions to be used by the 
developer. Individual commands or procedures written in 
MML, RG, GG, and so on can be invoked from the DL. The 
command language provides interface between modules writ
ten in various facility languages (i.e., MML, RG, GG, etc.) as 
well as modules written in programming languages like 
FORTRAN, COBOL, PASCAL, and so on. In this way the 
developer can write a program whose components are written 
in different programming languages and/or use various devel
opment facilities. For example, to create a plot of the pre
dicted sale for years YR1 to YR2, the following program can 
be written: 

RETRIEVE (SALE, YR, RIO) 
CALL REGRESS (SALE, YR, COEF) 
CR FYR (10) = YRI TO YR2 
CALL FORCAST (COEF, FSALE, FYR) 
GG. PLOT (FSALE, FYR) 

The first line is intended to retrieve the sale values with the 
corresponding year values (YR) , for ten most recent years 
(RIO). The second line will run a regression on sale as a 
dependent variable against YR. Then, variable FYR is de
fined to be an array with values YRI to YR2. The fourth line 
runs a forecasting model using the coefficients produced in 
line two. Finally, line five invokes the command PLOT from 
a graphics generator (GG) to plot the predicted sale against 
the future years. 

By being able to create a program whose components are 
written in different languages, we benefit in two ways: First, 
each component can exist in its most efficient form. That is, 



426 National Computer Conference, 1983 

Developer 
D 
E 
V 
E 
L 
a 
p 

M 
E 

0 N 
T 

L 
(DL) 

• A • N • G 
U 
A 
G 

Computer 1 • • • Computer N 

Figure I-An overview of the DSS development system (DSSDS) 

each module can be written in a language that is most suitable 
to its function. Second, more productivity can be gained by 
using many existing modules currently available in different 
programming languages. The purpose of this paper is not to 
discuss the syntax or semantics of the command language; 
rather it is to present the concept of such a language. A 
sample of some other commands is shown in Figure 2. 

Systems Analysis and Design Facility (SADF) 

Development of a DSS, like any other system, starts with 
analysis. The aim of the systems analysis phase is to gather 

enough information about the needs and operations of the 
system so that any qualified data-processing professional will 
by reviewing this information be able to understand what the 
needs and requirements of the new system are and what it is 
supposed to do. The purpose of the systems analysis and 
design facility (SADF) is to help solicit pertinent information 
from the user, to store and organize this information in a 
database, and to check the consistency of the information and 
make it available to the developer in a usable form. 

Development of any nontrivial information system gener
ally requires the participation of many people. One problem 
facing the development of such systems is the documenting of 



CREATE x 

STORE x 

SAVE 

RECREATE 

EXECUTE x, (C = Comp, 
I = data, 0 = y) 

EXTRACT x, y, type 

RETRIEVE (x,y,z, ••• ,pi) 

CR x(m) i,j,k ••• 

CR x(m) i to j 

CR x(m,n) ill.iI2. 
••• ,imn 

IF (exp) command 

00 WHILE (exp) 

end 

DO FOR i = j,k 

end 

The DSS Development System 427 

Create a file and call it x; if x is not 
present a working file is created. 

Store file x. The system will prompt for 
the location of the file and security 
feature. The default for x is the current 
working file. 

The system will save the entire work of the 
session as it is, so it can be continued at 
a later time. 

The system will recreate the working 
environment as it was left off in the last 
session. 

The system will send module x to computer 
comp to be executed using file "data" as 
input file, and sending the output to file 
y. Defaults are the main frame computer and 
terminal input/output respectively. 

Extract file x and place it on file y. Type 
can assume values M or D for module and 
data. If system is unable to find the 
location of x, prompts for help. 

Retrieve i instances of variables x, y, z, 
etc. P = R (recent), F (first), or A (all). 

Create a vector of length m and initialize 
its values to i, j, k, etc. 

Create a vector of length m and initialize 
its elements to values from i to j. 

Create a table and initialize its values row 
by row to ill, ••• ,imn• If no values are 
given the table is created but is not 
initialized. 

Conditional execution of a command. 

Looping while "exp" is true. 

Looping 

Figure 2-A sample of features of the development language 

the important communications among these participants so 
that at each point in time it is clear what decisions have been 
made in the handling of each component ofthe system. SADF 
will store these communications in a network database and 
will relate them to the originator of the comment as well as to 
the component about which the comment is issued (see Figure 
3.) This information is available to all participants in the de
velopment process and can be accessed by simple commands 
or queries. 

In the course of system development, some of the necessary 
information for the formulation of system requirements can 
be captured from existing systems or existing documents, but 
the ultimate source of the information is the user. When de
veloping a DSS, it is very unlikely, because of the newness of 
the field, that an old computer-based DSS will be in place 
before the development of a new one. Therefore, the user 
remains the only reliable source of information. However, 
different users have different needs and viewpoints that some-



428 National Computer Conference, 1983 

DEVELOPER Manage PROJECT 

SUBSYSTEM Branch 

tI) 

c: 
OQ 
OQ 
I'D 
rn I"t 

DETAIL 

~ ..... 
< ..... 
0-
I'D 

USER 

Q 
I'D 
=' I'D 
I"i 
Ib ..----------.I"t 

DATA BASE 
RECORD TYPE 

I'D 

Figure 3-Extended network logical structure of the SADF database 

times are in conflict. In any case, all viewpoints should be 
heard and all reasonable needs should be accounted for, ac
cording to some priority list. SADF stores this information in 
an extended network database10 along with other information 
pertaining to the analysis and design of the DSS. 

Part of the requirements could be obtained from the user 
through a program that would interview the user in a con
versational mode through an interactive terminal. This could 
be easily accomplished by a questionnaire designed especially 
for solicitation of information from the user; however, instead 
of a human interviewer, the computer can be programmed to 
conduct the interview through an interactive terminal. Ques
tions will be presented to the user, and answers will be ob
tained and stored in a database. After interviewing all users, 
a summary report will be produced and the results stored 
internally so that the report can be viewed by the analysts, 
designers, programmers, and so on. An automated interview 
usually is not sufficient to capture all requirements; however, 

it can help the analyst by revealing the problem areas re
quiring more extensive study. In any event, all obtained infor
mation will be stored in an extended network database (Fig
ure 3). This method of storing the information facilitates the 
effective use of the information and provides an excellent 
means of documentation. A detailed discussion of SADF ap
pears in Reference 2. 

MODULE MANAGEMENT 

One way to achieve high productivity in the process of soft
ware development is to use prefabricated pieces in the con
struction of a new system. The use of preprogrammed mod
ules in the manufacturing of a new system not only increases 
the productivity of the software development process, but also 
increases the opportunity for producing high-quality software. 
Production of higher-quality software is possible in two ways: 



First, the frequently used modules can be fine tuned to per
form very efficiently. That is, these modules can be written in 
assembly language or they can be written by highly skilled 
programmers. Second, since preprogrammed modules pre
sumably have been in use in other systems and environments 
they have been perfected. Also, the performance of these 
modules has been observed in actual practice, so their 
strengths and weaknesses are better known. The developer is 
therefore building hislher system with a better-known mate
rial so it is expected that a better system will be produced. In 
practice, however, the use of prefabricated pieces in the devel
opment of a new system is negligible, unless the same person 
is developing a similar system. The main reasons for not using 
the product of previous efforts in the development of a new 
system can be classified in the following categories: 

1. Inflexible design-The module does not directly fit the 
current need, and inflexible design does not permit easy 
modification of the module. 

2. Different programming language-The module is writ
ten in a different programming language with no inter
face to the language used for the system development. 

3. Machine dependence-The module is written for a par
ticular machine and cannot be used on other machines. 

4. No organized information about the existence of the 
module exists-The modules are scattered in various 
places (e.g., files, tapes, computer cards, etc.). No one 
knows about their existence or there is no convenient 
way of getting information about them. 

5. Lack of documentation-The existence of the module is 
known, but there is lack of documentation. The author 
is either unknown or is no longer with the organization, 
therefore, no one is sure how to use the module. 

6. Lack of information about reliability of the module
The developer simply cannot trust someone else's prod
uct without having some evidence about the reliability of 
the product. 

7. Lack of performance data about the module-There is 
no evidence to indicate how the module performs in 
practice. 

If we are able to find a solution to these problems then we 
can expect to produce quality software with high efficiency 
and with reasonable cost. 

The first problem calls for flexible design. Flexible design 
under the DSSDS is possible. Modification of a module 
through a source code manager (SCM) is also greatly facili
tated. The second problem is solved under the DSSDS devel
opment language (DL) because DL provides interface to 
several programming languages, and any program written in 
DL can call modules of different programming languages. The 
third problem is less severe because most of the programs 
written in high-level languages are portable. There are several 
ways that this problem can be solved. If there is a complete 
program it can be routed to the right machine to be executed 
and the results transmitted to the originator of the problem. 
If the number of machine-dependent modules is considerable, 
a virtual machine (a simulation of another machine on an 
existing machine) can be developed to run these modules. 

The DSS Development System 429 

Translators can also be written to translate programs of one 
given machine to another. The first solution is supported by 
DSSDS. The others can be designed and added to DSSDS if 
economically justifiable. 

In this section we present a solution to problems 4 through 
7. To solve these problems we need to create a centralized 
information base that contains all necessary information 
about all modules available to the software development cen
ter. This centralized information base can be used by individ
ual members of the development team to select the appropri
ate modules to be incorporated in the development of the new 
systems. 

To centralize all pertinent information about various mod
ules, we design an extended networklO database system, which 
we call the library of modules (LOM). We show how this 
library can be used to assist the developer in the task of 
module selection as well as to provide himlher with informa
tive information in each problem area. 

Our interest in preprogrammed modules is not stimulated 
only by productivity gains and production of quality software, 
but also because in the development of a DSS we need to 
supply the DSS with a collection of modules to be used by the 
problem processing system (PPS) and/or decision maker for 
model building activities. Therefore, we consider the library 
of modules an essential part of our DSSDS. 

The Library of Modules (LOM) 

The library of modules stores all desirable information 
about available modules in a centralized fashion. The devel
oper after designing hislher system can turn to the module 
library and see which of the existing modules can be used in 
the development of the new system. If none of the modules 
can be used directly, the developer may then investigate if any 
of the modules can be used with minor modification. If the 
module library is large enough, it is reasonable to assume that 
some modules will be useful in the development of a new 
system. This will help a speedy development of a new system, 
which we consider an essential requirement for the devel
opment of decision support systems. This approach also pro
vides an opportunity for developing high-quality software 
with reasonable cost. 

The logical structure of an extended network database 
along with a proposed list of data items is shown in Figure 4. 
Modules are categorized by the problems they solve and the 
problems themselves are categorized by subject area. There 
may be more than one module for solving a given problem and 
a given module may solve more than one problem (N:M re
lationship). For each module, information about the name of 
the module, module number (similar to the call number for 
books), the purpose (what does it do?), technique used, and 
origin (where did it come from?) is stored. The record type 
THEORY is intended to represent the scientific basis of the 
technique used in the development of the module. The devel
oper can check to see if there is a sound scientific basis for the 
technique, and if so, can educate him/herself and learn about 
the conditions under which the technique is valid. In other 
words THEORY does the job of a handbook. This can be very 



430 National Computer Conference, 1983 

REFERENCE 

'"Cj 
Ql 
til 
til c:: 
;:l..-l 
o 
til 

..-l 

LANGUAGE 

~ THEORY Module Name 
Module No. 

Supported b Purpose 

Used in 
~--------~ Language 

Theory 
Technique used 
Origin 

Program 
PROGRAMMER 

No. of Var. Name 
SYSTEM PROJECT 

Project Name 
Date 
Proj. Manager 
Client 

Version No. 

Phone No. 
Address 

I/O VARIABLE 
I/O Code 
Variable Role 

Major Difference 
Memory Requirements 
Performance Data 
Reliability Measures 
Restrictions 

I/O 
Variable Type 
Var. Length 
Comment 

Location of the Module 
How to Access COMPUTER 
How to call 

Writte Maker 
for Model No. 

Figure 4--An extended network structure for the library of modules 

helpful since the developer is not necessarily knowledgeable 
in all problem areas. For each THEORY a number of refer
ences are also given. Each module may have many variations 
(it is assumed that there is at least one variation, i.e., the 
original). Each record occurrence of the MODULE VARI
ATION record type contains the properties of a specific vari
ation. These properties are shown in Figure 4. Major Differ
ence is an explanation of the major difference between this 
version and original version of that module. Memory require
ments gives the size of the program in bytes and is especially 
helpful when there is a memory restriction. Reliability and 
performance data essentially tell how reliable the module has 
been and how fast it runs. The other information includes 
restrictions of that variation, where it could be found, how it 
should be accessed, and what the calling procedure is. The 
record occurrence of each particular variation is associated 
with the system project(s) in which it has been used, and for 
each project the names of the project manager and client as 
well as the name of the project and date of development are
given. So if the developer wants additional information about 

the development process or practical results helshe can con
tact the appropriate person. Each occurrence of record type 
LANGUAGE is related to all modules written in that partic
ular language. So it is possible both to find out in what lan
guage a particular module is written and to scan through all 
modules written in a given language. Some variations of a 
module may be written for a particular computer so the record 
type COMPUTER is related to record type MODULE 
VARIATION through the many-to-many set, Written for. 
Each module variation is linked to its input/output through 
the set 110. Properties of each 110 variable are stored in an 
occurrence of 110 VARIABLE. The 1/0 codes of 1,0, or B 
correspond to input variables, output variables, and both re
spectively. Other data items of 110 variables are shown in 
Figure 4. Each module is linked to its programmer and each 
variation is linked to the programmer who did the mod
ification. Each programmer's name, telephone number, and 
address is given so additional information can be obtained 
from the programmer if necessary. 

Thus the library of modules (LOM), directly or indirectly 



(through references, addresses, etc.) includes all the informa
tion that the developer would like to know about a particular 
module. Another interesting feature of LOM is the set re
lationship Needs, which will be discussed in the next section. 

Module Dependencies 

Within a system it often happens that the output of a mod
ule is used as input by another module, thereby creating a 
dependency between the two modules. We call this de
pendency between two modules a context-sensitive associ
ation or a weak dependency, because the -association is the 
result of input/output needs rather than the result of the direct 
need of one module for another. The dependency is context 
sensitive because it very much depends on the context; if 
module x in a given system needs the output of module y in 
order to work, in a different context (i.e., a different system), 
this may not be the case, because the input of x may be 
provided in another way (e.g., be simply read in). 

In contrast to this dependency there is another kind of 
dependency, which we call strong dependency or a context 
free association. A strong dependency is the result of one 
module calling or invoking another module. For example if 
module z calls for the service of module y in its procedure, 
then we say z has a strong dependency on y, because z cannot 
function unless y is present. y in turn may have strong de
pendency on another model. In Figure 5, module z has strong 

Figure 5-Strong dependencies among modules 

dependency on w, x, and y; w in turn has a strong dependency 
on q and r; x is strongly dependent on s, t, and u; s in turn has 
strong dependency on p; and finally y is strongly dependent on 
v. These dependencies are context free because no matter in 
which system we use model z, it needs modules w, x, and y in 
order to operate. Modules w, x, and y in tum need the service 

The DSS Development System 431 

of their own modules. This hierarchy continues until all the 
new modules stand alone and are self sufficient. 

This strong dependency of one module on other modules is 
effectively captured by the recursive relation, Needs. This is 
an N:M relationship because each module may need the ser
vice of several other modules, and each module may give 
service to many modules. Treatment of module dependencies 
in this way greatly facilitates the development of new systems 
as well as modeling activities. Notice that if module z is select
ed to be included in a new system, all the modules that z is 
dependent on for service in a direct or indirect way should go 
with module z. 

The linkage through set Needs provides valuable informa
tion to the developer. For example, if a module like z is a 
candidate for selection, the developer can scan through all 
other modules that are directly or indirectly needed by z and 
examine such properties as performance data, reliability mea
sures, the language they are written in, hardware dependen
cies (if any), and so on. Examination of this information is 
important because it may reveal some undesirable properties 
of one or more modules in the collection, which may require 
the rewriting of those modules or the selection of an alterna
tive module. 

Another valuable benefit of this approach is that since 
through this linkage the developer can find out which modules 
use the service of a given module in a direct or indirect way, 
it is very easy to find out which modules will be affected by 
alteration of the given module, and therefore appropriate 
measures can be taken if necessary. 

A third advantage of this approach is that it eliminates 
redundancy in the storage of modules. In other words, each 
module is stored only once, no matter how many other mod
ules use its service. 

Other consequences of this approach are that the system 
can evolve and can become personalized. The evolution is 
possible because new independent or dependent modules can 
be added to the system without difficulty. The developer can 
also use the original primitive modules and can build upon 
those a collection of modules to be used by him/herself on a 
personalized basis. 

The system can also display a learning behavior. Observe 
that the set of modules that are directly needed by a module 
such as z can be considered as preconditions to z, because 
without them z cannot be executed. However, existence of a 
module in the database of the LOM automatically means that 
the preconditions are satisfiable, and in fact the linkage paths 
represent the solution paths to satisfy the preconditions. Any 
time a new problem is solved, that is, a new module is formu
lated with or without the use of existing modules, this new 
information is added to the system and the problem need not 
be solved again because the solution path to this problem 
already exists in the database. Thus the system displays a 
learning behavior. Moreover, these new skills are acquired in 
the area for which the system has been used and for which 
they are presumably needed the most. In other words, the 
system learns the right things. A final comment on the learn
ing feature is in order: If the original collection of the prim
itive modules is considerably large, chances are that most of 



432 National Computer Conference, 1983 

the new modules can be created through the use of the exist
ing modules. It is the job of a human or computerized prob
lem solver to combine the right'ingredients to create a module 
that can deliver the desired results for a given task. It is 
expected that most new modules will result from combining 
the existing modules or from using some parts from the exist
ing modules rather than from being created completely from 
scratch. Different schemes should result in different environ
ments best suited to different lines of development. 

Extensions to the Library of Modules 

By making some conventions we can also add the informa
tion about the weak dependencies to the database. A weak 
dependency is the result of one module using the output of 
another module as its input. But inputs to a module generally 
can be provided by a variety of sources. For example, more 
than one module can provide input that can be used by a 
particular module. The inputs can also be read from a data
base, file, cards, and so on. So there are alternatives for the 
developer to choose from. The approach preferred depends 
on the kind of raw data available at a given context. It is 
beneficial to the developer if he/she is reminded of his/her 
choices. To include this new information we do not need to 
change the structure of our database but we need to make a 
few conventions. First we distinguish between three kinds of 
modules: a process module, which is a regular module and 
performs some data-processing task; an input module, which 
provides the inputs to a given module by reading them from 
the tape, from the database, from cards, and so on; and a link 
module, which links a process module to its alternative input 
modules. We let all three types of modules share the same 
record type; however each occurrence contains the informa
tion about the type of that module. 

To help clarify this problem, let us consider an example. In 
Figure 6 module z needs modules x and y and some input that 
can be provided in three different ways. Either it can be 
provided by module II by directly reading from some input 
source (e.g., from the database), or by module 12 by directly 
reading from a different input source (e.g., from cards), or it 
can be provided as an output of module w. Module w, in order 
to work, needs module v and some input that can be provided 
in two alternative ways of I3 or 14. Notice that the 1 modules 
represent input modules and they are always terminal nodes 
in the dependency tree. The L modules are link modules and 
they always branch into alternative modules that can provide 
the input to the so-called owner module. Only one of the 
alternatives is necessary and sufficient to provide the input. 
The ordinary modules like x, y, and w, can call any of the 
other two types of modules or be self-sufficient. 

Here the developer is provided with different alternatives 
for solving the problem although he/she may use the same 
module z. He/she may prefer one alternative over others in a 
given context or he/she may include some or all of the alterna
tive solutions in the new system he/she builds and then let the 
user decide about a convenient approach in each problem 
situation. 

Observe that Figure 6 closely resembles an AND/OR 

Figure 6-Strong and weak dependencies among modules 

graph. 11,12 The process modules if they branch, represent 
AND or synthesis nodes, and the link modules represent the 
OR nodes. Since AND/OR graphs are used in the problem 
reduction approach to automated problem solving, 13 it follows 
that our database technique could be used as an effective 
mechanism in automatic problem solving. The complete 
AND/OR graph can be represented by the relationship Needs 
in the LOM database. Each node contains the information 
about whether it is an AND node or an OR node, and each 
linkage represents a reduction operator. Notice that the prob
lem solving in this way is reduced to a search through the 
database. Moreover, if the start symbol (i.e., the module we 
are looking for) is found directly in the database, then the 
solution is guaranteed, provided the input data can be pre
pared in the right form. The system offers flexibility by allow
ing the input data to be fed to the module in various forms 
depending on the context. Different inputs may result in dif
ferent combinations of modules that deliver the same results. 

Alternatively, our module linkage mechanism can be the 
representation of a production system. 13 In other words, this 
mechanism can be used as a storage mechanism for a produc
tion system database (PSDB). If we consider our database as 
a representation of a production system, then all dependent 
modules are considered as nonterminals and the independent 
modules (lIO modules and self-sufficient modules) are consid
ered as terminal nodes. Figure 7 shows the relationships of 
modules and their corresponding production system. Note: 
the coIiection of iinkages emanating from a process moduie 



The DSS Development System 433 

1) i -+ j, 16 7)y-+I3 
2) j -+ k 8) q -+ y I L2 I 14 
3) z -+ L1, x, y 9) L2 -+ t I 15 
4) L1-+ v I w 10) a -+ b 
5) v-+ 0, p, Il 11) b -+ I7 
6) w -+ p 112 12) p -+ e 

k, 16, 0, e, f, II, x, 17, 12, 13, t, 14, IS, and c are terminal 
nodes (i.e., stand alone modules). 

Figure 7-Production system for modules in the library of modules 

represents one production while each linkage emanating from 
a link module represents one production. 

Module Management Language (MML) 

The library of modules contains the information about any 
module accessible through the development environment. 
The source code of these modules may be stored in source
code files under the source code manager (SCM), or it may be 
stored in other files even under other computer systems. Re
gardless of the location of the module, all the information 
about its properties, location, and the procedure for accessing 
it is stored in the LOM. To use this information the developer 
needs a collection of tools so he/she can easily scan through 
the information in the library and select the desired modules. 
After the selection of the modules the developer wants to copy 
the module itself plus its supporting modules to an appropri
ate place to be included in the new system with or without 
some modifications. 

The use of a network database management system for the 
library of modules automatically provides the developer with 

a powerful tool for retrieval and manipulation of information 
in the LOM. That is, the user can use the query language of 
DBMS and question the informational content of the data
base and/or manipulate the data. The developer can also de
velop a set of macro commands that he/she can use repeatedly. 
Nevertheless, the existence of a module management lan
guage (MML) greatly facilitates the job of the developer. A 
set of basic commands is shown in Figure 8. Additional com
mands in the form of macros can be designed by the developer 
on a personalized basis and be added to the system. The MML 
is intended to be conversational in the sense that any ambigu
ities may be resolved through conversation with the user. 

OTHER DEVELOPMENT FACILITIES 

In the design of the foundation of DSSDS we implicitly as
sumed that a database management system (DBMS) exists. 
Moreover, we based our design on a network database sys
tem. Although it is possible to design a DSSDS without a 
database management system, existence of a DBMS greatly 
facilitates the design and implementation process. Besides, 



434 National Computer Conference, 1983 

ADD<rt> to add a new occurrence of record type "rt" 
in the data base 

DELETE(rt) to delete an occurrence of record type "rt" 
from the data base 

CHANGE<rt> to change data item(s) within record type 
"rt". (The system prompts for additional 
information. ) 

DISPLAY<rt><x> to display the informational content of 
occurrence x of "rt" 

DISPLAY<rt>.<y>.<st> to display the informational content of 
record type "rt" for all members (or owners) 
of owner (or member) y of set st 

DISPLAY<rt> to display all occurrences of rt. ("SYSTEM" 
is assumed to be the owner, otherwise, system 
prompts for the owner.) 

DISPLAY OWNER<rt><x>.<st> to display owner(s) of occurrence x of record 
type rt through set st 

DISPLAY MEMBER<rt><x>.<st> to display all members of occurrence x of 
record type rt through set st 

DISPLAY SUBMODULE<x>.<it> to display the value of item type "it" for 
all submodules directly needed by x, if "it" 
is missing all items will be displayed 

DISPLAY ALL 
SUBMODULES<x>.<it> 

to display the values of item type "it" for 
all direct or indirect submodules of x 

DISPLAY SUPER MODULE<x> to display modules that directly use the 
service of module x 

DISPLAY ALL SUPER 
MODULES <x> 

to display all modules that directly or 
indirectly use the service of module x 

COPY<x>,<y> to copy module x to file y 

COpy ALL<x>, <y> to copy x and all modules needed by x 
(directly or indirectly) to file y 

Figure 8-A set of commands for a module management language 

since the DSSDS normally would be used in a development 
center, existence of a DBMS in such a center is unquestion
able. We also assumed the existence of a query language that 
would work with the database system. 

In Figure 1 the existence of a report generator (RG), a 
graphics generator (GG), and a screen management language 
is recognized. We do not intend to discuss these facilities be
cause these facilities do exist in a variety of forms. The report 
generator and graphics generator that we have in mind should 
have features similar to those of NOMAD,14 for a screen 
management language we would like to have display facilities 
similar to those of SPF15 or SCREEN MASTER. 16 The source 
code manager (SCM) is a tool that facilitates the generation 
of new modules or the alteration of existing modules. A de
tailed discussion of the SCM appears in Reference 2. 

Request Handler (RH) 

The request handler (RH) is intended to be used for main
tenance purposes while the DSS is in operation. The purpose 
of the RH is to provide a communication link between the 
DSS and the DSSDS. The RH performs several important 
functions. First, suppose while the DSS is in operation, a bug 
is found in one of the modules. The user then sends a request 
through RH explaining the problem. The user does not neces
sarily know which programmer was involved in the devel
opment of that module. The RH by looking at the LOM can 
route the message to the right programmer. In case the pro
grammer is unknown or is no longer with the organization, the 
RH will route the problem to the person in charge or the 
ieast-busiest person in charge of such probiems. 



Second, suppose that the user wants some extensions. That 
is, the user needs a new model that is not found in the DSS and 
that cannot be formulated through existing modules in the 
DSS by PPS or by the user him/herself. The RH will look at 
the LaM; if the module is found in the LaM, the RH will 
automatically access the module and route it to the DSS. 
Otherwise, the RH will place a message in the mail box of the 
least busiest developer or the developer with the right qual
ifications for that job. In case a user of the DSS has some 
questions and needs some help, he/she can send a help request 
to the RH. The request handler starts a dialogue with the user 
and gathers information about the subject and the nature of 
the question and then routes the message 'to an appropriate 
developer. 

Through the RH the communication link between the 
DSSDS and the DSS remains open throughout the system's 
life cycle. Through this link the news about the availability of 
new modules, new versions of the existing modules, or new 
facilities can be sent to the DSS to be placed in the mail box 
of interested parties. RH provides a valuable facility for sup
porting the product during the operation phase of its life cycle. 

DSS DEVELOPMENT 

The DSSDS satisfies all the requirements we stated earlier for 
a DSS development system. That is, the DSSDS supports a 
speedy development of a DSS and it also supports the DSS in 
its entire life cycle. Various decision support systems can be 
developed through the DSSDS for different needs. The tools 
of the DSSDS are available independently, and finally, the 
DSSDS is capable of evolving over time. 

With the initiation of a DSS project, systems analysis be
gins. SADF helps the developer to gather the information and 
store it in an organized way in a SADF database. Through a 
SADF all members of the development team can use the same 
data and share their thoughts. When the developer believes 
he/she understands the problem correctly, the development of 
the prototype begins. In proto typing the emphasis is on 
speedy development of a system that reasonably represents 
the proposed system. Through DSSDS a speedy development 
of a prototype is possible because the LaM can provide con
siderable preprogrammed modules. Besides, the modification 
of existing modules is greatly facilitated under the SCM. The 
Report Generator, the Graphics Generator and the query 
language are excellent facilities for prototyping, because effi
ciency is not an immediate concern in prototyping. For exam
ple if a special report has to be prepared, it is very likely that 
the report could be provided through RG quite easily. How
ever if and when the report proved to be necessary and needed 
on a recurring basis then a new module should be written to 
create this report very efficiently for the final system. 

The DSS Development System 435 

SUMMARY 

The need for many decision support systems in the near future 
stimulated our interest in finding a convenient way for devel
oping such systems. The changing nature of DSS required us 
to find a way for speedy development and fast modification of 
DSS. Our study resulted in a proposal for a DSS development 
system (DSSDS). The DSSDS facilitates both the develop
ment and maintenance of a DSS. The philosophy of the 
DSSDS is based on two concepts: the use of highly automated 
tools throughout the development process and the use of pre
fabricated pieces in the manufacturing of a whole piece. The 
environment of the DSSDS consists of a development lan
guage (DL), a systems analysis and design facility (SADF), a 
module management language (MML), a source code mana
ger (SCM), a report generator (RG) , a graphics generator 
(GG), and a request handler (RH). 

The DSSDS provides an environment in which the devel
oper can create high-quality decision support systems, with 
moderate cost and in a relatively short period of time. 

REFERENCES 

1. Martin, J. Application Development Without Programmers. Englewood 
Cliffs, N.J.: Prentice-Hall, 1981. 

2. Ghiaseddin, N .. "Framework for a DSS Development System," Ph.D. 
dissertation, Purdue University, 1982. 

3. Boehm, R., "Software Engineering-R and D Trend and Defense Need." 
In Research Directions in Software Technology. Cambridge, Mass.: MIT 
Press, 1978. 

4. Gomaa, H., and D. Scott. "Prototyping as a Tool in the Specification of 
User Requirements." Proceedings of 5th International Conference on Soft
ware Engineering, March 1981. 

5. Teichrow, D., and E. Hershey. "PSUPSA: A Computer Aided Technique 
for Structured Documentation and Analysis of Information Processing Sys
tems." IEEE Transactions on Software Engineering, January 1977. 

6. Bell, T., D. Bixler, and M. Dyer. "An Extendable Approach to Computer 
Aided Software Requirements Engineering." IEEE Transactions on Soft
ware Engineering, January 1977. 

7. Ross, D., and W. Schomaman. "Structured Analysis for Requirements 
Definition." IEEE Transactions on Software Engineering, January 1977. 

8. Stephens, S., and L. Tripp, "Requirements Expression and Verification 
Aid." Proceedings of the 3rd International Conference on Software En
gineering, May 1978. 

9. Knowledge Manager Reference Manual, Micro Data Base Systems, Inc., 
Lafayette, Indiana, 1983. 

10. MDBS INC. MDBS Application Programming Reference Manual. La
fayette, Ind., 1981. 

11. Nilsson, N., Principles of Artificial Intelligence. Palo Alto: Cal.: TIoga 
Publishing, 1980. 

12. Bonczek, R., C. Holsapple, and A. Whinston, Foundation of Decision 
Support Systems. New York: Academic Press, 1981. 

13. Davis, R., and J. King. "An Overview of Production Systems." In E. 
Elcock and O. Michie (eds.), Machine Intelligence 8. New York: Halsted 
Press, 1977. 

14. McCracken, D .. A Guide to NOMAD for Application Development, Wil
ton, Conn.: National CSS, 1980. 

15. Joslin, P., "System Productivity Facility," IBM System Journal, 20 (1981) .. 
16. SCREEN MASTER Reference Manual, Micro Data Base Systems, Inc., 

Lafayette, Indiana, 1982 





Applications of fuzzy languages and pictorial databases to 
decision support systems design 

by EDWARD T. LEE 
Memphis State University 
Memphis, Tennessee 

ABSTRACT 

The pioneering work of D. T. Lee in developing an approach with major emphasis 
on database development has had a profound influence on the recent development 
of decision support systems, as well as on office information systems, database 
systems, and database machines. This database development approach is a new and 
powerful approach to decision support systems design methodologies. 

In this paper the concepts of fuzzy languages and pictorial databases are applied 
to decision support systems design methodologies. First, fuzzy languages, fuzzy 
grammars, the classification of fuzzy grammars, derivation chain, degree of accept
ance, and equivaience are defined. Operations like intersection, concatenation, 
Kleene closure, complement, and cardinality are also defined. Second, algebraic 
representation of the production system is presented and illustrated by examples. 
The difference between null string and the empty set of string is illustrated. Third, 
decision support systems involving geometric figures, chromosome images or leuko
cyte images are presented as illustrative examples. 

In similarity retrieval from a pictorial database, very often it is desired to find 
pictures (or feature vectors, histograms, etc.) that are most similar to or most 
dissimilar to a test picture (or feature vector). Using similarity measures, one can 
not only store similar pictures logically or physically close to each other to improve 
retrieval or updating efficiency, one can also use such similarity measures to answer 
fuzzy queries involving nonexact retrieval conditions. 

The applications of fuzzy languages and pictorial databases to decision support 
systems design methodologies offer what appears to be a fertile field for further 
study. The underlying ideas are interesting and easy for practical application. The 
results have useful applications in decision support systems, pattern recognition, 
pictorial information systems, and artificial intelligence. 

437 





Applications of Fuzzy Languages and Pictorial Databases to DSS Design 439 

A. INTRODUCTION 

D. T. Lee's pioneering work in developing an approach that 
emphasizes database developmene-5 has profoundly influ
enced the recent development of decision support sys
tems,6-8,24 as well as office information systems,9 database 
systems,tO-ll and database machines. This database develop
ment approach is a new and powerful approach to designing 
decision support systems. 

During the past several years, fuzzy languages12 and simi
larity retrieval techniques13 have attracted growing attention 
as promising avenues of approach to problems in decision 
support systems design methodologies. 

B. FUZZY LANGUAGES 

In the theory of formal languages, a language L is defined as 
a subset of v;. -as the set of strings over a finite alphabet v;.. 
Consequently, if x is a string in V; then either x is a member 
of L or x is not a member of L. In contrast, in the case of a 
natural language, a sentence may be partially in a language, in 
the sense that it may be partially grammatically correct (or 
partially meaningful). Indeed, it may be argued that it is the 
complete precision of formal languages that sets them so 
sharply apart from natural languages. 

The gap between formal and natural languages can be 
narrowed by introducing the concept of fuzzy language, that 
is, a fuzzy subset of V;. In such a language, each string x E v;
is assigned a grade of membership, JLL (x ), in L, which for 
simplicity may be taken to be a number in the interval [0,1]. 
When L is a natural language, JLL (x) may be interpreted as 
an index of the grammatical correctness of x . 

As was pointed out by E. T. Lee and Zadeh,12 much of the 
existing theory of formal languages can be extended quite 
reaily to fuzzy languages. This has been done for the notions 
of grammar, Kleene closure, recursiveness, context-sensitive 
languages, context-free languages, regular languages, Chom
sky normal form, Greibach normal form, and so on. 12 In 
the present paper, we shall focus our attention on the applica
tions of fuzzy languages to decision support systems design 
methodologies. As in Lee and Zadeh, our notation, termi
nology and constructions for fuzzy languages will parallel 
closely those of Hopcroft and Ullman for nonfuzzy formal 
languages. 14 

We begin with a brief recapitulation of some of Lee and 
Zadeh's definitions.12 

Let V T be a set of terminals, with v;- denoting the set of 
strings over V T. A fuzzy language L is a fuzzy subset of v;.. 
As such, it may be characterized by a membership function 

JLL : V; ~ [0, 1] that associates with each string x in V; its 
grade of membership, JLL (x), in L. 

If Ll and L2 are two fuzzy languages, then their union is a 
fuzzy language denoted by Ll + L2 and defined by 

or more compactly 

(2) 

where V stands for Max (on infix form). To simplify the 
notation, we shall write throughout V for Max, 1\ for Min 
and will omit the arguments of membership functions when an 
equality or inequality that these functions satisfy holds for all 
strings in V;. 

The intersection of Ll and L2 is denoted by Ll n Lz and is 
defined by 

(3) 

The concatenation of Ll and Lz is denoted by LIL2 and is 
defined by 

x E V;, (4) 

where u and x - u denote, respectively, a prefix and the cor
responding suffix of x . 

The Kleene closure of a language L is defined by 

L * = ~ + L + LL + LLL + ... (5) 

where ~ denotes the null string. 
The complement of a language L is denoted by L and is 

defined by 

The cardinality of a language L is denoted by 

I L I = 2: JLL (x;). (7) 
i 

A fuzzy grammar is a quadruple G = (VN' VT , P, S) 
where V N is a set of non-terminals (i.e., labels for certain fuzzy 
subsets of L ), P is a set of fuzzy productions and S E V N' A 
generic fuzzy production has the form 

(8) 

where a, 13 E (V T U V N ) * and ° < P s 1. 



440 National Computer Conference, 1983 

If (It, ••• ,(lm are strings in (VT U V N )* and 

P2 
al~(l2, ••• , 

Pm 
(lm-l~(lm, 

then (lm is derivable from 0.1 in grammar G. This is expressed 
as 

or simply (ll~(lm. The expression 

P2 Pm 
(l1~a2···am-l~(lm (9) 

is called a derivation chain from 0.1 to am. The strength of' 
such a chain is defined to be P21\. ... I\. pm, which may be 
interpreted as the strength of its weakest link. 

A fuzzy grammar G generates a-fuzZy -language L ( G ) in 
the following manner. A string of terminals x is in L ( G ) if 
and only if x is derivable from S. The grade of membership of 
x in L ( G ) is given by 

(to) 

where S ~ (ll ••• am ~ x is a derivation chain from S 
to x and the supremum is taken over all derivation chains from 
SEx. In words, 

f.LG (x ) = strength of the strongest 
derivation chain from S to x . 

Thus, (to) defines L ( G) as a fuzzy set in (V T U V N )*. If 
L ( G1 ) = L ( G2 ) in the sense of equality of fuzzy sets, then 
the grammars G1 and G2 are said to be equivalent. 

This concludes the recapitulation of some of the basic con
cepts defined by Lee and Zadeh. 12 

C. ALGEBRAIC REPRESENTATION OF THE 
PRODUCTION SYSTEM 

For many purposes it is convenient to replace P by a set of 
algebraic equations involving the operations of concatenation 
and addition (union) of fuzzy sets of strings. Such equations 
constitute an extension to fuzzy sets of strings of the approach 
used by Rosenkrantz to derive the Greibach normal form. 15 

The replacement is effected as follows. If P contains pro
ductions of the form 

then 

P2 
(l~'Y 

(11) 

where + denotes the union of the fuzzy sets of strings repre
sented by Pl~ and P2'Y. 

Example 1. Written in algebraic form, the production sys
tem of 

reads 

S~AB 

S~A 

S~B 

A~a 

A~b 

B~A 

B~a 

AB~BA 

S = O.SAB + 0.8A + 0.8B 
A = O.Sa + 0.6b 
B = O.4A + 0.2a 

AB=0.4BA 

As in the case of nonfuzzy languages, it is convenient to 
classify the grammars of fuzzy languages into four principal 
categories, which follow, in order of decreasing generality. 

C1 Type 0 Grammars 

In this case, productions are of the general form 

where Ot and 13 are strings in (V T + V}V )*, with a =F ~. 

C2 Type 1 Grammars (Context Sensitive) 

Here the productions are of the form 

where (l and (3 are strings in (V T + V N )*, with (l =F ~ and 
I (31 ~ I (ll, that is, the length of the right-hand side (the 
consequent) must be at least as great as the length of the 
left-hand side (the antecedent). 

C3 Type 2 Grammars (Context Free) 

Here the allowable productions are of the form 

where A E VN, a E (VT + VN)*' and S~~ is allowed. 
Thus, in the case of a context-free grammar, A can be re
placed by (l regardless of the context in which A occurs. 

C4 Type 3 Grammars (Regular) 

In this case the allowable productions are of the form 

A~aB 

A~a 



Applications of Fuzzy Languages and Pictorial Databases to DSS Design 441 

where A, B E V N and a E V T. 

In solving a system of algebraic equations representing the 
production system of a fuzzy grammar, one frequently en
counters linear equations of the form 

(12) 

in which Xl, PI, and Zl are fuzzy sets of strings over a finite 
alphabet, and + and the product denote the union and the 
concatenation, respectively. 

Let Lt; = {~} = null string; 

(13) 

Lt; plays the role of the unit element for concatenation. 
Let 6 = the empty set of strings, then 

A6=6A =6 (14) 

since there are no elements in 6. 

Proposition 1. 16 If PI does not contain the null string, then 
(12) has a unique solution for XI. which is given by 

(15) 

where P~ is the Kleene closure of PI (in the sense of (5)). 

The algebraic notation that was described earlier is particu
larly useful in the case of context-free grammars. Thus if the 
nonterminals in V N are denoted by Xl, ... , X n , and 
X = (Xl, ... , Xn ), \-vith Xl = S, then the production system P 
can be put into the form 

X=f(X) (16) 

where f is an n -vector whose components are multinomials in 
the Xi, i = 1, ... , n. In this way, the determination of the 
fuzzy set of strings generated by the grammar reduces to 
finding a fixed point of the function f. In this connection, it 
can really be shown that if we set XO = 6 = empty set and form 
the iterates 

k = 1,2,3, ... , (17) 

then, for each k, X k is a fuzzy subset of the solution of (16). 
We are now ready to turn our attention to the applications 

of fuzzy languages to decision support systems design meth
odologies. Algorithms for finding Chomsky and Greibach 
normal forms for a fuzzy context-free grammar using an 
algebraic approach have been found. 17 

D. DECISION SUPPORT SYSTEMS INVOLVING 
GEOMETRIC FIGURES 

Pictures, images, and figures play basic and important roles in 
decision support systems. 

Decision support systems involving 
the manipulation of rYUmbers 

Decision support systems involving 
the manipulation of alphanumeric 
information 

Decision support systems involving 
h . of t e manipulation pictures, images 

and figures 

Decision support systems involving 
the manipulation of voices 

Figure I-A brief summary of the history of decision support systems 

In examining the history of the development of decision 
support systems, we discover that early decision support 
systems were developed primarily for applications related to 
scientific computation, as in weather prediction, aerospace 
applications, and nuclear physics applications. At this stage, 
the decision support system served as a big calculator to per
form, in the main, scientific computation. Then it was found 
that decision support systems could also be used for business 
applications, information storage and retrieval, word process
ing, and report generation. 

New frontiers in designing decision support systems are the 
representation, processing, storage, and retrieval of pictures. 
A brief summary of the history of decision support systems is 
shown in Figure 1. 

Types of pictorial information amenable to decision support 
systems include geometric figures, chromosome and leuko
cyte images, maps, fingerprints, and human faces. Work is 
also being done in the areas of computerized tomography and 
the interpretation of earth-resource satellite photographs 
(e.g., to identify the rivers and highways in a particular area 
and to discriminate vegetation types). 

A classification of pictures is shown in Figure 2. Thus, we 
select triangles to be worked on first. 

Given a triangle !::.ABC with angles A, B, and C, quan
titative measures of the similarity of this triangle to isosceles 
triangles, equilateral triangles, and right triangles may be de
fined as 



442 National Computer Conference, 1983 

pictures 

/~ 
block ond 
white 
pictures 

colored 
pictures 

I~ 
pictures are pictures ore 
specified by spe~ified by 
lines region 

/. --------
include only 
line segments 

I 
include curved 
lines 

geometric figures 

I 
polygons 

/~ 

= the closs of 
pictures thot 
select 

triangles quadrangles 

Figure 2-A classification of pictures 

f.LI(MBC) = 1- ~omin{IA - BI, IB - C I, I C -A I}, 

1 
f.LE(MBC) = 1- 1800 max {I A - B I, I B - C I, I C - A I}, 

and 

respectively. 
A quantitative measure of the similarity of MBC to 

isosceles right triangles may be defined as 

J.LIR = min {J.LI, J.LR } 

or 

Since both J.LI and J.LR are in the range 0 to 1,18 J.LIR ~ J.LI~· 
Depending on its prospective application, J.LIR may be substi
tuted for J.LI~ or vice-versa. 

A quantitative measure of the similarity of MBC to sca
lene triangles may be defined as: 

J.Lsc = 1- max{J.L[, J.LR' J.LE}' 

For a triangle MBC with A ~ B ~ C, we shall use the 
following vector representation for convenience: 

MBC = (A,B,C). 

Lemma 1. Given a triangle MBC with angles A , B, C, if 
we assume that A ~ B ~ C, then 

J.LI(MBC) = 1- 6tomin{A - B ,B - C} 

A-C 
J.LE (MBC ) = 1 - 1800 

IA - 90°1 
J.LR(MBC) = 1 - 900 . 

Lemma 2. Given a triangle !::ABC, the set 
{O, f.LI~ (!::ABC), f.LIR ( !::ABC), J.LI (!::ABC), J.LR (!::ABC), 1} 
with max and min as the two binary operations forms a distrib
utive but not complemented lattice. 

Example 2. Table I gives the f.LI, f.LE, J.LR, J.LIR , and f.Lsc of 12 
triangles. 

In the paper by Zadeh, 19 "not," "and," and "or" are inter
preted as "the operation of complementation (or, equiv
alently, negation)," "the operation of intersection," and "the 
operation of union," respectively. In another paper by 
Zadeh,20 such linguistic hedges as "very," or "more or less," 
were viewed as operators that act on the fuzzy sets represent
ing the meaning of their operands. More specifically, "very" 
is interpreted as "the operation of concentration," which has 
the effect of squaring the membership function; "more or 
less" is interpreted as "the operation of dilation," which has 
the effect of taking the square root of the membership func
tion. Composite fuzzy queries can be answered by using lin
guistic hedges and quantitative fuzzy semantics. 

Example 3. The grade of membership of the triangle (90°, 
75°, 15°) with respect to the class "very similar to isosceles 
triangles" is 9/16; its grade of membership in the class "more 
or less similar to isosceles triangles" is V3/2. 

Example 4. Assuming the 12 triangles in Table I as the 
database, the composite fuzzy query, "retrieve the triangles 
that are very similar to equilateral triangles and more or less 
similar to right triangles" may be answered by computing 

TABLE I-Similarity measures for 12 triangles, !::ABC 

!::ABC 

1. (90°, 70°, 20°) 
2. (90°,60°,30°) 
3. (120°,60°,0°) 
4. (60°, 60°, 60°) 
5. (90°,45°, 45°) 
6. (180°,0°,0°) 
7. (75°, 60°, 45°) 
8. (75°, 75°, 30°) 
9. (90°, 75°, 15°) 

10. (120°, 30°, 30°) 
11. (120°, 45°, 15°) 
12. (150°, 15°, 15°) 

J.LI 

2f3 
Y2 
o 

% 
1 
3;4 

liz 
1 

J.LE 

1 Vis 
0/'3 
V3 
1 
% 
0 
% 
% 
7liz 
Vz 
V12 
1/4 

J.LR J.L1R J.Lsc 

¥3 0 
Vz 0 

2f3 0 V3 
¥3 ¥3 0 
1 1 0 
0 0 0 
% % V6 
% % 0 
1 % 0 
2f3 ¥3 0 
¥3 Yz 113 

V3 Y3 0 



Applications of Fuzzy Languages and Pictorial Databases to DSS Design 443 

TABLE II-Similarity measures with linguistic hedges for the 12 
triangles of Table I: "Very similar to an equilateral triangle," "more 
or less similar to a right triangle," and "both very similar to an 

equilateral triangle and more or less similar to a right triangle" 

MBC 2 112 J.L~ 1\J.L~12 J.LE J.LR 

1. (90°, 70°, 20°) 0.37 1 0.37 
2. (90°, 60°, 30°) 0.44 1 0.44 
3. (120°, 60°, 0°) 0.11 0.82 0.11 
4. (60°, 60°, 60°) 1 0.82 0.82 
5. (90°,45°, 45°) 0.56 1 0.56 
6. (180°,0°,0°) 0 0 0 
7. (75°, 60°, 45°) 0.69 0.?1 0.69 
8. (75°, 75°, 30") 0.56 0.91 0.56 
9. (90°, 75°, 15°) 0.34 1 0.34 

10. (120°,30°,30°) 0.25 0.82 0.25 
11. (120°, 45°, 15°) 0.18 0.82 0.18 
12. (150°, 15°, 15°) 0.06 0.53 0.06 

1. IJ.E 2 , the membership function, very similar to equi
lateral triangles 

2. IJ.R 112, the membership function, more or less similar to 
right triangles 

3. min [IJ.E 2 , IJ.R 112], denoted by IJ.E 2/\ IJ.R 112, the member
ship function very similar to equilateral triangles and 
more or less similar to right triangles 

These are given in Table II. 
If we set the threshold to be 0.6, then the answer to the 

query is triangles (60°, 60°, 60°) and (75°, 60°, 45°). Absence 
of a threshold is interpreted as a threshold of 0; any element 
with a grade of membership greater than 0 will be part of the 
answer; then the answer to our fuzzy query is the fuzzy set 
{(MBC),IJ.E2(MBC)/\IJ.Rll2(MBC)}, where IJ.E2/\ 
IJ.R 112 is the membership function. 

Zadeh discusses the classification of linguistic hedges and 
the operations of contrast intensification, fuzzification, and 
accentuation.20 

Elsewhere,18 for 6.x with angles A ;;::: B ;;::: C and 6.y with 
angles A I ;;::: B I ;;::: C I, we have set the similarity between fu 
and 6.y equal to 

IJ.A (fu, 6.y ) = 1 - 2100 { I A - A I I 

+ I B - B'I + I C - C/I }. 

Example 5. Given a triangle 6.y with angles A ';;::: B ';;::: C ' 
and a tolerance E with 0 :s E :s 1, the fuzzy query "retrieve all 
the triangles that are similar to 6.y within a tolerance of E" 
may be carried out as follows: 

Let X be the set of triangles fu in the database with angles 
A;;:::B;;:::C. 

Since angles A, B, C are ordered from greatest to least, the 
ranges for the angles must be 

OO:sB :s90°, 

00:s C :s 60°. 

Instead of testing each triangle fu in X to see if IJ.A (6.x , 
6.y );;::: 1 - E, first form the subset X' of possible candidates 
by using one of the following three methods: 

1. Find the set of triangles fu I with A in the range of 
max{60°, A ,_ 2400 E}:SA :s min {180°, A '+ 2400E}. 

2. Find the set of triangles fu I with B in the range of 
max {0°, B ,_ 2400E}:S B :s min {90°, B '+ 2400E}. 

3. Find the set of triangles fu I with C in the range of 
max {0°, C' - 2400E}:S C:s min {60°, C' + 2400E}. 

Those triangles fu I in X' where J.LA (fu I, 6.y );;::: 1 - E satisfy 
the query. 

Example 6. Let triangle 6.y have angles A I = 100°, 
B I = 60°, and C I = 20°, and let E = .20. By using method 1, the 
set of possible candidates for the fuzzy query "retrieve all the 
triangles that are similar to 6.y within a tolerance of E" con
sists of those triangles where 

Thus, we obtain 

and 

IJ.A (fu I, 6.y );;::: .8. 

If E = .10 then the set of possible candidates becomes those 
triangles where 600:s A :s 124°. 

A dissimilarity measure of fu and 6.y may be defined as the 
complement of the similarity of fu and 6.y: 

IJ.OIS (fu, 6.y ) = 1 - J.LA (fu, 6.y ) 

Example 7. Given two triangles fu and 6.y, the fuzzy query 
"retrieve all the triangles that are more or less dissimilar to fu 
or very very similar to 6.y ," may be answered by computing 
IJ.rifs(6.t, fu) V IJ.~ (6.t, 6.y ) for all triangles 6.t in the data
base, where V is an infix operator for max. 

Therefore, other composite fuzzy queries involving chro
mosomes or leukocytes can also be answered in the same 
manner. Examples of composite fuzzy queries involving chro
mosomes are "retrieve the chromosomes that are very similar 
to median chromosomes, but not similar to a given chromo
some," and "retrieve the chromosomes that are more or less 
similar to median chromosomes and very very similar to a 
given chromosome." Examples of composite fuzzy queries 
involving leukocytes are "retrieve leukocytes with deeply in
dented nucleus or round nucleus" and "retrieve leukocytes 
with elongated nucleus or slightly indented nucleus." 

In what follows, propositions are presented for an effeCtive 
way of organizing a shape-oriented triangle, chromosome, or 
leukocyte database. 



444 National Computer Conference, 1983 

Proposition 2. For shape-oriented storage of triangles, it is 
advantageous to store the angles of a triangle in decreasing 
order of magnitude. This representation may be viewed as a 
normal form for shape-oriented triangle representation. 

Proposition 3. For shape-oriented storage of triangles, if we 
logically order all the triangles individually and independently 
according to the magnitude of the angles A , B , and C, then 
we can reduce retrieval time for answering queries. 

Proposition 4. For shape-oriented storage of triangles, we 
can use associative memory with match-on-between-limits 
and find-match-count operationsZ1 or other hardware search
ing facilities such as the Symbol-2R computerZZ to reduce 
retrieval time. 

E. DECISION SUPPORT SYSTEM INVOLVING 
CHROMOSOME IMAGES 

A preliminary study of applying shape-oriented similarity 
measures defined over a pair of chromosome images to the 
classification problem has been presented. Z3 In this paper, the 
classification problem is studied through the use of shape
oriented measures of the similarity of a given chromosome 
image to symmetrical chromosomes, median chromosomes, 
submedian chromosomes, and acrocentric chromosomes. 

The best-fit skeletal "length and angle only" transformation 
with angles Ai and sides aj is shown in Figure 3. After con
necting the tips of arms no. 1 and 2, and the tips of arms no. 
3 and 4, as indicated by dotted lines, the best-fit skeletal 
"length and angle only" transformation becomes a hexagon. 

!:l 
(a) 

ARM 2 ARM I 

~ A6 Center Bar A5 

A7 ~ AS 

( b) 

ARM 3 ARM 4 

Figure >-Chromosome images: (a) median, (b) submedian, (c) acrocentric, 
(d) best-fit skeletal ~'length and angle only" transformation 

E.2 Symmetry of Chromosome Images 

The preparation of chromosome images and the definition 
of metaphase chromosome images is discussed by Widrow. Z5 

At metaphase each chromosome has a twin, normally identi
cal counterpart. 

Definition 1. A chromosome image with angles Ai and sides 
aj is a symmetrical chromosome image if and only if AZi- 1 = AZi 
for 1 :5 i :5 4, a1 = az and a3 = a4. 

A shape-oriented quantitative measure of the similarity of 
a given chromosome image A to all symmetrical chromosome 
images may be defined as 

4 

/-Ls (A ) = 1 - ps 2: I A Zi- 1 - AZi I 
i=l 

where Ps is a normalization constant to be determined. 

Lemma 3. A chromosome image is a symmetrical chromo
some image if and only if I-Ls = 1. 

In what follows, we assume that 

The angles of chromosome image A are represented in a 
vector form as 

E.2 Determination of the Normalization Constant ps 

The purpose of Ps is to normalize the value of Ps between 0 
and 1. In order to determine the value of Ps, we must first 
determine max {~1=1 I A Zi- 1 - AZi I}. After we find this value, 
we assume /-Ls to be equal to zero at this extreme case, so that 
we can determine the value of Ps. 

Lemma 4. For any chromosome image A with angles Ai, 

max { ± IAZi- 1 - AZi I } = 720°. 
A i=1 

Definition 2. A chromosome image is a most unsymmetrical 
chromosome image if and only if /-Ls=O. 

Theorem 1 

Proof. Assuming that the symmetry measure (/-Ls) of a most 
unsymmetrical chromosome image is equal to zero, then 

1 
I-Ls=O = 1 - Ps -720° and PS=7200 

Corollary 1. Given a chromosome image A with angles Ai, 

1 4 

/-Ls (A) = 1- 7200 2: 1 A Zi=l - AZi I. 
,=1 



Applications of Fuzzy Languages and Pictorial Databases to DSS Design 445 

E.3 Most Unsymmetrical Chromosome Images 

Shape-oriented quantitative measures of the dissimilarities 
of a given triangle to isosceles triangles, right triangles, and 
equilateral triangles have been defined.23 According to the 
measures defined, it was also proved that the triangle most 
dissimilar to an isosceles triangle is (120°, 60°, 0°); the triangle 
most dissimilar to an equilateral triangle is (180°, 0°, 0°); and 
the triangle most dissimilar to a right triangle is (180°, 0°, 0°). 
It is of interest to ask whether the most unsymmetrical chro
mosome image is unique or not. If not, then what are all the 
most unsymmetrical chromosome images? In order to answer 
this question in a concise form, we need to define an equiv
alence relation among chromosome images. We first define 
the following four permutations of the angles 

Po(A) =A 

PT (A) = (A2,At,A4,A3,A6,As,As,A7) 

PR (A ) = (A4,A3,A2,Al,As,A7,A6,As) 

PTR (A) = (A3,A4,Al,A2,A7,As,As,A6). 

Po is the identical permutation. PT is the permutation that 
interchanges the right-hand-side angles and the left-hand-side 
angles. PR is the permutation that interchanges the upper 
angles and the lower angles. PTR is the composite permutation 
of P T and P R. P TR may also be interpreted as the rotation of 
a chromosome image 180° about an axis perpendicular to its 
own plane. 

Denote these four permutations as the set G, 

Lemma 5. Given a chromosome image A, f.1s is invariant 
over G. 

f.1s (A) = f.1s (g (A)), g EG. 

Lemma 6. The set G over A forms an Abelian group. 

Definition 3. Given two chromosome images A and B , A is 
angularly equal to B denoted as A = B if and only if Ai = Bi 
for 1 :5 i :5 8. 

Definition 4. Given two chromosome images A and B, A is 
angularly equivalent to B denoted as A == B if and only if 
A = g ( B ) for some g in G. 

Example 8. Given chromosome images A and B with 

A = (180°, 0°, 180°, 0°, 180°, 0°, 180°, 0°) 

B = (0°, 180°, 0°, 180°, 0°, 180°, 0°, 180°) 

then A ==B. 

Theorem 2. There are six most unsymmetrical chromosome 
images, namely 

Al = (180°, 0°, 180°, 0°, 180°, 0°, 180°, 0°) 

A 2 = (180°, 0°, 180°, 0°, 180°, 0°, 0°, 180°) 

A 3 = (180°, 0°, 180°, 0°, 0°, 180°, 0°, 180°) 

A 4 = (180°, 0°, 0°, 180°, 180°, 0°, 180°, 0°) 

AS = (180°, 0°, 0°, 180°, 0°, 180°, 180°, 00) 

A 6 = (180°, 0°, 0°, 180°, 180°, 0°, 0°, 180°). 

Proof f.1s (A) = 0 implies that ~i=lIAu-l - Au I = 720°. 
This implies that 

I A U - 1 - Au i = 180°, 

Therefore, either 

A U - 1 = 0° and Au = 180° 

or 

A U - 1 = 180° and A2i ~ 0°, for 1 :5 i :5 4. 

Thus, there are 16 most unsymmetrical chromosome 
images not angularly equal to each other. By using the equiv
alence relation defined in Definition 4, these 16 most un
symmetrical chromosome images are degenerated into six 
equivalent classes, and AI, A 2, A 3, A 4, AS, and A 6 are the 
representatives of these six equivalent classes.O 

E.4 Median Images 

\\-'hen classifying chromosome images, different types and 
sizes are encountered. Three of these different types, median, 
submedian, and acrocentric will be examined. They all have 
the same general appearance. The difference occurs in the 
location of their centromere. Both figures and string 
representations of median, submedian, and acrocentric 
chromosome images are given by Lee and Fu.26 String 
representations were done by using the terminal set 
V T = {a, J ; b; ~; c ,~ ; d, , }. The same terminal set was 
used by Ledley et al. 27 String representation of a median 
chromosome image is as follows: 

X(median) = cbbbabbbbdbbbbabbbcbbbabbbbdbbbbabbb . 

Given a chromosome image A with angles Ai and sides ai, a 
quantitative measure of the similarity of this chromosome 
image to median chromosome images may be defined as 

or 

where 

f.1M (A ) = f.1s (A). [1- I at - a4 1 + I a2 - a31] 
at + a2 + a3 + a4 + as 

f.1D (A ) = 1- f.1s (A). 



446 National Computer Conference, 1983 

Lemma 7. Given a chromosome image A with angles Ai and 
sides aj, the following three conditions are equivalent: 

1. J.l.M (A) = l. 
2. I-L'M(A)=1. 
3. Chromosome image A is a symmetrical chromosome 

image and at = a2 = a3 = a4. 

Lemma 8. Given a chromosome image A, 

J.l.M(A):5J.l.~(A). 

Lemma 9. Given a chromosome image A , let 

(A) - 1 I at - a4 I + I a2 - a3 I 
J.l.DM - - al + a2 + a3 + a4 + as . 

Then, 

and 

o :5 J.l.M (A ) :5 J.l. ~ (A ) :5 J.l.DM (A ) :5 1. 

Lemma 10. Given a chromosome image A, let 

then the set LM with max and min as the two binary operations 
forms a distributive but not complemented lattice. 

E.5 Submedian Images 

By using the terminal set V T, string representation of a sub
median chromosome image is as follows: 

X(submcdian) = cbabbbdbbbbbabbbcbbbabbbbbdbbbab . 

Given a chromosome image A with angles Ai and sides aj, 
let 

aSM=min { I at - Za4 1 + I a2 - Za3 1 , IZat - a4 1 

+ IZa2 - a3 1 } 

and 

A quantitative measure of the similarity of this chromosome 
image A to submedian chromosome images may be defined 
as: 

or 

,",,5;'" (A) = 1- f.LD (A) (as ... d2aT)~ 

Lemma 11. Given a chromosome image A, the following 
three conditions are equivalent: 

1. J.l.sM(A) = 1. 
2. I-Ls~ (A) = 1. 
3. Chromosome image A is a symmetrical chromosome 

image and (either at = 2a4, a2 = Za3 or a4 = Zah a3 = 2a2). 

Lemma 12. Given a chromosome image A, 

J.l.SM (A) :5 J.l.s~ (A). 

Lemma 13. Given a chromosome image A, let 

then 

o :5 J.l.SM (A) :5 J.l.s~ (A) :5 J.l.s (A) :5 1 

and 

Lemma 14. Given a chromosome image A, let 

This set LSM with max and min as the two binary operations 
forms a distributive but not complemented lattice. 

Depending on its prospective application, the constant 2 
used in defining aSM may be changed to other constants. 

E.6 Acrocentric Images 

Given the terminal set V T, string representation of an acro
centric chromosome image is as follows: 

X(acrocentric) = cadbbbbbbabbbbbcbbbbbabbbbbbda . 

Given a chromosome image A with angles Ai and sides ai, let 

aAC = min { I at - 4a4 I + I a2 - 4a3 I , 

I 4at - a4 I + I 4a2 - a3 I }; 

then a quantitative measure of the similarity of this chromo
some image A to acrocentric chromosome images may be 
defined as 

i-LAc(A) = i-Ls(A)· [1 - aAc/4aT] 

or 

Lemma 15. Given a chromosome image A, the following 
three conditions are equivalent: 



Applications of Fuzzy Languages and Pictorial Databases to DSS Design 44 7 

1. J.LAc(A) = 1. 
2. J.L;c(A) = 1. 
3. Chromosome image A is a symmetrical chromosome 

image and (either al = 4a4, a2 = 4a3 or a4 = 4ab a3 = 4a2). 

Lemma 16. Given a chromosome image A, 

Lemma 17. Given a chromosome image A , let 

Then 

and 

Lemma 18. Given a chromosome image A, let 

then the set LAc with max and min as the two binary opera
tions forms a distributive but not complemented lattice. 

Depending on its prospective application, the constant 4 
used in defining aAC may be changed to other constants. 

E.7 An Algorithm 

Algorithms for classifying a triangle as an "approximate 
isosceles triangle," "approximate equilateral triangle," 
"approximate right triangle," "approximate isosceles right 
triangle," or "ordinary triangle," and algorithms used to clas
sify a quadrangle as "approximate square," "approximate 
rectangle," "approximate rhombus," "approximate paral
lelogram," "approximate trapezoid," or "ordinary quad
rangle" have been presented elsewhere. I8 This section 
presents an algorithm for classifying a chromosome image into 
one of the following three classes: "approximate median," 
"approximate submedian," or "approximate acrocentric." 
This can be done in the following manner. Compute J.LM , J.LSM , 
and J.LAC, and set a threshold 0, where 0 is a parameter and 
0:::; 0 < 1. If we compare the max{J.LM, J.LSM, J.LAdwith 0, there 
are two possibilities: 

1. If max {J.LM, J.LSM, J.LAC} > 0, then there are two possi
bilities: 
a. If the maximum is unique, then we choose the class 

corresponding to the maximum value and classify the 
image accordingly. 

b. If the maximum is not unique, then we define a prior
ity among J.LM , J.LSM , and J.LAC and classify the chromo
some image accordingly. 

2. Otherwise, the chromosome image is rejected as not 
belonging to any of the classes. 

Depending on its prospective application, J.LM, J.LSM, and J.LAC 
may be replaced by J.L;;, J.Ls~' J.L;c' respectively. 

E.8 Expansion or Contraction Constant a 

The expansion or contraction of a chromosome image will 
not affect the values of the 8 angles. Let a be an expansion or 
contraction constant, with a > O. By applying an expansion or 
contraction constant a to a chromosome image A with angles 
Ai and sides aj, we obtain a new chromosome image denoted 
as aA , with angles Ai and sides aaj. 

Lemma 19. ILs is invariant with respect to an expansion or 
contraction constant a: 

Definition 5. A quantitative measure of a chromosome 
image is a shape-oriented measure if and only if this measure 
is invariant with respect to an expansion or contraction con
stant a. 

Example 9. J.Ls is a shape-oriented measure. 

Lemma 20. J.LM, J.L~, J.LDM , J.LSM, J.Ls~ , J.LDSM , J.LAC, J.L A'C and 
J.LDAC are shape-oriented measures, and are independent of 
the size of chromosome images. 

Lemma 21. The classification algorithm described in Sec
tion E.7 is independent of the size of chromosome images, 
and is a shape-oriented classification algorithm. 

E.9 Conclusion of Section E 

A shape-oriented classification algorithm has been de
scribed. As we have stated elsewhere/3 there are three advan
tages of shape-oriented similarity measures. These are 

1. Two chromosome images may have the same shape but 
differ in area and dimensions and still be similar. 

2. Shape-oriented similarity measures can be normalized 
between 0 and 1. 

3. Shape-oriented similarity measures are invariant with 
respect to rotation, translation, or expansion or con
traction in size. 

As Rock demonstrated/8 the perception of form embodies 
the automatic assignment of a top, a bottom, and sides. Thus, 
orientation plays an important role in unassisted chromosome 
classification. Owing to the invariance of angle and length 
measurements with respect to orientation, shape-oriented 
chromosome classification would not be confused by the ori
entation of the chromosome. In this sense, shape-oriented 
chromosome classification is better than unassisted chromo
some classification. The results obtained in this section may 
have useful applications in the storage, retrieval, and classi
fication of chromosome images and geometric figures. In ad
dition, the results may be applied to other areas, for instance, 



448 National Computer Conference, 1983 

to the work done by Pavlidis29-31 in the area of approximating 
an arbitrary shape by polygons, the work done by Dacey32 in 
the development of a two-dimensional language that produces 
line pictures of polygons, or the work presented by Harmon33 

on face recognition. The results may also be of uSe in pattern 
recognition, information retrieval and artificial intelligence. 

We conclude this section with another proposition. (As 
shown in Figure 3(d), (A}, A 2) and (A3' A4) are exterior 
biangles; (As, A 6 ) and (A7' As) are interior biangles.) 

Proposition 5. For shape-oriented storage of chromosome 
images, if we logically order all the chromosome images 
individually and independently according to the angular sums 
of exterior biangles and interior biangles, then we can reduce 
retrieval time for answering queries such as "retrieve the 
chromosomes that are very very similar to a given chromo
some A." 

F. DECISION SUPPORT SYSTEMS INVOLVING 
LEUKOCYTE IMAGES 

Let the universe of discourse UL = {L} be the universe of 
leukocyte images. Let the set of terms TL be leukocytes with 
circular nuclear shape, leukocytes with elongated nuclear 
shape, leukocytes with spkuled nuclear shape, leukocytes 
with indented nuclear shape, leukocytes with slightly indented 
nuclear shape, and leukocytes with deeply indented nuclear 
shape. 

The peripheral blood leukocytes have been classified into 
eight categories. 34 The categories are small lymphocytes, 
medium lymphocytes, large lymphocytes, band neutrophils, 
segmented neutrophils, eosinophils, basophils, and mono
cytes. Pictures of typical peripheral blood leukocytes are 
given by Bacus and Gose. 34 The features they used were 
nuclear size, nuclear shape, nuclear and cytoplasmic texture, 
cytoplasm color, and cytoplasm colored texture. 

As Bacus and Gose stated, it is particularly important not 
only to classify the five major cell types, but also to determine 
intraclass differences, between younger and older cells in 
some classes. 34 For example, intraclass percentage shifts re
late to the production rates and maturation of new cells, and 
thus to the physiological response to stress. In this section, our 
attention will be focused on the study of the shape properties 
of leukocytes in order to determine intraclass differences. 

Young has stated that the nuclear shapes of lymphocytes, 
monocytes, eosinophils and basophils are round, indented, 
segmented, two-lobed and elongated, respectively.3s Four 
shape features (circular, spiculed, oblong and irregular) were 
listed by Bacus and Aggarwal as typical features for comput
erized microscopic-image analysis; however, they did not 
show how to measure these four shape features. 36 

The nuclear-shape measure used by Bacus and Gose was 
(perimeter)2/area.34 Letf denote this measure. Then, 

f = (perimeter)2/area. 

Bacus and Gose give a way to obtain perimeter and area 
measure. 34 

Out of all possible nuclear shapes, circular shapes minimize 
f; the minimum of f is equal to 41i'. 

F.l Equal-Perimeter Circular-Shape Measure 

The range of f is from 41i' to infinite. In order to normalize 
this measure between 0 and 1, a normalization constant PI is 
multiplied times the reciprocal of f as: 

where PI is a normalization constant, and is set to 41i'. tJ-l may 
be viewed as a quantitative measure of the meaning of an 
"approximately circular shape" or the meaning of an "ap
proximately round shape." 

F.2 Equal-Area Circular-Shape Measure 

Let P and A denote, respectively, the perimeter and the 
area of a nucleus. Let P' denote the perimeter of a circle with 
area A. Let A' denote the area of a circle with perimeter P. 
Depending on its prospective application, the meaning of an 
"approximately circular shape" may also be expressed as: 

/-12 = P2P 'IP, 

where P2 is a normalization constant, and is set to 1 in order 
to normalize the value of tJ-2 between 0 and l. 

tJ-l may be called an equal-perimeter circular-shape measure 
and tJ-2 an equal-area circular-shape measure. The relation
ship between tJ-l and tJ-2 is summarized in the following three 
theorems. 

Theorem 3. For all possible nuclear shapes, the equal
perimeter shape measure tJ-l is always less than or equal to the 
equal-area circular-shape measure /-12. 

Theorem 4. For all possible nuclear shapes, the equal
perimeter circular-shape measure tJ-l is always equal to the 
square of the equal-area circular-shape measure tJ-2. 

Theorem 5. For any two nuclear shapes A and B, tJ-i(A) is 
greater than or equal to tJ-l(B) if and only if tJ-2(A) is greater 
than or equal to tJ-2(B). 

The proofs of theorems can be obtained from the author. 
Theorem 5 shows the order-preserving property of tJ-l and tJ-2 
with respect to all possible nuclear shapes. 

F.3 Elongated-Shape Measures 

The nuclear shape of the basophil cell type is elongated. A 
quantitative measure of the elongated visual concept of a 
nucleus may be defined as follows: 

1. Determine its area and center of mass. A way to deter
mine its area and center of mass is given by Bacus and 
Gose. 34 



Applications of Fuzzy Languages and Pictorial Databases to DSS Design 449 

2. Find the best-fit rectangle with the same area and with 
its center coinciding with the center of mass of the 
nucleus. 

3. Let a and b denote the sides of the best-fit rectangle. Let 
,,< denote a quantitative measure of the elongated visual 
concept of the nucleus. Then 

I max(a, b) 
/-Le a + b 

4. If the best-fit rectangle is not unique, the /-Le is defined to 
be the maximum of /-L;-

F.4 Spiculed-Shape Measures 

A quantitative measure of the spiculed visual concept of a 
nucleus may be expressed as 

Depending on its prospective application, the exponent used 
in defining /-Lsp may take on different values. 

F.5 Indented-Shape Measures 

The nuclear shape of the monocyte cell type is indented. A 
quantitative measure of the visual concept "indented," as 
used of a nucleus, may be defined as follows: 

1. As shown in Figure 4, determine points A and B such 
that the indented nucleus is symmetric with respect to 
AB. If the symmetric axis AB does not exist, deter
mine the axis AB that will minimize the symmetrical 
difference. 

2. Determine points C and D such that the tangents at C 

/ 

(91 A 
", 

" , 
"

"
"

c 

G 

, 
'Ii: 

H 

o 
Figure 4-A quantitative measure of the visual concept "indented" 

and D are perpendicular to the tangent at A . If C is not 
unique, then determine the middle point as C. 

3. Determine points E and F such that AE is equal to EC, 
and AF is equal to FD along the perimeter. 

4. Determine 81, which is the angle formed by the tangents 
at points E and F. 81 may be called the exterior angle of 
an indented nucleus. 

5. Determine points G and H such that the tangents at G 
and H are parallel to the tangent at A . If G is not unique, 
then determine the middle point as G. 

6. Determine points 1 and J such that BI is equal to IG , and 
BJ is equal to JH along the perimeter. 

7. Determine 82, which is the angle formed by the tangents 
at points 1 and J. 82 may be called the interior angle of 
an indented nucleus. 

8. Let /-Li denote a quantitative measure of the indented 
visual concept of the nucleus. Then, 

or 

or 

where Pi, P;, and p'; are normalization constants, set to 
11180°, 11180° and 11(180°)2, respectively, in order to nor
malize the values of /-Li, /-L;, and /-L7 between 0 and 1. 

Example 10 

1. For Figure 5(a), 81 = 82 = 0°. Thus, 
/-Li = 1. 

2. For Figure 5(b), 81 = 25° and 82 = 10°. Thus, 
/-Li =0.86. 

3. For Figure 5(c), 81 = 84° and 82 = 70°. Thus, 
/-Li =0.53. 

4. For Figure 5(d), 81 = 180° and 82 = 180°. Thus, 
/-Li=O. 

5. For Figure 5(e), 81 = 90° and 82 = 180°. Thus, 
/-Li=O. 

It is of interest to note that /-Li is monotone decreasing with 
respect to the exterior angle 8, and the interior angle 82. 

F.6 Slightly Indented Shape Measures 

A quantitative measure of the slightly indented visual con
cept of a nucleus may be expressed as 

112 
/-Lsi = /-Li . 

Example 11. (1) For Figure 5(b), /-Lsi = 0.93. (2) For Figure 
5(c), /-Lsi = 0.73. 



450 National Computer Conference, 1983 

81 = 82 =0 

fLi = 1 

(0 ) 

(c) 

o 
(e) 

8 j = 25" 
82= IOc 

fLj= 0.86 

(b) 

8, = 82 = ISO" 

fLi = 0 

81= 90' 

82=180' 

Jl-,= 0 

Figure 5-The grade membership of indented nuclei 

Depending on its prospective application, the exponent used 
in defining !J..si may take on different values. 

F.7 Deeply Indented Shape Measures 

A quantitative measure of the visual concept "deeply in
dented," for a nucleus, may be expressed as 

Example 12. (1) For Figure 5(b), !J..di = 0.74. (2) For Figure 
5(c), !J..di = 0.28. 

Depending on its prospective application, the exponent used 
in defining, !J..di may take on different values. 

Proposition 6. For shape-oriented storage of leukocytes, it 
is suggested that leukocytes be logically ordered individually 
and independently according to the magnitudes of the grade 
of membership of approximately circular (round) nuclei, 
elongated nuclei, indented nuclei, slightly indented nuclei, 
and deeply indented nuclei, so that, for answering queries, the 
amount of leukocyte data that must be searched can be re
duced and the response time improved. 

G. CONCLUSIONS 

The foregoing analysis has shown that the concepts of fuzzy 
languages and pictorial databases37 can be applied to decision 
support system design methodologies. Decision support sys
tems involving geometric figures, chromosome images, or leu
kocyte images are presented as illustrative examples. 

In similarity retrieval from a pictorial database, very often 
it is desired to find pictures (or feature vectors, histograms, 
etc.) that are most similar to or most dissimilar to a test 
picture (or feature vector). Algorithms for finding most dis
similar images may be found elsewhere. 38 The unique pair of 
the most dissimilar chromosome images is shown in Figure 6. 

Earlier, a review and evaluation of the state of the art of 
similarity retrieval and updating techniques was presented13 ; 
various types of similarity measures for extracting picture 
primitives were described. Using similarity measures, one can 
not only store similar pictures logically or physically close to 
each other to improve retrieval efficiency, one can also use 
such similarity measures to answer fuzzy queries involving 
nonexact retrieval conditions. 

The applications of fuzzy languages and pictorial databases 
to decision support system design methodologies offer what 
appears to be a fertile field for further study. The underlying 
ideas are interesting and easy to apply practically. The results 
have useful applications in decision support systems, pattern 
recognition,39-46 pictorial information systems and artificial 
intelligence. 

°2 ~ °1 

~:<: dZ 7.~~ 
°4 d5 °3 

Ef = E~ : (0·,0-) 
o 0 

EI = E2 = ( 180·,180") 

ID D = ( 180',180') I = 12 I~ = I~ = (180·,180·) 

Figure 6-The unique pair of the most dissimilar chromosome images 

REFERENCES 

1. Lee, D. T. "Database Design for Decision Support Systems." In S. K. 
Chang (Ed.) Management and Office Information Systems. New York: 
Plenum, 1983, in process. 

2. Lee, D. T., et al. "Quintary Tree: A File Structure for Multidimensional 
Database Systems." ACM Transactions on Database Systems, 5 (1980). 

3. Lee, D. T. "The Contingent Model of Decision Support Systems." The 
Proceedings of Western AIDS, i982. 



Applications of Fuzzy Languages and Pictorial Databases to DSS Design 451 

4. Lee, D. T. "The Unified Approach for Designing Decision Support Sys
tems." DSS-82 Transactions, 1982. 

5. Lee, D. T. "United Database for Decision Support." International Journal 
of Policy Analysis and Information Systems, (1982). 

6. Mackenzie, K. D. "Organizational Structures as the Primal Information 
System: An Interpretation." In S. K. Chang (Ed.) Management and Office 
Information Systems. New York: Plenum, 1983, in process. 

7. Blanning, R. W. "Language Design for Relational Model Management." 
In S. K. Chang (Ed.), Management and Office Information Systems. New 
York: Plenum, 1983, in process. 

8. Pan, S., R. A. Pick, and A. Whinston. "Database Management Support for 
Decision Support Systems." In S. K. Chang (Ed.), Management and Office 
Information Systems. New York: Plenum, 1983, in process. 

9. Ellis, C. A., and G. J. Nutt. "Computer Science and Office Information 
Systems," Technical Report SSL-96-6, Xerox Palo Alto Research Center, 
December 1979. 

10. Date, C. J. An Introduction to Database Systems (3rd ed.). Reading, Mass.: 
Addison-Wesley, 1981. 

11. Codd, E. F. "A Relational Model of Data for Large Shared Data Banks." 
Communications of the ACM, 14 (1970). 

12. Lee, E. T., and L. A. Zadeh. "Note on Fuzzy Languages." Information 
Sciences, 1 (1969), pp. 421-434. 

13. Lee, E. T. "Similarity Retrieval Techniques." In S. K. Chang and K. S. Fu 
(Eds.), Pictorial Information Systems. New York: Springer-Verlag, 1980, 
pp. 128-176. 

14. Hopcroft, J. E., and J. D. Ullman. Introduction to Automata Theory, 
Languages and Computation. Reading, Mass.: Addison-Wesley, 1979. 

15. Rosenkrantz, D. J. "Matrix Equations and Normal Forms for Context-Free 
Grammar." Journal of the ACM, 14 (1967), pp. 501-507. 

16. Bellman, R. E., and L. A. Zadeh. "Decision-Making in a Fuzzy Environ
ment." Management Science, 17 (1970), pp. B-141-B-164. 

17. Lee, E. T. "Algorithms for Finding Chomsky and Greibach Normal Forms 
for a Fuzzy Context-free Grammar Using an Algebraic Approach." 
International Journal of Cybernetics and Systems, 1983, in process. 

18. Lee, E. T. "Proximity Measures for the Classification of Geometric Fig
ures." Journal of Cybernetics, 2 (1972), pp. 4:>-59. 

19. Zadeh, L. A. "Similarity Relations and Fuzzy Ordering." Information 
Science, 3 (1971), 159-176. 

20. Zadeh, L. A. "A Fuzzy-Set-Theoretic Interpretation of Linguistic 
Hedges." Journal of Cybernetics, 2 (1972), 4-34. 

21. Chu, Y. Computer Organization and Microprogramming. Englewood 
Cliffs, N.J.: Prentice-Hall, 1972. 

22. Richards, H., and A. E. Oldehoeft. "Hardware-Software Interactions in 
Symbol-2R's Operating System." Second Annual Symposium on Computer 
Architecture, 1975. 

23. Lee, E. T. "The Shape-Oriented Dissimilarity of Polygons and Its Applica
tion to the Classification of Chromosome Images." Pattern Recognition, 6 
(1974), pp. 47-60. 

24. Stohr, E. A., and N. H. White. "Software for Planning and Decision 
Support Systems: An Overview." In S. K. Chang (Ed.), Management and 
Office Information Systems. New York: Plenum, 1982. 

25. Wildrow, B. "The Rubber-Mask Technique-I: Pattern Measurement and 
Analysis." Pattern Recognition, 5 (1973), pp. 175-197. 

26. Lee, H. c., and K. S. Fu. "A Stochastic Syntax Analysis Procedure and Its 
Application to Pattern Classification." IEEE Transactions on Computers, 
C-21 (1972), pp. 660-666. 

27. Ledley, R. S., L. S. Rotolo, T. J. Golab, J. D. Jacobsen, M. D. Ginsberg, 
and J. B. Wilson. "FIDAC: Film Input to Digital Automatic Computer and 
Associated Syntax-Directed Pattern-Recognition Programming System." 
In Optical and Electro-Optical Information Processing. Cambridge, Mass.: 
MIT Press, 1965, pp. 591-613. 

28. Rock, I. "The Perception of Disoriented Figures." The Scientific American 
(1974), pp. 78-85. 

29. Pavlidis, T. "Analysis of Set Patterns." Pattern Recognition, 1 (1968), 
165-178. 

30. Pavlidis, T. "Computer Recognition of Figures Through Decomposition." 
Information and Control, 12 (1968), pp. 62fr637. 

31. Pavlidis, T. "Representation of Figures by Labeled Graphs." Pattern Rec
ognition, 4 (1972), pp. 5-17. 

32. Dacey, M. F. "Poly: A Two Dimensional Language for a Class of Poly
gons." Pattern Recognition, 3 (1971), pp. 197-208. 

33. Harmon, L. D. "The Recognition of Faces." The Scientific American, 229 
(Nov. 1973), pp. 71-82. 

34. Bacus, J., and E. Gose. "Leukocyte Pattern Recognition." IEEE Trans
actions on Systems, Man and Cybernetics, SMC-2 (1972), pp. 51:>-526. 

35. Young, I. "Automated Leucocyte Recognition." In Automated Cell Identi
fication and Cell Sorting. New York: Academic Press, 1972. 

36. Bacus, J., and Aggarwal, et al. "Computer Recognition of Microscopic 
Images." Proceedings of EASCON, 1975. 

37. Lee, E. T. "Similarity Retrieval for Pictorial Databases." In S. K. Chang 
(Ed.), Management and Office Information Systems. New York: Plenum, 
1983, in process. 

38. Lee, E. T. "Algorithms for Finding Most Dissimilar Images with Possible 
Applications to Chromosome Classification." Bulletin of Mathematical 
Biology, 38 (1976), pp. 505-516. 

39. Lee, E. T. "An Application of Fuzzy Sets to the Classification of Geometric 
Figures and Chromosome Images." Information Sciences, 10 (1976), 
pp.95-114. 

40. Lee, E. T. "Shape-Oriented Chromosome Classification." IEEE Trans
actions on Systems, Man, and Cybernetics, SMC-5 (1975), pp. 629-632. 

41. Lee, E. T. "Shape-Oriented Classification Storage and Retrieval of Leuko
cytes." Proceedings of the Third International Joint Conference on Pattern 
Recognition, Nov. 8-11, 1976. 

42. Lee, E. T. "Shape-Oriented Storage and Retrieval of Geometric Figures 
and Chromosome Images." Information Processing and Management, 12 
(1976), pp. 35-41. 

43. Lee, E. T., and N. Lee. "Design of a Fault Tolerant Microprocessor." 
Proceedings of the 1978 International Computer Symposium, Dec. 20-24, 
1978, pp. 100-101, 

44. Lee, E. T. "A Shape-Oriented Image Data Base." Proceedings of the 
Symposium on Current Problems in Image Science, Monterey, Calif.: Nov. 
1976. 

45. Lee, E. T. "A Similarity Directed Picture Database." Policy Analysis and 
Information-Systems, 1978, pp. 11:>-125. 

46. Lee, E. T. "Similarity-Directed Picture Storage arid Management." Pro
ceedings of the' 1977 IEEE Workshop on Picture Data Description and 
Management, 1977. 





Database-oriented decision support systems 

by DANIEL T. LEE 
University of Hartford 
West Hartford, Connecticut 

ABSTRACT 

Decision support systems represent a new challenge for computer technology ex
perts, management science specialists, and organizational theorists. This paper 
examines the related topics on the database design for decision support systems. 
The major emphasis is on the global conceptual model and the unified approach for 
database design. The entity-relationship model is used for illustrating the unified 
approach, and the various translation processes are also discussed. A practical 
example is given. Throughout the paper, the interfaces among the user, the model, 
and the database are stressed. 

453 





INTRODUCTION 

The computer has been a source of expectation since the first 
commercial electronic computer, the UNIVAC I, became 
available in 1951. During the past three decades, though the 
computer has made great contributions toward civilization, it 
has been limited basically to transaction processing, focusing 
on data storage and flow. Decision makers have been con
vinced that the computer can enhance their organization's 
efficiency by reducing cost and increasing profit, but are not 
convinced that it can do much to improve their decision mak
ing. It is only recently that the computer has been considered 
an integral part of the decision-making process.27 

The computer has evolved through three stages. Initially, 
the computer was employed in routine data processing (e.g., 
billing, payroll, and scheduling) and producing reports. It was 
soon determined that the various functions played by this 
electronic data processing (EDP) stage should be integrated 
for the sake of efficiency. Unfortunately, the use of EDP for 
executives' decision making has been indirect, as Keen and 
Morton26 point out, because its major use was providing re
ports and access to data. EDP failed to meet the expectations 
of the management information system (MIS), according to 
Wagner. 49 However, since the payoff of improving executives' 
decision-making is high, both academicians and practitioners 
are trying to change the MIS to improve the decision-making 
process. Decision support systems (DSS) are incorporated 
with data management capability and model handling capabil
ity in the decision-making process.43,8,24 

De and Sen18 are strongly against the decision-specific ap
proach exemplified in the studies of Keen and Morton26 and 
Alter.3 De and Sen believe that such approaches suffer from 
a common problem: they are not general. Because it is diffi
cult to predict the types of decisions executives will make and 
there are unpredictable changes in the environment, it would 
be inappropriate to say that the DSS should be data-oriented 
or model-oriented.3 Though executives need information that 
is largely unstructured and externally oriented, they also need 
structured and internal reports. According to Haseman,z4 the 
types of information required for decision makers can be 
classified as (1) repetitive report generation, (2) ad hoc lan
guage capability, and (3) model interface capability. Bonczek 
and coauthors8 also indicated that a decision support system 
should address at least the three topics of data management
modeling (computation management), the user's interface 
(i.e., the user's language), and data management. These three 
are intertwined and interdependent. In general, a DSS is an 
integrated set of data and models. It should be designed with 
a unified database. It should be easy to use, flexible enough 
to meet all types of information requirements at all levels, and 

Database-Oriented Decision Support Systems 455 

dynamic enough to meet all changes in the future. To meet 
these above requirements, the role of an integrated database 
is crucial. Unfortunately, such an integrated database has 
not been designed. This paper tries to close this gap by de
signing a unified database that will meet the decision maker's 
needs in satisfying data management and model-handling 
capabilities. 

THE DESIGN CRITERIA FOR A DECISION 
SUPPORT SYSTEM 

Morton38 first characterized a DSS as an interactive computer 
system incorporated with data and models for solving mainly 
unstructured problems for decision makers. Bonczek, Hols
apple, and Whinston8 outlined five design criteria as proposed 
by Sprague and Watson.41 They are: 

1. A set of models supports decision making in various 
functional areas and at various management levels. 

2. Models are devised as modules that can stand alone or 
be used in conjunction with one another to form more 
models. 

3. A query language can interact ",;th the database. 
4. A mechanism for models extracts data from a database. 
5. Flexibility in modifying the modules meets the require

ment of a changing environment. 

These criteria exemplify a DSS having the capability of 
interfacing databases and models interactively. Actually, the 
major function of a DSS is to support the decision-making 
process. Decision makers also need information from stan
dard reports that might be produced in batch processing or 
online processing. A genuine DSS should be a system incor
porated with data management capability and modeling capa
bility in batch or interactive processing. 

DATABASE DESIGN 

Design Constraints 

The current technology in database design exists generally 
for static and stable environments. There are very few, if any, 
design methodologies that are readily available for designing 
such a comprehensive and versatile database for executives. 
This paper examines such a design methodology in the next 
few sections. 



456 National Computer Conference, 1983 

Conceptualization of the Organization 

Information is increasingly becoming a scarce resource for 
an organization. Efficient management and use of this scarce 
resource determines successful operation of an organization. 
For efficient use of information, the information requirements 
for various decisions should be identified through a concep
tual model that is used as a communication tool between the 
system designer and the user. This conceptual model can be 
divided into local conceptual models and a global conceptual 
model. The local conceptual model is developed by examining 
the information requirements for the various decisions (or 
talking to the personnel or the decision maker concerned). 
Then all these local conceptual models are integrated into a 
global conceptual model. The global model is used without 
consideration of the physical aspects of the database. The 
local conceptual views are equivalent to the external schema 
in the ANSI-X3-SPARC/DBMA 4 Interim Report, which con
sists of three distinct types of schemas: external, conceptual, 
and internal. The external schemas are the definitions of the 
user's views of a database and their mapping to the conceptual 
schema (or global conceptual view of the organization). The 
conceptual schema is the definition of the real world (or the 
organization's view, or DBA's view) of the database and its 
mapping to the internal schemas. The internal schema is 
concerned with the physical storage and access path.34

,4s 

The major reasons for using conceptual schema as the 
interfacell are: 

1. It reduces the number of mappings between the external 
schemas and internal schemas. 

2. Since the conceptual schema is not concerned with the 
physical storage and access path, it is relatively stable 
while allowing changes in external schemas and internal 
schemas, and it plays an important role in maintaining 
logical data independence and physical data indepen
dence. 

3. The conceptual schema is the same as the enterprise 
schema. 

The proposed entity-relationship diagramlO can be used to 
describe the conceptual schema. Furthermore, the external 
schemas may be expressed in terms of three logical data 
models-relational, hierarchical, and network (DBIG). The 
E/R diagram will be a very useful tool for translating the 
conceptual model of data into various logical data models. 
This paper follows the basic concepts and the translation rules 
of the Entity-Relationship Model (E/R model) in defining its 
conceptual model and subsequent mapping between the con
ceptual model and logical data models, because the E/R 
model is very mature in defining the conceptual schema of an 
organization, and its mechanism is easy to understand. 

Logical Data Models 

The logical view of data has been an important issue in 
recent years in database design, because existing commercial 
systems are based on one of the three major data models 

(relational, hierarchical, and networkrs and almost exclu
sively based on either hierarchical or network models. 47 This 
situation might change soon toward a relational approach or 
a unified approach. These subjects are discussed in the next 
few sections. \"\-'hen designing a database, problems of both 
computer efficiency and human efficiency should be consid
ered.48 In terms of human efficiency, data should be presented 
to a user in a form suited to both the user's skills and the 
application required. The choice of data structure to be sup
ported at the user level (external or conceptual) critically 
affects many components of the system. It also dictates the 
design of the corresponding data manipulation language( s), 
because each DML operation must be defined in terms of its 
effect on those data structures. 17 Thus the question "Which 
data structures and associated operators should the system 
support?" is a crucial one. Before answering this question, the 
three best-known approaches (relational, hierarchical, and 
network) will be examined. 

The Relational Data Model 

The relational model is based on relational theory. The 
mathematical concept underlying the relational model is the 
set-theoretic relation, which is a subset of the cartesian prod
uct of a list of domains. A domain is a set of values. The 
relational model consists of a collection of relations, each of 
which can be thought of as a simple table. Rows of such tables 
are generally referred to as tuples, which correspond to 
entities. Columns are usually referred to as attributes. The 
ordering of rows and columns is immaterial. The attribute 
name usually corresponds to domain name, provided no am
biguities occur; otherwise, a role name should be used to 
qualify the domain name as the attribute name. The domain 
and the attribute are different concepts. The former is a set of 
values; the latter is a list of items taken from the domain. A 
particular item can occur several times in the column of attri
bute values, while it occurs only once in the set of values in a 
domain. Sometimes, two or more attributes take values from 
the same domain. The attribute in a relational model is used 
to distinguish domains with the same name in the same re
lation and to map attribute names to values in the domains of 
the attributes. 

The list of attribute names for a relation is called the re
lation scheme, which corresponds to a record format. A re
lation corresponds to a file and a tuple to a record. The 
collection of relations with their values is called the relational 
database. We are free to create relations with any set of attri
butes from the relation schemes. Since the number of basic 
constructs in the relational data model is one (namely, the 
relation itself), all information in the database is represented 
by this simple construct. We need only one operator for each 
of the four basic functions-retrieve, insert, delete, and up
date. In order to avoid the operation anomalies, the relational 
model is usually operated under normalized relations. It 
possesses a body of theory applicable to database problems, 
such as normalization theory for designing a relational 
schema/s,sl and the theory of relational completeness for 
comparing relational languages. 17 



In summary, the structure of a relational model is best by 
describing each domain, with its possible data type, and each 
relation, identifying its attributes and primary key, which 
uniquely identifies each type within a relation. Tuples corre
spond to entities, and relations correspond to entity set. Both 
the entities and relationships among entities are represented 
by one construct, relation, one-to-many and many-to-many 
relationships are treated the same. 

It is clear that relational structure is simple and easy to 
understand, and it is predicted that it will become the major 
contender in the logical data model selection. 

The Network Data Model 

The specification of the CODASYL Data Base Task Group 
(DBTG) for defining and processing network-oriented data
bases was recorded in the 1971 Report of CODASYL 
DBTG,12 and the discussion of the network data model is 
detailed by Olle.4O This report,12 written by a group of volun
tary representatives from computer manufacturers, users in 
U.S. industry and government, and university researchers has 
become the basis for some sort of standardization of a gener
alized database management system. 

The basic constructs of a network data model are logical 
record types represented by rectangles that correspond to 
entity sets and DBTG-set types represented by arrows that 
correspond to relationship types in the E/R model (which are 
discussed in detail in the following sections). The most im
portant construct in the network model is the set that goes 
from the owner record type to one or more member record 
types. In case of many-many relationships, it must create a 
link record type between the two record types that are the 
owner record types of the link record type, and then these two 
record types can be one-one correspondence. According to 
DBTG Data Definition Language (DDL), one-many re
lationships are usually required; of course, it can be one-D, 
one-one, or one-many. Record occurrences correspond to 
entities, data items to attributes, and set occurrences to 
relationships. 

The network model compared with the relational model 
shows that repeating groups are allowed in the network 
model, while they are not allowed in the latter; the former 
does not have to have a tuple identifier, while the latter must 
have it; the former uses predefined access paths through set 
mechanisms, while the latter does not and all possible routes 
are dynamically materialized; the former specifies certain 
integrity constraints to the data structure, while the latter does 
not and only declares them as adjuncts to the data structure. 
According to Michaels,37 four major areas of data definition, 
structure, physical placement, access path, and integrity and 
privacy constraints, the relational model includes neither 
physical placement nor access paths, and there is clear sepa
ration between structure and constraints, while the network 
model includes all these four areas of description. From these 
structure comparisons, the network structure is more complex 
than the relational. From DSS point of view, the relational 
model is more appealing than the network. Current imple
mentation of database management systems, however, exists 

Database-Oriented Decision Support Systems 457 

either in the network model or hierarchical model, and many 
inadequacies, as Michaels pointed out, are not inherent to the 
network approach. We might still have to deal with the net
work structure either by transformation between the re
lational and the network or by a unified approach. These are 
subjects of the next section. 

The Hierarchical Data Model 

Hierarchies are special cases of networks; any networks can 
be transformed into hierarchical structure. The data is repre
sented by a tree structure. The record type at the top of the 
tree is known as the root or the parent, and the elements at the 
lowest levels, which have no children, are called leaves or 
children. The root may have any number of leaves; each of 
these may have any number of lower-level leaves. A tree shall 
be a hierarchy of records, because the root and the leaf are 
both organized as records. This has led to the term hierarchic 
database. No child record type can have more than one parent 
segment type, but it is allowed more than one parent (owner) 
in the network structure as long as the child is in a different 
set. A set type represents the relationship between the owner 
record type and member record type in a network sense, and 
it is formally declared; but it is implied in the hierarchical 
model. Many-many relationships also cannot be handled di
rectly. It must be treated by creating a pointer segment for 
each of the two segments (IMS's terms of IBM) while in 
network structure; it is handled by creating link record types 
(or two-way connectors). No child segment occurrence can 
exist without its parent, while it is allowed in the network 
data model by a singular set for which the owner is the 
"SYSTEM," where the SYSTEM has only one occurrence in 
the network model. 

From this comparison between a network model and a hier
archical model, we can visualize that the hierarchical structure 
is even more complex and rigid than the network structure. 
When more record types are brought into the structure, it 
becomes worse. The user, as Date17 pointed out, is forced to 
devote more time and effort to solving problems that are 
introduced by the hierarchical data structure and that are not 
intrinsic to the questions being asked. Of course, hierarchies 
are a natural way to model truly hierarchical structures from 
the real world. Besides, virtual logical record types are very 
useful mechanisms in connecting two physical databases or in 
converting the network structure into hierarchical ones. From 
an updating operation point of view, however, the hierarchi
cal model possesses even more undesirable properties than 
the previous two logical data models. As mentioned before, 
because many current implementations of databases are in the 
hierarchical model, we probably still have to deal with them 
either by transformation among the three approaches or by 
adopting a unified approach of logical data models. 

A Comparison of the Data Models 

So far, three logical data models (relational, network, and 
hierarchical) have been briefly reviewed in order to lay the 



458 National Computer Conference, 1983 

foundation for the subsequent analysis. We hope it will give 
some guideline for comparisons among them to see which is 
the best fit for the environment of a DSS. There is a diverse 
community of users facing a DSS. The DSS should therefore 
provide information to all levels of management in a batch or 
in an interactive mode. The users (including decision makers 
at all levels, researchers, and analysts) need standard reports 
and interaction with the database for data retrieval, modeling, 
or computation in order to solve structured, semi-structured, 
or unstructured problems. Based on these requirements, the 
three logical data models are further examined. 

As mentioned, the hierarchical structure is a special case of 
the network, and the comparison between the relational and 
the network approaches suffices. Michaels37 outlines five fac
tors for evaluation. Codd15 and Ullman47 each use two factors. 
No matter how many factors are picked up for evaluation, 
being easy to use, easy to understand, easy to manipulate, and 
easy to implement are necessary for a database designed for 
meeting the diverse requirements of a DSS. 

From these four points of view, the relational structure 
meets all these requirements except "easy to implement." As 
Ullman47 indicates, the multilist data structure and the 
pointer-based implementation of variable length records do 
not generalize readily to many-many mapping. Theoretically, 
it is always possible to implement relations by a hierarchical or 
network structure, but it is not always clear how to do so, 
especially in a cost-effective way. Otherwise, the relational 
model is a very promising approach because of its non
procedural languages, its separating structural elements from 
physical elements to maintain data independence, and its sim
plicity in data structure and data manipulation. 

The network model is more complex than the relational 
because of its procedural language, its rigid structure, and its 
bundling four areas of data definition into one construct. 
which make it lack data independence. Its merit is that it is 
readily available for implementation. Many of the inade
quacies are not inherent in the network approach. The initial 
DBTG specifications have undergone subsequent devel
opment and refinement as reported by two CODASYL 
groups. 13,14 

Generally, the relational model is more appealing in the 
environment of a DSS, but we are not suggesting that anyone 
model should be dominant. 15, 29, 37 Because user demands are 
so diversified, no one model can meet the needs of users 
completely for all circumstances. 

The Unified Approach 

Many researchers have made contributions in this area. * 
Some examples are Date's Unified Database Language 
(UDL) , 17 Chen's Entity-Relationship Model, 10 Zaniolo's mul
tiple external schemas for designing and supporting relational 
and hierarchical views over CODASYL network schemas,50 
Vetter's structure-type coexistence ,48 and Deen's global 
schema for supporting interfaces to other systems. 19 There are 
generally two types of data structure coexistence: top-down 

*See References 2, 6, 10, 17, 19,25,29,36,39,45,46,48, and 50. 

and bottom-up. The bottom-up approach is to create nor
malized relations as the basic ingredients, and then derive the 
thre~ data structures (relational, hierarchical, and network) 
from them. 17 The top-down approachlO proceeds in an entity
relationship model as a generation from which the three exist
ing data models can be derived. Either approach is effective. 
The latter approach uses the semantic information to organize 
the data in entity-relationship relations, which are similar to 
3NF relations (as ChenlO puts it), but with clear semantics and 
without using the transformation process. Besides the nor
malization process can get rid of only a certain degree of 
operation anomalies, and sometimes it becomes a messy and 
tedious operation in the transformation process. 

The Unified Database Language (UDL) proposed by 
Date,17 is very attractive and theoretically sound. It intends to 
support the three data structures (relational, hierarchic, and 
network) in a uniform way. The "onion-layer" structure is the 
basis for the construct of the UDL. It indicates that the lan
guage features, the operators, and the operands of a relational 
database are the subset of those required to declare a hier
archical database, and these in turn are a subset of those 
required to declare a network database. 

Although the n!ladonal structure is the most promising ap
proach, the recent development in the relational database 
system (RDS), such as system R, is encouraging.9,17 It is 
capable of supporting both repetitive transactions and ad hoc 
queries that are very attractive for the needs of a DSS. The 
network structure and the hierarchical structure will continue 
in use for some time because of configuration compatibility of 
data processing structure in the organization. Besides, a tre
mendous investment has been made in these two approaches. 
All these lead to the development of data-structure-type 
coexistence. Though there is no DBMS that can support 
the three approaches. a strong foundation has been built 
up, as Date17 pointed out; and theoretically the structure
type coexistence is feasible and desirable for the diversified 
community of users. 

THE ENTITY-RELATIONSHIP APPROACH 

The Basics of the EIR Model 

As mentioned earlier, the entity-relationship model (E/R 
model), proposed by Chen,lO is very close to the conceptual 
model (or the global view) of the organization. The entity and 
relationship relations in the E/R model are smiilar to 3NF 
relations but with clear semantics and without using the trans
formation operation. The steps in logical database design 
following the E/R approach are simple and close to human 
thinking. The E/R diagram is independent of the processing 
frequencies. Therefore, it is more stable. The translation pro
cess from an E/R diagram into logical data structures
hierarchical, network, and relational is also easy. For these 
reasons, the E/R model is adopted for demonstrating the 
logical database design concept and the transformation pro
cess from the E/R diagram into the three major logical data 
structures. Because the user's environment of a DSS is di-



verse, a powerful approach such as the E/R model is required 
and is the best fit in such an environment. In addition to its 
simplicity in design, its capability in synthesizing the three 
major logical data models into a unified approach that can 
meet the requirements of a DSS is the most appealing. 

Procedures in Logical Database Design 

It was mentioned that following the E/R model for logical 
database design was convenient. Let us illustrate this by an 
example of technological transfer. Suppose that a company 
has many projects. Each project needs technologies that are 
available through the company's own capability in a capability 
file or that have to be purchased from outside organizations 
domestically or internationally. Some technologies are not 
readily available in the market, and have to be sought through 
a potential market, so that a potential supplier list can be built 
up. If the necessary technologies are not available in a com
pany's own capability file, which can be drawn out for imme
diate use, and developing the technologies is cheaper than 
purchase from the outside, the company must develop them. 

For simplicity, we list only five entity record types and four 
relationship record types in the E/R diagram in Figure 1. The 

SALES M 

M 

ACCTG 

N 

PLANG 

Database-Oriented Decision Support Systems 459 

five entity record types (PROl, TECH, SUPP, FILE, and 
DEVE) are represented by rectangular boxes. The four re
lationship record types (PROl-TECH, SUPP-TECH, 
POTENT-SUPP, and TECH-AVFI) are represented by dia
mond boxes. These relationships can be classified according 
to their association types between the entity types as one-one 
(1:1), one-many (1:N), and many-many (M : N). 

After identifying entity types and relationship types and 
drawing the E/R diagram according to their semantic mean
ing, the attributes and value types within each entity record 
type and each relationship record type should be identified as 
shown in Figures 2(a) and 2(b). 

The next step, a data-structure diagram in Figure 3, can be 
derived from the E/R diagram in Figure 1. All the entity types 
and relationship types in the E/R diagram become record 
types in Figures 4 and 5 in the data-structure diagram. One
many relationships are translated into a data-structure set 
(i.e., an arrow), and many-many relationships need linking 
records that can translate the many-to-many relationships into 
one-to-one relationships. 

The last step is to group attributes into records and decide 
how to implement the data-structure sets by using pointer 
arrays, chains, or other methods. For decision support 

ENGIN 

N M PRODU 

N 

N PU-ST 

Figure l-Entity-relationship diagram 



460 National Computer Conference, 1983 

I 

I 

I 
I 

I I 

88 
\ 

\ . I I I \ 

\ I I r \ 
, I eeee 

I 

I 
I \ 

eeB 
Figure 2(a)-Attributes and values of entity record types and relationship record types 

\ , 
\ I I \ 

e 

\ 

\ 
\ 

I I \ I , I , 

" : \ I , I \ I I I \ eee i8:8sieee 
8® e 

Figure 2(b )-Attributes and values of entity record types and relationship record types 



Database-Oriented Decision Support Systems 461 

SA&PL AC&PL AC&EN EN&PR PR&PS 

SA&AC SA&EN PL&PS AC&PS AC&PR 

Figure :>-The data-structure diagram (transferred from the E/R diagram in Figure 1) 

Sales record SALES 

SALE-NO SA-NAME SA-DATE 

Planning record PLANG 

PLAN-NO Pl.-TYPE PL-BUDGT I 

Accounting record ACCTG 

ACCT-NO AC-TYPE AC-DATE 

Engineering record ENGIN 

ENGI-NO EN-TPEE LEV-DEV 

Purchase and stores record PU-ST 

PURC-NO ITEM-NAME PU-DATE STOR-Rr~ 

Product record PRODU 

PROD-NO PR-NAr.1E PR-COST 

Figure 4-Record formats of entity record types 



462 National Computer Conference, 1983 

Sales and Planning Relationship SA&PL 
Record SALE-NO PLAN-NO 

Sales and Accounting Relationship SA&AC 
Record C" III L ~II"\ II(,(,T MI"\ ell DDT(,[" 

..)1"\L.1:.-I1V I"\I"I"I-nv ,In-r''~vL 

Sales and Engineering Relationship SA&EN 
Record SALE-NO ENGI-NO 

Accounting and Planning Relationship AC&PL 
Record ACCT-NO PLAN-NO 

Accounting and Engineering AC&EN 
Relationship Record ACCT-NO ENGI-NO 

Accounting and Purchasing-Stores AC&PS 
Relationship Record ACCT-NO PURC-NO STO-OUAN 

Accounting and Product Relationship AC&PR 
Record ACCT-NO PROD-NO PR-QUAN 

Planning and Purchasing-Stores PL&PS 
Relationship Record PLAN-NO PURC-NO 

Engineering and Product EN&PR 
Relationship Record ENGI-NO PRDU-NO 

Product and Purchasing-Stores PR&PS 
Relationship Record PROD-NO PURC-NO PU-PRICE 1 

Figure 5-Record formats of relationship record types (many-many relationships) 

systems, this fixed format might not be appropriate because 
the environment for a decision-maker is volatile. In order to 
meet the unexpected situation a decision-maker may face, 
empty spaces may be left in the record as long as the relative 
position in the record is known. Since uncertainty is often 
the case, the flexibility in design is necessary for an efficient 
DSS. This paper emphasizes conceptual aspects of database 
design. Physical aspects are dealt with by Chen,IO Date,17 and 
Ullman.47 

Features of EIR Approach 

In logical database design, we first talk to the decision
makers or analyze the information requirements for various 
decisions. Then we combine these local conceptual models (or 
we may call them external models) into an integrated global 
conceptual model. After identifying all the entities and 
relationships, we draw an entity-relationship diagram. Next 
we identify the attributes and value types of all the entities 
and relationships and translate the E/R diagram into a data
structure diagram. Finally record formats are designed in ac
cordance with the attributes and value types identified. 

Because the record formats are equivalent to the relation 
scheme in the relational data model (if all the record formats, 
or relation schemes, are loaded with actual values), it be
comes a database. Though all the record formats are very 
close to the normalized relations, we might go ahead to split 
or merge all the relations (traditionally, they are called files) 
through the normalization process as the situation warrants. t 
(Detailed discussion of normalization is beyond the scope of 
this paper; please see the above references.) 

It is clear that the E/R approach is flexible and close to 
human thinking. If some particular relationship types changed 
from, e.g., one-many to many-many, a relationship record 
type is simply added, and the program or the database does 
not have to be changed. If the one-many relationships are 
already translated into relationship record types, even this 
process can be omitted. 

The most important feature is that the E/R diagram can be 
translated into many different data structure diagrams to meet 
the needs of different data-processing environments. For ex
ample, it can be translated into relational, hierarchical, and 

tSee References 5,6, 15, 17,21, 30, 33, 45-48, and 51. 



network data structure without any difficulties.:!: All the entity 
records and relationship records are in the form of universal 
relations that can be immediately and conveniently used in a 
relational data model, logically or physically. 19,25,47,51 

Translation from the Global EI R Diagram into 
Logical Data Models 

Translation from the global E/R diagram into hierarchical 
data structures is easy. The entity record types of the E/R 
approach are equivalent to the segment types of the hier
archical data model. First the root segments should be identi
fied as the starting points and then, based on the conceptual 
and semantic meaning, the hierarchical trees can be struc
tured. Through pointer segments, the many-many relation
ships can be handled. The most important features in the 
hierarchical data structure are that the logical parent pointer 
or the logical child pointer can be used for integrating several 
hierarchical organizations into a unified one, and by virtual 
storage, physical redundancies can be avoided. The set con
cepts are implied through the parent-child relationships. 

Translation from the global E/R diagram into network data 
structures is also very simple. The entity record types of the 
global E/R diagram are equivalent to the DBTG record types. 
The relationship record types are equivalent to the DBTG set 
types. The set mechanisms are the most important concept 
and can be formally declared and used as access paths and 
navigation routes. Many owner records can be accessed 
through hashing mechanisms or other methods. Any member 
records can also be set up as the entry point if that is desired. 

Translation from the global E/R diagram into relational 
data structures is straightforward. 35 The entity record types 
are translated into relations (tables). The major attribute or 
the combination of attributes that can be used to uniquely 
identify an entity (or a record) are selected as the primary key 
of the record. Every record must have a unique primary key 
for identification of the record. Sometimes, a foreign key that 
is the primary key value of some tuple in some other relation 
can be used to help identify the record involved. 17 The re
lationship record types are also translated into relations. The 
primary keys of the entities involved in the relationship are 
used as the primary key. If the relation is not in a simple form 
(e.g., including repeating groups in the relation), or all the 
non-primary attributes of a relation are not fully dependent 
on its primary key, or there exists transitive dependencies or 
multivalued dependencies, a normalization process should be 
used to produce the 4NF relations. 

Toward A Distributed DBMS Under A Unified Approach 

Volatile environment 

Though there is no real DBMS built upon a unified data 
model concept yet, a theoretical framework has been estab
lished. Besides, such a unified approach is desirable for meet-

~See References 1,2, 10, 19,25,32,36, and 39. 

Database-Oriented Decision Support Systems 463 

ing the diversified requirements of information. A DSS is in 
a situation that demands diversified capabilities, and at the 
same time, the DSS designed must be very stable. It is closer 
to human thinking or natural human languages than con
ventional data models; the database management systems de
signed in accordance with the E/R diagram are more suitable 
for higher level user interfaces, and this is a very valuable 
feature for a DSS. 

The distributed database 

In addition to the above features, the database designed 
under the E/R approach can be logically integrated but phys
ically distributed. Data distribution will be by clusters. Each 
cluster is organized in accordance with the guidelines of the 
E/R model and stored wholly at a single computer site. The 
system is a network that supports one logically integrated 
database under one data model and allows the user to enter 
repetitive transaction processing or ad hoc queries at any com
puter site. A user may access a part of the database, which 
may be stored at a remote site, and the system will connect the 
user to the portion of the database.9,31 A set of standard 
functions has to be provided to the user, and it can be acti
vated in a uniform manner by all the users. Every DBMS 
connected on the network is actually a unified and standard 
DBMS. It is called, according to Gardarin, a virtual DBMS.22 

THE USER, THE DATABASE, AND THE MODEL 
INTERFACES 

So far, the foundation has been laid for the design of data
bases that can support decision makers. A decision maker 
needs two capabilities: data management and modeling. The 
difference between a conventional DBMS and a DBMS that 
can support decision makers in their decision-making pro
cesses is that the latter DBMS has to incorporate modeling
handling capability and online interface with the database or 
databases. The model logic and its coefficients can be stored 
in a table (or relations in the relational model term) derived 
from the definition language and updated in the database.42 

Models draw data from the database and generate additional 
data placed in the database. According to GPLAN/DMS and 
GPLAN/QS, the GPLAN System23,24 is built upon a DBMS 
that is composed of nine basic components. The most im
portant component is the control program, which acts as an 
interface among the query system, the data management sys
tem, and the application program library. Working on 
models, the user sometimes creates records stored in the 
working storage space, and these records can be saved by 
issuing SAVE command. The entire system has been written 
in FORTRAN IV. 

Bonczek7 indicates that the GPLAN DML is used with
in the framework of a host language (e.g., FORTRAN, 
COBOL). Each command in the DML is translated into a 
subroutine call. These subroutines extend the FORTRAN 
language to a complete data manipulation language. These 
network-oriented DML are inferior to the high-level query 



464 National Computer Conference, 1983 

language9 that provides interfaces among the users, models, 
and databases. This query language permits selective re
trieval, update, and entry of data from or into databases. It 
also provides standard or nonstandard reports. 

SLI!\1,16 a management simulation system for teaching ~1IS 
and DSS, is also extended to FORTRAN IV. The SLIM 
system consists of a dynamic database and data dictionary, a 
simple query language and query processor, and a module for 
database administration. It includes the essential elements of 
the query portion of a DSS. The batch-oriented commands 
provide a rudimentary data manipulation language with 
BASIC-like syntax. It is really the beginning of representative 
software for managerial decision support systems. 

Some systems extend to APL, PASCAL, PLl1, etc.
higher level languages. Stohr44 extended APL in the planning 
system using the EDBS20 (database management system). It 
is designed to support operation research models in the con
text of an integrated planning system. The database manage
ment system is used to keep track of the complex information 
flows between decision-making units and computer programs. 
It has four APL files: The Data Dictionary File, containing the 
definition of models, processes including input/output vari
ables, and problem statement definition as well as report 
definitions; The Database Directory for maintaining logical 
relationships between models and processes; The Data File, 
containing the actual input/output data values and character 
matrices; and The Function Library, containing the code for 
all functions used by the planning system. All functions must 
be registered in the function library before they can be used 
by a process. Keen28 and Sprague42 also discussed using APL 
as extended language. Detailed discussion is beyond the scope 
of this paper. 

CONCLUSION 

Designing a database-oriented DSS represents a new chal
lenge, which requires integrating computer technology, man
agement science, and organizational theory. This paper has 
laid the foundation for such an attempt. The design criterion 
for such a comprehensive system is that it must handle the 
interfaces among the users, databases, and models. We have 
reviewed the database design basics. The unified approach is 
the goal, and the entity-relationship model is the best concep
tual model that can lead to a global conceptual enterprise view 
of data. Various translation processes from the E/R diagram 
into the data-structure model have been discussed. 

Though there is no unified approach for the design of data
bases for a DSS, the theoretical foundation has been estab
lished. A comprehensive DSS that can support a decision 
maker in standard or nonstandard reports, batch or online 
processing, is within reach. 

An example of a unified approach has been illustrated. 
Some existing DSSs that extend to the host languages also 
have been examined briefly. Following this framework, a 
genuine DSS that can support a decision maker in his struc
tured, semi-structured, or unstructured problem solving is not 
only desirable, but also possible, for implementation in a 
managerial context. 

REFERENCES 

1. Adiba, M., c. Delobel, and M. Leonard. "A Unified Approach for Mod
eling Data in Logical Data Base Design." In G. M. Nijssen (ed.), Modeling 
in Data Base Management Systems. Amsterdam: North-Holland, 1976. 

2. Adiba, M., and C. Delobel. "The Problem of the Cooperation Between 
Different D.B.M.S." In G. M. Nijssen (ed.). Architecture and Models in 
Data Base Management Systems. Amsterdam: North-Holland, 1977. 

3. Alter, Steven L. "Decision Support Systems: Current Practice and Con
tinuing Changes." Addison-Wesley Series on Decision Support. Reading, 
Mass.: Addison-Wesley, 1980. 

4. "ANSI-X3-SPARCIDBMS, Study Group Report." Washington, D.C.: 
American National Standards Institute, 1975. 

5. Beeri, Catriel. "On the Membership Problem for Functional and Multi
valued Dependencies in Relational Databases." ACM Transactions on 
Database Systems, 5, (1980). 

6. Bernstein, Philip A. "Synthesizing Third Normal Form Relations from 
Functional Dependencies." ACM Transactions on Database Systems, 1 
(1976). 

7. Bonczek, Robert H., et al. "Aiding Decision Makers with A Generalized 
Data Base Management System: An Application to Inventory Manage
ment." Decision Sciences, 9 (1978). 

8. Bonczek, Robert H., Clyde W. Holsapple, and Andrew B. Whinston. "The 
Evolving Roles of Models in Decision Support Systems." Decision Sciences, 
11, No.2 (1980). 

9. Chamberlin, D. D., et al. "Support for Repetitive Transactions and Ad Hoc 
Queries in System R." ACM Transactions on Database Systems, 6 (1981). 

10. Chen, Peter Pin-shan. "The Entity-Relationship Model-Toward a Unified 
View of Data." ACM Transactions on Database Systems, 1 (1976). 

11. Chen, Peter Pin-shan. "The Entity-Relationship Approach to Logical Data 
Base Design." Q.E.D. Monograph Series, No.6, 1977, Q.E.D. Informa
tion Sciences, Inc., 141 Linden St., Wellesley, MA 02181. 

12. "CODASYL Data Base Task Group Report, 1971." CODASYL, Associ
ation for Computing Machinery, New York, April 1971. 

13. CODASYL Data Description Language Committee, Proposed Revision of 
the 1971 DBTG Report, February 1973. 

14. CODASYL Data Base Language Task Group, Proposed Revisions of the 
1971 DBTG Report, June 1973. 

15. Codd, E. F. "A Relational Model of Data For Large Shared Data Banks." 
Communications of the Association for Computing Machinery, 13 (1970). 

16. Courtney, James F., et al. "SLIM: A Management Simulation System for 
Teaching MIS and DSS," Interface, The Computer Education Quarterly, 
Vol. 21Issue 2 (1980). 

17. Date, C. J. "An Introduction to Database Systems." 3rd ed. Reading, 
Mass.: Addison-Wesley, 1981. 

18. De, Prabuddha, and Arun Sen. "Logical Data Base Design in Decision 
Support Systems." Journal of Systems Management (1981). 

19. Deen, S. M. "A Canonical Schema for a Generalized Data Model with 
Local Interfaces." The Computer Journal, 23, No.3 (1980). 

20. "Education Data Base System," User's Guide. Department of Computer 
Services, the University of Calgary, Alberta, Canada, September 1977. 

21. Fagin, Ronald. "Multivalued Dependencies and a New Normal Form for 
Relational Databases." ACM Transactions on Database Systems, 2 (1977). 

22. Gardarin, G., et al. "An Approach Towards a Virtual Data Base Protocol 
for Computer Networks." Proceedings, AICA, 1977. 

23. Haseman, W. D., et al. "Automatic Application Program Interface to A 
Data Base." The Computer Journal, May 1977. 

24. Haseman, William D. "GPLAN: An Operational DSS." School of Urban 
and Public Affairs, Carnegie-Mellon University, Pittsburgh, Pa., 1977. 

25. Kalinichenko, L. A. "Relational-Network Data Structure Mapping." In 
G. M. Nijssen (ed.), Modeling in Data Base Management Systems. Amster
dam: North-Holland, 1976. 

26. Keen, Peter G. W. and Michael S. Scott Morton. "Decision Support Sys
tems: An Organizational Perspective." Addison-Wesley Series on Decision 
Support. Reading, Mass.: Addison-Wesley, 1978. 

27. Keen, Peter G. W. "Decision Support Systems: Translating Analytic Tech
niques into Useful Tools." Sloan Management Review, 21 (Spring 1980). 

28. Keen, Peter G. W., et al. "Building a Decision Support System: The 
Mythical Man-Month Revisited." In J. F. Bennett (ed.), Building Decision 
Support Systems. Addison-Wesley Series on Decision Support. Reading, 
Mass.: Addison-Wesley, 1980. 



29. Kerschberg, L., A. Klug, and D. Tsichritzis. "A Taxonomy of Data 
Models." In P. C. Lockemann and F. J. Neuhold (eds.), Systems for Large 
Data Bases. Amsterdam: North-Holland Publishing Company, 1976. 

30. Lee, D. T., et al. "Quintary Tree: A File Structure for Multidimensional 
Database Systems." ACM Transactions on Database Systems, 5 (1980). 

31. Lien, Edmund Y., et al. "Design of a Distributed Entity-Relationship 
Database system." Proceedings of COMPSAC, 1978. 

32. Line, Y. Edmund. "Hierarchical Schema for Relational Databases." ACM 
Transactions on Database Systems, Vol. 6, No.1, March 1981. 

33. Ling, Tok-Wang, et al. "An Improved Third Normal Form for Relational 
Databases." ACM Transactions on Database Systems, 6 (1981). 

34. Martin, James. Computer Data-Base Organization (2nd ed). Englewood 
Cliffs, N.J.: Prentice-Hall, 1977. 

35. McCarthy, W. E. "An Entity-Relationship View of Accounting Models." 
The Accounting Review, 54, No.4 (1979). 

36. Mercz, laszlo I. "Issues in Building a Relational Interface on A CODASYL 
DBMS." In BraechifNijssen (eds.), Data Base Architecture. Amsterdam: 
North-Holland, 1979. 

37. Michaels, Ann S. "A Comparison of the Relational and CODASYL Ap
proaches to Data-Base Management." ACM Computing Surveys 8 (1976). 

38. Morton, Scott M. S. "Management Decision Systems: Computer Based 
Support for Decision Making." Division of Research, Harvard University, 
1971. 

39. Nahouraii, E., L. O. Brooks, and A. F. Cardenas. "An Approach to Data 
Communication Between Different Generalized Data Base Management 
Systems." In P. C. Lockemann and E. J. Neuhold (eds.), Systems for Large 
Data Bases. Amsterdam: North-Holland, 1976. 

40. Olle, T. William. The CODASYL Approach to Data Base Management. 
New York: John Wiley & Sons, 1978. 

Database-Oriented Decision Support Systems 465 

41. Sprague, R. H., Jr., and H. J. Watson. "MIS Concepts-Part II." Journal 
of Systems Management, 26, No.2 (1975). 
42. Sprague, Ralph H., Jr., et al. "A Decision Support System for Banks." 
Omega-The International Journal of Management Science, 4, No.6 (1976). 
43. Sprague, Ralph H. "A Framework for the Development of Decision Sup
port Systems." MIS Quarterly, December 1980. 
44. Stohr, Edward A., et al. "A Database for Operations Research Models." 
International Journal of Policy Analysis and Information Systems, 4, No. 1 
(1980). 
45. Su, Stanley Y. W. "A Semantic Association Model for Conceptual Data
base Design." In Peter P. Chen (ed.), Entity-Relationship Approach to Systems 
Analysis and Design. Amsterdam: North-Holland, 1980. 
46. Su, Stanley Y. W., Herman Lam, and Der Her Lo. "Transformation of 
Data Traversals and Operations in Application Programs to Account for Se
mantic Changes of Databases." ACM Transactions on Database Systems, 6 
(1981). 
47. UIL-nan, Jeffrey D. Principles of Database Systems. Computer Science 
Press, 1980. 
48. Vetter, M. and R. N. Maddison. Database Design Methodology. En
glewood Cliffs, N.J.: Prentice-Hall, 1981. 
49. Wagner, G. R. "Decision Support Systems: The Real Substance." Inter
faces, 11, No.2 (1981). 
50. Zaniolo, Carlo. "Multimodel External Schemas for CODASYL Data Base 
Management Systems." In BracchilNi jssen (eds.), Data Base Architecture. Am
sterdam: North-Holland Publishing Company, 1979. 
51. Zaniolo, Carlo. "On the Design of Relational Database Schemata." ACM 
Transactions on Database Systems, 6 (1981). 

\ 
\ 





Richard Lampman 
Hewlett -Packard Company 
Cupertino, California 

HARDWARE 

The steady reduction in cost per function for hardware continues to be the 
primary force in expanding the role of information processing. The improve
ments in price and performance have brought the technology across a thresh
old; it has become an affordable commodity for individuals. 

The papers in this track, which focus on new designs and their uses, fall into 
four groups: 

1. Increasing speed and new applications for high-speed hardware 
2. New inexpensive hardware and the implications of this less expensive 

hardware 
3. The use of the new inexpensive hardware to build multiprocessor systems 
4. The emerging information technology built around videotex 

Systems designed for high-speed computation are one use of the price/per
formance-improved hardware. Applications examples are discussed in one set 
of papers to illustrate the expanding applications. Another set of papers 
addresses specialized hardware that can be dynamically reconfigured to opti
mize specialized computations. The ongoing research in multiprocessors for 
parallel processing is discussed in another set of papers. 

Not only has price/performance improved; the entry price of systems has 
continued to decline. The availability of standardized hardware and periph
erals has changed the structure of the inexpensive-systems market; two ses
sions discuss the implications of this. 

The use of multiprocessor systems is beginning to accelerate rapidly, driven 
by the improved price/performance that can be obtained and by the increasing 
need for fault-tolerant computers. Two sessions explore the design and appli
cation of multiprocessor systems. 

Videotex, a new technology that is just arriving in the United States, will 
make some forms of information widely available at lower cost. The session 
on videotex will explain the technology and its implications. 

Although much stress is being placed on the applications of computers, it 
is the hardware foundation that determines the economics of computer use. 
The hardware sessions show how new hardware continues to propel computer 
use into new applications. 





Universities and the future of high-performance computing 
technology 

by KENNETH G. WILSON 
Cornell University 
Ithaca, New York 

ABSTRACT 

Universities have four main roles in the growth of computer technology. (1) Univer
sities provide trained personnel for both the computing industry and industrial users 
of computing. (2) Universities carry out the majority of very advanced software 
research and prototype development. (3) Universities can provide an advance mar
ket for new computing hardware and can help manufacturers refine innovative 
products to serve commercial markets. (4) Universities carry out basic research 
needed to support continued technological growth. There are extraordinary devel
opments taking place in computing that it is difficult for U.S. industry to absorb 
without the universities' help. Present university support is grossly inadequate for 
any of these functions. I propose a computer tax as a model of how universities 
should be supported. It would provide the hundreds of millions of dollars needed 
to restore the universities' role in computing-technology growth. More importantly, 
it would ensure that universities' future growth in technological areas is at the same 
rate as that of computing technology itself. 

469 





Universities and the Future of High-Performance Computing 471 

A. INTRODUCTION 

In the coming decade, large-scale computer simulation will 
play a rapidly growing role in industrial and governmental 
research and development. Computer simulation is needed 
especially in connection with the search for and processing of 
energy resources, in connection with industrial or natural pro
cesses involving fluid flow, study of new industrial materials at 
microscopic or molecular levels, and so on. The pressures of 
changing raw materials, environmental constraints, inter
national competition, and decreasing computing costs will 
lead to a rapid increase in the use of computer simulation to 
replace experimentation and prototyping or to provide infor
mation not otherwise accessible. Computer simulation, if fea
sible at all, will usually be cheaper and faster than any alterna
tives, and can reduce the total time and cost of research and 
development projects. 

Major changes are needed to support a rapid growth of 
computer simulation. Basic theoretical science research is 
evolving new methods (such as the "renormalization group"!) 
that can greatly extend the capabilities of scientific simulation, 
but only if a very strong program of computing support, re
search and training is established in universities; at present 
such programs are haphazard, with grossly inadequate com
puting resources. The most powerful computers commercially 
available or announced (including supercomputers such as the 
Cray-l or forthcoming Cray-2) are themselves inadequate by 
many orders of magnitude to meet future computer
simulation needs. The extraordinary capabilities of current 
computing technology must be pushed to their utmost extent 
in radical, highly parallel architectures to make possible com
puting systems thousands or even millions of times more pow
erful than today's supercomputers, if the full potential of com
puter simulation is to be realized. 

Universities must have a strong role in developing the com
puters that are to be used for computer simulation. The ben
efits to industry of university involvement in computer devel
opment will become extremely important and complement 
the benefits that will be obtained from university research and 
training in areas using simulation. This paper describes the 
need for university involvement in computer technology de
velopment, and outlines a framework for this involvement. 
This paper concludes with a controversial proposal for fi
nancing the universities' role in computer-related technology. 

In this paper I describe the characteristics of the large-scale 
computing market and how it blocks innovation. I propose a 
multistage design process for new large-scale computing sys
tems, with universities providing a market and test and 
demonstration sites for early stage designs. The critical role of 
universities in advanced-software development and testing 
will be stressed. 

To finance the university market, I propose a use tax, 
namely a sales tax on computing equipment. 

B. BARRIERS TO INNOVATION IN THE U.S. 

The barriers to innovation in large-scale computing are de
scribed in Sections B.l to B.3. Some further comments on the 
large-scale-computing scene are given in Section B.4. 

B.l Software Compatibility 

Most mainframes bought in the U.S. are required to be 
totally software compatible with existing systems. This re
quirement is imposed to maintain the viability of existing 
software, which represents a major investment and is virtually 
impossible to convert for new computer architectures. IBM 
has a major research and development effort in Josephson 
junction technology, in the hope that it will provide a long
term growth path for their 360-370 mainframe architecture. 
But there seems to be no hope that this technology, even when 
fully developed, can make the 370 architecture competitive 
with future, more novel architectures. 2 The prospects are no 
more promising for other current mainframes. 

Cray Research has carved out a small niche for itself sup
plying supercomputers to customers willing to sacrifice soft
ware compatibility in return for the somewhat greater power 
of the Cray-l. Cray Research has made enough profit to be 
able to work on designs for the Cray-2, a supercomputer 
which is projected to be about ten times more powerful than 
the Cray-l. 3 However, even the Cray-2 will be far short of the 
capabilities of parallel systems, and there seems to be little 
hope that further development of the Cray architecture can 
compete with parallelism. 

There is one U.S. project that is a natural starting point for 
investigating parallelism specifically for scientific simulation. 
This is the Denelcor HEP supercomputer, with initial deliv
eries scheduled for the spring of 1982.4 The difficulties faced 
by this project are extreme: at the moment not even a Cray
sized market is open to it. Cray Research was able to get 
started by supplying early production models to the Los Ala
mos and Livermore Laboratories. Now Los Alamos and Liv
ermore have all but ceased to provide a market for unique new 
computers; their budget goes almost entirely for the purchase 
of Cray-l's. This does not mean that they find the Cray-l 
totally satisfactory. Not even fifty Cray-l's would provide 
enough computing power to enable Livermore and Los Ala
mos to carry out their assigned missions. 5 However, Liver
more and Los Alamos now demand either total software com
patibility with the Cray-l or a very substantial advance over 



472 National Computer Conference, 1983 

the Cray-l. The HEP presently meets neither requirement. 
Thus the problem for Denelcor is how to win initial accept
ance for its product. The HEP is a serious supercomputer 
effort but its speed is not overwhelming. Software devel
opment for the HEP is only just getting underway. Its greatest 
strength right now is its large physical-memory capacity (up to 
1 gigabyte), but the cost of this memory is currently very high. 

There are a number of large-scale systems, some still in 
development, aimed at special purpose markets. These in
clude the Illiac IV,6 Goodyear's Massively Parallel Processor,7 
ICL's Distributed Array Processor (DAP) , 6 and Control Data 
Corporation's Advanced Flexible Processor. s There are also a 
number of experimental noncommercial projects. * At present 
these systems serve only a very limited fraction of the large
scale market. Their potential is rarely explored fully because 
they lack a full complement of software. They can be highly 
innovative in their initial design, but it is not easy to keep them 
technologically current over long periods of time. 

A crucial need is to have a much greater variety of large
scale systems entering the general large-scale market. I will 
stress the Denelcor system because it is entering this market 
and deserves a fair hearing in this market. My proposal, de
scribed later, will allow many other large-scale ventures to 
form and also receive a fair hearing. I endorse parallelism in 
this paper only as an opportunity that needs to be explored; 
my proposal would allow many other options to be explored 
too. 

B.2 The Law of Diminishing Returns 

There is a law of diminishing returns in large-scale com
puting. It states that if a single computing task cannot be 
carried out on a current mainframe, then a factor-of-2 in
crease in power is useless for the task, and a factor-of-1Ooo 
increase in computing power is as likely to be required as a 
factor-of-1O. The reason for this law is that tasks that would 
benefit from a factor-of-2 increase in computing power rarely 
require more than a minicomputer to carry out-such tasks 
are extremely unlikely to challenge a mainframe. The typical 
consequence of the law of diminishing returns is that upgrades 
from mainframes or large minicomputers may need to be by 
factors of 10, not 2, and that over a decade several factor-of-1O 
upgrades could be necessary. Parallel architectures may allow 
this level of upgrading. Another consequence of the law of 
diminishing returns is that an upgrade by a factor of ten does 
not justify a factor-of-1O increase in cost. 

Thelaw ofcTImlnishing returns does not always apply. Con
sider two examples; A large computing center, presently run
ning 1200 jobs a day, needs to expand to accommodate 2400 
jobs a day. The law of diminishing returns does not apply. A 
factor-of-2 increase in power is fine, and the computing center 
can easily afford to double its cost. The second example is a 
small research group that has filled up a superminicomputer. 
Typically this occurs because of individual jobs that are using 
whole days of computer time. An upgrade to two superminis 
is useless for the reasons given above. 

*For exampie, the SI project at Lawrence Livermore Laooraiory. 

Over the next five to 10 years, innumerable small research 
and development groups, as well as individual engineers and 
other professionals, will have learned how to use supermini
level systems in a personal computing mode. They will have 
learned how to use days of computing time at a stretch
productively. (Computer users who use a centralized facility 
are typically severely upbraided for submitting day-long jobs, 
either because it disrupts other users or because computing 
time is expensive!) They will be ready for upgrades; and they 
will be face to face with the law of diminishing returns. The 
needs of centralized facilities to double their job throughput 
is likely to become a considerably less significant factor in the 
large-scale computing market than it is now. 

B.3 The Software Barrier 

New large-scale computing systems do not instantly deliver 
full value to their users. They are not like new automobiles, 
which one can drive off after a few minutes spent locating the 
controls. Years elapse between the first delivery of a major 
system built around a new architecture and the full production 
use of the system. This was true of the CDC 6600 and 7600, 
the IBM 360 system, and the Cray-l. Intervening years are 
spent building systems software, converting application soft
ware packages for the new system, developing new applica
tions software, and preparing many volumes of documen
tation for all three kinds of software. Time is also needed to 
train maintenance personnel in both hardware and software, 
to establish applications areas that are suited to the new sys
tem, and to train users in procedures making effective use of 
the new system. An enormous user base is needed to encour
age this software and maintenance buildup. An even longer 
period is needed to bring all the software to full working order 
and into full compliance with the documentation; only heavy 
use by thousands of customer groups can adequately exercise 
complex mainframe software, thereby establishing some con
fidence in its full reliability. The IBM software for the 360-370 
series is still evolving, 14 years after its introduction; new 
releases of basic 360-370 systems software occur every 3 
months. t The documentation for the 360-370 series fills an 
entire library bookshelf, from floor to ceiling. 

In the early years of a new system, the lack of software 
seriously limits its usefulness; the software that does exist may 
fail frequently. Documentation is nonexistent, out of date, or 
wrong. Intense user exasperation results, because each prob
lem that arises, no matter how trivial, may take months to 
resolve. Each problem could be the fault in a user's program, 
or in a system program, or in the hardware, or just in a 
manual. Tracing down the problem and then fixing it may 
require intense study of all four possible sources of the diffi
culty by highly experienced personnel. 

Commercial and governmental customers are not (and 
should not be) very eager to tryout a new system until these 
early years are past and smooth operation of both hardware 
and software has been demonstrated. 

The software barrier becomes worse when one contem-

tThere are about ten releases per year. 



Universities and the Future of High-Performance Computing 473 

plates systems with novel architectures having much greater 
power than the Cray-1. These architectures can themselves 
pose major headaches for software developers, and the in
-crease in computing power is usually accompanied by greater 
complexity in applications. 

B.4 Networking Problems 

The capabilities of microprocessor chips are now increasing 
very rapidly, and plans are being established to allow multiple 
microprocessor systems to be linked together through local 
networks such as Ethernet.:j: One might hope that further 
development of these systems would lead to systems with the 
power and expansion capability that the future requires. Un
fortunately, the networks planned in the U.S. are many or
ders of magnitude too slow to allow a single large computation 
to be divided among many processors on a network; that 
would require far more communication traffic between the 
processors than the networks can handle. 

The Denelcor system is designed around a very high speed, 
expandable network hundreds of times faster than Ethernet. 9 

The Denelcor network links from one to 16 processors to an 
arbitrary number of independent memory modules. The ag
gregate data-transfer rate of the Denelcor network increases 
as the number of processors increases, so that communica
tions delays should not occur and cause bottlenecks: The 
special-purpose high-speed processors also contain high
speed switches or communication paths. 

Future mUltipurpose very-large-scale systems are likely to 
be judged mainly by their aggregate internal data transfer 
rates and their aggregate memory-storage capacity. A number 
of massively parallel network designs are currently under 
study by computer scientists. lO These designs could provide 
enormous aggregate data-transfer rates. The Denelcor HEP 
network is a harbinger for some of these network designs, and 
the large memory capacity of the HEP is a hint of the much 
larger memory capacities to come. 

C. UNIVERSITIES AND A MULTISTAGE DESIGN 
PROCESS 

C.l Preliminaries 

In this section I will describe in detail the role of universities 
in providing an advance market for new large-scale computing 
systems. I will explain this role in the context of a multistage 
design process for new hardware and software. The multistage 
design process I advocate is well suited to the U.S. university 
and industrial scene and will allow U.S. industry to compete 
aggressively in world markets despite high interest rates and 
short-term business-management pressures. In the multistage 
model, each design stage for a new computing system is short 
and market driven, with heavy competition encouraged. The 
early stages of major new computing systems would usually be 

:j:Local networks such as Ethernet are not designed for large-scale applica
tions. However, local networks rather than high-speed networks are currently 
in vogue. 

too primitive for commercial markets; thus universities would 
be the primary market for the early stages of systems. For 
many reasons, explained below, universities can obtain useful 
work from a new computing system before it is ready for 
commercial use, and for just as many reasons it is eco
nomically important that universities have a strong early in
volvement with these new systems. 

The multistage design process I will describe is well sup
ported by past experience. The important computing systems 
of today have long histories of prior models. For example, the 
IBM 3081 series, just getting underway, was preceded by the 
3000 series, the 370 series, and the 360 series computers. The 
VAX of Digital Equipment Corporation follows many models 
in the PDP-lliine. Universities have always provided an im
portant early market for new companies starting a new prod
uct line. Digital Equipment, Prime Computer, and Amdahl 
are just three examples of companies whose first annual re
ports featured university customers. 

The proposal I will outline is based on an example of a 
multistage computer design process that I am personally fa
miliar with. The example is the design history of the Floating 
Point Systems FPS-164 Attached Processor. 11 Deliveries of 
the FPS-164 have only just begun, so it will not be surprising 
if readers have not heard of it or of Floating Point Systems. I 
will review this history because many details of my proposal 
are illustrated by it. 

C.2 The FPS-l64 Design History 

The first stage of the design process was a custom-built 
special-purpose processor called the AP-120, with no floating
point capability, designed and built by Culler Harrison Inc. 
The second stage was the design of a floating-point processor 
called the AP-120B. 12 Floating Point Systems carried out this 
design in a very short time in 1975, using a number of the 
architectural ideas of the AP-120. At the time of the design, 
Floating Point Systems had only a handful of employees. The 
AP-120B was sold with no higher-level software. It was a 
spectacular advance in hardware. It was typically bought to be 
attached to an inexpensive minicomputer; it provided a hun
dredfold increase in speed over the minicomputer for roughly 
the minicomputer's price. Programming the AP-120B was dif
ficult, but usually only a few small but time-consuming sub
routines were converted for the AP-120B. As a result, the 
software development problems for the AP-120B were man
ageable. Floating Point Systems has been growing rapidly ever 
since, as sales of the AP-120B have grown.§ 

The third design stage was the design of the FPS-164 At
tached Processor. A commercial verdict on its success is not 
yet in. However, the main features of the FPS-164 design 
process are known. 12 The FPS-164 is a further elaboration of 
the AP-120B architecture. The emphasis was on achieving 
broader functionality and higher reliability than the AP-120B 
rather than on any architectural advance. The FPS-164 offers 
greater numerical precision, more memory capacity, and 
more high-level software than the AP-120B, along with a 

§Floating Point System's gross income was three and one-quarter million 
dollars in 1976; it was 58 million dollars in 1981. 



474 National Computer Conference, 1983 

modern remote diagnostic capability. However, it does not 
provide as spectacular a jump in capability or cost effec
tiveness over existing systems as the AP-120B did; for the 
FPS-164 this jump will be, I think, roughly a factor of 5 to 10 
over competitiveiy priced systems. The design of the FPS-164 
reflects the need of FPS, which is now a medium-sized com
pany, to provide a solid commercial product serving a rela
tively broad market. 

The design of the FPS-164 was preceded by a public demon
stration of the capability of the AP-120B architecture to 
support a broad range of scientific applications. This demon
stration was carried out at Cornell University. The Cornell 
Computing Center, in collaboration with a consortium of sci
entific researchers with large-scale computing needs and very 
little money, bought an AP-190L array processor from FPS in 
1977. It was attached to the central university computing sys
tem, an IBM 370-168 computer. The computing center spon
sored the development of a FORTRAN compiler for the AP-
190L, which enabled consortium members to use the AP-190L 
for a variety of scientific applications. 

This softwar~· support was minimal. The documentation 
Cornell provided for the AP-190L was a single 96-page man
ual. The compiler was primitive, and it has provided lots of 
software headaches for users, especially in its early days. The 
main users of the AP-190L have been the consortium mem
bers who helped pay for it; they and their students have over
come the practical problems of using the AP-190L and a num
ber of graduate student theses have resulted. The FPS-l64 will 
be a much more satisfactory system for the pattern of usage 
Cornell pioneered on the AP-190L. 

The Cornell example provided Floating Point Systems with 
a wealth of experiences of the advantages and weaknesses of 
the AP architecture for general scientific use. The Cornell 
example provides potential FPS-164 customers with a model 
for its use; the Cornell experience is likely to play an im
portant role in marketing the 164. Cornell will be an early 
demonstration site for the FPS-l64. 

C.3 General Description of the Multistage Design Process 

The multistage design process would involve an alternation 
between secret industrial computer-design efforts and open 
university test and demonstration projects that would show off 
the resulting systems. The industrial design stages would be 
short, partly because of the normal need to bring a product to 
market and make money on it, and partly to keep the designs 
current with rapidly advancing computing technology. Each 
new design stage would be an opportunity to incorporate 
more modern integrated-circuit technology into the design, to 
take advantage of the latest diagnostic and quality control 
procedures, and so on. The universities should also be under 
pressure to get new systems running quickly so that the man
ufacturer and potential commercial customers can get quick 
feedback on the benefits and problems the new systems 
provide. 

Systems in the first design stage would mostly be for experi
mental use by a small community of users, with users and 
designers in frequent informal contact so that changes (even 

major ones) can be made quickly and a few phone calls can 
substitute for documentation. Subsequent design stages 
would take the most effective architectures and refine them, 
adding more hardware facilities, building up higher-level soft
ware, and in general exploiting the basic architectural frame
work for successively larger and broader markets. Universities 
would typically buy the first few production models of 

. intermediate-stage designs for test and demonstration pur-
poses, but much of the follow-on market for these systems 
would be commercial, for special-purpose applications. The 
final stages of the design process would involve industry giants 
like IBM preparing systems for world-wide distribution with 
multipurpose capabilities, proven software and full mainte
nance support. The last design stages would be concerned 
heavily with maximizing software compatibility with the man
ufacturer's previous product lines, as well as with the many 
detailed optimizations involved in serving a multi-billion dol
lar market. 

The uses of the university demonstration systems should be 
as varied as possible in order to maximize the effectiveness of 
the demonstration. All kinds of basic research should be car
ried out. Theoretical physicsts, chemists, astrophysicists, and 
applied mathematicians would carry out simulations of real or 
fanciful physical situations. High-energy physicists, space sci
entists, and others would analyze enormous data streams from 
their experiments. Innumerable engineering, database, and 
information-retrieval applications should be pursued. Musi
cians, artists, humanists, and social scientists would have 
other uses to try. The relevance of any of this research would 
be unimportant. The only requirement would be breadth-a 
broad range of research activities would be needed to provide 
a broad range of tests for the new computing systems. It is 
important, however, that the computing systems tested be 
mUltipurpose systems rather than specific to the research 
being pursued. 

It is important that the research carried out on the new 
computing systems be of high quality. The best researchers 
have the strongest motivation to stick with their projects de
spite the difficulties the new systems present. The best re
searchers will place the most strenuous demands on their 
equipment and are the ones most likely to discover new appli
cation areas for it. Above all, students working with the equip
ment need to see it being used effectively, so that they will 
graduate with a positive feeling about computing and what it 
can do. 

Current policies that have the effect of diminishing the U.S. 
university research efforts must be reexamined. Many high
quality projects that are now being abandoned or deferred 
need to be fully restored so that they can help build the market 
for advanced computing equipment in the service of inno
vative and varied research. 

Many systems would fail at various stages of the design 
effort. The market supporting innovation must be large 
enough to survive these failures, and must encourage only the 
most successful technologies through further design stages. 
The university projects that would be the primary market for 
products of early design stages would also have a high failure 
rate. The demands for innovation from the university demon
stration projects would be severe, and only a small fraction of 



Universities and the Future of High-Performance Computing 475 

the university projects would be fully successful. The univer
sity efforts require discovering strengths and weaknesses of a 
new system despite very considerable barriers of instability 
and inadequate software, finding novel applications for the 
system that will broaden its commercial market, and devel
oping the initial framework for the system's use. These are not 
easy tasks. The Cornell Array Processor project was a success, 
but in many ways we were lucky to succeed; no one could 
guarantee success for any specific university project that tried 
to be as bold as we were. 

Through success or failure, a research group's normal func
tions of student training and basic research must continue. 
Other computing systems must always be available to back up 
the research effort; failure can be as important to learning as 
success is. 

C.4 Benefits of the Multistage Plan 

The model of a multistage design process with heavy 
involvement by universities is attractive in many ways. Uni
versity research groups are well suited to working with new 
computing equipment. An abundance of graduate and under
graduate student labor eases the difficulties and frustrations of 
working with new equipment. Faculty members carrying out 
research on these systems often have a high level of expertise 
that enables them to overcome the difficulties of poor soft
ware and inadequate documentation. University research is 
often less constrained by pre-existing requirements and soft
ware than commercial or governmental computing. Research
ers can adjust their research topics and directions to avoid the 
shortcomings of a new system and take advantage of its bene
fits. Students writing programs from scratch can adapt rela
tively easily to new architectures and new software develop
ment tools. The competitive character of university research 
causes both faculty and students to seek out new or un
expected applications of a new system in order to obtain a 
research advantage .. 

The training functions of university test and demonstration 
projects cannot be overemphasized. In an era of rapidly devel
oping computer technology, technology that is already estab
lished when a student enters a university is on its way to 
obsolescence by the time the student graduates and enters the 
work force. Providing students with experience in computing 
technology in advance of its commercialization is the only way 
for them to be reasonably current at graduation. New sys
tems, by virtue of their instability and poor software support, 
can be the source of meaningful part-time jobs for many un
dergraduates. 

A university test-and-demonstration project for a new com
mercial product is a superb framework for technology transfer 
from universities to industry. University researchers working 
with a new piece of equipment are strongly motivated to find 
ways to enhance the equipment to make it more effective for 
their research. Enhancements to computer equipment are 
likely to be especially helpful to a broad class of users of the 
equipment, because of the inherent flexibility of computers. 
A small company or a new product group which is trying to 
win acceptance for a new product has a strong motivation to 

listen to the ideas of the university users, especially if the 
success of the university demonstration project is crucial to 
the future of the product. Interaction between university re
searchers and an industrial design group is much easier and 
more effective at a very early stage in the design process, when 
major changes can be made easily and university personnel 
are working on a personal basis with the design group. Fre
quent interchanges take place as the researchers encounter 
difficulties and seek the help of the designers in helping with 
these difficulties. 

The improvements developed in the course of a university 
test operation may seem minor in the early phases of a new 
product. However, if the product develops to the point of 
serving a multi-billion-dollar market, the economic impact of 
the university's efforts can be profound. In contrast, once a 
product is in the final stages of preparation for a billion-dollar 
market, a massive bureaucracy is in place surrounding prod
uct design, development, and marketing and any effective 
influence by a few university researchers is impossible. 

The university test and demonstration projects would de
velop strong ties with potential commercial customers for new 
systems. Cornell has fielded many inquiries from potential 
commercial customers for the AP-190L or the FPS-l64. We 
accept the site visits, and play a strong role in the Floating 
Point Systems user's group; quite a number of papers by Cor
nell authors have come out of the user's group meetings. 14-19 

At user-group meetings, university and commercial users of 
Floating Point Systems get together to exchange experiences 
and software, thus establishing another university-industry 
link where technology transfer can take place. 

D. UNIVERSITIES AND THE SOFIWARE PROBLEM 

A very important function of the universities is to attack the 
software complexity problem. Computer science departments 
are already devoting a major part of their research effort to 
the search for better methods of software development. Many 
promising developments have occurred in the last few years; 
most of them are still in the preliminary prototyping stage. 
The old view that improving programmer productivity is sim
ply a matter of using the right computer language has become 
obsolete; there is now much more emphasis on a variety of 
programming methodologies and computerized programming 
support tools. The "Cornell program synthesizer," widely 
used in basic university computer-science courses, provides a 
superb demonstration of some current direction in computer 
science.2o 

While the ultimate aim of the computer science research is 
to make computer programming far easier than it now is, 
some of the most promising developments are currently very 
difficult to work with. To build by hand a computer program 
that is entirely reliable presently involves an incredibly precise 
and intricate logic that few programmers have the patience or 
aptitude to carry through. Much of this logic will have to be 
incorporated into computerized programming aids where it 
can be hidden from the average programmer, just as the intri
cate details of an automobile engine are invisible to the driver 
of the automobile. Unfortunately, the present state of the art 



476 National Computer Conference, 1983 

of program development is still too experimental and ill un
derstood to allow rapid development of the fully automated 
programming systems that are needed. 

The computer scientists' effort needs to be supplemented 
by an equai effort by computer users, who win appiy their 
most promising ideas. The users must try these ideas out on 
problems that exhibit the complexity that is going to be -im
portant in the future. These users must find out, through 
practical experience, whether the complexity barrier can be 
broken with today's concepts or whether new ones are re
quired. This effort requires users who will fully master the 
computer science underlying the ideas they apply. The univer
sities have the bulk of the users with the aptitude and mo
tivation to do this. However, these users require adequate 
facilities. A VAX, even if restricted to a single user, is not 
powerful enough for many of the applications that will chal
lenge current complexity limits. A Cray-1, or preferably a 
much more powerful system, is more appropriate, but only if 
it is shared informally among a small user community. A 
Floating Point Systems Array Processor is perhaps the least 
expensive system with adequate power to create the kind of 
programming problems that need to be studied. Furthermore, 
the users who are applying computer science ideas need max
imum support in other ways. They must be supplied with 
enormous memory capabilities and with the most advanced 
graphics terminals available. They must have full access to 
program development systems that support all the UNIX and 
LISP-based software being developed by computer scientists 
and others. (UNIX is a trademark of Western Electirc, 
Inc.)** They need to be connected to a highly reliable inter
national communications network so that they can instantly 
exchange ideas and software with either users or computer 
scientists with similar interests. They must have access to both 
student and professional help. 

These support facilities must be instantly available to junior 
faculty members, students, or computing support staff mem
bers who have good ideas. It should not be necessary to spend 
two years convincing the senior faculty that one has a good 
idea and then waiting another two years for a proposal by the 
senior faculty to be funded. 

No university presently has these kind of computing facili
ties. No university presently comes close. 

One fallacy that must be avoided is the idea that the hardest 
problems in computer science can be treated only by com
puter scientists. For the brightest young people now trying to 
become involved in computing, labels are meaningless. They 
may be called physicists, applied mathematicians, psycho
logists, musicians, or something else. Their actual expertise is 
governed only by how they choose to spend their time. If their 
interests require that they learn about modern computer sci
ence, they will do so, at an astonishing rate. It makes no sense 
to exclude these people from working on computer science 
problems just because their official labels do not read "com
puter scientist." 

··UNIX is the portable operating system developed at Bell Laboratories. It 
is widely used in computer science departments. It should become the default 
operating system for entire university operations. LISP is the language used in 
the artificial intelligence community. 21 

In fact, the very great difficulty of the software develop
ment problem is due to its not being a problem purely within 
computer science. The problem of achieving a meeting of the 
minds between a person and a computer separated by a graph
ics SCieen involves aesthetics and psychology just as much as 
it involves the logic of computer science; the specific applica
tion the person has in mind is equally important. The advance
ment of computer technology is a job for entire universities, 
not just computer science departments, although the role of 
computer science is crucial and not adequately appreciated. 

Many of the university test and demonstration projects do 
not involve these deep programming problems. Instead they 
involve more routine use of new computing systems for 
teaching and research, using whatever software is currently 
available. The users of these systems do not build advanced 
software; instead they discover and report back to the manu
facturer any problems that occur within the software and 
hardware they are supplied with. This is a routine but eco
nomically important function that universities can perform 
cheaper and more effectively than any other segment of the 
economy and with less disruption to other activities. Both 
highly advanced software development and the routine testing 
of new products now have a commercial importance measured 
in billions of dollars. 

E. FINANCING THE UNIVERSITY MARKET 

Critical to the multistage design effort I propose is adequate 
financing of the university market. If the university market is 
to push innovation in large-scale computing adequately, hun
dreds of university research groups must be able to purchase 
multi-million-dollar computing systems in early stages of their 
development. There must be adequate support for ancillary 
equipment, for the junior faculty, graduate students, under
graduates, and computer support staff, all of whom would 
work with these systems, and for software purchases. Support 
is required for additional floor space and for library support 
services. The present means of university financing are hope
lessly inadequate for this purpose. 

It is clear that the technological functions of universities in 
the modern U.S. economy are all tied to computing tech
nology in one way or another. The very great concern about 
trained manpower is almost entirely due to the computer; 
computing technology enhances the value of highly trained 
personnel and generates a greatly inc~eased demand for them. 
Every time a new computer is bought, a new source of de
mand for trained manpower and new technology is created
new demands for programmers, maintenance personnel, and 
ideas for computer applications, along with a demand for 
computer technology development to produce future upgrade 
capabilities for the computer itself. All these demands place 
new strains on the U.S. university system. To keep up with 
these demands, as well as to support the university market, it 
is imperative that support for universities keep pace with the 
growth of computer technology. 

The financing needs of universities could be met, fairly 
easily, by means of a use tax, namely a retail sales tax on all 
computing equipment soid in the United States, regardless of 



Universities and the Future of High-Performance Computing 477 

origin. This use tax would distribute the costs of university 
support on a roughly equitable basis among the chief eco
nomic beneficiaries of the universities' functions. The use tax 
would define a natural and reasonable scale of university sup
port, determined by their principal economic functions. It 
would enable university support to grow faster than inflation 
as long as the computing industry itself grows faster than 
inflation; this will be a critical requirement once the present 
recession is past. It would provide new incentives to the uni
versities themselves to maximize their effectiveness in serving 
the high technology economy. 

Tying universities to computing does not mean a narrowing 
of their normal scope. Universities must learn to use com
puting technology in support of all phases and fields of their 
activity-sciences, arts, humanities, sports, administration, 
and so on. The new support plan, while emphasizing high 
technology, must enhance all aspects of university life. 

No one likes a new tax. However, in the case of the pro
posed computer tax I think it would be exceptionally difficult 
to prove that anyone would be harmed even by a very stiff tax. 
The computer manufacturers would all be treated equably by 
the tax with respect to both domestic and foreign competition, 
and would benefit enormously by the increase in trained per
sonnel that would swell their potential customer base. Large 
commercial users of computing would benefit from more 
rapid innovation in computing technology and an increased 
trained manpower pool. In addition, the costs of computing 
equipment are so volatile that the impact of a computing tax 
phased in over several years would be difficult to identify. 

REFERENCES 

Note: References 14-20 published by Floating Point Systems, Inc., P.O. Box 
23489, Portland, OR 97223. 

1. Wilson, K. "Problems in Physics With Many Scales of Length." Scientific 
American, 241 (Aug. 1979), p. 158. 

2. IBM Journal of Research and Development, 24 (1980), pp. 107-252. 
3. Electronics, 54 (1982), p. 41. 

4. Electronics, 55 (1982), p. 161. 
5. Worlton, J. "Supercomputers." Computerworld, 15 (1900), p. 82. 
6. "Highly Parallel Computing." Computer, 15 (1982), entire issue. 
7. Batcher, Kenneth E. "Design of a Massively Parallel Processor." IEEE 

Transactions on Computers, C-29 (1980), pp. 836-840. 
8. Colton, Bruce. "The Advanced Flexible Processors, Array Architecture." 

In Peter Lykos and Isaiah Shavitt (eds.), Supercomputers in Chemistry. 
Washington, D.C.: American Chemical Society, 1981, pp. 245-268. 

9. Gottlieb, A., and J. T. Schwartz. "Network and Algorithms for Very Large 
Scale Computation." Computer, 15 (1982), pp. 27-36. 

10. "Interconnection Networks." Computer, 14 (1980), entire issue. 
11. Bernhard, R. "Giants in Small Packages." IEEE Spectrum, 19 (1982), 

pp.39-45. 
12. Charlesworth, Alan E. "An Approach to Scientific Array Processing: The 

Architectural Design of the AP-120BIFPS-164 Family." Computer, 14 
(1980), pp. 18-27. . 

13. Wilson, Kenneth G. "Experiences with a Floating Point Systems Array 
Processor." In G. Rodriguez (ed.), Parallel Computations. New York: Ac
ademic Press, 1982. 

14. Chester, G., R. Gann, R. Gallagher, and A. Grimison. "Computer Simu
lations of the Melting and Freezing of Simple Systems Using and Array 
Processor." Proceedings of the Floating Point Systems 1978 Users Group 
Meeting: Record, 1978, pp. 47-58. 

15. Bergmark, Donna. "The Design of an AP Fortran Compiler." Proceedings 
of the Floating Point Systems 1978 Users Group Meeting: Record, 1978, 
pp.59-72. 

16. Giambrone, N., and L. Chace. "AP-190L and IBM 3701168: Software 
Design and Development Support Scheduling and Control." Proceedings of 
the Floating Point Systems 1979 Users Group Meeting: Record, 1979, 
pp.72-89. 

17. Bergmark, Donna, and Andrew Hanushevsky. "Document Retrieval: A 
Novel Application for the AP." Proceedings of the Floating Point Systems 
1980 Users Group Meeting: Record, 1980, no pagination. 

18. Schwartz, Ben. "A Dynamic Segment Loader for the AP." Proceedings of 
the Floating Point Systems 1980 Users Group Meeting: Record, 1980, no 
pagination. 

19. Giambrone, Nicholas. "A Monte Carlo Optimizer for the FPS AP-120BI 
190L." Proceedings of the 1981 Array Conference (FPS), pp. 97-107. 

20. Jacobs, Dean, Jan Prins, and Kenneth Wilson, "Monte Carlo Techniques 
in Code Optimization." Proceedings of the 1982 Array Conference (FPS), 
pp.44-53. 

21. Teitelbaum, T., and T. Reps. "The Cornell Program Synthesizer: A Syntax
Directed Programming Environment." Communications of the ACM, 24 
(1981), pp. 563-573. 

22. Computer, 14 (1981), no. 4 (entire issue). 





Dynamic RAM architectures for graphics applications 

by DOUGLAS L. FINKE 
Intel Corporation 
Aloha, Oregon 

ABSTRACT 

This paper explores the requirements for future graphics memories and analyzes the 
requirements for two of the biggest problems in graphics terminal design, raster 
display bandwidth and random-bit update performance. To solve these problems a 
new access mode for dynamic RAMs called Ripplemode ™ will be proposed. This 
mode directly solves the raster display bandwidth problem by providing high-speed 
access to a serial bit stream. Under certain circumstances this mode also improves 
the performance of random-bit updates. 

479 





Dynamic RAM Architectures for Graphics Applications 481 

INTRODUCTION 

For the past decade dynamic RAM has been the memory 
technology of choice for implementing the bit-mapped ap
proach to graphics memories. The characteristics that make 
dynamic RAM so desirable include lowest cost per bit, rea
sonable speed, high packing density, and low power. As the 
cost performance of dynamic RAM memory has steadily im
proved, system designers have been quick to take advantage 
of these improvements by increasing the capabilities of their 
displays. Whereas a common display size in past years may 
have been 384 x 512 pixels with 1 bit per pixel, displays of 
beyond 1024 x 1280 pixels with more than 8 bits per pixel will 
be common in the future. 

As the demands for improved performance continue to in
crease, it is becoming apparent that the optimum chip archi
tecture for graphics applications is diverging from that histor
ically used for dynamic RAMs. The trend to higher-density 
chips, faster clock cycles, color displays, and animation is 
causing memory producers to seek out alternative RAM 
architectures to provide solutions to these problems in a cost
effective manner. 

This paper explores the requirements for future graphics 
memories and analyzes the requirements for two of the big
gest problems in graphics terminal design, raster. display band
width and random-bit update performance. To solve these 
problems, a new access mode for dynamic RAMs called 
Ripplemode will be proposed. This mode directly solves the 
raster display bandwidth by providing high-speed access to a 
serial bit stream. Under certain circumstances this mode can 
also improve the performance of random-bit updates. 

RASTER DISPLAY BANDWIDTH REQUIREMENTS 

A raster scan display is composed of three basic time blocks 
(shown diagramatically in Figure 1). Area 1 represents the 
time block used to display the image pixels onto the screen. Its 
magnitude is simply the product of the number of lines per 
screen, the number of pixels per line, and the average time per 
pixel. Area 2 represents the time required for horizontal 
blanking, during which horizontal retrace occurs. Area 3 rep
resents the vertical blanking time, during which vertical re
trace occurs. During Periods 2 and 3 the pixel memory is not 
being used for the raster-scanning function. The sum of Peri
ods 1, 2, and 3 represents 1 display frame time. 

Table I shows an analysis of the actual pixel time for four 
typical graphics implementations. It assumes a 6O-hz non
interlaced display with aspect ratios of approximately 3:4. The 
horizontal and vertical blanking times are nominal values cho
sen on the basis of monitor performance specifications. 

3. VERTICAL BLANKING TIME 

~-------------T------

I 
I 
I 

I 2. HORIZONTAL 
1. DISPLAY TIME I BLANKING 

I TIME 

I 
I 
I 
I 

Figure I-Frame time partitioning 

Typical graphics systems use multiple memory chips per 
system, for two separate reasons. First, with today's density 
chips, several memory devices are required just to hold the 
required capacity. But a second factor is that typical imple
mentations are required to parallel several devices in order to 
achieve the required data rates. An upcoming problem with 
high-density devices is the possibie mismatch between these 
requirements. As Table II shows, bits can be wasted with 
standard dynamic RAMs because the number of devices 
needed to achieve the required bandwidth can be higher than 
the number of devices needed to supply the bits. Alternative 
architectures are necessary if one wants to use 64K x 1 and 
256K x 1 dynamic RAMs without wasting bits. 

One important characteristic of raster-scanning accesses is 
their serial nature. Dynamic RAM architectures that provide 
fast access to serial data streams can take advantage of this 
characteristic to help meet the raster-scanning requirements. 

One of the oldest forms of such serial access is known as 
page mode. Inside a dynamic RAM the addresses are divided 
into rows and columns. A 64-K dynamic RAM, for instance, 
has 16 address bits, of which 8 are for the rows and the other 
8 for the columns. Because of the internal architecture of the 
part, access to a new column address within the same row can 
be made somewhat faster. In the 2164A,1 for example, a new 

Table I-Full frame scan specifications 

Pixels Vertical Horizontal Total 
Display Per Blanking Blanking Display Blanking Pixel 
Pixels Lines Line Time Time Time Time Time 

196K 384 512 900~s 7.0~s 13.08ms 3.58ms 66.5ns 
328K 512 640 800~s 6.5~s 12.54ms 4.12ms 38.3ns 
786K 768 1024 700~s 6.0~s 11.36ms 5.30ms 14.4ns 

1310K 1024 1280 650~s 5.4~s 1O.49ms 6.17ms 8.0ns 



482 National Computer Conference, 1983 

Table II-Devices required for bandwidth versus memory space 

Minimum Minimum Devices to % Bit 
Display Devices Supply Bit Capacity Wasted 
Pixels in Parallel 16K 64K 256K 16K 64K 256K 

196K 5 12 3 1 0 40 80 
328K 8 20 5 2 0 38 75 
786K 21 48 12 3 0 43 86 

13lOK 38 80 20 5 0 47 87 

This table was calculated by assuming a 300-ns cycle time for single bit reads, 
the pixel time requirements from Table I, and a single bit/pixel. 

row address can be accessed in 150 ns and cycled in 260 ns, and 
a new column address can be accessed in page mode in 85 ns 
and cycled in 125 ns. This provides an improvement of about 
a factor of 2 for raster scanning. A further improvement can 
be made to page mode by extending the time length over 
which it can be used from 10 f.Lsec to a much longer 75 f.Lsec. 
The significance of this improvement, known as Extended 
Page Mode, lies in that fact that the maximum time length 
between successive horizontal retraces is always less than 
75 f.Ls and that therefore page mode can be in use for one 
entire horizontal sweep. Another important advantage is that 
it allows one to page out the entire 256 bits in a row. With a 
limit of 10 f.LS for page mode only 80 bits can be paged out 
before the device must be put through a precharge cycle. 
Extended page mode on the 2164A can make low-density 
displays, such as 256 x 256 pixels, very easy to implement. 
Each horizontal line on the display can be mapped to a row 
within the chip address space, and extended page mode can 
be used to access the entire line at the required data rate. Only 
one memory chip is required to implement the entire memory 
(assuming 1 bit/pixel) with no interleaving, parallel to serial 
converters, or other complications. 

A second approach to improving the memory bandwidth is 
simply to make the memories wider. 2 By organizing the 
memories as either x4 or x8, the bandwidth is obviously 
improved by a factor of either 4 or 8. In Table II, for example, 
one could show that a memory organized either as 8K x 8 or 
16K x 4 could be used without wasting any bits, whereas its 
64K x 1 counterpart wasted about 40%, as shown. There are 
disadvantages to this approach, however. One needs to con
vert the parallel outputs to a serial stream, adding extra cost 
and complexity to the design. In addition, these organizations 
all use common I/O, thus raising the possibility of bus con
tention, complicating data path bussing, and adding extra 
loading and capacitance to slow down the data transfer rate. 
In addition, these parts are typically packaged in larger pack
ages than x 1 parts, increasing the end system's physical size. 
Finally, problems can occur when one wants to write only a 
subset of the 4 or 8 bits in the chip. To accomplish this, a 
slower and more complicated read-modify-write cycle must be 
used instead of the normal write. 

A third approach to providing faster sequential access is 
called Nibblemode. 3 This approach attempts to provide the 
advantages of aX 4 architecture without suffering from any of 
the problems. In a 64K chip, for example, a Nibblcmode 

device is internally organized as 16K x 4. However, instead of 
all 4 bits' being sent directly to the output pins, they are 
latched into a shift register. On successive cycles of the CAS 
clock a new bit appears on the output pin, and access to the 
4 serial bits can occur at a rate of 40 to 60 ns. This method 
provides high peak bandwidth for short bursts while avoiding 
all the problems of common I/O and parallel outputs. The 
main disadvantage of this approach is that it is only 4 bits. 
Although the peak bandwidth is high, the average bandwidth 
is less. That is because this method still does not eliminate 
either the large access times for the first bit or the precharge 
time for the next cycle after the fourth bit has been accessed. 
Looking at it in another way, this method provides a slow 
access to the first bit in a series and then three fast accesses to 
the second, third, and fourth bits. 

After examining the alternatives, Intel has committed its 
future line of dynamic RAMs to a new form of access mode 
called Ripplemode. This new mode is functionally compatible 
with extended page mode but provides greater speed and 
bandwidth than any of the modes mentioned above with none 
of the associated problems. Ripplemode is made possible by 
the use of a combination of HMOS-III-level technology and 
innovative circuit design techniques. 

Like extended page mode, Ripplemode provides quicker 
access to any bit within the same row at a fast rate by sending 
out a new column address and clocking the CAS clock to latch 
it in. Compared to extended page mode, however, Ripple
mode provides sequential cycle times at the chip level of only 
40 ns, compared to the 125 ns of the 2164A. Ripplemode 
further improves performance at the system level by incorpo
rating a lookahead function in the column address buffers. 
Because this circuitry is implemented by using flowthrough 
latches instead of edge-triggered latches, an access can be 
initiated even before the CAS clock has been brought low. So 
instead of only a 2x speedup, Ripplemode provides a 6x 
speedup over the standard random-access mode. The advan
tages of Ripplemode include the fact that it provides access to 
256 or 512 bits instead of only 4, it does not depend on com
mon I/O, and it provides more flexibility in the access pattern. 
Bits can be read forward, backward, or even pseudorandomly 
without any degradation in access time as long as the bits are 
all within the same row. In addition, Ripplemode is fully 
upward-compatible with page and extended page mode. Any 
design that used these older modes can plug in Ripplemode 
parts without any modification. 

To illustrate the power of Ripplemode, a I-chip implemen
tation of the 384 x 512 display can be accomplished just by 
using a 256-K x 1 dynamic RAM with Ripplemode. Again, 
this implementation would not require any interleaving, 
parallel-to-serial converters, or other complications. It would 
provide not only the best performance levels, but also the 
simplest system implementation. 

Although Ripplemode does not require usage of common 
I/O to achieve its bandwidth, there is nothing to prevent the 
combining of Ripplemode with a x4 or x8 organization to 
improve the levels of bandwidth further. A 64K x 4 with 
Ripplemode, for example, can provide data rates of up to 100 
MHz for blocks of 1024 bits for applications that require the 
ultimate in dynamic RAM bandwidth. 



Dynamic RAM Architectures for Graphics Applications 483 

PIXEL UPDATE PERFORMANCE 

Once the problem of obtaining adequate bandwidth for raster 
displays has been solved, a second one can appear. Not only 
does one need to display the contents of the memory on the 
screen; one must also be able to update the memory in order 
to change the display. Unlike the bandwidth requirements for 
raster display, which can be precisely quantified (as shown 
above), the bandwidth requirements for pixel update vary 
greatly with each application. 

As is shown in the following discussion, Ripplemode is also 
helpful for solving the pixel update problem. One of the major 
advantages is that it alleviates the need t.o use a x4 or x8 
organization in the memory. Because a pixel generator typi
cally only writes 1 pixel at a time, updates using a x4 or x8 
common I/O architecture must be accomplished by using a 
read-modify-write cycle. Besides complicating the design, re
quiring read-modify-writes slows down the write performance 
of the memory considerably. Whereas a standard write cycle 
can be easily accomplished within a system in 300 ns, the 
system cycle time for commonly available parts is closer to 
400ns. 

An application with only moderate update requirements 
could be one that displays a series of static screens without any 
constraints on the total display time. Another possibility could 
be that of a radar display. Although the screens of such a 
display are constantly changing, they never make complete 
scene changes from frame to frame. A small segment of the 
screen may change within 1 frame time, but these changes 
usually represent just a small fraction of the total pixels. As 
shown in Table III, these applications can. a..f£ord simply to 
accomplish updates in standard random-access mode during 
the retrace periods and still meet their performance 
requirements. 

Table III represents the performance one can obtain by 
using standard random-access writes during the retrace peri
ods to write the screen. It assumes a 300-ns system cycle time 
for the write, and enough refresh cycles to satisfy the refresh 
requirements of a 256-cycle/4-msec or a 128-cycle/2-msec 
DRAM. It also assumes a frame time of %0 sec and flicker
free operation. 

What Table III shows is that even if the update cycles are 
limited to the retrace time within a frame, a full screen can be 
completely written within 0.3 to 1.5 sec. Put another way, this 
scheme for accomplishing updates can accommodate a pixel 
generator that produces a new pixel every 862-1628 ns. 

In many systems the bottleneck is not actually within the 
memory system but instead in the pixel generator itself. Al
though performing pixel updates during retrace periods pro-

Blanking 
Display Time 

196 K 3.58 ms 
328 K 4.12 ms 
786 K 5.30 ms 

1310 K 6.17 ms 

Table III-Full-screen write time 

Maximum Random 
Cycles During 
Retrace time 

11,933 
13,733 
17,666 
20,566 

Refresh Update 
Cycles Cycles Full-Screen 

Per Frame Per Frame Write Tune 

1280 
1280 
1280 
1280 

10,653 
12,453 
16,386 
19,286 

0.32 sec 
0.45 sec 
0.80 sec 
1.13 sec 

vides adequate average bandwidth for many applications, a 
mismatch can occur between the peak bandwidth demands 
the pixel generator demands and the peak bandwidth the 
memory is able to supply. If the processor needs to wait until 
the memory is available, the system throughput can be slowed 
down considerably. To solve this problem, a pixel write buffer 
can be placed between the pixel generator and the graphics 
memory. By using three 2 K x 8's to queue an update'S ad
dress and data, one can obtain near-full-speed performance 
from both the memory and the processor. 

A slightly more stringent application could be one with a 
requirement that full screen clears or any other block-type 
function be accomplished quickly. As shown below, the re
quirements of these applications can be met by taking advan
tage of Ripplemode to accomplish the full screen clears and 
then using standard random accesses during retrace to accom
plish the rest. 

Since clearing the screen is one of the most common graph
ics functions, a considerable improvement in this function can 
be made with very little extra hardware. Table IV shows the 
time it would take to accomplish this function with Ripple
mode. It assumes a 75-ns system cycle time for Ripplemode 
and the use of Ripplemode functions only during the vertical 
blanking time, since the horizontal blanking time is not long 
enough to allow for rippling through an entire row. 

Finally, there are applications that require extremely large 
amounts of update bandwidth. Characteristics of these appli
cations may include the use of animation, very rapid scene 
changes, or just a large amount of movement from frame to 
frame. For these applications the use of a double-buffered 
memory is recommended. 

Although it may seem to be a waste to use twice the number 
of bits needed for display purposes, the added cost and density 
may actually turn out to be minimal, especially for systems of 
this performance level. With 256-K technology, the 1310-K 
pixel display will be implemented with only 5 chips per memo
ry plane. Even with as many as 4 bits per pixel, a fully double
buffered 1024 x 1280 x 4 memory system will fit onto 1 card. 

Double buffering works with 2 equal-sized frame buffers. 
While the primary display buffer is used to serve the raster
scanning requirements, the pixel generator has full access to 
the secondary buffer to make updates. At the appropriate 
time, the system will switch buffers so that the updated buf
fer is displayed on the screen and the old display buffer is 
now used for updating. In some cases it may be necessary to 
copy the new display buffer into the update buffer before 
the pixel generator can use the update buffer. This can be 
accomplished in 1 frame time by using Ripplemode. While the 
display buffer is being read in Ripplemode for raster-scan-

Table IV-Screen clear time using Ripplemode 

64 K x 1 or 
Display Vertical Blanking Time 64 Kx4 256 K xl 

196 K 900 I-LS 0.10 sec 0.38 sec 
328 K 800 I-LS 0.12 sec 0.43 sec 
786 K 700 I-LS 0.13 sec 0.50 sec 

1310 K 650 I-LS 0.13 sec 0.53 sec 



484 National Computer Conference, 1983 

Table V-Full-screen write times using double buffering 

Random Cycles Refresh Update Full-Screen 
Display Per Frame Cycles Cycles Write Time 

196 K 55,555 1280 54;275 0.07 sec 
328 K 55,555 1280 54,275 0.12 sec 
786 K 55,555 1280 54,275 0.25 sec 

1310 K 55,555 1280 54,275 0.42 sec 

ning purposes, the same data can also be fed into the up
date buffer and written with Ripplemode. As Table V shows, 
the performance improvement with this technique can be 
considerable. 

DESIGN EXAMPLES 

Using the concepts explained above, some design examples 
with Ripplemode RAMs are briefly described in this section. 
Although these examples are shown using only 1 bit!pixel 
system for simplicity's sake, extending them to multiple bit! 
pixel systems is very straightforward. 

The first system, a moderate-performance one, is shown in 
Figure 2. Although Figure 2 is shown using a single 256-K x 1 
RAM, it could just as easily be implemented with three 64 
K x l's. As was shown earlier, the 196-K system requires a 
pixel cycle time of 66.5 ns. This requirement can be met with 
a single chip when Ripplemode is used. As a result, a shift 
register is not required to accomplish the parallel-to-serial 
conversion. Since the length of a line is 512 pixels, it exactly 
matches one row in the 256 K. When using 64 Ks, 2 rows in 
different chips are required, since 64 K rows are only 256 bits 
long. The memory-refresh requirements can be met by per
forming 3 refresh cycles during the horizontal retrace period 
at the end of each line. This system would allow memory 
updates to occur only when the memory is not being used for 
the raster display or refreshes. 

The second example in Figure 3 is a medium-performance 
system with enough memory for a 328- to 512-K pixel display. 
It also includes provisions for Ripplemode blanking and a 2-K 
pixel update buffer to improve write performance. In this 
system the address and data for pixel updates are loaded into 
a FIFO memory, allowing the processor to generate new pix
els as long as the FIFO is not full. The display controller in 
turn reads the FIFO and updates the display memory during 

UPDATE DATA 
PIXEL GENERATOR t---------I 

UPDATE ADORESS 

DATA OUT TO VIDEO 
GENERATOR 

Figure 2~~.icderate-pcrfcrmance 196K-256K display system 

RlPPl.EMOOE . 

FFO I~La.~RL~ 
CONTROL I LOGIC 

CONTROLS 

AOORESS 

TO VIDEO 
GENERATOR 

Figure 3--Medium-performance 328K-512K with fast clear and update FIFO 

the times the display memory is not busy. The display memory 
can also use Ripplemode to improve performance for block 
fill and clear operations. 

The final example, Figure 4, is an ultra-high-performance 
system. It contains two 13lO-K buffers to provide support for 
simultaneous raster display and updates. Because of the ex
tremely high data rate required (8 ns/pixel), 64 K x 4s are 
used to read out a total of 20 bits in parallel; and these are 
converted to a serial stream by a 20-bit shift register. This 
application only requires 1 or 2 refreshes per line. Control 
signals can be sent from the pixel generator to the display 
control logic when it is time to switch buffers. 

SUMMARY 

One thing is becoming clear as the capabilities of dynamic 
RAM memories continue to increase. With today's tech
nology it is becoming technically feasible and more desirable 
to optimize RAM chip architecture for varying applications. 
Architectures for, say, mainframe memories and graphics dis
plays will be considerably different in the future. 

This paper has shown the first steps in optimizing memory 
architectures for applications in graphics. Even more inno
vative structures are being investigated, and in the future 
architectures that make possible the implementation of an 
entire high-performance bit map memory within a single chip 
will be possible. 

ACKNOWLEDGMENTS 

The author is indebted to Charles Guy for his considerable 
help in analyzing graphics memory requirements and to Will
iam Righter for suggesting improvements to preceding drafts 
of this paper. 

REFERENCES 

1. 2164A Data Sheet, Intel Corporation, 1982. 
2. Cole, Peyton M., David W. Gulley, and Lionel White. "Wide-Word 

Memory Chips Spur New Microprocessor Applications," Electronic Design, 
November 26, 1981, pp. 231-238. 

3. Eaton, S. Sheffield, David Wooten, William Slemmer, and James Brady. "A 
100 ns. 64K Dynamic RAM using Redundancy Techniques." 1981 IEEE 
Solid-State Circuits Conference Digest of Technical Papers. Coral Gables, 
Fia.: iEEE, 198i. pp. 84--85. 



PIXEL 
GENERATOR 

DISPLAY 
BUFFER A 

~ 

:...-

64Kx4 

A 

ADDRESS 
BUSA 

Dynamic RAM Architectures for Graphics Applications 485 

20 BIT 
SHIFT REGISTER TO VIDEO 
~ ____ ~ ____ ~ GENERATOR 

{r'-------, 
UPDATE DATA 

DiSPLAY 

DATA 
BUFFER B 

~ 
BUS A ~ .~ 

DISPLAY 
64Kx4 BUS OUT 

A DATA 
BUSB 

ADDRESS BUS B 

I 
BUS ! D!SPLAY CONTROllOG!C I DATA BUS LOGIC > ADDRESS I I 

UPDA E LOGIC I I T ~ __________ ~ ____________________ ~ ________________ __ 

ADDRESS CONTROLS 

Figure 4--High-performance, double-buffered 13lOK display 





The iRAM-an innovative approach to microprocessor 
memory solutions 

by JOHN J. FALLIN 
Intel Corporation 
Aloha, Oregon 

ABSTRACT 

When designing the local read/write memory for a microprocessor system, several 
specific needs should be addressed. These needs include flexibility, ease of use, and 
low cost. The iRAM, a new product, effectively addresses all of these needs. The 
iRAM is a complete memory system that combines a high-density 8K x 8 DRAM 
array with complete memory and refresh control on a single chip. The iRAM 
combines the advantages of both the DRAM and SRAM, making it the ideal choice 
for microprocessor memory. The iRAM's concept and features will be discussed as 
well as its use in local memory systems for both 8-bit and 16-bit microprocessors. 

487 





MICROPROCESSOR MEMORY NEEDS 

With the advent of microprocessors, more system designers 
are involved in the design of microprocessor local memories. 
Analysis of the memory system highlights several important 
memory characteristics: ease of use, low cost, and flexibility. 
In the past, the designer has had to decide on the relative 
importance of each of these characteristics and then make a 
choice between DRAMs and SRAMs, neither of which satis
fies all of the requirements in all cases. 

Ease of Use 

To understand how a new memory, the iRAM, meets all of 
these system criteria, it is necessary to examine why these 
three characteristics are so important. Ease of use simplifies 
the interface between the memory and the microprocessor. 
This translates into an easier, shorter design cycle while min
imizing the component count. The advantages to the manu
facturer include quicker time to market, lower cost, and less 
board-area requirements. 

Cost 

If ease of use were the only criterion used in selecting a 
memory component for the microprocessor local bus, then the 
SRAM would be the obvious choice. The SRAM is the sim
plest memory to use. The SRAM, however, has a complex 
storage cell, making it more difficult to manufacture at the 
higher densities and thus more expensive. Excessive cost 
limits SRAMs to small memory systems (those typically less 
than 8K bytes). 

Higher density and corresponding lower cost allow DRAMs 
to be used in larger memories. The refresh requirement of 
DRAMs, however, makes the system more complex and diffi
cult to design. The cost of the refresh control, however, can be 
amortized in large systems (those greater than 64K), making 
DRAMs very cost-effective in this memory segment. 

Flexibility 

Flexibility is another characteristic that simplifies the design 
cycle. Rather than design separate systems for different 
models of the end product or redesign for an upgrade, which 
only requires more memory, the designer can design around 
the universal site. This is a JEDEC standard site (Figure 1), 
which is capable of accommodating other JEDEC standard 
memory devices, both volatile and nonvolatile RAMs, EP
ROMs, PROMs, and E2PROMs. 

The iRAM Microprocessor Memory Solution 489 

Many advantages are gained through the use of the univer
sal site. In the early design phase, the mix between ROM, 
EPROM, and RAM may not be known. Using the universal 
site can allow the hardware design to be completed at this 
preliminary stage. This permits software to be debugged on 
the final product and the RAM/ROM mix to be easily varied 
later. The universal site also allows for easy upgrades because 
memory devices from 2K to 16K fit the site. 

As mentioned earlier, the SRAM, with its easy-to-use bus 
structure, fits nicely in small systems (those 8K and smaller). 
For large systems (those greater than 64K), where the cost of 
using SRAMs becomes prohibitive, DRAMs are used. Be
tween 8K and 64K a transition region exists in which neither 
SRAMs or DRAMs are a good fit. In this region low cost, 
ease of use, and flexibility are all important. In the past, 
compromises had to be made between these features. Now, 
because of an innovative new development in RAM tech
nology, these compromises are eliminated. The iRAM, which 
is the first in a generation of intelligent memories, is a com
plete memory system on a single silicon chip. The iRAM 
achieves low cost through the use of a high-density DRAM 
array. It is easy to use because of its onboard refresh control 
and is manufactured in a JEDEC compatible 28-pin package, 
making it very flexible. 

A SOLUTION: THE iRAM 

The Intel iRAM comes in two different varieties: the 2186 and 
the 2187. Both iRAMs are 5-volt only DRAM subsystems 
organized as 8192 8-bit words, but they operate differently. In 
most microprocessor systems, the asynchronously refreshed 
iRAM, the 2186, is used. This iRAM incorporates a refresh 
timer to maintain refresh. To synchronize refresh and access 
cycles, an onboard arbiter queues cycles and provides a ready 
handshake signal (RDY) to indicate a pushout in the cycle. 
(The RDY output is commonly used to request the insertion 
of WAIT states when required). The 2187 replaces the RDY 
output with a refresh enable (REFEN) input. During 2187 
operation, the user strobes REFEN to maintain refresh. The 
2187 is ideal for use in systems where WAIT states cannot be 
tolerated, or in systems where accesses occur in a manner 
adequate to maintain refresh (such as in some graphics sys
tems). 

Internal Structure 

A block diagram of the iRAM is shown in Figure 2. For ease 
of discussion, the iRAM is divided into five basic sections; a 
65,536-bit DRAM array, a refresh-request time, a refresh 



EPROM 
,J::.. 
\0 
0 

2764 27128 

Vpp Vee Vpp Vee Vpp Vee 
2716 2732A A12 PGM A12 PGM A12 A14 Z 

A7 Vee A7 Vee A7 NC A7 Ala A7 A13 
~ 
::to 
0 

As As As As As As As As As As 1:1 
~ 

As Ag As Ag As Ag As Ag As Ag n 
A4 Vpp A4 All A4 All A4 All A4 All 

0 
3 

A3 OE Aa OElVpp Aa OE A3 OE Aa OE 
"1:j 
e ... 

A2 A10 A2 A2 A10 A2 A10 A2 A10 
('l) 

A10 
""I 

Al CE Al CE Al CE Al CE Al CE n 
0 
1:1 

Ao 1107 Ao 1/07 Ao 1/07 Ao 1/07 Ao 1/07 ~ 
""I 

1/00 I/0s 1/00 I/0s 1/00 I/0s 1/00 I/0s 1/00 II Os 
('l) 

1:1 n 

1/01 1/05 1/01 1/05 
1/01 1/05 1/01 1/05 1/01 1/05 

~('l) 

1102 1/02 
1/02 1/04 1/02 1/04 1/02 1/04 

~ 

1/04 1/04 
\0 
00 

GNO 1/03 GNO GNO I/0a GNO 1/03 GNO 1/03 
w 

I/0a 

2! 2K x8 4K x8 8K x8 16K x 8 32K x 8 
Otl EPROM EPROM EPROM EPROM EPROM ~ 

C1> 

r c: E2PROM STATIC RAM iRAM ::I 
<" 
~ 
!. ASYNCHRONOUS SYNCHR,ONOUS 

=: 2186 2187 
C1> 

NC Vee ROY Vee REFEN Vee 
2816 A12 WE A12 WE A12 WE 

A7 1 Vee A7 Vee A7 NC A7 NC A7 NC 

As 2 As As As As As As As As As 

As 3 Ag As Ag As Ag As Ag As Ag 

A4 4 Vpp A4 WE A4 All A4 All A4 All 

A3 5 OE A3 OE A3 OE A3 OE A3 OE 

A2 6 A10 A2 A10 A2 A10 A2 A10 A2 A10 

Al 7 CE Al CE Al CE Al CE Al CE 

Ao 8 1/07 Ao 1/07 Ao 1/07 Ao 1/07 Ao 1/07 

1/00 9 I/0s 1/00 I/0s 1/00 I/0s 1/00 I/0s 1/00 I/0s 
1/01 1/05 1/01 1/05 1/01 1/05 1/01 1/05 1/01 1/05 

1/02 1/04 1/02 1/04 
1/02 1/04 1/02 1/04 1/02 1/04 

GNO I/0a GNO 1/03 
GNO I/0a GNO 1/03 GNO 1/03 

2K x8 2K x8 8K x8 8K x8 8K x8 
E2PROM STATIC RAM SRAM iRAM iRj~M 

B968 



, 

REFRESH 
REQUEST 

CE>-----------~----~~----~~ 
ACCESS REQUEST 

Ao,A,2 L...-______ ---,./1 

0E>------4--------~ 

WE>---------------~ 

• RDY OUTPUT ONLY ON 2188 
REl'EN INPUT ONLY ON 2'87 

SEQUENCER 
AND 

ARBITER 

BUSY RDY' 

The iRAM Microprocessor Memory Solution 491 

row-address counter, a high-speed cycle arbiter, and full con
trol circuitry, 

The refresh timer provides refresh requests to the arbiter, 
which synchronizes the refresh cycles with access cycles. Re
fresh addresses are generated by the refresh row-address 
counter, multiplexed with external row addresses and then 
routed to the DRAM array. This DRAM array is divided into 
four quadrants, each containing 128 rows and 128 columns. 
Internal control circuitry synchronizes all internal events. The 
2187 differs from the 2186 in that it has no arbiter and the 
refresh timer is user-controlled, instead of being free running. 

iRAM Operation 

The pinouts of the 2186 and the 2187 are shown in Figure 1. 

Figure 2-2186/2187 block diagram 

Note that, except for pin 1, the iRAMs have identical pinouts 
to the 8K x 8 SRAM and EPROM, providing flexibility for 
the RAM/ROM mix in the system. The 2186 operates much 

15 MHz 

rD1 l,oo 
CE ROY ___ 

~ 
Ao,A7 

2186 

ROY 
As,A,2 

II ClK 

'" 8284A r--------------., 1/00 1/07 WE OE 
ClK F ,m $B E I ul s; 8288 

ALE - I r---- READY I B I ,'- RESET s;; i I : I CE 
MWTC 

r-- '--- f---- ROY-

I 

~ Au,A, 

I C--;4500 I 2186 

I ) I ) As,A,2 

I I '" 1/00 1/07 WEOE 
8088 I I DI I MIlO E 

o-l--. 0 a E 

I 741574 745138 o-r- CE ROY f--< "-

Gi 
- "-

I A'4,A'5 ) 

F? L ___ ~ C ~ __ v Ao,A7 

L - 2186 

RE5ET A s,A,2 ) As,A,2 

I '" 
As,A,5 745373 1/00 1/07 WE OE 

.... ~I 
- - ,--- CE ROY r-

.A "- 745373 - -) ADo,AD; ~ 
Ao,A7 Ao,A7 

'I '" 2186 
"-

Vce ) As,A,2 
y 

1K 
1/00 1/07 WE OE 

RD 0 MINIMAX 

I 
Do-D; 

~ 
C981 

Figure 3-808812186 system 



492 National Computer Conference, 1983 

like an SRAM duri!!g read and write cycles. The only differ
ences involve the CE and WE inputs and the RDY output 
(2186) or the REFEN input (2187). Because the iRAM is an 
edge-triggered device, its control inputs must be clean transi
tioning. Also, because of the dynamic nature of the device, its 
addresses are latched on the leading (falling) edge of LE, 
eliminating latches in some systems. Both of these require
ments are very easy to implement at the system level, as will 
be shown later. Another difference of the iRAM is that during 
a write c~, the iRAM latches in data on the leading (falling) 
edge of WE, as opposed to the SRAM, which latches data on 
the trailing edge of WE. 

During operation, when the 2186 is accessed, the RDY 
output will occasionally be pulled low, indicating a deferred 
cycle. This RDY output is normally routed back to the micro
processor READY or WAIT input. WAIT states are injected 
only when required during an access/refresh conflict. 

Another type of cycle that exists for the iRAM is the false 
memory cycle, in which the iRAM receives an active CE but 
then neither OE or WE comes low. The false memory cycle 
is somewhat like a RAS-only refresh in that the row selected 
by the seven external row addresses is refreshed. 

The 2187 operates slightly differently than 2186 in that the 
user now strobes the REFEN input to maintain refresh. The 

15 MHz 

REFEN strobe must be timed such that access cycles are not 
attempted during refresh cycles. 

APPLICATION EXAMPLES 

In the section that follows, several microprocessor/iRAM 
interfaces will be discussed to demonstrate the iRAMs flex
ibility and ease of use. These will include both 8-bit and 16-bit 
systems, as well as a synchronous 2187 design. Also included 
is an iRAM/microcontroller system design. 

8088/2186 

Figure 3 shows the simplicity of system design in an 
808812186 max mode system that runs at 5 MHz without 
WAIT states. Operating like a clocked static RAM, the iRAM 
requires stable addresses on the falling edge of a CE, which 
should be transient-free to prevent multiple selection of the 
iRAM. Only one 1TL device is needed to perform this 
function. 

To guarantee a clean transitioning CE, the CE decoder is 
only enabled when its address inputs are stable. This is accom
plished by using a cross-coupled NAND gate to generate a 
decoder-enable signal. Also used as a decoder enable is status 

f5101! 

RDY~--------------~-------------------------'--------------------------------~---------' 

8284A 

CLK~~ __ ------------__ --------------~r-------~ 

74lSOO 
74lSOO 

'- CLK MlliOo ~-+---------------+-+----------+--------------, 
- READY 

'---- RE5ET 
ALE ~-+---------------rt-t-~LL.>--r-~ 

...-------1 CE 

iiiR~~ 
"-----c:" ~ 745112 - > 745112 

74LSOO 

8086 

RDI------, 

AD,·AD" I'-r
SHE e---

I 

I\. 

v 

"-

V 

i~>-~~rt 
'-I ~ E E »-

~ __ --'~ 8205 0>---

,.......;-- r A,o·A" .. L.--

~-----~ L-A~ •. A-13--------~ 745373 

G ~ 
745373 

i...-- lAO 

I I 
0.·0" 

f- I-- CE 

2186 

2186 

>-
~ - CE 

~ - CE 

PAS.A" 

2186 

2186 

>
o 
a: 

>
o 
a: 

~ :O.~7 
I::! Q Q I~ I::! 

t. >-. 

J 
1K f 

~")...-------
~~74_L5_32 _____________________________ ~ ____ ~ 

-
C998A 

Figure 4--808612186 system 



The iRAM Microprocessor Memory Solution 493 

bit 2 (MIlO). This guarantees that a CE will only occur if the 
ALE output from the processor is associated with a memory 
read or write cycle. This eliminates false memory cycles, 
which have an extended CE high-time requirement not 
allowed for in this design. Note that the address inputs to the 
decoder are latched, because addresses can transition be
tween bus cycles even if ALE is not high. Because the decoder 
is enabled during this period, transitions could propagate 
through the decoder and cause invalid CEs to occur, 
jeopardizing data integrity. 

high-time requirement of the false memory cycle can be ac
commodated by using the CE generation circuitry shown in 
Figure 4. The circuitry is basically a 2-bit counter that initiates 

The WEs for the iRAM array are generated directly from 
the 8288 bus controller. The 8288 output MWTC has a de
layed falling edge, which allows for the leading-edge write 
requirement of the iRAM, while providing compatibility with 
SRAMs. 

808612186 

ClK 

ALE 

M/iO 

A--...... 

8-----_+! 

CEX -----------~ 

j.--37 

The 8086/2186 system shown in Figure 4 is similar to the 
previously described 8088 system and also runs at 5 MHz with 
zero WAIT states using a 2186-30. The major difference is in 
the CE generation circuitry. Because this is a 16-bit system, a 
2186 can receive a CE. but no WE or OE, resulting in a false 
memory cycle. This condition occurs in the unwritten byte of 
the 16-bit word during a byte-write operation. The longer CE 

C ---------4--~ 

Figure 5-CE circuit timings 

10 MHz Vee 

Cll~ ~510" 
AROY~I--------------------------------------------------~t~---------------, 

-
RO 

-
- ~4532 WR 

74504 745112 -0 " 
_J I 

MCS x -----t>::~ a I--- J aI-I-
--

r-c~ WE OE ROY WE OE ROY 

80186 r-K 0 ..... I-K 01-
Ao 

2186 2186 
ClR ClR 

74S04 r y 
CE ~ CE 

RESET H> I 

h> OUT 

~~ LCr- Ao-A'2 Ao-A'2 
~ 1/00-1/07 1/00-1107 

74532 

0 c;.-ClK 

ALE I 
SHE 08-0'5 0 0-07 

SHE 
8282 A,s-A'9 

A,s/5 3-A'9/Ss 

I 

AOo-AO'5 b 8282 AO-A'5 

0 0-0'5 

Figure 6--8018612186 system 

A980 

, 
WE LOW 

I 
"l WE HIGH 

~ A,s-A'9 

\ 

\ 
81202 



494 National Computer Conference, 1983 

ClK 

MCSx--+"""""\1 

its count on the rising edge of ALE. On the next clock (falling 
edge) after this, CE is activated and remains so for two clocks 
before returning high. This provides a CE high time of ap
proximately two clock periods, or, for a 5 MHz 8086, approx
imately 400 ns, sufficient to meet the CE high-time require
ment. Timings for this circuit are shown in Figure 5. 

CE -------,\'--___ ~/ Because the 8086 is configured in the min mode, its WR 
output falls too early in the cycle to satisfy the leading-edge 
write requirement of the iRAM. To meet this requirement, a 
cross-coupled NAND gate circuit delays WE's falling edge. 
The WE rising edge, however, is not delayed, which allows for 
SRAM compatibility. 

B 

WR 

WE 

15 MHz 

rD~ 

8284A 

/ \ 
\ / 

\ / 8018612186 

A1201 

Figure 7-8018612186 timings 
Figure 6 depicts an 80186/2186 interface. The 80186 is a 

highly integrated device that combines an enhanced 8086 

~~- ClK 

~I-- ROY 

~- RESET 

8088 

b MINIMAX 

S2 
S1 
SO 

...---+--fC 
......-- B 

,..-- A 

ClK 

74lS138 
M1 

~ -74lS00 

74S04 

~~-~----------4---------------, 

....... -+--+--------+---1 Q Q ~----_+_____, 

74LS74 

,-) 74S0 8 

~ 
MWTC _ REFEN 

WE 

OE 
8288 MRDC 

ALE 

I 
iRAM1 

CE --ID- iRAM2 

74LS138 
~ iRAM3 

A 14-A ,S ~ 
10- 2187 

V 

) AO-A'2 
1/00.1/07 

.L 

~ ~ Aa-A'5 74lS373 

~ 
ADDRESS 

1 BUS 

~ 

~ 74lS373 ~ 

C1200 

Figure 8-808812187 system 



CPU with 10 commonly used system components, including a 
bus driver, clock generator, interrupt controllers, and pro
grammable memory chip selects. 

The circuitry used to generate the CE is similar to that for 
the 8086 system in the last example. Again, a 2-bit counter is 
used, although its count is initiated differently. A pro
grammable memory chip select is used to toggle the first flip
fl~rom a zero to a one on the first clock. This action causes 
a CE to be generated. On the next clock, the first flip-flop will 
remain set and the second flip-flop will also be set. On the 
next clock after this, the first flip-flop will toggle to zero 
(clear), causing CE to return high. The next clock clears the 
second flip-flop, which completes the sequence. 

A timing diagram of this circuit is shown in Figure 7. Note 
that a CE high time of approximately two clocks is provided, 
allowing for false memory-cycle operation. 

The WR output of the 80186 becomes active too early to 
allow for a leading-edge write. This situation is remedied by 
gating WR with the Q output of the second flip-flop, which 
delays it long enough to meet the 2186 write requirements. 
Note that the rising edge of WE is timed such that a trailing
edge write is also allowed for full SRAM compatibility. 

8088/2187 

The circuit in Figure 8 interfaces the synchronous 2187 to an 
8088 in such a way as to make the iRAM refreshes invisible. 
This method, which is commonly used in many micro
processor/DRAM systems, allows the iRAM to be refreshed 
every time an OP Code fetch is performed. OP Code fetches 
are restricted to some memory other than the iRAM (typically 
EPROM or ROM) because the 2187 cannot be accessed dur
ing a refresh cycle. To meet the 2187 iRAM refresh require-

The iRAM Microprocessor Memory Solution 495 

ments, at least 128 OP Code fetches need to be performed in 
every 2-ms period, a condition easily met. Certain conditions 
could, however, jeopardize iRAM refresh. These conditions 
would include extended-hold (DMA) and WAIT (single-step) 
states, in which OP Code fetches do not occur. If either of 
these conditions were allowed to persist for an extended 
·period of time, the contents of the iRAM could be lost. 

To synchronize the 2187 refresh with the processor OP 
Code fetches, the signal M1 is decoded from the processor 
status bits. This signal will go low at the beginning of any OP 
Code fetch, thus initiating a refresh in the 2187. M1 then 
returns high before the OP Code fetch is complete, allowing 
the 2187 to be accessed on the next cycle if necessary. 

Figure 9 shows a two-chip microcomputer system employ
ing the 2186 with an 8051 microcontroller, and Figure 10 

8051 
8751 

74532 

WR~--------------------~~IWE 
Ri5 ,OE 
EA Vee 

~--------- ~----------

Figure 9-8051/2186 system 

A984 

f.--220--I· ... 1 ...... f----------1500------------t ..... 1 

ALE 

RD 

PORTO 
(READ) 

PORTO 
(WRITE) 

PORT 2 

I I I 
~. 

•
901 

-..j100 .-

VALID 
ADDRESS 

850 

I 
14 

l 

-+J 75 j.-

.. 

455 .. 

VALID 
DATA 

I 
I 
1 
I 

-.J160J.-
VALID 

ADDRESS I I VALID DATA I 

VALID ADDRESS 

8 MHz 
8051/2186 

Figure 10----8051/2186 timings 
A985 



496 National Computer Conference, 1983 

shows timings for this system. The microcontroller includes 
4K bytes of program memory on board (EPROM), and the 
2186 provides 8K bytes of data memory. 

The interface to the multiplexed 8751 bus is very simple. 
Because the 2186 iatches address on the faHing edge of CE, no 
address latches are necessary in the system. CE is generated 
on the falling edge of ALE only for accesses to the lower 32K 
of external data memory. This is assured by gating ALE with 
P2. 7, which acts as the highest-order address during external 
memory operations, allowing ALE to generate a CE only 
when P2.7 is low. To ensure that CEs are not generated at 
other times, P2.7 is initially set to a 1, which it will continue 
to output until an external memory operation is done. After 
the external memory operation, P2.7 will return to its preset 
1. Because the ports are configured as open drain outputs, a 
pull-up resistor is included. _ 

The reason for generating CEs during external-data
memory operations only is less than obvious. During external
data-memory operations, the 8751 outputs an ALE once 
every 12 clock cycles, resulting in a CE cycle time compatible 
with the 2186. The 8751, however, generates external ALEs at 
all other times also. These ALEs, which occur once every six 
clock cycles, must be inhibited from generating CEs to the 

iRAM because the 2186 cycle time with wait specification 
would be violated. 

The 8051 does not have a READY input; this does not, 
however, preclude the 2186 from being used with it. After 
examining the access-time requirements of 8051 data memo
ry, it can be concluded that for speeds up to 8 MHz, a 2186-25 
is fast enough to meet the 8051 memory speed requirements
even in its worst case not-ready condition. This access time 
requirement would be 850 ns for the 8051 at 8MHz; the 
2186-25 worse case access time with refresh is 675 ns. 

CONCLUSIONS 

The iRAM fulfills all three requirements of microprocessor 
memory. Using a dynamic RAM memory cell, it meets the 
density and low-cost criteria. Also incorporating complete 
onchip control, the iRAM satisfies the ease-of-use and flex
ibility requirements. Several examples of microprocessor sys
tems have been shown to demonstrate the ease of use. For 
memory sizes of 8K to 64K bytes, no other memory device 
simultaneously satisfies all microprocessor memory require
ments as does the iRAM. 



MULTIBUS® continues to evolve to meet the challenges of 
the VLSI revolution 

by STEVE COOPER 
Inte/® Corporation 
Hillsboro, Oregon 

ABSTRACT 

MULTIBUS is the world's most popular microprocessor system architecture. The 
success of the MULTIBUS is attributable to its compatible evolution, always meet
ing the demands of new VLSI microprocessors without forsaking compatibility with 
existing products. New system architecture's need for the use of large amounts of 
high performance memory is the motivation for continued MULTIBUS evolution. 
This need is addressed through the introduction of the Local Bus Extention 
(iLBXTM). Whereas the local bus under the previous definition was physically 
limited to on-board execution, the iLBX evolution allows the local bus to span up 
to five separate boards. The benefit of the LBX is the ability to achieve on-board 
performance when operating out of physically separate boards. Intel's iSBC® 286/10 
single board computer combines the latest VLSI with the iLBX extension, creating 
a new level of microcomputer system performance. This new board vividly demon
strates that the MULTIBUS continues to evolve to meet the challenges of the VLSI 
revolution. 

497 





MULTIBUS Continues to Evolve to Meet the VLSI Revolution 499 

BACKGROUND 

The MULTIBUS system architecture was developed in 1975 
by Intel Corporation to make microprocessors easier to use. 
The original MULTIBUS contained three unique qualities 
that have differentiated the MULTIBUS systems from tradi
tional computer systems. 

The first of these qualities is its standardization. The 
MULTIBUS specification (IEEE 796) is precise enough so 
that MULTIBUS boards from different vendors are fully com
patible. The second MULTIBUS quality is multiprocessing
the ability to have multiple CPU boards in one system. This 
ability is the basis for distributed processing and allows a 
complex design to be built from easily managed modules. The 
third quality is the MULTIBUS' generality. The architecture 
is designed to accommodate any and all microprocessors, and 
all popular CPUs have been adopted to the MULTIBUS. 
Intel has encouraged other vendors to use the MULTIBUS by 
providing specifications, applications notes, and even bus 
interface ICs. 

The popularity of the MULTIBUS "has been phenomenal. 
Over two million MULTIBUS compatible boards are in use 
today. There are now approximately 120 vendors providing 
1,300 different MULTIBUS compatible products. The advan
tages of such a widespread standard acceptance can be sum
marized as better products for less cost. 

ANEVOL~NGSTANDARD 

The MULTIBUS standard has evolved many times to accom
modate the rapidly advancing microprocessors. The long-

1975 First MULTIBUS' board (iSBC' 80/10 
board) 

1978 Dual Port Architecture Improves Perform
ance and Reduces Cost 

1978 Extensions Added to Support Compatible 
8- and 16-Bit Operations 

1979 Intelligent Slaves Enhance Functionl 
Partitioning 

1980 iSBX ™ Bus Added For On-Board Flexibility 

1981 Addressing Extended to 24-Bits 

1982 MULTICHANNE12M Bus Added to Standardize 
DMA Interfacing 

1983 iLBX ™ Bus Added For Large, High Perform
ance Memory Access 

Figure I-MULTIBUS evolution 

term success of the MULTIBUS is attributable to its com
patible evolution, always meeting the demands of new VLSI 
microprocessors without foresaking compatibility with exist
ing products. MULTIBUS evolution has been both structural 
and architectural. Structurai evoiution has allowed the bus to 
support new CPU capabilities (Adding address lines to ac
commodate 24-bit addressing). Architectural evolution (see 
Figure 1) enhances the MULTIBUS design philosophy of 
functional partitioning within loosely coupled distributed pro
cessing systems. 

The VLSI revolution is continuing with even more powerful 
microprocessors on the horizon. These microprocessors 
present new challenges to the MULTIBUS. The most pressing 
challenge is the architectural need for large amounts of high 
performance memory. As in the past, the MULTIBUS has 
evolved to meet this need while maintaining compatibility 
with the existing MULTIBUS family. 

LOCAL BUS EXTENSION 

Microcomputer system memory size requirements have grown 
faster than VLSI technology. Applications were rarely larger 
than 32 kilobytes four years ago; applications of the future will 
utilize several megabytes of memory. This 100 times increase 
in memory demand has occurred over the same period as a 16 
times increase in memory chip density. The result is that more 
board space is required for microprocessor system memory 
than ever before (see Figure 2). 

As the need for more memory was mounting, the per
formance disparity between on-board (or local) memory and 

512K 

BYTES 
256K 

128K 

64K 
32K -l'----~ 

o 1979 1980 

MEMORY 
REQUIREMENTS 

1981 1982 1983 

Figure 2-Microcomputer memory requirements have outpaced on-board 
capacity increases 



500 National Computer Conference, 1983 

off-board memory was growing (see Figure 3). In 1975, pro
cessor boards ran equally fast from off-board memory as from 
local memory. Today's high performance processor boards, 
however, run (worst case) two times faster in local memory 
than in off-board memory. This performance disparity has 
lead MULTIBUS board vendors to design boards with in
creasing amounts of local memory. The demand for even 
larger amounts of local memory combined with the physical 
board space limitations is the motivation for architectural evo
lution of the MULTIBUS. 

The local bus extension to the MULTIBUS architecture 
extends the concept of the local bus. Whereas the local bus 
under the previous definition was physically limited to on
board, the iLBX evolution allows the local bus to span up to 

PERFORMANCE 

DON-BOARD 

~ OFF-BOARD 

iSBC® 
80/10 

BOARD 
(1975) 

iSBCc.J 
80/24 

BOARD 
(1979) 

iSBC,"l 
86/12A 
BOARD 
(1979) 

iSBCl!l 
86/30 

BOARD 
(1982) 

Figure 3-Performance from on-board memory has increased faster than 
performance from off-board memory 

five separate boards. The benefit of the iLBX extension is the 
ability to achieve local performance when operating out of 
physi~ally separate boards. 

The iLBX extension not only provides tremendous per
formance benefits, but also maintains compatibility with pre-
vious MULTIBUS products. The iLBX physical connections 
are on the P2 connector of the MULTIBUS card. The lines of 
the P2 connector used for the iLBX were previously declared 
Reserved, not bussed. But even custom board designers who 
have used these lines need not worry. The iLBX concept 
groups a CPU board with several memory boards into a virtual 
SBC (see Figure 4). Therefore only the logical group that 
supports the iLBX is connected together. The full iLBX speci
fication is publically available today, and the first boards that 
support the iLBX extensions are now being shipped by Intel 
Corporation (see Figure 5). 

THE LATEST PRODUCT 

The iSBC® 286/10 Single Board Computer combines the most 
advanced VLSI microprocessor with the enhanced MULTI
BUS architecture. The performance of the combination is 
awesome. The iAPX 286 CPU is Intel's latest 16-bit micro
processor implemented with 130,000 transistors on one chip. 
This CPU performs many internal functions, including 
memory management and protection, in parallel thus exe
cuting instructions in less clock states. By using less states for 
execution, the iAPX 286 CPU accentuates the effect of 
memory overhead, known as wait states. 

The iLBX bus provides the architectural solution by allow
ing iLBX memory performance to equal on-board per
formance. A fastest instruction analysis of the high per
formance iSBC 86/30 board versus the iSBC 286/10 board 
vividly illustrates the combined effects of the iAPX 286 and 
iLBX combination (see Figure 6). 

The fastest instruction analysis shows the performance ad
vantage of the iAPX 286 CPU as 2 to 1 and the off-board 
memory overhead reduction (due to the iLBX architecture) as 
3.5 to 1. The combined effect of these two positions the iSBC 
286/10 in a new performance class for microcomputers. 

VIRTUAL iSBC® 
--, 

I 
I 
I 
I 
I 

PERIPHERAL 
CONTROLLER 

iSBC® 286/10 
CPU 

iLBXTM 
MEMORY 

..J 

iSBC® 286/1 0 
CPU 

iLBX™ 
MEMORY 

MULTIBUS®------------------------------------~ 

Figure 4--MULTIBUS~;iLBX'" configuration 



MULTIBUS Continues to Evolve to Meet the VLSI Revolution 501 

iSBC' 286/10 - iAPX 286-based CPU board 

iSBC' 028CX - 128K byte ECC RAM board 

iSBC' 056CX - 256K byte ECC RAM board 

iSBC' 012CX - 512K byte ECC RAM board 

iSBC' 428 

iSBC' 580 

CPU 
INSTRUCTION 

MEMORY 
OVERHEAD 

TOTAL 

- 16 site JEDEC 28-Pin Site board 

- MULTICHANNEl!M to iLBX™ DMA 
controller 

Figure 5-iLBXTY supporting products 

# OF CLOCK STATES (@ 8 MHz, ONE STATE = 125 ns) 

iSBC'" 
86/30 

BOARD 
4 

2 7 
~N:~~_R.~t __ o~~:BOARD) 

6 -11 

iSBC~ 

286110 
BOARD 

2 

2 2 
!ON.B~!~~! _ _ (O~F:BO~R~! 

4 

Figure 6-iSBC 86130 VS. iSBC 286/10 fastest instruction analysis 

CONCLUSIONS 

New products like the iSBC 286/10 board prove that a stan
dard architecture can successfully evolve to meet new chal
lenges. The MULTIBUS standard is the world's most popular 
microprocessor architecture greatly due to its compatible evo
lution. Future needs such as the accommodation of 32-bit 
microprocessors will necessitate the next evolution of 
MULTIBUS. Making changes to an industry standard is a 
difficult, but in this case, essential task. Each change runs the 
risk of destroying the MULTIBUS standard, but if managed 
correctly actually strengthens it. The MULTIBUS has en
dured many challenges since its inception and must continue 
to meet the new needs of the VLSI rev01ution. 





Analysis of the M6809 instruction set 

by JOEL BONEY 
Motorola, Inc. 
Austin, Texas 

ABSTRACT 

The M6809 has now been in the marketplace for about 3 years and is one of the 
most popular midrange microcomputers. With 3 years of history, it is now possible 
to analyze many of the existing M6809 programs to see how the computer is actually 
used. 

This paper includes data I took regarding instruction-set and addessing-mode 
usage on existing M6809 programs. 1 The specific information should be of interest 
to M6809 programmers and to future computer architects who wish to create similar 
machines. Beyond the specific M6809 information, however, there are some basic 
usage trends that are apparent in almost all Von Neuman architectures. Therefore, 
the information in this paper will be of interest to most users of microprocessors. 

The data point out to programmers and system engineers what attributes of a 
computer's instruction set really affect the memory efficiency and throughput and 
what attributes don't matter. With this knowledge the programmer/system engineer 
should be better able to evaluate a microcomputer before he selects one for his 
project. 

503 

J ••••• 





INTRODUCTION 

In the spring of 1977 several of us at Motorola felt it was time 
to plan the follow-on part to the successful M6800 micro
processor. We were not the first to envision such a part, but 
we were the first to actually have the time and resources to 
proceed with the design. The new part was labeled the M6809. 
Terry Ritter and I were assigned the task of defining the new 
architecture. 

As part of the preliminary design of the M6809 we did an 
analysis of the then existing programs written for the M6800. 
Much of the data we gathered from this analysis was very 
helpful in the design of the M6809. 

Several years have now passed since the introduction of the 
M6809, and I felt it was time to analyze how the M6809 is 
actually being used. I hope these data will be as useful to the 
computer architects that follow us as the M6800 data were to 
us. Further, I hope these data will enable programmers and 
system engineers to be more intelligent in their selection of 
microcomputers for their applications. 

GOALS AND CONSTRAINTS OF THE M6809 
PROJECT 

Every design project in industry begins with some goals that 
are shared by the designers, the marketers and, hopefully, by 
the customer. Every project also has some design constraints 
that must be adhered to in order to design a product that is 
producible. To understand the analysis of the M6809 that 
follows, it is necessary to have some understanding of the 
goals and constraints of the M6809 design project. 

A personal goal held by both my coarchitect Terry Ritter 
and me for the M6809 project was that we wanted to prove 
that it was possible to produce an inexpensive microprocessor 
that was also easy to program. We felt that too many of the 
existing microprocessors were needlessly difficult to program. 
We suspected that the reason was not that it was impossible to 
make a microcomputer that was easy to program, but, rather, 
that the architects of the early microprocessors were generally 
more hardware oriented than software oriented. 

Our experience told us that the consistency (regularity or 
orthogonality) of the instruction set was one of the features of 
a computer that made it easy to program. We wanted all the 
instructions, addressing modes, and system resources, such as 
registers, to be treated consistently. Analysis of the M6800 
showed that instructions such as add B to A were rarely used 
despite the fact that they provided a useful function with 
better than average performance. The reason they were not 
used was that these instructions were unusual; they behaved 
differently than other instructions. It was our observation that 

M6809 Instruction Set Analysis 505 

programmers will not use instructions that are hard to use or 
that require the programmer to remember peCUliarities about 
their execution. 

The second goal of the design team was to support the 
improvements we saw rapidly taking place in the design of 
microprocessor software. We wanted the architecture to effi
ciently support modern block-structured high-level languages. 
Features such as stack addressing were included for this pur
pose. We also wanted to better support assembly language 
with the ability to write recursive, reentrant programs and 
position-independent programs. 

Another goal was to improve significantly the performance 
of the M6809 as compared to that of the M6800. 

Along with goals must come some constraints. We felt that 
the M6809 must be compatible with the M68001M6801 at 
either the assembler-source or machine-code level. The 
machine-code level was preferable. Because it was impossible, 
however, to get the necessary throughput improvements and 
remain machine-code compatible, we selected assembler 
source-code compatibility. 

BRIEF OVERVIEW OF THE M6809 ARCHITECTURE 

To understand the data analysis that follows, it will be helpful 
to have a working knowledge of the M6809 architecture. The 
following sections describe the programmer's model, the in
struction classes, and the addressing modes of the M6809. 

Programmer's Model 

The M6809 is a l~-address, 8-bit Von Neuman architecture 
microcomputer. Figure 1 is the programmer's model of the 
M6809. 

The A and B accumulators are general purpose 8-bit accu
mulators that can be considered as one 16-bit accumulator for 
16-bit operations. When used as one 16-bit accumulator they 
are called the D accumulator. 

The X and Y index registers are general-purpose index 
registers used in the various forms of indexed addressing. The 
U and S registers are also index registers, but they have the 
additional quality that they can be used as stack pointers. The 
U register is called the user stack pointer. The S register is the 
hardware stack pointer and is also used by the hardware to 
store machine state during subroutine calls and interrupts. 

The program counter on the M6809 is 16 bits wide, thus 
supporting an address space of 65,536 bytes. All addresses on 
the M6809 are 16 bits wide. 

The address field of an instruction with direct addressing on 
the M6809 is only 8 bits wide. The direct page register is a base 



506 National Computer Conference, 1983 

A accumulator B accumulator 

X index register 

Y index register 

U stack pointer/index register 

S stack pointer/index register 

program counter 

direct page register 

condition code register 

Figure I-M6809 programmer's model 

register that provides the most significant 8 bits of address for 
direct addressing. The condition code register contains the 
results from the last arithmetic or logical operation as well as 
interrupt masks and other control bits. 

Instruction Classes 

The 6809 has the following seven major classes of instructions: 

1. Arithmetic, logical, load and store 
2. Read / modify / write 
3. Conditional branch 
4. Load effective address 
5. Push / pull 
6. Control transfer 
7. Miscellaneous 

The arithmetic, logical, and load and store instructions make 
up the largest set of instructions. They are H address in
structions that get one of their operands from memory and the 
other from an accumulator, and they store the result, if any, 
in the accumulator. 

The read/modify/write instructions read a memory location 
or accumulator, perform some operation on its contents (e.g., 
clear, shift, increment), and store the result back to the same 
memory location or accumulator. 

The conditional branch instructions are used for conditional 
program control transfer. 

The load-effective-address instructions evaluate the effec
tive address of an indexed addressing-mode instruction and 
return the effective address to an index register. This makes 
the powerful address-calculation hardware already present for 
indexed addressing available for address manipulation. 

The push/pull instructions allow one or several of the regis
ters to be pushed or pulled on the stacks pointed to by the U 
or S stack pointers. A single push or pull instruction can push 
or pull from 1 to 8 registers. 

The control transfer instructions include the subroutine 
calls as well as the unconditional jumps and branches. The 
miscellaneous category includes instructions such as sign ex
tend, no-operation, and transfer register to register. Their 
addressing mode, if any, is inherent. 

Addressing Modes 

The M6809 supports a variety of addressing modes. There 
are seven major types with several SUbtypes: 

1. Inherent 
2. Accumulator 
3. Register 
4. Immediate 
5. Absolute 

Extended 
Direct 

6. Relative 
Long 
Short 

7. Indexed 
Constant offset 
Constant offset from the PC 
Accumulator offset 
Auto increment / decrement 

Inherent addressing includes those instructions that have no 
addressing options. Accumulator addressing is similar to in
herent except that an accumulator is specified (e.g., CLRA, 
CLRB). Some M6809 instructions specify one or several of 
the registers as the operands (e.g., TFR D,X-transfer D to 
X). This is called register addressing. In immediate addressing 
the source operand is assumed to be in the memory location 
immediately following the current opcode. The M6809 sup
ports both 8-bit and 16-bit immediate values. 

In absolute addressing all or part of the absolute memory 
address is included in the instruction. In extended addressing 
the full 16-bit address is included in the instruction. In direct 
addressing only the lower 8 bits of the address are included in 
the instruction. The upper 8 bits of the address are supplied 
by the direct page register. 

Relative addressing is used for branches. There are both 
8-bit and 16-bit relative offsets. 

Many of the new features supported by the M6809 lie in its 
greatly expanded indexed addressing modes. In the constant 
offset indexed addressing modes a constant value of length 0, 



5,8, or 16 bits is summed with an index register to obtain the 
effective address used to fetch the operand. 

Constant offset from the program counter (program 
counter relative) works in much the same way except the 
program counter is used as the index register. This addressing 
mode is used most often by the load-effective-address in
struction to find the starting address of tables in a position
independent program. 

In accumulator offset mode the effective address is the sum 
of the signed accumulator and the specified index register. 
The original contents of the index register and the accumu
lator are unchanged by this addressing mode. 

In auto increment mode the contents of the specified index 
register are used as the effective address; then they are in
cremented by 1 or 2 (postincrement). In auto decrement the 
contents of the index register specified are first decremented 
by 1 or 2 and then used as the effective address (predecre
ment). In both cases the contents of the index register are 
permanently changed. 

All the indexed addressing modes and the extended ad
dressing mode of the M6809 provide for an additional level of 
indirection. That is, the original effective address calculated 
by the addressing mode can be used as the address of another 
16-bit value that specifies the final effective address. 

STATIC VERSUS DYNAMIC ANALYSIS OF 
ARCHITECTURES 

Theie aie essentially two types of analyses that can be per
formed on an instruction set-static and dynamic. In static 
analysis, either the source code or the object code of a pro
gram or programs is analyzed to determine the frequency of 
appearance of various instructions, addressing modes, regis
ters, and so on. In dynamic analysis, data are taken during the 
actual execution of a program and are used to determine the 
frequency of execution of an instruction, addressing mode, 
and so on. 

Both types of data are useful for specific purposes. The 
static data can lead to improvements in future architectures 
that will reduce the size of the average program. The dynamic 
data can lead to a reduction in the execution time of the 
average program. These two improvements are also some
what related. If a program is smaller, it generally has to fetch 
fewer bytes of opcode and, hence, runs faster. 

STATIC ANALYSIS OF THE M6809 

Instruction Classes 

To make the data as useful as possible, I analyzed static 
code from several different classes of programs. I tried to 
balance the amount of code in each class so that one class of 
program would not bias the data. I classified the programs 
into the following classes: 

M6809 Instruction Set Analysis 507 

Program Class 
Compiler-generated code 
Compiler code 
Application code 
Monitor code 
Numeric code 

Average Instruction Size 

Number of Bytes 
14549 
7695 

26305 
6293 
7135 

61977 

One parameter of interest is the average size of anM6809 
instruction. The data can be useful when estimating the 
memory needed for an application. The size of the average 
instruction for the various program classes and for all classes 
combined is given in the list that follows. 

Class 
Numeric 
Monitor 
Compiler 
Application 
Compiled 

All 

Average Size 
2.16 bytes 
2.27 bytes 
2.30 bytes 
2.40 bytes 
2.43 bytes 

2.35 bytes 

If an M6809 programmer can estimate the approximate 
number of source lines he will write, he can use 2.35 to esti
mate his total memory requirements. 

Most Frequently Appearing Single Opcodes 

There are two ways of looking at the static data. One is to 
count the percentage of times an instruction (opcode plus 
additional addressing bytes) appears versus the total number 
of instructions. I call this the percentage by count. The other 
is to count the percent of the total bytes actually taken by an 
instruction. I call this the percentage by bytes. 

Table I is the data from the 10 most frequently appearing 
single opcodes in the concatenation of all of the static data. It 
is interesting to note that the top 10 opcodes represent 37.4% 
of all instructions. Since there are 266 possible opcodes in the 
M6809, these 10 opcodes are only 3.76% of all possible op-

TABLE I-Top 10 most frequently appearing M6809 opcodes 

Opcode Instr. By Count % By Bytes % 

17 lbsr 2307 8.76 6921 11.17 
30 leax 922 3.50 2653 4.28 
34 pshs 910 3.46 1820 2.94 
86 Ida immed. 906 3.44 1812 2.92 
20 bra 877 3.33 1754 2.83 
8e ldx immed. 862 3.27 2586 4.17 
26 bne 804 3.05 1608 2.59 
27 beq 800 3.04 1600 2.58 
ed std indexed 739 2.81 1584 2.56 
cc ldd immed. 722 2.74 2166 3.49 

-
Total 37.40 39.53 



508 National Computer Conference, 1983 

codes. Although this may be a surprise to those readers who 
have never seen instruction-usage data before, it is consistent 
with most modern architectures. 

The top three opcodes are new M6809 instructions that 
were not available on the :t-y16800. They account for 15.72% 
of all opcodes. Clearly there was a need for these new in
structions. 

Most Frequently Appearing Opcodes by Class 

Although it is useful to know which individual opcodes 
occur most frequently, it is more useful to have the data 
broken down into slightly larger classes. Table II contains the 
top 10 classes sorted by count for the concatenation of all the 
static data. 

The first 6 classes account for over 52% of all instructions 
and the top 10 for 66.69%. We can conclude that the M6809 
behaves like most computers in that a very few instruction 
types account for most of the instructions.2 Furthermore, 
most of the instructions are in the load-store category. 
(Pushes and pulls are also classified as loads and stores in 
some literature.) 

Most Frequently Appearing Instructions by Large Class 

We can take an even larger view of the instruction classes. 
These data are useful for comparing the usage of the M6809 
to other computers. Table III contains these data along with 
static data gathered by Leonard Shustek for the IBM 370 and 
PDP-11. 3 

From the data in Table III we can deduce that the M6809 is 
not much different from other Von Neuman machines. All 
three machines have a high percentage of loads and stores, 
subroutine calls, conditional branches, and compares/tests. 
Furthermore, the amount of arithmetic and logical instruc
tions is low. 

What this tells the system designer who is trying to evaluate 
the memory efficiency of a microcomputer (remember we are 
dealing with static data here) is that the overall size of the 
program will be determined by a few instruction classes. Also, 
since the loads and stores are heavy users of the addressing 

TABLE II-Top 10 classes of M6809 instructions 

Class Count % Bytes % 

16-bit loads 4114 15.62 11291 18.22 
8-bit loads 2868 10.89 6144 9.91 
Long branch subr. 2307 8.76 6921 11.17 
Load eff. addr. 1708 6.49 4629 7.47 
Push 1426 5.42 2852 4.60 
Store 16-bits 1376 5.23 3155 5.09 
Store 8-bits 1219 4.63 2991 4.83 
Branch always 877 3.33 1754 2.83 
Compare 860 3.27 1792 2.89 
Branch not equal 804 3.05 1608 2.59 -
Total 66.69 69.60 

TABLE III-Comparison of static data 

Class M6809 IBM 370 

Load/store 50.83 48.00 
Cal! 12.49 5.50 
Cond branch 10.07 15.30 
Control transfer 5.26 ? 
Cmp/tst 5.63 8.80 
Arith/logical 4.04 3.50* 
Other 11.68 18.90 

*Subtract only. 
tControl transfer included in conditional branch. 
:j:Add only. 

PDP-11 

32.80 
6.30 

20.10 
t 

6.50 
3.00* 

26.30 

modes, the byte efficiency of the addressing modes will 
greatly effect the efficiency of the architecture. 

Static Appearance of Addressing Modes 

Another major area of interest is the use of the addressing 
modes of a computer. Table IV shows the addressing mode 
statistics for the concatenation of all the static data. 

Indexed addressing is by far the most frequently appearing 
addressing mode because many of the unique features of the 
M6809 addressing modes are hidden under the umbrella of 
indexed addressing. For this reason indexed addressing is dis
cussed in more detail in a later paragraph. 

The relative addressing modes (short and long) account for 
25.01 % of all addressing modes. This indicates that M6809 
programmers are using the relative rather than the absolute 
control transfers and subroutine calls. In short, programmers 
are writing a lot of position-independent codes for the M6809. 
The relatively small amounts of extended and direct absolute 
addressing also back up this conclusion. 

Indexed addressing static statistics 

Since indexed addressing represents about 72% of all the 
addressing modes that reference memory (direct, extended, 
and indexed), we now spend some time looking at the indexed 
addressing data. Table V breaks the indexed addressing down 
into its subgroups. The basic subgroups are the no offset, the 

TABLE IV-M6809 static addressing mode usage 

Addressing Mode Count % 

Indexed 7371 27.99 
Immediate 5132 19.49 
Short relative 3532 13.41 
Inherent 3466 13.16 
Long relative 3054 11.60 
Extended 1937 7.36 
Direct 958 3.64 
Accumulator b 456 1.73 
Accumulator a 424 1.61 

Indirect 175 0.66 



Table V-Static indexed addressing data 

Addressing Mode Number % of total 

No offset (offset = 0) 961 13.04 

5-bit offset 3940 53.45 
8-bit offset 631 8.56 
16-bit offset 572 7.76 
8-bit offset from PC 92 1.25 
16-bit offset from PC 139 1.89 

a accumulator offset 85 1.15 
b accumulator offset 99 1.34 
d accumulator offset 113 1.53 

Auto increment by 1 286 3.88 
Auto increment by 2 120 1.63 
Auto decrement by 1 43 0.58 
Auto decrement by 2 273 3.70 

Extended indirect 17 0.23 

Average additional bytes for indexed = 1.17 

constant offset, the register offset, the auto increment/ 
decrement, and extended indirect. 

The constant offset varieties account for 72.91% of the 
total. If no offset is included with the constant offset sub
group, we find that 85.95% of the indexed instructions are of 
a simple type. The program that took the data also calculated 
the average number of bytes that are added for each indexed 
addressing mode above the base opcode. The average is 1.17 
bytes. Since the minimum possible is 1.0 bytes, this is a very 
encouraging statistic. The code-size penalty for providing all 
the new M6809 indexed addressing modes is minimal. This is 
good news. As stated previously, the memory efficiency of the 
loads and stores and the addressing modes has the greatest 
influence on the memory efficiency of the whole architecture. 

DYNAMIC ANALYSIS OF THE M6809 

Although the static data used in the previous sections are 
useful in predicting the size of a program, data taken while a 
program is actually executing are more useful in determining 
the throughput of a computer. Unfortunately, reliable dy
namic data are much harder to obtain than are static data; 
hence, there are few dynamic data for microprocessors. 

There are two basic ways of collecting dynamic data. One 
is to build special high-speed hardware to monitor the in
struction execution of a computer. This method has the ad
vantage of being real time but has the disadvantage of being 
very expensive. To reduce hardware costs, it is usually neces
sary for the hardware to take only snapshots of a fixed number 
of cycles. It is hoped that these snapshots will faithfully repre
sent the execution characteristics of the whole program. 

The second method is to run programs using a simulator. 
The simulator can be instrumented to collect the data cycle by 
cycle. The problem with a simulator is that it slows down the 
program's execution so much that the statistics may become 
warped. This is especially true for real-time programs. In fact, 
many real-time programs won't run on a simulator at all. 

M6809 Instruction Set Analysis 509 

Furthermore, the simulator may have problems simulating the 
110 and interrupt portions of the programs. 

I used the simulator method for collecting the data 
presented in the next sections. 

Program Mix 

Because of the limitations just mentioned, I was able to 
analyze only five programs dynamically. The are shown in the 
list that follows. 

Program 
Chess 
Ed 

Description 
Chess playing program 
Line editor 
Small monitor 

Source Language 
Assembler 
Assembler 
C Mon 

Mopet 
M6839 

Automatic test generator Pascal, Assembler 
Floating point package Structured Assembler 

Although I would like to have analyzed more programs, 
I feel these programs are representative. However, I did not 
feel justified in concatenating all the data into one data set 
as I did with the static data. In the following sections the 
dynamic data are presented independently for each simulated 
program. 

The number of instructions and cycles in the simulation for 
each program are the following: 

Program Instructions Cycles 
Mopet 451,131 2,015,244 
Chess 385,698 1,797,514 
M6839 163,370 719,976 
Ed 149,521 702,876 
Mon 86,406 477,887 

Total 1,236,126 5,713,497 

Cycles Per Instruction and MIPS 

A metric of interest for a processor is the number of cycles 
taken by the average instruction and the millions of in
structions per second (MIPS) for each program. These data 
are contained in the list that follows. 

Program Avg. Cycles/Instr. MIPS at 2 MHz 
M6839 4.41 .454 
Mopet 4.47 .447 
Chess 4.66 .429 
Ed 4.70 .425 
Mon 5.53 .362 

Average 4.75 .423 

The data are fairly consistent, and a MIPS rate of approxi
mately .4 can be used by a programmer to successfully esti-. 
mate the execution speed of most M6809 programs. 

A note on MIPS is in order here. The actual amount of 
work (throughput) done by a computer is a function of both 



510 National Computer Conference, 1983 

the MIPS and the size or amount of data actually operated on 
during each instruction. For example, a 1-MIP 32-bit machine 
will have about four times the throughput of a 1-MIP 8-bit 
machine. The M6809 is somewhere between an 8-bit machine 
and a 16-bit machineo 

Most Frequently Executed Opcodes by Class 

Using the same classes of opcodes as described in the static 
data, we can determine what classes of instructions are most 
frequently executed. Table VI is the union of the top 10 
classes for each program. Note that it takes 24 separate classes 
to get the union of the top 10 classes. This indicates that the 
dynamic data are not as consistent as the static data, where the 
union of the top 10 would only include 14 separate classes. 

Most Frequently Executed By Large Class 

Table VII contains the union of the three largest classes for 
each program. In both static and dynamic frequency, loads 
and stores make up the largest class of instructions by far. 
Next in frequency in the dynamic data are the conditional 
branches. Compares and tests also have a high dynamic fre
quency. Calls have a high frequency, but not as high as in 
static. Probably the most surprising result is that in programs 
that have a lot of shifts to begin with (statically), the dynamic 
frequency of the shifts is even higher. 

Table VI-Union of the top ten classes (dynamic) showing % of 
executed instructions 

Class Chess Editor Monitor Mopet M6839 

Load 8-bit 19.20 11.87 10.10 8.04 8.76 
Branch if equal 9.93 6.56 1.44 12.07 .59 
Load 16-bit 7.81 8.80 10.41 7.35 2.05 
Load eff. addr. 5.06 4.82 3.72 10.95 2.92 
Store 8-bit 4.85 5.01 1.49 2.19 4.22 
Store 16-bit 4.23 3.58 3.29 4.26 1.88 
Branch if not = 4.21 9.32 2.68 6.99 3.80 
Bit test 3.49 0 .59 .32 .01 
Branch if minus 3.22 .06 .06 .04 .03 
Increment 2.89 .46 1.48 .32 .92 
Compare 8-bit 2.74 13.18 6.56 8.68 9.35 
Jump to subr. 2.64 6.45 3.29 2.60 .05 
Push 2.19 3.37 4.20 1.45 1.55 
Return from subr. 1.97 3.04 4.90 2.48 2.30 
Pull 1.84 2.49 3.90 .77 .95 
Compare 16-bit 1.40 5.62 1.39 11.63 1.25 
Decrement 1.21 0 .08 .44 4.97 
Branch always .95 6.47 .64 4.64 6.20 
Branch less than .19 .09 0 .01 5.62 
Branch higher/same .11 .27 .30 3.10 1.68 
Branch lower .07 .41 3.56 1.68 .27 
Long branch subr. .04 .73 5.15 1.78 1.15 
Rotate left .02 .08 .06 .09 10.96 
Rotate right 0 0 3.77 0 10.63 

Other 19.74 7.32 26.94 8.12 16.01 

Table VII-Union of the top three largest classes (dynamic) 

Class Chess Editor Monitor Mopet M6839 

Load 27.01 20.67 20.51 15.40 10.81 
Condo branch 21.81 21.12 9.24 24.76 15.86 
Store 9.08 8.59 4.78 6.46 6.10 
Cmpltest 6.07 18.97 8.32 22.14 12.63 
Call 3.18 7.18 10.66 5.54 2.97 
Shifts 0.33 0.16 9.50 0.45 23.33 

To a user trying to select a microprocessor, these data indi
cate that the speed of the loads, stores, and branches will have 
a very large impact on the throughput. The speed of the 
addressing modes will directly affect the speed of the loads 
and stores. Furthermore, the speed of the arithmetic (except 
compare) and logical instructions is almost irrelevant to 
throughput. 

Dynamic Execution of Addressing Modes 

This section presents the dynamic addressing-mode data 
collected by the simulator. Table VIII contains the frequency 
of execution of the various addressing modes for the five 
programs. 

In 'ail five programs indexed addressing is by far the most 
executed addressing mode. In fact, its dynamic frequency is 
about 10% higher than its static frequency for the same 
programs. Short relative addressing is a strong second with 
immediate addressing third. If a future architect were look
ing to improve the performance of the M6809, it would be 
advantageous to look at speeding up relative and indexed 
addressing. Indirect addressing is rarely used. 

Indexed Addressing Dynamic Statistics 

Since the frequency of indexed addressing is so high, it is 
worthwhile to see how indexed addressing is being used dy
namically. Table IX contains the indexed addressing break
down for the five programs analyzed. The 5-bit and no-offset 
indexed addressing are by far the most frequently executed. If 
it were possible to make these faster, it would certainly im-

Table VIII-Dynamic addressing mode usage 

Mode Chess Editor Monitor Mopet M6839 

Indexed 40.79 33.74 29.76 31.05 41.46 
Short relative 22.23 27.48 12.09 30.46 23.78 
Immediate 14.23 18.47 15.46 12.12 11.49 
Inherent 7.21 9.77 23.19 5.77 6.73 
Extended 3.90 8.93 3.29 2.90 0.24 
Direct 8.33 0.00 0.00 14.29 0.00 
Long relative 1.08 0.88 5.18 1.98 1.27 
Accumulator a 1.51 0.09 10.33 0.84 9.07 
Accumulator b 0.72 0.64 0.70 0.59 5.95 

Indirect 0.69 0.00 0.00 0.04 0.15 



Table IX-Dynamic indexed addressing statistics 

Addr Mode Chess Editor Monitor Mopet M6839 

No offset 17.03 23.34 7.47 45.95 10.96 

5-bit offset 62.00 39.80 37.82 37.35 62.32 
8-bit offset 2.30 0.01 0.00 0.22 2.55 
16-bit offset 6.77 0.01 0.00 1.21 0.00 
8-bit off. on PC 0.00 0.06 11.21 0.02 0.14 
16-bit off. on PC 0.00 0.02 0.00 0.23 1.53 

Auto incr. by 1 2.70 34.76 21.26 6.78 1.68 
Auto incr. by 2 1.57 1.46 0.00 3.06 0.06 
Auto decr. by 1 1.15 0.02 0.05 4.26 0.19 
Auto decr. by 2 1.60 0.00 0.00 0.00 0.38 

a acc. offset 3.34 0.08 11.06 0.37 3.91 
b acc. offset 0.35 0.00 0.00 0.26 15.93 
d acc. offset 0.42 0.43 11.13 0.27 0.35 

Extended indirect 0.77 0.00 0.00 0.00 0.00 

prove the M6809's performance. Auto increment by 1 is used 
fairly often in an executing program. This is expected since 
almost all auto increments and decrements are in loops. 

SUMMARY 

As is the case with most Von Neuman architectures, only a 
few single opcodes make up a large percentage of all the 
instructions that appear statically. For the M6809, the top 20 
opcodes accounted for over 58% of all the instructions. Three 
new M6809 instructions headed up the list of the most fre
quently appearing single opcodes. They were long branch to 
subroutine, load effective address, and push on the S stack. 
The rest of the top 20 was composed of loads, stores, branch
es, compares, subroutine calls, and subroutine returns. 

In larger classes of instructions, the following statistics were 
the approximate static values for the top five classes: 

1. Loads and stores =36% 
2. Subroutine calls = 12% 
3. Conditional branches =10% 
4. Pushes and pulls 8% 
5. Load effective address = 6% 

The arithmetic and logical instructions occurred infrequently. 
Thus, the loads, stores, subroutine calls and conditional 

branches are a better metric of memory efficiency than are the 
arithmetic and logical instructions. 

M6809 Instruction Set Analysis 511 

The static addressing-mode data indicate that the most 
common addressing mode is indexed (30%), followed by rel
ative (24%), and by immediate (20%). The number of direct 
and extended instructions combined was only 10%. Indirect 
was practically never used. 

In the static indexed addressing data we find that 5-bit and 
no-offset indexed account for 66% of all indexed instructions. 
Including the 8-bit, 16-bit, 8-bit program counter relative 
mode and the 16-bit program counter relative mode, we find 
86% of the indexed instructions are constant offset or have no 
offset. 

. This indicates to future architects that having several effi
cient, simple offset indexed forms is beneficial. The M6809 
has six such forms as compared to the M6800's one. 

The average number of bytes added for each indexed in
struction is 1.17 bytes. 

There was a larger variation in the dynamic data. There are 
two reasons for this. One is that I had fewer dynamic data 
points. The other is that dynamic data seem to be more de
pendent on the application and programmer style. 

The average number of cycles for an M6809 instruction is 
approximately 4.75. This gives a throughput of .423 MIPS 
with a 2-MHz M6809. 

By classes, the conditional branches all combined to form 
the second most-executed group, second only to the loads and 
stores. The other large classes were compare and test, the 
calls, and the shifts. 

In dynamic execution the indexed addressing mode ac
counts for approximately 35% of all addressing modes. Short 
relative is about 25%, and immediate is 15%. Long relative 
addressing usage is fairly low. Indirect is the big loser again. 

In indexed addressing, the offset varieties accounted for 
72%. This is down from the static data, but is stilljmpressive. 
Auto increment and the accumulator offsets make up most of 
the rest of the indexed data. 

The dynamic data reinforce the conclusions from the static 
analysis that a good measure of the overall efficiency of an 
architecture is best found in the loads, stores, conditional 
branches, subroutine calls, and addressing modes. This coin
cides with the modern view that computers spend most of 
their time in moving data around and making decisions based 
on the data rather than in number crunching. 

REFERENCES 

1. Boney, Joel. "Analysis of the M6809 Instruction Set," Report, University of 
Texas Computer Science Department. 

2. Stone, Harold S. (ed.). Introduction to Computer Architecture. Science Re
search Associates, 1975, pp. 525-528. 

3. Shustek, Leonard J. "Analysis and Performance of Computer Instruction 
Sets," Stanford Linear Accelerator Center Report No. 205, STAN-CS-78-
658, January 1978. 





Tales from the trial trail: Videotex progress in the 
United States 

by GARY H. ARLEN 
Arlen Communications Inc. 
Washington, D.C. 

ABSTRACf 

With about three dozen experiments and services under way or in preparation, the 
U.S. videotex industry is in the midst of lively growth. A number of factors will 
affect the immediate prospects for commercial services, especially the break-up of 
the Bell system and the activities of the resulting companies. In addition, the 
development of cable TV and the creation of hybrid interactive services using other 
new technologies will affect the growth of videotex and teletext in the U.S. More
over, pending legal issues may shape the development of videotext services. 

513 





INTRODUCTION 

Videotex and teletext in the U.S. are about halfway through 
their incubation period. The first round of experiments has 
been completed; the pioneering commercial ventures, such as 
CompuServe and the Source, are refining their activities 
based on experiences during the past three years. As the 
second round of trials begins and with an eye toward new 
commercial ventures, the infant videotex business looks to 
1985 before it becomes a viable business venture. Of course, 
a number of other services and projects will have spurted 
ahead by that time. Indeed, the development of videotex is on 
an erratic timetable because of the variety of projects being 
tested and proposed independently by a wide range of or
ganizations. Moreover, since there is no unified, single ap
proach to these services-nor any consensus about how they 
should be developed-many questions continue to loom over 
the upbringing of the business. 

Even the terms videotex and teletext continue to be the 
subject of debate and individual interpretation. Generically, 
these interactive information retrieval services are often re
ferred to collectively as videotex. But that term also refers to 
the two-way, fully interactive system offered via telephone 
lines or two-way cable TV systems. Teletext is a one-way sys
tem, with a far more limited database, transmitted via digital 
encoding within a broadcast or cable TV signal. Both services 
offer alpha-numeric messages and some form of computer 
graphic images, which the user can call up through a keypad. 
In the most sophisticated videotex systems, online trans
actions, including shopping, banking, or electronic mail, can 
be accomplished, often by gateway connections through the 
videotex system into a remote computer maintained by a third 
party. 

Table I offers a portrait of the fragmented videotex and 
teletext universe in the U.S. In addition to the services listed 
here, several other test projects have already been completed. 
Moreover, the public projects listed do not reflect the handful 
of private/closed user group videotex trials being explored 
internally at an increasing number of companies. In Table I, 
(T) indicates a test, generally with no fee to users; (C) indi
cates a commercial service. 

The development of the above-listed projects-plus the in
auguration of services by still other companies-is taking 
place amidst continuing debate about factors that will affect 
the growth of the industry. Most significant is the continuing 
battle over technical standards, which shows little sign of 
abating. 

With its multinational heritage, videotex has generated 
endless controversy about standards. The issue of technical 
standards--especially whether a format based on British, 

Videotex Progress in the United States 515 

French, or Canadian technology should be used-will remain 
a stumbling block for the immediate future. The development 
in 1981-82 of a so-called "North American Standard" (based 
on Telidon and Antiope formats) has not been universally 
accepted. Indeed, the U.S. delegation to CenT has sug
gested the creation of a Unified Presentation Layer (UPL), 
which will require a new microprocessor chip able to accom
modate the European and North American formats. There is 
no indication when such a device will be available. Mean
while, the Federal Communications Commission is encour
aging a marketplace approach to technical standards. That 
means no formal technical standard will be adopted for the 
U.S., allowing individual companies to sell whatever format 
they prefer. This encourages grueling competitive efforts as 
different camps seek affiliations with companies that can help 
create a customer base for their system. In the teletext area, 
for example, this has led to promises by two major national 
broadcast networks (CBS and NBC) that they will use the 
North American Broadcast Teletext Standard for their trans
missions, which are beginning in 1983. Meanwhile, a major 
cable-satellite network (Satellite Syndicated Systems) is de
veloping a national Keyfax service using British teletext tech
nology. This, of course, could lead to substantial problems if 
customers in a single location seek data from different sources 
using incompatible technology. Hence, the uncertainty about 
technical standards is likely to continue for the next few years. 

NATIONAL OR REGIONAL; PRIVATE OR PUBLIC 

The nature of the North American market suggests that the 
most valuable electronic services will be ones that cater to 
specific audiences--even if the only thing which binds them is 
a common geography. That means regional videotex and tele
text services are most likely to be implemented, although 
some national services will be created. Many major news
paper and broadcasting companies are developing databases 
for their local and regional markets. This seems to be a sensi
ble approach since most media companies have extensive re
sources to develop advertising and information from their 
current service territories. The viability of such regional ser
vices is already being tested and in one case there is evidence 
that the business is not there, at least not yet. A. H. Belo Co., 
publisher of the Dallas Morning News, closed its BISON local 
electronic publishing experiment in mid-1982, in large part 
because there weren't enough owners of personal computers 
in its operating territory to justify the project. Like other 
companies, Belo suggests that when the number of users 
equipped with proper terminals increases it will re-enter the 
business. 



516 National Computer Conference, 1983 

TABLE I-Videotex and teletext activity in the U.S. 
(January 1983) 

UNITED STATES 

Current Services 

The Source 
CompuServe 
Dow Jones 
CBS-AT & T Videotex (New Jersey) 
ContelVision (Virginia) 
Pronto (Chemical Bank, NY) 
HomeBase (Citibank, NY) 
Shawmut Bank of Boston 
Chase Home Banking (Chase 

Manhattan Bank, NY) 
MacroTel, Inc. (Empire Bank, 

Buffalo) 
BankShare (Huntington Bank, 

Columbus) 
Day and Night Video Banking 

(First Interstate Bank, LA) 
FirstHand (First Bank 

Systems, Minneapolis) 
Bank-at-Home (Financial 

Interstate, Knoxville) 
INDAX (Cox Cable) 

San Diego 
Omaha 

Times Mirror Videotex (Palos 
Verdes & Mission Viejo, CA) 

StarT ext (Ft. Worth) 
Electronic Editions 

(Spokane, WA) 
Harris Electronic 

News (Hutchinson, KS) 
AgVision (ELANCO, 

Indianapolis) 
Louisville Courier Journal 

(Louisville) 
A-T Videotext (Tiffin Advertiser 

Tribune, Tiffin, OH) 
Time Video Information Services 

(San Diego and Orlando) 
Keyfax National Teletext 
WETA-TV (Washington) 
WKRC-TV (Cincinnati) 
KPIX (San Francisco) 
KIRO-TV (Seattle) 
WGBH-TV (Boston) 
KSL-TV (Salt Lake City) 
San Francisco State University 
TeleCaption (NCIISears) 

Future Services 

Viewtron (South Florida) 
ViewcomJGrassroots 

(Bakersfield, CA) 

Number of Users 

24,854 (C) 
34,100 (C) 
54,000 (C) 

100 (T) 
100 (T) 
300 (C) 
100 (T) 
100 (T) 

100 (T) 

12 (T) 

200 (T) 

285 (T) 

600 (C) 

500 (T) 
l00(C) 

350 (T) 
171 (C) 

140 (T) 

58 (C) 

850 (C) 

45 (T) 

30 (C) 

400 (T) 
350 (C) 

10 (T) 
40 (T) 
75 (T) 
21 (T) 
25 (T) 
5 (T) 

44,000 (C) 
60,000 (C) 

Scheduled Operational Date 

Summer 1983 

1983 

The development of regional services leads to the issue of 
other kinds of special-interest videotex systems, specifically 
business-oriented ones for closed user groups. The issue of 
private or public videotex has not yet surfaced in the U.S. to 

the degree it has in Europe, although a number of companies 
(such as Videodial [using French format], Rediffusion [pro
moting British technology] and ModComp) have recently en
tered the U.S. market offering turnkey private videotex sys
tems. IBM's entry into the U.S. videotex market came in the 
form of a private viewdata system, based on its Series I mini
computer. It is difficult to foresee at this stage how effective 
such private systems will be, especially when the concept of 
videotex is still being defined to corporate customers. 

BEYOND BELL 

American Telephone and Telegraph Company's divestment of 
its local operating companies and its new-found freedom to 
enter competitive business activities-notably data process
ing-will inevitably change the nature of the U.S. telecom
munications industry. Because AT & T has plans involving 
several aspects of videotex, the company's future activities 
will play a great role in shaping the development of the 
business. 

The spin-off process will last until 1991 , a vital period in the 
development of videotex. AT & T has already begun to unveil 
its videotex products, including the highly regarded Frame 
Creation Terminal. Bell and its soon-to-be-divested local affil
iates are working on distribution systems that offer voice
under-data transmission capabilities, ideal for simultaneous 
use of teiephone service for conversation and videotex. 

Typically, AT & T is not proclaiming its precise plans as the 
divestiture process begins. Through its participation in several 
videotex efforts to date (notably, the Viewtron service with 
Knight-Ridder Newspapers and the Venture One project with 
CBS), AT & T is gaining expertise in all aspects of operating 
a videotex service. It is possible that when the legal re
strictions are lifted in a few years, AT & T will expand its role 
into information services. Meanwhile, the restrictions to keep 
AT & T out of electronic information may prompt newspaper 
publishers, who once feared Bell's presence and lobbied hard 
against it, to drop their own electronic activities. Now that 
Bell is barred from such services for the time being, the pub
lishers may not feel motivated to pursue any efforts of their 
own in this area. 

THE ROLE OF RIVAL TECHNOLOGIES 

Even as videotex and teletext struggle to find a niche in the 
U.S. marketplace, other technologies, as well as hybrid ser
vices involving videotex, are surfacing. To many experts in the 
data processing and communications business, all of these 
services are the raw materials with which to build entirely new 
ventures. For example, the traditional concept of broadcast 
teletext (vertical interval transmission of news and informa
tion) is being amended by forays into full-bandwidth data 
transmission using video channels on cable TV systems or 
satellites; Time, Inc., is particularly active in this area. 

Other data transmission efforts involve piggy-back projects 
in which text/data services are carried on the subcarrier fre
quencies of radio stations or satellite signals. An example of 



this is a service being proposed by National Information Util
ities Corp. and National Public Radio. The primary objective 
is to offer local one-way data communications to business 
offices seeking an alternative to expensive "last mile" 
delivery-a service that will become more expensive as local 
telephone rates increase. Local data will be carried via a sub
carrier on FM radio stations; for clients who need national 
distribution of data, the nationwide public radio satellite net
work will provide interconnection. 

Several other types of transmission systems can also deliver 
similar one-way service. For example, low power TV-a 
broadcast service with authorized transmissions within only, 
approximately, a 15-to-20-mile radius-is often mentioned as 
a medium for such local data distribution, possibly using 
teletext-like facilities. In addition, Multipoint Distribution 
Service, a local microwave transmission facility, is being pro
moted for its wireless cable potential. (It should be noted that 
the development of both these technologies is still in the hands 
of the Federal Communications Commission.) 

Meanwhile the cable TV industry, which now reaches about 
34% of U.S. homes, is increasingly attracted to data and text 
services. Almost all major city cable systems now being built 
offer substantial capacity for interactive services. During the 
late 1980s and 1990s, many of the cable systems built 20 years 
ago will be upgraded to include advanced interactive capabil
ities. At the same time, the cable industry is beginning to 
interconnect systems serving contiguous cable operations. 

SHOPPING AND BANKING 

A great deal has been written about the prospects for elec
tronic at-home shopping and banking on the new systems. 
Indeed, more than a dozen U.S. financial institutions are 
already taking part in advanced tests and many more compa
nies are eyeing such participation. Equally important, the 
shifting regulations and corporate objectives of U.S. financial 
companies augur an even greater move into such services 
during the mid-to-Iate 1980s. In particular, a number of na
tional banking regulations that have so far restricted home 
banking efforts will be changed. At the same time the fi
nancial realities of the early 1980s have resulted in the cre
ation of new financial empires-businesses that transcend the 

Videotex Progress in the United States 517 

traditional concept of locally owned banks. A number of na
tionwide financial service companies are being created and 
their expertise and capital resources will encourage the 
growth of the teleservices industry. Moreover, the role of 
companies such as Sears will increase. Sears, for example, 
seeks to coordinate the real estate and brokerage services it 
recently acquired, blending them into its existing insurance, 
banking, and retailing activities. Add to this Sears' ability to 
sell and service consumer electronics products and it becomes 
a mighty force for teleservices. 

Elsewhere on the merchandising scene, retailers and direct 
marketing firms are escalating their efforts into electronic 
selling. Many of them are still awaiting technical refinements, 
such as the ability to offer video-on-demand to prospective 
customers. There is, however, lively interest in the possi
bilities of electronic shopping, although most merchandisers 
are still demanding proof that the service will result in cost 
efficiencies before they commit themselves to any further 
development. 

CONCLUSION 

The videotex experiments and services in the U.S. have had 
mixed results to date. The trials generally indicate that infor
mation alone is not enough to sustain services, that viewers 
require additional features, especially transactional services. 
The precise nature of those services, and the mixture, are 
being refined by other projects. 

Meanwhile, the onrush of alternative services and delivery 
systems will continue to affect the development of videotex 
and teletext. The de facto decision to determine technical 
standards in marketplace competition rather than by govern
ment fiat will mean that it takes longer to settle on a format. 
In turn, that leads to further delays in introducing services to 
public and private users and in convincing them to invest in 
such services. 

Despite these factors, the parents and guardians of the U.S. 
videotex industry continue to have great hopes for the healthy 
development of their child. During the current incubation 
period, a variety of modifications are inevitable. By the mid-
1980s, when the business reaches its next stage of devel
opment, some of those questions will have been answered. 





Videotex and teletext in the business/consumer marketplace 

by LARRY T. PFISTER 
Chairman, Videotex Industry Association 
New York, New York 

ABSTRACT 

The impact of interactive television in the marketplace will change our perception 
of the home television set from that of an entertainment medium to that of an 
informational mechanism at both the consumer and business levels. A review of the 
development of videotex and teletext in the United States and abroad highlights 
significant contributions of the various technologies shaping this rapidly evolving 
industry. As reflected by the rapid growth of the U.S. Videotex Industry Associa
tion, the potential of videotex is being tracked by a broad spectrum of interested 
parties-from the individual PC user to the corporate board at AT&T. The videotex 
revolution will profoundly change our lifestyles and will bring instant information
on-demand into our homes and offices. 

519 





Videotex and Teletext in the Business / Consumer Marketplace 521 

I appreciate the invitation to participate in the 1983 National 
Computer Conference and particularly this opportunity to 
discuss one of my favorite subjects-the future of television. 
I believe interactive television-videotex and teletext-to be 
the future for television in the United States and around the 
world. Why should I talk about television at a data processing 
conference? Primarily to drive home the point that the 
separate worlds of data processing and video are rapidly con
verging. Major U.S. data processing vendors are obviously 
serious about videotex and are gearing up for the U.S. mar
ket. Suppliers, including IBM, DEC, Perkin-Elmer, Com
puter Automation, ADP, Amdahl, Atex, Hewlett-Packard, 
Tymshare, and nearly 150 other firms, are marketing videotex 
systems and services in the U.S. 

I have been asked to give an overview of videotex and 
teletext and to discuss briefly some of the activities here and 
abroad in both the business and consumer marketplace that 
may affect you as a data processing professional and as an 
individual citizen. This is a pretty ambitious aim for a short 
session. Videotex is difficult to define in 25 words or less, and 
it has been said that teletext is easier to use than it is to 
explain. Perhaps the best I can hope to accomplish is to hit the 
high points and suggest that for an in-depth understanding of 
this rapidly evolving technology, you could contact the Video
tex Industry Association or one of our member firms who are 
pioneering applications in the United States. 

If the generic term videotex is not familiar to some of you, 
the names of particular systems, such as Ceefax, Oracle, 
Prestel, Antiope, or Telidon, are more likely to have a 
familiar ring. This IS no accident, for there are powerful com
mercial forces (some backed by national governments) hard at 
work marketing their particular technology to almost anyone 
who will listen. 

The reasons for this are not difficult to discover. It is widely 
believed that videotex and teletext will become as common as 
entertainment television in the American household and that 
the necessary electronics will be directly incorporated inside 
television sets of the future, permitting the user to send elec
tronic mail to friends, to order goods and services, to obtain 
information on an almost limitless variety of subjects-both 
topical (such as news, weather, airline schedules, or stock 
market information) and nontopical (such as one might find in 
encyclopedias or do-it-yourself books)-and to play games, 
either with a computer or with other humans. 

There are still a lot of important unanswered questions, 
such as how quickly the market will grow and, when it does, 
what the predominant uses of such systems will be. Will tele
phone companies or cable television systems be the predom
inant carrier? Is there a danger of system-operator or 
information-provider monopolies developing? It sometimes 

seems that these marketplace questions are ignored in the 
rush of the principal contenders to establish their technology 
as the standard for videotex or teletext communications. The 
current situation is reminiscent of the negotiations sur
rounding the adoption of the NTSC color television standard 
in the United States and of the subsequent competition be
tween NTSC and the PAL and SECAM standards worldwide. 

Clearly, the standards issue is an important one. It would 
hardly make sense if consumers had to buy several different 
electronic devices in order to have access to the people and 
information banks of their choice, or for information pro
viders to have to format their information in a variety of 
different ways and store them on many different systems in 
order to approach universal coverage. There are still countries 
in which there are two competing telephone systems, but such 
countries are not held up as models of sensible behavior, even 
by the most ardent free-enterprisers. 

In Europe, the issue of standardization of videotex and 
teletext has been handled with relative ease. In France, both 
the broadcasting system and the telephone system are govern
ment owned and controlled and the same is true in Britain, 
with the exception that on the broadcasting side there is an 
independent television authority (although even there it is the 
content of the television programs that is independent, not the 
technical standards of transmission). Thus, videotex and tele
text standards have been effectively set by government decree 
or consent in Europe. Perhaps most significant, however, is 
the fact that these countries have adopted systems in which 
the videotex and the teletext formats are mutually com
patible, thereby making it possible to design inexpensive re
ceivers capable of handling both broadcast teletext and two
way videotex services. And it's far more likely that TV sets 
will have an inexpensive decoder built inside the set than that 
they will ever have an outside appendage such as a videodisc 
or personal computer. 

Let me share a few relevant statistics about American tele
vision: 

1. Today, there are over 80 million television households in 
the United States. 

2. The average American watches television four hours a 
day. 

3. The average U.S. household watches more than seven 
hours of television a day. 

4. The average American spends only 25 to 30 minutes per 
day on print-newspapers and magazines. 

Clearly, with these numbers-if people are in front of the 
television set for that many hours-there's an opportunity to 
use the television set for more than just entertainment. The 



522 National Computer Conference, 1983 

perception of what the television set represents in our homes 
is changing. In the 1970s, people still thought of TV as a way 
of receiving just three or four television channels. In recent 
years, cable television has introduced dozens of channels and 
...",11 1.7'~_,.t..:-. _+ __ -r<ho ..... +.o...-+n; ...... ...".,,01"\+ C"'O' ..... 7;,..'O'iC" Tn ... 1,.0 T In;torJ ~+')Itoc 
all AI11U~ VI. l.lUl1'-'lJL'-".l La.lJ.l11.1\".r.l.lL .;)\"rJ." .l\".t\".r.;) • ..I...H l.1 .. U .... \.J J.J..u ........ u. ......... '",,""'13, 

Kodak stopped making its 8 mm and Super-8 film products 
because they, like a lot of others, think that in the future home 
movies are going to be videotaped and displayed on the TV 
set. More important perhaps is that electronic games and 
personal computers, which use the TV set as a display device, 
are already changing our perception of what the set is. 

All of these-cable, pay cable, VCRs, videodisc, personal 
computers, and video games-are changing our perception of 
television, which will make it a lot easier to use the TV set as 
an informational mechanism. On a broad international scale, 
interactive videotex and teletext systems are being studied, 
tested in field trials, and introduced as regular services at both 
the business and the consumer levels. Among the tech
nologies employed internationally are the following primary 
systems: 

1. Prestel (Viewdata) in the U.K. and several other Euro-
pean countries 

2. Bildschirmtext in the Federal Republic of Germany 
3. AntiopelDidon in France 
4. Captain in Japan 
5. Telidon in Canada 
6. AT & T's PLP in the United States. 

Although there are some significant differences between 
these systems, national and international efforts are under 
way to develop compatibility for communications and applica
tions interchange. It now appears that the major European 
systems will adopt a hybrid compatible system known as 
CEPT and that North America will rally around a proposed 
standard based on PLP. Furthermore, the U.S. delegation to 
CCITT recommended the creation of a Unified Presentation 
Layer, based on open system architecture, to accommodate 
both the European and North American formats and to set 
the stage for one global international videotex system that can 
be used as the telephone system is today. 

The fact that compatibility issues are being addressed in a 
responsible way before videotex and teletext penetrate the 
U.S. marketplace is a healthy sign. It has taken years for the 
computer manufacturers to fully appreciate the synergism of 
compatibility in building a market where the whole is truly 
greater than the sum of its parts. As a marketer, I would 
prefer to have a fair competitive share of a large market than 
all of a tiny one. In your profession, it is probably easiest to 
think of videotex as perhaps the ultimate extension of the 
concept of distributed data processing. In the early 1970s, the 
computer industry realized that using minicomputers to pro
vide distributed processing and information storage (as a 
complement to a centralized data processing facility) could 
improve the efficiency and productivity of computerization. 
Distributed data processing has gained wide acceptance for 

many applications and it is now the preferred solution in most 
cases. Until now, users of distributed data processing have 
been driven by the desire to have an internal information and 
transaction processing network within a company, particu
larly \vhen that company is geographically dispersed. The 
cliche "user-friendly" has come about because the users of 
distributed data processing often have no knowledge of com
puter systems. 

Digital Equipment Corporation was one of the first compa
nies to recognize the potential of distributed data processing 
and today commands a major share of that market. Today it's 
worth noting that DEC already has established itself as a 
pioneer in videotex. According to the Link Research Division 
of International Data Corporation, DEC computers are serv
ing as hosts for a majority of videotex and teletext systems 
worldwide. It's also notable that Digital was a founding mem
ber of the Videotex Industry Association in this country. 

Videotex becomes the obvious extension of distributed data 
processing as lay users extend their information requirements 
to external databanks (such as a stockbroker or bank account) 
and the computer terminal gives way to the friendly 19" color 
television set, suitably equipped with an intelligent decoder. 
The benefits that videotex bring to business data processing 
are friendly interface and simple graphics systems that can be 
appreciated by a very wide nontechnical audience and the 
immediate potential of extending applications into the con
sumer marketplace. Remember, not every consumer is a busi
nessperson, but every businessperson is also a consumer. 

Last fall the Dow-Jones publication Barron's ran a cover 
story entitled "The Videotex Revolution," and called this new 
medium the last great electronic adventure of the 20th cen
tury. The message of that article was clear: The videotex and 
teletext business is following the same development pattern as 
telephone, broadcasting, and data processing. Like those 
technologies, videotex will take about 20 years to mature. 
Since the British introduced Prestel about 10 years ago, video
tex should gain commercial success in the 80s. 

Videotex will change the way people make money and the 
way they spend it. Half of the U.S. work force is already 
engaged in service-related industries; minicomputers are al
ready enabling many people to tele-commute instead of com
muting to the office. Stockbrokers, architects, designers, 
writers, data processors, and secretaries may perform their 
jobs using videotex. Retail spending habits will shift once 
teleshopping in electronic malls surpasses brick and mortar 
stores in terms of product variety, economy, and convenience. 
Transportation patterns will also change. There will be fewer 
trips to banks, stores, and the post office, but more reliance 
on distribution systems that can process electronically ordered 
merchandise. 

The businesses that accurately predict how these life styles 
will change can profit from the videotex revolution. The data 
processing managers who expect to sit around and wait for this 
new medium to develop and who count on finding pat formu
las available at exactly the right moment will find themselves 
unprepared and outdated. 



Winchesters for multiuser/multitask applications 

by LARRY JACOB 
PRIAM Corporation 
San Jose, California 

ABSTRACf 

The paper addresses the growing need for Winchester disk storage to handle multi
user/multitask applications. The paper reviews key elements necessary for achieving 
reliable performance, capacity, and fast access (e.g., linear voice coil actuation, 
closed-loop servo techniques, and processing/packaging methods). High-perfor
mance Winchester options for multitasking, how to evaluate them for specific 
applications, and what the future holds for Winchester technology are also 
discussed. 

This paper was adapted to appear as an article in Computer Design magazine, January 1983, an article which is copyright 
© by Computer Design Publishing Company, 1983. 

523 





Winchester disk drives have been in use with large computers 
for years, but it is only recently that they have been adopted 
by manufacturers of small business systems, of word pro
cessors, and even of personal computers. Unlike large-system 
Winchesters, however, there is a bewildering variety of small
system Winchester storage products: three different disk 
sizes; two fundamentally different actuator systems; and a 
variety of interfaces, ranging from "dumb" to "smart." 

In a multiuser/multitask environment, where reliability and 
performance are essential, Winchester disk drives that pro
vide high capacities and low cost per megabyte are a logical 
choice. Once the decision to use a Winchester is made, deci
sions also need to be made regarding the specific type of 
Winchester and the interface type. These issues are discussed 
in the rest of this paper. 

WHAT ARE THE WINCHESTER CHOICES? 

Selecting the right Winchester starts by defining the system 
requirements. There are three fundamental system types: 
Single-UserISingle-Task (SU/ST) , Multi-UserlMulti-Task 
(MUIMT), and Single-UserlMulti-Task (SUIMT). Each of 
these fundamental system types has different basic mass stor
age requirements, as shown in Figure 1. Networks, or distrib-

SINGLE-USERISINGLE-TASK 

• DEDICATED DATA BASE • 

• UP TO 20 MEGABYTES (MB) • 
• LOW COST PER UNIT IS KEY • 

• "SLOW" DATA ACCESS ACCEPTABLE • 

• LIGHT DUTY CYCLE IMPOSED ON • 
ACTUATOR 

• SMALL SIZE IS KEY: USED IN * 
PORTABLE DESKTOP SYSTEMS, 
FLOPPY-DISC CAVITIES 

Winchesters for MultiuserlMultitask Applications 525 

uted processing, are typically hybrids of the two fundamental 
system types, and high-powered workstations-frequently 
part of a network---can be thought of as single-user/multitask 
(SUIMT) systems. In this system a single user may have sev
eral different programs (tasks) working in parallel (the con
cept of concurrency). These tasks might include performing 
word processing, compiling a BASIC program, plotting fi
nancial information, and sending or receiving an electronic 
mail message. 

Six basic types of OEM Winchester disk drives serve these 
three system types. They are simply the combinations possible 
from the three main disk diameters currently available 
(14-inch, 8-inch, and 51/4-inch) and the two basic actuator 
systems (the low-performance, open-loop stepper motor and 
the high-performance, closed-loop voice coil motor). Typical 
capacity and access time range characteristics are shown in 
Figure 2. The complex procedure now begins to determine 
which one (or combination) of the six basic types of Win
chester disk drives should be chosen for a particular type of 
system. The tradeoffs that the system designer makes during 
this selection process are also depicted in Figure 2. 

A mapping of the fundamental system types into the basic 
drive types (see Figure 3) has been developed to assist in 
choosing an appropriate type of Winchester disk. 

MULTI-USERIMULTI-TASK SUIMT I 
I 

SHARED DATABASE • DEDICATED/SHARED \ 

DATABASE 

30 TO 400 MB • 20 TO 50 MB 
• BOTH COST PER 

LOW COST PER MB IS KEY UNIT & COST 
PER MB 
CONSIDERATIONS 

"FAST" DATA ACCESS REQUIRED • "MODERATELY FAST" 
DATA ACCESS 
REQUIRED 

HEAVY DUTY CYCLE * MODERATE DUTY 
CYCLE 

SMALL SIZE IS HELPFUL: USED IN • SMALL SIZE 
PEDESTAL OR RACK MOUNT SYSTEMS IS KEY 

Figure I-Mass storage requirements for three popular system types 



526 National Computer Conference, 1983 

5 1/4-INCH 

DISK 

SIZE 

8-INCH 

STEPPER MOTOR 
(SM) 

ACfUATOR TYPE 

(LOW PERFORMANCE~ OPEN LOOP) 

VOICE COIL MOTOR 
(VCM) 

(HIGH PERFORMANCE, 
CLOSED LOOP SERVO) 

UP TO 20 MBYTES 20-50 MBYTES 

85-200 MSEC 35-50 MSEC 

10-40 MBYTES 30-100 MBYTES 

70-80 MSEC 30-50 MSEC 

30-40 MBYTES 30-300 MBYTES 

CI) 

:> 
~ 
N 
H 
CI) 

14-INCH ,..----------- ---------
70-80 MSEC 30-50 MSEC 

COST VS. PERFO&~CE/CAPACITY 

CAPACITY (MB) 
KEY --------

ACCESS TIME (MS 

Figure 2-Six basic types of Winchester disk drives: Tradeoff matrix 

THE MAPPING OF THREE SYSTEM TYPES TO SIX 
DRIVE TYPES 

The SU/ST storage requirements of small size and capacity, 
low cost, and light duty cycle fit the 5V4-inch stepper motor 
(SM) Winchester best. However, if the SU/ST system is 
planned to grow into an SUIMT system, the user needs to plan 
now for using a 5V4-inch voice coil motor (VCM) later. In 
early 1983, three years after low-capacity (under 10 MB) 
5V4-inch drives were introduced, high-capacity 5V4-inch drives 
in the 40- to 55-MB range have now made their entrance. 

The SUIMT storage requirements of moderate capacity and 
performance with very small size fit the 5V4-inch voice coil 
motor Winchester best. However, production quantities of 
these drives are not available, and the product and vendors 
still need to be field-proved (remember the "8-inch fever" in 
1979 and 1980). So those who need capacity and performance 
in a small package size in 1983 (maybe even 1984) should stick 
with the 8-inch voice coil motor. 

The MUIMT storage requirements of high capacity, low 
cost per megabyte, and heavy duty cycle fit the 14-inch voice 
coil motor Winchester best. The main exception occurs when 
size is more important than large storage capacity. In that case 
the user should consider the 8-inch voice coil motor, keeping 

in mind that most 14-inch drives include space for a power 
supply but 8-inch drives do not. The drive power supply must 
be considered in space planning if an 8-inch drive is chosen. 

Growing capacity needs of the SU/ST and SUIMT applica
tions are reaching into and beyond the range of capacity avail
able in 5V4-inch drives today. However, if the capacity of 
5V4-inch drives reaches what is currently projected, and if 
these drives become available in volume, 5V4-inch drives will 
eventually replace some of the 8-inch drives in newly designed 
systems. This will happen first and most furiously at the low
end (open-loop stepper motor) segment of the 8-inch market. 
Conversely, the portion of large existing MUIMT applications 
that are becoming size-sensitive will probably grow, leading to 
the increased use of compact 14-inch voice coil motor, and 
floppy size 8-inch VCM Winchesters. 

Future system storage requirements no longer map directly 
onto the 8-inch and 14-inch stepper motor Winchesters. This 
is because the physical size of the Winchesters suits the MU/ 
MT system best, but their access time, duty cycle, and storage 
capabilities fit them to SU/ST systems best. Thus they map to 
neither system type, and their use by systems designers will be 
declining rapidly. 

Particular attention needs to be paid to the capacity growth 
path implications of the device chosen. On the one hand, 



Winchesters for MultiuserlMultitask Applications 527 

SINGLE-USER ==> 5 1/4-INCH 
SINGLE-TASK STEPPER 

MOTOR 

8-INCH 8-INCH 
STEPPER VOICE 
MOTOR COIL 

14-INCH 14-INCH 
STEPPER VOICE 
MOTOR COIL 

---:~'?"> PRIMARY APPLICAT ION 

KEY 

---I~~ CAPACITY GROWTH PATH 

Figure 3-Mapping of three system types to six drive types 

there are lateral growth paths, where the physical size of the 
device remains the same. These are relatively easy to imple
ment without changing interface or systems packaging. On the 
other hand, vertical growth paths in the same system en
closure, where the physical size of the drive changes, will 
occur less frequently, because of the capacity increases prom
ised in the 5%- and 8-inch disk sizes. Nevertheless, these 
growth paths are important, because of the increasing pro
pensity of systems manufacturers to repackage successful sys
tems for appeal to different markets: Standalones are souped 
up to serve multiuser markets, and multiuser systems are 
downsized to serve desktop markets. In these cases, travel 
along a growth path where the drive interface is common is 
much easier than if interface, power, and software changes are 
required. 

OTHER CONSIDERATIONS FOR THE 
MULTIUSERIMULTITASK APPLICATION 

Several other issues need to be addressed in the evaluation of 
high-performance Winchesters: system architecture, system 
integration, reliability, vendor viability, and total cost of own
ership, to name a few. 

System Architecture 

System architecture can affect drive performance. In MU/ 
MT applications, performance is the key ingredient. It is pos
sible for total system performance to be drastically affected by 
apparently small changes in disk drive specifications or system 
timing requirements. For example, a change of a few micro
seconds in the time required to switch heads could be very 
significant if it precludes reading the next sector, causing tens 
of milliseconds to be added to a multisector operation. Simi
larly, an increase in data rate could cause sectors to be missed 
because of a suboptimal interleaving factor, again adding tens 
of milliseconds to each operation. 

In evaluating system performance with different Winches
ter disk drives it is important to verify that the disk is not 
artificially constrained by a system parameter (like interleave 
factors) that you, as the system's designer, would be willing to 
change. 

In most disk drive applications a significant part of the total 
transfer time is spent seeking and waiting. In a well-designed 
system these times are overlapped and minimized as much as 
possible. Many variations have minimal effect. When a 
boundary is approached, however, performance often 
changes suddenly and drastically. 

System Integration 

Choosing the Winchester is just the first step. Making it 
work in a prototype and then in production systems is next. 
The key to this task is the selection of an interface. 

If the system design is brand-new, more decisions are re
quired than if a current model is being enhanced or redefined. 
In either case, evaluation of the interface options on the basis 
of functional integrity, specific application requirements (per
haps emulation), controller availability, and the projected 
longevity of the interface is required. 

In today's rapidly changing storage market, choosing the 
disk drive interface may be a longer-standing commitment 
than choosing a particular drive capacity level. Projecting the 
disk requirements for the future of the product line is an 
important factor. Will the interface choice still be appropri
ate? In the long term, a high-level interface generally makes 
the most sense; floppylike, external data separators make the 
least. In addition, because the market is changing so rapidly, 
the user should review the possibility of purchasing an intel
ligent controller, or even a memory subsystem, to accelerate 
the product to production. 

The higher-level interfaces have technical advantages in 
that they all contain data separators. In truly high-per
formance products the data separator is a key component in 
the determination of data integrity. As such, it is to the 



528 National Computer Conference, 1983 

OEM's advantage to have the disk vendor responsible for an 
appropriate data separator design. Another advantage of the 
higher-level interface is its ability to deliver diagnostic status 
information. 

Interfaces start from very simple and unsophisticated levels 
that approximate the control capabilities of floppy disk drives. 
They improve in stages in capability and intelligence until the 
drive with its interface actually constitutes a disk subsystem in 
which many sophisticated disk controller functions are added 
to the data storage capability of the drive. This range is briefly 
summarized below. 

Low CostiLow Function Interface: Provides the user MFM 
data- and bit-oriented command and status information. This 
interface is the most difficult to use, but the most economical 
from a drive point of view. Therefore it may be attractive to 
the SUIST, large-volume, cost-sensitive user with substantial 
engineering and manufacturing resources capable of de
signing, testing, and controlling the difficult data separation 
circuitry required to process MFM data and higher and higher 
data rates. 

Early OEM Disk Interface: This interface provides NRZ 
data; that is, data separation is performed on board the drive. 
Commands are byte-oriented, but status is bit-oriented. Con
trol Data Corporation's SMD interface, developed in the ear
ly 1970s, has become a standard interface for larger systems. 
Though most designers consider it technically obsolete, since 
it is cumbersome to use and costly to implement, the wide 
range of disk drives available with the SMD interface con
tribute to its continuing popularity with systems designers. 

Modern Disk Bus: This interface has an NRZ data stream 
like its predecessor; but both command and status are byte
oriented, and the interface is typically microprocessor-driven. 
The modern disk bus interface costs a little more than the 
low-costilow-function interface; but is substantially easier for 
the system designer to use, and it provides better data in
tegrity, since the data separator circuitry is on board the drive 
and controlled by the disk drive supplier. Examples of this 
interface include the ANSI standard and PRIAM interfaces. 

Intelligent Bus: Intelligent bus interfaces such as lSI, SCSI, 
and SMART are indicative of the trend toward dispersing intel
ligence to components of computer systems and making disk 
drives easier for system designers to use. 

Using a microprocessor to provide broad control capability 
at low cost, the intelligent bus type of interface is completely 
byte-oriented and is designed to adapt readily to commonly 
used microprocessor I/O busses. High-level versions of the in
telligent bus include disk formatting and defect mapping, im
plied seeks, daisy-chaining capabilities, selectable sector sizes, 
automatic alternate sector and track assignment, overlapped 
commands, data buffering, ECC, nonbuffered data transfers 
at disk speed, interleaved formats, backup device support, and 
logical or physical sector addressing. 

When the systems OEM uses this last type of interface, inte
gration problems are substantially reduced and data integrity is 
likewise improved. Moreover, the OEM gets the system run
ning and into production 3 to 4 times as fast and with substan
tially less resources. And with the economies of scale available 
through volume manufacture of intelligent interfaces, the disk 
manufacturer can bring this type of product to the systems 
manufacturer very cost-effectively. 

Reliability 

Reliability is the key attribute of Winchester technology. 
Some supporting areas need to be considered as well, since 
Winchester has grown to be a very general term. Remember 
the key technology ingredients of the original Winchester tech
nology of the IBM 3350: low mass, low force heads with contact 
startlstop capability, fixed media, and a sealed environment. 

Today, disks and heads are permanently enclosed in most 
Winchester drives being manufactured. This is a characteristic 
vital to the improved reliability that Winchester drives provide. 
The most common causes of failure in pre-Winchester disk 
drives were improper handling of the packs and cartridges 
by computer operators and exposure of disk packs and car
tridges to hostile environments (which includes the office 
environment) . 

The more traditional issues of electromechanical designs 
need evaluation. Look for fail-safe locking mechanisms for 
both carriages and spindles. As Winchesters find their way into 
more portable systems, exposure to sustained vibration and 
repeated shocks will put excessive demands on them. 

The terms high performance and stepper motor are almost 
mutually exclusive. Stepper motors typically have shorter lives 
in the heavy duty-cycle applications of MUIMT systems, 
whereas voice coil motors, being designed for this kind of use, 
last longer. Moreover, data recovery is not as affected by tem
perature or vibration in drives using closed-loop servoed voice 
coil positioners, while open-loop systems are more sensitive to 
the effects oftemperature change and external vibration. Sam
pled data systems usually take care of temperature effects, but 
not the instantaneous effects of shock or vibration, which may 
be induced by simply bumping a desktop system, or the effects 
of nonrepeatable spindle runout. 

Vendor Viability 

Analyzing a vendor's track record before committing con
siderable resources to that firm is an important consideration. 
The vendor must be able to support the prototype systems that 
will be put in place. Evaluate the manufacturer's technical sup
port staff. They are the key to providing application assistance 
and servicing the disk drive products that are being brought to 
market. 

The vendor must be able to support the follow-on produc
tion. Does the vendor have a record confirming its ability to 
ship in volume? 

Does it have the financial strength to survive, as well as main
tain the R&D expenditures necessary to insure continued 
innovation? 

Cost of Ownership 

Though some drives may cost more in the beginning, they 
may be more inherently reliable and thus require fewer service 
calls or repairs. Therefore, the higher initial cost may in fact 
result in a lower life cost of ownership. 

It is predicted that improvements to disk drive technology 
win vastly increase disk data density (see Figure 4). By the end 
of the 1980s, storage of up to 60 million bits per square inch of 



Winchesters for MultiuserlMultitask Applications 529 

CURRENT LATE 1980'S 

OXIDE DISCS THIN-FILM MEDIA 

FERRITE HEADS 

-/> 
THIN-FILM HEADS 

MFM ENCODING RLL ENCODING 

HORIZONTAL RECORDING VERTICAL RECORDING 

1000-TPI SERVOMECHANISMS 2000-TPI SERVOMECHANISMS 

Figure 4-Disk drive capacity growth through technology 

disk surface is anticipated through the use of plated or sput
tered disk surfaces, new recording techniques, and thin-film 
heads. This potential for improvement to sealed disk drive 

technology makes it certain that disk drives will provide for the 
foreseeable future the most economical and reliable means of 
storing and retrieving large amounts of data. 





Intel iAPX 432-VLSI building blocks for a 
fault-tolerant computer 

by DAVE JOHNSON, DAVE BUDDE, DAVE CARSON, and CRAIG PETERSON 
Intel Corporation 
Aloha, Oregon 

ABSTRACT 

Early in 1983 two new VLSI components were added to the iAPX 432 family of 
components. The 43204 Bus Interface Unit (BIU) and the 43205 Memory Control 
Unit (MCU) extend the logical flexibility and robustness of the 432 processors into 
the physical implementation of 432 systems. The BIU and MCU provide a range of 
fault-tolerant system options. The components provide comprehensive detection 
facilities for processor operations as well as for the operation of buses and memo
ries. Recovery is possible from permanent as well as transient errors. Detection and 
recovery are done totally in the VLSI components; there is no need for additional 
TIL logic or diagnostic software. This range offault-tolerani capabiiities is achieved 
by replication of VLSI components. VLSI replication provides software transparent 
migration over the full range of fault-tolerant options without any penalties, for 
unused fault-tolerant facilities in low-end systems. 

531 





INTRODUCTION 

The range and nature of computer applications is changing 
dramatically during the 1980s. Software, maintenance, and 
downtime are dominating the life-cycle costs of computer sys
tems. At the same time, application flexibility (to grow with 
the user's needs and to migrate the application as new oppor
tunities occur) is becoming a key system requirement. Match
ing such expanding requirements are the unfolding capabili
ties of VLSI technology. VLSI offers high functionality at a 
low cost and high reliability per function. The 432 responds to 
this changing environment by applying VLSI technology to 
significantly reduce system life-cycle costs. 

The iAPX 432 was introduced in early 1980. At that time 
the 432 consisted of three components, a two-chip (43201, 
43202) Generalized Data Processor (GDP) and a single-chip 
(43203) Interface Processor (IP). These processors provide an 
object-based architecture and modular performance growth 
via transparent mUltiprocessing. The object-based architec
ture of the 432 provides a robust and flexible environment for 
cooperating, concurrent software systems. The 432 processors 
use a cooperative self-dispatching mechanism to automati
cally share the workload between the available processors. 
The number of processors available in the system is transpar
ent to software. 1

,2 

The 43204 Bus Interface Unit (BIU) and the 43205 Memory 
Control Unit (MCU) extend the logical flexibility and robust
ness of the 432 processors into the physical implementation of 
432 systems.s The BIU and MeU allow the 432 hardware to 
modularly and transparently expand the processing power 
(from 1 to 63 modules-processors or memories), bus band
width (from 1 to 8 backplane busses), and fault-tolerant capa
bilities of the system. 

In the area of fault tolerance, the 432 provides a software
transparent, VLSI solution. The system may grow and mi
grate over a wide range of capabilities without any change to 
software or any cost burden for unused fault-tolerant func
tionality. At the low end, small low-cost systems that offer the 
inherent high reliability of VLSI and the ability to recover 
from transient errors may be configured. A range of fault
tolerant capabilities are available that increase the robustness 
of the error-detection and recovery facilities available in the 
system. At the high end, a 432 system can be configured to 
provide rigorous error detection over every aspect of the cen
tral system and recovery facilities for any single fault in the 
system. All of these capabilities are implemented in VLSI. No 
additional TTL logic is required, and no changes need to be 
made to the software system. Finally, the 432 provides an 
architecture that supports and encourages the development of 
reliable software systems. The 432 exploits VLSI technology 

Intel iAPX 432-VLSI Building Blocks 533 

to shift the burden of fault tolerance from software to VLSI. 
The 432 provides a new level of flexibility for fault-tolerant 

applications that has been missing in the past. Traditionally, 
fault-tolerance has been considered a special and isolated set 
of applications. Applications were forced into an early deci
sion either to pay for the more expensive fault-tolerant system 
or to choose the cheaper but less reliable standard system. 
The 432 eliminates this barrier by making expansion of fault
tolerant capabilities a simple and software-transparent config
uration capability. The 432 is more than a fault-tolerant com
puter. The 432 offers cost effective solutions over a wide range 
of applications needs and can be modified at any time to meet 
the changing demands of the application. 

FUNDAMENTAL PRINCIPLES 

Three basic principles form the foundation for the imple
mentation of the 432 fault-handling mechanisms.4 First, the 
fault-tolerant functionality is achieved by replication of stan
dard VLSI components, not special purpose parts. Second, 
the machine is partitioned into a set of confinement areas.3 

These areas form the basis for error detection and recovery. 
Third, only bus-oriented communication paths are used to 
provide system interconnection. 

VLSI replication is fundamental to achieve effective use of 
VLSI technology. To be successful, each VLSI component 
must reach high-volume production. In the 432, this high
volume production is achieved by building a wide range of 
systems from a small set of VLSI components. The same 
components provide modular expansion of performance, 
memory storage, detection, and recovery capabilities. There 
are no special purpose components aimed solely at fault
tolerant functions. 

The purpose of a confinement area is to limit damage from 
error propagation and to localize the faulty area for recovery 
and repair. A confinement area is defined as a unit (module 
or memory bus) of the system that has a limited number of 
tightly controlled interfaces. Detection mechanisms are 
placed at every interface to ensure that no inconsistent data 
can leave the area and corrupt other confinement areas. 3 

When an error occurs in the system, it is immediately isolated 
to a confinement area. The error is known to be in that con
finement area, and all other confinement areas are known to 
be error free. 

By defining confinement areas, we provide a conceptual 
framework for mechanisms. The confinement areas also pro
vide a conceptual view of the system under fault conditions. 
This clarifies the external (software) view of the hardware and 
significantly reduces the need for diagnostic probing as a 
method of fault isolation. 



534 National Computer Conference, 1983 

All communication in the 432 system is done over busses. 
There are no point-to-point signals or daisy-chained signals. 
This makes modular growth possible since no signal definition 
is dependent on the number of resources in the system. This 
approach also makes on-line repair possible. The presence or 
absence of any module cannot prevent communication be
tween any other modules. The memory bus defined by the 
BIV and MCV provides a uniform and regularly structured 
communications path that supports the modular expansion of 
both fault-tolerant and standard system capabilities. 

In the 432 there are three distinct steps in responding to an 
error. First the error is detected and localized to a confine
ment area in the system. Next, the error is reported to all of 
the modules in the system. This prevents the incorrect data 
from propagating into another confinement area and provides 
all of the modules with the information required to perform 
recovery. Finally, the faulty confinement area is isolated from 
the system and recovery occurs using redundant resources 
available in the system. 

ERROR CONFINEMENT 

Figure 1 shows the four types of confinement areas in a 432 
system. There is a confinement area for each module and 
memory bus in a system. These confinement areas were cho
sen because modules and memory busses are the natural 
building blocks for 432 systems. Thus when an error is de
tected, it is confined to one of the system building blocks. This 
allows the recovery and repair strategies to be built around the 
replacement of system building blocks. When a module or bus 
has its confinement mechanisms activated, it can be viewed as 
a self-checking unit. The operation of a self-checking unit is 
designed so that no inconsistent data will be allowed to leave 
the unit and corrupt another confinement area. Detection 
mechanisms reside at every interface, and all data are checked 
as they flow across the interface between confinement areas. 

The GDP confinement area includes the GDP and its asso
ciated BIU s plus the processor bus and support logic in the 
module. The only interfaces to a GDP confinement area are 
the memory busses. The BIUs are responsible for checking all 
of the information that leaves the GDP module. No informa
tion (control, address, or data) can leave a GDP confinement 
area without first being checked for correctness by one of the 
BIVs in the module. Error detection is performed by dupli
cating the GDP module. The duplicate module is built from 

WrocessorModi,iii!·-l 
i i 
i 
i 

fiiiterlitce-Mod-uie-·-·1 
i . 

to I/O 

L._. __ ._._. __ ._._. __ ._._._. __ . __ ._ ~:~~~_ B_u~ _._._._._. _____ . _____ ._. __ . __ ._ ._.j 

FigUie 1--432 confinement areas 

identical components (GDP and BIVs) and placed in checker 
mode. Any disagreement is detected and signaled to the rest 
of the system. Thus, this duplicated module is a self-checking 
module. 

The IP confinement area includes the IP and its associated 
BIVs plus the processor bus and support logic in the module. 
An IP module has interfaces to the memory busses in the 
system, plus an interface to an external 110 subsystem. The 
interfaces to the memory busses are checked by the BIVs in 
the same manner that was described for the GDP confinement 
area. The IP component is responsible for checking any data 
that leave the confinement area via the peripheral subsystem 
(PS) bus. No information can leave an IP confinement area 
without first being checked for correctness by one of the BIUs 
or by the IP. The peripheral subsystem is not a confinement 
area. At this time the application hardware or software must 
apply its own detection mechanisms to this subsystem. The PS 
bus represents a fire wall between the central system and the 
110 subsystem. The IP confinement area checks data as they 
leave the IP; the application HW and SW must check data that 
leave the 110 subsystem and enter the IP module. Error de
tection is performed by a duplicate checker as it was in the 
GDP module. 

The memory confinement area includes the MCU, the 
RAM array, and the busses and support logic inside the mod
ule. A memory module has interfaces to two of the memory 
busses in the system. The MCV is responsible for checking all 
information that leaves the memory confinement area; no 
information can leave the confinement area without first be
ing checked for correctness by the MCV. Error detection is 
performed by duplicating the MCV and applying an ECC 
code to the memory array. Thus, a self-checking memory 
module has two MCUs and one memory array. 

Each memory-bus confinement area includes a memory bus 
and the interface logic residing in the BIUs and MCUs at
tached to the memory bus. Each memory bus has interfaces to 
all of the GDP and IP modules and to some of the memory 
modules. Every node (BIU or MCV) that is attached to this 
bus is responsible for checking all of the information that 
flows off the memory bus and into its module. No information 
can leave the memory bus and enter a module without first 
being checked for correctness by either a BIU or a MCU. 
Error detection is performed by two interlaced parity bits that 
cover the control and address/data lines. Error detection for 
the arbitration lines is achieved by duplication. A timeout is 
used to detect protocol violations on the bus. 

An example processor memory operation may help to clar
ify the operation of the confinement areas. (This example is 
shown graphically in Figure 2.) Assume a GDP makes a read 
request to a memory location. That request will be mapped 
through the BIV on the addressed memory bus. As the infor
mation flows onto the memory bus it will be checked by the 
BIV. If there was any failure in the GDP confinement area 
(GDP, processor bus, BIUs, etc.) it will be detected at this 
time. The information flows across the memory bus and into 
the addressed memory module. Before the information is 
accepted by the module, the MCV checks it for correctness. 
If a failure is detected it is confined to the memory bus be
cause the information was valid when it left the GDP COfi-



• = potentially 
~ f I au tyarea 

Figure 2--Confinement area operation 

finement area. The MCV performs the memory operation 
and returns data onto the memory bus. As data flows onto the 
bus it is checked for correctness by the MCV. As the data 
flows into the GDP module from the memory bus it is checked 
for correctness by the BIV before being used by the GDP 
module. 

The confinement area interfaces provide very tight error 
control and isolate the failure to one of the building blocks 
present in the system. These confinement areas were formed 
by applying five different detection mechanisms: duplication, 
parity, hamming error-correction codes, timeouts, and loop 
back checks (used to detect errors in the TIL bus drivers). 
The only remaining question concerns checking the detection 
mechanisms. Some of the detection mechanisms are self
checking (the detection circuits are checked as part of normal 
operation). Those circuits that are not self-checking can be 
exercised during normal system operation to flush out any 
latent faults. 

REPORTING 

Immediately upon detecting an error, a message is broadcast 
to all the nodes in the system. This error-report message 
identifies the faulty confinement area, the type of error that 
occurred, and whether the error is permanent or transient. 
There are two reasons for sending this error report. First, it 
informs the rest of the system that an error has occurred, 
which prevents other confinement areas from using the incon
sistent data. Second, it provides the necessary information for 
system recovery. After recovery, the error message is re
corded in a log register in every node in the system. This log 
is available to software and is useful in monitoring the health 
of the system. 

The error messages are broadcast over a set of serial busses 
that are totally independent from the busses used during nor
mal operation. This error-reporting network is fully fault tol-

Intel iAPX 432-VLSI Building Blocks 535 

erant. No single failure in the error-reporting network can 
prevent the correct and timely reporting of an error in the 
system. This network of serial busses follows exactly the same 
topology as the busses used for normal operation. A failure on 
one of these busses is limited to one of the confinement areas 
discussed earlier. The failure of one error-reporting bus does 
not compromise the fault-tolerant capabilities of the system. 
Other error-reporting busses (in the other confinement areas) 
take over its reporting responsibilities. The error-reporting 
circuitry may be tested during normal operation to uncover 
any latent faults. 

RECOVERY 

The recovery process begins after an error-report message has 
been broadcast around the system. Recovery is a distributed 
operation on the 432. Each node in the system reads the 
error-report message and decides what recovery action needs 
to be taken. 

For recovery to be successful, there must be redundant 
resources available in the system. There are five redundancy 
mechanisms in the 432. Retry and single-bit correcting ECC 
codes are used for recovery from transient errors. Shadowed 
modules, backup busses, and spare memory bits are used for 
recovery from permanent errors. These redundant resources 
cover the entire system and allow recovery from any detected 
error. The presence of redundant resources has no impact on 
system performance. 

For transient errors: Each BIV maintains an internal buffer 
that allows outstanding processor requests to be retried if a 
transient error occurs. A single-bit correcting ECC code is 
applied to each word in the memory arrays. Although this 
provides redundancy for both permanent and transient errors, 
its primary purpose is to correct soft errors that occur in 
dynamic RAMs. 

For permanent errors: Every self-checking module in the 
system may be paired with another self-checking module of 
the same type. This pair of self-checking modules operates in 
lock step and provides a complete and current backup for all 
of the state information in the module. This mechanism is 
known as module shadowing because the shadow is ready for 
immediate recovery should the primary fail, or vise versa. A 
fault-tolerant module is also called a quad modular redundant 
(QMR) module because the 432 VLSI components are repli
cated four times (two self-checking modules, with a master 
and checker in each module). 

Each memory bus in the system may be paired with another 
memory bus. During normal operation the busses run inde
pendently; both contribute to the total bandwidth available in 
the system. However, if one bus fails, the other bus is capable 
of handling the bus requests that normally would have been 
handled by the failed bus. If one bit in the array fails, the spare 
bit can be switched in to replace the failed bit. 

For transient errors, all of the outstanding accesses are 
retried and the MCVs return corrected data if there are any 
single-bit errors in the memory arrays. 

For permanent errors, the redundant resource is switched in 
to replace the failed unit. This switch is done on a node-by-



536 National Computer Conference, 1983 

Figure 3---Bus reconfiguration 

node basis; there is no centralized element that controls the 
switch. Each node knows which module or memory bus it is 
backing up (shadowing). If the error report identifies its part
ner as the faulty unit, then the node becomes active and takes 
over operation for the faulty unit. After the resource switch is 
complete, all of the outstanding memory accesses are auto
matically .retried. This allows operation to resume at a point 
before the failure corrupted data. 

Shadow 

These reconfiguration and recovery actions are performed 
by the hardware without any software intervention. After 
recovery is complete, the hardware informs the system soft
ware of the error and subsequent recovery actions. System 
software now makes policy decisions regarding the optimum 
system configuration given the resources remaining in the 
system. The software may choose to maintain full capabilities 
of the system and switch in a spare resource, or maintain fault 
tolerance and degrade performance by switching out the unit 
that no longer has a shadow, or maintain performance and run 
with an increased probability of failure by keeping the shadow 
unit in operation without bringing a spare on line. All of these 
configuration options are under software control and require 
no manual intervention or hardware changes. These policy 
decisions are carried out while normal system operation 
continues. Figures 3 and 4 show two examples of recovery 
operations. 

SUMMARY 

The 432 fault-tolerant mechanisms are designed to provide a 
flexible and complete solution to the problems of fault-toler
ant hardware. For basic systems, a user may decide to use only 
a few detection mechanisms and to provide recovery for only 
transient errors (no checkers for error detection or shadows 

Primary Shadow 
1!=========::::Il L._._._._._._._._._._._._. 

A===========R r·_·_·_·_·_·_·-·_·_·-·_·_· 
I 

11::::========::11 L._._._._._._._._._._._._. 

Figure 4-~1odulc reconfiguration 



for recovery). This functionality comes without extra cost in 
the VLSI interconnect system. To reduce maintenance costs 
and increase system availability, a system may use all of the 
detection mechanisms but may not add any extra recovery 
capability (add checker modules, but not form shadow pairs 
from the self-checking modules). Fully fault-tolerant systems 
(continuous operation in the presence of any single failure) 
are available to the user by adding the extra recovery capabil
ities. This expansion of fault-tolerant capabilities is accom
plished solely by replicating VLSI components, not by the 
addition of new component types. 

None of the fault-tolerant mechanisms reduce system per
formance. Systems that do not require the highest level of 
fault tolerance are not penalized in any way (either in cost, 
size, or performance) for the unused fault-tolerant capabili
ties. Increased levels of fault tolerance are achieved by repli
cating the 432 VLSI components. The hardware fault toler
ance in the 432 is transparent to application software. The 
system's fault-tolerant capabilities may be changed without 
any changes to the application software system. 

Intel iAPX 432-VLSI Building Blocks 537 

ACKNOWLEDGMENTS 

The 432 fault-tolerant design would not have been possible 
without the support and design refinement by many talented 
people within Intel's Special Systems Operation. In particu
lar, we would like to thank Tony Cornish (who was a co
architect of this work) and Bill Corwin for their important 
contributions to the design work. 

REFERENCES 

1. Intel Corporation. Intel 432 System Summary: Manager's Perspective. Santa 
Clara: Intel, 1982. Order number 171867. 

2. Intel Corporation, iAPX 432 GDP Architecture Reference Manual. Santa 
Clara: Intel, 1982. Order number 171860. 

3. Denning, Peter J. "Fault Tolerant Operating Systems." ACM Computing 
Surveys, 8 (1976), pp. 359-389. 

4. Siewiorek, D., and R. Swartz. The Theory and Practice of Reliable System 
Design. Digital Press, 1982. 

5. Intel Corporation. iAPX432 Interconnect Architecture Reference Manual. 
Santa Clara: Intel, 1983. Order number 172487. 





Performance evaluation of the MP/C 

by BRUCE W. ARDEN 
Princeton University 
Princeton, New Jersey 

and 

RANGINOSAR 
Bell Laboratories 
Murray Hill, New Jersey 

ABSTRACT 

The performance of the MP/C, a multiprocessor/multicomputer architecture, is 
evaluated by means of deterministic and probabilistic techniques and simulations. 
The MP/C is examined in two different applications, as a tree machine and as a 
multiprogramming general-purpose system. The second application of the MP/C is 
compared with a star architecture. The evaluation suggests that the MP/C is very 
effective for certain special applications, such as tree algorithms, and worst-case 
analysis shows that its performance is acceptable even for general purpose com
putations. 

539 





A. INTRODUCTION 

The architecture of the dynamically reconfigurable MP/C has 
been described in detail. 1 It consists of a linear bus with mul
tiple processors and memory modules. Figure 1 shows a sim
plified MP/C system and a few possible configurations. 
Switches are positioned on the bus between every pair of 
processors, and the bus can be partitioned into any config
uration of segments. On each such segment, only one pro
cessor is active, and it accesses all the memory modules on its 
segment. Open switches provide effective isolation of seg
ments and guarantee full mutual exclusion of active pro
cessors. A processor may activate a..1J.other processor in its 
segment by opening the switch immediately to the left of the 
activated processor. The memory space of the activator is 
split, and part of it is exclusively assigned to the activated 
processor. The switch control logic supervises this recon
figuration operation. Such an activation is, in effect, a hard
ware implementation of a process-fork operation. The con
verse operation, process-join, is achieved by deactivating a 

Mo M 1 M2 Mn 
(a) MP/C: SIMPLIFIED VIEW 

Performance Evaluation of the MP/C 541 

processor, closing the switch to its left, and thus reattaching its 
memory to the neighboring active processor. 

The applicability of most indirect performance evaluation 
tools, such as mathematical analysis and simulation, to an 
architecture as complex as the MP/C is rather limited. The 
many unconventional attributes of the MP/C, especially its 
reconfigurability, are beyond the capabilities of most analytic 
techniques. Simulations also involve a lot of approximations, 
which reduce the usefulness of their results. The desirable 
techniques would be an emulation system (which inputs, exe
cutes and measures real MP/C code) and a measurement on 
a full-scale hardware implementation. Both techniques are 
currently being pursued. 

In this report we describe some preliminary performance 
evaluation studies. Two situations are considered. In the first 
we examine the MP/C in the context of tree-structured com
putations. As is emphasized elsewhere, 1 it is expected that this 
application is the most appropriate one for the MP/C. The 
second part investigates the performance of the MP/C in run
ning a general-purpose, mUltiprogramming operating system 

Mo M1 M2 Mn 

( b) ONE PROCESSOR ACTIVE 

---

Mo M1 Mn 

( d) ALL PROCESSORS ACTIVE 
Figure 1-8implified diagram of an MP/C with possible reconfigurations 



542 National Computer Conference, 1983 

and many independent tasks. Although this is not the best 
application for the MP/C, the evaluation serves two purposes. 
First, not every algorithm is tree structured, and it is eco
nomical to have a machine that is efficiently applicable to 
more than one computational structure (preferably, it should 
provide all the computational needs of its owner relatively 
efficiently). Second, it is a worst-case study: given an unfavor
able computational structure, what is the lower bound on the 
performance of the MP/C? 

The next section analyzes the performance of tree-struc
tured algorithms. Section C introduces multiprogramming ap
plications on the MP/C. Section D employs a deterministic 
model to arrive at some preliminary conclusions. Sections E 
through I describe the analytic models and their results. We 
focus on techniques for modeling preemption, explain the 
MP/C and star models, present the results and their inter
pretation, and describe an alternative MP/C model. The sim
ulation study is described in Sections J through L. 

B. TREE-STRUCfURED ALGORITHMS 

Since only one processor is active in each MP/C partition, the 
throughput (in terms of the collective instruction execution 
rate of all the processors) varies, and depends on the number 
(or, equivalently, size) of the partitions. Since the partitioning 
is really an image of the process structure of the running 
algorithm, the amount of parallelism in the MP/C generally 
reflects closely the level of inherent parallelism in the algo
rithms. For example, consider a divide and conquer algo
rithm. 1 Five phases can be identified: 

1. The input phase, in which the data and programs are 
loaded into the MP/C. This phase probably takes close 
to the same amount of time on the MP/C or any other 
organization, so it can be dropped from consideration. 

2. The forking phase, in which a series of activations fol
lows top-down scanning of a binary tree. In each step the 
number of active processors is doubled. In the merge
sort example, there is only a limited amount of com
putation in each step, provided the data and program are 
loaded effectively. In that case, this phase takes 
o (logn) time, with n processors. In some algorithms, 
like parallel search, all leaf processes are spawned by a 
single parent in the process-forking tree, rather than 
recursively spawned according to a binary tree. In those 
cases, the successive activation may be replaced with the 
single step PARALLEL-ACfIVATE operation, in 
which all processors are activated simultaneously. 

3. In the totally parallel phase all processors are active, and 
throughput is maximal. When the number of data ele
ments involved is larger than the number of processors 
(usually the case), each processor executes a sequential 
algorithm on its subset of the data during this phase. 1 In 
the merge-sort example with N data elements and n 
processors this phase takes 0 ( (N In) log (N In) ), which 
is close to a linear speedup (of this phase only). Similar 
speedup is observed for other examples. 

4. Th.e joining phase, which is the converse of phase 2. In 

merge-sort, at each successive step the merge operation 
runs twice as long while employing only half the number 
of processors, and takes time 0 (N), usually longer than 
the previous phase. On the other hand, search and re
trieval algorithms do not require heavy computation at 
this phase (unless a substantial amount of data is re
trieved), and some other algorithms require only 
o (logn) time. 

5. The output phase, which has a structure similar to the 
input. 

It is clear that maximum throughput (and linear speedup) is 
achieved only in phase 3. Thus, the throughput depends on 
the ratio of the time complexity of phase 3 to that of phases 
2 and 4. Similar behavior is demonstrated by other classes of 
algorithms. 

Most algorithms execute on the MP/C with asymptotic time 
complexities similar to what they would have on other 
parallel-processing architectures. However, constant factors 
may differ greatly, and indeed might make all the difference. 
The most important advantage of the MP/C in that regard is 
its ability to switch memory blocks. Where multicomputers 
share data by moving them around in messages, the MP/C 
avoids most such data movements. For applications like 
merge-sort, where all the data have to be moved in a tree 
multicomputer, this moving takes 0 (N) time for N data ele
ments. In addition, the overhead associated with message 
passing (packing, serializing, unpacking, etc.) is saved. On the 
other hand, shared-memory mUltiprocessors also avoid mes
sage passing, but the contention associated with the shared 
resources limits the effective number of processors, as we 
have said. 

In summary, the performance advantage of the MP/C is 
characterized both by an improvement of constant factors and 
by an ability to support many processors. However, it is diffi
cult to prove constant-factor improvement without actually 
implementing the proposed architecture in hardware and 
comparing its measured performance to that of a hardware 
implementation of other architectures. 

C. THE MP/C AS A GENERAL-PURPOSE, 
MULTIPROGRAMMING COMPUTER 

In considering the utility of the MP/C for running a general
purpose operating system, and its associated independent 
user tasks, a different approach is taken. As long as all pro
cessors run user tasks, and as long as those tasks require only 
computing, the throughput is maximal. When a task, running 
on Pi, requires system services, or when it completes and has 
to be swapped, Po has to access Mi by preempting all the 
intermediate processors. We model the effect of preemption 
through the multiclass network of queues. Each running pro
cess is characterized by the ratio of pure computing time to 
110 time it requires, and this ratio can vary from one process 
to another. 

Utilization of memory is also an important performance 
factor, especially in a microprocessor-based MP/C where a 
single memory block may be more expensive than its associ-



ated processor. Although it seems that it would be possible to 
effectively employ more processors on the same amount of 
memory in the MP/C than in strict multiprocessors, the fact 
that common programs cannot be shared and each running 
processor must store its own copy of the program reduces the 
potential memory utilization. This effect, however, should be 
weighed against the relative benefits of the MP/C. 

Three methods were employed: deterministic evaluation, 
analytic modeling using queueing networks, and simulation. 
The purpose of the evaluation study was to find lower bounds 
on the performance. That is, we model the MP/C under the 
least favorable conditions, and try to evaluate its per
formance. 

Since absolute performance figures are generally not mean
ingful, this is mainly a comparative evaluation. We first iden
tify an unique feature of the MP/C (certain preemptions), and 
compare it to another architecture (the star) that differs from 
the MP/C only in that feature. Thus, the comparison isolates 
the effects of that feature. 

There is no single architecture which can efficiently execute 
the full range of concurrent computations, but the recon
figurable MP/C is intended to be usable over a fairly wide 
spectrum. The hierarchical nature of the MP/C makes it a 
candidate for the execution of a general-purpose, process
structured operating system (e.g., UNIX). In such an environ
ment, user processes and most of the system processes are 
spawned by the kernel process, and constitute a shallow but 
wide tree. That is, most processes are direct children of the 
kernel. On the MP/C, such a system would run the kernel on 
Po, and the user processes on the other processors. For sim
plicity, assume that each user is allocated a single processor 
and a'single memory module, and that no inter-user commu
nications are needed. Also, we ignore here the possibilities of 
running a user process on Po (in addition to the kernel), of 
running the kernel on another processor, and of using a dis
tributed kernel. 

It is known that the speedup of such a multiple-processor 
organization is generally sublinear. Among the factors that 
usually contribute to that are memory contention, system con
tention, and synchronization between processes.3, 11, 13,21 

In addition, another source of degradation is unique to the 
MP/C. Whenever a process that runs on some processor Pi has 
to communicate with the kernel, the bus segment starting at 
the kernel processor and up to Pi must be available, that is, all 
the processors between the Pj , 0 < j :5 i must be preempted. 
The only active processor in this segment would be Po, run
ning the kernel. Such communications are required when a 
process initiates I/O operations, when it receives resulting 
data, when a page fault occurs, when the process initiates any 
type of system service request, and when a process terminates 
and the next process has to be loaded. The evaluation of the 
effect of this requirement is the subject of this paper. 

D. DETERMINISTIC MODELING 

Consider a deterministic model for the star. The kernel exe
cutes on Po, and the Pi, i = 1, ... ,N are user processors. Each 
user processor is allocated a single user job, which goes 

Performance Evaluation of the MP/C 543 

2 3 1 2 3 1 

III III 
III III 

I I I III 
Figure 2-Deterministic scheduling of a star 

through the following fixed cycle. It first executes on the user 
processor for 13 units of time, and then requires service from 
the kernel for one unit of time. Since there are N users, and 
each requires one time unit of service by the kernel, the cycle 
time of each job is 

Cstar = max {13 + 1, N}. 

When N < 13 + 1, the kernel processor Po is underutilized. 
When N > 13 + 1, interference between jobs (congestion at 
the kernel) increases cycle times beyond the necessary min
imum 13 + 1. Hence, we define a balanced star system as one 
with N = fl3 + 11. Note that 13 + 1 can also be interpreted as 
effective parallelism. Given N, for j3 < < 1 the kernel is highly 
congested and the whole system behaves effectively as a uni
processor. On the other hand, for 13 > N the system shows 
linear speedup without any interprocessor interference. The 
utilization of the kernel processor is 

po, star =!!.-C 1 = 1. 
N"'= 13 + 1 

The utilization of each user processor is 

P _131 - 13 '-1 N 
i, star - -C - R + l' l - , ... , . 

N:SI3+1 I-' 

In Figure 2 we show an example of a Gantt chart [CI, CD] of 
a balanced system with N = 3 and 13 = 2. Since the system is 
balanced, there is no queueing at the kernel, and the kernel 
is fully utilized. This is a snapshot of 6 time units during steady 
state operation. The tasks at Po are labeled by the user pro
cessor which they serve. The slanted areas designate idle peri
ods at the user processors. 

Now consider a similar model for the MP/C. The difference 
is that when the kernel serves the job of Pi , all user processors 
between Pi and the kernel must be preempted. This is repre
sented by a task that executes concurrently on all of them. In 
Figure 3, such tasks appear as the vertical columns. Note that 
only the topmost processor in a vertical column is considered 
active for the purpose of computing utilization. As before, 
each job requires 1 time unit of service from the kernel, and 



S44 National Computer Conference, 1983 

III 
IIIIII 

Figure 3---Deterministic scheduling, MP/C with fixed ~ 

~ units of computation on the user processor. The kernel 
processor utilization is 

PO,MP/C = N/(~ + N), 

and the utilization of each user processor is 

Pi,MP/C = ~/(~ + N), i = 1, ... ,N. 

Unlike the star, MP/C has no value of N for which any pro
cessor is fully utilized, and interference always exists. Instead, 
we say that the MP/C is a balanced system when overall utili
zation is maximized. One obvious case is when ~oo, with N 
fixed. The other case is derived as follows. Given ~, and 
treating N as a continuous variable, 

H.!!!o PMP/C = H.!!!o [(l/(N + 1» (Po, MP/C + Npi,MP/c)] 

= lim [N(1 + ~)/(N + 1)(Jj + N)] = o. 
N-+oo 

Also, for N = 0, PMP/C = O. Assuming PMP/C > 0 in the open 
interval N E (0, 00), there exists a maximum for PMP/C in that 
interval. We equate to zero the first derivative of PMP/C with 
respect to N: 

(a/aN) PMP/C = (a/aN) [(1/(N + 1» (Po,MP/C + N Pi,MP/c) ] 

= (a/aN) [N(1 + ~)I(N + 1) (~ + N) ] 

_ (1 + Jj) (N2 + N(1 + ~) + ~) - N(1 + ~) (2N + Jj + 1) 
- =0 

[N2 + N (1 + Jj) + ~ y . 
We get 

N 2 + N(1 + Jj) + ~ = 2N2 + N(1 +~) 

or 

N=r~l 

Figure 4--Deterministic scheduling, MP/C with variable ~ 

Since there is only one value of N in the interval (0, 00) for 
which the first derivative is zero, and since PMP/C achieves its 
minimum of zero in both ends, this is a maximum, and we 
need not consider the second derivative. 

In other words, under these conditions the MP/C seems to 
support effectively less parallelism than the star. This relative 
advantage of the star is achieved at the cost of more elaborate 
(and more expensive) communication paths. 

The asymmetry in the MP/C suggests that the MP/C can be 
better utilized if the load is not the same for all processors. In 
Figure 4, we take advantage of some of the idle time of the 
user processors, by introducing nonuniform loads of Jj, Jj + 1, 
and Jj + 2 to PI. P2, and P3 respectively. The kernel utilization 
is the same as above. The total (or average) utilization of the 
user processors is . 

_ _1.N _1 NJj+i-1 
PUsers, MP/C - N ~ Pi - -N ~ "----

• =1 .=1 Jj + N 
2Jj + N -1 
2( Jj + N) . 

Using the same procedure as above, we get 

N = 1 + r Y2( Jj + 1) 1 
as the value of N maximizes utilization. Although still lower 

than N = Jj + 1 of a balanced star, it is better than N = r ~ 1 
of the uniform-workload MP/C. In any case, the observation 
earlier made about effective parallelism is applicable here as 
well; given N, low values of Jj imply effectively sequential 
processing, whereas Jj» N assures virtually interference
free operation. The lesson of this discussion is that it is mean
ingful and practical to consider the MP/C only under high 13 
workload. 

E. ANALYTIC MODELING: 
MODELING PREEMPTION 

We present an approximate modeling of preemption that pro
duces results for the steady-state analysis of preemption in a 



network of queues. It is based on techniques employed for the 
modeling of message passing in multicomputer networks. 1 

This technique may also be applicable to other queueing sys
tems. 

Assume that a job jl, which must execute for tl units of 
time, starts execution at service center Cl' Job jz arrives at that 
center T units of time later and preempts jl for time t2, after 
which job h resumes execution. 

A variation of this situation, which is more interesting in the 
case of the MP/C, occurs whenjl (running on Cl) is preempted 
for t2 units of time, but Cl is left idle and no other job executes 
on it during the preemption period t2 • This is the case when 
some resource that is allocated to Cl is temporarily needed 
elsewhere (bus andlor memory in the case of MP/C). We 
model this idle preemption by a job that executes on the 
preempted processor for the same amount of time, t2 • 

An accurate modeling of this sequence would be as follows. 
First, jobs h and jz execute on centers Cl and C2, respectively. 
(See Figure 5a.) Then, jz spawns a new process, J2' which 
preempts h and runs on Cl (Figure 5b). Finally, J2 releases Cl 

and terminates, and h resumes, as in Figure Sa again. How
ever, the analytical tools do not allow the spawning of pro
cesses as part of internal transitions in queueing networks. 7 

Hence, another modeling technique is necessary. 
In order to overcome this difficulty, we make use of the 

following observations. The details of scheduling are quite 
important for the outcome of the computation, but not all of 
the details are relevant for the steady-state performance anal
ysis. In particular, it is important to know tl and t2, but the 
relative order of execution, and the length of T (the time from 
execution of hand jz on Cl as a sequence (h executes first to 
completion and only then does J2 execute), rather than having 
12 preempth· (Note that in some cases this approach may not 
be valid.) Thus, the spawned job in the example above, J2' 

would not generally execute concurrently with its originator 
jz, but rather at some later time, when Cl can serve it. Since it 
is no longer mandatory that jz and J2 execute simultaneously, 
the solution to the spawning problem is simple: when jz fin
ishes execution on C2, it changes its class from a productive one 
to a non productive, moves from C2 to Cl, and executes there 
for time t2 , that is,-the preemption time. This execution does 
not model real computation, but rather the time that Cl is 

c, 

Figure 5---{a) Jobs jl and h execute on center C1 and C2' 

(b) Job j2 preempts j I' 

Performance Evaluation of the MP/C 545 

preempted and is not available for productive work. Following 
that, the job may return to C2. 

On the other hand, note that this technique also introduces 
two modeling errors. The fact that job jz has to spend t2 in Cl 

(in the non productive state) may delay the next activity of jz 
(for time t2), and this might affect the total system perfor
mance, as it does in the case of the MP/C (see below). The 
second error is due to the successive possession of resources, 
rather than concurrent, as is implied by preemption. That is, 
in the model jz possesses C2 and Cl in sequence, rather than 
simultaneously. The waiting time to possess two resources 
concurrently may be longer than the sum of the waiting times 
to possess each independently. Thus, the first error may result 
in underestimation of the performance, whereas the second 
one probably has the opposite effect. 

Among the available scheduling disciplines that can be 
modeled analytically, the last-come-first-served-preemptive
resume (LCFS-PR) discipline is the most suitable one.7 

(Other disciplines, PS and in certain cases FCFS, may render 
the same results.) 

Both productive processing and preemption time are thus 
modeled by active computation, although by different sets of 
classes. This separation of classes allows the evaluation of 
performance from two different viewpoints. For instance, the 
utilization in the productive classes reflects the real work done 
by the processor, for productive computation. On the other 
hand, tht total utilization (productive and nonproductive) re
flects that portion of time in which the processor is busy. 
Thus, if the productive utilization is 0.5 and the total utiliza
tion is 0.8, it can be concluded that although the processor is 
productively active only about half the time, no more than 0.2 
additional utilization can ever be expected. Which of the two 
criteria is more interesting depends on the application. 

F. ANALYTIC MODELING: THE MP/C MODEL 

In the MP/C employed as a general-purpose computer, pre
emption is used to allow direct communications between the 
leftmost processor Po and some memory module Mi' All pro
cessors Pj , 0 < j :5 i, must be preempted. The lost time is mod
eled by a job that starts at Pi - 1 and progresses leftward until 
it runs on Po. (See Figure 6). After finally finishing at Po, this 
job returns to Pi for the next cycle of computation. 

All service times are drawn from exponential distributions. 
Two classes are associated with each processor Pi: the prod
uctive class i, in which a job runs on Pi with expected service 

Figure 6-The MP/C model 



546 National Computer Conference, 1983 

time of one unit, and the nonproductive class 1 designating this 
job when it goes through Pi-I, ... ,Po. The average service 
time on each of those processors is a, the time it takes for Po 
to communicate with Mi' t The transition probability matrix is 
thus trivial and contains only zero-one elements. 

Note that an approximation error is introduced here. Sup
pose each single MP/C primitive operation (e.g., PREEMPT) 
takes k units of time. In each k units a processor can issue on 
PREEMPT instruction, which preempts only the next active 
processor down the line. 1 Thus, the preemption of all proces
sors between Po and Pi is a multi/step operation. Similarly, at 
each step the kernel can resume the operation of only one 
other processor. Hence, reactivating all the preempted pro
cessors is a multi/step operation too. In other words, instead 
of all these processors being preempted for a units of time, Pi 
is preempted for a units, Pi - I is preempted for a + 2k 
units, ... ,Pj is preempted for a + (i - j) X 2k units of time, 
o < j :$ i. However, as a first -order approximation, we assume 
that 2ki units of time are negligible compared to a units of 
time, and each processor is preempted for the same period. It 
may be possible to accommodate this detail later by adjusting 
the mean service times appropriately. 

As explained above, many types of user-process-to-kernel 
communications may take place. In order to isolate the behav
ior of the MP/C from peculiarities of specific benchmarks and 
workloads, a simple execution profile was chosen. Each pro
cessor is assigned a single job. Each job does one of two 
things: it computes on its processor, or it requires service from 
the kernel. The first task is called computation, and the service 
time for it is a random variable drawn from exponential distri
bution with mean of 1 unit. The second task is called 110. It 
is exponentially distributed, and requires variable mean ser
vice time a. On the MP/C, a represents the length of time for 
which the kernel has exclusive access to the memory of the 
current processor. High values of a represent lIO-bound jobs. 
By varying the ratio of the lIO time to computation time, all, 
from 0 to 00, we are able to study the performance ofthe MP/C 
across the full range of workload. For two reasons, this ap
proach is superior to picking up some small set of workload 
values for which the MP/C performance is maximal. First, we 
have been able to uncover unexpected and rather surprising 
behavior at different workloads. Second, the MP/C is in
tended for general purpose applications, in which any type of 
workload can be expected. For instance, it is conceivable that 
jobs that have a values of 100 and 0.01 will execute on the 
same machine concurrently. Recall however that it was argued 
in Section D that the reasonable workload range is a < liN 

, (corresponding to ~ > N ). 
At first, we model the case where all the jobs on the same 

MP/C have the same a value. Another case is when different 
jobs have different a values. It is reasonable to expect that, in 
the lIO phase, the farther the processor is away from Po, the 
higher the incurred penalty for the whole system, because 
more processors must be preempted. Thus, it may be advan
tageous to assign the jobs with higher degress of a to proces
sors that are closer to Po. We try to verify this assumption, and 

tnus is the reverse of the notation of Section D: a = 11ft 

Po 

Figure 7-The star model 

study the effect of optimal and nonoptimal assignment of 
processes. 

G. ANALYTIC MODELING: THE STAR MODEL 

The star is used as a baseline to which the performance of the 
MP/C is compared. It is chosen because in this case (the MP/C 
as a general-purpose machine) the star differs from the MP/C 
in exactly that characteristic which is under study, interpro
cess communications. (Note, however, that, unlike the MP/C, 
the star is limited to a relatively small number of processors, 
owing to the high degree of connectivity required of its central 
node.) In a star, the kernel is run on the central node, and 
each processor has a direct link to the kernel processor. Figure 
7 shows the star model, drawn as a linear structure, to empha
size the structure common to the MP/C. As in the MP/C, each 
job runs on a processor for one unit of time (average). Unlike 
an MP/C job, it then goes directly to the center (Po) and 
executes for a units of time, after which it returns to its pro
cessor. 

H. ANALYTIC MODELING RESULTS 

H.i. Processor Utilization 

We first consider the utilization of user processors. We used 
a queueing network solver program, PNET, developed by 
Bruell and Balbo.5

,6 It is a PASCAL program, running on 
VAX UNIX, and (on our configuration) it can handle only up 
to 8-processor MP/C models. Figure 8 shows the productive 
utilization of the user processors, PI through P7 , in an 8-pro
cessor MP/C (one kernel, seven users), plotted versus the 
workload parameter a. Recall that a models the ratio of pre
emption time to compute time. These curves justify the claim 
that the important range of workload is a < 1. The curves 
show that, in the model, the farther a processor is from Po, the 
lower its productive utilization is. Although this is a straight
forward result for the model, we show in Section L that this 
is not exactly the case in a real MP/C. 

We choose to observe productive utilization, rather than 
total utilization. Figure 9 shows an example of total utilization 
of three user processors. Some of the processors are heavily 
utilized even for high values of a, but this high utilization only 
reflects the fact that they are preempted for long durations, 
not that they are productive. Total utilization in this case 
obscures the results and makes it noncomparable to the star, 
where there is only productive utilization. Hence, in the fol
lowing "utilization" refers only to productive utilization, 



z 
0 

~ 
N 014 
.-J 
I--
::) 

OL-__ ~ __ -L __ ~~~~~~ 
0.001 0.01 0.1 10 100 

a 
Figure 8-MP/C productive utilization 

O~ ____ ~ ______ ~ ______ ~ ____ ~ 
0.01 0.1 10 100 

a 
Figure 9-MP/C total utilization 

The information from Figure 8 is condensed into a single 
curve of average utilization in Figure 10. It also contains the 
average utilization curve for the 8-processor star (one center, 
seven users). Since all processors in the star are equal, the 
average is also the curve of each of them. For reference, a 
third curve (marked I MP I ) shows the utilization of an 
"ideal" multiprocessor. By ideal we mean that no interference 
between processors exists, and this can be viewed as modeling 
seven processors, each having its own I/O server. The utiliza-

Performance Evaluation of the MP/C 547 

0.8 

z 0.6 
0 

~ 
N 
.-J 0.4 
I--
~ 

0.2 

o~----~----~----~--__ ~== __ ~ 
0.001 0.01 0.1 10 100 

a 
Figure 10-Average utilization: MP/C, star, MP 

2 

z 1.5 
0 

ti 
N STAR 
.-J 
I--
~ MP/C 
0 
w 

0.5 N 
.-J 
<! 
~ 
0::: 
0 

0 z 
0.001 0.01 0.1 10 100 

a 
Figure ll-MP/C utilization, normalized by the star 

tion is defined there as 1/(1 + a), because 1 is the computation 
time and 1 + a is the total time. 

Figure 11 shows the (productive) utilization of the MP/C 
normalized by that of the star. Figure 12 shows all the curves 
for N, the number of user processors, 2 ~ N ~ 7. Note the 
following six phenomena: 

1. The curves show a dip in midrange. In this area, the 
performance is very sensitive to a. Computation and I/O 



548 National Computer Conference, 1983 

z 
0 
L-

<r 
N 
-.J 
I-
~ 

;:l 
W 
N 
-.J 
<:'( 
~ 
0:: 
0 
Z 

2 

N: # USER PROCESSORS 
Ie:. 
I • ..J 

o~ ____ ~ ______ ~ ____ ~ ______ ~ 
0.01 0.1 10 100 

a 
Figure 12-MP/C utilization, 2 to 7 processors 

times are about equal, and the extra delay of the MP/C 
is noticeable. 

2. The dip deepens when N grows. Naturally, when there 
are more processors, more overhead is incurred. 

3. The dip moves to the left as N grows. It takes smaller 
values of a to achieve the same degradation when there 
are more processors to contribute to the overhead. 

4. The left side has an asymptote from above (lMp/C/Pstar = 1. 
When 110 time is marginal, the effect of preemption is 
reduced, thus the MP/C and the star are getting closer to 
being equivalent. (They are equivalent for a = 0.) 

5. The convergence to the left asymptote is very slow. This 
is because another effect makes the MP/C slightly worse 
than the star. In the star, each job has to wait in queue 
only in the central node. In the MP/C model, a job has 
to repeatedly wait in queues in each of the intermediate 
stations. The additional queueing causes this small loss 
of utilization, which exists throughout the a range, but 
becomes the dominant factor only for small a. 

6. For high values of a we observe the same asymptote, 
PMP/C/Pstar = 1. The kernel is the cause of congestion, and 
all jobs spend most of their time in the queue of the 
kernel. Hence, the difference between the MP/C and the 
star becomes unimportant. As observed above, both the 
MP/C and the star perform rather poorly for a> 1. 
Thus, this part of the curves may be ignored altogether. 

To summarize, note that at no point is the utilization of the 
MP/C better than that of the star. On the other hand, for all 
the cases tested, it was always more than half that of the star. 
This suggests that the MP/C, although it is much more limited 
in communication paths to the kernel than the star, has at 
least very similar performance. And recall that some of the 

z 
~ 
Z 
o 
~ 
N 
-.J 0.6 
I--
~ 

o 
W 
N 
-.J 
<t 
~ 0.2 
o z 

O~ __ ~ ____ ~ ____ ~ ____ L-__ ~ 

2 3 4 5 
N 

Figure 13-Lowest normalized MP/C utilization 

z 
o 
~ 1.5 
N 
-.J 
r
~ 

o 
W 
N 
-.J 
<l 
~ 
0:: 0.5 
o 
z 

o I 

0.001 0.01 
I 

0.1 
a 

6 

10 

Figure 14-Normalized MP/C utilization, increasing a 

7 

100 

other MP/C advantages over the star are that all processors 
require at most two links to other processors (whereas the 
kernel in the star requires N links), and that the MP/C can be 
decomposed recursively into smaller MP/C subsystems. We 
have suggested elsewhere under what circumstances the per
formance of the MP/C might be much better, as well as what 
the other MP/C advantages are. 1 

Figure 13 shows one additional measure. The minimum 
relative utilization at the dip is plotted versus N, the number 



z 
o 
~ 
N 
..J 
t-
::J 

o 
W 
N 
..J 
<l: 

2 

1.5 

~ 
ex: 0.5 
o z 

o~ ____ ~ ____ ~ ____ ~ ____ ~ __ ~ 
0.001 0.01 0.1 10 100 

Figure IS-Normalized MP/C utilization, decreasing a 

of processors. This curve gives a lower bound on the perfor
mance of the MP/C, as compared to the star. Although it is 
speculative to conjecture how this curve might extrapolate, 
note that it shows a tendency to flatten out as N grows. This 
gives rise to the conjecture that even for higher N values the 
worst-case performance of the MP/C would not be much be
low that of the star. Also, note that star architectures with 
high N are rather infeasible in general, owing to the high 
degree of connectivity required of its central node, whereas 
no similar requirement applies to the MP/C, since it is a simple 
linear structure. 

H.2. Processor Utilization-Nonuniform Case 

As stated at the end of Section F, an interesting question is 
the performance when not all users pose the same workload 
requirements. Indeed, this is probably also the more realistic 
case for a general-purpose, multiple-user environment. We 
describe here the results of the modeling when the workload 
consists of a geometric series, where each processor has its ex 
parameter twice that of its neighbor. We consider the cases 
both of an increasing series and of a decreasing one. 

As suggested above, intuitively we would expect that the 
best arrangement is the decreasing one, that is, when pro
cesses with high ex are allocated to processors near the kernel, 
and those with low ex to the processors further away. 

Figure 14 shows the utilization of the MP/C, relative to the 
star's, when the ex values increase with i, the processor index. 
Figure 15 is the same for a decreasing series. The ex values 
used in the graph are the average over all exj, 0 < i ~ N (this 
is not really important, since same ex is used for both the MP/C 
and the star, and a different calculation of ex would only shift 
the graph sideways). The results for low ex values resemble the 
uniform case above. However, for high values of ex, we get 

w 
~ 

t-

W 
-1 
U 
>-
U 

0 
W 
N 
-1 « 
~ 
a:: 
0 
z 

2 

1.5 

0.5 

Performance Evaluation of the MP/C 549 

NON-MODIFIED 
CYCLE TIMES') 

_:-------1 

/ 
MODIFIED' 

o~ ____ ~ ____ ~ ____ ~ ____ ~ __ ~ 
0.001 0.01 0.1 10 100 

a 
Figure I6-Normalized MP/C cycle times 

results that are just the reverse of what might be expected. 
This phenomenon is commented on in the end of Section L, 
when it is compared with the simulation results (which do 
conform to intuition). 

H.3. Cycle Times 

As is explained in Section H, the first error introduced by 
the MP/C model causes overestimation of cycle times. Hence, 
it is reasonable to assume that the cycle times predicted by the 
model are only upper bounds on the real cycle times. The 
model prediction is depicted in Figure 16 by the curve marked 
"nonmodified cycle times." 

In an attempt to derive the complementary lower bounds, 
we consider the following observation. The cycle time of the 
user job from Pi consists of the following: 

1. Service time (mean = 1) and waiting time on Pi 
2. Service time (mean = ex) and waiting time on all Ph 

o ~ j < i, that is, on i processors 

On the real MP/C, however, the cycle is composed of: 

1'. Service time (mean = 1) and waiting time on Pi. 
2'. Waiting time to seize the kernel. 
3'. Service time on the kernel (mean = ex). 

We assume that item 1 models item 1, and that the sum of all 
waiting times in item 2 models item 2. Then the balance is only 
one service time on the kernel in the real MP/C, but i times the 
same service period in the model. This analysis suggests that 
the cycle times predicted by the model are too long. 

Although this over-analysis is simplistic, we can use it to 
modify the cycle times by subtracting i - 1 kernel service pe-



550 National Computer Conference, 1983 

riods from the total cycle time. This does not produce correct 
cycle times, but we assume that the modifying is an overshoot, 
and that it yields a lower bound. 

Applying this procedure on the results described above, we 
obtain the modified cycle times curve in Figure 16. Thus, the 
model prediction provides an upper bound, and the modified 
cycle times are a lower bound. As we show in Section L.2, 
simulations (whose purpose is to validate these results) show 
that the modified cycle times are indeed an optimistic predic
tion. 

1. ANOTHER ANALYTIC MP/C MODEL 

We describe a second model for the MP/C. It is based on the 
method of surrogate delays of Jacobson and Lazowska,16 as 
applied by Heidelberg and Trivedi14 and on Cobham's analysis 
of priority queues.9, 18 

Each user processor, Pi, 1 :::;; i :::;; N, has one job associated 
with it, Ji • This job cycles between Pi and the kernel. The 
kernel is a nonpreemptive priority queue, to model the fact 
that in the real MP/C the kernel serves the nearer processors 
first. Thus, Ji is assigned priority N - i. The cycle time con
sists of the following components: 

1. Service time 'i at Pi, with mean of 1 unit 
2. Delay di at Pi due to preemption by h, i < k :::;; N 
3. Waiting time Si at the kernel 
4. Service time (li at the kernel, with mean (l (either uni

form for all Ji or variable) 

Job Ji is preempted by h for (lk, the average time h is served 
by the kernel, in each cycle of Jk . Ji stays at Pi for 1 + di units 
of time. During that time, Jk makes Ak (1 + di ) cycles, where 
Ak is its throughput. This delay is accumulated for all k > i. 
Hence, 

N 

di = (1 + di ) 2: (lkAk, (1.1) 
k=i+l 

Solving for di , 

1 :::;; i :::;; N. (1.2) 

The waiting time in the kernel, Si, is composed of two identi
fiable parts, the mean residual life R of the job in service upon 
arrival of Ji at the kernel, and the time Ji has to wait for all jobs 
of higher priority to be served. The residual life has been 
shown to be: 

N 

R = 2: AkX:12, (1.3) 
k=1 

where x: is the second moment of service time at the kernel 
for h. If we assume exponential distribution of service times 
with mean (lk, then the second moment is 2(l~, and 

(1.4) 
k=l 

During the waiting time s;, any job h, k < i, with higher 
priority than Ji that arrives at the kernel is served before Ji • 

The delay incurred is (lk per cycle, and there are SiAk cycles of 
Jk during Si. Hence, 

Solving for Si, 

i-I 

Si = R + 2: (lkA~i. 
k=1 

(1.5) 

(1.6) 

We replace the queue at the kernel by a delay server (or 
infinite server) for each job with mean service (delay time for 
Ji of Si + (li. We further replace the user processor Pi by a 
delay server with mean delay time of di + 1. Thus, 

Ai = 1/(1 + di + Si + (l;). (1.7) 

The model is solved by iteration. Consider the vector 
x = (dt, ... ,dN,st, ... ,SN). The initial condition is 

x=o. (1.8) 

The vector of throughput results of iteration m , 
~m = (At, ... ,AN ), is used as input for the calculation of iter
ation m + 1. Since ~ m is a function of xm (as per eq. (1. 7) ), and 
since ~+1 is a function of ~m (as per eq. (1.2), (1.6», we can 
say 

(1.9) 

Thus, we solve a fixed point problem x = f ( x) in 2N dimen
sions. Note that equations (1.2), (1.6) are not guaranteed to 
produce stable, converging results always. In practice, we 
found that for (l:::;; 1 equation (1.1) and (1.2) always converge. 
As will be shown in Section L, where the results are compared 
with simulation, this model produces fairly accurate results. 
However, for (l > 1, the model converges to the wrong results. 
It is possible that this is due to the fact that the model is based 
on continuous-time analysis, rather than discrete. But recall 
again that the interesting range is (l < 1/N. 

J. SIMULATIONS: SIMULATION METHODOLOGY 

Since the analytic modeling we have described involves some 
approximations, simulations are necessary to validate the re
sults. We show that some, though not all, of the analytic 
results are validated by the simulations. 

J.l. Simulation Language 

In order to minimize the programming effort required, a sim
ulation language is used. Of the languages that were available 
to us at the time, SIMSCRIPT19 and GPSS,t5 the latter was 
chosen because of relative simplicity and ease of learning. The 
disadvantage of using a language is that its flexibility is lim
ited; that is, it may not be possible to build an exact model. 



1.2. Simulation Models 

In the MP/C simulation model, a single job is associated 
with each user processor. That job holds the user processor 
for a period of time (referred to as computation) that is drawn 
from an exponential distribution. Then it moves to the kernel 
processor, and competes with other jobs for its service. An
other fact should be considered: On the MP/C, if two or more 
jobs request service, the kernel serves the nearest processor 
first. To account for that in the simulation model, each user 
job is assigned a priority level higher than that of all pro
cessors further away from the kernel (that is, to its right). In 
other words, if Po is the kernel, the priority of Pi is n + 1- i, 
l::;:;;i ::;:;;n. 

When the kernel processor is seized by a user job from 
processor Pi, all the processors between PI and Pi-I, inclu
sive, are halted for the duration of service. The service time 

r 
START 
GATHER 
STATISTICS 

START __ •• , 
GATHER 
STATISTICS 

Figure 17-Simulation transient response 

Performance Evaluation of the MP/C 551 

on the kernel is distributed exponentially, and its mean is a 
times the computation time on the user processors. a can be 
the same for all user jobs (the uniform case), or it can vary. 
Once service on the kernel is finished, all the halted pro
cessors resume operation, and the job returns to its user pro
cessor. 

The star model is similar, with two differences. First, no 
halting of intermediate processors is necessary. Second, all 
user processors are assigned the same priority level. 

We have listed both models elsewhere.2 

1.3. Method of Statistical Sampling 

In order to generate a large sample for each experiment, we 
use the method of batches. In this method the simulated sys
tem is first allowed to achieve its steady state, and then a single 
long run is divided into time periods, or batches, and statistics 
are gathered for each batch. This method needs less com
puting than the method of independent replications, in which 
the system is restarted for each replication, and thus the extra 
time for the decay of the transient response has to be repeated 
many times. The third known method, regenerative simula
tions, is not easily applicable here, as no relatively frequent 
regeneration Markovian state can be identified for either the 
MP/C or the star. These methods are discussed by Kobayashi 
and by Sauer and Chandy.17,2I 

1.4. Length of Transient Response 

The length of the transient response was determined empir
ically from a series of pilot runs. Figure 17 represents the 
behavior of two of the performance measures used, cycle time 
(for PI) and utilization (of P7 ). These are accumulated statis
tics, such that every point in the graph represents the average 
of the observed measure from the beginning moment until the 
current time. The graph also shows the point chosen for the 
beginning of the first batch. It is clearly beyond most of the 
transient response. 

1.5. Batch Length 

The length of each batch was similarly determined by pilot 
runs. Figure 18 shows the behavior of the two measures during 
some long batches. In the beginning of each batch, all the 
statistics accumulated up to that point are purged, and accu
mulation is restarted. Hence, the sharp peaks at batch start 
represent random values, averaged over very short time peri
ods, and the curves flatten out after some time. The batch 
length is chosen such that the transient effect of restarting the 
statistics accumulation has been damped. The batch end 
points are marked with vertical lines. 

1.6. Number of Batches 

The number of batches required is usually determined by 
the desirable confidence interval and by the need to make 



552 National Computer Conference, 1983 

-

r 

I 

-rv-

~ ... , 

BATCH 

I 

BATCH 
START 

-

I I 

I 

BATCH 
~ 

I 

BATCH 
END 

-

-

Figure 18-Simulation batches 

statistically significant distinctions between different quan
tities.2O Also, to be able to claim that a sampling distribution 
is approximately normal (Gaussian), one usually needs at 
least 12 samples. Using a simulation run of 12 batches, we got 
results that were either almost identical, or separated well 
beyond any statistical doubt. Figure 19 shows the distribution 
density function of the sample averages of processor utiliza
tion of all the experiments made with either fixed a = 100, or 
variable a with values around 100. Figure 20 is the same for 
cycle times. Note the narrow Gaussian "bells," the large dis
tances between some, and the almost complete overlap of 
others. Note also that these are not the density functions of 
the distributions of the measures examined (they need not 
even be normal), but rather the distributions of their sample 
averages. 

- -

- -

I J .\ .t I J \ 

Figure 19--Utilization sample average distribution 

-

-

Figure 2O--Cycle time sample average distribution 

Table I-Comparison of pilot simulation and analytic results, star 
and MP/C with 7 user processors 

.. MP/c Star 
a UtihzatlOn, Star Cycle Time, MP/C 

Pilot Simulations Analytic Model Pilot Simulations Analytic Model 

1000 1.0 1.0 0.76 1.2 

100 0.9 1.0 0.76 1.2 

1 0.9 0.79 0.66 1.0 

0.4 0.89 0.65 0.73 0.81 

0.01 0.97 0.92 0.97 0.99 

0 1.0 1.0 1.15 1.0 



K. PILOT SIMULATION RUNS 

The first task of the simulation was to verify the general be
havior of the analytic model, across different workloads (a 
values), for uniform a (i.e., same (l for all user jobs). Pilot 
runs (i.e., sample size of one) were made at various a values. 
The results are summarized in Table I, and compared to the 
result of the first analytic model (Sections E through G). 
Although they do not constitute a statistical proof, the simu
lations are close enough to the modeling results to suggest that 
the analytic model provides reasonable results. 

Performance Evaluation of the MP/C 553 

L. DETAILED SIMULATION 

L.1. Results 

The results of some detailed simulation runs are shown in 
Figures 19 and 20. As explained above, it is clear from those 
figures that ignoring confidence intervals and considering only 
the averages would not cause grave mistakes. Table II sum
marizes the simulation results for a = 0.1, 1, 100. It also com
pares them to the results of the analytic model described in 
Sections E through G (both modified and nonmodified cycle 

Table II-Comparison of simulation and analytic results, star and MP/C with 7 user processors 

Cycle Time Utilization 
I I I I 

Load Star 
I 

MP/C I Star 
MP/C 

Star 
I 

MP/C I MP/C 
Star 

Simulations, a=O.l 

uniform I l.17 I 1.47 I 0.796 I 0.8484 I 0.692 I 0.816 

Analytic Models (absolute and relative to simulations), a=O.l 

uniform, modified 1.18 (101%) 1.65 (112%) 0.716 0.8442 (99%) 0.52 (75%) 0.616 

uniform, non-modified " 1.95 (133%) 0.606 " " " 

uniform, model 2 " 1.50 (91%) 0.787 " 0.6674 (96%) 0.791 

II Simulations, a= 1 

Ii I I I 0.724 I 0.14376 I 0.13521 I 0.940 I uniform 6.95 9.60 

I Analytic Models (absolute and relative to simulations), a=l 

uniform, modified 7.00 (100%) 7.00 (73%) 1.00 0.1428 (99%) 0.1129 (84%) 0.791 

uniform, non-modified " 10.00 (104%) 0.700 " " " 

uniform, model 2 " 10.95 (114%) 0.639 " 0.09136 (68%) 0.640 

I 
Simulations, a= 100 and variable a 

uniform 698.1 940.4 0.742 0.001366 0.001351 ·0.989 

increasing 502.7 998.6 0.503 0.00095 0.000639 0.672 

decreasing A 502.7 37l.6 1.352 0.00095 0.001686 1.774 

decreasing B 1355.2 1001.2 1.353 0.000352 0.000628 l.783 

Analytic Models (absolute and relative to simulations), a=100 and variable a 

uniform, modified 699.8 000%) 581.9 (62%) 1.202 0.001429 (105%) 0.001424 005%) 0.996 

uniform, non-modified " 882.0 (94%) 0.793 " " It 

increasing 28.8 495.2 0.058 0.009964 0.014860 l.491 

decreasing 1772.4 305.8 5.795 0.009964 0.006151 0.617 



554 National Computer Conference, 1983 

times) and (for a s 1) the second model, Section H. Note that 
when comparing utilization, we consider the MP/C utilization 
divided (normalized) by that of the star; however, when con
sidering cycle time, we use the MP/C cycle time in the denom
inator instead. This is because the inverse of the cycle time 
(rather than cycle time iteself) is the measure of goodness 
here. Thus, for both measures, the higher the ratio, the better 
the MP/C as compared to the star. The entries marked "uni
form" are the results with uniform workload on all user pro
cessors. The increasing case is when al = 4, a2 = 8, ... , 
a7 = 256 (al is the load on PI, the processor closest to the 
kernel, etc.). This powers-of-two series of a values was chosen 

. such that the load on the kernel (in terms of average time per 
job on the kernel) is similar to the "uniform," a = 100 case. 
As expected, the MP/C in this case is worse (relative to the 
star) than in the uniform case. The decreasing case has two 
variants. In variant A, the loads are the reverse permutation 
of the previous case. That is, al = 256, a2 = 128, ... , a7 = 4. 
This time the MP/C performance is better than the uniform, 
a = 100 case. However, the MP/C performance is so improved 
that the load on the kernel is significantly reduced. Hence, 
variant B was constructed with the following geometric series 
of a values: 6912, 3456, 1728, 864, 432, 216, 108, such that the 
average time per job on the kernel resembles that of the 
uniform, a = 100 and the increasing cases. Nevertheless, the 
ratios are the same as in variant A. 

The MP/C utilization can also be compared to the lower 
bound provided by the first MP/C deterministic modei of Sec
tion D: 

. =-.L=~ PI, MP/C jj + N 1/a + N' 

For N = 7 and a = 0.1, 1, 100, P = 0.59, 0.125, 0.00143, re
spectively. The simulation showed slightly better performance 
(than this theoretical lower bound) for a = 0.1, 1 but worse 
performance for a = 100. 

L.2. Discussion 

One question naturally arises when these data are exam
ined. Since the MP/C inherently demonstrates a priority 
mechanism, will a star with priorities behave like the MP/C? 
If not, what makes the difference? Introducing priorities to 
the star model takes effect only for high a. There, it does not 
make the star imitate the MP/C. Rather, it causes livelock, or 
partial starvation. That is, the two or three jobs with the 
highest priorities get to use the kernel almost exclusively, 
whereas the lower priority jobs starve forever. The reason for 
this is best demonstrated in specific terms. Recall that for 
a = 100 each cycle consists of, among other things, one unit of 
time (on the average) in the user processor and 100 units of 
service time in the kernel. Suppose the job of user 1 has just 
released the kernel, and the job of user 2 (having the next 
highest priority) seizes it. In the star, when the job from P2 

uses the kernel, PI is free to complete its computation part of 
the cycle and is ready to grab the kernel again once user 2 
releases the kernel. Thus, most of the time the kernel is shuf
fled back and forth between PI and P2 , and the other users 

starve waiting for the kernel service. On the MP/C, when P2 
uses the kernel, PI is preempted. Thus, there is higher proba
bility that a processor other than PI will be ready to grab the 
kernel once P2 releases it. In short, PI can execute the (rela
tively small) computation part of its cycle only when no other 
processor uses the kernel. For seven processors and a = 100, 
this is very rare indeed. On the other hand, P7 of the MP/C, 
although it has the lowest priority, is never interrupted by 
anyone. This effect causes the inversion anomaly. In the sim
ulations, the better-served processors are those further away 
from the kernel, the opposite of what may intuitively be ex
pected. This anomaly of course can not be detected by the 
analytic model of Section F. 

The inversion anomaly can be countered by a more elabo
rate preemption mechanism, for example, a minimal delay 
between successive preemptions, and by optimally arranged 
nonuniform workload. 

The detailed simulation enables us to detect the inaccu
racies of the analytic models. The two models show similar fit 
for a ~ 1. Nonmodified cycle times of the first model are more 
accurate than modified cycle times for a = 1 but less so as a 
decreases. As was explained in Section H, the second model 
does not work for a > 1. 

The reversal of the utilization figures at high a is an ampli
fied version of the inversion anomaly. It seems to stem from 
the replacement of simultaneous preemption by successive 
service periods. Consider for example the increasing case. In 
the real MP/C, as weli as in the simulations, when the user job 
from P7 holds the kernel, no other processor is active, and 
recall that a7 = 256, the highest. In the analytic model, on the 
other hand, all processors, except P7 , are active at that time. 
Thus, the utilization in the increasing analytic model is higher 
than in the simulations. The error in the decreasing case is 
harder to figure out. The above explanation would have 
caused the same, rather than the opposite, effect. 

Note, again, that these discrepancies are noticeable only at 
high a. Consider Figures 11 and 16 and Table I. For a < 10 it 
seems that both simulations and analytic modeling yield simi
lar results, in both uniform and nonuniform cases. Since the 
analytic model breaks down only at high a, and since, as it was 
emphasized above, this range of workload is not really im
portant, we can ignore this problem. 

M. CONCLUSION 

We have discussed the MP/C performance under various cir
cumstances. First, the performance of tree-structured algo
rithms was discussed. That application seems to be the most 
suited to the MP/C, and the MP/C performs probably better 
than any other architecture. 

Next we examined the other side of the spectrum, the appli
cation of the MP/C to mUltiprogramming general purpose 
computations. This case serves as a worst/case, or lowerl 
bound, analysis, for the MP/C. We have devised some analytic 
modeling techniques. Due to the complexity of the MP/C, 
only approximate analytic modeling was possible. Simulations 
were used to verify the results of the analytic modeling and to 
estimate their error. 



We have found that the analytic models provide acceptable 
rough estimation of performance. Also, it was shown that, in 
the worst case, the performance of the MP/C is similar to that 
of the star multicomputer. That is, the relative advantages of 
the MP/C do not necessarily come at the expense of per
formance. 

As we have suggested elsewhere, l under the right condi
tions the MP/C has the potential to perform much better than 
other architectures. We are currently performing additional 
evaluation, comparing the MP/C to multicomputers using lo
cal networks and to multiprocessors using shared memory, by 
means of detailed emulations, simulations, and a complete 
implementation. 

ACKNOWLEDGMENTS 

We are grateful to Steve Bruell and Gianfranco Babo, who let 
us use PNET, and to Neil Polhemus, for helping with the 
simulations. 

REFERENCES 

1. Arden, B.W., and R. Ginosar. "MP/C: A Multiprocessor/Computer Archi
tecture." IEEE Transactions on Computers, C-31 (1982), pp. 455-473. 

2. Arden, B.W., and R. Ginosar. "Performance Evaluation of the MP/C," 
Technical Report 294, Dept. of Electrical Engineering and Computer Sci
ence, Princeton University, Princeton, New Jersey. 

3. Arden, B.W., and H. Lee. "Modeling Regular, Process-Structure Net
works." AFIPS, Proceedings of the National Computer Conference 1979, 
Vol. 49, pp. 95-102. 

4. Anastas, M.S., and RF. Vaughan. "Limiting Multiprocessor Performance 
Analysis." Proceedings of the 1979 International Conference on Parallel 
Processing, pp. 58-64. 

Performance Evaluation of the MP/C 555 

5. Bruell, S.c., and G. Balbo. Computational Algorithms for Closed Queue
ing Networks. Amsterdam: North-Holland, 1980. 

6. Balbo, G., S.c. Bruell, and H.D. Schwetman. "Customer Gasses and 
Closed Network Models-A Solution Technique." Proceedings of the IFIP 
Congress 1977, Amsterdam: North Holland, pp. 559-564. 

7. Baskett, F., K.M. Chandy, RR. Muntz, and F.G. Palacios. "Open, 
Gosed, and Mixed Networks of Queues with Different Classes of Custom
ers." Journal of the ACM, 22 (1975), pp. 248-260. 

8. Clark, W. The Gantt Chart (3rd ed.). London: Sir Isaac Pitman & Sons, 
1952. 

9. Cobham, A. "Priority Assignment in Waiting Line Problems." Operations 
Research, 2 (1954), pp. 70-76. 

10. Chang, D.Y., D.J. Kuck, and D.H. Lawie. "On the Effective Bandwith 
of Parallel Memories." IEEE Transactions on Computers, C-26 (1977), 
pp. 480-489. 

11. Enslow, P.H. Jr. "Multiprocessor Organization-A Survey." ACM Com
puting Surveys, 9 (1977), pp. 45-71. 

12. Greenberg, S. GPSS Primer. New York: John Wiley, 1972. 
13. Heidelberg, P., and K.S. Trivedi. "Analytic Queueing Models for Pro

grams with Internal Concurrency," Technical Report RC 9194, IBM Wat
son Research Center, January 1982. 

14. General Purpose Simulation System V User's Manual. IBM SH20-0851, 
IBM,1970. 

15. Jacobson, P.A., and E.D. Lazowska. "Analyzing Queueing Networks with 
Simultaneous Resource Possession." Communications of the ACM, 25 
(1982), pp. 142-151. 

16. Kobayashi, H. Modeling and Analysis: An Introduction to System Per
formance Evaluation Methodology. Boston: Addison-Wesley, 1978. 

17. Kleinrock, L. Queueing Systems, Vol. 2. New York: John Wiley, 1976. 
18. Kiviat, P.J., R Villanueva, and H.M. Markowitz. The Simscript II Pro

gramming Language. New York: Prentice-Hall, 1968. 
19. Miller, I., and J.E. Freund. Probability and Statistics for Engineers. New 

York: Prentice-Hall, 1965. 
20. Satayanarayanan, M. "A Survey of Multiprocessing Systems." Technical 

Report RC7346, IBM Watson Research Center, October 1978. 
21. Sauer, C.H., and K.M. Chandy. Computer System Performance Modeling. 

New York: Prentice-Hall, 1981. 
22. Sauer, C.H., and E.A. MacNair. "Queuing Network Software for System 

Modeling." Software-Practice and Experience, 9 (1979), pp. 369-380. 





A multiprocessor with replicated shared memory 

by SIGURD L. LILLEVIK and JOHN L. EASTERDAY 
Oregon State University 
Corvallis, Oregon 

ABSTRACT 

A multiprocessor includes five 8086 microprocessors interconnected with replicated 
shared memory. Such a memory structure consists of a set of memories, one for 
each processor, with identical contents. This minimizes read interference since each 
processor simply accesses its own private copy of the shared memory. To ensure 
shared memory integrity, write requests transfer data over the MULTIBUS to all 
copies in parallel. Overall, replicated shared memory structures provide improved 
concurrency. 

An HP 64000 Logic Development System serves as a host computer for program 
development and a bulk storage device. A power-on and restart monitor in shared 
PROM provides a run-time debug and method for down-loading the operating 
system and application programs. The real-time, multi-tasked operating system 
(called MPX) distributes a sequence of high and low priority tasks, with possible 
preemption, among the processors. MPX floats from processor to processor while 
balancing the system load for maximum concurrency and throughput. 

557 





INTRODUCTION 

In the design of multiprocessor computers, a shared memory 
often links together the individual processors. This facilitates 
coordination of the system and assures a convenient commu
nication medium for the processors. But shared memory and 
all other shared resources contributed to degradation of the 
system through interprocessor interference; simply stated, not 
all requests for a shared resource may be honored at one 
instant in time. Recently, the principle of using several copies 
of the shared memory, one per processor, instead of just a 
single memory has been investigated. Such a replicated shared 
memory (RSM) structure offers the advantage of minimal 
read conflicts since individual processors access their own pri
vate copy of the shared memory. So that each copy remains 
the same, writes to the RSM must modify all copies and this 
requires some synchronization and arbitration of requests. 
Overall, an RSM structure provides improved concurrency for 
an increase in system throughput. Applications such as arti
ficial intelligence, Monte Carlo simulation, solution of partial 
differential equations, and others that require extremely high 
computing rates may ultimately benefit from RSM structures. 

This manuscript describes a multiprocessor used to study 
replicated shared memory techniques. Specifically, research
ers wish to determine the applications and problem character
istics best suited for mUltiprocessors with RSM and the 
expected increase in system throughput. In the next section of 
this paper, a review of previous work defines the origin and 
present status of replicated shared memory. The hardware 
design of an RSM multiprocessor will be described in terms of 
major component selection and their interaction. Then, the 
next section outlines the overall software design and describes 
the programming environment and operating system. The last 
section summarizes the paper, provides design guidelines for 
RSM structures, and concludes with some suggestions for 
further research. 

BACKGROUND 

The development of a computer class has traditionally fol
lowed a wheel of reincarnation as suggested by Myer and 
Sutherland. 14 With multiprocessors, technology (today VLSI) 
drives the wheel or evolutionary chain. Thus, designers have 
more recently looked to multiprocessor structures because of 
their potential for both speedup and generality. Satyanaraya
nan 16 has prepared an annotated bibliography that surveys the 
field of existing multiprocessor machines. He suggests several 
possible dimensions to the multiprocessor design space: Are 
the processors symmetrical or asymmetrical? Do the proces-

A Multiprocessor with Replicated Shared Memory 559 

sors contain local resources? What interconnection network is 
required? Are the input and output (I/O) devices shared or 
local? How do the processors communicate, interrupts, mail
boxes, etc.? These and other questions must be answered in 
the design of a multiprocessor computer 

Experience with multiprocessor computers has shown de
signers that the key to efficient exploitation of parallelism is 
interprocessor communication. And this relies on a cost
effective interconnection network. In a survey article by 
Feng,6 the interconnection design space is dictated by the 
mode of operation (synchronous or asynchronous), control 
strategy (centralized or distributed), switching methodology 
(circuit or packet), and the topology (static or dynamic). An
other classification scheme by Anderson and Jensen1 delin
eates various levels of interprocessor message handling and 
hardware topologies to define structures. In a paper on highly 
parallel computing, Haynes, et al. 8 summarize several prac
tical interconnection networks using three parameters: cost, 
generality, and efficiency. Very efficient networks include 
crosspoint switches and systolic arrays (see Kung).l0 The 
crosspoint represents a very general but expensive switch 
while the systolic array is specialized and inexpensive because 
it is very regular and well-matched for VLSI production. 
Some less efficient and less expensive interconnections rang
ing from the general purpose to specialized include the ban
yan/ k-cube,12 shuffle,18 and tree. 5 Finally, the ring topology 
provides an inefficient but low-cost and general interconnec
tion network. Some trends may be easily deduced concerning 
interconnections, the greater the efficiency and generality, 
the greater the cost. Overall, the entire interconnection net
work space includes many possibilities and most designs 
consider such additional constraints as basic problem de
pendencies, fault tolerance, and implementation realities. 

If a multiprocessor typically contains a shared memory for 
interprocessor communication, then a multiport memory may 
be used and elaborate interconnection networks avoided. The 
difficulty of multiport memories is in the implementation. To 
provide several ports to a memory, a design requires several 
sets of address, control, and data buses. Other imple
mentation difficulties include simultaneous read and writes, 
or multiple writes to the same memory location. In addition, 
the question of synchronous or asynchronous access always 
occurs in memory design and requires investigation. Overall, 
the implementation of multiport memory presents many 
problems. 

Several researchers have studied methods for the design of 
multiport memory. For example, Chu and Korff have re
ported on a multiaccess memory that consists of an array of 
cross-coupled gates with separate sense and drive lines for 
each port. They resolve the problem of multiple writes to the 



560 National Computer Conference, 1983 

same memory location with a set of comparators that deter
mine the port to receive priority. All other ports must wait and 
this introduces additional memory access delay. A similar 
design by Chang2 provides a multi port memory for reads and 
a conventional single~port memory for \:vrites. Thus, \vrite 
requests must be arbitrated externally. Chang contends that 
many applications require only a single write port and that the 
multi port read characteristics will be sufficient. Chu and 
Korffs and Chang'S memories are intended for implementa
tion as integrated circuits. 

Rather than provide multiple ports to a memory, concur
rency may also be developed using several copies or repli
cation of the memory contents. Both Cov04 and Pearce and 
Majithia15 have suggested that memory replication, a copy for 
each port, may be used as a multiport memory structure. 
More recently, Lillevik, et al. 11 have presented guidelines for 
the design of multi port memory using replication techniques. 
In this design, reads from memory may occur asynchronously, 
concurrently, and at various cycle times. By eliminating read 
conflicts, interprocessor interference is reduced and through
put increased. 

A multiprocessor with replicated shared memory (RSM) is 
shown in Figure 1. It consists of several processors each with 
a copy of the common memory, two sets of bus switches, and 
a single multiport bus. This multiprocessor and memory func
tion as follows: when a processor wishes to read from the 
RSM, Switch A is enabled and Switch B is disabled, and data 

r------- ----------, 

PORT 1 

PORT 2 

Multiport Memory I 
. I 

BUS 
SWITCH 

lA 

BUS 
SWITCH 

lB 

Figure l-Replicated shared memory structure 

in the common memory are read by the processors. Writes 
proceed differently depending on the port wishing to write to 
the RSM. Here, the write port enables both Switch A and B, 
while the remaining, passive ports disable Switch A and en
able Switch B. Data from the writing processor pass through 
Switch A and all Switch B's so that every copy of the common 
memory remains the same. Because several processors may 
wish to write simultaneously, write requests require arbi
tration. Skinner and Lillevik17 have described an imple
mentation of this design intended for aerospace, remote, and 
process control applications. It uses three CMOS micro
processors, transmission gates for bus switches, and a syn
chronous multiport bus with distributed arbiters for control. 
They point out that each processor, memory, and switch sec
tion could reside on a single chip with the multiport bus signals 
terminating on pins. Such a chip represents a versatile build
ing block for multiprocessor computers. 

HARDWARE DESIGN 

At Oregon State University (OSU), a five processor computer 
has been developed and is in operation to investigate the 
characteristics of replicated shared memory. Selection of 
major components was based on technical, economic, and 
political criteria. For example, the growing industry-university 
cooperation at times dictates the use of specific products. 
Perhaps the decision to use the MULTIBUS as a system bus 
impacted the overall design more than any other tradeoff. 
This bus supports multiple masters (which are active) and 
multiple slaves (which are passive). Basically a common bus 
with synchronous and distributed arbitration, the MULTI
BUS represents a widely accepted bus under consideration as 
a standard. In the replicated shared memory design, the indi
vidual memory copies act as resident devices for reads, and 
slaves for writes. Once the system bus was selected, use of the 
8086 microprocessor assured compatibility between the bus 
and the processors. As a third generation microprocessor, the 
8086 consists of a 16-bit general purpose machine with a 1 
Mbyte, segmented address space. Also, the 8086 contains 
some multiprocessor features such as bus lock, synchroniza
tion, and coprocessing. 

A typical MULTIBUS/8086 master implementation may 
range in complexity, but the general approach used in this 
design is illustrated in Figure 2. Interface circuitry splits the 
8086's buses into a resident and system configuration by 
decoding the address space. These circuits include an inter-

Figure 2-Typical block diagram of !\.1ULTIBUSl8086 master 



A Multiprocessor with Replicated Shared Memory 561 

Processor Zero 

• Operating System 

• 
• 

Processor Four 

Figure 3-PMS diagram of a multiprocessor with replicated shared memory 

rupt controller, arbiter, command controller, address latch, 
and data transceivers. Slave devices do not contain these cir
cuits, but instead they simply monitor the MULTIBUS ad
dress and control buses and respond to commands as they 
occur. 

A PMS diagram of the OSU multiprocessor computer is 
shown in Figure 3. The system contains five processor boards 
and one communications board. Each of the five processor 
boards includes an 8086 microprocessor, up to 256 Kbytes of 
dynamic RAM, and MULTIBUS interface support circuits. 
The RAM may be partitioned into all local, all shared, or 
some division of local and shared memory. Besides providing 
five RS232 ports to the external world, the communications 
board contains 16 Kbytes of programmable, read only 

memory (PROM) which hold a power-on and restart monitor 
program shared among the five processors. Also, the commu
nications board implements an interprocessor interrupt 
scheme over the MULTIBUS that allows any processor to 
interrupt another processor (including itself). Finally, this 
board contains the MULTIBUS priority resolution circuitry 
consisting of a priority encoder/decoder pair. 

Some deviations from a typical MULTIBUS/8086 imple
mentation were required for this design. First, not only did the 
address space require decoding to form a resident and system 
bus, but the read/write space had to be included in the decod
ing. To obtain this information, the design used the processor 
status lines that indicate read and write operations. Another 
problem involved the dynamic RAM controllers. They as-



562 National Computer Conference, 1983 

sume a single-port memory system, while a dual-port memory 
system was required. An additional finite state machine arbi
ter was used to resolve requests for the memory and generate 
transceiver enables for the two address and data buses. A 
fundamental and essential multiprocessing feature \x/as par
tially disabled by decoding the read/write space; the facility 
for a read and modify cycle and semaphores. Since reads to 
shared memory occur on a resident bus, the system bus lock 
signal was disabled. The solution involved distribution of indi
vidual processor generated locks to all dynamic RAM arbi
ters. These three problems represented only minor changes 
from a typical MULTIBUS/8086 application and generated 
few additional chips (SSI, MSI) on the boards. 

Physically, the multiprocessor consists of a single, desk-size 
19" rack holding a power supply, 21-slot MULTIBUS card 
cage and back plane, and a panel with RS232 connectors and 
processor/system restart switches. The five processor boards 
each contain around 80 packages and 2,000 wirewraps. 
Finally, the last and sixth board contains the serial ports, 
PROM, and interrupt generator circuits. 

SOFTWARE DESIGN 

The software environment of the multiprocessor includes a 
host computer system with the multiprocessor as an attached 
processor. In this configuration, the host computer, an HP 
64000 logic development system, functions as a program de
velopment system and a bulk storage device. Here, the host 
connects over a low-speed, RS232 serial port shared among 
the processors. 

For hardware, the host supports a 12 Mbyte hard disk, a line 
printer, three CRT terminals each with dual floppy disks, a 
PROM programmer, a logic analyzer, and an in-circuit emu
lator. To assist in program development, the host software 
includes a file manager, editor, assembler, PLIM and Pascal 
compilers, and a linking loader. With this support on the host 
system, users prepare object files for later down-loading to 
the mUltiprocessor and eventual execution. 

Upon power-on or a system restart, the processors execute 
a monitor program resident in shared PROM. Besides down
and up-loading of object files from and to the host, the mon
itor contains a run-time debug program. The command syntax 
parallels that developed for Intel's SBC 86/129 but with an 
additional processor field appended to each command. For 
example, one may request register or memory information 
about a single processor or a group of processors. The same 
holds true for breakpoints and the single-step mode. With this 
monitor, users may down-load and execute the operating 
system. 

Since programmers develop software external to the ma
chine, the multiprocessor requires only a minimal operating 
system. In addition, the purpose of this research focuses on 
the principle of replicated shared memory structures, not 
multiprocessor operating systems. Thus, the operating system 
functions primarily as a multiprocessor task multiplexer and 
distributes a sequence of tasks among the individual proces
sors. Denoted MPX for multiprocessor executive, the oper
ating system consists of a multiprocessor version of an Intel 

application note 13 on multitasking for a single 8086. MPX 
allows for real-time task distribution of both high- and low
priority tasks with possible preemption. Tasks enter first-in, 
first-out (FIFO) queues and may be delayed for several milli
seconds before assignment to a processor, 

The operating system resides in shared memory with one 
processor running executive code and the remaining pro
cessors running associative code. Once a processor begins 
execution of a task, it enters a run state. Thus, the state 
diagram of a multiprocessor contains three states: executive, 
associative, and run as shown in Figure 4. At any instant in 
time, only one processor may enter the executive state with 
the others in the associative state or run state. When the 
executive assigns itself a task, it releases ownership of MPX 
and if another processor becomes idle, the new processor 
takes ownership ofMPX as the new executive. Then, later the 
old processor becomes an associative. In summary, MPX al
lows the executive to float from processor to processor. 

As the executive, a processor continuously monitors the 
high- and low-priority task queues and distributes the tasks. In 
addition, the executive preempts low-priority running tasks, 
maintains the queues as it assigns tasks, updates the task 
directory, and if it assigns itself a task it releases MPX own
ership and executes the task. Concurrently, associative pro
cessors continuously check if the executive assigned them a 
task, then either execute the task first, or then check if the 
executive has been released. If released or unlocked, a pro
cessor asserts ownership of the executive and continues dis
tributing tasks. The executive may also change location as 
processors leave the run state. Otherwise, processors return 
to their original state: executive or associative. 

Once a task becomes listed in the task directory, it may 
follow a sequence of state transitions as shown in Figure 5. 
First, an idle task corresponds to one not queued, running, or 
preempted. In all cases, a task must pass through either the 
high- or low-priority queue before assignment by the execu
tive for execution on a specific processor. From the idle state, 
a task may enter the queued state for latter assignment, or it 
may enter the wait state for a specified number of milliseconds 
and then enter the queued state. When assigned to a processor 

Figure 4-Individual processor state diagram 



DELAY 

DECREMENT ACTIVATE 

DISPATCH 

CONCWDE 

DISPATCH 

Figure 5-State diagram of an MPX task 

for execution, a task enters the run state unless preempted by 
a high-priority task. At this time, the low-priority task enters 
the preempt state until the executive may no longer assign 
high-priority tasks. When this occurs, the preempted task 
continues execution. Intermpts facilitate task preemption. 
Following the run state, a task may reenter the wait or queued 
states, or simply the idle state. 

Several procedures, accessible by all processors and located 
in shared memory, manipulate the execution of tasks. As with 
many shared structures, semaphores protect the data or task 
directory, but not the code or procedures which alter the data. 
To post a task in the task directory, the define/remove pro
cedure is called. Each entry in the directory consists of a 
name, start address, local or shared task, high- or low
priority, and status information. Then, either the activate or 
delay procedure enters an idle task into the appropriate queue 
with possibly some delay if delay was used. Primarily, the 
executive repetitively calls the dispatch procedure that actu
ally assigns queued tasks to specific processors. First, dispatch 
satisfies all entries in the high-priority queue before consid
ering the low-priority queue. Then, the task at the head of the 
queue is checked to see if it is a shared or local task. If it is 
shared, then dispatch determines if a processor is available or 
can be preempted and assigned the task. If it is a resident task, 
then the requested processor is checked to see if it is available 
or may be preempted and assigned the task. When a task at 
the head of a queue may not be assigned to a processor, then 
dispatch returns it to the appropriate queue. Once dispatch 
satisfies both queues, then it returns and the executive decides 
if it has assigned itself a task. Upon completion of a task, the 
conclude procedure is called that terminates the task and 
either returns it to the idle state, places it in a queue, or the 
waiting list. An interrupt procedure, decrement, occurs every 

A Multiprocessor with Replicated Shared Memory 563 

millisecond to update the waiting list of tasks. When a waiting 
task times out, decrement enters the task into a queue. To
gether, these elementary procedures coordinate the com
puting activities of the multiprocessor. 

Certain constraints limit the flexibility and potential con
currency of the multiprocessor. First, all tasks must reside in 
memory, either shared or local, prior to being listed in the 
task directory. Because the hardware does not contain any 
fast bulk storage, the multiprocessor does not implement a 
memory management system. This explains the reason for 
resident tasks. Second, to obtain the maximum concurrency 
of the multiprocessor, one must exercise judicious care in 
both the distributions of tasks and their sequence of activa
tion. Task distribution involves their location in memory, 
shared or local, and the priority assigned to them. As with 
other multiprocessors, the sequence of task activation de
pends largely on the application. Yet under proper conditions, 
MPX achieves much parallelism with the multiprocessor. 

CONCLUSION 

This manuscript has described the hardware and software de
sign of a multiprocessor with replicated shared memory. Such 
a shared memory structure consists of several copies of the 
memory, one for each processor, so that individual processors 
read from their own private copy. To maintain the same infor
mation in all copies of the memory, all writes must modify all 
copies. Thus, reads may occur concurrently, asynchronously, 
and to different addresses. Overall, multiprocessors with rep
licated shared memory experience reduced interprocessor in
terference for an increase in throughput. 

The multiprocessor discussed in this paper contains five 
8086 microprocessors, each with up to 256 Kbytes of dynamic 
RAM for a maximum system memory of over 1.2 Mbytes. Use 
of the MULTIBUS facilitates interconnection of the pro
cessors to each other and to shared resources. In addition, the 
MULTIBUS provides a medium for writes to the replicated 
shared memory copies. When a write occurs, all the memory 
copies become slave devices and accept the data on the bus. 
The shared resources include five RS232 serial ports, PROM 
holding a power-on and restart monitor program, and an in
terrupt generator for interprocessor interrupts. One of the 
serial ports connects to a host computer, an HP 64000 logic 
development system, used for program development and as a 
bulk storage device. Also, the host includes a 12 Mbyte hard 
disk and three CRT terminals each with dual floppy disks. The 
multiprocessor monitor program provides for down- and up
loading of object files to and from the multiprocessor. 

With the multiprocessor monitor one may down-load into 
shared memory and execute the operating system MPX 
(multiprocessor executive). This real-time multi-tasked sys
tem allows for both local and shared tasks with either high or 
low priority. MPX may float from processor to processor and 
primarily functions to empty the two queues of tasks on a 
FIFO scheme. Tasks are assigned to individual processors and 
low-priority tasks are preempted, if possible, by high-priority 
tasks. With this system judicious care must be exercised in the 
distribution of tasks in memory and their order of activation. 



564 National Computer Conference, 1983 

For many cases, MPX balances the processor loads and the 
system achieves good concurrency and parallelism. 

When designing a system with replicated shared memory 
one must consider several parameters, each with many trade
offs. Perhaps selection of a system bus represents the one 
decision with the greatest impact. And once the bus has been 
selected the processor should be determined by the extent of 
support for the bus. Not crossing family boundaries helps to 
assure a good match of bus and processor. Certainly, the 
processor's facilities for multiprocessing enter into the selec
tion process as well. Finally, the design of the operating sys
tem requires considerable thought. To fully exploit the paral
lelism inherent in the hardware, the operating system must be 
flexible and able to adjust to widely varying loads and degrees 
of concurrency. 

Like all computer designs, one determines at a later date 
what additional features and characteristics might improve the 
original system. As for the multiprocessor described in this 
paper a redesign might include a further split of the 8086 bus 
into several MULTIBUSes and not just a system bus and a 
resident bus. This would facilitate creation of a hierarchy of 
processors interconnected with several replicated shared 
memory structures. Many geometric shapes are possible. Cer
tainly, the addition of an input and output processor, i.e., 
8089, would aid significantly in implementing a memory man
agement system and file structure. Another major im
piOvement involves the addition of a hardware floating-point 
coprocessor like the 8087. This speeds up computations and 
the turnaround for number crunching applications. Recently 
announced products like the 8206 memory error detection! 
correction unit and the 8207 dual-port dynamic RAM con
troller would iinprove fault tolerance and streamline use of 
random logic (SSI, MSI). Finally, the fundamental applica
tion and problem characteristics best suited to replicated 
shared memory structures require identification. With this 
known in advance, designers can quickly evaluate the merit of 
using a replicated shared memory structure. 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge the support of this 
project by the Intel· Corporation and the Hewlett-Packard 

Company. Their donations of research and development 
equipment significantly contributed to the success of this re
search. 

REFERENCES 

1. Anderson, G. A. "Computer Interconnection Structures: Taxonomy, 
Characteristics and Examples." ACM Computer Surveys, 7 (1975), 
pp. 197-213. 

2. Chang, S. S. L. "Multiple-Read Single-Write Memory and Its Applica
tions." IEEE Transactions on Computers, C-29 (1980), pp. 689-694. 

3. Chu, W. W., and P. B. Korff. "Multiaccess Memory: An Overview." 
Proceedings of the 4th Texas Conference on Computing Systems. Silver 
Spring, Md.: IEEE Computer Society Press, 1975, pp. 2B-1.1 to 2B-1.8. 

4. Covo, A. A. "Analysis of Multiprocessor Control Organizations with Par
tial Program Memory Replication." IEEE Transactions on Computers, C-
23, (1974), pp. 113-120. 

5. Despain, A., and D. Patterson. "X-Tree a Structured Multiprocessor Com
puter Architecture." Proceedings of the 5th Symposium on Computer Ar
chitecture. Silver Spring, Md.: IEEE Computer Society Press, 1978, 
pp. 144-151. 

6. Feng, T. "A Survey of Interconnection Networks." Computer, December 
1981, pp. 12-27. 

7. Goke, R., and G. J. Lipovski. "Banyan Networks for Partitioning on Multi
processor Systems." Proceedings of the 1st Symposium on Computer Archi
tecture. Silver Spring, Md.: IEEE Computer Society Press, 1973, pp. 21-30. 

8. Haynes, L. S., et al., "A survey of highly parallel computing," Computer, 
January 1982, pp. 9-24. 

9. INTELLECf-iSBC 86112 Interface and Execution Package. No. 
9800743A. Prepared by the Intel Corp., Santa Clara, California, 1979. 

10. Kung, H. T. "Why Systolic Architectures?" Computer, January 1982, 
pp.37-46. 

11. Lillevik, S. L., H. T. Voorheis, and M. L. Skinner. "Multiport Memory 
Design." Proceedings of the 14th Symposium on Mini and Microcomputers. 
Anaheim, Calif.: ACfA Press, 1981. 

12. Locanthi, B. N. "The Homogeneous Machine." Technical Report 3759, 
Computer Science Department, California Institute of Technology, J an
uary 1980. 

13. Moore, C. "Multitasking for the 8086." Application Note AP-61, Intel 
Corp., Santa Clara, California, July 1979. 

14. Myer, T. H. and I. E. Sutherland. "On the Design of Display Processors." 
Communications of the ACM, 11 (1968), pp. 410-414. 

15. Pearce, R. C, and J. C Majithia. "Analysis of a Shared Resource MIMD 
Computer Organization," IEEE Transactions on Computing, C-27 (1978), 
pp.64-67. 

16. Satyanarayanan, M. "Multiprocessing: An Annotated Bibliography." 
Computer, May 1980, pp. 101-116. 

17. Skinner, M. L., and S. L. Lillevik. "Design of a Multiprocessor Computer 
with Multiport Shared Memory." Proceedings of the IEEE 1982 Region 6 
Conference. Piscataway, N. J.: IEEE Press, 1982, pp. 158-164. 

18. Stone, H. "Parallel processing with the perfect shuffle," IEEE Transactions 
on Computing, C-20 (1971), pp. 153-161. 



Reconfigurable architectures for VLSI processing arrays 

by MARIAGIOVANNA SAM I and RENATO STEFANELLI 
Politechnico di Milano 
Milan, Italy 

ABSTRACT 

Definition of architectures capable of fault tolerance and reconfiguration, suitable 
for very large scale integration (VLSI) implementation, is an important problem 
with regard to both production yield and run-time availability of VLSI devices. The 
case considered in the present paper concerns regular arrays of processing elements, 
such as the ones found in signal processing and other dedicated structures. It is 
proposed to achieve fault tolerance through the introduction of spare elements and 
reconfiguration algorithms implemented by suitable dedicated circuits and signals. 
A number of reconfigurable structures are presented, with different numbers and 
patterns of spare elements and with varying degrees of fault tolerance. Underlying 
fault assumptions are discussed and performances are analyzed; while architectures 
examined in detail consist of combinatorial elements with fairly simple inter
connection schemes, extension to a wider class of structures is also considered. 
Implementation of diagnosis and reconfiguration is carried out at gate level: the 
resulting complexity is seen to be minor, as compared to the overall architecture 
complexity. 

565 





Reconfigurable Architectures for VLSI Processing Arrays 567 

A. INTRODUCTION 

The advent of very large scale integration (VLSI) devices 
introduces the problem of designing fault-tolerant and self
reconfiguring devices; this has the dual scope of allowing run
time reconfiguration after fault and initial configuration (so as 
to increase production yield). 

The design of very reliable VLSI units has been studied 
both for regular structures and for complex, irregular archi
tectures. In particular, in this last instance, the case of 
microprocessors has been considered. 1, 2 Even though these 
examples refer to units capable of self-diagnosis but not of 
reconfiguration after fault, still they make it apparent that 
irregular structures require high redundancy in order to ob
tain significant fault tolerance. In fact, even with fairly favor
able fault assumptions, it is necessary to predict the individual 
fault tolerance for the different units making up the device (as 
well as, obviously, for their interconnecting system). This in
troduces further problems in evaluation, for example of final 
yield, since the chip area becomes in tum much larger. 

The case is radically different for regular structures, that is 
structures in wp..ich a number of identical cells are inter
connected by means of a regular pattern. In this case, fault 
assumptions refer to the failure of individual cells, cell pat
terns, or of the interconnection substructure; thus, redun
dancy is considered not with respect to the whole system but 
with respect to a number of "spares" that can be substituted 
for any failed cell (with suitable interconnection facilities). 

Memories are a basic instance of such regular structures; 3,4 

yet their interest is much larger. Fast, dedicated computer 
architectures such as systolic arrays, mesh-connected multi
processors, and so on,5,6,7 and in general bidimensional 
signal-processing arrays belong to this class. 

The problem of redundant regular structures other than 
memories has been considered in particular by Mangir and 
Avizienis,8 who considered a rectangular array and presented 
a statistical analysis of fault-tolerance under various fault as
sumptions and spare availability. 

In the present paper a rectangular array of processing cells 
is considered. For simplicity's sake we examine networks of 
memoryless cells, in which reconfiguration does not involve 
saving and transferring stored information or input queues. 

After an initial description of the basic structure, a fault 
model is presented. Assumptions concerning both fault distri
bution and cell self-diagnosis capabilities are introduced; they 
are then suitably extended when spare cells are added to the 
basic structure and involve also additional circuits and inter
connections for propagation of diagnostic signals and for self
reconfiguration. 

From the basic structure some fault-tolerant ones are de-

rived, involving different numbers and patterns of spare cells. 
For each of them, fault patterns that can be overcome are 
identified. 

A balance is sought between the increase in the number of 
faults that can be corrected through reconfiguration (by in
sertion of spares) and the increase in complexity (hence chip 
area); in fact, above a given level added chip area and inter
connection complexity lead to decreasing reliability and 
yield.8 

For the above structures, reconfiguration algorithms are 
presented; it is proved that they lead to reasonably simple 
interconnection structures even after reconfiguration. In par
ticular, the length of interconnections between reconfigured 
cells is proved to be quite limited even in the worst case. For 
each algorithm, reliability of the complete structure and other 
statistical informations are evaluated. 

Finally, we consider some extensions of the present pro
posal to structures with sequential cells and/or different inter
connection patterns. 

B. BASIC STRUCTURE 

The basic structure considered here is a rectangular array of 
memoryless ceHs (processing cells), interconnected by a regu
lar pattern of connections along the two Cartesian axes; infor
mation flows in one direction only for each axis, namely left 

Figure 1-Basic structure 



568 National Computer Conference, 1983 

to right along the horizontal one and down along the vertical 
one (see Figure 1). This assumption allows greater simplicity 
in designing the cell and additional circuits for fault tolerance; 
extension to any regular interconnection structure is quite 
easy. 

Each cell is numbered according to a matrix ordering; the 
cell on row i, column j is designated as cell (i,j). Numbering 
indices are said to be the physical indices of each cell, denoting 
its physical position in the array. Although the assumption is 
not essential, we assume the matrix to be a square one so that 
cell numbers go from (1,1) to (N,N). Interconnections are 
oriented along increasing values of i and j. Cell (i,j) receives 
information from two adjacent cells, namely (i - 1, j) (pro
viding the vertical input) and (i, j - 1) (providing the horizon
tal input) and gives information to (i, j + 1) (horizontal out
put) and (i + 1,j) (vertical output). Links between any pair of 
adjacent cells are assumed to have unit length. Border cells, 
i or j taking on values either 1 or N, receive part of their input 
from, or give part of their outputs to, interconnections with 
external systems. The structure is then strictly iterative. 

,From this basic structure, allowing no reconfiguration after 
failure, fault tolerant ones are derived by adding suitable pat
terns of spare cells (cells that are not active if the cells of the 
basic structure are all in a working state) and additional inter
connection links. Though in the basic structure all inter
connections are always active, in the fault-tolerant ones it is 
necessary to insert control circuits along the interconnection 
paths so that only the correct links will be active, and only in 
the scheme defined by the reconfiguration algorithm. 

C. FAULT MODEL 

Like all fault-tolerant computing design the design self
repairing VLSI structures requires the formulation of suitable 
fault assumptions that allow one to reach, for each given 
structure, an acceptable and realistic compromise between 
added complexity and probable resistance to a reasonable 
spectrum of faults. 

In the present case, we do not make any assumption con
cerning elementary faults (i.e., faults at elementary logic cir
cuit level, e.g., gate level); in fact, where VLSI devices are 
concerned, it is in practice impossible to find physical- or even 
logical-level failure assumptions leading to models at once 
realistic and manageable. 

We prefer to consider as basic the processing cells making 
up the array, which are already fairly complex elements in the 
architectures here considered. A fault in this cell can best be 
defined as "incapacity of correct operation, given correct in
puts," possibly caused by a set of physical or gate-level faults. 

The cell is assumed to be capable of self-diagnosis to the 
point of giving correct information on the existence of internal 
faults that lead to incorrect operation. Even a faulty cell is 
assumed to generate correct error information. In fact, the 
cell could be capable of internal gate level fault tolerance and 
reconfiguration; in this case, the failure signal would be made 
active only when internal reconfiguration limits are exceeded. 

A basic fault assumption here adopted is mutual indepen
dence of cells where failure is concerned; a fault in cell (i, j) 

does not in any way postulate failure of any other (adjacent) 
cell. This assumption can be reasonably justified by observing 
that the basic structure here considered leads to layouts where 
densely populated chip areas, the processing cells, are sepa
rated by areas reserved to the simpler and less dense inter
connection circuits. Obviously, such macroscopic failure 
causes as mechanical ones, leading to massive destruction of 
large chip areas, are not considered here. 

Interconnections will at first, in the initial analyses be con
sidered to be always correctly working, which allows us to 
introduce reconfiguration algorithms and control circuits with 
greater simplicity. Later, link failures also will be considered. 
In parallel with our assumptions for cell self-diagnosis, we 
assume that the presence of failure on links can always be 
detected, owing to the adoption of suitable error-detecting 
codes for all information transfer. 

Transition from a basic structure to fault-tolerant ones in
volves the introduction of spare cells and of additional circuits 
for error signal propagation and for reconfiguration purposes 
supporting each processing cell. Assumptions concerning the 
performance of these circuits will be discussed in Section D .1. 

A further assumption is that the chip area due to such 
additional circuits, as well as to additional interconnections 
allowing reconfiguration after fault, is much smaller (at least 
by one order of magnitude) than the area due to the basic 
structure. This allows us to make some basic simplifications in 
reliability calculations, and it is well justified in view of the 
application class envisioned for our architectures and of the 
ensuing complexity of the processing cells. 

As already stated, the architectures here presented can be 
adopted for run-time reconfigurable structures, as well as for 
initial configuration at production certification time. Al
though in the case of initial configuration all faulty cells can be 
detected by external instruments and unnecessary links can be 
deleted, for example by "blowing" suitable fuses, in the case 
of run-time reconfiguration the link control must be per
formed by specific internal circuits. It then becomes necessary 
to introduce additional assumptions concerning the relative 
occurrence of cell failures in time. We assume that cell failures 
occur in sequence, that is that no two simultaneous cell fail
ures ever occur. This allows correct reconfiguration of the 
system after each fault, or else a correct generation of the 
worst case exceeded signal, without the necessity of unduly 
complex additional structures. The propagation time for error 
signals in combinatorial architectures is assumed to be very 
small compared to processing times. 

In the present paper, particular attention is given to run
time reconfiguration. 

In the next section, we present for various structures the 
curves detailing the probability of reconfiguration to working 
state after increasing numbers of independent errors, both 
with increasing number of cells and with increasing complex
ity of spare configuration. 

D. FAULT-TOLERANT ARCHITECTURES 

In this section, structures allowing tolerance of various num
bers and patterns of faults will be considered, Architectures 



Reconfigurable Architectures for VLSI Processing Arrays 569 

will be examined in detail, both in their general recon
figuration policies and in their additional circuits designed for 
this purpose. 

All structures are derived from the basic (N*N) array by 
insertion of various patterns of spare cells. Spares are always 
organized in regular patterns; this lets us keep a totally repet
itive design for interconnections and for cell circuits (in partic
ular, for reconfiguration circuits). 

Starting with a totally correct structure, reconfiguration af
ter fault and consequent deformation of interconnection pat
terns will be analyzed. Although obviously the whole set of 
allowable interconnections is present in the structure, the 
working pattern at any given time will be -activated by error 
and reconfiguration signals present in the network. 

The insertion of k spare cells could in principle allow recon
figuration after any pattern of up to k cell failures, provided 
each spare were connected with any other cell in the structure. 
Yet even for a very small number of cells this would lead to 
unacceptable complexity of interconnection links and of con
trolling circuits. We prefer here to limit the set of fault 
patterns to which the reconfiguration applies, so as to 
guarantee reasonable simplicity of resulting interconnections 
and circuits. 

This procedure allows us always to see reconfiguration pol
icies in a global way, involving each time the whole structure. 

Given the initially working array of N*N processing cells 
described in Section B, the response to a failure involves 
exclusion of the faulty cell, insertion into the working set of a 
suitably chosen cell, and total reconfiguration of inter
connections. To this purpose, working cells receive now log
ical indices (i', j ') that may be different from the physical 
ones, and interconnections are activated between cells having 
logical indices at unit distance. Reconfiguration, then, in
volves a global renaming procedure; this procedure is started 
whenever a cell fails. The algorithms here presented aim at 
reducing the complexity of interconnections between cells 
that might be termed logical neighbors. Circuits controlling 
link activation may be considered as computing logical indices 
for each cell, starting from physical indices and error informa
tion. This allows us to consider any cell (even spare ones) as 
having a standard set of links and control circuitry, leading to 
potential interconnection with a small number of neighboring 
cells. 

Failure of a link between two cells will be assimilated to 
failure of the cell from which link originates; this will minimize 
the added complexity in reconfiguration circuits. 

Such policies still allow us to cover a relevant number of 
fault instances. Actually, fault patterns excluded by all of the 
reconfiguration criteria here presented are the ones in which 
many faulty cells are clustered together in a restricted area, an 
instance mostly created by mechanical or other major manu
facturing problems. It seems reasonable to exclude devices so 
characterized from acceptance tests. The following recon
figurable architectures will be considered: 

1. N spare cells, organized in one column (structure no. 1) 
2. 2N spare cells, organized in 

a. two columns (structure no. 2) 
b. one column, one row (structure no. 3) 

Each instance will be considered in detail, analyzing its per
formances and the additional circuits it requires in order to 
perform correct reconfiguration. Some common assumptions 
are made, namely 

• A spare cell, when not in use, is denoted by logical index 
o on the main reconfiguration axis. 

• A faulty cell, after reconfiguration, is characterized by 
logical index O. 

• A faulty cell may still allow passage of correct informa
tion links; more correctly, its link control circuits may 
still work properly and allow it to complete an inter
connection. 

Therefore, the possibility of link failure must be considered 
separately in the case of a "passing" link and in the case of 
other links. The first instance inevitably leads to fatal failure 
(on the other hand, failure of a cell and its passing link corre
sponds to the fault clustering that we do not allow for our 
reconfiguration). The second instance, on the contrary, can 
be assimilated to cell failure and suitably analyzed. 

D.1 Structure with N Spare Cells 

Given an array structure of N*N processing cells inter
connected via a rectangular grid, the simplest regular pattern 
of spare cells consists in a column (row) of N cells, added on 
one arbitrarily chosen side. Here we consider a structure of 
type no. 1, as shown in Figure 2. 

The resulting physical structure consists then of N*(N + 1) 
cells. We define the reconfiguration rule by stating that recon
figuration may take place only along the axis of information 
flow leading to the spare cells-here, along rows only. As a 
consequence, up to N cell failures may be corrected provided 

Figure 2-Structure no. 1 with no faults, spare column on the right. 
Each cell is marked by its original pair of logical indices. 



570 National Computer Conference, 1983 

Figure 3---Structure of Figure 1 after faults and reconfigurations. 
Each cell is marked with new logical indices. 

no two failures occur in the same row; this is the only re
striction to fault patterns allowed. Assuming then that phys
ical cell (i, j) fails, its functions are thereafter performed by 
physical cell (i, j + 1), which now gets logical indices i' = i, 
j' = j + I-for higher values of j, it is j' = j + 1, i' = i. The 
failed cell gets j' = 0; for any cell (i, k), k < j, it is k' = k. 

Consider first the assumptions restricting failures to cells. 
The cell reconfiguration and renaming procedures are very 

simple; an example is given in Figure 3. After renaming, links 
will be activated to interconnect cells with correctly ordered 
logical indices. Traversal of faulty cells by working links fol
lows the direction of reconfiguration, that is, along the rows. 

Given any pair of cells initially connected by a direct link, 
after any acceptable failure and reconfiguration they will 
reconfigure as two cells connected by a link that is one unit 
longer than the original one. 

All of these considerations lead to design of circuits 
performing 

1. Error signal propagation. To this end, two pieces of 
information must be inserted: the first one points out to 
the cells from (i, j) to (i, N) the necessity of recon
figuration along row i; the second one points out the 
existence of a fatal failure, that is, overflow of worst case 
allowed. 

2. Link control. This is to achieve correct interconnections. 
(See the transformation from Figure 2 to Figure 3). 

For error signal propagation, we introduce the following 
signals (see Figure 4): 

• e(i, j): created by the cell, with value 0 if the cell is 
working, 1 if it is fauity 

o 

o 

Figure 4--Creation of deformation (ex) and fatal 
failure (et) signals for structure no. 1 

y(i-1.j) 

y(i-1.j-1) y(i-1.j+1) I ex(i-1.j) 

FF 

ex(i-1.j-1) 

x(i.'-1) 
i.j 1==:::>X(i.j) 

II t--------- ex ( i. j) 

II R, 
t---------. e t (i. j) 

~ 
y (i.j) 

Figure 5-Basic cell structure 

• ex (i, j): propagated along row i with value 1 if any of the 
cells from (i, 1) to (i, j) is faulty 

• et(i, j): propagated along row i with value 1 if two or 
more cells from (i, 1) to (i, j) are faulty. 

A final column of OR gates generates fatal failure informa
tion. 



Reconfigurable Architectures for VLSI Processing Arrays 571 

To consider link control, refer to Figure 3; any cell (i, j) may 
receive its vertical input from anyone of the cells (i - 1, 
j - 1), (i - 1, j), (i - 1, j + 1), depending on the fault pattern 
in rows i-I and i, and may either forward the information it 
has processed (if it is itself correctly working) or let the infor
mation processed by (i, j - 1) pass (in case it has failed). 
Reconfiguration rules do not allow any other instance. 

These alternatives are implemented by inserting on any cell 
two multiplexers (see Figure 5): one at the horizontal output 
of cell (i, j), the other one at its vertical input. In the horizon
tal multiplexer, internal error message e (i, j) selects either 
processed information (e(i, j) = 0) or the passing information 
(e(i, j) = 1); in the vertical mUltiplexer, a three-valued code a 
selects information coming from cells (i - 1, j - 1) (value 
-1), (i - 1, j) (value 0), (i - 1, j + 1) (value + 1), as shown in 
Table I. 

TABLE I-Values of a for structure no. 1 (ex(i, j) = 1 for one 
faulty cell between (i, 1) and (i, j), 0 for no faulty cells) 

ex(i,j) = 0, ex(i-1,j ) = 1, a= 1 

ex(i,j) = 1, ex(i-1,j -1) = 1, a= 0 

ex(i,j) =0, ex(i-1,j )=0, a= 0 

ex(i,j) = 1, ex(i-1,j -1) =0, a = -1 

Considering then the column of spare cells, a spare will let 
information pass through without any processing if it is e (i, 
N + 1) + ex (i, N + 1) = 1. Moreover, correct operation re
quires a final row of multiplexers below row N, so as to allow 
correct outputs. 

It may be noticed that although failed cells also receive 
input information, their outputs are not forwarded; while hor
izontal output is blocked by the output multiplexer (with sig
nal e(i, j) = 1) values for a in adjacent cells guarantee that the 
error will never be propagated. 

It is assumed that all error or error-related signals are al
ways correct (if necessary, coding techniques might be adapt
ed to this purpose); the vertical input multiplexer must be 
self-checking so as to correctly contribute to creation of error 
signals; all horizontal input multiplexers must always be cor
rectly working (possibly doubled up for this purpose) even in 
faulty cells. 

In order to evaluate systems' performances (and compare 
them with those for other architectures) a number of statisti
cal computations concerning the reconfigurable structure are 
now discussed. 

In Figure 6, the probability of system survival through 
reconfiguration is plotted against number of cell failures for 
various values of N. Probability of correction for the first 
failure is obviously 1. On the other hand, the probability of 
reaching fatal error conditions even after inserting a small 
percentage of faulty cells is not negligible. This fact is made 
more evident by the degree of spares utilization, which is 
defined as the number of failures that can be overcome with 
a given probability against the number N of spares (therefore, 
once again, related to the dimensions ofthe array). In Figure 

.8 

.6 

.4 

.2 

1. 

.8 

.6 

.4 

.2 

Figure 6-Probability of system survival against 
number of faults for structure no. 1 

o~ ____ ~~ __ ~~ __ ~ ____ ~ __ ~ 
o 6 8 10 12 15 20 

Figure 7-Degree of spares utilization against 
dimensions of basic structure for structure no. 1 

25 

7 three curves are plotted, corresponding to the probabilities 
25%,50%, and 75%. The results obtained are not very satis
factory; it can be seen that in large arrays only a small per
centage of spares are effectively used. This consideration 
would lead us to prefer smaller arrays, but on the other hand 
in small arrays the relative increase of chip dimensions due to 
the insertion of spares becomes a relevant factor-the in
crease coefficient is (N + l)/N-and its influence on yield 
cannot be overlooked. 

Consider now the possibility of link failure. If a link fails, 
this amounts to unavailability of information produced by the 
cell from which the link originates; it may, then, be reasonably 
assimilated to failure of this same cell. It becomes now neces
sary to introduce in the input multiplexers of (i, j) error
detecting circuits producing error signals that will be OR -ed 



572 National Computer Conference, 1983 

Figure 8--Structure no. 2 with two added columns on the right side 

with the error signal of the originating cell. This same philos
ophy can be adapted also for all subsequent architectures. 

D.2. Structures with 2 * N Spares 

Two alternative solutions are considered: spares are added 
along two columns (rows) or else along one column and one 
row. Resulting circuits for reconfiguration and error propaga
tion are different, as are reconfiguration rules and error sig
nals. The two cases are therefore examined separately. 

D.2 .1. Structure with two added columns. In order to keep 
the regularity of cell and interconnection structures, columns 

, 
I 

I.J 

e (i ,j) 

ex1 (i,j) 

>---r-+---t---.... ex 2 ( i I j) 

>-+---+ et (i,j) 
L ____________________ _ 

R1 

Figure IO-Creation of deformation (exI, ex2) and fatal 
faiiure (et) signals for structure no. 2 

Figure 9-Structure no. 2 with one added column on each side 

are added at the sides of the array: either one spare column on 
each side or both on one side of the basic array. 

These are shown in Figures 8 and 9: both show structures 
involving reconfiguration after faults. Error signals required 
and statistical results are identical for both; on the other hand, 
circuits for error detection, error signal propagation, and 
reconfiguration are different (circuits for the two instances are 
shown in Figure 10). We consider here in detail the case of one 
column on each side. 

Again, reconfiguration takes place only along one axis, in 
the direction of the two added columns. It becomes possible, 
then, to correct up to two faults in each row; no other re
striction for fault patterns is introduced. In order to obtain 

.8 

.6 

.4 

.2 

Figure II-Probability of system survival against 
number of faults for stmcture no. 2 



Reconfigurable Architectures for VLSI Processing Arrays 573 

correct reconfiguration, two error signals must now be propa
gated through each row of the array (see Figure 10), speci
fying the three possible instances: no error to the left of jth 
cell (ex 1 = 0, ex2 = 0), one error (ex 1 = 1, ex2 = 0), two er
rors (ex 1 = 0, ex2 = 1). As in the case with one column of 
spares, each cell gives one failure signal e(i, j). Fatal failure 
signal et(i, j) denotes the presence of more than two errors in 
a row. 

Each cell in a row may now receive its vertical input from 
five different sources compared to three in the first structure); 
that is, (i, j) may receive vertical inputs from any of the five 
cells from (i - 1, j - 2) to (i - 1, j + 2). Figure 9 shows all 
possible instances . 

. - The structure of the processing cell is then modified, com
pared to the case of one column of spares, only by replacing 
the three-way multiplexer of Figure 5 with a five-way multi
plexer and, obviously, by suitably modifying information a. 
Table II gives the values of a for structure no. 2, where by 
er(i, j) we denote the number of errors coded by signals 
exl(i, j) and ex2(i, j) in Figure 10. 

Circuit R2 in Figure 5 shall therefore receive, as its inputs, 
all signals listed in Table II. 

TABLE II-Values of a for structure no. 2 (er(i, j) is the number 
of errors coded by signals exl(i, j) and ex2(i, j)) 

er(i,j) = 2, 

er(i,j) = 1, 

er(i,j) = 2, 

er(i,j) = 0, 

er(i,j) = 1, 

er(i,j) = 2, 

er(i-1,j-2)=0, 

er(i - 1,j - 1) = 0, 

er(i - 1,j - 1) = 1, 

er(i-l,j )=0, 

er(i - 1,j - 1) = 1, 

er(i -1,j -1) =2, 

e(i - 1,j -1) = 0 

e(i,j) = 0 

a = -2 

a = -1 

a = -1 

a= 0 

a= 0 

a= 0 

er(i,j) = 0, er(i -1,j ) = 1, e(i - 1,j + 1) = 0 a = + 1 

er(i,j) = 1, er(i -1,j ) = 2, a = + 1 

er(i,j) = 0, er(i - 1,j + 1) = 2, a = +2 

Statistical results concerning probability of survival after 
faults are plotted in Figure 11. It can be seen that im
provement with respect to structure no. 1 is greater than can 
be attributed simply to doubling the number of spares; this 
can also be seen in Figure 12, where spare cell utilization is 
plotted. Such improvements are balanced, of course, by great
er complexity of added circuits and signals. 

D.2.2. Structure with one row, one column added. Here 
again, the choice of edges to which spares are added is not 
essential to the results achieved; we choose to add one row 
and one column in the direction of information flow. 

Assumptions concerning fault distribution and recon
figuration rules become more complex; in fact, reconfiguring 
along two axes may lead to conflicts between possible alterna
tives. Whereas in all previous structures only index j' had to 
be computed after reconfiguration, now the renaming pro
cedure assigns to any cell a pair of logical indices correspond
ing to reconfiguration after fault along either axis. To this 

.6 

.4 

.2 

o ______ ~--~~ __ --------~------
o 20 25 

Figure 12-Degree of spares utilization against dimensions 
of basic structure for structure no. 2 

purpose, it is necessary to introduce a policy assigning to any 
failed cell a direction (vertical or horizontal) of recon
figuration: we refer from now on, correspondingly, to vertical 
or horizontal faults. 

This policy involves the intrinsic limitation (consistent with 
the ones adopted for previous structures) that no row or col
umn may have more than one failed cell in the direction of 
reconfiguration. Some of the rather complex clusters of faulty 
cells that this limitation would still allow would unfortunately 
require very complex error information and redundant inter
connection links. We choose, therefore, to introduce a further 
restriction: 

Let (i, j) be a vertical fault: then no other cell (k, j) with 
k > i is faulty. 

Reconfiguration and renaming rules may then be sum
marized as follows: 

• Scan each column upwards (i.e., for decreasing values of 
i from N to 1); as soon as a faulty cell is identified, it is 
marked as a vertical fault. 

• Classify all other possible faulty cells as horizontal faults. 
• If no row has more than one horizontal fault, recon

figuration is then possible. 

These rules are implemented by means of the circuit in 
Figure 13. Signal ec propagates upwards and gets value 1 from 
the lowest faulty cell up. The signal vf(vertical fault) is 1 only 
for the lowest faulty cell in the column, according to our 
restriction. The signal ey propagates to lower cells the infor
mation on vertical deformation. 

All faulty cells in a column, above the lowest one, get signal 
hf(horizontal fault) = 1; hfpropagates to the right, by means 
of signal ex, so as to denote horizontal deformation. Two (or 
more) horizontal faults in -a row cause the signal et (fatal 
failure) to get value 1. 



574 National Computer Conference, 1983 

e c. (i,j> 

I 
I 
I 
I 
I 
I 
I 1.. _____ _ 

i ,j 

-----------, 
I---I-L---~ e (i ,j) : 

-r--I----·I----+=;::::::=:::::::~>__+_--.. ex (i,j> 

I 

I 

--L-I ____ I ____ --===~~~...:_--.. e t (i,j> 

e yCi,j) 

Figure I3-Creation of diagnostic signals for first failure (ec), 
vertical deformation (ey), horizontal deformation (ex), 

and fatal failure (et) for structure no. 3 

B 0 rn1 B B B 
B r:t1 EJ rm B B 
B B rm B ElJ El 
m B Cl [!] B m 

Figure I4---Vertical and horizontal fault classification 

The procedure has been applied to the example in Figure 
14, where each cell is marked with its physical indices and (if 
faulty) with the chosen reconfiguration direction. 

For greater clarity, we perform the reconfiguration in two 
l<?gical steps (actually, both are performed at the same time by 
combinatorial circuits). Renaming and interconnection mod-

Figure I5-First sample ~tructure: first (horizontal) deformation 

Figure I6-First sample structure: second (vertical) deformation 

ification are first performed along the horizontal axis (Figure 
15) and temporary logical indices i', j' are found; then the 
renaming and modification are performed along the vertical 
axis (Figure 16) and final values of logical indices i", 1" are 
computed. 

Figures 17 and 18 represent the effects of the first (horizon-



Reconfigurable Architectures for VLSI Processing Arrays 575 

Figure I7-Second sample structure: first (horizontal) deformation 

tal) and second (vertical) deformations, respectively, for a 
fault pattern more meaningful than the previous one. 

Reconfiguration obtained by two logical steps leads to the 
following considerations: 

• Both deformations are of the same kind as the one pro
duced by structure no. 1; therefore horizontal (vertical) 
faults must allow a passing link for horizontal (vertical 
signals. 

• Links between logical neighbours have, in the worst case, 
length three both in structure no. 2 and in no. 3, since 
each simple deformation increases the maximum link 
length by one unit. 

• Rules for structure no.3 guarantee that all pairs of logical 
indices i", j" (1::::; i" ::::; Nand 1::::; j"::::; N) are assigned to 
nonfaulty cells. 
In fact, after the first horizontal deformation is per
formed, all logical pairs i', j' (1::::; i' ::::; Nand 1::::; j' ::::; N) 
are assigned either to correct cells or to vertical faults (all 
horizontal faults have logical index j' = 0). After the sec
ond (vertical) deformation, all logical pairs i", j" 
(1::::; i"::::; Nand 1::::; j"::::; N) are assigned to correct cells, 
since a vertical fault is always the lowest faulty cell in a 
column. 

The complex example in Figure 18 shows all possible inter
connections. 

Reconfiguration rules-as defined above-are not strictly 
isomorphic; as a consequence, possible reconfiguration in
stances are not equal along the two axes. In particular, while 
for any (i, j) vertical inputs may come from anyone of cells 
(i - 2, j - 1), (i - 1, j - 1), (i, j - 1), (i - 1, j), (i - 2, j + 1), 

Figure I8-Second sample structure: second (vertical) deformation 

i-2.j-1 

i-1.j-1 

i. j-1 

i+1.j-1 

- i-1. j 

ll_~ rt 
0 +3 

~1 
r--- 0 I.J 

~ +1 

Figure 19-Possible logical neighbors of cell (i, j) 
after structure no. 3 reconfigurations 

i-2.j+1 

i-1.j+ 1 

i. j+ 1 



576 National Computer Conference, 1983 

TABLE III-Values of a and b for structure no. 3 (ex indicates horizontal deformation; ey indicates vertical deformation) 

ex(i - 1,j -1) = 0, ex(i ,j -1) = 1, ey(i - 1,j -1) = 1, ey(i - 1,j ) = 0, a = - 3 

ex(i - 1,j -1) = 0, ex(i ,j - 1) = 1, ey(i - 1,j - 1) = 0, ey(i - Ij ) = 0, a = - 2 

ex(i - 2,j - 1) = 0, ex(i - 1,j - 1) = 1, ey(i - 2,j - 1) = 1, ey(i - 1,j - 1) = 1, a = - 2 

ex(i - 2,j - 1) = 0, ex(i - 1,j - 1) = 1, ey(i - 2,j - 1) = 0, ey(i - 1,j - 1) = 1, a = -1 

ex(i - 1,j ) = 0, ex(i ,j ) = 0, ey(i - 1,j ) = 0, a = ° 
a= ° ex(i-1,j )=0, ex(i ,j )=0, ey(i-2,j )=1, 

ex(i - 1,j - 1) = 1, ex(i ,j - 1) = 1, ey(i - 1,j ) = 0, a= ° 
a= ° ex(i - 2,j -1) = 1, ex(i - 1,j - 1) = 1, ey(i - 2,j ) = 1, 

ex(i - 2,j ) = 1, ex(i - 1,j ) = 0, ey(i -1,j ) = 1, ey(i-2,j+1)=0 a= +1 

ey(i - 1,j + 1) = ° a = + 2 

ey(i - 1,j + 1) = 1, a = + 2 

ex(i-1,j )=1, ex(i ,j ) = 0, ey(i - 1,j ) = 0, 

ex(i - 2,j ) = 1, ex(i -1,j ) =0, ey(i - 1,j ) = 1, 

ex(i -1,j ) = 1, ex(i ,j ) =0, ey(i -1,j ) =0, ey(i -1,j + 1) = 1, a = +3 

ey(i - 1,j -1) = 0, ey(i - 1,j ) = 1, b = -1 

ey(i-1,j-1)=0, ey(i-1,j )=0, b= ° 
ey(i - 1,j - 1) = 1, ey(i -1,j ) = 1, b = ° 
ey(i ,j -1) = 1, ey(i -1,j ) = 0, b = + 1 

(i - 1, j + 1), and (i, j + 1), horizontal inputs may come only 
from cells (i - 1,j - 1), (i, j - 1), or (i + 1,j - 1). (See Figure 
19). 

The resulting cell structure is given in Figure 20. Values for 
codes a and b, are given in Table III. 

Figure 2G-Basic cell structure for structure no. 3 

Statistical results are computed and given in Figures 21 and 
22. Compared to structure no. 2, which has almost the same 
number of spares, structure no. 3 achieves a noticeable im
provement in both survival probability and spares utilization. 

It can be seen that up to three errors are always corrected 
by this structure, and that four errors lead to fatal failure only 
when the faulty cells are on the vertices of a rectangle (that is, 
(i, j), (i, k), (/, j), (/, k)). The probability of such fault 
distribution, particularly in large arrays, is very low. 

Structure no. 3's advantages over structure no. 2 are paid 
for by a somewhat higher complexity of added circuits and 
interconnections . 

. 8 

.6 

.4 

.2 

o 2 4 

Figure 21-Probability of system survival against 
number of faults for structure no. 3 



Reconfigurable Architectures for VLSI Processing Arrays 577 

·:[~------~I~I--~I--.I--~I------.I----~I o 6 8 10 12 15 20 25 

Figure 22-Degree of spares utilization against dimensions 
of basic structure for structure no. 3 

It is evident that other, more complex structures may be 
examined. Actually, some particularly relevant ones (e.g., 
with two rows, two columns added) are being examined now. 

E. CONCLUDING REMARKS 

The problem of fault-tolerant, reconfigurable VT ..... .sr pro
cessing arrays has been considered. 

Fault-tolerance is achieved through the introduction of 
spare elements and the definition of reconfiguration algo
rithms; the choice of spare patterns and of reconfiguration 
algorithms is guided by the aims of keeping 

1. Complete repetitivity of processing elements and sup
porting circuits (i.e., so that even the reconfigurable 
array is iterative) 

2. Reasonable simplicity of the added circuits and inter
connections implementing the reconfiguration algorithm 
(so that chip area overhead is nearly all due to spare 
elements only) 

3. Moderate increase of interconnection lengths, even in 
worst-case reconfiguration (this allows us to disregard 
propagation time differences between basic and recon
figured structures). 

Structures proposed are characterized by increasing com
plexity and-at the same time-increasing probability of sur
vival and efficiency of spares utilization. It is now possible to 
make some comments about extensions of the present criteria 
to instances not considered; the most relevant extensions 
seem to be the ones to (1) the interconnection structure (2) 
the nature of processing cells, and (3) the fault model. 

1. The first extension would allow bi-directional informa
tion flow along each axis. The only relevant changes to 

the algorithms provide bi-directional propagation of er
ror information along each axis and insertion of input 
and output multiplexers for each flow direction. 

If more complex but still regular interconnection 
structure are considered, as in the case of some systolic 
arrays, it becomes necessary to identify a larger number 
of alternatives for reconfiguration directions and corre
sponding sets of error signals. 

2. Although we have considered reconfiguration to be a 
one-step procedure for combinatorial cells, it is often 
necessary to take memory into account. We briefly re
view instances of this, in order of increasing complexity: 
• Each cell stores a number of typical fixed constants to 

be used in its computations. In order to achieve correct 
reconfiguration, it is sufficient to add to each cell's 
store the constants proper to all cells that might recon
figure onto it, and to have error information activate 
correct constants as well as interconnection links. 

• Each cell has a limited number of registers whose con
tents are updated by simple computations. An exten
sion of the previous instance may be considered, in 
which each cell has a number of register sets (one for 
each pair of logical indices it may assume) and it up
dates the contents of all registers at each computation 
step. 

• Each cell has a local storage facility larger than a reg
ister set. It becomes unthinkable to duplicate storage 
in each cell; it is necessary to foresee separate informa
tion paths for processing elements and for memories, 
and to make memories intrinsically robust by other, 
conventionai techniques. 

3. The most relevant extension to our fault model would 
concern interconnections. The problem of possible 
faults in interconnections is presently a subject of study. 

The work presented can be seen as a first proposal, leading to 
wider adaptations and developments. 

REFERENCES 

1. Disparte, c.P. "A Design Approach for an Electronic Engine Controller 
Self ... Checking Microprocessor." Proceedings of the 7th Euromicro Sym ... 
posium, Paris, 1981, pp. 24>-248. 

2. Tsao, M.M., et al. "The Design of C ... fast: A Single Chip Fault Tolerant 
Microprocessor." Proceedings of the 12th FTCS, Santa Monica, 1982, pp. 
63-69. 

3. Cenker, R.P. et al. "A Fault ... Tolerant 64K Dynamic RAM." Digest of the 
ISSCC, 22 (1979), pp. 150-151. 

4. Fitzgerald, B.F., and E. P. Thoma. "Circuit Implementation of Fusible 
Redundant Addresses on RAMs for Productivity Enhancement." IBM Jour ... 
nal of Research & Development, 24 (1980), pp. 291-298. 

5. Kung, H. T. "Why Systolic Architectures?" Computer, 15, no. 1 (Jan. 1982), 
pp.37-46. 

6. Snyder, L. "Introduction to the Configurable, Highly Parallel Computer." 
Computer, 15, no. 1 (Jan. 1982), pp. 47-56. 

7. Fairbairn, D.G. "VLSI: A New Frontier for System Designers." Computer, 
15, no. 1 (Jan. 1982), pp. 87-96. 

8. Mangir, R.M., and A. Avizienis. "Fault ... Tolerant Design for VLSI: Effect of 
Interconnect Requirements on Yield Improvement of VLSI Design." IEEE 
Transactions on Computing, C ... 31 (1982), pp. 609-615. 





Conflict-free memory allocation for associative data files 

by SVETLANA P. KARTASHEV 
University of Nebraska-Lincoln 
Lincoln, Nebraska 

and 
STEVEN 1. KARTASHEV 
Dynamic Computer Architecture, Inc. 
Lincoln, Nebraska 

ABSTRACT 

For associative processing and databases characterized by sequential memory 
search, it is convenient to store a sequence of data files in a circulating memory since 
it is inexpensive and suitable for implementing sequential memory search algo
rithms. In this paper we discuss various allocation algorithms that allow g circulating 
memories to serve T processors, where g and T are selectable by programmer. 

All allocation schemes introduced in this paper are described by a Diophantine 
equation whose solution, x , shows the distance between any two processors that are 
not in conflict when they access the same circulating memory. The paper presents 
a technique for finding a maximal set of noninterfering processors and conflict-free 
allocation techniques for various structures of data files. These techniques achieve 
very high performance characteristics, since 

1. They allow the entire memory space of a circulating memory either to be 
completely filled with data files or to be filled with minimal memory overhead 
created to exclude interference between any pair of noninterfering processors. 

2. All the memory allocations developed are conflict-free. 
3. During one memory revolution, the entire content of each circulating memory 

can be completely fetched by a set of noninterfering processors. 

579 





Conflict-Free Memory Allocation for Associative Data Files 581 

A. INTRODUCTION 

For associative processing and databases characterized by se
quential memory search, it is convenient t9 store a sequence 
of data files in a circulating memory, since it is inexpensive 
and suitable for implementing memory search algorithms. A 
circulating memory means a memory containing T* words 
and possessing the following properties (Figure 1): 

1. During each clock period the entire memory made of T* 
words is shifted so that it can read out a new output word 
and write in a new input word. 

2. To access the entire memory made of T* words requires 
T* clock periods. 

The application of circulating memories for associative sort
ing and data searches stems from the fact that the circulation 
principle of this memory ideally conforms to the whole class 
of search algorithms that typically include the following steps: 

1. Fetch the output word, w, in a word queue. 
2. Compare W with the key word, k. 
3. If W i= k, go to step 1. 
4. If W = k, end. 

The modification of data files stored in a circulating mem
ory can be performed by writing a new word to the current 
input word. In one revolution having T* clock periods, the 
entire memory content can be modified. 

Assume that in a circulating memory each data file is repre
sented by a sequence of memory words being received by the 
buffer unit connected with the communication channel. 

To take into account the various communication delays in
troduced by the communication network in data transmission, 
assume that the data words contained in the same data file are 
stored in sequence with a shifting distance from one to the 
next, d 2: 1, where the integer d is selectable by a program
mer. A pair of adjacent data words from the same file may 
have a constant or variable d. (The case d = 1 means con
secutive word storage.) Figure 3(a) shows a data file, {wo, WI, 

Wz, W3}, made of 4 words with a consistent shifting distance, 
d = 2. In Figure 3(b) we have a 3-word file, {wo, WI, wz}, 
characterized by a variable distance, d, between words, that 
is, d(wo, WI) = 2 and d(wo, wz) = 5, etc. 

In this paper we discuss various allocation algorithms that 
allow g circulating memories to serve T processors, where the 
programmer may select g = [gcd (T, T*)/j], where gcd is the 
greatest common divisor, by selecting T the number of pro
cessors, T* the number of words in each memory, and j the 
allocation index related to the size of a data file that is fetched 

during each memory revolution. Also, as we have already 
said, the programmer may select a variable or constant dis
tance d between a pair of adjacent words from the same file 
to characterize communication delay in a word broadcast via 
communication channeL 

All allocation schemes introduced in this paper are de
scribed by a Diophantine equation* whose solution, x, shows 
the distance between any two processors that are not in con
flict when they access the same circulating memory. The pa
per presents a technique for finding a maximal set of non
interfering processors and conflict-free allocation techniques 
for various structures of data files. These techniques achieve 
very high performance characteristics, since 

1. They allow the entire memory space of a circulating 
memory either to be completely filled with data files or 
to be filled with minimal memory overhead created to 
exclude interference between any pair of noninterfering 
processors. 

2. All the memory allocations developed are conflict-free. 
3. During one memory revolution, the entire content of 

each circulating memory can be completely fetched by a 
set of noninterfering processors. 

The relationship of this paper to other works on memory 
management is as follows: 

1. (a) By creating noninterfering sets of processors that 
may access the same circulating memory in a conflict-free 
manner and (b) by forming various structures of data files for 
the noninterfering sets of processors, this paper contributes to 
the theory of shift-register sequences, since to form such pro
cessor sets and to find the data files structures for them re
quires application of interesting circular properties exhibited 
by shift-register sequences. This material connects this paper 
with earlier research. Z-7 

2. By developing conflict-free memory allocation tech
niques for a mUltiprocessor system that includes circulating 
memories, this paper is connected with the literature on 
conflict-free and parallel memory access.8---1Z Its contribution 
to the topic is in the development of conflict-free parallel 
allocation algorithms for a set of circulating memories con
nected to a multiprocessing system. 

Section B outlines the problem of conflict-free memory 
allocation for a circulating memory and performs classifica
tion of data files and allocation schemes. Accordingly, data 

*In general, by a Diophantine equation we mean a linear equation, 
ax + by = c, where a, b, and c are integers. 1 



582 National Computer Conference, 1983 

T 

1 [P]=Pl [T-l](P)=PT_l 

ic* 

Connecting 
Elements 

Parallel 
Cor,lpa ri ng 
Circuit 

ic* = ic 

.i ck 

a l 
~ 
~ 
·ak 
--.:..:.... 

I 

r-- ic 

ic 

T* 

I 

I 

'--- ic* 

a l :. iq 
a2 
~ 

iC2 

ak .. iCk 

• • • 

1 I l l 

W Output ~Jord 

1 D~] 

· · ~1emory N 

~J i 

· · 

Input Hord 

Buffer 
Registers 

Communicdtion 
Channel 

Figure 1-Block diagram 

files can be minimal and nonminimal, where a minimal file 
includes only those memory words that are connected with the 
same processor during consecutive memory revolutions. To 
implement conflict-free memory access these words must be 
included in the same file, whose size is thus minimal. A non
minimal file properly contains several minimal files. The 
structure of nonminimal files is found in this paper. A non-

minimal file can be regular if it is characterized by the same 
, shifting distance, d, between its entries and irregular if shift
ing distance d is variable. 

Section C introduces the structure of a minimal file. Sec
tion D presents a conflict-free file allocation for minimal data 
files. This allocation is very efficient since the entire mem
ory space is filled with data words and the set of noninter-



Conflict-Free Memory Allocation for Associative Data Files 583 

fering processors contains a maximal number of members, 
f = T*/gcd (T, T*), where Tis the number of processors, T* 
the number of words in each memory. 

Section E discusses the memory allocation for nonminimal 
data files. Section E.1 describes the structure and allocation 
procedures for regular non minimal files, Section E.2 for irreg
ular nonminimal files. Both allocations are conflict-free and 
achieve extremely high utilization of the available memory 
space. For regular files, no memory overhead is created. For 
irregular files, the number of unused memory words or 
memory overhead is minimal. 

Section F discusses parallel operation of several circulating 
memories in the same multiprocessing system and makes con
clusions about the importance of these allocations. 

B. PROBLEM OF MEMORY ALLOCATION 

In this section we will outline the problem of file allocation for 
circulating memories and classify the various data files that 
can be stored in them. In general, to take into account the 
various communication delays introduced by the commu
nication channel, assume that each data file may take non
consecutive words of a circulating memory. 

Since a circulating memory may output one word per clock 
period, it is necessary to assume that during each clock period 
a word, Wj, issued by the circulating memory, M, may be 
received by a new processor, Pi' where Pi- 1 has received word 
Wj-l (Figure 1). (Here i changes mod-T, j changes mod-T*, 
where T is the number of processors connected to the memory 
and T* is the number of words or the period of circulating 
memory 0) This assumption will lead to the minimization of 
the total time required to fetch T* words by T processors, 
because this time will coincide with the time of one revolution 
of the memory. Indeed, an alternative organization whereby 
each processor, Pi, fetches its data file alone following the 
fetches completed by processor Pi - 1 (mod-T) will lead to a 
situation in which each data file will be fetched during one 
memory revolution, since each file consists of nonconsecutive 
memory words. Therefore, if the memory stores K job files, 
they will be fetched only after K revolutions of the memory. 

However, to perform a minimization of the total time to 
access a queue made of K data files and stored in one circu
lating memory, the following problem has to be solved: Given 
T processors, Po, PI, ... , PT - 1 connected with a circulating 
memory M that stores the array of T* data words (Figure 1). 
Generally, T =1= T*. Each clock period, memory M may per
form the following actions in parallel: 

1. M may send its new output word via the output channel 
to a new processor, Pi (mod-T). 

2. M may broadcast to the location of the input word either 
a current output word or a new input word received via 
the communication channel. 

In this scheme buffer registers are registers that store in
coming data words received from the communication channel. 
Each word is identified with the file identification code, ic, 
that is understood as the code of the data file containing this 
word. 

Updating the input word of the memory, M, with a new 
data word is performed as follows. Since the circulating 
memory is already filled with data files, its current input word 
also stores some file identification code ic *. This code is sent 
to a parallel comparing circuit that performs equality compari
son of the current ic * received by the memory input word with 
all the ie's of the data words stored in buffer registers. A 
buffer register for which ic * = ic transfers its word to the 
current input word. If several buffer registers store the same 
ic such that ic * = ic , then the equality signal, C1.i , generated as 
a result of ic * = ic transfers to the input word a data word 
belonging to the register with the smallest address. As for the 
remaining registers with the same ic, their contents are 
shifted, so that the register with the largest address is released 
and cleared in order to receive a new incoming message from 
the communication channel. 

Assume that the circulating memory stores K data files, 
each of which may consist of nonconsecutive memory words. 
Develop such techniques of file storage in the memory that 
the following conditions are satisfied: 

Cl. No file interference arises; if two data files, DFm and 
DF[, are accessed by two processors, Pi and Ph then 
DFm n DF/ = <1>, that is, for each data file, every 
memory word contained in it is accessed by one pro
cessor only. 

C2. Minimal time access to all data files is achieved, where
by a minimal number of dummy clock periods is cre
ated during memory revolutions when the processors 
fetch no data words. 

C3. Independence of allocation techniques of the memory 
revolutions is achieved, whereby if a data file DF; is 
accessed by processor Pk , then during consecutive 
memory revolutions the relative address of every word 
W contained in DFi must remain unchanged in order to 
be accessed only by P k. This processor, however, may 
fetch an updated word W if memory M updates its 
content at this address. 

B.l Noninterfering and Least-Interfering Allocations 

If the entire memory space is allocated to data files in such 
a way that all memory words are included in noninterfering 
data files, then the allocation will be called noninterfering. For 
noninterfering allocation, no dummy clock periods are cre
ated, since the entire memory space is occupied with data 
words. 

If, on the other hand, there are s common words in a pair 
of data files, they may be marked with a special bit (C = 1) to 
exclude their access by the two processors, so that the files 
become noninterfering. However, in accessing them the 
memory loses s clock periods during each revolution. This 
allocation will be called s-interfering. If s is the least possible 
integer, then the allocation becomes least interfering. 

B.2 Minimal and Nonminimal Data Files 

It should be noted that the use of the condition C3 in 
allocation leads to the appearance of a so-called minimal data 



584 National Computer Conference, 1983 

file, MF(P), accessed by processor P and defined as follows: 
MF(P) includes those memory words that are connected with 
P during consecutive memory revolutions. That is, if P fetches 
word w' during one memory revolution and word w" during 
another revolution, then to make the allocation strategy inde
pendent of memory revolutions words w' and w" must be 
included in minimal file handled by P. 

Obviously, to implement C3, any nonminimal file, NF(P), 
accessed by P must include MF(P) as its nucleus; that is, 
MF(P):S NF(P). 

Therefore, allocation for two types of files should be con
sidered: 

1. The minimal file, MF(P), since any other data file han
dled by P includes MF(P) 

2. A nonminimal file, NF(P), handled by P, because a 
correct selection of the NF size allows one to minimize 
the number of revolutions required to fetch any actual 
data file, DF(P), that cannot be fetched during one 
memory revolution 

B.3. Classification of Allocation Schemes 

This paper considers two types of memory allocation: the 
minimal file allocation and the nonminimal one. 

NI I Hi nima 1 Files. MF 

= S·X-l3 oy; 
x = 1, y = 0 
CPS = {O,l, ... ,(I3-l)} 
I MF I = f = T*/13 

Files 

d = s/j ·x-Soy 
x = 1, y = 0 
CSP = {O,l, ... ,(d-l)}, 
INFI = jof 

NI - non-interfering allocation 
LI - least interfering allocation 

iJata Files, DF 

For the minimal file allocation, this paper finds that the size 
of a minimal file, MF, is determined as f = T*/~, where 
~ = gcd(T, T*). 

For the nonminimal file allocation, the paper finds the 
structure of each nonminimal file; NF. This must necessarily 
include a primitive file, PF, consisting of j words called the 
allocation index, selected by the programmer. The size of the 
nonminimal file is then determined as j·f = j 0 T*/~. Thus if 
j = 1, the nonminimal allocation becomes minimal (Figure 2). 

Each nonminimal file can be further classified as either 
regular or irregular. A regular file is specified by the same 
shifting distance d between any two consecutive memory 
words in its primitive file. An irregular file is specified by 
arbitrary shifting distances di between consecutive memory 
words, Wi and Wi+b in the primitive file. For instance, in 
Figure 3(a) we have a regular primitive file, PF, that includes 
words Wo, Wh W2, and W3, such that the shifting distance d 
between any two consecutive words is the same, d = 2. Thus, 
PF = {O, d, 2d, ... ,(j - l)d}, if these distances are measured 
from the current output word w. In Figure 3(b), we have the 
irregular primitive file PF = {O, 2, 5}, since shifting distance 
between Wo and WI is dl = 2 and between WI and W2 is d2 = 3. 
(For notational simplicity, all files will be represented by a set 
of shifting distances between a current output word wand all 
other memory words that are included in a file, where ° is a 
shifting distance between wand w' if w = w ' . ) 

T; T*; gcd(T,T*) 13; T* = l3·f. 

1- 1 

Irregular Files 

d = efj ·x-s·y 
x> 1, Y> 1 

Files 

PFd={O,d,2d, ... , 
d = r01x-l3·y 

T 
dl = g,·x-S·Yl 
~2 = g2ox-SoY2 
0· 1=g· ·x-ts°Y. 1 J- J-l J-
A = max(g;-gi+1) 
CPS = {O·x, 1-x, •.. ,(A-l)x} 
INF 1= j·f 

CPS = {O·x, l·x, ... ,(g(j)-l)·x} 
INF I = j of 

MA - minimal file allocation 
NA - non-minimal file allocation 

Figure 2-C!assification of files stored in a circulating memory 



Conflict-Free Memory Allocation for Associative Data Files 585 

Wo = W t 
d =2 

Wl = 2[W] 
d =2 

J 
Vl2 = 4[W] I =2 

'------__ I t 
( a) 

I~ ).. 

Wo = w I i 
2 dl=2 

I 
i' 

Wl = 2[W] 

I 
3 

1 

W2 = 3[W] 

(b) 

Figure 3--(a) Regular primitive file PF = [0, 2, 4, 6], 
(b) Irregular primitive file PF = [0, 2, 5] 

• 

d

r 

=5 

Regular nonminimal files are further subdivided into di
visible files, if /3 = gcd (T, T*) = d . j, and nondivisible files, if 
/3 = gcd (T, T*) > d· j, as shown in Figure 2. 

This paper studies conflict-free allocations for all data files 
of the classification in Figure 2. The paper shows that for all 
files but the irregular ones the allocation creates no memory 
overhead if it is described by the Diophantine equation 

d=g(j)·x-/3·Y, 

where d is the permanent distance between two consecutive 
memory words belonging to the file of the same type (minimal 
and nonminimal regular); g(j) = [/3/j] is the number of pro
cessors that fetch noninterfering files-these processors form 
a noninterfering processor set, NPS = {p(O), p (lox\ P (2xl, ... , 
p(g(j)-l)ox}; x is the processor displacement that equals the 
shifting distance between two consecutive processors from the 
NPS set; and j is the allocation index, selected by the pro
grammer. For minimal files, j = 1 and d = /3. x - /3. y. This 

implies that the only solution of the Diophantine equation is 
x = 1, y = 0. Thus the noninterfering processor set contains 
g(l) = /3 processors with the displacement x = 1 from each 
other. 

For the nonminimal divisible files j =1= 1 and d = 
g(j). x -/3. y = (/3/j). x -/3. y. This equation has also only 
one solution, x = 1, y = 0, because /3 is divided by j and 
d = /3/j by definition. Thus the noninterfering processor set 
contains d = /3/j processors with the shifting distance x = 1 
from each other. 

For nonminimal nondivisible files, since d . j < /3, the Di
ophantine equation has a nontrivial solution, x > 0, y > 0, 
provided gcd ([/3/j] , /3) = 1 and gcd (/3, x) = 1. Thus the non
interfering processor set NPS wili have g (j) members, where 
g(j) = [/3/j] and the shifting distance between any two con
secutive processors from NPS is x> 1. 

For irregular files, the allocation creates a minimal memory 
overhead, that is, it is the least interfering because it is de
scribed by the Diophantine equation that provides the best 
approximation to the closest regular allocation that is nonin
terfering. 

The paper shows that all allocation techniques are com-. 
pletely deterministic and described by the strict algorithmic 
procedures that it presents. 

B.4 Parallel Operation of Several Circulating Memories 

Since a noninterfering processor set, NPS, that allows ob
taining noninterfering data files includes only g (j) processors, 
the remaining T - g (j) processors do not participate in file 
fetches from the same circulating memory, M. This paper 
describes a procedure to prevent their idleness by connecting 
these processors with other circulating memories, so that all 
processors will be fetching data files and all the memories will 
be provided with either noninterfering or the least interfering 
allocations. 

As a result, the allocation techniques presented in this pa
per achieve very high performance characteristics since 

1. They allow obtaining either noninterfering or least
interfering memory allocation, in which the entire 
memory space of each memory, M, is either completely 
filled with noninterfering job files accessed by g(j) pro
cessors or a minimal number of memory words is not 
used. 

2. Tprocessors can be partitioned into T/g(j) groups, each 
of which is served by one circulating memory. 

C. STRUcrURE OF A MINIMAL FILE AND FILE 
INTERFERENCE PROBLEM 

In this section we will find the size of a minimal file, MF, and 
outline the problem of file interference. 

Let processor P fetch word w. Since the period T* of M is 
not the same as the number of processors, T, during each 
revolution of M, one processor, P, will fetch a new word of 
M. We find the number of such words and their relative 



586 National Computer Conference, 1983 

locations with respect to the original word w. Obviously all 
these words should be included in the minimal file of P. 

Another problem that will be solved is finding out what 
processors fetch the same word w. during consecutive revolu
tions of M. 

C.l Structure of the Minimal File 

As was indicated in Section B, the following rule of access
ing will be used: If processor Pi accesses word Wk, then the 
next word, W k+ b will be accessed by PH t, where i changes 
mod-T and k changes mod-T*. 

Therefore during word fetches from memory M , processors 
are forming processor sequence PS of period T, and memory 
words are forming memory sequence MS* of period T*: 

PS = {P, I[P], . .. , (T - 1)[P]) 

MS* = {w, l[w], . .. , (T* -1)[w]). 

Here the sequentiality of different P's and w's in PS and 
MS, respectively, is understood as follows: If processor P 
fetches word w, then the next processor, I[P], fetches word 
1[ w ]. Iterative application of this rule leads to processor i [P] 
accessing word i [ w ], where i shows the displacement or the 
shifting distance between P and i[P] or wand i[w], re
spectively. 

Obviousiy, for processors T[P] = P; that is, after T shifts 
the same processor will fetch word T[ w]. Likewise, for memo
ries T*[ w] = w, that is, after T* shifts the same memory 
location, w, is accessed by processor T*[P]. 

For convenience of notation, we denote the event of P 
fetching word w as P~w, where P is called source, w is called 
destination. 

Let us find the least common multiple of T and T*, lcm (T, 
T*),f= lcm(T, T*)/Tandf* = lcm(T, T*)/T*. Thesignifi
cance of the numbers f and f* is that the f integer shows the 
minimal number of different words that are connected with 
processor P during consecutive revolutions of memory M. 

These words are found as follows. If P~w, then 

T[P]~T[w], 

2T[P]~2T[w ], 

(f-l)[P]~(f-l)[w] 

For these fetches, all sources are the same since T is the 
period of the processor sequence. Thus P = T[P] = 2T[P] = 
... = (f -1)[P]. The destinations, however, are not the 
same, since in general T*, the period of memory sequence 
does not divide T, that is, T* '1-. T. 

Thus the minimal file of P, MF(P), contains the words 

MF(P)={w, T[w], 2T[w], ... , (f-l)"T[w]}. (1) 

From the constructing procedures used in finding MF(P), 
this is a minimal set, since in its construction the only assump
tion that was made was that a processor P fetches only one 
word, w, from this file. All other members of MF(P) have 
been found by iterative application of the T[w] rule. 

C.2 Fetches of Minimal File During One Memory Cycle 

In order to provide that all words from the minimal file of 
P be fetched during one memory cycle, it is necessary to find 
values for their relative positions, T, 2T, ... , (f -1)T, that 
do not exceed T*; that is, it is necessary to reduce them by 
mod T*. This can be easily done using the following well
known properties of congruences: "When each member of a 
complete set of residues {a, 1, 2, ... , p - I} is multiplied by 
an integer k which is not a multiple of p to yield {a, k, 2k, ... , 
(p -1)"k} and when these numbers are reduced modp, the 
resulting remainders are precisely the numbers in the set {a, 
1, 2, ... , p - I} except possible to the order."t 

In our case, we reduce all numbers, {a, T, 2T, ... , 
(f -I)" T} by mod-T*. Since f" T = f*" T* = lcm(T, T*),· 
T = f*" J3, T* = f" J3, where J3 = gcd (T, T*). All members of 
the minimal file are then reduced by mod-T* = f" J3 and not by 
mod-fas in the property of congruences formulated for J3 = l. 
Since for the general case J3;::: 1, the result of mod-T* reduc
tion will be an integer including two factors, J3 and i. Thus the 
minimal file of P, MF(P), will be given as: 

MF(P) = {w, J3[w], 2" J3[w], . .. , (f - 1)" J3[w]}, (2) 

where J3 = gcd (t, T*). 

D. NONINTERFERING FILE ALLOCATION FOR 
MINIMAL PROCESSOR FILES 

In this section we will discuss the procedures for noninter
fering file allocation of minimal processor files MF(P), 
MF(P) = {a, J3, 2J3, ... , (f - 1)" J3}. Let us find the set of 
noninterfering processors, that is, those of which any pair of 
minimal files do not interfere, or have empty intersections. 
This can be done by applying shift iterations to the set MF(P) 
as follows: I-bit shift, I[MF], of MF is the minimal file ac
cessed by the processor p(t) = I[P]. This file has the form 
MF(P(l» = I[MF] = {I, J3 + 1, 2J3 + 1, ... , (f - 1)J3 + I}. 

Similarly one can obtain 2-bit shift, 2[ M F], of M F, accessed 
by the processor p(2) = 2[P], etc. The number of noninter
fering processors is J3. Their locations relative to the P pro
cessor are 

P, I[P], 2[P], ... , (J3 - 1)[P]. 

These locations form a noninterfering processor set, 

NPS = {P, I[P]' 2[P], ... , (J3 - I)[P]). 

Thus there exists a noninterfering file allocation if the 
memory M is accessed by precisely J3 processors forming a 
noninterfering processor set; 



Conflict-Free Memory Allocation for Associative Data Files 587 

NPS = {P, I[P], ... , (~-I)[P]). 

Example: Let us construct the noninterfering processor 
set, NPS, for T = 15, T* = 35, ~ = gcd (15, 35) = 5, 
f = T*/~ = 7. We obtain the noninterfering processor set, 
NPS = {P, I[P], 2[P], 3[P], 4[P]}, where these processors are 
allocated with the following minimal data files. Since f = 7, 
f-l =6: 

MF(P) = {O, 5, 2'5, 3·5, 4·5, 5·5, 6'5} 
= {O, 5,10,15,20,25, 30}, 

MF(P(l») = MF(I[P]) = {I, 6,11,16,21,26, 31}, 

MF(P(2») = MF(2[P]) = {2, 7,12,17,22,27, 32}, 

MF(P(3») = MF(3[P]) = {3, 8,13,18,23,28, 33}, 

MF(P(4») = MF(4[P]) = {4, 9,14,19,24,29, 34}. 

Therefore, there is no interference between minimal data files 
accessed by the processors from the noninterfering processor 
set. Also memory M is completely filled with information. 
Thus, the allocation is noninterfering. 

E. NONMINIMAL FILES 

In this section we will discuss a noninterfering file allocation 
for nonminimal data files. 

Each nonminimal file is specified as follows: for each word 
w fetched by P, there exists a IT'inimal processor file, 
MFw(P) = {w, ~[w], 2~[w], .. . , (f -1)~[w]); therefore, to 
give a nonminimal file NF(P) is 

1. To give only j primitive words, that is, those words any 
pair of which are not in the same MF(P), 

2. To construct the minimal data file for each primitive 
word. 

The total number of words in NF(P) is j.f. It then follows 
that each nonminimal job file accessed by P is specified by 
primitive file PF(P) made of j primitive words; PF(P) = {w, 
d1[w], d2[ w], ... , dj - 1[ w]}, where d; is the shifting distance 
between a current output word wand another primitive word. 
Obviously, it is possible to select primitive words such that 
each d; <~, inasmuch as the distance between each primitive 
word and its derivatives in the minimal job file originated by 
it is a multiple of ~(1'~, 2·~, ... , (f - 1)~). For con
venience, all d's are ordered as d; < di+ 1 (i = 1, ... , j - 1). 
Therefore, the nonminimal job file, NF(P), can be expressed 
in the following form: Given words w, d1[ w], d2[ w], ... , 
dj - 1[ w], that must be accessed by P, then all the words acces
sed by P during consecutive memory revolutions are given as 
shown in Figure 4. The procedure of obtaining NFfrom PFis 
called ~-expansion where ~ = gcd(T, T*). 

Example: Let T = 30 processors be connected with the cir
culating memory containing T* = 105 words. Let gcd (T, 
T*) = gcd (30, 105) = 15 and f = 105/15 = 7. Suppose that a 

0, ~, ···,(f-l)~ 

db d1 + ~, d1 + 2~, ... ,d1 + (f - 1)~ 

d2, d2 + ~, d2 + 2~, ... , d2 + (f - 1)~ 

NF(P) = 

Figure 4-Words accessed by P during consecutive memory revolutions 

processor P must fetch the following pnmltlve words: 
PF(P)={w, d1[w], d2[w]}, where d1=2 and d2=5. Thus 
during each revolution it fetches a nonminimal job file, 
NF(P), that includes the following words given by their posi
tions relative to w: 

1
°,15, 2'15, 3'15, 4'15, 5'15, 6·15 I 

NF(P) - 2, 2 + 15,2 + 2'15,2 + 3'15,2 + 4'15,2 + 5'15, 2 + 6·15 
5,5+15,5+2'15,5+3'15,5+4'15,5+5'15,5+6'15. 

This file will contain 3· 7 = 21 words. Thus for a noninter
fering file allocation, the memory can be accessed by not more 
than five processors (5 = 105/21). Since this allocation is irreg
ular, however, it is the least interfering allocation and the 
noninterfering processor set will contain six processors sepa
rated by displacement x = 8. 

In Sections E.l and E.2 we will study noninterfering and 
least interfering file allocations for nonminimal job files, reg
ular and irregular. Before developing some results for the 
general case j> 1 and d1 '/.... d; (i = 2, ... , j - 1), that is, d1 

does not divide any di , let us consider a particular case of 
regular files whereby the primitive file PF(P) is given as 

PF(P) = {O, d, 2d, ... , (j - l)d}, 

where j . d :$ ~ = gcd (T, T*). This file is called a regular non
minimal file since its primitive file is made of all equally dis
tant primitive words, that is, PF = {O, d, 2d, ... , (j - l)d}. 

E.1 Regular Nonminimal Files 

U sing a ~-expansion procedure whereby each primitive 
word generates its minimal file, one obtains the regular non
minimal file 

0, 
d, 
2d, 

NF=. 

13, 
d + 13, 
2d + 13, 

213, 
d + 213, 
2d + 213, 

... , 13(f - 1) 

... , d + 13(f - 1) 

... , 2d + 13(f - 1) 

(j - l)d, (j - l)d + 13, (j - l)d + 213, ... , (j - l)d 
+ 13(f -1) 



588 National Computer Conference, 1983 

As was shown in Figure 2, one can have two types of regular 
nonminimal files: 

1. Divisible regular files, in which j. d =~, where 
\3 = gcd (T, T*), and 

2. Nondivisible regular files, in which j. d <~. 

The next two sections will discuss noninterfering allocation for 
these types of files. 

E.1.1. Divisible regular files. For divisible regular files 
there exists a noninterfering file allocation. A noninterfering 
processor set consists of d processors given by the following 
relative distances to each other: NPS = {a, 1, 2, ... , d - I}. 

Example: Let us construct divisible regular files for the 
following processor-memory interconnection scheme: T = 27; 
T* = 45; j = 3. This means that since ~ = gcd (T, 
T*) = gcd (27, 45) = 9, f = T*/~ = 45/9 = 5, and d = ~/j = 
913 = 3, one can select a noninterfering nonminimal file allo
cation. Each nonminimal file, NF, contains INFI members, 
where INFI = f· j = 5· 3 = 15. The set of noninterfering pro
cessors is given as NPS = {a, 1, 2} = {P, I[P]' 2[P]}. 

This allocation is noninterfering since it introduces no dum
my clock periods in accessing and achieves a complete filling 
of the available memory space. These nonminimal files are 
given in Table 1. 

TABLE I-Noninterfenng allocation of nonminimal, 
divisible irregular files 

13[+ + s ** 
NF(s) d·m* s=O 0'13 1'13 2'13 3'13 4'13 

0 0 9 18 27 36 
NF(O) d 3 12 21 30 39 

2d 6 15 24 33 42 

s=1 0'13 + 1 1'13 + 1 2'13 + 1 3'13 + 1 4'13 + 1 

0 10 19 28 37 
NF(l) d 4 13 22 31 40 

2d 7 16 25 34 43 

s=2 0'13 + 2 1'13 + 2 2'13 + 2 3'13 + 2 4'13 + 2 

0 2 11 20 29 38 
NF(2) d 5 14 23 32 41 

2d 8 17 26 35 44 

+m =0, ... ,j-1 
**/ = 0, ... , f - 1 

E.1.2 Nondivisible Regular Files. By a nondivisible regular 
job file, NF, we mean a nonminimal file accessed by processor 
P and specified with the following parameters: 

1. Its primitive file is PF = {a, d, 2d, ... , (j - l)d}, where 
d is the equal shifting distance parameter. 

2. d'j <~, where ~ = gcd(T, T*), T is the number of 
processors, and T* is the number of words of circulating 
memory M. 

Since d • j < ~, j may not be a divisor of~. Thus the distance 
d wiil be presented as 

d = r~/jl'x - ~'y. 

We obtained a linear Diophantine equation called the mod
ular equation. Applying a well-known theorem of number 
theory to a solution of the Diophantine equation,l we found 
that this modular equation has a solution if and only if 
gcd cr~/jl, ~) is a divisor of the fixed distance d. Therefore, if 
~,j, and d are given, not all d's can have x and y solutions of 
the modular equation. However, if for ~, j, and d there is an 
integer solution, then there exists a noninterfering file allo
cation whereby no dummy clock periods are introduced in file 
fetches. 

Theorem 1. If there exists an integer solution x and y of the 
modular equation d = g(j). x - ~. y, where g(j) = r~/jl, and 
gcd (~, x) = 1, then there exists a noninterfering file allocation 
whereby a noninterfering processor set is NPS = {p(O), p(x), 
pea), ... ,P«g-l)X)}, where p(ix) = ix[P(O)], and x is the root of 
the modular equation. Each processor, p(ix), but the last one, 
p( (g-l)x), accesses a standard nonminimal file, NF(ix), contain
ing j·f members where j is the index of allocation. In other 
words, if p(O) accesses NF(O) then any p(ix) but p«g-l)x) acces-
ses NF(ix) = ix[NF(O)]. The last processor, p«g-l)X), fetches a 
smaller nonminimal file NFL (g-l)x obtained from standard file 
NF(g-l)x by erasing the last L words, L = g ·f· j - T*, since 
these words are included in NF(O). 

Corollary. For the modular equation d = g (f) . x - 13 • y 
having g (j) = ~/j, there exists the trivial solution x = 1, y = 0. 
Therefore, for minimal (j = 1) and nonminimal divisible files 
(d = g(j) = ~/j), the noninterfering processor set includes 
g(j) members with displacement x = 1; NPS = {P, I[P]' 
2[P]' ... , (g(j) - 1)[P]}. 

Example: Let memory M have T* = 42 words. Suppose that 
this memory is attached to T = 28 processors. Suppose that 
d = 3 and j = 3, that is, for each nonminimal file NF its prim
itive file contains j = 3 primitive words with the same relative 
distance d = 3 from each other; PF = {a, d, 2d, ... , 
(j-l)'d}={O, d, 2d}={0, 3, 6}. Since ~=gcd(T, 
T*) = gcd (28, 42) = 14 and d'j = 3· 3 = 9, we have ~ > d·j. 
Let us find f = T*/~ = 42114 = 3. According to Theorem 1, 
there exists a noninterfering file allocation for which L = 3, 
that is, L = g ·f·j - T* = r~/jl'f'j - T = 5·3·3 - 42 = 3. 
Thus only three members of two nonminimal file sets are 
common. Let us find x and y roots; since gcd (f~/jl, 
~) = gcd (U4/31, 14) = gcd (5, 14) = 1, there exists an x and y 
solution of the modular equation d = r~/jl' x - ~. y = 
5x - 14y = 5·9 - 14· 3 = 45 - 42. Therefore, processor dis
placement x = 9, and the noninterfering processor set is given 
as NPS = {a, x, 2x, ... , cr~/jl- l)x} = {a, x, 2x, 3x, 4x}. 
Each processor of the NPS accesses the nonminimal file given 
in Table II and in Figure 5. (In Figure 5 each memory word is 
marked by the unique processor that fetches it.) 

The only common words are words 0, 14, and 28 in files 
NF(O) and NF(4x). Assume that 0, 14, and 28 belong only to 
NF(O); for this reason, they are marked with a special bit E in 
Figure 5. NFL (4x) is then obtained from NF(4x) by erasing 
words 0, 14, and 28 from it. Thus file allocation is noninter
fering, since no memory words are common. 



-~ 

~ 

X 

-I---

~ 

X 

-~ 

I 

X 

--

X 

,~ 

-'---

Conflict-Free Memory Allocation for Associative Data Files 589 

0 P IE rT 1 X[P] 
2 3x[P] d 

3 P ~ P-

4 2x[P] 
:> 3x[P] d 

G P rt 7 2x[P] 

~ 4x[P] d 

9 X[P] li 
10 2x[P] 

11 4x[P] 
12 X[P] 
13 3x[P] 

14 P lE t 1b X[P] d 
1b 3x[P] 

17 P ""'-~ 

1U 2x[P] 
19 3x[P] d 

20 P I--~ 

21 2x[P] 
LL 4x[PJ ..1 23 X[P] 
24 2x[PJ 

2S 4x[PJ 
2ti X[P] 
27 3x[P] 
')I! P lE f-U t 29 X[P] 
30 3x[PJ ~ 31 P ""'-~ 

32 2x[P] 
33 3x[PJ d 
34 P I--~ 

3~ 2x[PJ 
3tJ 4x[PJ d 
37 x[PJ li 
30 2x[PJ 

-
39 4x[P] 
40 X[P] 
41 3x[P] 

Figure ~Noninterfering file allocation for nondivisible regular files NF(O) , 

NF(1-x), NF(2-x), NF(3-x), NF(4-x) accessed by processors P, x[P], 2x[P], 
3x[P], and 4x[P], respectively 

S 

)~ 

S 

, 

, 

), 

S 

\ 



590 National Computer Conference, 1983 

TABLE II-Noninterfering allocation of nonminimal, 
nondivisible regular files 

13·/+ + s*·x 

NFu) d·m* s=O O·~ H~ 2·~ 

0 0 14 28 
NF(O) d 3 17 31 

2d 6 20 34 

s=1 0·13 + x 1·13 + x 2·13 + x 

0 9 23 37 
NF(x) d 12 26 40 

2d 15 29 1 

s=2 0·13 + 2x 1·13+2x 2·13 + 2x 

0 18 32 4 
Np2x) d 21 35 7 

2d 24 38 10 

s=3 0·13 + 3x 1·13 + 3x 2·13 + 3x 

0 27 41 13 
Np3x) d 30 2 16 

2d 33 5 19 

s=4 0·13 + 4x 1·13 + 4x 2·13 + 4x 

0 36 8 22 
NP4x) d 39 11 25 

2d 0 14 28 

E.1.3 Generation of processor addresses for nonminimal 
file allocation. Consider the procedures for finding the address 
of a processor that has to fetch a current output word w issued 
by the memory. Since for the minimal and divisible regular 
files, the noninterfering processor set is given as NPS = {a, 1, 
2, ... , (d -I)}, each dth word of the memory goes to the 
same processor. Thus generation of the processor addresses 
may be obtained with a mod-d counter that shows the address 
of a processor that has to receive a current output word. 

For the nondivisible regular files, the procedure of finding 
a processor address becomes more complicated since two ad
jacent words, wand l[w], should be fetched by the two pro
cessors that may not be adjacent in the NPS. For instance, in 
the example above, if word 3 is in NF(O) and is accessed by p(O) 
then the next word 4 should be accessed by p(2x) = p(18) since 
it belongs to NF(2x) where 2 0 x = 18 (Figure 5). 

Therefore one must devise procedures for generating pro
cessor addresses for nondivisible regular files, because only 
then can one take advantage of elegant and attractive attri
butes of the allocation that are developed. We have devised 
these procedures, but will not be discussing them in this 
paper. 

E.2 Irregular Files 

A file is called irregular, if (a) it is a nonminimal and (b) its 
primitive file, PF; i.s given a.s PF = {a, db dz, . .. ,dj - 1}, where 

shifting distances dt, d2 , ••• , dj are not multiples of an integer 
d. 

In this section we will study a file allocation of irregular 
files. It follows from Theorem 1 that generally there exists no 
noninterfering file allocation of irregular files. Indeed, by 
definition the modular equation d = r~/jlx - ~ 0 y has no in
teger solutions, x and y, because d l =1= d and d2 =1= 2d, . .. , 
dj - t =1= (j - l)d. Thus, no d can be found; this is not to men
tion other conditions such as gcd (f~/n, ~) = 1 and gcd (x, 
~) = 1. 

However, if we find a close approximation of PF = {a, dt, 
d2 , • •• , dj - t } with some set PFd={O, d, 2d, ... , (j - l)d} of 
equal distances it is possible to find a least-interfering file 
allocation. This means that it is possible to construct such a 
noninterfering processor set NPS that (a) each P ENPS 
fetches a nonminimal file, NF, given in Figure 4, and (b) 
between different files fetched by members of NPS there ex
ists a minimal interference, that is, the minimal number of 
common words. Thereafter, each common memory word is 
marked with a special bit C to prevent its fetch by a processor. 

For this reason, a dummy clock will be introduced into a file 
access each time a memory word with bit C is the output word, 
since no processor will fetch this word. The number of such 
dummy clocks will be minimal, since a given irregular allo
cation is represented with the best regular approximation that 
allows a noninterfering allocation according to Theorem 1. 

As will be shown in Section E.2.2, the procedures for ob
taining a noninterfering processor set NPS are deterministic; 

. they are described with the use of an irregular allocation algo
rithm that ends with marking common words belonging to 

. more than one job file with bit C = 1. 
But before presenting an irregular file allocation algorithm 

we will introduce an example of irregular file allocation. 

E.2.1 Example of irregular file allocation. Let memory M 
contain 105 words (T* = 105) and be connected with T = 30 
processors. Suppose that processor p(O) fetches the following 
primitive file: ppO) = {a, 2, 5}, so that d1 = 2, d2 = 5, andj = 3. 
Since d1 does not divide dz, PF(O) is irregular. The resulting 
nonminimal file, NF(O) , will contain j of = 21 words, j = 3, 
f = T*/gcd (T, T*) = 105/15 = 7. Using the equation in Figure 
4, we construct the file in Table IlL 

If we select a noninterfering processor set as NPS = {a, x, 
2x, 3x, 4x, 5x}, where x = 8, we will have a file allocation with 
the least interference. (A formal procedure for finding this x 
will be given in the next example.) Indeed, if processor p(O) 
accesses NF(O) given above, then processor p(x) = X [P] will 
access following NF(x) in Table IV. The processors p(2x), p(3x), 
p(4x) and p(5x) will access the NF(2x) NF(3x) NF(4x) and 
NF(;X) also in Table IV. As seen, the ~llocatidn is 21-inter
fering. Indeed, NF(O), NF(x), NF(2x), and NF(3X), have no com
mon words at all; as for NF(4X) , it has a common row of 7 
words with NF(O); NF(5x) has a common row of 7 words with 
NF(O) (7 words), and a common row of 7 words with NF(x) (7 
words). The common rows of NF(4x) and NF(5x) are squared. 
In all 21 words are common. 

The minimal interference of this allocation is established as 
follows. If for the same memory containing 105 words a non
interfering allocation exists, it requires 105/21 = 5 processors, 



Conflict-Free Memory Allocation for Associative Data Files 591 

TABLE III-Noninterfering allocation of 
nonmimimal irregular files 

d 0 1-13 2·13 3·13 4·13 5·13 6·13 

0 0 15 30 45 60 75 90 
Nf"J d1 2 17 32 47 62 77 92 

d2 5 20 35 50 65 80 95 

each processor fetching j . f = 3· 7 = 21 memory words. How
ever, in accordance with Theorem 1, no noninterfering alloca
tion exists. Our allocation requires six processors instead of 
five, that is, only one processor more than is required by a 
noninterfering allocation. For this allocation each processor 
fetches 21 words, so six processors will fetch 21· 6 = 126 
words. Since the memory stores 105 words, 126 -105 = 21 
words are common. The number of common words is min
imal, since the memory is accessed only by one processor 
more than is required by the noninterfering processor set that 
can be constructed for the noninterfering allocation. 

E.2.2 Irregular file allocation algorithm. Given: Irregular 
primitive file PF = {O, db d2, ... , dj - 1}. 

Find: Noninterfering processor set NPS, such that the re
sulting allocation includes all memory words and introduces 
the least interference between various nonminimal files ac
cessed by individual processors from the set NPS. ' 

Step 1. For a given irregular primitive file, PF = {O, dI, 
d2, . .. , dj - 1}, find a set, PFd={O, d, 2d, . .. , (j - 1) d}, of 
equal distances such that intersection PF n PFd contains the 
maximal number of members. The set PFd is called the max
imal approximation of PF. 

Step 2. Find rl3/jl = g(j), where 13 = gcd (T, T*); T is the 
number of processors; T* is the number of memory words; 
and j is the number of words in PFd • 

Step 3. Construct modular equation, d = fl3/jlx -l3y = 
gx -l3y. Find its solution, x and y, such that gcd (13, x) = 1 
and gcd (g, 13) = 1. If no integer solution, x, y, can be found, 
then either change j in PFd or select another PFd" and so on, 
until such d' and/or j' are found that d' = g'·x' -13' y' has 
integer solution x' and y' . 

Step 4. For each shifting distance, di, that is a member 
of irregular primitive file P F form the following equa
tions: d1 =gl'X-I3'Yl; d2=g2'x-I3'Y2; ... ; dj - l = 
gj-l' x -13' Yj-l, where x is the fixed root of the modular equa
tion d = g . x -13' y found in Step 3. All these equations have 
solutionsg" Yi(i = 1, ... ,j -1), respectively, since di < 13 and 
gcd (x, 13) = 1, that is, gcd (x, 13)ld; (i = 1, ... , j - 1). 

Step 5. Order numbers gI, ... , gj-I, obtained in Step 4 as 
g'l > g'2> ... > g'j-l. The noninterfering processor set, 
NPS, will contain A members where A = max (g;' - gi+l') and 
gi' and gi+ I' are two consecutive members of ordering 
gl' > g2' > ... > gj-l'. And NPS = {P(O), p(x), p(a), .•• , 

TABLE IV-Noninterfering allocation of nonminimal irregular files 

13·/ + Y 

Y =x 0'13 + x H3+x 2'13 + x 3·13 + x 4·13 + x 5·13 + x 6'13 + x 

0 8 23 38 53 68 83 98 
dl 10 25 40 55 70 85 100 
d2 13 28 43 58 73 88 103 

y =2x 0'13 + 2x l'I3+2x 2'13 + 2x 3·13 + 2x 4'13 + 2x 5·13 + 2x 6·13 + 2x 

0 16 31 46 61 76 91 1 
dl 18 33 48 63 78 93 3 
d2 21 36 51 66 81 96 6 

y =3x 0·13 + 3x 1·13 + 3x 2·13 + 3x 3·13 + 3x 4'13 + 3x 5·13 + 3x 6·13 + 3x 

0 24 39 54 69 84 99 9 
dl 26 41 56 71 86 101 11 
d2 29 44 59 74 89 104 14 

y =4x 0·13 + 4x 1·13 + 4x 2'13 + 4x 3'13 + 4x 4'13 + 4x 5·13 + 4x 6'13 + 4x 

0 32 47 62 77 92 2 17 

d1 34 49 64 79 94 4 19 
d2 37 52 67 82 97 7 22 

y =5x 0·13 + 5x 1·13 + 5x 2·13 + 5x 3'13 + 5x 4'13 + 5x 5'13 + 5x 6·13 + 5x 

0 I 40 55 70 85 100 10 25 

d1 42 57 72 87 102 12 27 

d2 45 60 75 90 0 15 30 



592 National Computer Conference, 1983 

p«>..-l)x)}, where x is the shifting distance between two con
secutive members of NPS. 

Example: Using irregular file allocation algorithm, let us 
find a noninterfering processor set for the previous example 
whereby a circulating memory VJith T* = 105 words is con
nected with T = 30 processors and primitive file PF = {a, 2, 
5}, that is, d1 = 2, d2 = 5, and j = 3. Since 13 = gcd (30, 
105) = 15, let us select PFd={O, 2, 4}, leading to d = 2, 
g = l3/j = 15/3 = 5. However, since gcd HI3/jl, 13) = gcd (5, 
15) = 5 =1= 1, the modular equation d = r l3/jl x - 13 . y has no 
integer solution x, y. Therefore, the maximal approximation, 
PFd={O, 2, 4}, has to be modified by selecting such j that 
gcd HI3/jl, 13) = 1. Suppose that j = 4; then PFd={O, 2, 4, 6}, 
g = fl3/jl = [15/4] = 4. Therefore d = 4· x - 15· y; or 2 = 
4·x - 15y. This equation has solution x = 8, y = 2 because 
2 = 4·8 - 15·2 = 32 - 30. Therefore, we obtain processor dis
placement x = 8 for the irregular allocation with PF = {a, 2, 
5}. Let us now find how many members will be in the NPS 
processing set. Since primitive file PFhas d 1 = 2 and d2 = 5 we 
find numbers gl and g2 by constructing the following equa
tions: 

2 = 8·g1 -15Yl 

5 = 8 . g2 - 15Y2 

gl = 4, Yl = 2 

g2=1O,Y2=5. 

Therefore, the noninterfering processor set, NPS, contains A 
members where A = g2 - gl = 10 - 4 = 6, NPS = {p(O) , p(1'S), 

p(2'S), p(3'S), p(4'S), p(s'S)}. 

E.3 Resume 

As follows from the material of this section, irregular file 
allocation is entirely algorithmic because one can find both x 
and A for the noninterfering processor set, NPS = {p(O), 
p(lx), . .. , p«>"-l)X>, via the algorithmic procedures we have 
specified. 

If common words are then eliminated entirely from all in
terfering files one obtains irregular file allocation with the 
least interference, when memory introduces a minimal num
ber of dummy clocks in file accessing. 

F. CONCLUSIONS: PARALLEL OPERATION OF 
SEVERAL CIRCULATING MEMORIES 

This paper has shown that if T processors are connected with 
one circulating memory having T* words, then the following 
cases of allocation can be distinguished: 

1. Regular allocation, whereby a single memory M is ac
cessed by g (j). processors with the following proces
sor addresses: 0, lx, 2x, ... , (g(j) - l)x, where 
g(j) = fgcd (T, T*/jl and the processor displacement x is 
the root of the modular equation d = g (j) . x - 13 . y. As 
was shown in the paper, all regular allocations (minimal, 
non minimal divisible, and nonminimal nondivisible) are 
noninterfering, that is, circulating memory M is com-

pletely filled with information and loses no clock periods 
during each file access. 

2. Irregular allocation, whereby a single memory M is ac
cessed by A processors, where A = max (gj - gi+ 1) and 
the addresses of participating processors are: 0, x, 
2x, ... , (A - 1)· x. The allocation described is the least 
interfering, since a minimal number of words of memory 
M are empty. Thus during memory circulation, a mini
mal number of clock periods are wasted. 

Therefore, to provide either noninterfering or minimal in
terfering file allocation one must connect only g(j) or A pro
cessors with one circulating memory. The remaining pro
cessors are idle. To eliminate their idleness, it is necessary for 
a regular allocation to have NM circulating memories serving 
T processors, where NM = T/g(j), and g(j) processors are 
connected with one memory (Figure 6). 

Similarly, one finds that the number of memories for irreg
ular allocation is NM = TIA. In Figure 6 we have two circu
lating memories, Ml and M2, storing job files for eight pro
cessors partitioned into two groups, GR 1 and GR2, where 
GR 1 includes processors Po, P2 , P4 , and P6 , and GR 1 includes 
PI. P3 , Ps, and P7 • 

Generally, the addresses of the processors connected with 
the same memory are 0, lx, 2x, . .. , (g - l)x and they are 
determined via the solution of the modular equation, 
d = gx -l3y, where ° address is assigned to the processor that 
fetches the first output word, W, of the memory M. Therefore 
to exclude intersection among any two groups of processors, 
G1 and G2 , connected to two different circulating memories, 
Ml and M 2 , allocations should be selected that are character
ized by the same displacement x and the same number, g (j) 
or A, of processors included in each group, G/. In Figure 6, 
x ~ 6, g(j) = 4. Thus, group GR 1 is formed of the noninter
fering processor set NPS1 = {a, 6 ·1, 6·2, 6· 3} = {a, 6, 4, 2} 
and group GR2 is formed of noninterfering processor set 
CPS2 = {I, 1 + 6, 1 + 12, 1 + 18} = {I, 7, 5, 3}. In this case we 
will obtain a very effective utilization of processor and mem
ory resources, and either no clock periods, or a minimal num
ber of them, are wasted in each allocation. 

Therefore, for regular files, one obtains a high-perfor
mance memory allocation in which each circulating memory is 
completely filled with information. In addition, each memory 
will fetch g(j) files to g(j) processors and Tprocessors will be 
served by TIg(j) circulating memories. The allocation is non
interfering. 

For irregular files, a very high performance is also achieved, 
whereby in each memory a minimal number of cells is empty 
and each memory fetches files for A processors. The number 
of circulating memories serving T processors will be TIA. 
Since A is greater than g(j), performance of irregular allo
cations is not as good as for the regular ones. Therefore when
ever possible it is preferable to use regular allocations. 

REFERENCES 

1. Barnett, I.A. Elements of Number Theory. Boston: Prindle, Webber and 
Schmidt, 1969. 



Conflict-Free Memory Allocation for Associative Data Files 593 

GRl GR2 GRl GR2 GRl GR2 GRl GR2 
o 2 3 4 5 6 7 

L-------------~------------~~~------------+--------------~~-------r------------~ 

i 
Ml 

Figure 6---Concurrent operation of two circulating memories 

2. Booth, T.L. Sequential Machines and Automata Theory. New York: John 
Wiley and Sons, 1967. 

3. Golomb, S.W. Shift-Register Sequences. San Francisco: Holden-Day, 1967. 
4. Kautz, W.H. (Ed~). Linear Sequential S'A-'itching Circuits. San Francisco: 

Holden-Day, 1965. 
5. Elspas, B. "The Theory of Autonomous Linear Sequential Networks." 

Transactions of the IRE, Cf-6 (1959), pp. 45--60. 
6. Kartashev, S.P. "State Assignment for Realizing Modular Input-Free Se

quential Logical Networks without Invertors." Journal of Computer and 
System Sciences. 7 (1973), pp. 522-542. 

7. Kartashev, S.P. "Theory and Implementation of p-multiple Sequential 
Machines." IEEE Transactions on Computers, C-23 (1974), pp. 500-524. 

8. Batcher, K.E. "The Multi-dimensional Access Memory in STARAN." 
IEEE Transactions on Computers, C-26 (1977), pp. 174-177. 

9. Lawrie, D.H. "Access and Alignment of Data in an Array Processor." 
IEEE Transactions on Computers, C-24, (1975), pp. 1145-1151. 

10. Siegel, H.J. "Controlling the Active/Inactive Status of SIMD Machine 
Processors." Proceedings of the 1977 International Conference on Parallel 
Processing, 1977, p. 183. 

11. Siegel, H.J. "Interconnection Networks for SIMD Machines." IEEE Com
puter, 12, 6 (June 1979), pp. 57-65. 

12. Lawrie, D., and C. Vora. (June 1979). "The Prime Memory System for 
Array Access." IEEE Transactions on Computers, C-31 (1982). 





Reconfigurable fault-tolerant multicomputer network 

by SVETLANA P. KARTASHEV 
University of Nebraska, Lincoln 
Lincoln, Nebraska 

and 
STEVEN I. KARTASHEV 
Dynamic Computer Architecture, Inc. 
Lincoln, Nebraska 

ABSTRACT 

This paper discusses fault -tolerant reconfigurations of a multicomputer network 
organized as a binary tree. The paper shows how to reconfigure a binary tree with 
faulty nonleaves with lost connectivity into a binary tree in which all faulty nodes 
become leaves or form more complex end-tree structures of higher dimension. 

In both cases the faulty nodes are disconnected from a reconfigured fault-tolerant 
tree, which continues to function as a gracefully degraded tree made completely out 
of fault-free nodes. 

The reconfiguration techniques developed are based on fine mathematical ideas 
of shift-register theory; they can be performed with only a single reconfiguration 
code (called a bias) that is sent concurrently to all fault-free nodes of a tree. 

The techniques for finding this reconfiguration code are also very simple. For the 
case in which all faulty nodes become leaves, the required reconfiguration code can 
be found during the time of one mod-2 addition (one clock period). For the case in 
which all faulty nodes form an i -dimensional end-tree, the necessary reconfigura
tion code can be found following a simple process that includes (i-I) mod-2 addi
tions performed sequentially. 

Once the reconfiguration code is found, it is sent to all fault-free nodes of a binary 
tree. A fault-tolerant reconfiguration into a gracefully degraded tree with discon
nected faulty nodes can be performed during the time of one clock period, since it 
includes the time of a one-bit shift and mod-2 addition. 

595 





A. INTRODUCTION 

A very popular implementation for a distributed computing 
system is a binary tree. In this configuration each tree node is 
implemented as a separate and autonomous computational 
node. 1,2,3 The reason for this is that for conventional com
putations, the tree structure describes a variety of control and 
computational algorithms. 

In general, control algorithms amenable to a tree imple
mentation describe a tree hierarchical management structure 
whereby each higher-level node 

1. manages and distributes information among all lower
level nodes that follow or succeed it in a tree, and 

2. receives completion signals from all lower-level nodes 
indicating that all jobs assigned for execution have been 
completed. 

Computational algorithms amenable to a tree imple
mentation belong to a broad class of so-called divide-and
conquer algorithms (sorting and evaluation of arithmetic ex
pressions, etc.), in which an entire algorithm can be easily 
partitioned into portions assigned to tree nodes for com
putations. Especially important is the use of binary trees in 

8=101 B = 101 

~~ 1 + 1 + 0 

o 0 l=Nl 

~. 1 0 1 0 0:+0+ 
o 0 l=Nl 

Reconfigurable Fault-Tolerant Multicomputer 597 

distributed databases, since most of the file accesses algo
rithms are based on queries organized as a binary tree. 4 

Trees have two types of nodes, leaves and nonleaves; here 
a leaf is understood as a node of the lowest level, i = 0, and a 
nonleaf node has level i ;::: 1, where i ~ n for the n-Ievel tree. 
In this tree the node of the highest (n) level is called the root. 

A multicomputer network that reconfigures into trees as 
well as other useful structures (stars and rings) can be or
ganized if its nodes identified with computer elements (CE's) 
are interconnected with a special memory-processor bus (or 
DC-bus).5,6 To organize a data broadcast between a pair of 
nodes Nand N* interconnected with the DC bus, it is suf
ficient for network node N to generate the position code or 
address of N*. 

Activation of the data path between Nand N* will be 
denoted as transition N~N* meaning that 

1. N will generate the position code or address of N * . 
2. N will establish a data path between Nand N*. 
3. The data path between Nand N* can be made bi

directional; that is, it can run either from N to N* or 
from N* to N, and it can be any of the four types 
PE-ME*, PE-PE*, ME-PE*, ME-ME*-here the 
first element belongs to node N and the second element 

B=101 8 = 10] 

~' o+o+o~. 0 

1 0 l=NS 

r-___ L-_--=--B = 101 

~~3 Root, level 3 

~o 
o 1 1 

Figure 1-3-level tree 



598 National Computer Conference, 1983 

belongs to node N * , and P E and ME stand for processor 
element and memory element. 

To minimize the time of reconfiguration, it is reasonable to 
assume that for each network structure that can be assumed a 
rule of succession N ~ N* will be maintained such that during 
reconfiguration each node N will have the minimal number of 
immediate successors N*; this will minimize the reconfigura
tion time needed to establish the structure. 

To hold to this rule during the reconfiguration of trees 
requires that the direction of succession be maintained from 
the leaves to the root. This will transform trees into single
successor structures, since each node N will have only one 
successor in this structure. 

If all network transitions are established concurrently then 
the overall time of network reconfiguration will equal that of 
one transition. 

A.I Contribution of Shift-Register Theory 

In this paper the following procedure will be used to gener
ate the various tree structures that can be assumed by a dis
tributed computing system. (This procedure is a particular 
case of a more general procedure that can generate not only 
trees, but also rings and stars. 6,7) 

Assume that each tree node N is provided with a special 
shift-register that stores its position code N, which is of size n . 
(See Figure 1.) Suppose that in the given network structure to 
be assumed, node N should be connected with node N* via a 
data path of type PE-PE*, PE-ME*, ME-ME * , or ME
PE*. Then for each type of communication between Nand 
N*, node N generates position code N* using a left-shifted 
shift-register that generates N* as follows: 

N*=l[N]o+B, 

where l[N]o is a 1-bit noncircular shift of N to the left and B 
is an n -bit reconfiguration constant brought with the recon
figuration instruction to all network nodes that are requested 
for reconfiguration. Reconfiguration constant B will be called 
bias, and the shift-register of Figure 1 is called a shift-register 
with the variable bias (SRVB). Since to generate a binary tree 
SRVB must always perform noncircular shift l[N]o, subscript 
o will be omitted in this paper. 

In Figure 1, the network of 8 nodes receiving bias B = 101 
reconfigures into the 3-level tree with the root R = 011. 

In all, since there exist 2" different biases of size n, it is 
possible to generate 2" different trees with an n-bit SRVB. 

A.2 Usefulness of Various Tree Configurations for 
Improving Fault- Tolerance of Multicomputer Networks 

The ability of the network to assume 2" different tree con
figurations is important since it allows one to improve fault
tolerance in a tree. 

Indeed, if in a binary tree k nonleaves become' faulty, the 
tree may become unoperational by losing its connectivity and 

000 100 010 110 111 011 

:t. 
(al (bl 

\{ ,,: .... ~r Bias B = all 

~ 1 10 

Figure 2-Fault-tolerant reconfiguration of a binary tree 

being transformed into disjoint components. The fastest way 
of restoring connectivity in such a tree is to reconfigure as a 
new tree in which all faulty components become leaves; a tree 
with faulty leaves continues to function (although with some 
degradation in performance), since its connectivity is not lost. 

For instance, consider two binary trees (Figure 2a, b) gener
ated with 3-bit SRVBs receiving biases B = 011 and B = 010, 
respectively. The tree in Figure 2(a) has 4 faulty nodes (011, 
111, 101, and 001). It cannot function, since with these nodes 
out of order it is transformed into 4 disjoint nodes. However, 
it can be reconfigured into a new tree generated with B = 010, 
which will be operational because in it all the faulty nodes 
have become leaves. To perform this reconfiguration requires 
a single instruction storing B = 010 that should be received by 
each fault-free node. The new tree structure is generated dur
ing one clock period, since to establish it each node should 
execute only two logical operations: 1-bit shift (one gate de
lay) and mod-2 addition (two gate delays). Thus recon
figuration into a new tree structure is an extremely efficient 
technique for rapidly restoring connectivity in this tree. 

A.3 Monitor and Root Reconfigurations 

In a distributed computing system organized as a tree, there 
are two approaches for performing tree reconfiguration: 

1. monitor approach 
2. root approach 

A.3.1. Monitor approach. In the monitor approach, all 
fault-tolerant reconfigurations are performed by a system 
monitor that is connected with each tree node. The major 
advantage of this approach is that it can be performed very 
rapidly, since on finding out a status of each node the monitor, 
using the techniques presented in this paper, finds the best 
bias B that restores connectivity in the tree. Then it sends this 
bias to each tree node, thus effecting the tree reconfiguration 
into a new connected tree structure. Major disadvantages of 
this approach are 

1. It requires that the monitor be connected with every tree 
node. This requires a complex interconnection network 
that performs these connections. 

2. The monitor may become faulty, making the monitor 
approach totally inapplicable. 



This requires consideration of the root approach. 

A.3.2. Root approach. In the root approach, a fault
tolerant reconfiguration is performed by the root, the tree's 
connectivity having first been temporarily restored. However, 
this requires that some fault-free leaf nodes change their posi
tion codes (or addresses) and assume the position codes or 
vacancies created by all faulty nonleaves. Such node re
assignment should be temporary-permanent reassignment 
requires extensive modifications in all program jump ad
dresses for data exchanges with the nodes that have changed 
addresses. 

Once the tree's connectivity is temporarily restored, its 
temporary root receives all information on the status of all 
tree nodes. Next, using the techniques presented in this 
paper, it finds the new tree's bias B and reconfigures this tree 
into one in which connectivity is restored for all fault-free 
nodes. Also, these nodes reassume the position codes that 
they had in the original or source tree. 

The major advantage of this approach is that it is universal, 
that is, independent of the fault status of the monitor. Also, 
it requires no interconnections that are not available in the 
network. Its disadvantage is that it takes a longer time than 
the monitor approach, since it requires two steps: (1) tempo
rary restoration of connectivity by changing nodes' addresses 
and (2) reconfiguration. Of these two, the first step is more 
time consuming than the second one, since to restore con
nectivity in a tree requires polling all successor nonleaves in a 
tree and assuming by leaves all the vacancies created by faulty 
nonleaves. 

Therefore the monitor and the root approaches are com
plementary; the advantages of one approach are the dis
advantages of the other. Thus both have their own areas of 
application. 

As we shall show, both approaches involve tree recon
figuration in which faulty nonleaves become leaves. This 
requires proper selection of the bias B to accomplish this 
reconfiguration. 

This paper is dedicated to describing a reconfiguration 
methodology aimed at selecting such a bias B that transforms 
the tree with faulty nonleaves into a connected fault-free 
structure requiring no node reassignment. If both leaves and 
nonleaves are faulty, then the reconfiguration is aimed at 
creating so-called faulty end subtrees, which are made entirely 
of faulty leaves and nonleaves. These subtrees can be discon
nected from the overall tree without loss of connectivity in the 
tree. 

The relationship of this paper with other work in the area 
is as follows: 

1. Since it introduces original fault-tolerant reconfiguration 
techniques for distributed computing systems organized 
as binary trees, it is connected with other works on fault
tolerant reorganizations and reconfigurations.8-12 

2. Since it uses the shift-register theory to develop recon
figurations of binary trees, it is connected with the litera
ture on shift-register sequences. 13--19 

3. Since it discusses distributed computing systems or
ganized as binary trees, it is associated with References 
1 through 4. 

Reconfigurable Fault-Tolerant Multicomputer 599 

A.4 Organization of This Paper 

This paper is arranged as follows. 
Section B introduces synthesis procedures for finding the 

root, R, once the bias B is given. 
Section C finds an analytical expression for any tree node 

located on level i (i = 0, ... ,n). 
Section D introduces types of reconfigurations in the tree; 

it shows that all possible reconfigurations are divided into two 
categories: (1) level reconfigurations and (2) mixed recon
figurations, where each mixed reconfiguration is a combina
tion of several level reconfigurations. 

Section E applies the interesting properties of level and 
mixed reconfigurations to improving fault tolerance in a tree. 
It introduces two cases of faulty nodes in a tree that will 
destroy its connectivity: 

1. All faulty nodes are nonleaves; all leaves are fault-free. 
2. Both leaves and nonleaves are faulty. 

Next, Section E presents reconfiguration methodology aimed 
at finding the bias B (r) of a reconfigured tree in which all 
fault-free nodes become connected. The tree thus recon
figured, composed of fault-free nodes, may function again, 
although its performance will be degraded by disconnection of 
all faulty nodes. 

B. SYNTHESIS OF THE ROOT 

Since in a binary tree the root may perform important fault
tolerant functions such as sending new bias to all tree nodes 
and informing all fault-free tree nodes about the faulty nodes, 
it is necessary to develop a simple synthetic technique for 
finding the root without actual construction of a binary tree. 

Theorem 1, which follows, proposes this synthetic proced
ure. It is based on the following bias structure defined for a 
noncircular SRVB as follows: Given B = GP1 + ... + GPt 
where GPj (i = 1, ... ,t) is its Is position, otherwise called its 
generating position. Let ai, a2, ... ,at be bias distances defined 
as follows: GPi+l = aj[GPd, that is, aj shows the number of 
left-hand shifts between GPi and GPi+t,where i changes from 
1 to t = 1. For GPt, at[GPt] = 0, since this is for a noncircular 
shift. 

For each generating position, GPj , let us form a mod-2 sum 
of all left j-bit shifts of GPj ranging from j = ° to j = aj - 1, 
where aj is the bias distance such that aj [ G Pd = G Pi+ I' 
Denote this sum by BL(GPj ) = GPj + I[GPd + ... 
+ (aj -1)[GPd. By construction, GPj is an addend of 
BL(GPj) and GPj+ 1 is not an addend of BL(GPj). 

With the introduction of BL sums we can establish the 
theorem that constructs the root. 

Theorem 1. For a binary tree generated by an SRVB re
ceiving bias B = GP1 + GP2 + ... + GPz, let GPt, GP3 • 

GPs, •.. , GPk be odd generating positions of the bias, where 
k = t if t is odd and k = t - 1 if t is even. Form BL sums for odd 



600 National Computer Conference, 1983 

generating positions of the bias as BL(GP1), BL(GP3), ••• , 

BL (GPk ). Then the root R is 

For example, let us form the root R for the bias 
B=1001011010-

R = BL(GP1) + BL(GP3) + BL(GPs) 

qPs ~P4 Gt3 ~P2 Gfl , 
1 0 0 0 1 1 0 1 1 o 

---- -- --BL(GPs) BL(GP3) BL(GP1) 

Find the successor N * of R: 

9876543210 9876543210 
N* = I[R] + B = 000 11 0 11 00 + 1 00 101 1 010 

9876543210 
=1000110110=R. 

As we have seen, the technique for constructing the root is 
very simple. It can be easily performed by the programmer, 
who finds the root for the given bias B and then stores it in the 
instruction that reconfigures the network into the given single 
binary tree. Thus each tree node will receive the root and use 
it for forming codes of other tree nodes with which a given 
node wishes to communicate. This formation of the tree nodes 
from the root can be accomplished using the synthesis tech
nique presented in the next section. 

C. SYNTHESIS OF AN ARBITRARY TREE NODE 
(NONLEAF OR LEAF) 

In this section we will develop a synthesis procedure for con
structing a tree node of the ith level (i = 0, ... ,n) if bias B is 
given. The node of the nth level (the root) was constructed in 
Section B. Here we present a more general result that extends 
our findings to any ith-Ievel node (i = n, n - 1, n - 2, ... ,0). 
To establish this result, let us introduce the notion of recursive 
sum, RSi(k), where k:5 i, i = n - j, j:5 n. 

Basis: RSo (0) = 0, i = n - n = 0, k = O. 
Inductive step: RSi (k), where i ~ 1, k :5i. 
RSi (k) = Xi + RSm (k -1), where Xi = 2n

-
i, that is if 

SRVB stores RSi (k) then its position bn - i always stores 1, and 
k - 1 shows the number of other Is positions that are neces
sarily more significant than Xi (Fig. 3); variable Xi will be 
called a level variable. 

Once we have introduced the notion of recursive sum 
RSi(k) we can develop the technique for constructing the 
node of level n - i (i = n, n - 1, ... , 0). 

Theorem 2. In a single binary tree formed with bias B, any 
tree node, N(n - i), of level n - i (i = 0, 1, ... ,n) can be 
found as follows: N(n - i) = R + RSi (k) where k:5 i, where 
R is the root and RSi(k) is a recursive sum with level variable 
v
Ai· 

I 
l 

\ 
\ 

\ 

\ 

\ 

Nl (4)=1011001 

I 
I 

8 
I 

= X3 + RS1 (1) 

CJ 2 QJ 
3 ~ 4 

RS3 (3) = X3 + RS2 (2) 

frJ ~ ~ X2 X3 4 
RSil) (3~ = X4 + RS3 (2) 

b2 r!J C!J ~ 
X2 X3 X4 

RsF) (3) = X4 + RS2 (2) 

Figure 3-Reeursive sums 

, I 
f I \ I • I I \ I • I I \ I • I \ I 

\ I \ I 

4(4)=01ll001 Level 4 

Level 5 

Level 6 

Level 7 

Figure 4-Synthesis of a tice node of level i 



Example: Given bias B, 

6 S 432 I 0 

B = 1 0 11 0 11, 

let us construct all the nodes of level n - i = 7, 6, 5, and 4. 
(See Fig. 4.) Here n = 7. Thus the root is of level 7: 
R = BL(GPI) + BL(GP3) + BL(GPs) and GPI = 2° = 1, 
GP3 = 23 = 8, and GPs = 26 = 64. BL(GPI) = GPI since 
al = 1; BL(GP3) = GP3, since a3 = 1 and BL(GPs) = GPs 
since as = 1. 

Thus, 
GPs GP3 GPI 

R = 1 0 0 1 0 0' 1. 

Indeed, the successor N* of R is N* = I[R] + B = 
1[1001001] + 1011011 = 0010010 + 1011011 = 1001001 = 
R =XI +X3 +X7 • 

The node of level 6 is: N(n -1) = R + RSI(1) = R + Xl = 
0001001 = X3 + X7 .This node is succeeded by the root be
cause N* = I[N(6)] + B = 0010010 + 1011011 = 1001001 = R. 

There are two nodes of level n - 2 = 5: NI(5) = R 
+ RS2(1) = R + X 2 = 1101001 = 105 and Nz(5) = R + RS2(2) 
= R + Xl + X 2 = X 2 + X3 + X 7 = 0110001. Indeed, NI(5) is 
succeeded by N* = I[Nz(5)] + B = 1010010 + 1011011 
= 001001 = N(6) = 9. Likewise N2(5) is succeeded by N* = 
I[Nz(5)] + B = 1010010 + 1011011 = 0001001 = 9, and so on. 

Similarly one can construct all the other nodes of this tree. 

D. PROBLEM OF RECONFIGURATION 

To solve the problem of reconfiguration in binary tree let us 
introduce one recursive and successor-preserving structure, Pi, 
of tree nodes generated with the bias B. 

As will be shown in Section D.l, the Pi structure is recursive 
in the sense that the Pi structure for nodes of up to level n - i 
can be obtained recursively from Pi - l already obtained for 
nodes of up to level n - (i - 1) = n - i + 1 by adding 
mod-2 a single level variable Xi to all nodes N' of Pi- l-

N(n -i) =Xi +N', 

where i = 1, 2, ... , n. Further, the structure Pi is successor 
preserving, i.e. if two nodes Nand N' are ordered, in Pi as 
N > N' all their k -successors in the tree preserve this order. 
Here the k-successor of node N is the node N(k)* that is 
connected with the node N by the path of order k. (Thus the 
I-successor is the immediate successor.) 

Another important property of this node structure is that it 
is both horizontal and vertical; horizontal in that it orders all 
the nodes belonging to the same level n - i, vertical in that it 
orders all the nodes from tree levels n, n -1, n - 2, ... , 
n - i. 

D.I Recursive and Successor-Preserving Structure, Pi, of 
Tree Nodes Generated with SRVB 

As we have seen, a node N of level n - i is given as follows: 

Reconfigurable Fault-Tolerant Multicomputer 601 

N(n -i) =R +RSj (k), 

where each RSi (k) = Xi + RSm (k -1), and Xi is the level 
variable. Thus all tree nodes belonging to the same level n - i 
are identified with the same level variable Xi = 2n

-" and a 
binary tree having n levels of nodes is characterized by n level 
variables Xl> X 2 , ••• , X n • 

Since recursive sum RSi (k) = Xi + RSm (k - 1), each RSi 
can be represented as follows using level variables Xl, X 2, ... , 
Xn: 

where RSo == 0, i :'5 n, and at, a2, ... , ai-l are binary coeffi
cients. The binary coefficients aI, a2, ... , ai of each recursive 
sum RSi are characterized as follows: 

1. For each RS;, ai == 1 and ai+l == O. 
2. All coefficients at, ... , ai-l for level variables Xt, ... , 

Xi-I> Xi can assume arbitrary values 0 or 1. 

To establish the node ordering in each Pi, we assume that 
recursive sums are ordered as follows: 

PI. RSi > RSj iff Xi> Xj where Xi = 2n
-
i, Xj = 2n

-
j 

P2. RSi >RSi' iff RSi +Xi >RSi' +Xi 

Example: Consider RSI = XI, RS4 = Xl + X3 + X 4 and 
RS4 ' = Xl + X 2 + X 4 • In accordance with PI, RSI > RS4 and 
RSI > RS/ because Xl > X 4 • In accordance with P2, 
RS/ > RS4 , because RS4 ' + X 4 = Xl + X 2 = RS2; RS4 + X 4 = 
XI + X3 = RS3 and RS2 > RS3. 

With these preliminary observations, we introduce the Pi 
structure as follows. 

Basis i = 1: PI = (No, No + Xl)' where No is an arbitrary tree 
node called basis node; XI is the level variable, Xl = 2n

-
l

. 

Inductive step i ~ 1: Pi = (Pi-I. Pi- l + X,), where Pi- l is the 
(i - I)-dimensional structure, and Pi-I + Xi is obtained from 
Pi- l by complementing the Xi variable in all nodes of Pi-I' 

Example: Construct Pi = (Pi-I, Pi- l + Xi) if i:'5 3 and 
PI = (R, R + Xl)' where R is the root, that is No = R; assume 
that the root R is generated by bias B = 10001. Using Theo
rem 1, R = X 2 + X3 + X 4 + Xs = 01111. (See Figure 5.) 

PI = (R, R + Xl) = (01111, 11111) 

P2 = (PI, PI + X 2) = (R, R + Xl, R + X 2, R + Xl + X 2) 

P3 = (P2 , P2 + X 3 ) 

= (R, R + XI, R + X 2, R + Xl + X 2, 

here and throughout each bar is extended over nodes belong
ing to the same substructure. 

D.I.I. Vertical and horizontal properties of the Pi structure. 
The Pi structure may describe both vertical and horizontal 
ordering among tree nodes depending on the selection of basis 



602 National Computer Conference, 1983 

P2+X3 

~--------------~~~------------------~ 
level n-3: 

level n-2: 

level n-l: 

} 
Pl 

R=Ollll level n: 

Figure 5-Recursive structures PI = (No. No + Xl), where No = R; 
P2 = (PI' PI + Xl) and P3 = (P2• P2 + X 3) 

node No in basis structure PI = (No, No + Xl)' If the basis node 
No is the root R (No = R) of the tree, then Pi describes the 
vertical ordering of the tree nodes belonging to levels n, 
n - 1 ..... n - i with respect to the root, which is considered 
the m~st significant node" of the tree because R = R + RSo (0) 
and RSo > RSi. If basis node No = R + Xi, then P i - l describes 
the horizontal ordering of the tree nodes belonging to the 
same level n - i. (See Figure 5). 

D.l.2. Relative numbering of tree structures. Since in each Pi 
structure the position of a tree node is specified with respect 
to root R by the use of level variables X}, X2, ... , Xi' it is 
convenient to represent each Pi by the positions so specified. 
Namely, we assume that R == ° and Xi == i. Then the relative 
structure of each Pi is given as follows: 

Po = (0), PI = (0, 1), P2 = (0,1, 2,12), 

P3 = (0,1, 2,12, 3,13, 23,123) 

P4 = (0,1, 2,12, 3,13, 23,123, 

4,14, 24,124, 34,134, 234,1234), 

and so forth, where each collection of integers iI, i2 , ••• , ik is 
understood as the node N = R + Xi I + Xi 2 + . . . + X ik. For 
instance, 124 == R + Xl + X2 + X 4 where R is determined 
through bias B using the technique of Theorem 1. For in
stance, for B = 1001, R = 0111 = X 2 + X3 + X 4 • Thus 

node 124 == R + Xl + X2 + X 4 

and so on. 

= X.2 + X3 + X.4 + Xl + X.2 + X.4 
= Xl + X3 = 1010, 

D.2 Reconfigurations in a Binary Tree 

As will be shown below, with the introduction of recursive 
structures Po, PI, P2 , ••• , Pk, one can describe very easily all 
the reconfigurations that may occur in a binary tree. For each 
reconfiguration we will be dealing with two types of tree: 

1. The source tree TS or original tree 
2. The reconfigured tree, TS (r) 

The nodes of source tree, TS, are called source nodes. The 
nodes of reconfigured tree are called reconfigured nodes. 

Although reconfiguration into a new tree is performed with 
the reconfigured bias B, interesting structural properties of 
the tree reconfiguration are more easily understood if one 
introduces a special map code MC that maps each node N of 
the source tree TS into the reconfigured node N' = N + Me 
of the reconfigured tree TS (r). Thus the MC is conceived as 
the mod-2 sum of level variables that may change both the 
levels of tree nodes and positions of nodes within each Pi. 
Since MC + MC = 0, and ° has no level variables, R + MC 
becomes the new root, R (r), in the reconfigured tree; 
R (r) = R + Me. 

Therefore which reconfigurations can be performed over 
the given tree depends on what level variables are in Me. 

To describe all the possible types of reconfigurations that 
can be performed, let us introduce the concepts of level and 
mixed reconfigurations. 

D.2.1. Level reconfigurations. By the Xi-level reconfigura
tion or Xi reconfiguration we mean the reconfiguration deter
mined by mapping code M C = Xi (i = 1, ... ,n). The Xi 
reconfiguration is performed on the level of all structures 
Pi = (Pi-I. Pi- l + Xi) in the tree. It consists of exchanging Pi- l 
with Pj- l + Xi as Pj- l ~Pj-l + Xi. Each reconfigured struc
ture Pi (r) obtained as a result of this is 

Pi (r) = (Pi - l + Xi, Pi-I)' 

In a new tree TS (r) the root R (r) becomes: R (r) = 

R + MC = R + Xj. All source nodes of the level n - i speci
fied with level variable Xi become the reconfigured nodes of 
levels n, n - 1, n - 2, ... , n - (i - 1). On the other hand, all 
the source nodes of higher levels n, n -1, ... , n - (i - 1) 
become the reconfigured nodes of level n - i. Thus the change 
in levels occurs only for source nodes with levels n, n - 1, ... , 
n - i. All source nodes of lower levels, n - (i + 1), 
n - (i + 2), ... , n - n = 0, described by structures Pi+b 

Pi+2, ... , Pn retain their levels. Instead, in each Pi+k-structure 
each reconfiguration exchange is performed on the level of Pj, 
whereby each left element Pi - l of Pi is exchanged with its right 
element Pi - l + Xi' 

Example: For the source tree of Figure 6(a) let us consider 
all the exchanges effected by Xl reconfiguration. The recon
figuration is restricted to all PI-pairs of this tree, which ex
change their left and right components. This source tree has 
the foBowing PI structures: 



Souree-Tree 
P2~1) 

,----p =(20;-) -'=' '--p 'r"1'(3},.-----. 

~~ 
(a) 

(b) 

X2-reeonfi gurati on 

110 010 100 000 
(e) 

V' 
cJ11 

p (1) 
1 

~o. o 1 1 
U 

1 0 1 

Bias B=011 , MC=100 

R( r )=R+MC=101+ 100=001 

~o 
1 1 1 

1 1 1 

Bi as B=OO1. MC=010 

R( r)=R+MC=10l+01 0+ 111 

Figure 6-Level reconfigurations 

Source PI-structures 

PI(O) = (0,1) = (101,001) 
PI(l) = (2,12) = (111,011) 
P1(2) = (3,13) = (100,000) 
P1(3) = (23,123) = (110,010) 

Reconfigured PI (r) 

PI(O) (r) = (1,01 = (001,101) 
Pl(l) (r) = (12,2) = (011,111) 
p/2

) (r) = (13,3~ (000,100) 
PI (3) (r) = (123,23) = (010,110) 

The reconfigured tree is shown in Figure 6(b). It has root 
R (r) = 101 + Xl = 001 and is generated with reconfigured 
B(r) = R(r) + l[R(r)] = 001 + 010 = 011. Indeed, R(r) is 
succeeded as l[R(r)] + B(r) = 010 + 011 = 001. Reconfig
ured node N = 101 of level n - 1 is succeeded by R (r); 

1[101] + 011 = 010 + 011 = 001, 

and so on. Similarly, one can find all the exchanges effected 
by X 2 reconfiguration and performed on the level of 
P2-structures. The source tree has the following P2-structures: 

The reconfigured P2(r) are 

= (111,011, 101,001) 

P2(1) (r) = (23,123, 3,13) 

Reconfigurable Fault-Tolerant Multicomputer 603 

= (101 + 011,101 + 111, 101 + 001,101 + 101) 

= (110,010, 100,000). 

(See Figure 6c.) The X2-reconfigured tree is shown in Fig. 
6(c). As seen, its new root R (r) = R + X 2 = 111, which is 
generated with the following bias: B(r) = R(r) + I[R(r)] = 
111 + 110 = 001. 

100 

Source Tree 

110 010 

r~l 

d 1 

R= 1 01; B= 111 

Step 1: X3-reconfiguration 

101 001 111 011 

\ 10 

(a) 

(b) 

R(r)=R+MC=101+001=100 B=100 

Step 2: X3"X2-reconfiguration 

101 001 

(c) 

R(r)=R+MC=101+011+110 8=010 

Figure 7-Mixed reconfigurations 



604 National Computer Conference, 1983 

D.2.2 Mixed reconfigurations. By mixed reconfigurations 
or Xj 1 Xj 2 ••• Xh reconfigurations we mean reconfigurations 
that are determined by mapping code M C = Xj 1 + J( 2 + 
. . . + Xh . The Xj 1 Xj 2 ••• Xh reconfigured tree can be found 
by applying sequentially Xjp Xj:, . .. , Xh-Ievel reconfigura
tions to the source tree. 

Example: For the source tree of Figure 7(a) let us apply the 
X 2 X3 reconfiguration using the mapping code MC = X 2 + X3. 
Although this reconfiguration can be made in one step, it is 
interesting to perform it in two steps that perform 3,32 recon
figurations respectively and to see that the tree obtained in 
two steps is coincident with the one obtained following appli
cation of MC = 011. 

Step 1. Take the X3 reconfiguration 

P3 = (P2 , P2 + X3) 

P3(r) = (P2 + X3, P2 ) = (3,13, 23,123, 0,1, 2,12) 

R = Xl +X3, MC =X3 

R(r) = R +X3= 100, B = 100. 

Thus 

P3(r) = (100,000, 110,010, 101,001, 111,011). 

Step 2. Let us form all P2 structures for the X3 reconfigured 
tree, since to perform X3 X 2 reconfiguration of the source tree 
it is sufficient to perform X 2 reconfiguration of the X3 recon
figured tree of Figure 7(b). 

Thus, since 

The second 

is mapped into 

P2(1) (r) = (23,123, 3,13) = (111,011, 101,001) 

E. FAULT-TOLERANT RECONFIGURATIONS 

The interesting properties of level and mixed reconfigurations 
can be applied to faulty trees to restore connectivity in them. 
First of all, we note that if a tree has faulty leaf nodes only 
then no connectivity is lost, since no leaf has any predecessors 
in a tree. Therefore any loss of connectivity in a tree results 
from faulty nonleaves. 

The material that follows is aimed at describing two cases 
that result in lost connectivity in a tree: 

1. All faulty nodes are nonleaves. All leaves are fault-free. 
2. Leaves and nonleaves are faulty. 

E.1. Faulty Nonleaves and Fault-Free Leaves 

If all leaves are fault-free, then to restore connectivity in a 
tree it is sufficient to perform either a level or a mixed recon
figuration that includes level variable Xn applicable to pair 
Pn=(Pn-t. Pn- 1 + Xn). Since variable Xn exchanges the left 
Pn - 1 with the right Pn - 1 + Xm the post-reconfiguration tree 
TS (r) has the following changes in nodes positions: fault-free 
source leaves of Pn- 1 + Xn become reconfigured nonleaves. 
Faulty source nonleaves of Pn - 1 become reconfigured leaves. 
Thus the entire tree connectivity is restored via reconfigura
tion, requiring no node reassignments. 

Example: Consider a 3-level tree having root R = 001 and 
bias B = 011, as shown in Figure 8(a). Suppose that in this 
tree all nonleaves are faulty-that is, nodes 001, 101,011 and 
111 are faulty. The resulting network with lost connectivity is 
shown in Figure 8(b); it consists of four disjoint nodes. Resto
ration of connectivity may be accomplished with any recon
figuration that contains variable X3, since X3 exchanges P2 

and P2 + X3 within the P3 structure, where 

Source Tree 

(a) 

P3 = (P2 , P2 + X 3 ) 

P2 = (001,101, 011,111), 

P2 + X3 = (000,100, 010,110). 

(b) 

000 100 010 110 000 100 010 110 

(c) 

(e) 

B(r)=OOO 
R(r)=OOO 

B(r)=OlO 
R(r)=110 

• • • • 

(d) 

B(r)=110 
R(r)=OlO 

Figure 8-0btaining fault-tolerant trees where faulty nodes become leaves 



Thus the lost connectivity can be restored with reconfigura
tions identified with the mapping codes 

If Me = X 3 , the reconfigured root is 

RI(r) = R + MCI = 001 + 001 = 000, 

and the bias is 

BI(r) = l[R(r)] + R(r) = O. 

(See Figure 8(c).) If MC2 = X 2 + X 3 , 

R2(r) = R + MC2 = 001 + 011 = 010 

B2 = I[R2(r)] + R2(r) = 100 + 010 = 110. 

(See Figure 8(d).) If Me3 = XI + X 2 + X 3 , 

R3(r) = R + MC3 = 001 + 111 = 110 

B3 = 1[R3(r)] + R3(r) = 100 + 110 = 010. 

(See Figure 8(e).) As may be seen from the Figure, all these 
reconfigurations restore connectivity in the tree. 

(a) 

(b) 

f,,,,,, \ In""" 
\ IVI II J \UVI I '/ 

5 15 

~ ~ 
4(10100) 

3(10010) 

(10100) (00100) (11100) (01100) (10101) (00101) 
4 14 24 124 45 145 

(11101) (01101) 
245 1245 

• 

Reconfigurable Fault-Tolerant Multicomputer 605 

12345 345 1345 245 1245 45 145 

123 

23 

Figure 9-Fault-tolerant tree with faulty nodes 
forming two 2-dimensional end subtrees 

(0010l) (11101) (01101) (1000l) (00001) (11001) (01001) 
145 245 1245 345 1345 2345 12345 

123(01010) 

( 10001) ( 00001) 
345 1345 

(11001) (01001) 
2345 12345 

• • • 
~10) ~010)· • 23(l~010) • • 123(01010) 

I 
1(00110) 

0(10110) 

Figure 10-(a) source tree with faulty leaves and nonleaves; (b) disconnected components in this tree made of fault-free nodes 



606 National Computer Conference, 1983 

E.2. Faulty Leaves and Nonleaves 

If in a tree faulty nodes are leaves and nonleaves, then the 
reconfiguration performed is described by the following steps. 

1. Find the number of faulty leaves, #(L), and the number 
of faulty nonleaves, #(NL). 
If #(NL) > #(L) perform any level or mixed reconfigu
ration having variable X n• 

If #(NL) < #(L), perform no Xn reconfiguration. 
2. Reconfigure the source tree into a tree in which all faulty 

nodes are grouped into a so-called end subtree. 

By the i -dimensional end subtree we mean a tree formed of 
structures Pi, Pi-I, . .. ,Po, where Pi includes only leaves and 
Pi-I. Pi- 2 , ••• ,Po are all j-successors of Pi in this tree, 
(j = 1,2, ... ,i). Since Po = N*, Po is the unique i-successor of 
Pi. Figure 9 shows a tree with two 2-dimensional end subtrees 
formed entirely of faulty nodes; faulty nodes are circled. The 
entire reconfigured tree is given with its relative notation (in
troduced in Section D.1.2.) with respect to the root R == 0 
of the source tree, i.e. R (r) = R + Me == 0 + Me = 
0+X2 +X3 = 23, where Me =X2 +X3. 

Therefore, for the case of faulty leaves and nonleaves, one 
executes step 1 to reduce the number of faulty nonleaves, then 
selects a reconfiguration of the tree that groups all faulty 
nodes into one or several end subtrees. The effectiveness of 
such a reconfiguration is illustrated in the following example. 

Example: A source tree with faulty leaves and nonleaves is 
shown in Figure 10(a) with its relative notation. As is seen 
from Figure lO(b) , without reconfiguration the fault-free 
nodes of this tree function as disjoint components. Assume 
that this source tree is generated with source bias B = 11010. 
Using Theorem 1, we find the source root R = 10110, because 

R = l[R] + B = 01100 + 11010 = 10110. In Figure 10, posi
tion codes of all tree nodes generated with B = 11010 are 
shown in brackets. As was said in Section D.1.2., each node 
code in brackets can be obtained by adding the root R with 
relative number of this node. For instance, node N35 = X3 + Xs 
has the following position code: N35 = R + X3 + X5 = 
10110 + 00101 = 10011, and so on. As can be seen from this 
figure, this source tree has 8 faulty leaves and 6 faulty non
leaves. By step 1 above, this requires no X5 reconfiguration. 
The best reconfigured tree is obtained with mapping code 
Me = X 2 + X 3 • It gives reconfigured root R(r) = R + Me = 
10110 + 01100 = 11010. This tree can be generated with bias 
B(r) = l[R(r)] + R(r) = 10100 + 11010 = 01110; Figure l1(a) 
shows the fault-free, gracefully degraded tree and Figure 
l1(b) shows the generation of the N24~No transition by the 
SRVB receiving B (r), where N24 = 11100 and No = 10110. As 
can be seen, the reconfigured tree is gracefully degraded and 
without faulty components. The latter are grouped into two 
end subtrees and disconnected. The complete reconfigured 
tree with faulty and fault-free components is shown in Figure 
9. This reconfiguration takes only one clock period if one finds 
bias B(r). The material below gives algorithmic procedures 
aimed at selecting B (r). 

E.2.1 Faulty End Subtree: Basis Step. The objective of the 
best reconfiguration is to assemble as many faulty nodes as 
possible into end subtrees that can be disconnected from the 
system. 

The procedure for finding the maximal i -dimensional faulty 
end tree must start by finding a complete faulty structure Pi 
formed of leaves, where i is maximal. The next step is iter
ative. It consists of finding a complete faulty structure Pi - t 

somewhere in the tree and performing a tree reconfiguration 
that allows Pi- t to become the immediate successor of Pi. If 

(1100l) (0100l) (1000l) (00001) (mol) (01l01) (10101) (0010l) 

(a) 

2345 12345 345 1345 245 1245 45 145 

(b) 

B(r) = 

o 1 1 1 0 '24'_ No = 1 0 1 1 0 

Root R(r)=llOlO 

Bias B(r)=OlllO 

Figure ll-(a) gracefully degraded fault-tolerant tree with disconnected fault nodes; 
(b) generation of JV24 --;;; 1'/0 transition in this tree with rcconfiguicd bias (B)r = 01110 



Pi - l is complete, the process is continued for Pi - 2 • If Pi - 1 is 
partial, the process stops. To perform this step, however, we 
must establish a so-called closure of succession between Pi and 
Pi - l in reconfigured tree TS (r ). This property is formulated as 
follows. 

Theorem 3. For any two structures Pi and Pi - t in the source 
tree, where Pi is made of leaves and Pi - l is any other structure 
of dimension i - 1 that does not succeed Pi in this tree, it is 
possible to find a bias B (r) that generates a reconfigured tree 
TS(r) in which Pi - l immediately succeeds Pi. 

The following algorithm finds the bias B(r) that allows Pi - l 

to immediately succeed Pi. Let Nand N* be two arbitrary 
nodes from Pi and Pi- l respectively. Form the succession 
equation 

N* = l[N] + B(r) 

B(r) = N* + l[N]. 

Example: Consider the 5-level source tree in Figure 12 giv
en by the relative notation of its nodes with respect to root R. 
In this tree there are two complete faulty pairs, P2 = (5,15, 
25,125) and PI = (3, 13), where PI does not succeed immedi
ately P2 • Find the bias B (r) that allows PI to be the immediate 
successor of P2 • Select arbitrarily N E P2 and N* E PI; 

B(r) = N13* + l[Ns] 

= R + Xl + X3 + l[R + Xs] 

= R + Xl + X3 + l[R] + l[Xs] 

=R +l[R]+Xt +X3+X4' 

Reconfigurable Fault-Tolerant Multicomputer 607 

because l[Xs] = X4. Since for the source R = l[R] + B, source 
bias B = R + l[R]. Therefore reconfigured bias B(r) = 
B + X t + X3 + X4. Thus by selecting any bias B of the source 
tree we can find the bias B (r) of the reconfigured tree in 
which P2 is made of faulty leaves and is immediately suc
ceeded by Pt. 

Assume that source bias B = 10111 = Xl + X3 + X4 + Xs, 
giving source Toot R = 01101. Then reconfigured bias 
B (r) = B + Xl + X3 + X4 = Xs = 00001 and the reconfigured 
root R (r) = 11111. This reconfigured tree is shown in Figure 
13(a). It differs from the source tree by Me = R + R(r) = 
01101 + 11111 = 10010 = X t + X4 • Each node is given by its 
relative notation with respect to the source root and by its 
absoiute codes generated by B(r). As can be seen, all faulty 
nodes are grouped into two 1-end subtrees, requiring no node 
reassignment. Figure 13(b) shows how the SRVB that stores 
faulty N125 = R + Xl + X 2 + Xs = 01101 + 11001 = 10100 and 
receives B (r) = 00001 generates its faulty successor N3 in this 
tree. 

E.2.2. Faulty end subtree: iterative step. Since Theorem 3 
establishes the succession closure between Pi and Pi - l in a 
reconfigured tree generated with bias B (r), and two nodes 
N E Pi and N* E Pi - l were selected arbitrarily for finding 
B(r), we will have 2i

-
l different reconfigured trees generated 

with as many different biases that maintain the succession 
between Pi and Pi-to 

These biases will form the allowable bias set ABS = 
{Bo(r), ... ,B2i-1- l } such that any Bj(r) E ABS generates a 
tree in which the leaf-faulty structure Pi is immediately suc
ceeded by faulty Pi-1. This set ABS can be found by fixing 
node N E Pi and varying node N* E Pi-I. 

Therefore, it there are two arbitrary complete faulty struc
tures Pi and Pi- t in a tree where Pi - l does not necessarily 
succeed Pi and Pi is not a leaf structure 

Figure 12-Source tree with four faulty leaves and two non-leaves 



608 National Computer Conference, 1983 

(11110) 
145 

(a) 

14(11111) 

B(r) = 00001 
R(r) = 11111 

(b) B(r) = 0 0 0 0 1 
+ + + + + 0 

N = fll~SQlQlll~Qr;l·Q...-
,2.5 L.J1f~-~ 

N3 = 0 1 0 0 1 

Figure 13-(a) gracefully degraded fault-tolerant tree; (b) generation of N125 - N3 transition in this tree 

1. We can always perform X n - reconfiguration to make Pi 
a faulty leaf pair. 

2. We can always perform a reconfiguration whereby the 
leaf-faulty structure Pi is succeeded by faulty Pi-t. 

An enlargement of the end subtree with the next faulty 
structure Pi- 2 depends on the location of faulty Pi- 2 in the 
tree, because a reconfigured tree in which Pi - 2 succeeds Pi - 1 

must be such that the established succession between Pi and 
Pi - t has not been violated. 

The following important property of allowable biases sim
plifies selection of the reconfigured bias that maintains succes
sion between Pi, Pi-I, and Pi- 2. Let Bl(r) and B2(r) be two 
biases that maintain succession between Pi and Pi-I; if bias 
Bt(r) is allowable, B2(r) is also allowable only if Bt(r) + B2(r) 
includes only a combination of level variables X t , ••• , X i - t , of 
structure Pi- t where Pi- l succeeds Pi. Otherwise B2(r) is not 
allowable. 

Therefore, to find the allowable bias B2(r) that maintains 
the succession between Pi, Pi-I, and Pi- 2 we have to find a 
candidate B2'(r) that maintains succession between P i - 1 and 
Pi - 2 ; it is understood that during the previous iterative step we 
found Bl(r) that maintains succession between Pi and Pi-t. 
Next, we have to find Bl(r) + B/(r) = S. If S contains only the 
level variables XI, . .. ,Xi - l that specify structure Pi-I, B2 '(r) 
is allowable bias, that is, B2'(r) = B2(r). Thus there exists a 
reconfigured tree generated by B2(r) in which the faulty end 
subtree includes Pi, Pi-I, and Pi- 2 • If S contains other level 
variables, B2 '(r) is not an allowable bias and no allowable 
B2(r) can be found. Thus the iterative process stops. 

Example: Consider the binary tree with faulty nodes shown 
in Figure lO(a), in which there are the following faulty struc
tures: 

P3 = (5,15, 25,125, 35,135, 235,1235) 

P2 = (34,134, 234,1234) 

PI = (2, 12) 

Po = (1) 

For this tree, P2 does not succeed P3 , and PI does not succeed 
P2 • Let us find a reconfiguration of this tree that forms the 
faulty end-tree of maximal dimension. 

For the basic step, find the bias Bl(r) that maintains succes
sion between P3 and P2. Select Ns = R + Xs from P3 and 
N34 = R + X3 + X 4 from P2 • Form a successor equation that 
allows Ns to be succeeded by N34-

N34 = 1[Ns] + Bl(r) 

Bl(r) = 1[Ns] + N34 

=1[R +Xs]+R +X3+X4 

=1[R]+X4+R +X3+X4 

=1[R]+R+X3 

=B +X3 • 

Thus if source bias B = 11010, Bl(r) = B + X3 = 11110. 
The iterative step proceeds as follows. 

1. In the first iteration, let us attempt to include PI in the 
end-tree that includes P3 and P2 • Assume that N34 is succeeded 
by Nl?. Find B2(r) that allows such succession-



Find 

NI2 = I[N34] + B2(r) 

= I[R + X3 + X4 ] + B2(r) 

B2(r) = I[R] + X2 + X3 + R + X2 + XI 

=B +X3+XI. 

Since Xl belongs to the set of level variables [XI, X 2] that 
specifies P2, B2(r) = B + Xl + X3 is an allowable bias that 
maintains the succession between P3 , P2 , and Pl. Thus 
Bir) = B + Xl + X3 generates a tree in which P3, P2, and PI 
will be included in the faulty end-tree. 

2. In the second iteration, let us try to include Po = (1) in 
the end-tree that includes P3, P2, and Pl. Find bias B3(r) that 
maintains succession between PI and Po-

Find 

B3(r) = I[N2] + NI 

=1[R +X2]+R +XI 

=B +XI +XI 

=B. 

s = B3(r) + B2(r) 

=B +XI +X3+B 

=XI +X3. 

Of these two variables, Xl is allowable since it is included in 
PI; X3 is not allowable since it is not included in PI, PI being 
characterized by {Xl}. Thus the iterative process stops and Po 
cannot be included in the end-tree that consists of P3 , P2 , and 
Pl. The bias that accomplishes the tree reconfiguration in 
which P3, P2, and PI are grouped together is B2(r) = 
B + Xl + X3, where B is the source bias. Since B2(r) = 
R2(r) + I[Rir)], where R2(r) is the root of this reconfigured 
tree, and B = I[R] + R where R is the root ofthe source tree, 
R2(r) + I[R2(r)] + R + I[R] = Xl + X3. Taking into account 
that R2(r) + R = MC where MC is the map code, one obtains 
MC + I[MC] = Xl + X3. That leads to MC = X2 + X3 be
cause I[MC] = I[X2 + X3] = Xl + X2. Thus MC + I[MC] = 
X2 + X3 + Xl + X2 = Xl + X3. The reconfigured tree gener
ated with B2(r) = B + Xl + X3 and the root Rir) = 
R + M C = R + X 2 + X3 is shown in Figure 9. As seen in this 
tree, the maximum number of faulty nodes are grouped into 
the faulty end tree of maximum dimensions. The only faulty 
node that is not included in this tree is NI = R + Xl. This tree 
can be generated with B2(r) = B + Xl + X 3. If one assumes 
that the source bias B = 11010, then B2(r) = 11010 + 10100 = 
01110. 

Reconfigurable Fault-Tolerant Multicomputer 609 

F. CONCLUSIONS 

In this paper we have studied fault-tolerant reconfigurations 
in a mUlticomputer network organized as a reconfigurable 
binary tree. We have shown how to reconfigure a binary tree 
with faulty nonleaves and lost connectivity into a binary tree 
in which all faulty nodes become leaves or form a more com
plex end-tree structure of higher dimensions. In both cases, 
these faulty nodes may be safely disconnected from the recon
figured fault-tolerant tree, which continues to function as a 
gracefully degraded tree made completely out of fault-free 
nodes. For the case that all faulty nodes become leaves, bias 
B (r) of the reconfigured tree is found very easily during a 
one-step logical operation. For the case that all faulty nodes 
form an i -dimensional end-tree, the bias B (r) of the recon
figured tree can be found by a simple process that includes 
i-I mod-2 additions performed sequentially. Once the bias 
B (r) of the reconfigured tree is found, reconfiguration into a 
fault-tolerant tree (in which all faulty nodes can be safely 
disconnected) can be performed during the time of one clock 
period, since to perform this reconfiguration requires (1) the 
reception of the same code B (r) by all tree nodes and (b) the 
formation ofthe new successor equation N*(r) = I[N] + B(r) 
in each fault-free node N. Such a formation includes only 2 
logical operations: I-bit shift and mod-2 addition. Thus this 
fault-tolerant reconfiguration can be performed during one 
clock period. 

REFERENCES 

1. Despain, A., and D. Patterson. "X-Tree: A Tree Structured Multi-Proces
sor Computer Architecture." Proceedings of the Fifth Annual Symposium 
on Computer Architecture, 1978, pp. 144-150. 

2. Paxer, Y., and M. Bozygit. "Variable Topology Multicomputer." Proceed
ings of the Second Euromicro Symposium on Microprocessing and Micro
programming, Venice, 1976, pp. 141-149. 

3. Wittie, L.D., and A. M. van Tilborg. "MICROS, A Distributed Operating 
System for MICRONET, A Reconfigurable Network Computer." IEEE 
Transactions on Computers, C-29 (1980), pp. 1133--1144. 

4. Dewitt, David J., and Dina Friedland. "Exploiting Parallelism for the Per
formance Enhancement of Non-numeric Applications." AFIPS, Proceed
ings of the National Computer Conference (Vol. 51), 1982, pp. 207-216. 

5. Kartashev, S. I., and S. P. Kartashev, "Problems of Designing Super
systems with Dynamic Architectures." IEEE Transactions on Computers, 
C-29 (1980), pp. 1114-1132. 

6. Davis, c., S.P. Kartashev, and S.1. Kartashev. "Reconfigurable Multi
computer Networks for Very Fast Real-time Applications." AFIPS, Pro
ceedings of the National Computer Conference. (Vol. 51), 1982, pp. 
167-185. 

7. Kartashev, S. P., and S.1. Kartashev, "Reconfiguration of Dynamic Archi
tecture into Multicomputer Networks." Proceedings of the 1981 Interna
tional Conference on Parallel Processing, Belleaire, Michigan, 1981, pp. 
133--141. 

8. Garcia-Molina, H. "Elections in a Distributed Computing System." IEEE 
Transactions on Computers, C-31 (1982), pp. 48-60. 

9. Garcia-Molina, H. "Performance of Update Algorithms for Replicated 
Data in a Distributed Database." Department of Computer Science, Stan
ford University, Stanford, Ca., Rep. STAN-CS-79-744, June 1979. 

10. Lamport, L. "The Implementation of Reliable Distributed Systems." Com
puter Networks, 2 (1978), pp. 95-114. 

11. Lampson, B.W., and H.E. Sturgis. "Crash Recovery in a Distributed Data 
Storage System," Xerox, PARC Rep. 1979. 

12. Menasce, D.A., G.J. Popeck, and R. R. Muntz. "A Locking Protocol for 
Resource Coordination in Distributed Databases." ACM Transactions on 
Database Systems, 5 (1980), pp. 103--138. 



610 National Computer Conference, 1983 

13. Elspas, B. "The Theory of Autonomous Linear Sequential Networks. "IRE 
Transactions on Circuit Theory, 1959, pp. 45-60. 

14. Zierler, N. "Linear Recurring Sequencer", Journal of SIAM, 7(1) (1965), 
pp.31-48. 

15. Kautz, W.H., (Ed.). Linear Sequential Switching Circuits. San Francisco: 
Holden-Day, 1965. 

16. Golomb, S.W. Shift Register Sequences. San Francisco: Holden-Day, 1967. 

17. Booth, T.L. Sequential Machines and Automata Theory. New York: John 
Wiley, 1967. 

18. Kartashev, S.P. "Theory and Implementation of p-Multiple Sequential 
Machines." IEEE Transactions on Computers, 1974, pp. 500-523. 

19. Kartashev, S.P. "State Assignment for Realizing Modular Input-free Se
quential Logical Networks Without Inverters." Journal of Computer and 
System Sciences, 7 (1973), pp. 522-542. 



PIONEER DAY 

The work of Howard Hathaway Aiken and his colleagues at the Harvard 
Computation Laboratory will be the focus of this year's Pioneer Day. Tech
nical sessions will be held on the afternoon of Wednesday, May 18. A special 
slide show will be given in the exhibit area. 

A keynote talk will open the technical sessions; they will end with a panel 
evaluation of Aiken's contributions. In between, five speakers will highlight 
and analyze significant aspects of Aiken's work. 

The evolution of computer technology during the development and opera
tion of four successive large-scale computing machines will be discussed. Paths 
will be traced from electromechanical to magnetic and solid-state technology, 
and from straight machine-language coding to early attempts to permit pro
gramming directly in algebraic notation. 

Then, Aiken's interest in computation and data processing, his stimulation 
of computer work in Europe and his development of pioneering research and 
educational programs in computer science will be discussed. 

Each day of NCC, the story of machine development and of other facets of 
Aiken's work will be illustrated by a slide show, given in a room just off the 
south lobby of the Convention Center. 

611 





Randy J. Pile 
American Bell, Inc. 
Lincroft, New Jersey 

TELECOMMUNICATIONS 

The Telecommunications track is composed of eight sessions that address 
particular aspects of computer communication problems. Included are ses
sions dealing with new services currently being planned, under the topic of 
network services planning. Keeping ahead of customer requirements with a 
public network is a combination of engineering, statistics, guessing, and luck. 
Planning for three to 10 years ahead requires assumptions about what the 
network will be used for and guesses about what equipment customers will be 
buying at each end and how it will be used. Or is it the other way around? Does 
the availability of a service, however well planned, influence users' applica
tions and buying? Experience indicates that each-the network service avail
ability and the users' actual requirements-affects the other, but not in a 
predictable manner. This session looks at network planning from the view
point of three differing services, each with unique problems and perspectives 
on future requirements. 

The likely effect of new technologies on network solutions is addressed by 
the topic of distributed processing. The explosive growth of personal comput
ers in corporate environments is taking distributed processing well beyond the 
"decade of the mini" (1970-1980). New infrastructures for data processing 
and communications must be developed and implemented to insure orderly, 
coherent growth of the corporate information resource. Equipment suppliers 
must carefully plan integrated strategies to address these needs. 

Networking (both local and intrafacility) becomes even more important in 
this scenario. It will be the key to true distributed processing, enabling profes
sionals and executives to use their powerful work stations fully-to unlock 
corporate (and other) databases and to move information. 

This session focuses on the emerging trends and issues in distributed pro
cessing. Topics include a discussion of important network architectures (like 
SNA), the integration of minis and micros into DDP nets, and user imple
mentation strategies. The network service bureau concept, as embodied in 
AT&T's AISlNet 1000 and IBM's Information Network, will also be examined 
as a significant DDP direction. 

The topic of advances in computer communications networks discusses 
these advances, which are rapidly being made in both long-haul and local 
networking areas. In the long-haul area, better network control technology for 
routing, flow, and congestion control and network configuration management 
is being developed. Progress continues in this area with the introduction of 
refined algorithms for network control suitable for implementation. Refine
ments center on improved performance, algorithm efficiency, and supporting 
distributed operation. 

Local networking emphasizes new high-speed transmission technology, 
which is designed to support local distributed processing as well as multimedia 
communications. 

Recent activities in standards are addressed by the topic of protocols for 
computer communications. The theme of this session is open systems inter
connection (OSI). Since 1977, work on the reference model for OSI has been 
going on at a feverish pace. The communication protocol standards developed 
according to the reference model concepts will have a significant impact on the 
communications industry. The reference model provides the framework for 



developing protocols for the interconnection of heterogeneous systems. The 
model consists of a seven-layer hierarchy in which each layer (except the 
lowest) builds on the capabilities of the layer below. The resultant capabilities 
of these layers are provided to users by the highest layer, called the application 
layer. 

The three presentations in this session address the recently developed draft 
proposals in the areas of the session layer (layer 5) protocol and the network 
layer (layer 3) service, and the role of intelligent peripherals in systems archi
tecture. These timely presentations reflect major milestones recently reached 
by the standards bodies. 

The topic of network management discusses issues related to the manage
ment of network availability and security. Network management can be con
sidered the process controlling the availability of application system functions 
to the end user; it is involved in both hardware and software. Its functions may 
be categorized into administrative and operational managements. Adminis
trative management involves a long-term systems administration which may 
have very little need to access data from the network. Operational manage
ment, on the other hand, involves a second-by-second systems operation and 
heavily relies on the data extracted from the network. 

The four papers presented cover both network administration and opera
tional management functions for networks based on systems network architec
ture (SNA). 

The network security topic discusses vulnerability to interception. Technol
ogy-based society demands efficient and reliable communication networks. 
The introduction of microwave communication links has significantly in
creased the vulnerability of voice and data communications to electronic in
terception. With the wide acceptance of automated office systems and the 
increasing use of communicating word processors and distributed data termi
nals, proprietary, sensitive, and personal-privacy information can easily be 
intercepted through passive eavesdropping with relatively inexpensive equip
ment and limited technical resources. This session looks at the problem in 
depth and reviews techniques for protecting facsimile, data, and voice commu
nications. 

The topic of perspectives in digital voice processing discusses voice pro
cessing for low-bit-rate coding, synthesis, and automatic recognition, which 
typically requires algorithms of substantial computational complexity. But 
explosive advances in microelectronics now support the needed complexity, 
and economical single-chip and chip-set voice processors are of strong inter
est. This session offers a sampling of current algorithm research and the device 
technology that underpins hardware implementation. 

The topic of human voice communications with computers looks at the idea 
of people's conversing with machines on human terms, which has finally been 
accepted as a feasible alternative to the more traditional manual data col
lection techniques. Interactive voice conversations with machines are now an 
accepted approach, particularly for sophicticated remote intelligent terminals. 
This approach offers the promise of humanized, simple-to-use computer sys
tems of the future. This session provides a tutorial discussion about the con
cept of speech recognition and machine-generated voice response and dis
cusses the obvious and not-so-obvious advantages of these techniques. 



Lorette L. Cameron 
ARCa Metals 
Rolling Meadows, Illinois 

APPLICATIONS 

In the Applications track a number of areas have been selected for presen
tation. Special applications of technology emphasize interesting and different 
uses of technology for direct application to systems problems. Videodisc, 
special microprocessors, and various office automation techniques are ex
plored. The law as a special application is covered in "Computers and the 
Law," which discusses a number of facets of legal issues in systems contracts 
and applications. Another fast-growing applications area is CAD/CAM, also 
included in the track. Finally, there is a session on creative ideas for systems 
development and measurement. Directly related to applications development, 
these ideas should provide some thought-provoking material for future devel
opment effort. 





A standard session protocol for open systems 
interconnection (OSI) 

by CHARLES E. YOUNG 
American Bell 
Lincroft, New Jersey 

ABSTRACT 

Protocol and service standards governing the session layer of the seven-layer refer
ence model for OSI are expected to be finalized in 1983. These standards are being 
developed jointly by the International Organization for Standardization (ISO) and 
the International Telegraph and Telephone Consultative Committee (CCITT) 
groups, and will have wide applicability in data communications. Their basic char
acteristics and the open issues now being resolved are described. A status update 
on this fast-moving project will be presented at NCC '83. 

617 





INTRODUCTION 

The Open Systems Interconnection (OSI) Reference 
Model1

,2 describes seven independent layers of protocol for 
data communications among open systems. In general terms 
it defines the services that each layer is to provide for its users 
(entities in higher layers). Each layer uses services provided 
by the layer below it, and enhances those services by means of 
its own protocol to provide services to its users. The seven 
layers are 

• Application layer 
• Presentation layer 
• Session layer 
• Transport layer 
• Network layer 
• Data link layer 
• Physical layer 

Two companion standards are to be adopted for each layer, 
one defining the services provided by the layer and the other 
specifying the layer protocol. The service definition standards 
have no conformance requirements, and are intended mainly 
for use in guiding the protocol standardization efforts and for 

. tutorial purposes. The protocol specification standards, how
ever, are intended to specify all requirements necessary to 
permit different entities in the same layer, but usually in dif
ferent end systems, to communicate in a fully compatible 
manner. 

This article describes those service and protocol aspects of 
the session layer that are reasonably stable, as of October 
1982. The services are described first, which helps in under
standing what the protocol is being designed to achieve. Then 
the status of the protocol design efforts is described, followed 
by an outline of the more important open issues. An update 
report on the status of these open issues will be presented at 
NCC '83. 

SESSION SERVICES 

The session services currently being studied by ISO and 
CCITT3 would permit two users to organize and control their 
dialogue through use of a session connection established for 
them by the Session Layer (the provider). Service primitives 
are defined for use in establishing, utilizing, and releasing 
session connections, and four general types are expected to be 
used. A confirmed service primitive consists of four informa
tion transfers: a request from User 1 to the provider; a re
sulting indication from the provider to User 2; a response 
from User 2 to the provider; and a confirmation from the 

A Standard Session Protocol 619 

provider back to User 1. A nonconfirmed service primitive 
includes only a request and an indication; a single-user service 
primitive includes only a request; and a provider-initiated 
service primitive includes only indications, one to each user. 

The service primitives that are currently agreed to in ISO 
and CCITT and their purposes are listed below according to 
the session connection phases in which they would be used 
and their types. 

Establishment Phase 

S_CONNECT (confirmed) would be used to establish a 
session connection and to negotiate values and ranges of 
values for session parameters. 

Data Exchange Phase 

S-DATA (nonconfirmed) would be used to transfer units of 
user data called session service data units (SSDUs) in se
quence. 

S-EXPEDITED-DATA (nonconfirmed) would be used to 
transfer expedited SSDUs, which may bypass other SSDUs in 
transit. 

S_QUARANTINE-DELIVER (single-user) would be 
used to release for delivery a set of SSDUs previously stored 
by the provider at the sending user's request. 

S_QUARANTINE_CANCEL (single-user) would be used 
to cancel delivery of a set of SSDUs previously stored by the 
provider at the sending user's request. 

S-EXCEPTION_REPORT (provider-initiated) would be 
used to report unusual conditions not specifically covered by 

. other services. 
S_TOKEN_GIVE (nonconfirmed) would be used to trans

fer ownership of one or more tokens. A token is a session 
service attribute limiting the authority to request certain 
services to the owner of the token. 

S_TOKEN-PLEASE (nonconfirmed) would be used to 
request ownership transfer of specified tokens. 
S_SYNC~INOR (confirmed) would be used to insert a 

minor synchronization point in the stream of S-DATA prim
itives being sent from one user to the other. There are 
"explicit" and "potential" minor synchronization points, 
which would have different rules governing their responses 
and confirmations. 
S_SYNC~AJOR (confirmed) would be used to insert a 

major synchronization point in both streams of S-DATA 
primitives being sent in the two directions. All minor and 
major synchronization points are identified by a single set of 
serial numbers incremented by the provider. 



620 National Computer Conference, 1983 

S-RESYNCHRONIZE (confirmed) would be used to re
negotiate the current synchronization point serial-number 
value and token ownerships. With a "restart" resynchroniza
tion, the new serial number may be set back, but no lower 
than the most recent major synchronization point. Alterna
tively, the users may agree to abandon the old serial-number 
sequence and assign any new serial-number value for future 
use. 

S_RESELECT (confirmed) would be used to revise param
eter values andlor token ownerships, within ranges previously 
set during connection establishment. 
S~crIVITY (nonconfirmed) would be used to initiate a 

new association between two users or to resume a specific 
previously unfinished association. 

Release Phase 

S-RELEASE (confirmed) would be used to release a ses
sion connection in an orderly manner without data loss. The 
release may be negotiated between the users in certain cases. 
S_U~BORT (confirmed) would be used by a user to abort 

a session connection. Data in transit may be purged. 
SJ> ~BORT (provider-initiated) would be used by the 

provider to abort a session connection for reasons internal to 
the provider. Data in transit may be purged. 

TABLE I-Service subsets 

Basic SUbsets: 

Half- Inter- Asymmetric 
Service Primitives: ~ ~ active SynChrati.zed Synchrariz.ed 

S~ X X X X X 

S_DFI.TA X X X X X 

S _EXPEDITED _ DFI.TA X X 

S _ (l.IAJWll'INE _ DELIVER X 

S _ (l.IAJWll'INE _ CAOCEL X 

S _ EXCEPTICIi _ REPCm' X X X X 

S _ 'la<EN _ GIVE X X X X 

S _ "roKEN _ PLFA'iE X X X X 

S _SYNC _ HIIDR X X 

S _ SYN: _ MM>R X X 

S~ZE X J{ 

S~ X 

S_PCrMT'i X X 

S~ X X X X X 

S_U_AOORl' X X X X X 

sy_AOORl' X X X X X 

~~: 

send data X X* X* X* 

synChronize moor X X 

synChronize _jar I X X 
I 

release sessiCXl I X X X 
I 
I 

~f-duplex &::de ally 

CONTROL OF SERVICE USAGE 

The specific, detailed definition of each service primitive, its 
particular parameters and their permitted values and ranges 
of values, which are currently being studied in CCITI and 
ISO, will place inherent limits on the usage of every service 
primitive. Numerous modifications in these items will con
tinue to be made until the protocol development efforts are 
completed. The current status of these items is contained in 
the most recent Draft Session Service Definition. 3 

Two other mechanisms, service subsets and tokens, are also 
included in the basic session services for purposes of usage 
control. 

Service subsets are defined to match specific types of ses
sion users' needs, which are expected to predominate OSI 
session service usage. Five service subsets (see Table I) are 
currently defined, based largely on the session service primi
tives permitted to be used, but also containing certain detailed 
differences in parameter usage rules. Implementations only 
intended to provide services for specific user types can thus be 
simplified. 

Four tokens are provided for use in selected subsets, as 
shown in Table I. Service subset selection during connection 
establishment determines which tokens are "available" and 
which ones are "not available" for use throughout the session. 
The particular meanings of these two terms for each token are 
shown in Table II. Table III lists the service primitives that can 
oniy be initiated by a user owning specific tokens. 

SESSION PROTOCOL 

The session protocol4 being developed will specify the rules 
for information exchanges between peer entities in the session 
layer. The units of information exchange are called session 
protocol data units (SPDUs). SPDUs will be used in various 
ways to transfer information in support of session service 
primitives. The relationships between SPDUs and the session 
service primitives are illustrated in Table IV, and the ways that 

TABLE II-Token availability definitions 

~ 

send data 

sync:hrari.ze minor 

syndlrcnize major 

release sessicn 

capabilities When 

Minor synchronizaticn 

points pendtted 

Major syndlrcnizaticn 

points pend tted 

Token assignment required 

to initiate orderly 

capabilities When 

Not~ 

Duplex data transfers 

No minor synchrcnizaticn 

points pendtted 

No major synchronizaticn 

points pend tted 

Only n:n-negotiated 

orderly release pendtted 



TABLE III-Token assignments required 

Service Primitive 

To Be Initiated Tokens Required 

S DATA send data* 

S SYNC MIN:>R send data* am syndlronize mil'X)I' 

S SYNC MAJOR sem data*, synchrooize moor am 

synchrarize major 

send data* am synchrooize major 

S RELFASE send data* am release sessioo* 

*Reqwred ally if "available. II 

SPDUs are currently proposed to be used in support of each 
service primitive are listed below. 

It is important to recognize that the functions performed in 
the session protocol for a given service primitive are only 
permitted to take place when the associated service primitive 
is permitted to be used. Thus, the service subset and token 
authorization structures for the session services are reflected 
directly into the protocol, with respect to the functions per
mitted. 

SPDU Usage for Each Service Primitive 

S_CONNECT. Connect (CN) conveys connection request 
information from one session entity to the other. The normal 
response is either accept (AC) or refuse (RF). CN and AC 
contain information in parameters, such as the proposed sub
set and initial token assignments, which are negotiated among 
the two users and the two session entities to establish the 
characteristics and bounds permitted throughout the remain
der of the session connection. These and all other SPDUs can 
only be conveyed via a transport connection, which must be 
provided by the transport layer. A characteristic of the initial 
session protocol is that only the session entity which pre
viously requested the transport connection is permitted to 
send a CN SPDU over it. 

S-.DATA. Data transfer (DT) conveys session user data 
during the data transfer phase, which begins for a session 
entity when it sends or receives a valid AC. The right to send 
DT at any moment is governed by the send data token in 
half-duplex operation and by additional restrictions associ
ated with synchronization and res election functions when they 
are in use. Session connection flow control is attained only by 
refusing to accept further data transfers, and is reflected to the 
session sender through lower-layer protocol mechanisms. This 
technique is called backpressure. 

S-EXPEDlTED-.DATA. Expedited (EX) conveys limited 
,amounts of expedited user information using the transport
expedited service. EX SPDUs may bypass DT SPDUs en
route to the receiving user. 

A Standard Session Protocol 621 

TABLE IV-Session protocol data units (SPDUs) for 
each service primitive 

Service 

S_DI\TA 

S _EXPEDITED _ DI\TA 

S _QlAPJINl'INE _DELIVER 

S _ CJJARANI'INE _ CAOCEL 

S _ EXCEPTIQU~EPORl' 

S _TOKEN_GIVE 

Sessicn Protoo::>l Data Units 

(SPWs) I!'.itiated By: 

Service 

~ 

Ccnnect (CN) 

Data Transfer (or) 

Expedited (EX) 

Data Transfer (or)* 

cancel(CL) 

Excepticn (ER)** 

Give Tokens (GT) 

Data Transfer (or)* 

Please Tokens (PT) 

Data Transfer (or)* 

Data Transfer (or)* 

Prepare (PR) 

Resyndlronize (RS) 

Reselect (RE) 

Start Activity (51\) 

CCntinue Activity (CA) 

Finish (m) 

Abort (AB) 

Abort (AB)** 

Abort Accept (M)** 

Service 

~ 

Accept (AC) 

Refuse (RF) 

Mark Ccnfirmaticn (M:) 

Prepare (PR) 

Mark Ccnfirmation (M:) 

Prepare (PR) 

Resynchronize 

Acknowledgement (RA) 

Reselect 

Ac:knowledgement (RK) 

Diso:xnect (IN) 

Not Finished (NF) 

Abort Accept (M) 

• SerVIce informaticn is cx:ntained cnIy in parameters of the SPIlJ. 
** Provider initiated. 

S_QUARANTINE-.DELlVER. The end of quarantine 
parameter in DT is used to signal that data quarantined for 
delayed delivery, if any, should be released for delivery. 

S_QUARANTINE_CANCEL. Cancel (CL) is used to 
signal that data quarantined for delayed delivery, if any, 
should be canceled. 

S-EXCEPTION_REPORT. Exception (ER) is used to 
convey information concerning unusual conditions detected in 
the session layer, which should be reported to the distant 
session user. 

S_TOKEN_GIVE. Either Give tokens (GT) or the give 
tokens parameter in DT (when there is data to send) may be 
used to signal transfer of tokens from the owning user to the 
other user. 

S_TOKEN_PLEASE. Please tokens (PT) is used to signal 
a request to transfer tokens from the owning user to the re
questing user. 
S_SYNC~INOR. Parameters in DT are used to signal a 



622 National Computer Conference, 1983 

potential or explicit minor synchronization point between two 
SSDUs. Mark confirmation (MC) is used to acknowledge all 
minor synchronization points up to one identified by its serial 
number in a parameter of MC. 
S_SYNC~AJOR. Parameters in DT are used to signal a 

major synchronization point between two SSDUs. Prepare 
(PR), returned via the transport-expedited service, is trans
ferred just prior to MC in response to receipt of a major 
synchronization point. PR marks a major synchronization 
point in the expedited-data path, and signals that the MC is 
being sent. MC marks the point in the return normal data flow 
of the major synchronization point, thus concluding the pre
vious dialogue unit. (PR is only sent when the transport
expedited service is in use). 

S_RESYNCHRONIZE. Resynchronization is initiated by 
transmission of PR, with a parameter specifying that re
synchronize (RS) is being sent. RS is used to force re
synchronization in the exchange of data to a specified syn
chronization point and to force renegotiation of token own
erships. Typically, resynchronization is utilized after a failure 
is detected. Resynchronize acknowledgment (RA), preceded 
by a PR message, is the normal response to RS. RA includes 
the agreed new token ownerships and the new serial number 
as parameters. Data may be lost as a result of the re
synchronization function. (PR is only sent when the transport 
expedited service is in use). 

S_RESELECT. Reselect (RE) is sent to initiate renego
tiation of parameter values and/or token ownerships within 
ranges established during session connection establishment. 
The normal response is reselect acknowledgment (RK), com
pleting the renegotiation. 

S-ACTIVITY. Start activity (SA) signals the beginning of 
a new association between two session users and conveys the 
initial synchronization serial number for the association. It 
also can convey a limited amount of user data. If the activity 
type signaled in S-ACTIVITY is "resume," instead of 
"start," then continue activity (CA) is sent, which must also 
convey the identity of the previously unfinished user associ
ation. 

S_RELEASE. Orderly release is initiated by finish (FN). 
The normal response is disconnect (DN); however, the re
ceiving user is permitted to decline in certain cases when the 
release session token is available. Not finished (NF) may then 
be returned in response to FN. 

S_U-ABORT and SY -ABORT. Abort (AB) is used to 
initiate the abort procedure, with the source (user or session 
entity) and reason included as parameters. Abort accept 
(AA) is the proper response. Parameters in AB and AA may 
also be used to negotiate whether or not the same transport 
connection may be reused to establish a new session con
nection. 

CURRENT PROTOCOL DESIGN STATUS 

The session protocol for OSI is being designed taking into 
consideration two existing standards, CCITT Recommen
dation S.625 and ECMA-75.6 Together these two standards 
will permit the session services needed for OSI to be provided 

in a manner that satisfies the identified needs of both CCITT 
and ISO. S.62, having been designed prior to the OSI refer
ence model, specifies some items clearly belonging in layers 
above the session layer. These items will be handled by the 
session protocol as user data. Also, some of the session func
tions and many of the parameters are defined differently in 
S.62 and in ECMA-75. The major current effort is to reconcile 
these differences in a manner that satisfies the session service 
definition and requires the minimum amount of change in 
either standard. 

Major Issues and Status 

Several of the major issues identified initially have already 
been successfully resolved, as of October 1982. It has been 
agreed to use the S.62 encoding principles, and compatible 
release and abort procedures have been agreed on, including 
compatible rules governing reuse of an underlying transport 
connection after completion of a session connection. Most of 
the protocol data units in the two standards have been mapped 
together; however, there are a few basic issues remaining, 
which are currently being studied. Most of them involve syn
chronization, and the more significant issues currently identi
fied are outlined as follows: 

1. Should the S.62 window mechanism, which permits mul
tipie minor synchronization points to remain out
standing, be controlled in the session protocol or left for 
control in the users' protocol? The alternatives result in 
different session protocol mappings. 

2. Should the users, when employing the session syn
chronization services, be permitted to request services, 
such as reversal of control states governed by tokens, 
while outside of any user association known to the ses
sion layer? The alternative is to require the users to enter 
into a new activity before requesting such services, 
which results in different protocol mappings. 

3. In S.62 there is a "master/slave" relationship in the pro
tocol, whereas the ECMA-75 protocol is symmetrical. 
How should the master/slave relationship concept be 
integrated into the overall protocol (without simply hav
ing two different protocol machines)? 

REFERENCES 

1. "Information Processing Systems-Open Systems Interconnection-Basic 
Reference Model," ISOlDraft International Standard (DIS) 7498 (ISO/ 
TC97/SC16 N890), Feb. 4, 1982, as revised by "Changes to DIS 7498," 
ISOITC97/SC16 N1226, June 1982. 

2. "Reference Model Of Open Systems Interconnection For CCITT Applica
tions," COM VII-No. R9(C), Appendix 12 of Annex 8 to "Report Of The 
Working Party VIlIS Melbourne Meeting, March 1982." 

3. "Draft Basic Connection-Oriented Session Service Definition," ISOITC97/ 
SC16 Nl166, June 1982. 

4. "Current Status of Draft Basic Connection-Oriented Session Protocol Spec
ification," ISOITC97/SC16 N1167, June 1982. 

5. "Control Procedures For The Teletex Service," CCITT Recommendation 
S.62, Yellow Book, Fascicle VII.2, Geneva, 1980. 

6. "Standard ECMA-7S Session Protocol," European Computer Manu
facturers Association, January 1982. 



The role of the Intelligent Peripheral Interface in 
systems architecture 

By I. DAL ALLAN 
Sperry Univac 
Santa Clara, California 

ABSTRACT 

The American National Standards Institute (ANSI) work committees on computer 
interfaces are actively developing proposed standards that will affect almost all 
vendors of computers and peripherals. This paper reviews one project, the Intel
ligent Peripheral Interface (IPI), in particular, and references the application area 
of the Small Computer Systems Interface (SCSI). 

The architecture of future computer systems is going to depend in large part on 
the types of interfaces used, because of the ever-increasing role that peripherals play 
in systems performance, cost, availability, and reliability. The capability of periph
erals dictates system performance-more than the central processor does, in most 
configurations. The cost of peripherals represents more than half of what the user 
pays for a system. 

The interface chosen to interconnect peripherals has a major influence on the cost 
and performance tradeoffs that a vendor can make. This paper addresses these 
issues with regard to the ANSI efforts on intelligent interfaces. 

623 





The Small Computer Systems Interface (SCSI) and the 
Intelligent Peripheral Interface (IPI) are being defined as 
proposed American National Standards Institute (ANSI) 
standards by the ANS committees X3T9.2 and X3T9.3, re
spectively. Every industry representative lias a voice in how 
these interfaces are defined, because ANSI standards are de
fined by industry volunteers who attend the meetings and 
contribute. 

In the U.S., both the definition of and compliance with an 
ANSI standard are voluntary, and usually the result of market 
pressures. This is not necessarily true overseas, where stan
dards may be set by the governments, and compliance with 
them is a requirement for all vendors. The standards defined 
by ISO are often adopted in their entirety, so it is quite 
feasible for a voluntary ANSI standard to become an ISO 
standard and wind up as a regulated requirement in foreign 
markets. 

The availability of microprocessors and large-scale integra
tion (LSI), both commercial and custom, has changed the way 
in which systems can be configured. The inexpensive micro 
makes it feasible to incorporate logic that formerly resided in 
the controller into the device, and to place in the controller 
logic that formerly resided in the operating system. The defi
nition of controller varies by market environment, and is com
monly known by different designations, such as storage direc
tor (SD) on mainframes and the direct memory adapter 
(DMA) on minis. 

There are three general definitions of interfaces-channel, 
control, and device. Usually, the three only occur as separate 
and discrete interfaces on large mainframe configurations. In 
most mini configurations such as that illustrated in Figure 1, 
the functions of the channel and control interfaces are inte
grated onto the system bus. The device interface (which is 
most commonly an SMD) connects directly to a DMA con
troller that shares the CPU bus with other system elements. 

This type of implementation has made DMA controllers, 
and subsequently the processor complex, very sensitive to 
technology changes in devices. Either every new device has to 
act just like the previous, or it causes some level of change in 

DEVICE 

Figure I-Typical SMD application 

The IPI in Systems Architecture 625 

the DMA controller. The control interface, which connects to 
a head of string (SC-string controller), is used to mask 
unique device dependencies. 

The minicomputer world is turning toward the string con
cept (which has been much used by mainframes), because it 
addresses the general market desire for a device-independent 
interface. Figure 2 illustrates both a mainframe and a mini 
with heads of string. The head of string may stand alone or 
be integrated into the first device, with others attached to it 
via a device interface. Alternatively, each device may have an 
integrated head of string so that there is a one-to-one 
relationship. 

In covering the application areas for a peripheral interface 
it is first necessary to look at the characteristics of each of the 
three types of interface: 

1. Device interface-This is usually one of close proximity, 
typically less than 50 feet. The transfer rate across the 
interface is dictated by the speed of the device (data 
clocking rate). The commands used across the interface 
are device dependent and both the timing constraints 
and_ the L.'1dividual commands are uniquely device de
pendent. 

2. Control interface-The distance is longer, and is typi
cally in the range of 50 to 200 feet, depending on the size 
of the configuration. Data transfer rates are a function of 
where the buffering is located; that is, if buffering is 
done at the CPU, then the rate is determined by the 
head of string because it is transferring data at the rate 
of the device. If buffering is incorporated in the head of 
string, then speed is a function of how fast the CPU 
chooses to accept data because speed matching is a func-

CHANNEL 

CONTROL 

DEVICE 

Figure 2-Interface environments 



626 National Computer Conference, 1983 

tion of buffer management. It is desirable that com
mands be class specific (dis~ or tape) rather than device 
specific (type of disk or tape). 

3. Channel interface-Distances are expected to be much 
longer, in the range of 200 to 400 feet or more. CPUs 
that use channels are fast enough that performance is 
either controller- or interface-limited. Commands are 
disconnected so that controllers may be multiplexed; it is 
desirable that they be function generic (i.e. random! 
sequential, read/write) to mask all device uniqueness. 

In the past, as the functionality of an interface increased so 
too did its manufacturing cost. It was not practical to limit the 
number of different implementations, because the costs asso
ciated with each tended to vary dramatically. To the degree to 
which each interface varies, there are unique costs incurred, 
and the more there are the higher the levels of support in 
engineering, training, and spares that are required. 
-Today, more cost is associated with the development and 

maintenance of system components than with manufacturing 
cost. Life-cycle cost analysis proves that it is cheaper to use 
common parts than it is to optimize individual items (there are 
huge savings in spare parts alone). Interfaces have to become 
a generic system component in order to achieve similar life
cycle cost savings. 

The IPI is a modular interface that is layered in an architec
ture similar to that of the Open Systems Interconnect (OSI) 
model. It is not a proprietary interface; instead, it represents 
a combination of the best features of all the interfaces that 
were proposed to the committee. 

Since terminology does not have the same meaning to 
everyone, the proposed standard has defined several terms to 
avoid confusion; for example, in an intelligent environment 
the term host is used to identify the master and the term unit 
is used to define the slave (which controls devices). In a 
device-oriented environment the term unit defines the master 
and the device is the slave. Both the physical interface 1 and 
the logical interface2 definitions of the IPI contain a glossary 
of terms and definitions. 

It is practical to use the IPI as a channel, control, or device 
interface, depending on the repertoire of commands used. 
The master-slave configuration is used to obtain simplicity 
and performance, and there are two major divisions: The 
physical interface defines the interconnection for transferring 
information; the logical interface discriminates between infor
mation as either the operations to be executed or the data to 
be transferred. 

The two divisions operate independently of each other, in 
the sense that it is possible to replace one physical interface 
with another and have the logical interface remain the same 
(e.g. open-emitter logic using coaxial cable for long distances 
may be replaced with a fiber optics loop). Alternatively, it is 
possible to retain the same physical interface and replace or 
extend the logical interface command repertoire to provide a 
database backend processor in place of a disk controller. 

The physical interface defines the mechanical, electrical, 
and protocol specifications necessary for transferring informa
tion across the IPI. The multiple interconnect specifications 
listed in Table I are provided so that cost considerations of 

Table I-Interconnect classes 

DISTANCE ELECTRONICS MECHANICAL 

A 3 METERS THREE STATE 
R!BBO!'J CABLE 

B 15 METERS OPEN COLLECTOR TO HEADER 

C 
- 65 METERS DIFFERENTIAL 

D CABLE TO BULKHEAD 

E 5 METERS RIBBON CABLE TO HEADER 
OPEN EMITIER 

F 125 METERS COAX TO BULKHEAD 

in-cabinet harnesses versus external cabling can be managed 
by the manufacturer. 

Different applications need different physical interconnec
tions, thus the choice between logic families and cable config
urations. Class A is suited to small systems and uses the same 
logic, connectors, and cables as defined in the rigid disk inter
face (BSR X3.101M). These limit cable lengths to 3 meters, 
are cheap, and are quite suitable for in-cabinet configurations. 
At the other extreme is the requirement for large mainframe 
complexes that place subsystems hundreds of feet away from 
the central-processor complex. Industry has a diverse range of 
requirements, so a standard must not limit the environments 
where it can be used. 

Intermixing of the different classes of physical intercon
nects is likely to occur often. Classes C and D have the same 
electrical specifications but use different cables and 
connectors-for mainframe installations Class D is suitable 
for the long cable lengths between system controller and 
peripheral-subsystem strings, but within a string Class C 
would be used to save cost. As another application, a high
capacity disk subsystem using Class D to the CPU could incor
porate a small cartridge tape in each cabinet to serve as an 
audit trail by logging activity against the disk. The inter
connect to the tape cartridge would be internal to the disk 
cabinet and able to use Class A. 

As seen in Figure 3, 5 signals (three out and two in) are used 
to control the interface. One signal change at a time is alter-

H 

o 
S 

T 

SELECT OUT • SLAVE IN .. 
MASTER OUT • SYNC IN .. 

SYNC OUT 
• 

( .) 1111EfusA ~1i.H8-.,:.ej i1:~ 

~lBUSB iWlljI1j(1i:+pj ~lli ( ~ ) 
ATTENTION IN .. 

( * ) BIDIRECTIONAL OPTION 

Figure 3-Signal definitions 

U 

N 

I 

T 



nated between master and slave to provide complete hand
shake control of the interface. There are two unidirectional 
8-bit buses with a transfer rate that exceeds 3MBs, and as a 
performance option the two can be used bidirectionally at 
over 6MBs. The remaining signal is used as an ORed attention 
line to advise the master of interrupt conditions in the slaves. 

Implementing the IPI requires but a simple state machine, 
virtually free of timing dependencies. With 5 control signals 
there are only 32 possible states. Of these, 12 are illegal and 
6 are resets. That leaves only 14 states needed for normal 
operation, and the 9 sequences require fewer than 30 transi
tions between states. 

The few signals, small number of states, and the limited 
sequences reduce the size and complexity of logic necessary 
to control the interface. Everything can be managed by a 
micro except recognition of reset, a precaution necessary to 
recover from microprocessor failure, microcode loops, bugs, 
and so on. 

Implementation techniques vary widely; one uses a Z8 
micro and a handful of chips, one is using custom gate arrays, 
and another uses the Signetics 50ns 82S105 FPLS as a "state 
machine in a chip." Common to all is that they are cheap by 
comparison with the interfaces they are replacing. 

A microprocessor is not expected to handle the transfer 
function, unless the rate involved is quite low. The slave de
fines the transfer clock rate so that it can occur at the max
imum rate speed of the device (or buffer, if any). Transfer rate 
is a product of cable length, skew, and technique used. If 
transfers between the master and the slave are interlocked, all 
information is "handshaked" over the bus and there are de
lays (in both directions) that are associated\vith cable length. 

Data streaming may be incorporated in the intelligent 
host-unit environment to double the transfer rate by not inter
locking the syncs (data clocks). Information on the buses is 
strobed by a sync (clock pulse), and there is no interlocked 
handshake to confirm receipt of the pulse. This is similar to 
the way most bit-serial device interfaces clock data into the 
receiver. The effect of cable delay is that the interface con
tains multiple clock and information pulses at the same time. 
The host responds to each SYNC IN with a corresponding 
SYNC OUT, so that when a transfer is terminated the re
sponse syncs are still "on the cable" and it is the responsibility 
of the unit to check that there was the same number of syncs 
in and out. The way in which data streaming has been imple
mented in the IPI permits a host to operate transparently 
between both interlocked and data streaming modes. If the 
width of the SYNC IN pulse is greater than the cable delay, 
the transfer is interlocked. 

An important feature is the ability to intermix devices with 
widely varying transfer rates on the same cable. Transfers can 
be made in any combination of interlocked or data streaming, 
8 bits or 16 bits wide. The capacity of up to eight units, each 
with up to 16 devices, gives a maximum of 128 devices ad
dressable by the host on a single daisy-chained cable. 

As illustrated in Figure 4, functions on the IPI are com
plementary to each other. At the physical interface a bus 
exchange is used to frame an information transfer, which can 
be data, an operation command, or an operation response. 
The bus control defines the parameters (operation or data, in 

P I 
H N 
Y T 
S E 
I R 
C F 
A A 
L C 

E 

L I 
0 N 
G T 
I E 
C R 
A F 
L A 

C 
E 

The IPI in Systems Architecture 627 

INFORMATION TRANSFER 

OPERATION COMMAND 

DATA 

OPERATIONS RESPONSE 

Figure 4-Interface structure 

or out, 8 or 16 bits wide) of the information transfer, and slave 
status reports on its completion (success or failure). 

The contents of an information transfer are transparent to 
the physical interface, which is simply a vehicle for using the 
IPI as a device, control, or channel interface. The logical 
interface frames data transfers with an operation command 
and its associated response. The "intelligence" of an IPI im
plementation is a product of the command repertoire defined 
between master and slave. The repertoire itself is a product of 
the environment in which the IPI is used: 

Master-controlled devices. -The master functions in a fash
ion similar to that used with device interfaces. This type of 
operation is presumed to. offer little. or no increase in func
tionality over rigid disk interface (RDI) or storage module 
drive (SMD) types of interfaces. Vendors that have devices 
installed and operational with current software need to install 
enhanced peripherals. It is much easier to introduce new 
hardware into a system when there is no need for new soft
ware. Software changes can be introduced gradually if the new 
hardware incorporates new functionality. 

It may be impossible to install new hardware on the old 
interface; for example, disks presently available with a 3MBs 
data rate (24 MHz) cannot be implemented with an SMD 
interface. The IPI can be used to emulate the SMD command 
set to the master so that no software need be changed. The 
extended functionality offered by the IPI can be taken advan
tage of in stages. For example, to improve serviceability the 
first stage may be to provide new maintenance and diagnostics 
capabilities. Operating system software changes usually take 
longer to implement, but as they occur they can be made 
without hardware impact. 

Some uses of the IPI will be device and vendor specific if it 
is necessary to extend the command repertoire beyond that 
defined in the logical interface. The proposed standard does 
pr?vide for this kind of use as a vendor-unique application, 
because such implementations provide the vendor with a 
migration path to compliant logical interface operation. 

One example of this kind of use is defined as synchronous 
because it represents a time-critical operation executing be
tween CPU and device. This situation can occur when the IPI 
is used subservient to another interface such as the FIPS 60 



628 National Computer Conference, 1983 

Block Multiplexer Channel. The channel issues channel com
mand words (CCWs) that are chained together and require 
responses within a very specific time period. On disks with 
count-key-data (CKD) records the channel must actually 
"turn-around" during the gap times of the disk. If the CPU
SCU and SCU-disk interfaces are FIPS 60 and IPI re
spectively, the IPI must run synchronous to the timing con
straints of the channel. Similar situations may occur whenever 
the IPI is dropped into any pre-existing environment. 

Shared control of devices. -This is an intelligent environ
ment where host-unit operation may have any of a wide range 
of characteristics-from one where the host dictates control of 
the devices through the unit, to a more independent mode of 
operation where the unit controls the devices. The command 
repertoire is oriented to device characteristics (disk, tape, 
etc.) and uses device-generic commands that support logical 
addressing (e.g., relative block) and a format (e.g., fixed sec
tors). This level of operation permits the unit to incorporate 
such features as buffers, error correction, error retry, and 
defect handling. 

The command repertoire defined is extensive, because it 
incorporates pathways to let vendors migrate to more intel
ligent use of peripherals. The commands defined not only 
replicate those to be found in the SCSI (X3T9.2/SASI) and lSI 
(CDCIMPI), but represent a superset that permits application 
over a much more diverse and varied set of configurations and 
architectures. Since the objective is to permit the vendor to 
coexist with the installed environment there are no predefined 
characteristics that require buffering, error correction, error 
recovery, and so on in the unit-if they are present, the com
mand repertoire can use them. 

Different performance profiles can be configured-if com
mands are issued as individuals, only one operation per device 
is active at a time, and it has no timing-critical dependencies. 
If performance is a criterion, the unit may operate with 
queued commands. In this implementation the unit is capable 
of stacking multiple operations per device on behalf of the 
host, and of servicing them in a manner defined by host and/or 
unit algorithms. One example of this would be performance 
improvements on disks, obtained by the unit queueing re
quests and executing them in a sequence according to some 
seek-optimizing algorithm (unless overridden by a host
defined priority request). 

Unit-controlled devices. -Operations are host-unit and re
quire that a number of architectural attributes such as memo
ry management reside in the units. The control of devices is 
distributed, since their management is within the scope of the 
unit; the host has limited control, if any, over the details of 
device manipulation. Either individual or queued operations 
are executed, depending on the capability of the unit. 

At this level of operation few commands are needed, be
cause each one is powerful and rich in functionality. The host 
is cognizant only of the attributes of the data (i.e. random, 
sequential, input, output; thus there are no device-dependent 
characteristics. The addressing structure does not recognize 
physical boundaries, since data is allocated in files on logical 
volumes, which mayor may not be on a single physical device. 

When execution occurs on the IPI for this type of imple
mentation it is probably being used as a channel. The level of 
capability necessary in the unit represents a high level of 
functionality that is relatively high in cost. As such, it is as
suming a considerable degree of the data manipulation bur
den of the host. 

To support these variations in environment and application, 
the IPI has applied techniques implemented successfully in 
communications networks to support multiple environments 
of use. The logical interface uses message packets for oper
ation commands and operation responses, with sequences to 
perform a task constructed from a series of macros. For exam
ple to read data in from a slave to the master requires a 
sequence of five macros: 

SELECT 
OPERATION COMMAND 
READ DATA 
OPERATION RESPONSE 
DESELECT 

Only simple operations are defined for device interface ap
plications, but in the intelligent host-unit environments the 
complexity of the tasks that can be accomplished is limited 
only by the functionality incorporated in the unit. The oper
ation commands and operation responses are message packets 
of variable length that are transferred across the physical in
terface as information. (See Figure 4.) A command packet has 
a generic root of 14 bytes plus, if needed, a variable-length 
parameter list. A response packet images back the generic 
root plus 4 bytes of status and, if needed, a variable-length 
parameter list. The commands are broken up into the follow
ing groups: 

READ LOGICAL COMBINATION READIWRITE 
READ PHYSICAL CONTROL 
WRITE LOGICAL DIAGNOSTICS 
WRITE PHYSICAL OTHER 

Some of the commands are generic to all uses (e.g. some 
control commands), but others are very specific (e.g. a physi
cal read to a disk). The read and write physical commands are 
unique to the device interface level of operation. In most 
applications only a subset of the available command reper
toire is needed. 

It is unnecessary to define the ultimate environment for use 
of the IPI in advance. Since commands are assumed to be 
implemented in microcode, unique requirements can be 
added to the chosen repertoire to meet specific vendor needs 
and problems. Over time, as systems adapt to higher levels of 
function the unit will grow in complexity as it incorporates 
functions currently considered part of the operating system 
responsibility. The most fascinating part of such a scenario 
is that the same physical interface can support all of the envis
aged environments, and the IPI can evolve to meet the vendor 
needs. 

To assist in making this kind of growth feasible and modi
fiable, the IPI provides extensive housekeeping capabilities 



that permit the master to configure the slave to the required 
environment of use. Each slave has attributes that can be 
examined by the master-some, such as physical record size, 
will be soft on one device but hard on another (e.g. on im
bedded servo disks the physical record size cannot be altered). 
The combination of attributes offered by a slave defines the 
ways by which the master can customize it to the particular 
installation. Soft attributes can be selected and modified by 
the master to tailor the slave, while hard ones cannot be 
modified and must be accepted as given. Attributes will nor
mally be established after initial power-on, but they can be 
used dynamically to reconfigure systems to adapt them to 
changing workloads or cover hardware outages. 

Using the IPI as a device interface has been discussed al
ready; it can represent major cost savings. Tapes are parallel, 
and all the new coding schemes (217, 3PM) for disk depend on 
byte constructs (data is recorded bit-serially, and the data 
separator does the necessary conversions). As shown in Fig
ure 5, a device interface such as the SMD requires that it be 
converted back to bit serial to go to the outside world-where 
it is reconverted into bytes again by a head of string or a 
DMA controller. Given the increasing use being made of 
high-density coding schemes this makes no economic sense at 
all-the cheapest, and also the fastest, approach is to leave the 
data parallel from the data separator on, as can be done with 
the IPI. 

The on-board electronics are not the only savings-there 
are even more significant economies in cabling costs. Bit
serial device interfaces are radial (Figure 1), and usually have 
two cables (the SMD has one for control and one for data). A 
paraHei device interface requires only a single daisy-chained 
cable (Figure 7), and can operate at much higher data rates. 
When the cost of the separate cables and the difficulties of 
installation are addressed, the parallel IPI provides savings to 
both the manufacturer and the installer. 

At the other end of the spectrum, the IPI is very suitable for 
use as a channel, because it provides the ability to operate 
under the FIPS 60-63 architectural constraints. A channel 
interface has to be able to interconnect over long distances, at 
a very high data rate. Cabling costs are very high, electro
magnetic interference (EMI) is a serious concern, and 
grounding isolation is difficult to achieve. The latter concerns 
make fiber optics appear very attractive, but a fiber optics 

DATA SEPARATOR 

SMD 

Figure 5--Device interface comparison 

The IPI in Systems Architecture 629 

implementation of FIPS 60 requires three fibers and cannot be 
installed cost-effectively. 

A single fiber loop or ring can be cost competitive with the 
current FIPS 60 type of coaxial-cable connections. The IPI has 
been designed with this consideration in mind, and a con
version of the physical interface such as that shown in Figure 
6 has no impact upon the logical interface command reper
toire implementation. 

One of the biggest problems with EMI compliance is that 
even though cabinets may individually comply, when they are 
configured into a system the system may not comply. The cost 
of testing for compliance is a significant factor that all vendors 
of computing systems have to face as an ever-increasing bur
den. When fiber optics is used as an interface there are no 
intercabinet EMI considerations, which means that system 
compliance is a near-automatic follow-on after cabinet com
pliance has been achieved. The FCC and VDE regulations 
have caused considerable trauma in recent years, and unless 
there is a switch to fiber, future systems will represent an even 
worse problem. 

The choice of how to implement an IPI is a function of cost 
and performance--on a small system with limited per
formance requirements, integrating both functions into the 
on-board processor makes the most sense. However, for 
higher-performance systems it is better to have a head of 
string on a separate board that uses a fast processor. The 
advantage to this structure is that the systems integrator only 
has to support one interface, and it is easy to offer simple 
performance upgrades from device-only configurations by 
adding heads of string boards. 

One point that must not be overlooked in implementing the 
IPI is undersizing the microprocessor. The physical interface 
can be controlled by an inexpensive slow processor, but as the 
level of intelligence offered increases, so too does the need for 
faster processing. An IPI used to interface devices at a prim
itive command repertoire level does little processing, but as 
functionality is added the power to process commands at the 
logical interface must be provided-if it is not, the unit will 
take too long to respond to commands and will be limited in 
performance. This may be acceptable in some low-end appli-

HOST 

HOST 

24 PAIR WIRE INTERFACE 

BUSA ~ 

BUSB~ 

~ SINGLE FIBER RI~G 

L=D 
L.-. __ ~ 

Figure 6-Parallel wire to fiber loop 



630 National Computer Conference, 1983 

cations, but where intelligent processing is needed, either a 
fast processor in every device or a fast processor at head of 
string is needed. 

Figure 7 illustrates how a mainframe can configure the IPI 
as all three interfaces (channei, control, and device), a iarge 
mini can configure it as two (control and device), and a small 
mini can configure it as one (device). The configuration is 
made up as follows: 

1. The mainframe CPU is connected by a channel interface 
to an SD controller. 

2. The SD and a mini, via its DMA controller, are daisy
chained to two dual-port heads of string (one standalone 
and one integrated unit/device combination). 

3. The standalone head of string and a small mini, via its 
DMA controller are daisychained to dual-port devices. 

In the control or intelligent interface environment the 
X3T9.2 project for the SCSI can be considered an alternative 
to the IPI. The SCSI has an 8-bit bus and offers a peer-to-peer 
capability, such that units attached to it may assume the role 
of either initiatior or target. There is an arbitration algorithm 
that settles possible conflicts in use on interfaces less than 30 
meters in length (which is adequate for small systems). 

There are implementations of the SCSI available in custom 
LSI, which makes the job of systems integration much easier 

CHANNEL INTERFACE 
(INTELLIGENT USAGE) 

CONTROL INTERFACE 
IINTELLIGENT USAGE) 

DMA 

DEVICE INTERFACE r
pU 

.......... ' .) 

Figure 7-Configuration flexibility 

for both the device and the controller manufacturers. Not 
only is the physical interface integrated but so too is the basic 
command repertoire. This makes for a high degree of applica
bility and compatibility in future SCSI installations. 

Tne SCSI can COexist with the IPI because both use a struc-
tured, modular approach to implementation and are oriented 
to use in new systems applications where there is no need for 
compatibility with existing software and hardware. Equiv
alence between SCSI and IPI configurations can be obtained 
by using an SCSI-like logical interface command repertoire. 
An SCSI complex could be configured with one node dedi
cated to high performance disk activity that uses IPI interfaces 
to the disks. The operating system software in such a complex 
would be almost totally unaware that it was operating with two 
different physical interfaces except at the I/O dispatcher level. 

When a vendor has to configure systems where multiple 
levels of interface must be supported, the IPI is unique in its 
portability of function. It is possible to use the same physical 
interface as device, control, and channel with the only differ
ence being the command repertoires at each. Even more like
ly is that the same physical interface will be used with more 
than one level of logical interface capability. As new periph
erals and software are introduced, the command repertoire 
can expand and grow to suit higher levels of functionality. 
In this way the IPI serves as a migration and growth vehicle 
for vendors. 

There is no equivalent interface offered by any vendor that 
offers quite the same breadth of application. The IPI repre
sents the essence of simplicity, and very little has been com
promised for its application in any of the three interface defi
nitions. This is a testimony to the efforts and capabilities of 
the ANSC X3T9.3 membership, who have given generously of 
their time and effort. The IPI is not, and never was, a propri
etary interface-and this may in itself be the major reason for 
its universality, simplicity, performance, and ease of use. 

REFERENCES 

1. ANSC Document Number X3T9.3/176 
2. ANSC Document Number X3T9.3/82-19 



Progress on the network layer of the OSI reference model 

by PETER F. LININGTON 
Rutherford Appleton Laboratory 
Chilton, Didcot, United Kingdom 

ABSTRACT 

Work in the International Standards Organization on communication protocols is 
structured in terms of the Open Systems Interconnection Reference Model. The 
network layer of this model provides independence of network technology, includ
ing details of routing and switching. The standardization activities involve definition 
of the service provided by this layer in the Open Systems Interconnection structure, 
the organization of functions within the layer, and the specification of protocols to 
support them. The structure described allows communication systems to exploit a 
wide range of different network types while preserving a uniform set of user facil
ities. The work on the network layer is of vital importance to the acceptance of the 
new communication standards and their early application to practical networking 
problems. 

631 





A. THE OSI ARCHITECTURE 

Work on a general set of standards covering many aspects of 
data communication has been in progress within the Interna
tional Standards Organization (ISO) for several years. The 
project is known as Open System Interconnection (OSI). An 
OSI reference model! has been created to provide a structure 
for work on the protocol standards needed for interconnec
tion of computers. The aim of this model is to encourage 
parallel work on different facets of the interconnection prob
lem by placing them within a consistent architectural frame
work. This can be achieved by dividing the functions that need 
to be performed into a number of nested layers. Each layer is 
based on the capabilities resulting from the more basic func
tions in the layers below, which are said to provide a support
ing service. Each layer in turn offers some more powerful set 
of capabilities to higher layers, which communicate by using 
them; these capabilities are represented as the service pro
vided by the layer. 

The functions allocated to the network layer in the refer
ence model are primarily those involved in management of 
location. It is concerned with routing and switching mech
anisms, and with the combination of different communication 
technologies. In this it can be contrasted with the layer above, 
the transport layer, which is independent of these consid
erations and provides a quality of service enhancement re
sulting from protocol exchanges between the single pair of 
entities that use the network service directly. 

The basic reference model produced by ISO was concerned 
with communication describable by the operation of a con
nection. It identifies connection establishment, connection 
use, and connection termination. However, further work is 
now in progress to extend the Reference Model to include 
operation that does not require a connection; this so-called 
connectionless operation can be used to model certain existing 
types of networks; it has thus become of considerable prac
tical importance in discussions of the network layer. 

B. TECHNICAL OBJECTIVES OF NETWORK 
STANDARDIZATION 

The standardization committee concerned with the network 
layer within ISO is Subcommittee 6 (data communication) of 
Technical Committee 97 (data processing). This committee 
cooperates closely with Subcommittee 16, which is concerned 
with the higher layers of the reference model, and with gen
eral architectural questions. SC6 brings together many dif
ferent networking interests. There are representatives of 
computer manufacturers, common carriers, and computer 
users. They reflect interests in both local and wide-area net-

Progress on the Network Layer 633 

works, operating both in the private and in the public domain. 
The discussions therefore range over a wide spectrum of exist
ing and projected network types. The unifying factor in the 
discussions, however, is a desire for widespread simple inter
operation. The aim of OSI in general is to remove the tech
nical impediment of unnecessary variety from the com
munication process. In the network layer, the emphasis is on 
allowing equipment attached to any type of network to com
municate, via suitable intermediaries, with equipment 
attached to any other type of network. Particular importance 
is given to the interconnection of private local area networks 
via wide-area public networks (see Figure 1). The main thrust 
of the work is therefore toward unification of the user view of 
many different technologies. 

C. TECHNOLOGICAL VARIETY 

The main barrier to the simple and uniform view of commu
nication desired is the wide range of technological solutions 

Figure I-Tandem local-area and wide-area networks 



634 National Computer Conference, 1983 

available to network constructors. Major differences that 
need to be resolved are 

1. The difference of approach between circuit-switched 
and packet-switched communication. This difference in 
the way the communication resource is managed has 
wide-ranging consequences in terms of the richness of 
the service the user sees. As a consequence of the 
resource-sharing and queueing facilities included within 
packet-switched networks, there are user-visible control 
functions such as reset and interrupt mechanisms. These 
features do not form part of the network when a channel 
is dedicated to the user in a circuit-switched system. 

2. The difference between connection-oriented and 
datagram-oriented networks. Connections provide a 
certain level of communication management that must 
be provided outside the network in the datagram case. 
However, the provision of connections is not without 
cost, and there is as yet no general agreement on a single 
optimum solution. 

3. The variation in costing of communication. The major 
difference here is between private networks, charged on 
the basis of capital depreciation, independent of detailed 
use patterns, and public networks, charged on the basis 
of actual use. Within the public domain, different tariff 
structures give radically different weights to data
transmission, connection-establishment and connection
holding time. These differences all tend to be reflected 
in different design choices for the network protocols. 

D. ADMINISTRATIVE REGIMES AND NETWORKS 

One of the major problems in attempting to establish a uni
form communication system is the fact that different com
ponents are likely to be managed by different organizations. 
The resultant division of responsibility implies a need for a 
careful definition of what a network is. This is not a simple 
matter, because the standardization of protocols turns on who 
caused each message to be sent and who took what action on 
it, not on physical groupings of equipment. For example, a 
PTf-operated network contains many functions. Some of 
them are concerned with allowing user-to-user commu
nication; some of them are involved with value-added user
to-network communication. Conversely, some of the basic 
communication functions are in equipment supplied by the 
network user. 

In consequence of this distribution of function, the term 
subnetwork has been introduced to describe the physical col
lection of equipment, in contrast with an as/-Network, which 
bounds a particular collection of functions. A subnetwork 
may provide either more or less function than the idealized 
OSI-Network. Any function that is not provided must be 
made good by the users of the subnetwork, in cooperation 
with one another. This division of function is reflected in the 
organization of networking standards, described in section F 
below. 

In addition to straightforward protocol implications, the 
division of responsibiiity for communication has some more 

subtle implications with regard, for example, to addressing or 
network maintenance. 

The problem of addressing is that the organizations re
sponsible for the different elements will need to act indepen
dently in allocating addresses. It would not be acceptable, for 
instance, if a private network manager had to liaise with the 
PTT providing him or her with remote access whenever he or 
she wished to allocate a new address. Where the organization 
is hierarchical, this problem can be mitigated by the use of 
hierarchical addressing schemes, although problems of the 
unpredictable size of the address space still remain. When the 
organizations are autonomous peers, however, there are more 
severe problems, which now seem soluble only by construc
tion of an artificial hierarchy. Other problems arise when an 
organization divides, when two previously independent or
ganizations are combined, or when existing functions are relo
cated at a different site. 

In considering network maintenance, the major issue is the 
allocation of responsibility for errors. The user of the network 
will receive error indications when unrecoverable errors 
occur, and may need to know which component has failed in 
order to apply pressure on an organization that is not provid
ing him or her with the contracted quality of service. These 
issues of diagnosis raise management problems that have not 
yet been resolved in the standards discussions, but that do 
have an impact on the design of network protocols, because 
additional information must be passed with error reports 
where more than two components are involved. 

E. THE NETWORK SERVICE 

The general architectural approach of defining abstract ser
vices before fixing protocol detail was introduced above. The 
development of a network service definition is well advanced. 2 

It is proceeding by collaboration between ISO and CCITT. 
The two organizations have been holding meetings alter
nately, taking note of each other's progress, so that the tech
nical content of their two service descriptions is well coordi
nated, and the drafts are fairly stable. The major area of 
instability at present centers on the need for and precise defi
nition of an expedited-data (interrupt) facility. 

The network service provides for the transparent exchange 
of network service data units (NSDUs) between transport 
entities. Transport entities are unambiguously identified to 
other transport entities and to the network service provider by 
their network addresses. 

The network service provides to the transport entities inde
pendence from routing and relaying considerations. This in
cludes the case where several transmission resources are used 
in tandem or in parallel. It makes invisible to transport entities 
how the network layer uses underlying resources such as data
link connections to provide the network service. 

The network service defines 

1. A connection that may be established or terminated be
tween the network service users for the purpose of ex
changing data. More than one network connection may 
exist between the same pair of network addresses, 



2. Associated with each connection, certain measures of 
quality that are agreed on by the network service pro
vider and the network service users when the connection 
is established. 

3. Means of transferring NSDUs on a connection; the 
transfer is transparent, in that the boundaries of 
NSDUs, the sequence of the NSDUs, and the contents 
of NSDUs are preserved unchanged by the service, and 
in that there are no constraints on the data values im
posed by the service; the transmission of these data is 
subject to flow control. 

4. Means by which the connection can be returned to a 
defined state, and the activities of the two users syn
chronized by use of a reset service. 

5. Means for the service user to confirm receipt of data. 
6. Means for the service user to send expedited data that 

are not subject to the normal flow control. 
7. The unconditional and therefore possibly destructive 

termination of a network connection. 

The description of the components of the network service is 
in terms of exchange of primitive actions, or primitives for 
short, between the users and the provider of the service. For 
example, the significant events in the establishment of a con
nection are described as follows: 

1. The calling user issues an N-CONNECT request prim
itive to the service provider. 

2. After a certain time, the service provider issues an N
CONNECT indication to the other service user. 

3. Ii" prepared to accept the connection, the called user 
issues an N-CONNECT response to the service pro
vider. 

4. Finally, after some time, the service provider issues an 
N-CONNECT confirm to the calling user, showing that 
the connection is complete. 

The groups of primitives defined in the current network 
service definition are given in summary form in Figure 2. The 
use of primitives allows the simple expression of the con
straints on the available sequence of actions. It does not, 
however, allow the direct expression of more complex com
munication properties, such as the existence of flow control or 
the properties of expedited data. To this end, the operation of 
the service provider is modeled in more detail by the oper
ation of a dynamically modified queue. 

This description applies to the connection-oriented service. 
The description of the connectionless service3 is not so well 
advanced. 

However, the service is inherently simpler, in that it allo
cates more of the functions to the communication user. The 
service description can therefore be expected to progress 
rapidly. 

Nevertheless, there are problems in the description of the 
properties of real networks that require the interrelation of 
different actions made by the service users. For example, most 
of the current local-area technologies can be described by a 
connectionless service but also have the property of maintain
ing the sequence of user actions. This sequencing property is 

Progress on the Network Layer 635 

of importance when one is considering user-to-user protocols, 
and queue-like models for expressing these properties are 
being studied. 

F. INTERNAL ORGANIZATION OF THE NETWORK 
LAYER 

Work has been taking place to define an internal organization 
for the network layer ,4 in order to allow the interworking 
between different subnetwork types. The role of the sub
network in representing the real-world networks, rather than 
the regimes using particular protocols, was explained in Sec
tion D. The result of this analysis of the practical constraints 
has been the identification of four groupings of functions. 

1. The subnetwork access functions, which are associated 
with those protocols needed to support the direct inter
actions between a pair of entities using a particular sub
network type. The operation of these functions can be 
described abstractly by a subnetwork service specific to 
the subnetwork concerned. For example, there is a ser
vice corresponding to capabilities of an X.25 network, 
abstractable from (and more stable under review than) 
the specific X.25 protocol. 

2. The subnetwork-dependent convergence functions, 
which are the functions that, for a particular subnetwork 
type, are not included in the set of subnetwork access 
functions but are needed to convey the information re
quired to support the OSI network service across the 
particular type of subnetwork. 

3. The subnetwork-independent convergence functions, 
which are the functions that are needed to convey the 
information required to support the OSI network service 
but can be defined without reference to a particular 
subnetwork type. \ 

4. The concatenation and routing functions, which are the 
functions needed, in addition to the subnetwork access 
and subnetwork-dependent and independent con
vergence functions, to concatenate a pair of subnetworks 
so as to provide the appearance of a single, uniform 
subnetwork. These functions correlate the activities 
related to the individual subnetworks and can be de
fined in terms of the services of the two subnetworks. 
They are localized functions and do not add to the proto
col required. 

The division of function is shown diagrammatically in 
Figure 3. 

The distinction between subnetwork-dependent and 
subnetwork-independent convergence functions needs some 
further explanation. It arises from the wide range of technical 
and economic constraints applied to the network layer. An 
apparently simple strategy for convergence would be to set a 
minimum functional requirement for any subnetwork, and 
place almost all the functions in one standard, universal net
work protocol. The subnetwork-specific work to be done 
would then be the definition of an essentially trivial mapping 
of the minimum requirements onto the particular subnetwork 



Successful Connection 
Establ1shment 

N-CONNECT 
request ----..' 

~ 
N-CONNECT 
confirm 

N_DISCONNECT 
request 

N_CONNECT 
indication ----.. 

____ - _ - - - - - ---'~CT 

NS User Initiated 
Connection Release 

response 

N-DISCONNECT 
indication ----.. 

Simultaneous NS User 
Initiated Connection Release 

N-DISCONNECT 
request 

N_DISCONNECT 
request.. 

~I~ 

NS Provider Initiated 
Connection Release 

N_DISCONNECT I ~ indication I N-DISCONNECT 

~ ~or. 

Simultaneous NS User & 
NS Provider Initiated Connection Release 

N-ilISCONNECT 
request 

~I~ 
N-DISCOIf/f£GT 

~n 

(a) 

N-CONNECT 
request 

HS User Rejection of an 
HC Estaplishment Attempt 

N-CONNECT 
indication ----.. 

~ 
N-DISCONNECT 
indication 

"'~NNECT ---------1 request 

NS Provider Rejection of an 
NC Establishment Attempt 

N-CONNECT 
request 

~ 
N-DISCONNECT 
indication 

0\ 
W 
0\ 

z 
~-o 
:;:I 
e. 
Q 
.g 
s. 
~ 

Q 
:;:I 
(;I" 
'"1 o 
:;:I 

J6 
I-" 
\0 
00 
W 



N-DATA 
request 

N-DATA request 
wi th confirmation 
request set 

~ 
N_DATA_ACKNOWLEDGE 
~ndication 

Normal Data 
Transfer 

---------------

Normal Data Transfer 
with Acknowledgement 

------... 
N-DATA 
indication 

N-DATA indication 
loll th confirmation 
request set 

------... 
~~ 

N-DATA-ACKNOWLEDGE . 
request 

N_EXPEDITED
DATA request 

N-RESET 
request 

Expedited Data 
Transfer 

NS User Initiated 
Reset 

------... 
N-EXPEDITED
DATA indication 

N-RESET 

~on 

~I~I~ response 

N-RESET 
confirm 

Simultaneous NS User 
Inl tiated Reset 

N-RESET 
request 

N-RESET 
request 

-----"1 r-~ I~ 

<':I/~I~ 
confirm confirm 

(b) 

Figure 2-Summary of network service primitive time sequence diagrams 

NS Provider Initiated 
Reset 

N-RESET I ~ 
i~ ~ 

N-~ 
response ~ 

Simultaneous NS User & 

N-RESET 
~dlcation 

---
~ET 

response 

NS Provider Initiated Reset 
N-RESET 
request 

~ 
N-RESET 
confirm 

~ 
~ 

N-RESET 
indication ------... 
~ 

N-RESET 
response 

~ 
(JC/ 
'"1 
0> 
~ 
o 
I:' 

S-
O> 

~ 
~ 
~ 
t'-4 

~ 
'"1 

~ 
-....l 



638 National Computer Conference, 1983 

Relay and Routi ng 
Functions 

< 
Independent 
Convergence 
Function - 2 

Subnetwork Subnetwork 
Dependent Dependent 

< Convergence Convergence 
Function - , Function - 2 

) 
Subnetwork Subnetwork 
Access Access < Function - , Function - 2 

Data Link Data Link 

< Function - , Function - 2 

Figure 3-Internal organization of the network layer 

service. This is the philosophy adopted by the designers of 
so-called internet-protocols. An alternative strategy, the so
called hop-by-hop enhancement approach, involves identi
fying as many parallels as possible between the subnetwork 
and the idealized OSI network service, and applying the min
imum enhancement necessary for each subnetwork. Broadly 
speaking, the first approach minimizes implementation cost, 
while the second minimizes operational cost. In consequence 
of the wide range of interests to be satisfied, neither of these 
extreme approaches is altogether satisfactory. The division of 
functions into subnetwork dependent and subnetwork inde
pendent is an attempt to provide a framework allowing use of 
the best features of the two approaches on a case-by-case 
basis. It emphasizes common elements, while allowing use to 
be made of the strengths of the individual subnetworks when 
this gives rise to economic benefits. 

In the long term, the existence of an agreed ISO network 
service will affect the activities of subnetwork providers. The 

evolution of X.25 and of the future ISDN services may well 
bring them closer to the OSI network service, so that both the 
convergence functions become null. On the other hand, the 
work on local-area network standardization is at present es
sentially unconstrained, and the subnetwork access function 
and the subnetwork-dependent convergence function are ex
pected to be null, leaving the subnetwork-independent, 
internet-like protocol using a data-link-like service. 

This internal organization of the network layer is still the 
subject of active debate, but it does seem to offer a way for 
progress to be made in a very heavily constrained field. 

G. FUTURE WORK IN ISO 

The connection-oriented and connectionless network service 
definitions can be expected to stabilize in the near future, and 
this stability will be reflected by their progress from the tech
nical to the procedural phase of standardization, starting with 
their formal registration as ISO Draft Proposals. 

The major activity that is only just beginning is the specifi
cation of the protocols which support the convergence func
tions. Distinct subnetwork-dependent convergence protocols 
will be needed for the major technologies. Initial work is 
expected to cover at least the local-area network field and the 
widely available PTT networks based on recommendations 
X.25 and X.21. The emerging ISDN standards will also need 
to be covered. Moreover, it is in the nature of the variety 
reduction that lies behind the work that it will continue for as 
long as new types of networks continue to develop and so need 
to be assimilated. The benefit of standardization will, how
ever, be the ability for equipment from diverse suppliers to 
communicate easily and efficiently whenever desired. 

REFERENCES 

1. Information Processing Systems-Open Systems Interconnection-Basic Ref
erence Model. ISO DIS7498. 

2. Open Systems Interconnection-Network Service Definition. (Septemberl 
October 1982) ISOrrC97/SC6 N261O. 

3. "Working Draft for an Addendum to the Network Service Definition cov
ering Connectionless Data Transmission." ISOrrC97/SC6 N261 1. 

4. Internal Organization of the Network Layer. ISOrrC97/SC6 N2613. 



The technology of digital speech: compression, 
editing, and storage 

by R. E. CROCHIERE and J. L. FLANAGAN 
Bell Laboratories 
Murray Hill, New Jersey 

ABSTRACT 

The advantages of representing speech in digital form have long been recognized in 
digital transmission and switching applications in telephony. This digital speech 
technology is now rapidly expanding into new and diverse areas of application in 
speech communications and man-machine interaction. It is being spurred by new 
advances in the fields of digital communications, signal processing, computing, and 
very-Iarge-scale-integration (VLSI) device technology. In this paper we briefly 
outline some of the key elements in this technology and focus, in particular, on 
current research and potential application of speech compression, editing, and 
storage. 

639 





SPEECH CODING 

Intense research activity on speech coding and compression 
over the past three decades has produce~ numerous algo
rithms and techniques. 1 Typically these methods trade on 
three basic factors in coder design: required bit rate, algo
rithm complexity (cost of implementation), and performance 
(quality of intelligibility). 

>- 1 
~ 

:J 
« 
~ o 
...J « 
u 
i= 
ILl 
:I: 

5 
a. 

WAVEFORM CODING 
PARAMETRIC CODING .-....... -a HYBRID ~ 
TECHNIQUES // 

~~~----~--------~S~O~UR~C~E~M~O~D~E~L1~NG~--
(VOCODING) 

>
:I:OL---~-----2L---~4-----8~---1~6-----3L2----64~----

BIT RATE (KBITS/sec) 

Figure I-Speech coding and vocoding: Quality as a function of bit rate 

Figure 1 summarizes impressionistically the state of the art 
of speech coding and vocoding in terms of quality as a function 
of bit rate. The vertical scale represents a simplified hypothet
ical measure of speech quality where a value of one implies a 
quality that is essentially indistinguishable from the original 
input for telephone bandwidth speech, and a value of zero 
implies a quality that is extremely poor and unintelligible. 

SPEECH EDITING AND MANIPULATION 

Once in digital form, speech can readily be stored, trans
mitted, or manipulated. In potential applications such as 
voice-mail.store-and-forward.orinformationretrieval.it 
may be desirable to have additional flexibility to modify and 
edit speech messages in ways similar to those used today to 
edit text. Key elements in these types of systems might include 
algorithms to detect the presence or absence of speech, tech
niques to insert or delete speech phrases, techniques to mod
ify the duration of silence in the message, and methods for 
modifying the basic rate of the speech itself.2 

The Technology of Digital Speech 641 

HARDWARE TECHNOLOGY FOR 
SPEECH PROCESSING 

A major impetus in the evolution of digital speech technology 
is due to the growing capability of new custom and pro
grammable VLSI devices for real-time digital signal pro
cessing. Several of these types of devices have recently been 
introduced specifically for speech applications. In the area of 
waveform coding, chips for complete I.l.-Iaw PCM AID and 
DIA conversion (including anti aliasing filtering) have recently 
been developed and are of interest in applications of digital 
telephony. Chips for ADM (adaptive delta modulation) have 
also been available and, with growing interest in telephony at 
32 kb/s, chips for ADPCM are soon to follow. 

In the vocoder area synthesizer chips or chip-sets that real
ize an electrical model of speech production have recently 
become available. A notable example that has generated con
siderable attention is the Texas Instruments speak-and-spell 
chip, which has been used for voice response in educational 
toys. A number of other devices have since followed for appli
cations in voice-response and announcement systems. 

Another area of VLSI technology that is currently having a 
strong impact in digital speech is high-speed microprocessors 
and signal processing integrated circuits. A notable example 
of this is the Bell Laboratories Digital Signal Processing Inte
grated Circuit. With this device algorithms such as ADPCM 
and subband coding have been realized using one DSP for an 
encoder, a second DSP for a decoder, and a I.l.-Iaw PCM coder 
chip for AID conversion. 3 With five DSPs and a I.l.-Iaw codec, 
a 9.6 kb/s speech coder based on harmonic scaling and sub
band coding has been realized. 3 

For algorithms of high complexity this microprocessor ap
proach is not sufficient. Such algorithms have been realized in 
real-time, however, using an array processing computer or 
special purpose hardware. 3 As VLSI technology advances it 
can be anticipated that this approach will give way to future 
generations of single-chip DSP-type processors. 

REFERENCES 

1. Flanagan, J. L., M. R. Schroeder, B. S. Atal, R. E. Crochiere, N. S. Jayant, 
and J. M. Tribolet. "Speech Coding." IEEE Transactions on Communica
tions, COM-27, (1979), pp. 710-737. 

2. Flanagan, J. L., J. D. Johnston, and J. W. Upton. "Digital Voice Storage in 
a Microprocessor." IEEE Transactions on Communications, COM-30, 
(1982) pp. 336-345. 

3. Crochiere, R. E., R. V. Cox, and J. D. Johnston. "Real-Time Speech 
Coding," IEEE Transactions on Communications (Special Issue on Bit Rate 
Reduction), COM-30, (1982), pp. 621-634. 





Statistical modeling for automatic speech recognition 
by R.L. MERCER 
IBM 
Yorktown Heights, New York 

ABSTRACT 

Since 1972, the Speech Recognition Group at IBM's Thomas J. Watson Research 
Center has worked on a system for the automatic recognition of natural continuous 
speech. The goal of our research is to produce a voice-activated text-processing 
system. We have recently worked on a 5,OOO-word isolated-speech system for recog
nition of business correspondence and interoffice memoranda. 

Although speech recognition is performed with beguiling ease by human beings, 
the task of transferring this ability to computers has proven quite difficult. Our 
approach to the problem has been to develop general statistical techniques that 
allow the recognition system to organize itself when presented with a large sample 
of speech called training data. In essence, our system refines itself from some 
crudely specified initial configuration so as to take advantage of regularities present 
in a speech sample. 

Suppose that a talker wishes to convey to a listener the string of words WI, 
W2, ... , Wn. Each of the words has a pronunciation, in accordance with which the 
talker will guide his/her speech apparatus through an intricate cascade of gestures, 
with the result that a series of sound pressure waves will emanate. A microphone 
placed within the influence of these waves will respond to them in a fashion that is 
characteristic of the word sequence WI, W2, ... , Wn. 

Let the response of the microphone be denoted by the sequence AI, ... ,Am. We 
can regard AI, . .. ,Am as a garbled version of the intended message WI, . .. , Wn. 
The problem of recovering a message from a garbled transmission is the province 
of communication theory. The problem may be stated as follows: for a garbled 
transmission A ( = A 1, ... Am), determine the message W ( = WI, ... , Wn) that is 
most probable given A. That is, find W such that Pr(WIA) is as large as possible. 

From Bayes's rule, we have Pr(WIA) = {Pr(A IW)Pr(W)}/Pr(A). Since we are 
interested in maximizing this for a particular fixed A, we can ignore the denomi
nator on the right. The first term in the numerator constitutes a probabilistic 
characterization of the transmission channel. It tells us what A 's to expect when the 
talker intends a particular word string W. The second term in the numerator is a 
probabilistic characterization of the word strings that the talker desires to convey. 
Pr(W) embodies all rules of grammar (ungrammatical word strings are less probable 
than grammatical ones) as well as all semantic constraints (meaningless word strings 
are less probable than meaningful ones). 

It is, of course, impossible to compute these probabilities exactly. We have, 
however, developed methods for obtaining useful approximations to them. We refer 
to the approximation of Pr(A I W) as a statistical model for the speech production 
process and to the approximation of Pr(W) as a statistical model for the language. 
A discussion of these models constitutes the body of the talk. 

643 





Implications of VLSI technology for speech processillg 

by ROBERT w. BRODERSEN 
University of California 
Berkeley, California 

ABSTRACT 

In this paper a survey will be made of the state of the art of the application of MOS 
technology to speech-processing circuits. Projections will be made of the future 
capabilities of this technology and how it relates to implementation of speech
processing algorithms. 

The most significant difference between the design of speech-processing systems 
of the past and the VLSI systems of the future is that VLSI technology can allow 
essentially complete integration of the system, including the interface circuits, the 
signal processor, and maybe even the transducer. This implies a major change in 
system design methodology since many of the most important advantages of VLSI 
technology will not be realized if each portion of the system is optimized without 
consideration of the other components. To cope with this problem, designers have 
in many cases over-simplified the constraints of the other system aspects in order to 
focus on their particular interests. Several examples will be given of computational 
techniques, developed for general-purpose computers, that now may become obso
lete because of the new constraints of special-purpose VLSI chips. 

Very large-scale integration (VLSI) has come to mean very different things to 
different people, and a review will be given of some of the interpretations that are 
presently in vogue. To many (particularly the computer science community), VLSI 
implies a technology that has the capability to generate chips of such complexity that 
the designer of VLSI chips is freed from the constraint of minimizing the circuit 
area, an almost religious preoccupation of the industrial circuit designer. This then 
allows a variety of new design styles, such as PLAs, gate arrays, and silicon com
pilers, that have the capability for a high degree of computer automation. On the 
other hand, the digital signal processing algorithm community views VLSI as the 
level of integration that will finally allow low-cost implementation of some of their 
algorithms. VLSI will therefore finally make possible the development of applica
tions of digital signal processing that will have widespread use. To the technologist 
and industrial I.e. designer, VLSI refers to an integrated circuit that has more 
transistors than some arbitrary number that ranges from as low as 1,000 logic gates 
up to circuits that contain more than 100,000 gates. Often a primary reason in the 
industrial community for determining whether a chip is of VLSI complexity is the 
aggressiveness of the public-relations and marketing activity associated with the 
design. An attempt will be made to integrate these various viewpoints to gain a 
broader perspective on what the actual impact will be of the future developments 
of the technology. 

645 





Network security and vulnerability 

by J. MICHAEL NYE 
Marketing Consultants International, Inc. 
Hagerstown, Maryland 

ABSTRACT 

Technology-based society demands efficient and reliable communication networks. 
The introduction of microwave communication links has significantly increased the 
vulnerability of voice and data communications to electronic interception. With the 
wide acceptance of automated office systems and the increasing use of commu
nicating word processors and distributed data terminals, proprietary, sensitive, and 
personal-privacy information can easily be intercepted through passive eavesdrop
ping with relatively inexpensive equipment and limited technical resources. This 
session will provide an in-depth look at the problem and will review a variety of 
techniques for protecting facsimile, data, and voice communications. 

647 





INTRODUCTION 

The age of electronics has provided the ability to intercept 
voice and data communications for as little as several hundred 
dollars. In addition, powerful minicomputers, now available 
at a relatively low cost, can be programmed to generate false 
data transactions that appear to a legitimate computer system 
as an authentic data entry terminal. Potential threats for un
authorized interception, or transmission of deceptive mes
sages that appear authentic, can be generated by educated 
electronics hobbyists or determined adversaries (competitors 
or foreign governments). Computer crime has been estimated 
to cost business close to $3 billion annually. The explosive 
growth of the personal computer market-2,OOO,000 units 
now sold, with projections for several million more shipped by 
1985-combined with the overabundance of published materi
al, formal training, and self-taught courses on computer tech
nology, have created a new menace: the electronic criminal. 

Computer and communications technologies have joined 
forces to encourage dramatic increases in the volume and 
speed with which information is collected and distributed. 
Electronic communication has achieved prominence as the 
principal method for the distribution of time-perishable infor
mation. Geographically dispersed industry and government 
offices are "almost totally dependent on an electronic means of 
information exchange in order to maintain productivity. 
Automated office technologies have dramatically increased 
the number of employees with access to vast computer data
bases from remote terminals that simply telephone the 
computer. 

Concurrent advances in electronics technology have facili
tated electronic surveillance and interception of proprietary 
or sensitive information. Typically, threats include organized 
and intentional attempts to obtain economic or proprietary 
information from the competition; determined attempts to 
obtain economic and other sensitive information from govern
ment agencies dealing with the military and the private sector; 
fraud through illegal access to computer data banks, including 
electronic funds transfer (EFT); and intentional or unin
tentional destruction of computer data banks. 

Until recently, the need for protecting information with the 
science of cryptography has primarily been of interest only to 
the military and diplomatic communities. Only rarely had 
private industry or government considered the use of crypto
graphic techniques to protect routine business transactions. 
Since a significant portion of day-to-day transactions occur 
over the telephone system, the replacement of telephone 
wires with microwave radio transmissions has created a condi
tion in which information can be intercepted without re
quiring a physical tap on the telephone line; for example, 

Network Security and Vulnerability 649 

interception can be accomplished passively and undetected. It 
has been widely reported in the press that some foreign gov
ernments routinely monitor U.S. communications in major 
metropolitan areas with sophisticated computer systems. In
formation about high technology, negotiating positions, and 
the economic well-being of a particular industry or govern
ment agency is more useful to a foreign government than 
military information, particularly during peacetime. 

WIRETAPPING 

Most telecommunications terminate in the office, computer 
room, or communications center. In specialized applications, 
some telecommunications terminate in radio operations facil
ities, are mobile as hand-held equipment, or are installed in 
moving vehicles. Except for radio operations (but not exclu
sively), telecommunications terminal equipment is linked to a 
network by cables on the users' premises. 

In a typical operating environment, cables are hidden in 
subflooring or in raceways above lowered ceilings. Cables 
serving individual rooms or offices come together in wire 
closets in large buildings, perhaps on each story of the 
building or on alternate stories, as necessary. In smaller 
buildings these local cables from individual terminals may 
come together at a point in the basement known as the cable 
head. Cable heads are the points, in the larger buildings as 
well, from which feeder cables run to the wire closets above. 

Within the wire closet is a terminal block used to connect 
the many pairs of wires in the cable to the individual instru
ments in offices on that floor. Each pair of wires represents 
one discrete telephone number that may be assigned to a 
telephone, computer terminal, or other piece of equipment. 
The pairs are frequently labeled with these discrete numbers 
inside the wire closet. 

Interception of data or information flowing over cables 
within buildings requires that the crime of wiretapping be 
committed. Little sophistication is required to place a tap on 
such cables; the materials necessary can be purchased from 
electronics retailers for under $25. A tape recorder connected 
to a carrier-operated relay switch can be added for less than 
$500; thus, an unattended intercept position that will operate 
automatically only when the targeted line is active would have 
been created. In most office buildings, security responsibility 
for wire closets and cable heads is unsettled. It is common
place to find wire closets unlocked and standing open. More
over, few security personnel are technically trained to search 
for and identify wiretaps. 

It is also frequently true that telephone company installers 
and maintenance technicians will write the telephone num-



650 National Computer Conference, 1983 

bers or extension numbers of their various terminal positions 
in wire closets. They do this in order to quickly find a desired 
wire at some future time. Such labeling is also convenient for 
a wiretapper. 

From the cabie head in the basement, a iarge feeder cable 
may run underground or on a series of telephone poles to the 
telephone company's central office and once there to a main
frame, which is a large automatic switch to which all sub
scribers served by the central office are connected. High
volume customers may have private branch exchanges (PBXs) 
on their premises that will switch internal calls without con
nection to the telephone company's central office. Or
ganizations not equipped with PBXs may have their internal 
calls routed outside their office buildings to a central office 
several miles distant even though the number dialed is only 
100 feet away. 

Feeder cables, whether underground or on telephone poles, 
are vulnerable to wiretapping. Although a specifically tar
geted pair of wires serving only one piece of equipment may 
be more difficult to locate in feeder cable than in a wire closet, 
the task is not excessively complicated, and no complicated or 
expensive equipment is needed. The wiretapper is also spared 
the risk of detection while breaking and entering private prop
erty. With only a few cents' worth of copper wire the inter
ceptor can even strap together the victim's cable and his own 
so that off-premise interception is possible. 

Inside the telephone company's central office physical 
security is a relatively strong deterrent to penetration by un
authorized outsiders and even unauthorized company person
nel. It is possible, however, that some telephone company 
personnel, with access to mainframes and other switches, 
could be subverted to arrange for wiretaps at the request of 
unauthorized persons. Recent history has shown that abuse of 
power has led to authorized wiretaps that were later judged to 
be not specifically related to law enforcement or illegal. 

When the calling party dials a long-distance or toll call, he 
will be switched through the mainframe at the central office to 
the telephone company's toll switch. The call is then routed to 
a trunk cable serving the geographical area desired. De
pending upon the telephone company involved and the two 
areas to be connected, the call may then be completed entirely 
via cable. In this case, the cable would be underground, over
head on poles, or under water. None of these cable applica
tions is immune from wiretapping. Overhead cables provide 
the easiest access for an eavesdropper. No tools or equipment 
more specialized than those needed to tap indoor cables are 
needed. 

Underground cables must be dug up and penetrated but, 
once replaced, may give the advantage of being less sus
ceptible to discovery. Underwater cables may be categorized 
similarly. In the case of transocean cables, one common carri
er advertises regularly in coastal newspapers that charts show
ing cable locations are available to commercial fishermen to 
help them avoid the frequent raising of cables. 

MICROWAVE 

The probability is greater than 70%, however, that a dialed 
toll call will not be transmitted entirely by cable. Cable is 

expensive to procure, lay, and maintain. The common carriers 
are increasingly using terrestrial microwave radio and commu
nications satellites to provide toll service. These modern tech
nologies provide the carriers with increased capacity at lower 
operating costs. They are, however, uniquely vulnerable to 
passive electronic interception. Passive means that the trans
mission can be intercepted without any physical connection to 
cables or transmitting equipment or without entry to private 
property, as in a physical wiretap. It is impossible to detect 
this type of interception. 

Terrestrial microwave transmitters and repeaters focus a 
highly directional beam of radio energy toward a receiving 
antenna within line of sight some distance away. The distance 
is determined by terrain factors and ranges, typically, from 25 
to 40 miles. At the transmitting antenna not all the trans
mitted energy is radiated along the path of the focused beam. 
Surrounding the transmitter are side and back lobes of the 
same signal aimed 25 to 40 miles away. These lobes are irreg
ular in shape and size but normally extend in a roughly circu
lar pattern several miles around the transmitter. Interception 
of any of the lobes or the main transmitted beam, either 
between the transmitter and receiver or behind the receiver, 
will permit an eavesdropper to gain access to the information 
or data contained on one or more of the channels. 

Interception and exploitation of a terrestrial microwave sig
nal are more complicated than for wiretapping. Some knowl
edge of radio engineering is needed; and up to $5,000 worth 
of antennas, receivers, and demultiplexers is required. Tele
phone companies usually load a microwave signal with as 
many simultaneous conversations and data streams as possi
ble. An eavesdropper would have to sort through as many as 
14,000 simultaneous channels to find the target. This is a more 
troublesome feat to accomplish, since toll calls dialed in a 
public-switched telephone network will be transmitted on un
predictable channels. For example, two identical long
distance calls, placed 5 minutes apart, from the same caller to 
the same party will probably be transmitted on different chan
nels, selected by the carrier's computer on the basis of traffic 
load. 

If the calling party's organization has leased private lines or 
a privately switched network from the carrier, calls will always 
be switched over those private channels and are much more 
easily located by the eavesdropper. The Federal Tele
communications System (FTS) is a privately switched network 
operated for the federal government by a common carrier. All 
FTS calls are switched over private channels and are more 
easily located by an eavesdropper. The channel assignments 
made by the carrier for the FTS network are static and repre
sent some simplification of the targeted call search for the 
interceptor. 

COMMUNICATIONS SATELLITES 

Toll calls spanning the longest distances may be routed over 
communications satellite circuits. These calls are switched to 
a satellite earth station and may travel over cables or micro
wave circuits between the caller's location and the transmitter. 
The satellite link consists of an up link beamed from the 
transmitting earth station to the satellite in synchronous orbit 



above the equator. The satellite receives the signal and trans
mits a signal called the down link back to earth. Up links are 
similar to terrestrial microwave transmissions. They are in the 
same general frequency range, are highly directional, and are 
characterized by the same side and back lobe phenomena. 
Interception of the up link requires either hovering in an 
aircraft somewhere in the beam path or positioning a re
ceiving antenna on the ground, within the lobes, somewhere 
near the transmitter. The former is impractical, and the latter 
carries a high risk of detection. An interceptor is unlikely to 
attempt either because of the particular vulnerability of down 
links. 

A communications satellite transmits a signal specifically 
intended to be received at many points by many different 
receivers over a broad area, perhaps thousands of square 
miles. The down link antenna pattern is referred to as a foot
print. A single footprint can cover the entire United States. 

Unauthorized listeners, appropriately equipped, can point 
a satellite receiving antenna at the satellite and receive the 
down link anywhere within the footprint. A call placed from 
California to Maine by satellite may be interceptible in Texas 
or Michigan. Detection of the interceptor is extremely unlike
ly and almost impossible. An investment of less than $10,000 
in equipment would be necessary for the interception, and its 
operation would require the expertise of a highly trained tech
nician. Interception resources of this magnitude are beyond 
the reach of all but the most serious and qualified adversaries. 

RADIO FREQUENCY 

The fourth transmission technology (in addition to cable, mi
crowave, and satellite) is radio transmission. Voice or data 
signals introduced into telecommunications systems may be 
switched into radio systems at frequency ranges far below 
those used for microwave signals or satellites. It is common
place for calls to originate or to be placed to parties in motor 
vehicles, boats, or aircraft. Telephone companies maintain 
very-high-frequency (VHF) radio facilities for this purpose. 
Also available from other operators is a patching service in 
which telephone calls may be handled over long distances via 
high-frequency (HF) radio. 

The vulnerabilities of VHS and HF radio systems to inter
ception differ from those for microwave signals. HF trans
missions may be carried over thousands of miles, and VHF 
transmissions may be intercepted up to 50 miles away. Radio 
transmissions of this type are omnidirectional, unlike those of 
microwave transmissions and satellites, which tend to be fo
cused beams of radio energy. 

INTERCEPTION RISKS 

Thus, each of the four technologies used by telephone compa
nies for the transmission of calls is vulnerable to interception. 
For the purposes of this discussion, telephone companies are 
any telecommunications common carriers providing voice, 
record, or data service. Companies that lease teletypewriter 
terminals and equipment may not provide any voice service, 
but their transmission methods will be identical to those of 

Network Security and Vulnerability 651 

voice telephone companies. The same is true of newer compa
nies organized to furnish computer network connections and 
companies offering facsimile, electronic mail service, or tele
conferencing. Regardless of the type of traffic originated by 
the customer, the transmission technology used must be one 
of the four previously described. A summary of interception 
risks is provided in Table I. 

Larger carriers may have all four technologies available 
within their corporate resources. Smaller companies may have 
fewer, as in the case of those serving small geographical areas 
with cable only. Value added carriers own no transmission 
facilities but lease and resell them from larger companies. The 
vulnerability of major carriers' systems is shared by value 
added networks (VANs). When a carrier has more than one 
technology available, it can normally choose which one will be 
used to connect different points at different times. Under 
FCC regulations, however, a subscriber may specify a desired 
mode of transmission, which must be provided by the carrier, 
if available. An additional charge is made for the exercise of 
this option. 

The growing concern expressed by users of telecom
munications about the privacy of their traffic has prompted a 
few of the common carriers to offer protection. In only one 
case, however, has a carrier publicly offered to assist sub
scribers in arranging end-to-end protection from one office to 
another. A number of satellite carriers have plans to encrypt 
some of their channels. In these cases the entire link used by 
a subscriber will not be protected end-to-end; the tails be-

TABLE I-Interception risks 

Transmission Interception Detection Approx. Level of 
Technology Method Probability Cost Expertise * 

Radio (HF/ Passive electronic Unlikely $100 
VHF/UHF) interception 

Cable (wire) Wiretap on Fair $25 2 
premises 

Cable (wire) Wiretap on tele- Good $500 2 to 3 
phone company 
premises 

Cable (wire) Wiretap on cables Poor to $500 3 
not on user's or Unlikely 
telephone com-
pany's premises 

Cable (fiber 1981-None Unknown Unknown Unknown 
optics) known 

Terrestrial Passive electronic Unlikely $3,000 3 
microwave interception 

Communica- Passive electronic Unlikely $8,000 3 to 4 
tions satellite interception 

*To estimate the relative level of expertise (training or knowledge) required for 
interception, the following skill levels are suggested: 

Levell: No training or skill necessary. 
Level 2: Ninth-grade reading level and understanding of basic wiring skills. 
Level 3: Electronic technician skills with knowledge of telephone systems. 
Level 4: Electrical engineer with computer science background. 
Level 5: Computer scientist with electrical engineering and communications 

background. 

Table copyright © 1981 by Marketing Consultants International, Inc. 



652 National Computer Conference, 1983 

tween their offices and the earth stations, which are on cable 
or microwave, will remain unprotected and vulnerable. 

Telecommunications managers responsible for the protec
tion of sensitive or private information and data must consider 
several factors when procuring telecommunications service 
for their organizations. Unless the manager plans to arrange 
for cryptographic protection himself, he should determine 
whether the carrier he is considering offers protection. In the 
absence of such an offer, which means that his organization's 
traffic will be unprotected, the vulnerabilities of the trans
mission technologies should be reviewed. If satellite or 
terrestrial microwave transmission is considered too vulner
able, cable routing can be specified. In terms of vulnerability 
to interception, cable routing is considered least vulnerable 
and is the preference for sensitive information and data. 

GOVERNMENT POLICY 

The federal government has recognized the vulnerability of 
nonclassified but useful information that may be routinely 
transmitted by electronic means. Computer data banks are of 
particular interest. The heads of all executive departments 
and establishments were directed by OMB in 1978 to develop 
security programs for federal automated information sys
tems. 1 Certain responsibilities were assigned to the Secretary 
of Commerce, the Administrator of General Services, and the 
Commissioner of Personnel Management. General responsi
bilities for information systems' security programs aimed at 
eliminating or reducing threats of disclosure of sensitive data 
and unauthorized manipulation of official databases were as
signed to the heads of the using agencies. 

The federal executive branch agencies are in various stages 
of implementing the program outlined by the OMB circular. 
This program includes the following minimum steps: 

1. Designation of System Security Officers (SSOs) for each 
federal automated information system 

2. Screening of personnel whose duties require access to 
automated information system components to deter
mine their trustworthiness, in accordance with policies 
developed by OPM 

3. Incorporation of administrative, physical, and technical 
safeguards for each sensitive application 

4. Establishment of programs for periodic audits and re
certification of security safeguards for each sensitive 
application 

5. Inclusion of security specifications for the acquisition or 
operation of computer systems or services, whether pro
cured by the using agency or by the GSA 

6. Assignment of responsibility for conducting periodic risk 
assessments for each computer installation operated by 
or on behalf of the using agency 

Agencies that have determined that their automated infor
mation systems are being used to process or store unclassified 
sensitive data must institute security measures to limit access 
to sensitive data to authorized personnel only. Most agencies 
are essentially unaware of the vulnerability of data trans-

missions to interception by unauthorized parties. The few that 
are aware are characterized by an attitude of needing first to 
deal with the more keenly appreciated threats to physical 
security and sensitive-file access and manipulation. Excep
tions are noted among the departments and agencies dealing 
with the financial world or with law enforcement, where some 
procurement of data encryption has taken place. Progress is 
slow in this area because many potential users of tele
communications protection equipment are unconvinced that 
threats are credible or that the protection is cost effective. 

PROTECTION TECHNOLOGIES 

Communications security for voice and data messages re
quires the use of a variety of technologies, depending on 
specific application requirements. In voice communications 
there are two primary techniques: (1) scrambling of the ana
log voice signal and (2) converting the analog voice signal 
to digital form and then implementing any of a variety of 
digital encryption techniques by using standard cryptographic 
technology. Voice scrambling and digital voice encryption 
techniques have distinct advantages and disadvantages. 

Voice scramblers offer a significant human-factors advan
tage in that they can provide excellent speech quality and 
speaker recognition. However, this is offset by the fact that 
the level of security for voice scramblers is considered limited 
when compared with the strength of digital encryption tech
niques. Digital voice encryption systems offer a significantly 
higher level of protection at the expense of speech quality and 
speaker recognition. Digital voice systems use devices that 
create artificial speech at the receiving end, thereby creating 
an unnatural-sounding voice. 

Usually, voice scrambler systems offer short-term protec
tion, wherein the length of time that a message can be con
sidered protected is measured in minutes and hours. Howev
er, with digital encrypted messages, length of protection 
(security) is measured in terms of person-years of effort to 
decipher. 

In data communications applications (computer-to
terminal, terminal-to-terminal, and terminal-to-computer), 
security principles are identical to those employed in digital 
voice systems, except that data systems are not burdened with 
the operational concerns of voice systems, these being intel
ligibility and speaker recognition. The vast majority of mes
sages likely to be routinely intercepted are digital commu
nications, since the eavesdropper can automate interception 
and message analysis. Nevertheless, high levels of security for 
digital communications may be achieved relatively easily. 

There are no standards for establishing levels of security, at 
least for now. Consideration must be given to the sophistica
tion of the security device and key management, along with 
the sophistication and resources available to the potential 
eavesdropper. This requires a case-by-case evaluation. 

Basic levels of protection are usually defined as tactical or 
strategic: 

Tactical protection is used to restrict the information from 
an observer or listener for a period of time measured in 



Network Security and Vulnerability 653 

minutes or days. A variety of simple techniques are available TABLE II-Communications security domestic vendors 
that provide this level of protection at a reasonable cost. (February 1982) 

Strategic security involves a situation in which the eaves-
Vendor (Total: 82) Product dropper would require long periods of time to decode the VS-A VE-N VE-W DE 

message before receipt of useful information. Strategic secur- American Satellite Corp. 1 1 
ity is used to protect information from interceptors who have Analytics 5 5 
sufficient resources (adequate funds and state-of-the-art com- Boeing Aerospace 

puters) to decipher messages in periods measured in months Company 

and years. Codex Corporation 1 1 
Collins Communications 3 3 
Collins Tele- 7 5 

PROTECTION PRODUCTS communications 
Comffech Systems 4 4 

In considering the optimum solution to communications pro- Controlonics 13 13 

tection problems, careful consideration must be given to the Datotek 14 6 7 

type of commercial products available. As of February 1982 a 
Extel 1 
Fairchild Electronics Co. 1 

total of 39 vendors offering 185 different products were iden- FARGO 2 2 
tified. In order to be listed as a vendor the requirements were GTE Sylvania 2 
as follows: (1) off-the-shelf availability, (2) a published speci- Harris GCSD 1 
fication data sheet, (3) published price lists, and (4) a stand- Harris RF 6 6 
alone product. IBM 2 2 

A stand-alone product is defined as a device that is oper- Lear Siegler 1 

ationally independent of other devices and merely plugs into Linkabit 1 

an existing communications system. In the case of voice com- Mieco 12 12 

munications, the device is plug-compatible with existing tele- Motorola, Inc. 7 6 

phones, RF systems, or data devices; the unit interfaces with 
Ocean Technology 1 
Racal-Milgo 2 2 

a typical data communications modem. In a few cases the Rapicom 3 3 
vendor offers a total integrated system-for example, FAX Scientific Radio 1 
encryption, wherein the protection device represents only a Technical Comm. Corp. 11 8 3 
small portion of the complete system. These systems are also Transcript International 1 
included if protection is a standard feature. Totals 104 51 3 15 '2<;: 

In order to simplify the product/technology categories, the 
JJ 

listed products are categorized by application areas: 2 Source: "Who, What, & Where in Communications Security,,2 
Table copyright © 1981 by Marketing Consultants International, Inc. 

VS-A -Voice scrambler analog devices 
VE-N -Digital voice encryption devices operating at 2,400 

bps or less (narrowband) TABLE Ill-Communications security nondomestic vendors 
VE-W -Digital voice encryption devices operating beyond 

2,400 bps (wideband) Vendor (total: 13) Products VS-A VE-N VE-W DE 
DE -Data encryption devices AB Transvertex 5 3 

AEG Telefunken 5 1 4 
Of the 39 vendors, about one-third represent nondomestic BBC Brown Boveri 9 6 1 2 

suppliers. Even though there are twice as many domestic Crypto AG 13 2 1 2 8 
vendors as foreign, the total number of products from each Gretag 13 2 2 1 8 
technology segment is about the same. The product mix by Marconi C&B 1 1 

domestic and nondomestic vendors is illustrated by Tables II MSDS 9 2 2 4 

and III. Merck & Hollander 
Miller Comm. Ltd. 1 
Racal-Datacom 12 6 5 

REFERENCES Tadiran 3 1 
Telsy 6 6 

1. OMB Circular A-71 (Transmittal Memo No.1). "Security of Federal Auto- Teltron 3 3 
mated Information Systems." July 27, 1978. 

2. Nye, J. Michael. "Who, What, and Where in Communications Security." Totals: 81 29 9 7 36 
Hagerstown, Maryland: Marketing Consultants International, Inc., April 
1981, updated February 1982. Source: "Who, What, & Where in Communications Security,,2 





IBM information network performance and 
availability measurement 

by RICHARD C. SOUCY and RICHARD M. BAILEY 
IBM Information Network 
Tampa, Florida 

ABSTRACT 

A key requirement in the network service business is that specified service levels be 
managed to the end user's satisfaction. The capability to measure and report end 
user response time and availability is essential. This paper will describe measure
ment techniques that were developed to track these important service level attri
butes in the IBM Information Network (IBM/IN). These techniques apply to most 
complex SNA networks. 

655 





IBM INFORMATION NETWORK PERFORMANCE 
AND AVAILABILITY MEASUREMENTS 

The IBM Information Network (IBMlIN) was primarily de
signed to provide iocai attachment of various processor and 
terminal types for access to remotely located terminals and 
processors. This was mainly accomplished with the use of 
IBM Products, for example 3705s, NTO, 3032s, and ACF/ 
VTAM ReI. 3. The resulting SNA network consists of central
ized processors and multitiered and remote 3705 multi
plexors, as illustrated in Figure 1. Since this paper is con
cerned specifically with performance and availability, design 
philosophy discussion will relate to these service levels only. 

REQUIREMENTS 

The performance and availability requirements given to the 
technical community were defined as viewed by the end user. 
Regardless of what entry city the end user connects to, the end 
user must experience the following service levels: 

1. User response time (90th percentile) shall not exceed a 
specified number of seconds for each of three defined 

APPLICATION 
PROCESSOR 

APPLICATION 
PROCESSOR 

II -:--______ 1 I 
ILl I 
I I I I 

__ 1_1_ _LI __ 
I I I I 
I COMM. I I COMM. I 
I CTLR. I I CTLR. I 
I I I I 
I I I I 

CMC I I I 
PROCESSOR II I I 

ILl I 
I I I I 

__ 1_1_ _LI __ 
I I I I 
I COMM. I I COMM. I 
1 CTLR. I __ I CTLR I 

----, I I I I 
I I I I I 

I I I 
--______ 1 I I 

I I 
1 I __ 1_- __ , __ 

I I I 
I REMOTE I REMOTE I 

CITY A I COMM. CITY B I COMM. I 
1 CTLR. I CTLR. I 
I I I 

Figure l---Sample of the route configuration from application processors and 
the CMC processor to remote cities 

IBM Information Network Performance 657 

transaction classes per application, namely trivial, inter
mediate, and complex. 

2. System availability shall be no less than specified per
centage between 90 and 100% during business hours, as 
defined by external announcements. It shall include the 
reliability effects of components between the end user 
and the target application. 

PERFORMANCE OBJECTIVES 

Given the requirements, the system was divided into three 
parts: 

1. The processors contammg the target applications to 
which end users wish to logon. 

2. The network, which ranges from the channel connecting 
the processors to the remotely located 3705. 

3. The local line connecting the user control unit to the 
remote 3705. 

Using SNAP/SHOT simulation and analytic techniques 
with forecast load values, a network specification was derived 
and written to specify a transit delay objective that if not 
exceeded would insure the end user requirements. It was felt 
at that time that the network delay was the critical specifica
tion, not only because it was the most complex and required 
detailed analysis but because it also had to be correct for the 
sake of the lead times required to upgrade links if needed. 
Similar techniques were used to evaluate the processors and 
local-line capacities to assure that their aggregate, including 
network transit delay, did not exceed the requirements. 

AVAILABILITY OBJECTIVES 

Using information about the reliability of the processors, 
operating systems, 37051NCP, links, lines, and so on, a system 
availability specification was written to establish an end user 
availability satisfying the requirement. The end user avail
ability was derived as the product of the processor availability, 
including the application and system programs, the network 
availability, and the local line connection. Of particular in
terest was the derivation for the network whose availability 
depends not only on the individual components but also on 
the various primary and alternate paths that SNA provides 
between the end user and the desired application. The appli
cation is considered unavailable if all paths to a destination are 
unavailable. Another key network component is the commu
nication management configuration (CMC). In an SNA 
sense, the CMC owns all resources in the network. It is a 



658 National Computer Conference, 1983 

processor dedicated to the management of the network and 
receives and stores the error sta~us of these resources. The 
CMC also receives all end user logon requests to any applica
tion, and it controls activation and deactivation of all re
sources. Because of its importance to end usei availability, 
redundant backup devices and procedures were implemented 
to meet the end user objective. 

AVAILABILITY REPORTING 

The measurement and reporting of availability in a complex 
system can be a rather difficult and expensive undertaking. 
There is general lack of tools for this purpose, so a significant 
effort to obtain comprehensive and accurate measurements is 
required. What follows is only one facet of the measurement 
and reporting process within the IBMlIN. A variety of re
ports, ranging from the availability of individual components 
to the impact of outages on the user population have been 
developed. Given the appropriate outage data, the produc
tion of availability reports is straightforward. However, in a 
system configured of multiple processors that can be accessed 
by remote locations through several paths, the problem of 
outage determination is not so straightforward. This is a task 
that does not lend itself readily to manual procedures. Manual 
procedures are not usually accurate, therefore it was always 
the intention to automate fully the functions of gathering, 
reducing, and reporting on availability data. 

The first problem, then, is where the outage data will come 
from and how will it be collected. There are a number of 
system logs and a variety of system messages that provide 
some information on the status of system components. How
ever, the standard information is incomplete and the data are 
found in different logs on all the processors. Gathering the 
data from available sources is a particularly messy logistical 
job, considering that additional processors may be added in 
the future and require more logs. Therefore, an availability 
data collection system had to be developed that not only col
lects all pertinent data at a central point but also generates 
data not otherwise available. 

The CMC was chosen as the central control and logging 
point, and all traffic in the network used for reporting is 
forwarded to the CMC. The function of the CMC may be 
moved to another processor owing to its failure or planned 
outage, so the availability data collection system had to be 
designed to run on the backup processor and use the log local 
to the backup processor as the central collection point. This 
system, which not only collects the data but also executes the 
commands that generate the data, is called the Network Pro
grammed Operator (NPO); this runs as a task under the net
work communications control facility (NCCF). 

The primary control function of NPO resides in the CMC, 
with subsidiary components in each of the other processors. 
These sub tasks are basically the same, so that as processors 
are added the subtask is incorporated in NCCF in the new 
processor with no additional development. The primary NPO 
component establishes sessions with the subsidiary compo
nents; availability data arriving at the processors is forwarded 

to the CMC over these sessions to be saved in the central log. 
Some of the functions executed at each processor are 

1. The examination of unsolicited error messages and com
mand response messages 

2. The time-stamping and transmission of selected mes
sages to NPO at the CMC 

3. The processing of commands sent by the CMC for exe
cution at that processor 

4. The establishment and maintenance of timers for the 
execution of timer-driven commands 

The collection of network status information requires that 
the NPO subtasks in the application processors be always in 
session with the main task in the CMC processor. These ses
sions are automatically established by the main task when the 
network is activated. These sessions, like any other sessions, 
are subject to loss due to failing network components or pro
cessors. To insure against the loss of status data, the main 
NPO task recognizes when a session has been lost and reestab
lishes it automatically once the failing component is again 
operative. 

The availability of the network components of the system is 
the most difficult to determine accurately. The difficulty lies 
in our network design, which allows up to five alternate paths 
from each remote node to each application processor and to 
the CMC processor. If the primary route fails, communica
tions are reestablished on one of the alternative routes. 
Therefore, a remote node and path to the remote node are 
considered available if the communications controller and any 
one of the defined paths are operative. 

As can be seen in Figure 1, the remote cities A and B can 
access both the CMC and the application processor through 
several paths. The network availability could be determined 
from standard message data produced by the operating sys
tem. This would require that all status and error data be 
mapped against a database defining the resources and the 
connectivity of the resources of the network. Apart from the 
complexity of reducing the data in this manner, there is also 
the problem of keeping the database current as the network 
configuration changes. 

A more desirable method, in our view, is to obtain a snap
shot of the status of all the routes to a remote node when a 
status change occurs on anyone of the routes to the node. 
This status is obtained through the use of a command that will 
test the operability of all routes from a processor to a desig
nated location. Since this path test command adds network 
traffic, it is desirable to execute it only when needed, that is, 
when a status change occurs. The determination of when to 
issue the commands is based on the use of a subset of the 
standard network messages selected as triggers. Trigger mes
sages are responses to commands to activate or deactivate 
resources, messages indicating the successful recovery of a 
resource and error messages reporting a resource failure. The 
CMC owns all network resources, so all trigger messages for 
the network are returned to the CMC. Other networks can be 
attached with resources that are not owned by the CMC; 
however, the NPO subtask resides in the processor that owns 



the resources and it is in session with the main task. The 
subtask forwards messages of interest from the attached net
work to the CMC. 

The NPO tasks intercept each message that is returned to 
the processors to determine if it is a type that is in the trigger 
list. When one of these messages has been sensed, the CMC 
will issue a route test command that tests all the routes to the 
remote location indicated by the trigger message. The test 
command requires the designation of the route to be tested, 
by virtual route, explicit route number, or class of service 
name. When class of service name is used, all routes listed in 
the class of service table under that name are tested. This 
allows this mechanism to be independent of changes in the 
route destinations of the network. At the same time that the 
CMC issues the route test, NPO instructs sub tasks in the other 
processors to execute the route test to the same remote node. 

Responses to route tests originating at the CMC arrive 
there directly, while those originating at other processors are 
forwarded to the CMC and recorded in the log. The test 
provides the status of all paths from each processor to a re
mote location. This data, collected for a 24-hour period, is 
reduced to give an accurate picture of the outages on all 
network paths for the period. The status of network paths is 
maintained across collection periods so that data from a 
previous period coupled with new data shows a continuous 
picture of network availability. 

Formal reports are prepared each day detailing network 
availability for the previous day. Another report shows the 
average network availability for the previous 30 days and a 
30-day rolling-average report provides availability trends. 

These reports, as illustrated in Figures 2 and 3, provide a 
picture of how the network is being managed to service-level 

IBM Information Network Performance 659 

objectives. What is also needed is the availability of access to 
an application for the user. This involves not only the network 
availability data but also the availability of tail circuits to the 
user location and the availability of the application and the 
processor on which it resides. Tail circuit outages are derived 
from unsolicited error messages and responses to activations 
and deactivations pertaining to a line. Application and pro
cessor outages are determined from messages indicating loss 
of a session with a processor and periodic sampling of the 
status of the applications. These data are also accumulated in 
the central log and provide the basis for an exception report 
showing the user's availability to any application where that 
availability is less than 100%. This report, as illustrated in 
Figure 4, shows the availability of each part of the path, line, 
network, and application, and the combination of all of them. 
The combination of the availability percentages is computed 
according to the unoverlapped outages of the components. 

The same data that are used for the previously mentioned 
reports are also used to develop additional exception reports 
on the availability of individual resources such as lines and 
communication controllers. 

PERFORMANCE MEASUREMENT 

Response time is another service level that must be tracked 
continuously. Response time directly affects the productivity 
of a user, and it is one of the main criteria by which a commu
nication system is judged. Continuous monitoring of response 
time is necessary to alert operations and management when 
problems are occurring in the system. Response time is 
viewed in at least three ways: in a system perspective, in a 

Report: 422-11 NETWORK AVAILABILITY REPORTING 10/27/82 
NETWORK AVAILABILITY TO BOUNDARY NODE (DAILY) 

DATE: 10/26/82 
ORIGIN: CMC PROCESSOR TAMPA 

JULIAN: 299 
SUBAREA: 001 

24 HOURS 

------------------------------------------------------ --------~~-------
DESTINATION NUMBER AVERAGE 

SUB NCP PERCENT OF LENGTH OF 
CITY AREA NAME AVAILABLE OUTAGES OUTAGE (hrs) 

------------- --------------- ------------ ---------- ------------
atlanta 045 ibrnn6rt 100.00 0 .00 
chicago-1 043 ibrnttrt 98.68 1 .46 
dallas 041 ibrndsrt 100.00 0 .00 
houston 037 ibrne7rt 100.00 0 .00 
los angeles 039 ibrnwgrt 100.00 0 .00 
new york-1 048 ibrnf3rt 99.43 1 .40 
philadelphia 047 ibrnrnbrt 100.00 0 .00 
san francisco 040 ibrnnOrt 99.99 2 .00 
tarnpa-1 049 ibrnwhrt 100.00 0 .00 
tarnpa-2 038 ibrnflrt 100.00 0 .00 
wash d.c.-1 046 ibrnlcrt 100.00 0 .00 

Figure 2-Network availability report (sample data only) 



660 National Computer Conference, 1983 

REPORT: 422-35 NETWORK AVAILABILITY TO BOUNDARY NODE 
30 DAYS AVERAGE FOR THE PERIOD ENDING 10/27/82 

ORIGIN: CMC TAMPA SUBAREA: 001 24 HOURS 10/27/82 

DESTINATION TOTAL AVERAGE 
PERCENT OF LENGTH OF LENGTH OF TIME BET. 

CITY AVAILABLE OUTAGES OUTAGE(hrs) OUTAGES FAILURES 
------------- ---------- -------- ----------- --------- ----------
atlanta 99.59 4 .56 2.24 129.79 
chicago-1 99.81 4 .30 1.20 130.20 
dallas 99.63 3 .62 1.86 153.13 
houston 98.91 5 1.11 5.55 89.67 
los angeles 99.12 3 .68 2.04 141.44 
new york-1 99.96 1 .25 .25 336.00 
philadelphia 99.32 2 .71 1.42 224.97 
san francisco 99.84 1 .44 .44 336.00 
tampa-1 99.76 1 .52 .52 334.45 
tampa-2 99.93 1 .46 .46 336.00 
wash d.c.-1 99.87 1 .41 .41 336.00 

------- ---------avg. all cities 99.59 23 .55 1.19 231.69 

Figure 3-Network availability report (sample data only) 

REPORT: 450-21 END TO END AVAILABILITY 9/21/82 
PRODUCTION SYSTEMS (daily) 

DATE: 9/20/82 JULIAN 263 24 HOURS 
-----------------------------------------------------------------------CITY 

PROD. LINE NETWK. APPL. END TO NBR. CUSTOMER 
HOST APPL. LINE AVAIL. AVAIL. AVAIL END OF 
NAME NAME NAME % % % % OUT. 

------ ------ ------ ------- ------- ------ ------- ------ --------
atlanta 

cmc netm2 n6861 99.46 100.00 99.83 99.29 2 #3641 
mvs-a appl-a n6861 99.46 100.00 100.00 99.46 1 " 
mvs-a appl-b n6861 99.46 100.00 100.00 99.46 1 " 
vm-a appl-c n6861 99.46 100.00 98.86 98.32 2 " 

chicago-1 
cmc netm2 ttOal 99.91 100.00 99.83 99.84 2 #2921 
cmc netm2 tt121 98.06 100.00 99.83 97.89 2 #2866 
mvs-a appl-a ttOal 99.91 100.00 100.00 99.91 1 #2921 
mvs-a appl-a tt121 98.06 100.00 100.00 98.06 1 #2866 
mvs-a appl-b ttOal 99.91 100.00 100.00 99.91 1 #2921 
mvs-a appl-b ttOSl 98.06 100.00 100.00 96.46 1 #2866 
vm-a appl-c ttOSl 99.91 100.00 100.00 99.91 1 #2921 
vm-a appl-c tt051 98.06 100.00 100.00 98.06 1 #2866 

-dallas 
cmc netm2 ds1al 98.88 100.00 99.83 98.71 2 #6123 
mvs-a appl-a ds1al 98.88 100.00 100.00 98.88 1 " 
mvs-b appl-e dslal 98.88 100.00 100.00 98.88 1 " 
vm-b appl-d ds1al 98.88 100.00 99.26 98.14 2 " 

Figure 4--Exception report 



user's perspective, and in the user's perception. The user's 
perception of response time is something that can be deter
mined only from the level of complaints received by the ser
vice desk. Measurement from a system point of view-that is, 
how the individual components of a system are performing
provides the information needed to tune the components. 

The most important measurement, which will show how the 
components of the system are working together, is delivered 
response time. In a so-called star network configuration the 
performance of the network component is more easily under
stood. This depends for the most part on the speed and type 
of facilities and the number of active devices supported by 
them. In a mesh network configuration, traffic is flowing in 
various directions through the nodes that can cause bottle
necks not present in point-to-point facilities. This is particu
larly true when an alternative route is used that is also the 
primary of another node. 

Delivered response time (to the end user) is extremely dif
ficult to measure without intelligence in the terminal device, 
not only to record transaction times but also to record the type 
of transactions from which it resulted. There are many devices 
and systems on the market that attach to user lines or termi
nals and record transaction times. However, the results of 
these measurements do not provide sufficient information to 
determine whether objectives are being met. Without a speci
fication of the transactions and the response that should be 
expected, the results do not present a clear answer to whether 
response times are good or bad. 

The objectives, as mentioned before, define three classes of 
transactions-trivial, intermediate, and complex-for each 

IBM Information Network Performance 661 

application. These transactions vary somewhat in the amount 
of network traffic they use, but the largest difference is in the 
amount of processor time and DASD accesses. The objectives 
also specify the maximum time in which the 90th percentile of 
a class of transactions for a particular application must be 
completed. 

Response time measurement within IN is then directed 
toward determining if these objectives are being achieved 
throughout the operational period. The approach that was 
taken and is currently under development is to employ a de
vice that acts as if it were a user executing a standard set of 
transactions. 

A scenario of transactions within each class, trivial, inter
mediate, and complex, for each application was defined. 
These transactions are executed periodically from various re
mote locations and the results are sent to a central location for 
storage and reporting. To obtain these results, some intelli
gence is required at each of the remote locations. Since the 
basic approach to measurements has been to eliminate man
ual intervention, it is necessary that all the required functions 
be performed automatically. The advent of the inexpensive 
personal computer (PC) with its ability to communicate with 
other systems has made it cost justifiable to locate these 
devices at remote sites for measurement purposes. Since the 
objective is to eliminate manual intervention, the PC must 
operate unattended. 

Each PC at a remote location operates independently, as if 
it were another user of the services competing for system 
resources. In order to avoid the addition of line resources at 
the remote node, the PC accesses the system through dial 

TSO END USER TRIVIAL RESPONSE TIME LOCATION = DALLAS 12/25/82 
R ================================================================= 
E 

·s 
P 
o 
N * 
S * * 
E -------------------------------*----------------------------------
T 
I 
M 
E 

* 
*** 

** 
** ** 

** 
*** * 

* * 

*** 

** ***** 
**** ** 

**** 
* *** 

** *** * 
******* ******* 

1 
S 
E 
C 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 241 

TIME OF DAY 
NUMBER OF SAMPLES = 64 
90TH PERCENTILE = 2.6 SECONDS AVERAGE = 2.2 SECONDS 

Figure 5--Dn-line report showing daily response time at a given location 



662 National Computer Conference, 1983 

******* 90TH PERCENTILE RESPONSE EXCEEDS SPECIFICATION ******* 

CMS END USER TRIVIAL RESPONSE TIME LOCATION = ATLANTA 12/25/82 
R 
E 
S 
P 
o 
N 
S 
E 

================================================================= 

**** 
* * 

* *** 
**** * ---------------------------------------**-------------------------

T 
I 
M 
E 

* 
*** 

****** 
** * * * 

** ** **** 

******** 
*** 

* 
***** * 

******* 
S 
E 
C 

~--~--~--~--~--~--~--~--~~~~~~~~~~~~~~~~~I 
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 241 

TIME OF DAY 
NUMBER OF SAMPLES 
90TH PERCENTILE = 

= 64 
4.2 SECONDS AVERAGE = 3.6 SECONDS 

Figure 6-On-line report showing a location where response time has 
exceeded specifications (sample data) 

facilities. This is done by directly connecting the PC to an 
auto-dial modem. Using dial facilities also allows the simu
lation of different types of terminal attachment, such as start, 
stop, and full screen, through the SDLC and BSC facilities. 

The basic cycle of operation starts with a timer interrupt at 
the PC. The network is then accessed through the auto-dial 
modem. The PC accesses each application in turn and exe
cutes the transaction scenario for each application, storing the 
response times at the pc. When all transactions have been 
executed, the system accesses an application at the host pro
cessor that is designed to accept the data for the session. The 
PC transfers the response time data to the host processor and 
waits for the next timer interrupt to start again. Accumulated 
data can be viewed on line at any point, and exception reports 
are produced for areas failing specifications. 

Since the ability to operate unattended is key to the success 
of this method of measurement, a comprehensive set of recov
ery procedures must be developed. The PC program must be 
able to handle the variety of problems that may be encoun
tered on the lines and the host applications. Maintenance is 

also a major consideration in the design of the PC program. 
Any data at the PC that are subject to change are maintained 
in tables; when changes are required, the host program passes 
the new tables to the pc. 

Figure 5 and 6 present two samples of the on-line response 
time reports produced by the system. 

PERFORMANCE MANAGEMENT 

A reporting/measurement system provides the data necessary 
to manage the service levels of a large and complex system. 
The reporting function measures how well objectives are be
ing met, and it can provide insight for possible improvement. 
Management of service levels however, begins with require
ments, design cost trade-offs and operational procedures. 

Reports are formatted for both the system programmer and 
senior management. Although it is automated, the measure
ment system requires the intelligent cooperation of all the 
participants. 



Designing and managing an SNA network for growth 

by S. M. SCHIFFMAN 
IBM 
Tampa, Florida 

ABSTRACT 

The IBM Information Network is a nationwide System Network Architecture 
(SNA) network that offers network services and application offerings to end users. 
This paper describes the techniques used to design and manage the growth of the 
network. Emphasis is placed on the design process and the migration and imple
mentation plans to expand the network while still providing 24-hour operation 7 
days a week. Areas covered include adding processors, bandwidth, multiplexers, 
and end user devices. 

663 





Designing and Managing an SNA Network for Growth 665 

PREFACE 

The task of designing and managing a complex telecommuni
cation network involves extensive advanced planning. The 
disciplines of performance and availability analysis, line cost 
evaluation, network topology, and distributed processing 
must be employed. The IBM Information Network came into 
being in 1982 and offers a variety of network services and 
application offerings to its customers. The network is de
signed to accommodate a variety of device and system attach
ments and to be able to grow as the need arises. The following 
discussions explain the objectives of the network and how the 
design has been able to meet them. In addition, the flexibility 
of IBM system network architecture (SNA) is highlighted by 
using examples of network expansion strategies. 

NETWORK OBJECTIVES 

There are many details required to define a network, but a 
clear set of guiding principles are necessary to make design 
decisions. In this section, we discuss the major objectives of 
the IBM Information Network. 

Provide Nationwide (U.S.) Coverage 

It is obvious that covering the entire U.S. in a short time is 
not feasible. Therefore, a design is required that permits con
stant orderly growth into new cities and geographical areas. 
This objective contains the main requirement for planning 
and managing growth. Each extension to the network has to 
be designed without hindering normal operation. 

Allow Any Location Access to Application Processing 
Center(s) 

Initially, the processing center exists in one location, so 
traffic must be efficiently routed to it. The main access into 
the network and subsequently to application processors is 
from remote concentration points. End users at these loca
tions must have access to multiple systems. Currently, there 
are two types of IBM 370 operating systems to access: the 
multiple virtual system (MVS) and virtual machine (VM) sys
tems. Dynamic access to these systems is provided by use of 
the multisystem networking functions (MSNFs) of SNA. 
These features will be discussed later. 

Allow Any Location Access to Any Other Location 

In addition to providing access to an application-processing 
center, it is necessary to allow an end user at any remote 

location to access any other location in the network. For ex
ample, this would enable a terminal user in Los Angeles to 
communicate with an application processor in New York. This 
network capability is utilized by the Network Services offering 
of the IBM Information Network. Highlights of this offering 
will be used as examples for network growth features~ 

These objectives were the main elements to be satisfied; the 
subsections that follow list a set of secondary areas to be 
addressed. 

Availability 

In order to provide quality service to end users, various 
techniques have to be devised to minimize outages due to 
network growth, moving equipment to new locations, and 
failures in equipment or environment. This objective has 
become another main theme guiding the expansion of the 
network. 

Attachability 

The IBM Information Network has to provide a wide range 
of device attachment. The network supports IBM 3270 dis
plays, SNA terminals, SNA host systems, start/stop terminals 
and binary synchronous remote job entry work stations and 
host systems. These devices and systems are afforded local 
access to the IBM Information Network by attaching them to 
remote concentrators. This permits connection by cost
effective local dial calls or short-distance leased lines. 

Flexibility 

Designing a network before the location and the use 
scenarios of end users are determined provides a challenge. 
Different terminals, systems, and bandwidth requirements 
are expected to grow in an unpredictable fashion. Therefore 
the network has to be designed to handle different mixes of 
terminals and increasing bandwidth while remaining in full 
operation. 

Response Time/Throughput 

When all of these objectives are under consideration, ade
quate performance has to remain at the forefront. Therefore, 
transit delay has to be kept at a minimum even though high 
bandwidth may not be required for early traffic. 

With these objectives in mind, the network design, manage
ment strategies, and implementations that follow will become 
clear. But, first let us look at the overall network design, 



666 National Computer Conference, 1983 

Figure I-The IBM Information Network: geographical distribution 

dissect each portion of the network, and show how designing 
for growth is accomplished. 

OVERALL NETWORK DESIGN 

The design of the IBM Information Network is based on the 
communication management configuration (CMC) concept, 
which uses the latest developments in SNA. The main features 
employ a central-site system to control the network for oper
ations, problem determination, and status. The system used is 
MVS with the Virtual Telecommunication Access Method 
(VTAM) in a System 370 and the network control program 
(NCP) in a series of 3705 communication controllers all com
bined to operate a multisystem network. In Figure 1 the net
work topology shows a set of ten remote concentration points 
·linked together with high-speed lines. These concentration 
points provide local access to end users. The topology shown 
was built up over a period of time and will be extended in the 
future. 

The CMC concept is based on the premise that concen
trating control of a geographically distributed network is more 
efficient than distributing control. As such, the network defi
nition and migration/growth plans are centralized and kept 
track of on an inventory database. This provides better con-

trol over ordering and tracking network components such as 
telecommunication lines, modems, terminals, communication 
controllers, and telephone rotaries. It also provides a better 
perspective on the whole network, thus enabling some econo
mies of scale to be exercised. The topology is modeled to 
allow for grouping of traffic onto fewer and larger high-speed 
lines. Modems can be ordered in larger numbers to take ad
vantage of quantity discounts. 

Not only migration and growth, but also the day-to-day 
network operational complexity must be controlled. The 
latest tools available with SNA-the Network Performance 
Analyzer, Network Problem Determination Aid, Network 
Communication Control Facility, Terminal Access Facility, 
Routing Table Generator, and so on-are used to plan and 
operate the network. As the network expands, a point will be 
reached where control has to be subdivided to deal with the 
sheer number of components. The CMC concept allows this 
to be accomplished by logically dividing network control ini
tially and later planning for additional CMC processors if 
necessary. 

The network is controlled from one location in order to 
concentrate network management expertise. This also pro
vides close control by monitoring use to determine capacity 
planning. In addition, programs are used to automate many 
tasks, such as network initialization, backing up lines that 



Designing and Managing an SNA Network for Growth 667 

PC 
3101 

RJE 
55 

VM 

RJE ss 

TO 
7 CITIES 

3101 
PC 

3101 
PC 

Figure 2-The IBM Information Network: network configuration 

have failed, collecting statistics on trends, and responding to 
requests that do not require operator intervention. The strat
egy is to automate more and more operator tasks as they are 
identified, so that human error will be minimized as the net
work grows. 

Figure 2 depicts the network configuration, including the 
CMC and application processors. 

An application-processing center may reside at several lo
cations as the need arises. Each one is composed of one or 
more processors capable of running operating systems such as 
MVS or VM and is connected to a switching network by a set 
of 3705INCP multiplexers. The IBM Information Network 
initially contains a single processing center. Expansion may be 
accomplished using SNA MSNF features. 

THE SWITCHING NETWORK 

The switching network area of Figure 2 is shaded for conspicu
ousness. It consists of a processor that provides com-

munication management through VTAM and network man
agement tools. This CMC processor is linked to the network 
by a series of 3705s in a meshed configuration. These multi
plexers provide the paths for remotely attached end users to 
access each of the application processors. The 3705s are con
figured in two forms; one set is optimized for the maximum 
number of channel adapters, and the other uses many high
speed (56-Kbytes/sec) lines. These meshed multiplexers form 
an insulator between the application processors and the re
mote network. All end user devices are attached to remote 
multiplexers, where the most frequent network changes oc
cur. The switching 3705s are more stable and are influenced 
by adding application processors and/or new remote 3705s. 

Expansion of application processors is accomplished by us
ing a channel adapter connection on a local 3705 and defining 
the new processor to selected network components (see Fig
ure 3). Once all channel adapters are used, additional 3705s 
are added by meshing one into the switching network. Ad
vanced planning is necessary to minimize the impact of adding 
new processors. Keeping in mind the 24-hour operation re-



668 National Computer Conference, 1983 

CMC 
CPU 

CPU 

REMOTE CITY EXPANSION 3705 

CPU CPU 

3705 

ADDING NEW PROCESSORS 

REMOTE PROCESSING 
CENTER 

Figure 3-Switching network expansion for new cities, new CPUs, and remote processing centers 

quirement, the new processor definitions are gradually added 
to NCPs and VTAMs. This is possible because the absence of 
the processor is ignored by the network even though it is 
defined. In addition to locally attached processors, MSNF 
offers the capability of attaching application processors to the 
switching network at remote sites. Their attachment is similar 
to adding remote multiplexers. In the shaded area of Figure 
3 a remote processing center is depicted with application pro
cessors and communication controllers attached to the switch
ing network. The overall network design is preserved by con
tinuing to attach terminals to remote 3705s. Once again the 
rudiments of a switching network are taking form at the re
mote location, with a series of 3705s used as switching control
lers to the application processors. 

As more remote multiplexers are added in new cities, they 
are connected to the switching network via high-speed digital 
lines. Initially this is a simple process; ports already available 
on the second tier of 3705s in the switching network are used. 
The affected adjacent 3705INCPs may be gradually updated 
before the new 3705 and line are added. After enough new 
remote cities are added, the second-tier high-speed ports will 
finally be exhausted. This requires the addition of more 3705s. 
A 3705 is first logically added to the configuration, and all the 
necessary paths and physical connections are determined. 
Once again, adjacent NCPs are gradually updated and then 
loaded. When all affected components are synchronized the 
new 3705 is physically added to the switching network. In this 
manner the switching network may be expanded while still 
maintaining normal operation. 

It should be noted that all remote locations are defined with 
a primary route and at least one disjoint alternate route to 
access the application processors (see Figure 4). This defini
tion permits 3705s to be redefined and reinitialized with up
dated NCPs while the network still operates normally. While 
reinitialization is in progress the alternate route is used auto
matically. Once reinitialization is complete, the primary route 
is available. The SNA alternate-route capability is used as a 
migration tool for adding new 3705s to the second tier of the 
switching network and increased bandwidth between the 
switching network and remote sites. As the network grows, 
other uses will be found for this migration tool. 

BANDWIDTH EXPANSION 

Lines between the switching network and the remote multi
plexers are prone to the widest variation of use. As the end 
user population grows, the load increases on these lines. The 
transmission group (TO) line feature of SNA is exploited to 
add necessary bandwidth: A new line is defined and then 
installed between 3705s; This line is added to a TO and testing 
is insured by deactivating other lines for short periods. Once 
the testing is successful, the new line is a full-fledged member 
of the TO. TOs are also used for adding interim analog lines 
when digital service is not yet available in an area. In this case 
the analog lines are included in a TO and are discontinued 
once the digital lines are added and tested. This process usu
ally requires 30 days to insure that the new line has stabilized. 



Designing and Managing an SNA Network for Growth 669 

MVS VM 

CMC 

3705R 

TPA 
3705R 

Figure 4-Alternate routes 

Since experience has shown that line availability varies by 
area, TGs are defined with multiple lines even where no im
mediate plan to add lines exists. This aspect of planning ahead· 
is a constant theme for network growth. It enables lines to be 
added with a minimum of disruption. In this way the use of 
TGs as a migration tool has become predominant. 

REMOTE CONCENTRATION 

As previously mentioned, all end user devices are attached to 
the IBM Information Network via remotely deployed multi
plexers. At each remote concentration point several types of 
multiplexers are employed. One or more 3705s connect SNA 
and BSC 3270 devices and systems. Series/Is are used to per-

form protocol conversion of IBM 3101 and the IBM Personal 
Computer to full-screen emulated operation. When port 
capacity is exhausted, additional remote 3705 multiplexers 
may be added to the network and the Series/Is in tum at
tached to the 3705s. Both switched and leased connection are 
possible. An end user choosing switched connection may dial 
into any location supported by the network. Each remote 
location is managed from the central CMC site using SNA 
tools. Both the 3705 and the Series/l are initialized by the 
CMC network operator. The remote 3705s are loaded with 
the configuration from a database maintained on the CMC 
system. The load module is transmitted to the 3705 over the 
telecommunication lines in the network. The Serieslls are 
loaded from diskettes resident on each system. This loading is 
triggered by remote control from the CMC site. 



670 National Computer Conference, 1983 

Figure 5-Network Services 

A strategy of updating these configurations no more often 
than once a month has been chosen. The justification for this 
approach is based on the availability of a leased line usually 
being greater than 30 days. Therefore, once a leased-line end 
user has to be added, waiting 30 days is acceptable. The 
switched-line user may attach to the network almost immedi
ately, since adequate ports with modems and telephone termi
nations are planned in advance. This also permits future 
leased-line users to attach via switched lines in the interim. 
Managing the switched ports requires constant monitoring of 
use so that rotaries~ modems, and ports may be allocated for 
future expansion. Using network tools, connection informa
tion on dial port usage is retained. These data are used to 
project 30 to 90 days ahead, so that the ports may be ex
panded. The lead time for this activity is critical, since close 
coordination between the common carrier, the modem sup
plier, and the IBM Information Network support groups is 
required. 

In addition to connecting end user terminals that access 
IBM Information Network application processors, the remote 
3705s also provide connection for Network Services users. In 
Figure 5 a typical connection configuration is shown. Several 
terminals in different cities are connected to a customer
owned application processor. This connection traverses the 
network through remote 3705s on an SNA session. A session 
is initiated by communicating the request to the CMC pro
cessor. After the necessary security checks and user identi
fication are completed, the end user is connected to the appro
priate processor. Use information about sessions is collected 
at the remote 3705 and relayed back to the CMC for later, 
batch processing. In this manner, performance information 
can be consolidated for the remote 3705s even though both 
cross-network traffic and IBM Information Network applica
tion processor traffic are included. This information is re
duced and used for determining when a communication line to 
a customer host must be upgraded to meet line load and 
response time objectives. In addition, data on the use of the 
high-speed switching network lines are also collected. Deci
sions on adding cross-network lines and upgrading the speed 
of existing lines are based on these data. 

Projections are also made for the short and long term. Since 
digital circuits often have a long lead time before installation, 

MARKETING 
FORECAST 

ATTACHMENT 
REQUIREMENTS 

PERFORMANCE 
REOUIREMENTS 

PERFORMANCE I 
AVAILABILITY 

ANALYSIS 

DEFINE 
NETWORK 

(CONNECTIVITY) 

MIGRATIONI 
IMPLEMENTATION 

PLAN 

COST 
ANALYSIS 

Figure 6---The planning cycle 

OFFERING 
REOUIREMENTS 

sometimes more than a year, this advance planning is im
portant. When a line has to be upgraded or added, the strat
egy used is the same as for adding connections between the 
switching network and remote nodes. The 3705INCPs are 
gradually updated and lines are added to existing TGs to 
minimize network disruption. 

SUMMARY 

The design and management of an SN A network providing for 
growth require advance planning and a well-trained technical 
staff versed in modeling, performance analysis, topological 
design, measurement, and cost evaluation. These skills must 
be integrated in a design team that considers both short- and 
long-term network growth problems. These range from meth
ods of expanding dial rotaries to major network expansions 
and restructuring. The process is continuous and iterative. 
The flow chart in Figure 6 depicts this process as applied to the 
IBM Information Network. 

The areas that require special design for growth include 

1. Expanding service to new geographical areas 
2. Addition of ports for end user equipment 
3. Expansion of bandwidth 
4. Inclusion of more CPU power for applications 

All of these requirements must be met while maintaining 
24-hour uninterrupted service to end users and reasonable 
network transit delays. 

The features of SNA permit many other flexible expansion 
and operation strategies. In the future, additional CMC con
figurations may be used to distribute network operation and 
to improve availability further. This extension may be accom
plished by remote deployment of processors attached to the 
switching network. Thus, by distributing both network man
agement and backup capabilities, long-range goals may be 
met. 



Backup and recovery in the IBM Information Network 

by K. BHADRA and S. M. SCHIFFMAN 
IBM 
Tampa, Florida 

ABSTRACT 

The IBM Information Network is a nationwide system network architecture (SNA) 
network that provides users access to application offerings and network services. 
This paper describes the design of backup and recovery methods for insuring that 
the availability of the network is maintained. The communication management 
configuration (CMC) is highlighted and the uses of current SNA capabilities to 
provide dynamic switching are shown. In addition, operational and human factors 
in achieving and managing backup are described. 

671 





Backup and Recovery in the IBM Information Network 673 

THE NETWORK 

The IBM Information Network is a multi-tier network con
trolled by a communication management configuration 

. (CMC); it is based on system network architecture (SNA) 
4.2.1 A controlling ACFNTAM2 based on its MSNF3 feature 
resides on a dedicated processor and serves as CMC. The first 
tier gives connectivity of different application processors to 
the CMC, and the second is the CMC tier, which links all 
boundary nodes at different cities with the CMC. Both tiers 
are channel-attached to the CMC. CMC is the owner of all 
network resources except for the applications, which reside in 
different hosts. All resources are known to CMC using the 
MSNF feature of ACFNTAM. 

Service Manager, an application program run under the 
CMC host, controls the session initiation requests of all the 
network users. Boundary node 3705s are connected to the 
CMC tier by high-speed links. Each remote boundary node 
3705 has at least two direct or indirect links to the CMC tier, 
which ensures a completely disjoint route to the CMC from 
remote 3705.4 

The MVS and VM productivity systems are channel
attached to the application tier. The application processors 
are configured in pairs to ensure backup in case of their 
failure. 

BACKUP STRATEGY 

The network backup and recovery5 strategy uses most of the 
backup and recovery features of ACF/VTAM and NCp6 
VIR3 wherever possible. Before we describe the implementa
tion of backup and recovery it will be worthwhile to talk about 
the strategy that drives the design and implementation of 
backup. 

The design of backup and recovery in IBM/IN is directed to 
achieve high system availability for all IBM/IN resources, 
from each remote node to each service. Cost effectiveness of 
the backup, availability gain, and performance were evaluated 
continuously. 

To achieve the goal of high availability in such a complex 
network, we have concentrated on each component. Since the 
CMC is the most important component of the network, a lot 
of emphasis has been placed on the backup and recovery of 
the CMC host. 

A network component failure can be either long- or short
term failure. In a long-term failure, a failing component can
not be repaired or replaced quickly. Hardware failures are 
good example of long-term failure, because the duration of 
failure is unknown. Short-term failure is a situation in which 

a failing component can be repaired or replaced quickly. 
Transmission group (TG) failure is a good example of a short
term failure that can be backed up by quickly alternate rou
ting. In IBM/IN 10 minutes is considered to be the boundary 
time between a short-term and a long-term failure. 

CMCBACKUP 

The CMC host in IBM/IN is crucial to the availability of the 
network. It serves as the brain and heart of the network. To 
ensure that the role and function of the CMC can be dupli
cated within a very short period of time in another processor 
a set of procedures has been developed. Coordination of soft
ware and hardware between the CMC and backup CMC was 
an important aspect of the design. 

Hardware Consideration 

An MVS application processor (E system) has been desig
nated as the backup host of the CMC (A system), and in turn 
the CMC is the backup of the MVS application host. The 
network and hot-line operator's terminals are local to CMC; 
through a switching system they can be locally connected to 
the E system. DASD required for network management are 
channel attached to both systems and sharable. Figure 1 
shows the connectivity of the DASD and the operator's termi
nal in the IBM/IN. 

~~I --------------~i 
I A I I BACKUP CMC 
I s I II ,-----j 
I D I I T I I L' -.--.----_-----1 
~ L--.J I i 

I I.-J-, I 
I '---1 2914 I I I I 
I ~ I I I 
I I ~,--L-,,---t----, 
, I ----1 3705 I I 3705 I ----1 3705 I i ~ ~ ~ L----.J 

I CMC ~ I' III 

I I I I " I 
I I I I I I 

~ ~,---t----, 
I 3705 I I 3705 I -1 3705 I i L----.J ~ L----.J 

I I 
I I 
I ~ 
I I 
I I I 

,---t----, ,--L-, ~ 
I 3705 I I 3705 I ----1 3705 I 
L----.J L----.J L----.J 

T ... Network Operator Terminals 

Figure l-CMC and backup CMC connectivity in mMJIN 



674 National Computer Conference, 1983 

What is Backed Up 

Users of the IBM/IN are usually connected via Service 
Manager (SM). SM prompts users to enter desired applica
tion, then logs on to the application. When the CMC fails, all 
the sessions are lost, but some sessions in the logical level 
remain undistrubed. The backup CMC backs up all SSCP 
sessions that are supported by the primary CMC. Users who 
have lost their sessions will have LOGO on their terminal 
wherever appropriate, and will log on to their application 
when the backup CMC takeover is complete. Hot-line (cus
tomer assistance) and operator terminals are usually the first 
to get their session back. 

Recovery and restart of a session in an ACF Release 3 
environment can be either disruptive or nondisruptive. There 
are two basic functions in ACF Release 3 necessary for backup 
and recovery option. 

1. Cross-domain session continuation.-In the generation 
of NCP all leased-line SDLC devices have been coded 
with ANS-CONT option (automatic network shut
down). This allows leased SDLC terminals to remain in 
.session in a cross-domain session with an application in 
another host even if the owning CMC host has failed. 
There is no such support for SDLC dial, BSC, or SIS 
devices. In case of CMC failure all dial SDLC, BSC, and 
SIS devices will lose their session. 

2. Nondisruptive takeover or restart.-There are oniy few 
SNA devices that can support nondisruptive takeover or 
restart if they are attached to a leased line. The following 
list shows some devices which support the error recovery 
program (ERP). The ERP-supported leased-line devices 
will not lose sessions when we switch back the CMC 
function to its original processor during switchback. 

1. 3274 1C,31C,51C (configuration support B or C is re-
quired at the appropriate EC level) 

2. 3271 models 11, 12 
3. 3275 models 11, 12 
4. 3276 with RPQ 8K1030 
5. 3601,3602,36058K1030 
6. 3684 
7. 3776 models 3, 4 
8. 3777 models 3, 4 
9. 3776 (PU only) 

10. 4701 
11. 8100 DPCX Rei 1 modification 4 feature #6001 level C 
12. 8100 DPPX FEP C 
13. System/32134/38 

Backup CM C Design 

The design of the backup CMC considers the following 
points. The backup CMC is running all the time with the same 
set of software (MVS, ACFIVTAM, NCCF, CCICS/SM, etc.) 
that runs in the CMC host, but it does not own any device 
outside of its original domain so long as the primary CMC is 
in charge of the network. The files and libraries that are 

required by the primary CMC to run the network reside on 
the channel-attached DASD and are shared by the 
Backup CMC. NCPs are GENed with ANS = CaNT and 
ISTATUS = ACTIVE. As a part of VTAM initialization the 
application major nodes indicates ISTATUS = ACTIVE. 

Initialization of the network consists of initialization of the 
primary CMC as well as the initialization of the backup CMC. 
The backup CMC remains waiting ready to back up a failure. 
Since the CMC host is also a backup of the application host, 
a set of procedures has been set up to back each other up. 

CLIST and Command Automation 

The backup procedure takes too many commands for it to 
be possible to type them in quickly in a crisis. To make the 
procedure user friendly, all individual commands were 
grouped together either in a CLIST form to be entered 
through NCCF terminal or in a OPERDR Job to be entered 
at the system console. To save time, the network operator is 
provided with a console of CMC, backup CMC and an NCCF 
terminal grouped in one location. 

Procedures 

The procedure is setup on a contention basis. The order of 
initialization of the host is very critical. In the start option of 
VTAM, the following are activated in the primary CMC in the 
initialization mode. 

1. Path table 
2. CDRMs 
3. CDRSCs 
4. Application major nodes 
5. Switched major nodes 
6. Local major nodes 
7. Channel-attached local NCPs 

These NCPs have no boundary function and have no terminals 
attached. In the initialization mode of the backup CMC and 
also in the backup mode of the primary CMC, all the items of 
this list except for switched major nodes with different inputs 
are activated as a start option of VTAM. 

CMC initialization procedures start local terminals, NCPs, 
and CDRMs in the primary CMC. When the network is up, 
the E system is initialized as backup by activating local termi
nals, links, local NCPs, and CDRMs. One important point is 
that we did not activate the boundary node NCPs to set up 
shared ownership from the backup CMC. Our experience 
with the network and hot-line operator was that it detracted 
from user friendliness to have two sets of status of the same 
device in two different consoles. At the same time we were not 
saving more than 15 seconds by setting up joint ownership. 

Most of the backup time comes from the activation of the 
devices of the NCPs. We have carefully ordered the sequence 
of activation of the remote NCPs so that loads on the links are 
well balanced throughout the network during activation. This 
load-balancing saves time and uses NCPs effectively during 
crisis period, 



Backup and Recovery in the IBM Information Network 675 

Operation 

Since the CMC and backup CMC are backing each other 
up, one is always in the backup CMC mode while the other in 
the CMC mode. At the start time the CMC host (A system) 
is initialized as a CMC and the E system is initialized as a 
backup CMC in backup mode. In the event of CMC failure, 
the backup CMC procedure is invoked and the E system 
serves as a CMC as well as a productivity system. During the 
day when the A system is fixed, it is initialized as a backup 
CMC to back up the E system, which is the active CMC. If in 
the same day the CMC (E system) fails again, the backup 
CMC procedure is invoked in the A system. Otherwise, for an 
orderly takeover of their original roles, a switchback pro
cedure is invoked at a scheduled hour after prime shift. Dur
ing switchback, we force a failure in the backup CMC, switch 
resources to their original host, and initialize the E system as 
the backup. The probability of simultaneous failure of A and 
E system is very small probability, and it has not been covered 
in these backup procedures. For CMC hardware failure there 
is no problem determination time, the failure is always consid
ered as long term, and backup is initiated immediately. 

Backup of CMC on the E system, as implemented and 
tested, takes only 10 minutes to provide logon at every termi
nal of IBM/IN. 

3705 BACKUP 

To increase the boundary-node 3705 availability, we have im
plemented two-stage backup. In the first stage we provide dial 
backup for leased and dial users. The two-wire dial backup for 
leased-line users is shown in Figure 2. In the second stage of 

3865 

3865 

I 
TAMPA 3705 I 

for DIAL BACKUP I 
1 I 

I 

I I 
I I 

.--L--J .--L--J 
3864 I M I I M I 

L-.-J L-.-J 
I I 
I I 

REMOTE ROTARY 
3705 

I 

I 
.--L--J 
I M I 
L-.-J 

I 
I r---l 
1 1 HS 1 ~I--------~ 

.--L--J ~ 1 MAX 4.8 KB 
1 Mil I 
L-.-J 1 I M -> 

1 1 1 HS -> 
,----L--,,t-, I CU -> 
1 SW f------1 M 1-1 -------'I 

~ L....J 3864 
1 

~ Il 
I cu f------1 T 1 
L--J LJ 

T -> 
SW -> 

MODEM 
HAND SET 
CONTROL UNIT 
(CONFIGURABLE) 
TERMINAL 
EIA SWITCH 
(OPTIONAL) 

Figure 2-Two-wire dial backup using IBM modems 

CMC 
3705 

I 

I 
I 
I 
I 
L---, 

I 
I 
I 
I 

I 
I 

I 
I I 

PRIMARY I I SWITCH 
3705 f---------1 

I I 
I I 

I I 
I I 

I I 

I I I 
I I I 
I I I 

,-L---, ~ ,-L---, 
I D I I D I I D I 
L--...J L--...J L--...J 

Sw.Con ... Remote Switch Control 
M .. Dial Modem 
D .. User Devices 

I I 
ISw. Coni 
I 

I 
I 

I 
,t-, 
1M I 
L....J 

...., 
1M I 

I T 
~ 
I I 

I I BACKUP 
f---------1 3705 
I I 
I I 

I I 

I 
I I 
t, I 

I I 
I I 
~ ,-L---, 
I D I I D I 
L--...J L--...J 

Figure 3-Backup 3705 connectivity in IBMlIN 

backup, a standby backup 3705 is provided at the remote 
cities. The backup 3705 is connected to the production 3705 
through a remotely operated matrix switching system. In the 
case of remote-city 3705 failure, all the lines are switched from 
the production 3705 to the backup 3705 and are loaded with 
the same GEN to activate the session. There is a 15-minute 
limit to this 3705 backup. The connectivity is shown in Figure 
3. 

LINK BACKUP 

Links are the arteries of a network. To back up links we 
exploited transmission groups (TGs) between two connecting 
nodes; TGs are standard features of the ACFINCP VIR3. If 
any link of the TG fails, the traffic is automatically routed to 
the next available link in that TG. As it is not guaranteed that 
links of a TG will not run together side by side, TGs remain 
vulnerable to natural disaster. Alternate routing has been 
implemented to cover the TG failure. Every remote 3705 is 
either directly or indirectly connected to the CMC tier by at 
least two completely disjoint physical links. On these links at 
least two completely disjoint routes have been mapped from 
boundary node to the CMC and also from the boundary node 
to the application processors. The shortest and the fastest 
route is the primary path, and next one serves as the backup 
path. 

POWER BACKUP 

The Tampa network complex is provided with power from two 
different power substations. The building is equipped with 



676 National Computer Conference, 1983 

uninterrupted power supply (UPS) which can supply power 
for 18 minutes to the network components. There is also a 
standby diesel-powered generator unit that backs up UPS. A 
power backup procedure has been set up to deal with the 
situation. 

ACKNOWLEDGMENTS 

K. Bhadra is grateful to Mr. S. Cawn and Miss L. Colombino 
for their helpful advice during backup CMC design, and to 
Mr. R. M. Campbell, without whose help implementation 
would not have been possible. 

REFERENCES 

1. System Network Architecture Format and Protocol Reference Manual, Ar
chitecture Logic, SC30-3112 (3rd ed.), 1980. Available through IBM Publica
tion Center, 9th floor, 1801 K St., N.W., Washington, D.C. 20006. 

2. ACFNTAM Planning and Installation, SC27-0584 (1st ed.), 1980. Available 
through IBM Publication Center, 9th floor, 1801 K St., N.W., Washington, 
D.C. 20006. 

3. Gray, T. P., and T. B. McNeill. "SNA Multiple System Networking." IBM 
System Journal, 18 (1979), pp. 263-295. 

4. Ahuja, V. "Routing and Flow Control in System Network Architecture." 
IBM System Journal, 18 (1979), pp. 298-314. 

5. Cawn, S. M. "Backup and Recovery in ACFNTAM Release 3." 
GG22-9261, 1981. Available through IBM Publication Center, 9th floor, 
1801 K St., N.W., Washington, D.C. 20006. 

6. ACFINCP. Installation Release 3, SC30-5140 (1st ed.), 1981. Available 
through IBM Publication Center, 9th floor, 1801 K St., N.W., Washington, 
D.C. 20006. 



Logical problem determination in an SNA network 

by ROBERT A. WEINGARTEN 
IBM Corporation 
Poughkeepsie, New York 

and 

EDWARD E. IACOBUCCI 
IBM Corporation 
Raleigh, North Carolina 

ABSTRACT 

Until recently, problem determination on a systems network architecture (SNA) 
network has dealt mostly with error detection on physical network components. 
Logical-error detection mechanisms associated with logical-network (software
related) errors were not adequately provided until the recent announcement of a 
new on-line interactive package called the network logical data manager (NLDM). 
This paper will discuss the physical and logical network environments, logical 
network problems, and functions provided by NLDM for logical problem 
determination. 

677 





INTRODUCTION 

Systems network architecture (SNA)l can be viewed as con
sisting of two networks, one physical and one logical. The 
physical network consists of a number of hardware nodes 
connected by links. The function of the physical network is to 
control the flow of user data to, from, and between the physi
cal network nodes. The logical network consists of the man
agement of protocols that support the exchange of user data. 
Although these two networks can be viewed separately, they 
interact closely since the logical network operates via the 
physical network. 

In the past, problem determination has mostly dealt with 
the physical network. Error-reporting and recording mech
anisms evolved from stand-alone diagnostic support on indi
vidual hardware nodes to online interactive diagnostic support 
of remote hardware nodes. IBM has developed such program 
products as the Network Problem Determination Applica
tion2 to allow an SNA user either to receive alerts from the 
network nodes of pending or failed conditions or to query 
network nodes or intelligent modems3 for status data. 

Logical problem determination has not evolved so rapidly, 
although several mechanisms have been provided in recent 
releases of SNA. Until the announcement of the NLDM,4 the 
logical-problem determination mechanisms were considered 
cumbersome and time consuming. 

NLDM was created to provide online support enabling the 
user, normally the network operator or a trained diagnos
tician, to obtain data interactively on the logical network for 
problem determination. NLDM constantly collects data from 
a logical conversation, called a session, so that information is 
available leading up to the occurrence of a failure. 

This paper will first describe in more detail the differences 
between the physical and logical networks and how they inter
act. Next it will discuss the problems associated with 10gical
problem determination and how NLDM can be used to aid in 
identifying logical errors. 

THE PHYSICAL AND LOGICAL NETWORK 

The Physical Network 

The SNA physical network consists of a number of hard
ware nodes connected by links. The hardware nodes classified 
according to their functions. The functions and capabilities of 
each of these nodes are defined by SNA. Each node has 
associated with it an SNA function called the Physical Unit 
Services, which provides management functions for it. 

Logical Problem Determination in an SNA Network 679 

The understanding of portions of the physical network is 
the responsibility of the System Services Control Point 
(SSCP). An SSCP has the responsibility for the network 
operator interface, communication network management 
interface, config1,!ration control, network startup, network 
recovery, and participation in the creation of sessions. 

The Logical Network 

The logical network consists of entities called Network Ad
dressable Units (NAU). An NAU represents a port through 
which end users may access the communications facilities. 
Although an NAV is a logical entity, it is assigned a unique 
network address that depicts its physical location in the net
work. This unique network address provides routing informa
tion so that user data can be directed to the correct physical 
node within the network. There are three types of NAU de
fined in SNA: the SSCP itself, the physical unit, and the 
logical unit. 

The logical unit (LV) is a set of function management ser
vices directly supporting an application program or terminal 
operator end user. The LV provides the services and proto
cols necessary for the end user to communicate with other end 
users. This communication, or exchange of user data, occurs 
by establishing a session between the two LUs on behalf of the 
end users. Each session has a set of agreed-to protocols that 
are supported in the LV services at each session end. These 
protocols establish such session characteristics as data syntax 
and meanings, data flow methods, and other session proper
ties that will be used during the session. 

Establishment of a session also implies the use of certain 
physical-network entities. These include nodes and links in 
the path between the two session end-points and the node 
resources at each session end, including buffers, storage, and 
processing capabilities. 

A session is initiated by an end user, either an application 
program or a terminal user. The initiator of a session uses 
logical names, called network names, to identify the session 
end users. The SSCP resolves the logical-network names into 
the physical network addresses assigned to the session end 
users. 

End users, including the network operator, do not use net
work addresses to refer to sessions. Even the physical problem 
determination packages, such as the Network Problem Deter
mination Application, use network names in communicating 
with the network operators. Correlation of the logical
network names to physical addresses is accomplished using 
the services of the SSCP. 



680 National Computer Conference, 1983 

THE LOGICAL PROBLEM 

Logical problems attributable to software can be classified as 
either detectable or undetectable. The detectable errors will 
result in (a) error messages that can be logged in sequential 
files or displayed to the network operator, (b) failure notifica
tion to the session ends, (c) storage dumps caused by a soft
ware product's abnormally terminating a session, or (d) a 
combination of the above. Typically, these can be well docu
mented and resolved since the necessary information is nor
mally available at the time of failure. 

The undetectable problems make it appear to the session 
ends that the network has "gone to sleep"; therefore they are 
more difficult to resolve. These problems exhibit no external 
signals or notifications. They normally occur owing to either 
a protocol error or the loss of a message. 

Protocol Errors 

As already mentioned, an SNA session follows specific, 
agreep-to protocols. These protocols are established at ses
sion initiation. Two forms of undetectable software protocol 
errors can occur. 

1. Mismatch or misunderstanding of the protocols required 
for session initiation. This can occur owing to a program 
error during session setup or to a mismatch due to pro
gramming support levels of the software involved in 
SNA sessions. 

2. Incorrect setting of protocol states by either the re
ceiving or the sending logical unit. Each protocol in SNA 
has a defined set of actions that it can accept or reject, 
depending on the current protocol state of the logical 
unit. 

Loss of Message 

Another potential problem is the loss of a message or path 
information unit (PIU) within the network without appropri
ate notification. The loss may result in an end user waiting for 
a message. It should be noted that NLDM addresses un
detectable errors, since SNA describes the protocols that are 
executed as a result of detectable errors and failures in both 
software and hardware. 

EXISTING APPROACHES TO THE PROBLEM 

Although the undetectable errors are difficult to analyze, 
SNA does provide facilities that support logical problem de
termination. However, these are considered cumbersome and 
difficult. Methods that can be employed include the following: 

1. Activating traces on a teleprocessing link, on a trans
mission group,5 on an ACFINCPNS resource,6 or within 
a host access method. 

2. Taking storage dumps of all suspected software com
ponents that are contained within the physical path used 
by a session. 

3. Placing traps within the suspected software components 
to cause a planned abnormal termination when the logi
cal error reoccurs, then taking a storage dump and han
dling this error as a detectable failure. 

NLDM-AN APPROACH TO RESOLVING 
UNDETECTABLE LOGICAL PROBLEMS 

NLDM collects, stores, and monitors network logical problem 
determination data. NLDM uses the services of the network 
communications control facility (NCCF) 7 to obtain and dis
play the session related data at the central or remote NCCF 
network operator terminal. 8 

NLDM collects two types of session-related data: session 
awareness data and session trace data. Session awareness is 
notification by the SNA access methods-ACFrrCAM9 and 
ACFNTAM10-to NLDM that a session has been successfully 
started. The session awareness data, which NLDM time
stamps, consist of a session start and end indication, session 
partner network names and network addresses, session type, 
and configuration information about the session end points. 
The session trace data are supplied to NLDM by the SNA 
access methods and by the ACFfNCPNS program. The ses
sion trace data obtained from the host access methods include 
the following parts of a message or PIU: the transmission 
header, the request/response header, and the first 11 bytes of 
the request unit. Session trace data are only collected for 
sessions involving a resource for which a trace has been 
started. NLDM collects these data in storage for active ses
sions and places it in a VSAM file at session termination for 
limited historical purposes. 

NLDM also collects session trace data from the boundary 
function serving a session end point in an ACFfNCP/VS 
boundary node. These data consist of the last four PIU se
quence numbers, which are contained in the transmission 
header, and the appropriate control block information about 
the ACFINCPNS resource involved in the session. This ACF/ 
NCPNS data is automatically sent to NLDM at session termi
nation or can be solicited during the session, as long as the 
trace for the session is active. 

The collected session data is displayed by an NCCF network 
operator using NLDM's supplied hierarchical display struc
ture. The NCCF network operator uses the network names to 
display session-related data. The NCCF operator can display 
session-related data for both session ends at the same display 
station, although two NLDMs may be used to collect the 
session data for a cross-domain session. 

To provide the network operator with a single network 
operational view in an SNA cross-domain environment, an 
NLDM uses the services of NCCF to establish communica
tions between itself and the other NLDMs. From the session 
awareness data obtained at session activation, an NLDM can 
determine which other NLDM to access to obtain data re
lating to that session. This is illustrated in Figure 1. In the 
figure, NLDMI in HOSTA will be provided by SSCPl with 
the session awareness data for an application whose network 
name is APPL. 



HOSTA 

*---------------------* 
APPL NLDMl 

1------------1 
NCCFl 1 

1--------1------------1 
ACF/TCAM or 1 

ACF/VTAM *-----* 

1 SSCPll 

*-----* 

*---------------------* 
NCPl 

*-------------* 

HOSTB 

*------------------------* 
NLDM2 

1-------------1 
NCCF2 

1------------------------1 
ACF/TCAM or 

ACF/VTAM *------* 
ISSCP2 1 

*------* 
*------------------------* 

NCP2 

*---------------* 
1 ACF/NCP/VS I--------/ ___ IACF/NCP/VS 

*-------------* *---------------* 
Nl Tl 

*---------* *- - _.- - - ---* 
INCCF OP ITerminal 1 

1 Console *---------* 
*---------* 

Notes: Session between APPL and Tl 

Session between NLDMl and NLDM2 

Logical Problem Determination in an SNA Network 681 

Specific 

Session 

Configuration 

*--------* 
ISSCP-ID 

IPU-ID 

I local 

*--------* 

TABLE I-NDLM display hierarchy 

MOST RECENT SESSION 

*-----------------* 
Session Partner 

Status 

Start/end times 

*-----------------* 
Session Session Session 

Parameters PIU Trace ACF/NCP/VS 

Trace 

*------------* *-------------* *-----------* 
Protocol 

Used 

*------------* 

ITime,PIU type I ISequence Nol 

ISequence No. I I Control 

IRH Indicator I I Blocks fori 

*-------------* I Resource I 

PIU *-----------* 
Detail 1 

*------------* 
ISpecific PIUI 

ITH,RH, 

III Bytes RU I 

*------------* 

Figure I-Network configuration 

This occurs since SSCP1 is the owner of APPL and partici
pates in the session set-up between APPL and Tl. NLDM1 
cannot directly obtain session awareness or trace data relating 
to terminal T1, since T1 is not under the control of SSCP1. 
NLDM1 must locate the appropriate resource owner and re
quest the session awareness and trace data from the NLDM 
associated with that resource owner. 

In this example, if the operator requires session trace data 
from T1, then NLDMI will request this data automatically 
from NLDM2. The data will then be returned to NLDMI for 
display to the requesting NCCF network operator. Note that 
if the two resources (APPL and T1) had been under the con
trol of the same SSCP, then only one NLDM would have been 
involved in the data collection and display. 

NLDM provides the user with a hierarchy of displays that 
help the user obtain session-related data from both session 
ends. Table I illustrates the NLDM hierarchy used to obtain 
logical-problem determination data for a specific session. The 
example in the second section after this illustrates how the 
NLDM displays can be used in solving a logical or software
related problem. To the terminal end user, this problem will 

" appear as if the "system has gone to sleep." The example uses 
, . a bracket protocol error attributable to a software pro

gramming error. Prior to describing the NLDM methodology 
used to identify the undetected error, a short description of 
the bracket protocol will be provided. 

BRACKET PROTOCOL 

The bracket protocolll defines a specific set of rules for con
trolling a conversation between two logical units connected in 
a session. The set of bracket rules to be followed for a partic
ular session are agreed to at the session's initiation. Rules 
identify who can start or end a new conversation, when it can 
be started, and when each LV can send data within the con
versation. The use of the protocol insures that data from each 
session end are not sent at the same time. 

The bracket protocol defines several states that one must 
obey in order to have an orderly conversation. Bracket indi
cators placed in the request/response header (RH) are used to 
control the bracket states. The intent of this section is to 
describe the bracket protocol, but only so far as is necessary 
to describe the logical error. 

To start a related conversation, the authorized session end 
places a begin bracket (BB) indicator in the RH. When all the 
user data is sent and a reply is required, a change direction 
(CD) indicator will be placed into the RH. The CD indicator 
signals the receiving session end that it is its turn to send data. 
This flip/flop of the conversation controlled by the CD indi
cator continues until the conversation ends with an end 
bracket (EB) indicator. 

The setting of the CD indicator is extremely important. If 
the receiving LV is not given this indication, it cannot send 
data back to the requestor. 



682 National Computer Conference, 1983 

EXAMPLE OF LOGICAL PROBLEM 
DETERMINATION 

Let us take an example that will indicate how an undetected 
error can be diagnosed as a bracket protocol error. Consider 
a new application program called APPL that uses bracket 
protocol between itself and various terminals. Let us assume 
that a specific session exists between APPL and T1, as illus
trated in Figure 1. In this example, the application program 
will start a conversation with T1 to ask a specific question and 
receive an answer. Then based on the answer, the application 
will start one of several related conversations to obtain more 
information. 

Let us assume that the terminal operator has no indication 
that an error occurred. To the terminal operator, the logical 
error will appear as a long wait. This wait will continue until 
the terminal operator becomes frustrated and requests assis
tance from the network operator. At that point, the NCCF 
network operator can use NLDM to display the session activ
ity associated with the terminal T1, as illustrated in Figure 2. 
From this screen, the NCCF operator can see that an active 
session is still in progress between APPL and T1 and that 
further work is needed to isolate the problem. The NCCF 
operator has several options. One option would be to display 
the configuration data screen associated with terminal T1 and 
then use the physical problem determination techniques to see 
whether a physical node problem caused the error. 

Another alternative is to continue to use NLDM to try to 
find the source of the problem-for example, by using it to 
display the session activity associated with each session end. 
Let us assume that the NCCF operator displays the session 
related data for APPL, which is shown in Figure 3. In Figure 
3, the first four entries under the SEL (SELection) column are 
equivalent to the following SNA messages: 

1. APPL initiating a conversation with a BB indicator 
2. APPL asking the T1 operator a question, then allowing 

T1 to respond by sending a CD indicator 
3. Tl answering the question, then allowing APPL to re

spond by sending a CD indicator 
4. APPL ending this related conversation with an EB 

indicator 

These four messages should appear normal to the NLDM 
operator, since they adhere to the application scenario and 
the bracket protocol. 

Continuing with the scenario, the application will now ana
lyze the received data and start a different conversation to 
gather other information. It will use a bracket sequence simi
lar to that used on SEL lines 1 through 4. 

The data on the NLDM screen indicate that the next con
versation was started on SEL line 5 with a BB indicator. This 
message was followed by another message sent by APPL on 
line 6; note, however, that no CD indicator was placed on this 
message. This indicates to a trained NCCF network operator 
or NLDM diagnostician that an error has occurred, since the 
terminal cannot respond without receiving a CD indicator. 

Since this application program was new, the NLDM oper
ator can assume that the application program failed to request 

* ___________________ a _________________________________ --- _____ * 

NLDM.SESS Page 001 

* SESSION HIST0RY FOR SELECTED NAU * 

NAME: Tl DOMAIN: NCCF2 

j-------------------------------------------------------------j 
***PRIMARY**** ***SECONDARY*** 

SEL NAME TYPE DOM NAME TYPE DOM START TIME END TIME 

I( 1) APPL LU NCCFl Il LU NCCF2 08/05 15:20:45 ACTIVE 

I( 2) TRANS LU NCCF1 Tl LU NCCF2 08/04 13:20:30 14:10:04 

1(12) 

I (This line reserved by NLDM for error messages) 

I ENTER SEL- AND PT(P-TRACE), ST(S-TRACE), P(SES PARMS), 

PC(P-CON) OR SC(CON) 

*-------------------------------------------------------------* 

Figure 2-Session history for selected NAU 

*-------------------------------------------------------------* 

NLDM.SESS Page 001 

* SPECIFIC SESSION TRACE DATA * 

1--- - -- --PRlMARY- - -- ---- -------1------ --SECONDARY----I- -DOM---I 

INAME=APPL SA=l EL=10 I NAME=T1 SA=3 EL=20 I NCCF2 I 

1-------------------------------------------------------------1 
ISEL TIME SEQ DIR TYPE **REQ/RESP HEADERO*** RU LEN 

1------------------------------------------------------------
I( 1) 16:35:~ 0020 P-S FM HDR BB 009 

I( 2} 16:35:30 0021 P-S DATA CD 03C 

I( 3) 16:36:15 0018 Sop DATA CD 020 

I( 4) 16:36:20 0022 P-S DATA EB OlC 

I( 5) 16:36:25 0023 P-S FM HDR BB 009 

I( 6) 16:36:30 0024 P-S DATA 03D 

1(12) 

(This line reserved by NLDM for error messages) 

I ENTER • R' TO RETURN TO PREVIOUS DISPLAY 

! (command input line) 

*-------------------------------------------------------------* 
Figure 3--Specific session trace data 

that the access method place the CD indicator in the message 
for this specific conversation. In this case, further diagnostic 
tests will not be necessary. The application program must be 
fixed to request that the CD indicator be placed in the appro
priate message field for this conversation. 

Protocol error diagnosis will require either an NCCF oper
ator with SNA knowledge or diagnostic procedures identified 
by the installation. If neither are available, then the NLDM 
operator can request that NLDM record this data on its 
VSAM file for later use by a trained diagnostician. 

The case of a lost PIU is easier to detect than the protocol 
error, since the NLDM operator need only see a mismatch 



between the last four PIU sequence numbers on each session 
end. What is not easy to discover is which software component 
in which network node "lost" the PIU. The only configuration 
data available with NLDM are the physical units' networks 
names identifying the nodes supporting the session end 
points. 

By understanding the complete physical route assigned to 
the session, the network operator could use other problem 
determination methods to attempt to isolate the problem. The 
network operator must use some combination of access 
method operator commands, a user-supplied application pro
gram, and a "network road map on the computer center wall" 
to obtain this data. Only then could the network operator use 
current methods, such as product traces, to further investigate 
where a message was lost within the network. 

CONCLUSION 

NLDM has enhanced network logical problem determination 
by simplifying the user procedures used to obtain session re
lated data for logical problem determination purposes. This 
simplification reduces time spent in problem determination 
activities. It also makes it less likely that more drastic de-

Logical Problem Determination in an SNA Network 683 

tection methods, such as link traces and program traps, must 
be used. Problem determination for these logical errors has 
been simplified but not eliminated. 

REFERENCES 

1. Sundstrom, R.J., and G.D. Schultz. "SNA's First Six Years: 1974-1980." 
Proceedings of the Fifth International Conference on Computer Commu
nications, Atlanta, Georgia, 27-30, October 1980, pp. 578-585. 

2. NPDA Version 2 General Information Manual, GC34-2061, IBM, 1982. 
3. Huon, Simon, and Robert Smith. "Network Problem Determination Aids 

in Microprocessor-Based Modems." IBM Journal of Research and Devel
opment 25 (1981), pp.3-16. 

4. NLDM General Information Manual, GC30-3081, IBM, 1982. 
5. Gray, J.R., and T.B. McNeill. "SNA Multiple-System Networking." IBM 

Systems Journal, 18 (1979), pp. 263-297. 
6. ACFINCPIVS Version 2, Release 1, ACFINCP/SSP for the IBM 3705: Gen

eral Information, GC30-3058, IBM, 1982. 
7. NCCF General Information Manual, GC27-0429, IBM, 1983. 
8. Weingarten, R.A. "An Integrated Approach to Centralized Communi

cations Network Management", IBM Systems Journal, 18 (1979), pp. 
484-506. 

9. ACFffCAM, Version 2 General Information: Introduction, GC30-3057, 
IBM,1981. 

10. ACFIVTAM Version 2 General Information, GC27-0608, IBM, 1982. 
11. Systems Network Architecture Format and Protocol Reference Manual: 

Architecture Logic, SC30-3112, IBM, 1980. 





Planning high-speed digital services in the Bell System 

by GARY J. HANDLER 
American Telephone and Telegraph Co. 
Basking Ridge, New Jersey 

ABSTRACT 

High-speed digital transport has been an integral part of the Bell Network since the 
introduction of T1 facilities in the early 1960s. Since that time a growing percentage 
of short- and long-haul digital facilities have been integrated into the network via 
various technologies such as digital radio, coax, and fiber. More recently, customer 
needs for data communications have required the extension of high-speed digital 
transport to the customer premises. 

This paper discusses the growth of high-speed digital services. We describe the 
customer applications that led to the requirement for such transport, the technologi
cal environment, and finally some near-term and longer-term plans for high-speed 
transport capabilities. 

685 





CUSTOMER REQUIREMENTS 

Customer needs for high-speed digital transport arise from two 
types of applications. The first is applications such as voice and 
low-speed data, where a customer's volume requirements are 
so large that concentration is economical, and therefore access 
to high-speed transport is desirable. The second type of appli
cations are bulk-data transfer, video, etc. These applications 
inherently require high-speed digital transport. 

For certain applications, for example bulk-data transfer be
tween two customer locations, private line solutions are ac
ceptable. For others, such as video conferencing among many 
locations, an access to a switched network is more desirable. 
One potential future application, which would require a 
sophisticated switched distribution scheme, is Pay TV or video
on-demand. Penetration of such services into the residence 
market could bring a swift revolution to the deployment of 
high-speed access and high-speed networks. 

TECHNOLOGY 

The first widespread deployment of high-speed digital tech
nology was with the 1.5 Mb/s T-carrier facility, which was intro
duced in the early 1960s. Today almost 50 percent of metropoli
tan facilities are digital. Initially, T-carrier was primarily used 
for transporting 24 voice band channels, but later its applica
tion was broadened to carrying high-speed data. 

The next important transmission media is digital radio. This 
capability is being introduced into the network at a great rate. 
Various forms are available, for example, 20 Mb/s, 78 Mb/s, 
and 90 Mb/s, depending on the terminal equipment used. 

Other technologies in use include coax, satellite, and finally, 
optical fiber. Fiber of course holds the most promise at this 
time-it has the potential of carrying high-speed (90 Mb), low
error-rate, digital signals for long distances with large repeater 
spacings. As the cost of this technology comes down, fiber right 
to the customer will become economical. This will allow for 
fiber in the distribution plant, leading to applications such as 
video-on-demand or two-way video in the homes. 

There is also a significant amount of work being done in the 
area of connecting and switching digital streams. To connect 
1.5 Mb/s digital streams and multiplex and demultiplex the 24 
voice band channels within, D channel banks have been devel
oped. To interconnect 1.5 Mb/s streams, including the 64 Kb/s 
single voice band channel level, the Digital Access and Cross
connect System (DACS) was developed. The DACS can be 
controlled from a terminal and allows for switching any input 
channel to any output channel. Thus we have a slow-connect 
high-speed digital switch. Various new high-speed digital 

Planning High-Speed Digital Services 687 

switch fabrics are under consideration and these will make an 
appearance as required by customer demand. 

It is expected that by 1990, 90 percent of the metropolitan 
and about 30 percent of the long-haul facilities will be digital. 
Analog facilities will continue to dominate the long-haul por
tion because they are economical for carrying voice traffic. 

TWO NEW SERVICES 

In this section we describe two new services, one switched and 
one nonswitched, for which tariffs were recently filed by the 
Bell System. 

The first new service is the terrestrial digital service (TDS). 
This is a two-point private line offering of 1.5 Mb/s transport. 
In addition to the transport, various service options such as 
central office multiplexing of 24 voice channels and protection 
switching are available. Figure 1 shows some of the technolo
gies that may be used in providing a two-point TDS connection. 
The customer sees an interface provided by the network chan
nel terminating equipment (NCTE). Behind this interface, a 
wide variety of terrestrial technologies, such as T1, T4, and 
digital radio may be employed to provide the service. 

The second new service is the high-speed switched digital 
service (HSSDS). This is a common-user, slow-switched digital 
network, currently available in multiples of 3 Mb/s. Access to 
this network is via dedicated access lines. Calls may be placed 
on a reservation basis. Switching is to be accomplished via the 

Long Haul Facilities 
DWV 

20 MB/a Radio 

~ Exchange Area >s 
... ........: .. ----- T-1 Carrier -----.,.~ 

T-1C " 
T-4 

Loop 
T-1 Carrier 

Channel Banks 
Digital PBX's 

Etc. 

Figure 1-Typical technologies used to provide terrestrial digital service 



688 National Computer Conference, 1983 

Long Haul Facilitle. 
20 MB/a Radio 

Digital Satellite Network 
Fiber 

~ T-4Camer ~ 
Sw!tc::hlng Center 

DACS 
DS-1 Patch Bay. 

Local Acce.8 
....... ----- T-1 Carrier 

T-1C 

~~-------NCTE ~ 
Automatic Protection Switch 

Unprotected DS-1 Termination 

8PE ~~.-------_PM~~PE--------~~~t::;\ 
DataCPE V 

Figure 2-Typical technologies used to provide HSSDS 

DACS technology previously described. The primary initial 
use of this service is for video conferencing. Typical technolo
gies that may be used in the provision of this service are shown 
in Figure 2. Figure 3 shows the sites planned for 1984 for 
switching centers for HSSDS. Locai access will be available 
from those centers. It is expected that this capability will evolve 
to a 1.5 Mb/s switched capability in the near future. 

FUTURE CAPABILITIES 

The potential for future high-speed digital services is limitless. 
As the cost of technology decreases and the demand and will
ingness to pay increases for such services as video-on-demand 
and two-way video, a point will be reached where radically new 
technology in the local loop will be justified. 

Figure 4 depicts a high-speed digital communications net
work, useful for such applications. This particular architecture 
involves deploying lightguide all the way to the customer prem
ises. Three channels may be provided, two for video in each 
direction and a third for other needs, such as voice and data. 
Remote nodes may peel off the appropriate channels to each 
home via wavelength division multiplexing techniques. These 
remote nodes achieve needed concentration prior to con
necting to the lightguide feeder leading to the central office. 
Here new high-speed digital switch fabrics perform the neces
sary switching functions. 

Architectures such as this are in the experimental stages in 
many countries. When the right combination of customer 
needs and transmission technologies are found, then the ex
perimental phase will be over, and rapid deployment will fol
low. High-speed digital networks will be an integral part of the 
integrated services digital network (ISDN). That plan envi
sions customer access to be provided by a high-speed digital 
pipe, where the customer uses as much or as little of the avail
able bit-stream as required for a particular application. Clearly 
the architecture described above meets the service concept 
presented by ISDN. 

Minneapolis. ,rec~.J) 
• Albany 

Rochest~ ••. Boston 
• Detroit J. Buffalo • H!~t!ord 

C7'" - • New York 
Chicago • • Cleveland • PhH.delphia 

Des Moines. 

Milwaukee 

Indianapolis • • Columbus 
• Cincinnati • San Francisco 

• Omaha 

• Denver 

Pittsburgh • 7'aShington 

Kansas City. • St. Louis Richmond 

• Phoenix 
• San Diego 

• Louisville 
Tulsa • • Nashville • Ral,lgh 

Sen ::~::~. • Memphis · c::;:~e (e.Sboro 
• Orlando 

\ 
• Miami 

Figure 3-Planned switching centers in 1984 



Lightguide 

Distribution 

Remote 
Node 

Remote 
Node 

Planning High-Speed Digital Services 689 

Central 
Office 

Lightguide 
Feeder 

To Service 
Vendors 

Figure 4-High-speed digital distribution configuration 





Three heuristics for improving centralized routing in large 
long-haul computer communication networks 

by IVAN M. PESIC and DANIEL W. LEWIS 
University of Santa Clara 
Santa Clara, California 

ABSTRACT 

Several algorithms have proven to be useful in computing the shortest path between 
two nodes in a network. 1-7 Their complexity depends on the problem definition and 
size of the network measured by the total number of nodes N. In these algorithms, 
finding all the shortest paths from a fixed node is a computation of complexity 
O(N x N). These algorithms have been used successfully in long-haul networks for 
many years. Recent growth of such networks to large numbers of nodes (e.g., 
N > 500) demands a more efficient approach. This paper develops three heuristics 
based on measured topological characteristics of computer communication net
works and applies them in the construction of faster algorithms. Determination of 
the shortest path between two random nodes is then shown to require 50 to 60% less 
computation. 

691 





INTRODUCTION 

Background 

The problem of finding the shortest path in a given network 
is not a new one. Dijkstra simply stated the problem as: 

We consider N points (nodes), some or all pairs of which 
are connected by a branch; the length of each branch is 
given. We restrict ourselves to the case where at least one 
path exists between two nodes. Find the path of minimum 
total length between two given nodes P and Q. 

In the late 1950s, Kruskal1 and Dijkstra2 proposed the first 
algorithmic solutions to the routing problem. These and sub
sequent algorithms3-7 all have satisfactory performance when 
applied to a network with a small number of nodes, but as the 
network grows larger, the number of necessary operations 
grows polynomially with N. Such algorithms are simply not 
fast enough for routing applications in large networks (e.g., 
N > 500). Hierarchical routing has been suggested as one 
solution; particular applications for networks with distributed 
control have appeared in the literature. 9, 10 

Dijkstra's problem definition is intentionally general and 
thus simplistic. If taken literally, it assumes a connected topol
ogy with otherwise random characteristics, providing only an 
assigned cost for each pair of nodes (with a cost of infinity 
signifying no connection) to guide the routing algorithm. Such 
a problem definition anticipates absolute minimal cost solu
tions as the goal, and is not necessarily appropriate for appli
cations in which routing time is important. In such a case, a 
good solution is often better if it can be computed in signifi
cantly less time. This may be achieved by restricting the algo
rithm's search of the topology through heuristics which use 
additional information about the environment to avoid useless 
avenues of exploration. 

This paper defines some additional characteristics of com
puter communications networks that expand the information 
over that provided in the original problem statement, and 
then uses this information in the application of heuristics to 
the routing problem. It has been arguedll that only non
adaptive (or semi-adaptive) routing will be effec1pve in the 
future environment of very large networks due to· the enor
mous overhead that would be required for a fully adaptive 
approach. Non-adaptive routing is traditionally associated 
with centralized routing; therefore this paper addresses only 
this type. The results are from a study of the topology of real 
and simulated computer communication networks and the 
final topology of their routed paths. 

Three Heuristics for Improving Centralized Routing 693 

Definitions 

Long-Haul Network: Computer communications networks 
in which the physical distribution of resources and users may 
span large geographical areas, such as the entire United 
States. This paper is primarily concerned with large long-haul 
networks (e.g., N > 500) in which centralized routing suffers 
from computational complexity. 

Link: A bidirectional communication path in a computer 
network with distinct ends. 

Node: A terminus of network links, usually a traffic switch
ing center, a computation center, or both. 

Chain: A finite sequence of two or more links in which each 
pair of links within the sequence is connected by a single node 
of degree two. 

Link cost: A real number c(l) that is assigned to each link 
1 in a computer network, periodically adjusted in value to 
control the distribution of traffic. Different costs may be as
signed to each direction associated with a link for total gener
ality; the results of this work may be applied in either case. 

Connectivity (or degree) of a node: The number of links 
emanating from it to connect it Vvith other nodes. 

Characteristics of Long-Haul Networks 

Large computer communication networks possess several 
very important characteristics that can be used to develop 
heuristics to accelerate the routing algorithms. This section 
represents a study of the inherent characteristics of the 
TYMNET computer network as it has matured through three 
developmental stages. These characteristics are representa
tive of most long-haul networks, and the derived heuristics are 
universally applicable. 

Geographical 

When a long-haul network is relatively small (e.g., N < 50), 
most of its nodes will be found in large cities. Using the 
United States as an example, nodes would be found near 
population centers along the east and west coasts, in the 
south, and in the north-central area (e.g., Chicago), with long 
communication lines spanning the large central region. These 
first nodes serve as initial computational centers, around 
which large local networks develop as the network expands. 
As computational loads increase, more nodes are added in 
other cities. Once the network reaches about 200 nodes, the 
nodes will be fairly evenly distributed across all the states. 



694 National Computer Conference, 1983 

Connectivity 

Distributions of connectivity for three different stages of 
the development of the TYMNET computer network are 
shown in Figure 1. Small networks are relatively loosely con
nected, and network growth is followed by a limited growth of 
average connectivity. Correspondingly, nodes of degree one 
were predominant when TYMNET was still small; as the net
work expanded, nodes of degree two became predominant. 
This growth is reflected by average connectivities of 2.4, 3.4, 
and 3.9 for 1971, 1975, and 1977, respectively. Taken to
gether, nodes of degree one and two now comprise about one 
third of the total number of nodes. 

Link costs 

Network performance (e.g., response time) is very sensitive 
to traffic distribution that is directly controlled by the assign
ment of link costs (or lengths, as defined in Dijkstra's problem 
statement). In particular, the routing algorithm and cost as
signment should focus on the following objectives: 

1. Avoid congestion and balance the load across the net-
work. 

2. Minimize the response time or delay for interactive users. 
3. Provide adequate bandwidth for high-speed users. 
4. Maximize the resource utilization. 

The actual assignment of link costs in TYMNET, 5 shown in 
Table I, was used in this study as a basis on which to synthesize 
a model of the TYMNET network, with variations in the total 
number of nodes and average connectivity. 

Time variance 

Computer communication networks are time-varying sys
tems, and as such their parameters must be occasionally 
adjusted to accurately reflect changing conditions. For exam
ple, the assignment of link costs is adjusted periodically to 
control the distribution of traffic within the network, typically 
according to the time of day or day of the week. When the 
network is heavily loaded, utilization of individual nodes and 
links can change quickly; link costs must then be more 
frequently reassigned in order to maintain an equitable distri
bution of the workload, and thus a reasonable level of per
formance. For example, in the TYMNET network, the costs 

TABLE I. Link Costs in TYMNET5 

Cost (arbitrary units) 

Line Line not Overloaded Overloaded 
Type Overloaded One Way Both Ways 

9600 bps 10 26 42 
7200 bps 11 27 43 
4800 bps 12 28 44 
2400 bps 16 32 48 

(a) 

I 

Number of nodes 

38 

x 

2B 

18 

x 

2 

Number of nodes 
aa 

x 

60 x 

(b) 40 

x 
2111 

x X 
X 

x 

x 

3 .. 5 6 

Nodal degree 

x 
x 

x X X 

I 2 3 4 S 6 7 a 9 HIlI 12 13 14 15 16 17 

Number of nodes 

sa 

x X 

(c) 48 

X 

Nodal degree 

X 
x X 

13 104 IS 16 17 

Nodal degree 

Figure 1-Connectivity distribution for the TYMNET network (a) 1971, 
(b) 1975, and (c) 1977 



are usually reassigned once every few minutes, but sometimes 
as often as every few seconds during periods of high load, such 
as around noon. 

Actual network topology changes less frequently, usually 
owing to the addition or deletion of nodes and links as part of 
normal growth. A typical network can grow as fast as a node 
per week. Long-term failure of a node or link may, of course, 
require a change in topology, but more often this is handled 
as a temporary assignment of infinity cost (no connection) to 
the link (or links) involved. 

Network Synthesis for Simulation 

For the construction of a network model for simulation 
purposes, it can be safely assumed that small networks have 
average connectivities in the range 2 to 3, medium networks 
in the range 3 to 4, and large networks greater than 4. In order 
to evaluate the new routing heuristics, a computer program 
was written to model long-haul networks with varied charac
teristics. The program consists of four parts: 

1. Part one is responsible for placing a desired number of 
nodes N over a rectangular region representing the 
United States. The nodal coordinates are generated us
ing a random number generator with a uniform proba
bility, and a period longer than 50,000 numbers. 

2. After nodal placement, the second part of the program 
assigns a connectivity degree to each node. The user 
supplies the desired average connectivity and maximal 
allowed nodal degree for the network to be constructed. 
The program first computes the number of links to be 
placed using the formula 

number of links L = (number of nodes * average con
nectivity)/2, 

and then solves a system of equations: 

i~X Ni =N, (1) 
i=l 

where Ni is the number of nodes of degree i, 

[~ N j * i J/ 2 = L, 
1=1 

(2) 

where 200 < N :s 300, imax = 9; 100 < N :s 200, imax = 6; 
o <N:s 100, imax = 3; 

Nk=[N - j~ NiJ/(maxnodaldegree - imax), 
1=1 

(4) 

max nodal degree ~ k ~ imax • Equation (3) models the 
distribution of nodes of small degree (exponentially, 
with constants c1 and c2 supplied by the user) while 
equation (4) models the distribution of nodes of large 
degree. The N(i) versus i function obtained by solving 
equations (1)-(4) is then used to assign a degree to each 
node. When a node without degree is found, the 

Three Heuristics for Improving Centralized Routing 695 

random-number generator provides an i and from the 
N(i) curve a degree is assigned. It can be seen that this 
process prefers to assign lower degrees. 

3. Link placement is done in two phases. The first phase 
connects all the nodes of degree one. Since the relative 
geographical position of each node is known, each node 
is connected to its nearest neighbors. This procedure is 
supported by the fact that most of these single-link nodes 
represent small users (with relatively small computa
tional power) whose main goal is to enter the network at 
its nearest connecting point. The second phase places 
the remaining links. The placement is done according to 
the following algorithm: A node is picked at random. 
Then, another node is picked at random, and its distance 
d is calculated. This distance is compared against a dis
tance d 1 produced by an exponential function of the 
type 

d1 = v'5 e-Xl
\ x ~ 0, 

where x is generated by the random-number generator 
and the constant k is supplied by the user. If d > d1, the 
link is placed; otherwise another node will be selected. 
Note that once the node is connected by a number of 
links equal to its connectivity degree, it is removed from 
the pool of available nodes. Note also that the largest 
distance is v'5, a diagonal of the 2 by 1 polygon that we 
chose to model the U.S. 
After all links are placed, a depth-first search algorithm 
is run to ensure the network's connectivity. If the net
work is found to be disconnected, the whole procedure 
is repeated. An example of a network generated by this 
program with 100 nodes is shown in Figure 2. 

4. Finally, to each link a cost figure is assigned. The pro
gram is using Table I for its pricing policy. Generally, 
links connecting smaller nodes are assumed to be of 
lower baud rate, while large nodes are always connected 
by high-speed lines. All the networks are assumed to be 
medium loaded, giving equal selection chances to all 
three line-loading cases given in Table I. 

I.B 

B.5 

B.B 

Figure 2-Plots of synthesized 30, 50, and lOO-node networks 



696 National Computer Conference, 1983 

NETWORK REPRESENTATION HEURISTICS 

This section describes the class -of techniques that compress 
the representation of the network topology, and that require 
no changes to the actual routing algorithm. A small amount of 
work is required before each routing in order to initialize the 
topology representation. These techniques are not heuristics, 
because the final routed paths are identical to those produced 
without topology compression. 

Nodes of degree one or two usually contribute very little to 
the topology of the final path found by a routing algorithm. 
For example, no more than two nodes of degree one will ever 
be in the final path; similarly, nodes of degree two can be 
thought of as unnecessarily splitting a link into two pieces. A 
large portion of the nodes in a typical network are of degree 
one or two, suggesting that these nodes be removed from the 
main representation of the network and temporarily rein
serted on an individual basis, as required, before routing. This 
approach can be applied to any type of network that possesses 
similar characteristics. The shortest-path problem is then re
defined as: We consider a network of N nodes, some or all 
pairs of which are connected by links; the cost of each link is 
given. We restrict ourselves to the case where at least one path 
exists between any two nodes. Once each time the network 
topology changes, the network representation must be pre
processed into three disjoint sets of nodes according to their 
degree. 

Preprocessing 

1. Isolated Node Removal: Nodes originally of degree one 
are removed along with their connecting link. The infor
mation necessary to reattach them later, individually, is 
saved in a separate data structure. 

2. Chain Collapsing: All nodes originally of degree two are 
removed; the two links associated with each are replaced 
by a single link whose cost is the sum of the original 
links. The information necessary to reattach them later, 
individually, is saved in a separate data structure. 

Routing 

3. Topology Initialization: Replaces only those removed 
nodes (and associated links) that correspond to terminal 
nodes for the desired path. 

4. Minimal-Cost Path: Finds the path of minimum total 
cost between the two given terminal nodes by applying 
any of the classical routing algorithms. 

RESULTS 

A classical Dijkstra's algorithm5 was used as a standard for 
measuring the performance improvement due to restructuring 
the network representation as described above. Software 
counters measured the number of references made by the 
algorithm to data structures that represent the topology and 
link costs of the network, first for the original network L, and 

then for the reduced network L'. The overhead needed to 
reconstruct the network, if any of the terminal nodes hap
pened to be of degree one or two, was included in a count 
obtained during the routing. The results were averaged over 
1,000 node pairs selected at random as the terminal nodes to 
be routed. Modeled networks with 15, 50, 100, 150,200,250, 
and 300 nodes and average connectivities of 2.5, 3, 4, and 5 
were considered. Average routing time improvements, mea
sured as the computation ratio M(L ')/M(L) of memory ref
erences are plotted in Figure 3. 

This preprocessing technique showed a clear improvement, 
saving on the average 15 to 35% of the memory references. 
The actual saving is very dependent on the particular net
work's topology as seen in Figure 3. Notice that the improve
ment is best for the networks containing smaller numbers of 
nodes; such networks inherently have smaller values of aver
age connectivity, implying a higher percentage of nodes of 
degree one or two. 

ROUTING ALGORITHM HEURISTICS 

This section describes the class of techniques that require 
major modifications of the routing algorithm. These tech
niques are truly heuristics in the sense that the final routed 
paths are considered good instead of best; that is, the paths 
may have a slightly higher cost than those found by the classi
cal algorithms, but offer significant savings in routing time. 

COST-RESTRICTED ROUTING 

Inherent to minimal-cost routing is the fact that a majority of 
the paths go through the lower-cost links. A high cost indi
cates an overloaded link; thus the desirability of using it is very 
small. This suggests that the topology could be preprocessed 
each time the link costs are reassigned in order to remove the 
very high cost links from the database. The shortest-path 
problem is then defined as: We consider a network of N 
nodes, some or all pairs of which are connected by links; the 
cost of each link is given. We restrict ourselves to the case 
where at least one path exists between any two nodes. Each 
time the link costs are reassigned, the network representation 
must be preprocessed into two disjoint sets of links according 
to their associated costs. 

Preprocessing 

1. Costly Link Removal: Reduce the degree of those nodes 
whose degree is greater than a specified value D by 
removing a specified number d of their most costly links. 

Routing 

2. Minimal-Cost Routing: Try to find the path of least total 
cost between the two designated terminal nodes via the 
remaining links by applying any of the classical routing 
algorithms. 



M(L' )/M(L) 

~ 
M(L')/M(L) 

1.2 f 1.2 

I.e I.e 
I 

* * 

B.a ~ 
* * * * * * * x 

B.a t * * x X 

(b) 
X 

(a) X 'X X X 

* X * e.6 X X e.6 
X 

e.4 e ... 

e.2 9.2 

I I I I I -.I- ~ I I I I I 

se lee lse 2ea 250 3D~ sa laa 15a 200 250 ::100 
Number of nodes Number of nodes 

M(L' )/M(L) r M(L' )/M(L) ;J 
I-j 
(1) 
(1) 

1.2 L 1.2 L ::c: 
(1) 

c:: 
::1. 
~ 

I.e I- I.e 
* 

(=). 

* * * 
rn 

* * * * 8' 
* * X 

X X X * X I-j 

* * X 

B.a t x 9.B ~ X 
!---; 

X X 
x 8 

(c) (d) '"t:j 
I-j 

x X 0 
;S. 

9.6 9.S ~ 
(JQ 

n 
(1) 

9.4 I- 9." L ~ ..... 
I-j 

e:. 
N' 
(1) 

9.2 I- 0.2 L 0.. 

:;0 
0 c:: ..... 

--1.....-_ I I I I I I S· 
se lea Isa 2aa 25a 3ao sa lee Isa 2DO 25e 30&3 (JQ 

Number of nodes Number of nodes 

Figure 3-Computation ratio M (L ')/ M (L) versus number of nodes N for various values of average connectivity. The upper set of points in each plot correspond to 0\ 

isolated node removal only; the lower sets correspond to combined isolated node removal and chain collapsing. Average connectivity: (a) 2.5; (b) 3.0; (c) 4.0; (d) 5.0. \0 
'-l 



698 National Computer Conference, 1983 

M(L' )j~I(L) 

1.B 

9.7 

9.S~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ -L ____ ~ ____ ~ 

19 9 

l MeL' )/M(L) 

1.22 

e 7 -S 5 432 
Nodal degree 

C(L)jC(L' ) 

9.e0L-____ L-____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ _L_ 

Ira 9 e 7 6 5 3 2 
Nodal degree 

C(L)/C(L') 

I.BBr--~~o;;;;:::=----....... -_ 

8.95 

(b) 8.B21 
8.78 

B.6eL-~ __ ~ __ ~ __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~ __ ~~ __ ~ ___ 

8.9B 

111.85 

8.8e~~~~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~~~ 

(c) 

I~ 13 12 11 IB 5 1 :I I~ 13 12 \I 18 S 4 3 
Nodal degree 

1.1313 

B.se 

B.8a 

B.70 

e.sa 

17 

Nodal degree 

C(L)jC(L') 
M(L')jM(L) 

l.ea 
H 

13 

9.95 10 

14 13 

0.SB 

0.85 

9.83 

16 15 14 13 12 11 113 9 S S 5 3 17 IS 15 14 13 12 11 113 9 7 6 5 
Nodal degree Nodal 

Figure 4-Cost restricted routing: Computation ratios M(L')/M(L) and relative cost C(L)/C(L') versus nodal degree for N = 100 (a), 
200 (b), and 300 (c). 

4 3 
degree 



3. Recovery Strategy: If no path can be found, the routing 
algorithm is restarted using the original network repre
sentation. (Note: Other recovery strategies are of course 
possible, but our results do not justify a more compli
cated approach.) 

Results 

Long-haul networks of 100, 200, and 300 nodes were 
modeled based on TYMNET's cost assignment algorithm and 
nodal distribution; a typical average connectivity of 4.0 was 
used with a maximum allowed nodal degree of 16. A classical 
Dijkstra's algorithmS was used as a standard against which we 
measured the amount of routing computation and the relative 
cost of the final path. Software counted the number of refer
ences made by the algorithm to the data structures in memory 
that represent the topology and link costs of the network, first 
for the original network L, and then for the reduced network 
L '. The software also kept track of the total path cost found 
during the routing. The results were averaged over 1,000 node 
pairs selected at random as the terminal nodes to be routed. 
Average routing-time improvements, measured as the com
putation ratio M (L ')/ M (L ), and the relative cost of the final 
path, C(L )/C(L '), are plotted in Figure 4. 

Three comments about Figure 4 are appropriate: (1) Each 
of the plotted M (L ')/ M (L) curves corresponds to a particular 
value of links removed, d. For each such curve, the value 
plotted at nodal degree i corresponds to the removal of d links 
from all nodes of degree i or greater. (2) Since there were no 
nodes of degree 17 or greater, points at nodal degree of 17 
represent the original unmodified network, L. The 
M (L ')/ M (L) ratio is not 1.0; this is expected, since the links 

M(L')/M(L) 
1.2 

+ l 
x + 

*. 
B .. a 

* * * x 
+ 

* 
+ 

D.S 

S.4f 

B.2 

Three Heuristics for Improving Centralized Routing 699 

attached to each node were sorted before removal in the 
ascending order of their corresponding costs. The computa
tion overhead necessary to perform the sorting operation is 
included in the total computation M(L'). As shown, this mi
nor preprocessing alone is responsible for an 8% im
provement. (3) The relative cost C(L )/C(L') was nearly 1.0, 
until, in this removing procedure, the entire network con
sisted of nodes of degree five or less. This implied that the 
most important links attached to any node are the five 
cheapest. 

For a particular network, a network designer needs to 
obtain a set of curves like the ones shown in Figure 4. From 
such set of curves, he can determine a set of values d (n) of the 
number of links that can be removed from nodes of degree n 
while keeping the final path cost near that of the "best" 
solution, and providing the best overall routing time. Such an 
approach was used on our experimental network, producing 
the results shown in Figure 5. It shows that a 25 to 35% 
improvement can be achieved at a cost penalty of less 
than 10%. 

DEGREE-RESTRICTED ROUTING 

Figure 6a shows that the innermost links of TYMNET routed 
paths tend to pass through nodes of relatively high degree. For 
example, about 80% of an average path consists of nodes of 
degree six or greater; even if the threshold is raised from six 
to nine, such nodes still represent 50% of the nodes visited by 
typical routed paths. 

This result may have been due to the fact that nodes of high 
degree in TYMNET are usually major switching centers in 
which the attached links offer high-speed (low assigned link 

* 

x for' N-le2 
+ for' N-2ea 
• fol' N-3ea 

D.aL-____ -L ____ ~~ ____ ~ ____ ~ ______ ~ ____ ~ ____ ~~ ____ ~ __ __ 

1.ea 9.SS s.sa 9.85 

Figure 5----Cost restricted routing: Computation ratio M (L ')/ M (L) versus 
relative cost C(L )/C(L '). 

C(L)/C(L' ) 



700 National Computer Conference, 1983 

TABLE II. Distribution of nodal degree for the 300-node network 
used in the degree restricted routing experiment 

Degree of a node 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

No. of nodes 

45 
64 
25 
40 
26 
21 
16 
13 
8 
6 

10 
5 
2 
7 
4 
8 

cost) communications to other similar nodes. To explore this 
possibility, a second network was modeled that was identical 
in every respect to the first except that the link costs were 
assigned in a purely random manner. Specifically, the net
work had 300 nodes, link costs in the range of 1 to 45, and the 
nodal degree distribution shown in Table II. A thousand node 
pairs were selected at random as terminal nodes to be routed 
with the results shown in Figure 6b. The marked similarit; 
between Figures 6a and 6b suggests that the fact that paths 
pass through nodes of high degree has little to do with the 
costs of their attached links and more to do with the obvious 
fact that their greater connectivity is useful to the routing 
process. 

In the 1977 distribution of TYMNET nodes shown in Figure 
lc, fewer than 12% of the nodes-30 out of 2S1-are of de
gree six or greater. This suggests that a small subnetwork 
consisting of nodes of high degree could be extracted from the 
network to serve as a "backbone" for routing even though the 
network may never have been designed around a backbone. 
Since these large nodes constitute only a minor portion of the 
total, routing within this subnetwork can be accomplished 
very quickly. 

Routing the end pieces from the terminal nodes to the 
subnetwork entry points is also very fast because these pieces 
contain very few links. For example, Figure 6 indicates that 
each end piece is usually less than 20% of the total path 
length. Measurements done on the 3OO-node network indi
cated an average path length of 4.6 nodes; 20% of this would 
then be less than one link. 

The combination of these two routing steps is called degree
restricted routing rather than backbone routing because it is 
descriptive of the strategy, and so that the requirement of a 
network originally designed around a backbone is not im
plied. However, the adjective "backbone" will be used as a 
convenient means of identifying the extracted subnetwork 
consisting of nodes of high degree. The shortest-path problem 
is then defined as follows: We consider a network of N nodes, 

some or all pairs of which are connected by links; the cost of 
each link is given. We restrict ourselves to the case where at 
least one path exists between any two nodes. Each time the 
topology changes, the network representation must be pre
processed into two disjoint sets of nodes according to their 
degree. -

Preprocessing 

1. Backbone Extraction: A backbone subnetwork B con
sisting of all the nodes of a specified degree D or greater, 
together with those links which are connected to exactly 
two of these nodes, is extracted from the original net
work L. 

Routing 

2. Part I (Terminal Nodes to Backbone Nodes): For each of 
the terminal nodes, if it is a backbone node (degree of D 
or greater), provide it as a starting node for Part II 
without further computation. Otherwise, find all paths 
of a specified limited depth using minimal-cost routing 
from the terminal node into the network L. In so doing, 
try to collect a set of nodes of degree D or greater that 
are encountered along such paths, and provide this set of 
starting nodes to Part II. If no such nodes are found, go 
directly to step 4. 

3. Part II (Backbone Nodes to Backbone Nodes): The two 
sets of large nodes obtained in Part I are to be connected 
by a minimal-cost path within the backbone subnetwork 
B . If these two sets share one or more nodes in common 
there already exists at least one path between the termi~ 
nal nodes; select the minimal-cost path from this set of 
path(s). If the two sets of large nodes have no node in 
common, then routing between these sets is done using 
any of the classical routing algorithms modified to find 
the lowest-cost path between several alternative sources 
and destinations, restricting the search to the backbone 
subnetwork. 

4. Recovery Strategy: If no nodes of degree D or greater are 
found in Part I, the routing process is restarted using the 
original network L and any of the classical algorithms. 
(Note: Other recovery strategies are of course possible, 
but our results do not justify a more complicated ap
proach.) 

The maximum routing depth allowed in Part I must be 
sufficient to enter the backbone and collect a reasonable num
ber of initial routing nodes for Part II. Figure 6 suggests that 
this depth need only be a couple of links; in our experiments, 
we used a conservative depth of three. It is actually desirable 
to have different values for D in Part I and Part II. In Part II, 
a value of D large enough to restrict the total size of the 
backbone subnetwork is needed; however, in Part I this value 
may be too large to reliably collect even a single entry to the 
backbone. Using different values of D in the two parts implies 



(a) 

(b) 

Three Heuristics for Improving Centralized Routing 701 

Average 
Nodal Degree 

12 

x x x 

x X xx x x x x x x 

9 x x x X xx x 

xxx x x x x 

x x x 

6 x x x 

)00( x x 

x 

3 

x x x 

e 
e.0 B.2 e.4 0.6 0.8 1. e Normalized 

12 

9 

6 

3 

e 

Distance 

Average 
Noda i Degree 

x 

x 

xxx xx x x~ 

x ~~ x x x xx 

xxY.(x X xx )Q( 

xxx x 

)Q( x X 

>X X 

x 

X x)x 

e.o 0.2 0.4 0.6 0.8 1.0 Nor-mal 'zed 
D I:; t ance 

Figure 6-Average nodal degree as a function of normalized path length for 1,000 random node pairs routed with (a) TYMNET 
cost assignment, and (b) random cost assignment. 



702 National Computer Conference, 1983 

that the Part II must accept initial starting nodes whose degree 
may be smaller than its own subset of nodes, with the agree
ment that the recovery procedure must be invoked if none of 
the initial nodes can be routed to a backbone node with a 
single link. Trying to explore this extra level in Part I would 
require search of a much larger topology, and thus represent 
much more computation. 

The routing algorithm developed first checked the nodal 
degree of each terminal node. If both nodes, according to 
their nodal degree, belonged to the backbone part B, their 
routing was done strictly through the set of the backbone 
nodes. If one node belonged to the backbone B and the other 
was outside B , the outside node is first routed as described in 
Part I; collected nodes are then routed with the second termi
nal node as described in Part II. 

Lastly, if both nodes were positioned outside the backbone, 
one node is routed as described in Part I. Two different cases 
can arise: (1) if in this routing process the other terminal node 
is encountered, Part I will continue until its normal termi
nation and then the minimal path will be chosen. In this 
special case the backbone nodes are not used for routing. It 
was noted that a significant number of nodes were routed like 
this, which is a consequence of the fact that most of commu
nications are local. (2) If the other terminal node is not 
encountered during the routing of the first node, Part I is 
repeated with the second terminal node. After its completion, 
Part II is used as already described. 

Results 

In order to determine suitable values for D in Part II, sev
eral trial values of D were selected and used to extract a 
corresponding backbone subnetwork B from a modeled net
work L of 300 nodes. For each trial value, 1,000 pairs of 
backbone nodes were randomly selected and routed within L 
and then B. The average computation ratio M(B)/M(L) and 
relative cost C(L)/C(B) for various values of D are shown in 
Figure 7. 

In order to determine a suitable value for D in Part I, 
several trial values of D were selected and used as a criterion 
for collecting backbone entry nodes. For each trial value of D, 
another 1,000 pairs of nodes, one from B and another from 
L-B were selected and routed. Average computation ratio 
M (B)/ M (L) and relative cost C (L )/ C (B) for various values 
of D are also shown in Figure 7. 

The results confirm that different values of D should be 
used for the two parts of the algorithm. To minimize the 
errors, a value of 6 was chosen for Part II and 5 for Part I. 
After these values had been selected, another 1,000 random 
pairs of node pairs from L were routed using the degree
restricted routing algorithm defined above and compared to 
routing using the classical algorithm. Note that if the recovery 
strategy is used, the computation complexity is determined by 
summing the total number of references made by the failed 
routing process and the number of references made during the 
recovery procedure. The overall improvement in memory ref
erences was 48.52% with only a 2.32% relative increase in 
cost of the final path. 

SUMMARY 

This paper described three new approaches to the problem of 
finding low-cost paths in computer communication networks. 
Further information on the details of the actual experiments 
may be found elsewhere. 12 The simulation results have dem
onstrated that algorithms based on these ideas produce excel
lent performance at nearly minimal cost for medium and large 
networks. Since the algorithms use only the network's topol
ogy and link costs (without necessarily knowing that the graph 
represents a computer network), similar results can be 
achieved for other networks that possess similar topological 
properties, and such heuristic solutions will be even more 
important when these same networks grow beyond 1,000 
nodes. 

The domain of the routing algorithm can be compressed by 
unconditionally removing nodes of degree one and two, pro
ducing a simpler network of fewer nodes and higher average 
connectivity. This technique provides a considerable im
provement in speed with no increase in the cost of the final 
path; it is applicable to any type of network. Removing this 
small set of nodes (about a third of the total) resulted in a 
significant reduction of the computation required for the rout
ing, since the required computation is proportional to the 
square of N. 

Cost-restricted routing yields improvements dependent on 
the ratio of eliminated links to the total number of links, but 
it also may result in a smaH increase in the finai path cost. The 
choice of a particular threshold or thresholds of cost for ignor
ing links will depend on the network, and should be deter
mined from curves similar to those shown in Figure 4. Note 
that the results presented did not include a computation over
head for restructuring the database after the loading situation 
throughout the network is significantly changed. A separate 
experiment was run to include this overhead; 3% of the im
provement is lost if the restructuring is done after every 20 
routings. This drops to below 1 % when the restructuring is 
done after every 50 routings. In practice, the loss will be 
somewhere in between, depending on the part of the day the 
network is used and on its loading. 

Degree-restricted routing, like cost-restricted routing, re
quires preprocessing. However, experiments have shown that 
degree-restricted routing is more sensitive to connectivity 
than cost assignment is; thus the backbone extraction need 
only be performed when a link or node is actually removed or 
added. Moreover, the selection ofvalue(s) for D reflects aver
age characteristics of the network's topology, and is fairly 
insensitive to minor topology changes; thus the value(s) of D 
may be recalculated very infrequently (weeks for example). 

As a final experiment, a combination of the node removal 
and degree-restricted routings was applied to the same 
300-node network. The average saving in memory references 
was 54.72% with an average increase of 1.21 % in the cost of 
the final path. This is an additional 6.20% improvement over 
the results obtained when only the degree-restricted routing 
algorithm was used. The distribution of number of performed 
routings versus achieved improvement is given in Figure 8. 
The values for D were the same as in the experiment pictured 
in Figure 7. When 1,000 node pairs were routed, in only 8 



• fa 

.5el 

.sa 

.~a 

1 

1.2B 

itS7 

Three Heuristics for Improving Centralized Routing 703 

M(3) /M(L) 

x x x x 

x 

x 

+ + + + + 

+ 

2 3 5 s 7 a S Nodal !logr-l:O_ 

C(L)jC(B) 

;. ;. 
;. ;. 

x 

x 

x x 

2 5 s 7 8 9 Noda I Degree 

Figure 7-Degree restricted routing: Average computation ratio M (B)/ M (L) and relative cost C( L )/ C( B) versus nodal degree used 
as a breakpoint between large and small nodes. The points marked with an " x " represent large node to large node 

routing; those marked by a "+" represent large node to small node routing. 



704 

(a) 

National Computer Conference, 1983 

200 -;-

I 
I 
I 

• 

NR 

.. • ... . • 

• • • 
• • • • • • • • .. .. . • o .:- .. . . . . . . . .. . . . . - .... ... _ .... I -- .... --- .... _ .... --1 --- - .. ............. ---+ - ..... . 

I 

20 30 40 50 60 Saving [%] 
(a) 

NR 
200 

(b) 
+ .. .. .... '" .... .. .. .. .. 

o .... . . . .. 
1 - __ -- ___ .. I ....... ••• I 

• ______ •••••••••••••••• 6 •• - •• 

20 30 40 50 60 Saving [%] 

(b) 

Figure 8-Distribution of NR (number of routings) versus achieved Saving (given in o/c), when degree restricted routing algorithm was 
applied (a) on unmodified 300-node network, and (b) on the same network but with nodes of degree one and two removed. 

cases did the combined algorithm fail to find a path and have 
to use the help of the recovery strategy. 

ACKNOWLEDGMENTS 

The authors are indebted to Mr. J. Rindi and Mr. A. Rajara
man, both from TYMSHARE Corporation, for long and con
structive discussions, and to the University of Santa Clara for 
their generous policy of free and unlimited computer time for 
students and faculty. 

REFERENCES 

1. Kruskal, J. B. Jr. "On the Shortest Spanning Subtree of a Graph and the 
Traveling Salesman Problem." Proceedings of the American Mathematical 
Society, 7 (1956), pp. 48--50. 

2. Dijkstra, E. W. "A Note on Two Problems in Connexion with Graphs." 
Numerische Mathematic, 1 (1959), pp. 269-271. 

3. Floyd, R. W. "Algorithm 97: Shortest Path." Communications of the ACM, 
5 (1962), p. 345. 

4. Yen, Jin-Yu. "A Shortest Path Algorithm," Ph.D. Dissertation, University 
of California, Berkeley, 1970. 

5. Rajaraman, A. "Routing in Tymnet." European Computer Conference '78, 
London, May 9-12,1978. Paper available from TYMSHARE Corporation. 

6. Dantzig, G. B. "The Shortest Route PiCblem." Operations Research, 5 
(1961), pp. 270-273. 

7. Dantzig, G. B., W. O. Blatner, and M. R. Rao. "All Shortest Routes in a 
Graph," Technical Report 66-3, Operations Research House, Stanford 
University, Nov. 1966. 

8. Yen, Jin-Yu. "Shortest Path Network Problems," unpublished monograph, 
1971. 

9. Kleinrock, L., and F. Kamoun. "Hierarchical Routing for Large Net
works." Computer Networks, 1 (1977), pp. 155-174. 

10. Gomberg, G. R. A., et a!. "A Design Study of a Hierarchically Connected 
Packet-Switching Network Using Simulation Techniques." Computer Net
works, 3 (1979), pp. 114-135. 

11. Rinde, J. "TYMNET I: An Alternative to Packet Switching Technology." 
Proceedings of the 3rd ICCC, Toronto, 1976, pp. 268--273. 

12. Pesic, I. M. "Some Heuristics for Centralized Routing in Large Long-Haul 
Networks," Ph.D. Dissertation, University of Santa Clara, January 1982. 

13. Pape, U. "Algorithm 562: Shortest Path Lengths." ACM Transactions on 
Mathematical Software, 6 (1980), pp. 450-455. 

14. Schwartz, M., and T. E. Stern. "Routing Techniques Used in Computer 
Communication Networks." IEEE Transactions on Communications, 
COM-28 (1980), pp. 539-552. 



A new probabilistic routing algorithm for 
packet-switched computer networks 

by CHI-YUAN CHIN and KAI HWANG 
Purdue University 
West Lafayette, Indiana 

ABSTRACT 

A probabilistic method is proposed for message routing in packet-switched com
puter networks with distributed control. The routing table associated with each 
node consists of path entries, instead of branch entries as found in most routing 
schemes. Packets are assigned with different paths on a probabilistic basis. The path 
selection is entirely processed at the source node. The routing table is updated 
dynamically with change of packet-generating rates at all nodes. We introduce a 
new quantitative measure, path capacity, to model each path as an M IA1 II queue. 
With the path capacities, routing tables are updated frequently to achieve balanced 
minimum delays among all paths. The update overhead is a constant, independent 
of the size of the network. Both analytical and simulation results are presented and 
compared with the new ARPANET routing method under various traffic condi
tions. This probabilistic, path-directed routing algorithm performs significantly bet
ter than the new ARPANET routing method under moderate and heavy traffic 
conditions. Under very light traffic conditions, the two methods have almost equal 
performance. This method can be applied to improve packet routing in any com
puter communications networks with distributed control. 

705 





1. INTRODUCnON 

Existing routing schemes are all branch-directed in computer 
communications networks with distributed control.4 By 
branch-directed, we mean that the routing decision of a packet 
is determined from node to node. Each node selects a branch 
to transmit the packet to its neighboring node. A path-directed 
routing method, on the contrary, predetermines the entire 
path of each packet at the source node. This method has been 
applied in centralized-control networks. 16 This paper pro
poses a probabilistic, path-directed method to simplify packet 
routing in distributed-control networks. Loop-free routing is 
enforced in this method. Probabilistic routing is often superior 
to deterministic routing in minimizing the average message 
delay. 13 In a probabilistic routing method, one out of multiple 
paths is chosen for routing a packet. In deterministic routing a 
unique path is assigned to route a packet to its destination. 2 

Different probabilistic routing methods have been sug
gested for achieving minimum delays. In Cantor and Geda3 

packets are distributed among the branches by solving a 
nonlinear commodity flow problem. Gallager7 proposed a 
minimum-delay routing algorithm by using a flow deviation 
and distributed computation method. Schwartz and Cheung15 

used a gradient projection algorithm to determine the routing 
paths. Because of long computational overhead, none of the 
above probabilistic routing methods can afford to update the 
routing tables frequently enough to catch up to the variation 
of network status in a real-life communications environment. 

When the routing tables are periodically updated, the rout
ing method is considered adaptive. Many adaptive routing 
methods have been developed. 18 The new routing algorithm 
for the ARPANET is adaptive, based on a shortest-distance
tree technique. 10, 14 Only one path between a source and a 
destination is selected at a time. In fact, it performs deter
ministically between two consecutive table updates. Boorstyn 
and Livne1 proposed a two-level adaptive routing scheme 
based on a multiserver model. It is rather difficult to solve the 
multiserver model with multiple paths. 

In this paper, we propose a probabilistic and path-directed 
(PPD) routing algorithm for a computer communications net
work with distributed control. The method is made adaptive 
by modeling each path as an M 1M Ii queue. The service rate 
of each queue equals the effective path capacity, to be defined 
shortly. Each path is an entry in the routing table associated 
with the starting node. Paths to the same destination are 
grouped into a subtable. The use of each path is periodically 
checked and recorded in the subtables. A source node distrib
utes packets among selected paths to achieve balanced and 
nearly minimum-delay performance. Each packet being trans
mitted is tagged with its path code to allow immediate routing 
at intermediate nodes. 

A Probabilistic Routing Algorithm 707 

In the next section we define traffic measures, path delays, 
and path capacities. In Section 3 we introduce a path encoding 
method, to save memory space and expedite the routing pro
cess, and then specify the PPD routing algorithm. The table 
update policies are described in Section 4. The performance 
of the PPD routing algorithm is analyzed in Section 5. Simu
lation results of the PPD method are given in Section 6, and 
compared with the new ARPANET algorithm. Finally two 
generalized ARPANET methods are proposed based on the 
proposed PPD routing algorithm. 

2. NETWORK PARAMETERS AND MEASURES 

Consider a network with n nodes denoted by 1,2, ... ,n. De
note a branch from node i to node k by (i, k). We distinguish 
branch (i, k) from branch (k, i) to emphasize the traffic direc
tions. A path from node i to node k via distinct intermediate 
nodes, i, m, ... , is represented by (i, i, m, ... , k). No loop is 
allowed in a path. A path f contains a path g, denoted by 
f ::> g, if path g is a proper subpath of path f. For example, 
path (i, j, k) contains paths (i, j) and (j, k), but does not con
tain path (i, k) or path (i, j, k) itself. We use the symbol g to 
represent a general path g == (i, j, ... ; k). The set of all possi
ble paths from node i to node k is denoted by {i, k}. Further
more, i and k denote a source node and a destination node, 
respectively in the sequel. 

Basic notations are summarized in Table I. All measure
ments are expected values. The packet generation rate rg is 
measured on the packets that are generated at node i, des
tined for node j , and routed via path g. All packets routed via 
path h where h ::> g are recorded to measure the packet 
passing rate Sg. Both the generation rate ri, k and the passing 
rate Si,k are measured on all possible paths in {i,k}, i.e., 
ri,k= ~gE{i,k} r g , and Si, k= ~gE{i, k} Sg. Note that r(i, k) and s(i, k) are 
subterms of ri, k and Si, k, respectively, if branch (i, k) exists in 
a network. Furthermore, note that </>g2::0 and ~gE{i, k} </>g= 1. 
Each packet, generated at any node, is preassigned with a 
path by examining assignment probabilities </>g's of all paths in 
the set {i, k}. The branch capacity C(i, k) is an undirected quan
tity; i.e., C(i, k) = C(k, i). Assume exponential message length 
with an average of ilL bits per packet. The packets generated 
at each node assume a Poisson distribution. If the traffic is 
light, the packet arrival rate at each node will not be affected 
by those at other nodes. Thus, the arrival rate at each node 
can also assume a Poisson distribution. Furthermore, each 
branch can be considered as an M 1M /l queueing model. 
Let t u, k) = r(i, k) + s(i, k)' According to a derivation in Klen
rock,9 the average packet delay D(i, k) on branch (i, k) is eval
uated by the expression Du , k) = l/(L . C(i, k) - t(i, k) - t(k, i». Let 
U(i, k) = L • C(i, k), then we have 



708 National Computer Conference, 1983 

1 
D(/k) = ------

u(i, k) - t(i, k) - t(k, /) 
(1) 

Figure l(a) shows the MIM/1 queueing model of a branch 
(i, k) with capacity u(i, k). The arrival rate of the queue is 
composed of three components Y(i,k), S(i,k), and t(k,i)' In other 
words, the branch capacity u(i, k) is shared by three sources of 
arriving packets with expected arrival rates r(i, k), s(i, k), and 
t(k, i), respectively. Each packet source increases the load of 
branch (i, k); i.e., each source reduces the unused capacity of 
branch (i, k) by the quantity of its arrival rate. We now load 
the three packet sources on branch (i, k) separately as an 
example. After the packet sources with rates SCi, k) and t(k, i) 

have been loaded, the unused capacity of branch (i, k) re
duces to u(i, k) - sci, k) - t(k, i). We then load the last packet 
source, associated with rate rei, k). The model now be
comes a queue with arrival rate r(i, k) and service rate 
u(i, k) - s(i, k) - t(k, i), as shown in Figure l(b). We define this 
service rate as the effective capacity of branch (i, k), associ
ated with the packet source which has arrival rate r(i,k); i.e., 

TABLE I-Notations and definitions 

Notation 

rj,k 

Si,k = 2: Sg 

gE {i. k} 

DU,k) 

I/L 

E(i,k) = C(i,k) • L - S(i,k) - r(k,i) - S(k,i) 

Definition 

The packet generation rate at 
source node i and destined for 
node k (associated with path 
set {i, k }) (packets/sec) 
The packet generation rate at 
node i along a path g = (i,j, 
... , k) (packets/sec) 
The packet passing rate at 
node i along a path g = (i,j, 
... , k), where f is a path 
containing the path g (packets/ 
sec) 
The packet passing rate at 
node i, which is destined for 
or passed through node k 
(packets/sec) 
The assignment probability of 
path g = (i,j, ... , k) in set 
{i,k} 
The physical capacity of 
branch (i, k ) (bits/sec) 
The average branch delay per 
packet, transmitted from node 
i along branch (i, k ) (sec! 
packet) 
The average path delay per 
packet, transmitted from node 
i along path g = (i,j, ... , k) 
(sec!packet) 
The avera$e packet length 
(bits/packet) 
The effective branch capacity 
of branch (i, k ) at node i 
(packets/sec) 
The effective path capacity of 
path g = (i,j, ... , k) at node i 
(packets/sec) 

S(i,k) 

L I I I I I r(i,k) ) 

I I I I I 
, 

r Service Rate: u(i,k) 
t(k,i) 

(a) A branch queue. 

Service Rate: E(i,k) 

(b) A simplified branch queue. 

Figure l-Queueing models for a branch (i, k) 

(2) 

For short, we use E(i, k) to represent E(i, k) (r(i, k»). Since the 
model in Figure l(b) is still an MIM/1 queue, the average 
packet delay of the packets with arrival rate r(i, k) can be eval
uated by the following equation: 

1 
D(i, k)(r(i, k») = . 

E(i, k)(r(i, k») - r(i, k) 
(3) 

It can be shown that D(i, k)(rU, k») equals Du, kb obtained by 
Equation 1. This means that we can use the queueing model 
of Figure l(b) to correctly evaluate the average delay of the 
packets with arrival rate r(i, k). Equation 2 is useful for extend
ing the concept from the effective branch capacity to the effec
tive path capacity. 
. We introduce the concept of the effective path capacity by 
a simple example shown in Figure 2. Figure 2(a) describes a 
queueing model of path (i, j, k). Each branch of the path is 
considered as an M 1M 11 queue. For discussion simplicity, we 
set tU,i) = t(k,j) = t(k,j,i) = O. By Equation 2, the effective capac
ities of branch (i, j) and branch (j, k), associated with the 
packet source that has arrival rate r(i,j, k), are listed below: 

E(i,j)(r(i,j,k») = u(i,j) - r(i,j) - (S(i,j) - r(i,j,k») 

EU,k)(r(i,j,k») = UU,k) - rU,k) - S(i,j,k) - (SU,k) - S(i,j,k) - r(i,j,k») 

= UU,k) - rU,k) - (SU,k) - r(i,j,k») 

With these two effective capacities, the queueing model in 
Figure 2(a) can be simplified as we did in Figure 1. The sim-



Node i 

,. 

Node i 

Node j 

r(i,j) 

Service Rate:u(i,j) 

Node k 

L_'k) ............... 111...---1 I S.,,'oo Rat""".kl 

(a) The original path queue 

Node j Node k 

Service Rate: E( i ,j) (r (i ,j ,k» Service Rate: E~j ,k) (r (i,j ,k» 

E(i,j) (r(i,j,k» = u(i,j)-r(i,j)-(S(i,j )-r(i,j,k» 

EU",k)(r(i,j,k» = uU,k)-rU,k)-(SU,k)-t(i,j,k» 

(b) The simplified path queue 

Figure 2-Queueing models for a path (i, j, k) 

plified queueing model, shown in Figure 2(b), can be used to 
evaluate the average path delay D(i,j, k). In general, the aver
age path delay Dg of a general path g can be derived from the 
model in Figure 3(a). It is composed of a seque.nce of queues 
with a unique arrival rate rg • The service rate of each queue 
is the corresponding effective branch capacity, associated with 
the packet source that has arrival rate rg • We now consider the 
queues as a path queue, shown in Figure 3(b). The path queue 
has the same arrival rate rg and path delay Dg in Figure 3(a). 
Let the service rate of the path queue be the effective capacity 
of path g, denoted by Eg • The path queue can be approxi-

r 

Node i Node j Node 1 

g- /lIP- IP-
E(i,j) (:g) E(j.l)(rg~ 

(a) A sequence of branch queues 

E 
g 

Node m Node k 

i 

II~ g -
E(m,k)(rg ) 

(b) A path queue approximating the sequence in (a) 

Figure 3--Queueing models for a general path g = (i, j, i, ... , m, k) in a 
computer network 

A Probabilistic Routing Algorithm 709 

mated by an MIM 11 model as derived below; i.e., the average 
path delay Dg can be estimated by 

1 
Dg=-E . (4) g-rg 

To calculate Eg from the effective branch capacities in Fig
ure 3(a) is rather complicated. Directly using Equation 4 can 
avoid some time-consuming calculations. In other words, 
Equation 4 can be written as 

1 
Eg =rg +7J (5) 

g 

The path delay Dg is measured by each message packet 
routed via path g. The delay measurement is sent back with 
the acknowledgment packet. After receiving the measure
ments, rg and Dg are updated at source node i. By substituting 
rg and Dg in Equation 5, we obtain Eg, which is used to predict 
Dg under different rg subsequently. In other words, we can 
predict the delay performance of path g immediately after we 
reassign <\>g. It is helpful to achieve the best assignment of <\>g'S 
by knowing the current path delay Dg's and traffic rates rg's at 
source node i. This delay and rate is the most network status 
that we can have without interchanging information among 
nodes. If the quantity of the information is not enough (less 
than a threshold-e.g., 10 acknowledgment packets) to reflect 
the actual D g , the delay information of all packets through 
path g will be involved to calculate Dg, and set rg+sg as rg. 

In fact, the path queue is not exactly M 1M II. We now 
inspect the deviation of Dg , estimated by Equation 4, from the 
actual estimation by the model in Figure 3(a). By doing so, we 
can estimate the accurate working range of the M 1M 11 
pseudoqueue. Since there is a unique input rg for each queue 
in Figure 3(a), arranging the order of these queues almost 
does not affect the estimation result Dg • Thus we may arrange 
the order of queues so that the service rate of each queue is 
greater than or equal to that of the queue on its left-hand side, 
and less than or equal to that on its right-hand side, as shown 
in Figure 4(a). In this way, only the first queue, which has 
service rate Ct , has packets waiting in it. It is thus modeled as 
M 1M 11. The remaining p - 1 queues can transmit the input 
packets without waiting. Since there is no waiting delay at 
these queues, the service delay at each of these queues is the 
inverse of the queue service rate. For example, the delay, 
required at the queue with service rate C2 , is lIC2 • We can 
therefore combine the last p - 1 queues as a single queue with 
service rate Cb, where Cb=I/(~f=2 (lIei ) ) and p is the num
ber of queues in Figure 4(a). Let Ca=C1 • Then we have an 
equivalent queueing model, as shown in Figure 4(b). A path 
queue of this queueing model is shown in Figure 4(c). Note 
that the path queue with service rate C = Eg is considered an 
M 1M II queue. The average path delays, estimated by the 
equivalent queueing model and the path queueing model, are 
denoted by Dl(rg) and Dz(rg) respectively, where rg is the 
arrival rate. According to the properties of each model, Dt(rg) 
and D2(rg) can be computed as follows: 

(6) 



710 National Computer Conference, 1983 

III~=:=P"-~ 
C, 2 p 

(a) A sequence of branch queues with increasing capacities. 

r g--,. Illp ~ 
Ca Cb 

Ca = C, 

P 
-'-) 

-, 
Cb = ( L 

i-2 Ci 

(b) An equivalent path queue. 

rg~ III~ 
C 

C = E g 

(c) A path queue approximating the queue in ibi 

Figure 4-Modified queueing models for a path g 

Assume that both models have the same estimation when 
rg=r, i.e., DI(r) = D2(r) and 

1 1 1 --+-=--. 
CI - r C2 C - rg (7) 

We now inspect the difference between DI(rg) and D2(rg), 
when rg=r + h. By Equation 6 and Equation 7, we have 

il = D2(r + h) - DI(r + h) 

_ 1/(C-r) [lI(C I -r) + 1] 
-1- hl(C - r) - 1- hl(CI - r) C2 

= h . (2' _1_ .l.. + l..) + .! [ (_h_ + !!.)3 
CI - r C2 C2 h CI - r C2 

- (CIh_ rf] + .... 

Since h is much smaller than CI - rand C2 , we can neglect the 
higher-order terms in the above expression and obtain 

il = h '(2 0
_

1_ ol..+l..). 
CI - r C2 C2 

(8) 

By Equation 8, we may conclude that the delay difference il 
will be a relatively small quantity, if h is small. Furthermore, 
the assumption that the path queue is M 1M II is accurate when 
the arrival rate r does not approach CI • In other words, the 

assumption is accurate if a severe saturation condition does 
not occur in the network. Besides, the M 1M /1 path queue 
overestimates the actual average path delay when the arrival 
rate increases (i.e., h > 0) and underestimates the delay when 
the rate decreases (i.e., h <0). According to this property, a 
path will be supplied with fewer packets to avoid the occur
rence of severe saturation cases in the network if the traffic 
rate on this path increases. 

3. ruE PPD ROUTING SCHEME 

How to encode the paths is very important in saving memory 
space and expediting the routing process in the proposed PPD 
routing scheme. Our path-encoding scheme uses trunk num
bers rather than node numbers. The reasons are two. First, 
the number of trunks is much smaller than the number of 
nodes in a large network. Second, the trunk number can be 
directly recognized by the network without any translation 
process to find the desired trunk. 

The encocling scheme takes two steps at each node: 

Step 1: Find every outgoing trunk number of the desired 
path from the source node to the destination node in order. 

Step 2: Concatenate these numbers from right to left. 

Figure 5 shows a sample network with trunk numbered. The 
path codes for path (1, 4, 8, 10) and path (5, 6, 7, 4, 9, 8, 11) 
are "1, 2, 3" and "2, 2, 3, 2, 1, 1," respectively. The digits in 
a path code can be in any kind of radix as long as the radix is 
greater than the largest trunk number in the network. 

In the PPD routing scheme, each node has its own routing 
table. The table can be divided into n - 1 subtables, where n 
is the total number of nodes in the network. All possible paths 
to the same destination have entries in the same subtable. Let 

Figure 5-A network with branches labeled around each node 



the sub table of node i, used for destination node k, be de
noted by Vi, k. Each path entry of the subtable Vi,k is a record 
structure containing the path code of path g, the path assign
ment probability <Pg, the measured generation rate 'g, and the 
measured average path delay Dg • Table II shows the subtables 
VI, 2 and VI, 3 of the network shown in Figure 5. If a network 
is too large to accommodate all same destination paths in a 
subtable, the number of paths will be limited. The limited 
number, say m, is a moderate number that depends on the 
available memory space. How to select m paths depends on 
the network structure. For simplicity, the m shortest paths, in 
the hardware sense, will be selected in this paper. The algo
rithm to find the m shortest paths for one destination can be 
found in Shier. 17 Since the shorter path g usually has larger <Pg, 
most of the message packets will be routed through the 
shorter path. It has been shown by simulation that properly 
selecting the value of m scarcely degrades the delay per
formance. 

After a message packet destined for node k has been gener
ated at node i, the source node probabilistically assigns a path 
code by looking at the path assignment probabilities <p' g of the 
subtable Vi, k. The probabilistic distribution process can be 
implemented by either software methods or hardware meth
ods.6

,11 The software method needs more time complexity to 
execute, whereas the hardware needs more memory space. 

When a path code has been assigned, a packet can be 
routed in the network by the following PPD routing algo
rithm: 

Input: A message packet with a path code X. 
Output: Route the packet to its next host or destination 

node. 
Steps: 1. Retrieve the code X from the packet. 

2. If X = 0, stop; i.e., the destination node is 
found. 

3. Right shift out X one trunk number, and save 
the new X in the packet; 

K: = the shifted-out trunk number. 
4. Transmit the packet through the out-going 

trunk K to the next host (node). 

TABLE II-Routing subtables UI.2 and U1,3 at node 1 of the 
sample computer network in Figure 5 

Path Generation Path Path Assignment 
Code Rate Delay Capacity Probability 

U1.2: 
1 r(1,2) D(1,2) £(1,2) <1>(1.2) 

2,1,1,1,2 r(l,3.4,7.6,2) D(I.3.4.7.6.2) £(1,3.4.7,6,2) <1>(1,3.4,7,6,2) 

2,1,1,3 r(1.4.7.6,2) D(lA,7,6,2) £(1.4,7,6,2) <1>(1.4,7,6,2) 

2,3,1,1,1,2 r(1.3.4,7,6,5,2) D(1.3.4,7,6,5.2) £(1,3.4.7,6,5,2) <1>(1,3.4,7,6.5,2) 

2,3,1,1,3 r(1A,7.6.5,2) D(1.4.7,6.5.2) £(1A.7,6.5,2) <I>(1A,7,6,5,2) 

Uu : 
2 r(1.3) D(1,3) £(1,3) <1>(1,3) 

5,3 r(l.4.3) D(1A.3) £(1.4,3) <I>(lA,3) 

5,2,1,2,1 r(1.2.6,7,4,3) D(I.2.6.7.4,3) £(1.2.6.7.4.3) <1>(1,2,6.7.4,3) 

5,2,1,1,1,1 r(l.2,5.6.7.4,3) D(I.2.5.6.7.4,3) £(1,2,5.6.7.4.3) <1>(1,2.5.6,7.4,3) 

A Probabilistic Routing Algorithm 711 

In Step 4 the packet is sent to the waiting queue of the 
outgoing trunk K-a first-in-first-out principle. For example, 
to route a packet through path (1, 4, 8, 10) in Figure 5, we 
would proceed as follows. By the path-encoding scheme, the 
code of path (1, 4, 8, 10) is "1, 2, 3." The packet starts at 
node 1. After the first 3 steps of the routing algorithm, the 
code "1, 2" is loaded in the packet. The packet is then sent to 
node 4 through trunk 3. At node 4, the code in the packet is 
retrieved and shifted again. At this time, "I" is loaded in the 
packet, and the packet is then transmitted to node 8 through 
trunk 2. At node 8, the same procedure will be repeated 
again. Finally the destination node 10 accepts the packet after 
the code "0" is detected. 

After receiving a packet, the destination node sends back 
an acknowledgment packet to the source node through the 
same routing path in the reverse direction. The code of the 
reverse path can be obtained by appending the incoming trunk 
numbers during the routing procedure. The acknowledgment 
packet has the highest priority to pass through the network. 
The source node can quickly receive it and record the accom
panying path delay information. Since the length of an ac
knowledgment packet is very short, the traffic load is scarcely 
affected. 

In the PPD routing scheme, the routing path of a packet is 
determined by its source node. Other intermediate nodes only 
pass the packet without making a path decision. In other 
words, no routing table is referred at intermediate nodes. 
Regardless of the waiting delay, the worst time complexity to 
route a packet is O(s + (n -1)·c). The worst time complex
ity to search in the routing table is s , and c is a constant time 
required for executing the PPD routing algorithm once. Note 
that the complexity of the same process in a branch-directed 
routing method is 0 [(n - 1) . (s + c)]. Usually a binary 
searching method is used for searching the routing tables. 
Then s becomes 0 (log n), and the worst time complexity of 
routing a packet in a branch-directed method is improved 
from 0 (n log n - log n + c . n - c) = 0 (n log n) to 0 (log n 
+ n'c - c) = O(n) by the PPD method. 

4. ROUTING TABLE UPDATE POLICIES 

In the proposed routing table update policies, each node up
dates its routing table locally. At a node, different update 
processes for different subtables do not have to be executed at 
the same time. The steps to update the subtable Vi, k of node 
i are listed below. 

Step 1: Calculate every effective path capacity Eg by Equa
tion 5, where g e{i, k}. 

Step 2: Emax = max{Eg , g e {i, k}}. 
Step 3: For any Eg, if EglEmax ~ A, collect Eg in a capacity 

set S, where A is a threshold. 
Step 4: Fi, k= ~EgES Eg • 

Step 5: <pg=EgIFi,k' for all EgeS; 
<Pg=O, for all Eg' S . 

The worst time complexity of this update process is 0 (m ), 
where m is the maximum number of path entries in the sub
table. In other words, the complexity 0 (m) is a constant that 
is independent of the network size. 



712 National Computer Conference, 1983 

The update period for subtable Vi, k, denoted by h k, is 
dependent on the present ri, k. A greater ri, k helps to collect 
enough delay information within a shorter interval. Further
more, a greater ri, k increases the traffic load on a network. By 
Equation 8, the heavier the traffic load, the more is required 
to improve the delay performance. Therefore, we define 

[. k=min {~ B ,} 
I, ri, k' , 

where B is a constant and B' is a threshold to avoid long h k. 

It means that we need enough delay information but maintain 
the update ability. How to optimally set constants Band B' 
depends on the network structure. 

Since the subtable Vi, k is updated individually, the newly 
generated packets, only destined for node k, will be blocked 
during updating Vi, k. Because of the simplicity of the update 
process, the blocking delay is very short, i.e., Oem). In this 
way, although the worst time complexity, required to update 
the entire routing table of a node, is Oem on), the update 
process does not interfere with the routing process of almost 
all packets. In other words, the time complexity of the block
ing delay is 0(0) in most cases. Therefore, the overhead of 
update table processes is negligible. 

5. PERFORMANCE ANALYSIS 

The PPD method has minimized the overhead to route a 
packet. It updates the subtables separately so that the routing 
delay caused by the update process is at most a small constant. 
The worst time complexity to route a packet from its source 
node to its destination node regardless of waiting delay (queu
ing time) is Oem) + O(s) + O[(n -1)-c] = O(n), which is 
the sum of the complexity of the update sub table process, the 
table-searching process, and the transition process. The con
stants required for the three processes are m, s, and c, dis
cussed in Sections 3 and 4. 0 (n) is the best possible time 
complexity to route a packet in an n -node network without 
considering waiting delay. Thus the waiting delay parameter, 
ranging from ° to 00, dominates the delay performance in the 
PPD method. Since the routing tables manipulate the waiting 
delay of each packet, the network performance is mainly de
pendent on the table update process, investigated below. 

Since Dg is related to rg, the best assignment of <\>g for 
achieving the minimum average delay should be a function of 
ri, k. We now analyze how the value of <\>g, obtained by the 
proposed algorithm, differs from the best assignment by giv
ing ri, k and all Eg , where g E {i, k}. Assume no common branch 
between any two paths of {i, k}. Thus the total delay of the 
packets, associated with ri, k, is calculated as follows: 

D= 2: rg-Dg. 
ge{i, k} 

By Equation 4 and the definition of <\>g, the above equation 
becomes 

D = 2: ri, k -<\>g . 
ge{i, k} Eg -ri, k -<\>g 

For discussion convenience, we name the elements of {i, k} in 

sequential numbers, and replace the path subscripts by these 
numbers. Let m be the number of elements in {i, k}. Then we 
have 

m m ,t.,. 

n - 2: ~ -D - 2: ri, k - 'fI1 

L/ - 1=1 'I 1- 1=1 El - ri, k-<\>l' (9) 

The best assignment of <\>1 's to minimize D is to solve the 
following equations. 

aD 
a<\>l =0, 

for all I E{1, 2, ... ,m - I}. Thus 

0, 

for all I E{1, 2, ... ,m - I}. It implies that 

El _ Eq 
(El - rj,k -<\>/)2 - (Eq-ri,k _<\>q)2' (10) 

for any I, q E{1, 2, ... ,m}. If the traffic load is light, then 

(1 - rj, k -<\>/) -2 = 1 + 2 .ri, k -<\>1 + 3 _ (ri' k -<\>1)2 
EI EI Er 

_ 4- (ri' k _<1>/\)3 + 
Er ... 

r· k -<\>1 = 1 + 2- T, if El» ri, k -<\>1' (11) 

By combining Equations 10 and 11, we obtain a very simple 
solution 

<\>l=~ 
Er Eq 

(12) 

for any q and I E{1, 2, ... , m}. According to Equations 9 and 
12, we have 

(13) 

for any I E{1, 2, ... , m}. Equation 13 indicates the best solu
tion of <\>1 when traffic load is light. Some <\>1 's are so small that 
almost no packet generated at node i is transmitted on the 
corresponding paths. Without degrading the delay per
formance, we may disable these unused paths by setting <\>1 = ° 
and reassign <\>1 's as the presented update algorithm does. In 
other words, the proposed algorithm can assign almost the 
best solutions to <\>1 's when the traffic load is light. 

If the traffic load becomes heavier, Equation 11 will no 
longer be true. A new solution is derived by modifying the 
solution of Equation 13. Let Xlq be the amount that is moved 
from <\>q to <\>1 for for better assignment. In other words, the 
new probabilities <I>~ and <PI are obtained by 

<\>~=<\>q-Xlq, 

<\>; =<\>1 +Xlq' (14) 



Let 
m 

2: Ew == E, 
w=l 

and 

According to Equations 13 and 14, we have 

A= (El +Xlq·E)·ri,k + (Eq-Xlq·E)·ri,k . 
E·EI - (EI +Xlq·E)·ri,k E·Eq-(Eq-Xlq·E)·ri,k 

The best Xlq to minimize A is obtained by solving the following 
equation: 

aA. ri k • E 2. EI 
aXlq [E· El - (EI + Xlq· E) ·ri,kf 

ri, k • E2 • Eq - 0 
[E· Eq-(Eq-Xlq· E)· ri, d2

-

Solving the above derivative equation, we obtain 

Xlq=~~/i'k.(~_~) / C~+~~). 
4k v& v~ 

(15) 

The solution obtained by Equation 15 implies that we can 
expect better performance if Xlq is moved from <pq to <PI' In 
other words, if Xlq = 0, no adjustment between <pq and <PI can 
improve the delay performance. Suppose that EI = Eq for any 
I and q; the set of <PI'S obtained by Equation 13 is almost the 
best assignment. In the PPD method, the paths with small 
effective capacities are not used. It implies that Xlq = 0, where 
I and q belong to the available paths. Equation 15 also shows 
that the greater Ti, k is, the less Xlq will be. If ri, k approaches E, 
the best solution will approach Equation 13. Ot;tr update algo
rithm assigns the best set of <pt's when the traffic is heavy. 

6. SIMULATION RESULTS 

In the PPD method, the effective path capacity is used to 
predict the average path delay. It is necessary to verify 
whether the experimental path delay can be approximated by 
Equation 4. Figure 6 shows the network used for measuring 
the average path delay D(1, 2, 3, 4) at a different packet gen
eration rate r1,4, ranging from 1 to 10 packets/sec. The packets 
are generated in a Poisson distribution. Let r5,4 ='6,4 = 4 
packets/sec. Assume that every packet has the same packet 
length. Each packet requires 0.05 sec to pass through any 
branch. The average path delay D(1,2,3,4) under the different 
rate '1,4 is recorded when the average delay becomes stable. 
Usually it takes 40 sec to have a stable D(1,2,3,4)' The result of 
the experiment is shown in Figure 7(a). The effective path 
capacity E(1,2,3,4) for each '1,4 is calculated by Equation 5 and 
shown in Figure 7(b). The capacity for greater '1,4 is larger 
than the physical path capacity. The reason is that the longer
delay case appears with less probability, especially in a heavy 
traffic situation. The result of the experiment is under
estimated because of the short duration of the experiment 
(time = 40 sec). In Figure 7(a), the average delay is calculated 

A Probabilistic Routing Algorithm 713 

4 

6 

= 1/25 Packets/Time-Unit 

Y6,4 = 1/25 Packets/Time-Unit 

Y1,4 is a variable 

• The number is the time required to transmit a 
packet on the branch. 

Figure 6---A sample network used for demonstrating path capacity and path 
delay (r5,4 = r6,4 = 4.0 packets/sec) 

a Experimental Delay 
111.0 

A Expected Delay 

aI.O 

D.O+-----,r__-_.,...--..,.-----r---, 
0.0 20.0 '10.0 ED.O l!O.O 100.0 

1 / GENERATION RRTE OF R 1,4 

A Effective path capacity 

CI Physical path capacity 

o Inverse of path delay 

D~+-----,r__-_.,...--..,._-_,--~ 
0.0 20.0 '10.0 50.0 SO.D 100.D 

1 / GENERATION RRTE OF R',4 

Figure 7-Path delay and effective path capacity 



714 National Computer Conference, 1983 

• The numbers on branches are the inverse of corresponding branch 
capacities in .time-units/packet. 

Figure 8-A sample computer network for performance simulation 
experiments 

by substituting Equation 4 with the path capacity, evaluated 
under '1,4 = 2 packets/sec. The curve is almost the same as the 
experimental one when the network is not saturated. Al
though the difference becomes larger in a saturated traffic 

situation, the tendency of the experimental curve is approxi
mately predicted. Furthermore, the property of this curve is 
exactly predicted by Equation 8. 

We compare the PPD method with the ARPANET method 
by inspecting their delay performances. The network used for 
the comparison experiment is shown in Figure 8. Two sets of 
generation rates are listed in Table III. The entry of each table 
indicates the variation range of the generation rate. To sim
plify the comparison process, only the waiting delay and trans
mitting time are considered, in spite of the shorter overhead 
of the PPD method. Assume that each packet has the same 
length. The average delay is calculated over all packets routed 
in the network. At each node we initialize one packet for one 
destination to test the adjustment ability of the methods 
compared. 

We first compare the two methods with same update 
period, i.e., 5 sec in the ARPANET method and B' = 500 in 
the PPD method. The ARPANET method uses global branch 
delay information to find the shortest distance trees, whereas 
the PPD method uses the path capacities to determine the 
assignment probability of each path. We first set m = 00. Fig
ure 9 shows the experimental results under two sets of gener
ation rates. The ARPANET method has a higher average 
delay than the PPD method. Besides, the ARPANET method 

TABLE IlIA-The test set of packet generation rates for light traffic conditions 

2 3 4 5 6 

1 1 
300-"75 

2 

3 1 1 1 1 
500 - 125 200 #OJ 50 

4 

5 

6 
1 1 1 1 

400 ,., 100 5001""25 

* The unit of entries is packet/time-unit5 



-III 
'"0 
C 
0 
U 
(]) 
III 

>-m 
(]) 

'"0 

(]) 
O'l 
m 
1-
(]) 

> 
c::( 

A Probabilistic Routing Algorithm 715 

TABLE lIIB-The test set of packet generation rates for heavy traffic conditions 

2 3 4 5 6 

2 
111 1 1 1 1 

6'2 300 75 200 - 50 500"" 125 

1 1 1 1 
3 248 tV 6'2 1 00-2"5 

1 1 
4 348 -87 

1 
5 - 125 

6 

* The unit of entries is packet/time-unit. 

1.0 10.0 
--' ARPANET method -- . ARPANET method 

O.S 
- --- . PPD method 

III 
S.O '"0 ---: PPD method 

C 
0 
U 
(]) 
III 

0.6 6.0 
>-
m 
(]) 

0.4 
'"0 4.0 
(]) 
O'l 
m 
1-

0.2 
(]) 

> 2.0 
c::( ----~---------

0.0 .... 0--2"'P'0--4 ..... 0--6 ..... 0--Sr""'0 --1""00 

Time (seconds) 

0.0 
o 20 40 60 So 

Time (seconds) 

(a) For light traffic. (b) For heavy traffic. 
Figure 9-Delay performance of the ARPANET routing and of the PPD routing methods (update period: 5 sec) 

100 



716 National Computer Conference, 1983 

1.0~ 
~ 0.8 c _ 
o 
u 
Q) 
III 

-- 0.6 
>
I'D 

Q) 

"'C 0.4 
Q) 
01 
I'D 
1-
Q) 

> 0.2 ex: 

0.0 
o 

ARPANET method 

PPO method 

------- --

20 40 60 80 100 
Time (seconds) 

(a) For light traffic (Update period: 
2 seconds) 

1.0 1 
~ 0.8 
c o 
u 
Q) 

~ 0.6 
>rcr 
Q) 

"'C 0.4 
Q) 
01 
I'D 
1.. 

~ 0.2 
ex: 

0.0 
o 

ARPANET method 

PPO method 

------------

20 40 60 80 100 
Time (seconds) 

(c) For light traffic (Update period: 
10 seconds) 

25·1 

~ 20. i 
o 
u 
Q) 
III 

>
I'D 

Q) 

15. 

"'C 10. 
Q) 

01 
I'D 
1-
Q) 

~ 5. 

o. 

(b) 

o 

10.01 

"'; 8.0 
"'C 
C 
o 
u 
Q) 

~ 6.0 
>
I'D 

Q) 

"'C 4.0 
Q) 
01 
I'D 
1... 

~ 2.0 
ex: 

ARPANET method 

- - - PPO method 

20 40 60 80 
Time (seconds) 

100 

For heavy traffic (Update period: 
2 seconds) 

ARPANET method 

PPO method 

o.o~----~--------~~~~~~ 

o 20 40 60 80 100 
Time (seconds) 

(d) For heavy traffic (Update period: 
10 seconds) 

Figure 10-The performance of the new ARPANET routing and the PPD routing methods 

is unable to route the packets under heavy traffic, as shown in 
Figure 9(b). It shows that the PPD method has more ability to 
handle the heavy traffic condition. Similar results can be 
found in Figure 10 when the update periods change to 2 to 
10 sec. 

We now investigate how a different update period B' affects 

the delay performance in the PPD method. Three periods-
200 time-units, 500 time-units, and 1,000 time-units-are se
lected for the experiment. Figure l1(a) shows that the three 
cases perform almost the same except that the shorter B' 
contributes a faster response to an extreme alteration of the 
traffic load. Similarly, we examine the delay performance 



affected by factor B. Two cases with different values of B , 5 
and 10, have been simulated. Figure l1(b) shows that longer 
B contributes better performance. The reason is that the case 
of longer B collects more delay information to allow better 
expectation. However, the case of shorter B responds more 
quickly to the extreme alteration of the traffic load, as shown 
in Figure l1(b). 

The limitation m, which is the maximum number of path 
entries in a subtable, affects the delay performance much 
more than the factors Band B'. Figure 11 shows the delay 
curves with limitations 00,6, and 4, under different generation 
rates (see Tables IlIA and IlIB). It is obvious that smaller m 
degrades delay performance, especially under a heavy traffic 
load. Although the parameters A, B, B I, and m affect the 
delay performance, the PPD method is still superior to the 
new ARPANET routing method, especially in the heavy traf
fic situation. The reasons are two. First, the PPD method is 
probabilistic. Second, the PPD method uses the effective path 
capacities to predict the path delay. The efficacy of the capac
ities is also confirmed by the experiment. 

7. GENERALIZATION OF PPD ROUTING 

The update process of the new ARPANET routing method 
selects the shortest path from node to node. In other words, 
the new ARPANET routing method operates as a deter
ministic method between two consecutive updates. Therefore, 
the ARPANET routing method cannot compete with the 
proposed probabilistic method, even though the shorter over
head of the PPD method has not been considered in the 
comparison experiment. To upgrade the delay performance of 
the new ARPANET method, we generalize it with the PPD 
approach. 

The generalized ARPANET method uses the same delay 
measurement and update method as its original method.lO It 
periodically updates all routing tables at the same time, based 
on the same delay information. Instead of one shortest path, 
m shortest paths from one node to any other one are selected 
during the table update process. The packets, destined for the 
same node, are probabilistically distributed among the m 
paths, based on the path assignment probabilities (<I>'s). The 
entire routing path of a packet is determined by its source 
node. The generalized ARPANET method uses the algorithm 
described in Section 3 to route the packets. It assigns <I>'s in 
proportion to the inverse of the corresponding path delays. In 
other words, the generalized routing method uses the reverse 
of the path delays as the effective capacity of the correspond
ing path. 

Only delay time and transmitting time are considered to 
simulate the generalized ARPANET routing method. The 
network and generation rates are the same as in Section 6. 
With m = 00, Figure 12 shows the different delay performance 
of three routing methods-New ARPANET, PPD, and gen
eralized-under ARPANET routing. It indicates that the 
ARPANET routing method has the worst delay performance. 
The PPD methods are slightly better than the generalized 
method in a heavy traffic condition, as shown in Figure 12(b). 
It will become more significant if traffic becomes saturated. 

A Probabilistic Routing Algorithm 717 

1.0 
Path number m = 4 

III Path number m = 6 
"0 0.8 
c No 1 i mi tat i on 0 u 
Q) 
III 

0.6 
>-co 
Q) 

"0 0.4 
Q) 

Ol 
iti 
l... 
Q) 

0.2 > ~".. 
<t 

o.o~----~------~----~----~----~ 

o 20 40 60 80 100 
Time (seconds) 

(a) For light traffic. 

1.0 
Path number m = 4 

-III 
0.8 "0 

c 
0 

Path number m 6 

Noli mit at i on 
U 
IV 
III 

0.6 
>-
co 
Q) 

"0 0.4 
Q) 

Ol 
......... ....,... -.-. -.-

co 
l... 

--- ..... _--- -----
Q) 0.2 > 

<t 

0.0 
0 20 40 60 80 100 

Time (seconds) 

(b) For heavy traffic. 

Figure ll-Delay performance of the PPD routing method with bounded 
path entries in each subtable (update period: 5 sec) 

The reason is that the generalized method cannot predict the 
tendency of delay performance under the saturated condition. 
However, the method responds well to the extreme alteration 
of the traffic load, as shown in Figure 12, during the time 
interval 0 < t < 20 sec. 

In reality, m cannot be infinite. We now investigate how 
different m affects the delay performance. The delay per-



718 National Computer Conference, 1983 

-I/) 
""0 
C 
o 
o 
Q) 

1.
01 

0.8 i 
~ 0.6 
>ro 
Q) 

"'C 0.4 
Q) 
O'l 
ro 
1-

~ 0.2 
« 

.. I, 
I \ 

\ 
\ 

" , 
" 

" 

New ARPANET method 

PPD method 

PPD-genera1ization 
of the new ARPANET 
method 

. ...... .. 
'- - --------. --- :.:-=":.~-=~.~-~~.~~."'!!-~!'-.!!"!-~-""'!.""'!-!!!!!!! 

0.0 0 20 40 60 80 100 

-I/) -g 0.8 
o 
o 
Q) 
I/) 

"-"0.6 
>ro 
Q) 

""0 0.4 
Q) 
O'l 
ro 
1-
Q) 

~ 0.2 

0.0 
o 

Time (seconds) 

(a) For light traffic. 

--- - : New ARPANET method 

--: PPD method 

20 

PPD-genera1ization 
of the new ARPANET 
method 

40 60 80 
Time (seconds) 

(b) For heavy traffic. 

100 

Figure 12-Delay performance of the PPD, of the PPD generalization of the 
new ARPANET, and of the new ARPANET routing methods 

(update period: 5 sec) 

formance with two different m's, 6 and 4, is shown in Figure 
13. The PPD method operates better than the other two when 
the value of m decreases. This conclusion becomes more sig
nificant when the traffic load increases. The reason is that the 
PPD method can collect more delay information for every 

• 1.0 1 
~ 0.8 
o 
o 
Q) '. 
III " 

0.6 :': 

PPD method 

PPD-generalization 
of the new ARPANET 
method 

": ·f·, .... ' .......... Q) 

: 0.4 
OJ 
ro 
L 
Q) 

> « 

....... ~ ......... ------~} 
• -'" ................... heavy traffic 

'. 
0.2 '--... ·-.~._._._. __ }light traffic 

0.0 -1-----.--.,.----.--.,.----, 
o 20 40 60 80 100 

Time (seconds) 

Figure 13-Delay performance comparison of various routing methods with 
bounded path entries (m = 4) in each subtable (update period: 5 sec) 

path when the number of paths decreases, although the gener
alized ARPANET routing methods sometimes perform better 
than the PPD method. 

8. CONCLUSIONS 

For the first time, a probabilistic routing method that is path
directed is proposed for computer networks with distributed 
control. The proposed PPD method can be implemented with 
small update overhead and minimum node delay. The effec
tiveness of this method is supported by both analytical and 
simulation experiments. The method is shown to be more 
efficient than the new ARPANET routing method, especially 
in heavy traffic situations. The PPD method is designed to 
balance the load among multiple paths and to reduce con
gestion in heavy traffic. The PPD concept can also be applied 
to a centrally controlled network with some modifications. 
The results can be extended to developing packet-switched 
interconnection networks if there are multiple paths between 
a source and a destination in the hardwired network. 

ACKNOWLEDGMENTS 

This research was supported by NSF under Grant MCS-80-
16580. 

REFERENCES 

1. Boorstyn, R. R., and A. Livne. "A Technique for Adaptive Routing in 
Networks." IEEE Transactions on Communications, Com-29 (1981), 
pp. 474-480. 

2. Brandt, G. J., and G. J. Chretien. "Methods to Control and Operate a 
Message-Switching Network." Proceedings of the Symposium on 
Computer-Communications Networks and Teletra/fic, Polytechnic Institute 
of Brooklyn, 1972, p. 263. 

3. Cantor, D. G., and M. Gerla. "Optimal Routing in a Packet-Switched 
Computer Network." IEEE Transactions on Computers, C-23 (1974), 
pp. 1062-1069. 

4. Davis, D. W., and D. L. Barber. Computer Networks and Their Protocols. 
New York: John Wiley & Sons, 1979, pp_ 89-107-



5. Frank, H., R. E. Kahn, and L. Klenrock. "Computer Communication 
Network Design-Experience with Theory and Practice." Proceedings of 
the Spring Joint Computer Conference, 1972, p. 225. 

6. Fultz, G. L. "Adaptive Routing Techniques for Message Switching Com
puter Communication Networks." Report, UCLA-ENG-7352, University 
of California, Los Angeles, July 1972. 

7. Gallager, R. G. "A Minimum Delay Routing Algorithm Using Distributed 
Computation." IEEE Transactions on Communications, Com-25 (1977). 
pp.73-85. 

8. Hwang, K., W. J. Croft, G. H. Goble, B. W. Wah, F. A. Briggs, W. R. 
Simons, and C. L. Coates. "A Unix-Based Local Computer Network with 
Load Balancing." Computer Magazine, April 1982, pp. 55-66. 

9. Kleinrock, L. Communication Networks: Stochastic Message Flow and 
Delay. New York: McGraw-Hill, 1964. 

10. McQuillan, J. M., I. Richer, and E. C. Rosen. "The New Routing 
Algorithm for the ARPANET." IEEE Transactions on Communications, 
Com-28 (1980), pp. 711-719. 

11. Naylor, W. E. "A Loop-Free Adaptive Routing Algorithm for Packet 
Switched Networks." Proceedings of the 4th ACMIIEEE Data Commu-

A Probabilistic Routing Algorithm 719 

nications Symposium. Piscataway, N.J.: IEEE, 1975. 
12. Ni, L. M., and K. Hwang. "Optimal Load Balancing Strategies for a Mul

tiple Processor System." Proceedings of the Tenth International Conference 
on Parallel Processing, Belaire, Michigan, August 1981, pp. 352-357. 

13. Price, W. L. "Adaptive Routing in Store-and-Forward Networks and the 
Importance of Load Splitting." Proceedings of the IPIP Congress 77, 1977, 
p.309. 

14. Rosen, E. C. "The Updating Protocol of ARPANET's New Routing Algo
rithm." Computer Networks, 4 (1980), pp. 11-19. 

15. Schwartz, M., and C. K. Cheung. "The Gradient Projection Algorithm for 
Multiple Routing in Message-Switched Networks." IEEE Transactions on 
Communications, Com-24 (1976), pp. 449-456. 

16. Schwartz, M., and T. E. Stern. "Routing Techniques Used in Computer 
Communication Networks." IEEE Transactions on Communications, 
Com-28 (1980), pp. 539-552. 

17. Shier, D. R. "Iterative Methods for Determining the k Shortest Paths in a 
Network." Networks, 6 (1976), pp. 205-229. 

18. Tanenbaum, A. S. Computer Networks. Englewood Cliffs, N.J.: Prentice
Hall, 1981, pp. 196-211. 





Optical wireless modem for office communication 

by TAKATOSHI MINAMI, KENJIRO YANO, and TAKASHI TOUGE 
Fujitsu Laboratories Ltd. 
Kawasaki, Japan 

and 

HISASHI MORIKAWA and OSAMU TAKAHASHI 
Fujitsu Limited 
Kawasaki, Japan 

ABSTRACT 

A novel type of optical wireless modem, suitable for office communication, is 
described. 

Two types of modems, satellite and terminal, each of which consists of head and 
body, have been developed. The satellite head is usually attached to a ceiling or 
wall, and the terminal is placed adjacent to a data terminal. The full-duplex mode 
of data transmission up to 19.2 kbit/s, with the error rate less than 10-6

, is realized 
between the satellite and the terminal which is placed anywhere in the service area 
of 10 m radius around the satellite head under the fluorescent light. 

In this paper, the configurations, specifications, main design features and per
formances of the modem are described. Some applications are also discussed. 

721 





INTRODUCTION 

Office automation (OA) systems based on local-area net
works or local computer networks have been successfully in
troduced into various kinds of offices, including the ones in 
laboratories and factories. 1

,2 So the undoubted role of the 
local networks in OA has been fully confirmed. These net
works use either metallic (twisted-pair or coaxial) or optical
fiber cables. 

Although local networks based on wired transmission are 
quite suitable for the trunk line of a network where high speed 
and reliable transmission is required, wired interconnection is 
not always the best method for interfacing user terminals and 
network nodes. The position of office terminals is frequently 
changed to improve the office layout. Each time, rearrange
ment of signal cables is also required; this is usually costly and 
takes a lot of time. In some cases, recabling is so difficult that 
a new office layout has to be designed under the restriction 
that changes in the terminal positions are not allowed. 

Therefore the use of wireless interconnections for such 
interfaces is quite suitable, since it avoids the inconvenience of 
cabling. There are several methods of wireless transmission, 
among which optical wireless transmission in the infrared re
gion seems to be very attractive for the following reasons.3 

1. Immunity to electromagnetic interference 
2. Little interference with similar systems operating nearby 
3. Small size of optical components 

In some areas of application other than OA, wireless optical 
transmission has been widely introduced. Typical examples 
are a remote controller for TV sets, a cordless telephone ,4 and 
a wireless speaker system. 5 

The use of optical wireless transmission in offices has also 
been proposed as a method of interconnecting a cluster of 
terminals in the same room with a common cluster controller 
through a diffuse optical channel. 3 

It seems quite likely that increasing needs for a convenient 
wireless optical interconnection will arise. The specifications 
for the wireless link in various local networks may be vastly 
different from one another. Therefore, although it may be 
desirable to design the wireless optical transmission sepa
rately for each network's requirements, it would be more 
convenient to have versatile types of interconnecting equip
ment, with standard data terminal interfaces such as the 
CCITT recommends. 

From these considerations we have developed a new type of 
wireless communication equipment-the "Office-Use Optical 
Wireless Modem." As a first product we have developed a 
type of optical wireless modem that is capable of the full-

Optical Wireless Modem 723 

duplex mode of data transmission up to 19.2 kbit/s for the 
transmission distance of 10 m. 

In this paper, the configurations, specifications, main de
sign features, and performance of the modem are described. 
Some applications are also discussed. 

CONFIGURATIONS 

Two types of optical wireless modems, satellite and terminal, 
have been developed. Both satellite and terminal consist of 
two parts, head and body; Figure 1 shows the satellite, Figure 
2 shows the terminal. Figure 3 shows an example of installa
tion. Figure 4 shows the circuit-block diagram of the modem. 
The basic circuit constructions of the satellite and the terminal 
are the same. 

Both heads are equipped with optical transmitter and re
ceiver to carry out the two-way optical transmission between 
satellite and terminal. Since different subcarrier frequencies 
are used for up-link (terminal to satellite) and down-link (sat
ellite to terminal), the full-duplex mode of operation is real
ized. The satellite head can be attached to either the ceiling or 
the wall of a room, whichever is convenient. Terminals may be 
put adjacent to office data terminals, such as personal com
puters or word processors. 

Optical waves transmitted from the satellite are non
directionally spread in the room. On the other hand, the 
terminal head emits an optical beam of medium directivity. 
Only a rough alignment between the satellite head and the 
terminal head is necessary. As long as the direct line of sight 
is not interrupted, terminals can be placed anywhere wi'thin 
10 m from the satellite head and still achieve a sufficient 
quality of transmission. 

Figure I-Satellite head 



724 National Computer Conference, 1983 

Figure 2-Terminal 

SPECIFICATIONS AND DESIGN 

The main specifications of the modem are given in Table I. To 
achieve the specifications, several design considerations were 
made as follows. 

Wall 

Cable 
tr-=--=-=-=--==-=--=--=-~-=-== 

Satellite 
Body 

Type of Optical-Wave Propagation 

Two types of optical-wave propagation were compared. 
One is direct line-of-sight transmission and the other is diffuse 
optical propagation. 3 

Diffuse optical propagation is a type of optical-wave propa
gation by which the optical waves are spread as uniformly as 
possible in the room, making use of the reflections of walls 
and ceilings as shown in Figure 5( a), so that neither a direct 
line of sight nor alignment between the optical transmitter and 
receiver is required. 

Although the use of the diffuse optical channel is quite 
convenient, there are several disadvantages to using this 
method for practical equipment. Since the diffuse optical 
propagation is based on the reflections at walls and ceilings of 
a room, each time the optical wireless system using the diffuse 
propagation is introduced into a new room, a new design is 
required in terms of the position of transmitters, required 
optical output power, and directions and directivity of optical 
emitters that will minimize the optical power required for the 
transmission to be realized in the whole desired service area. 
Since the reflection properties of walls and ceilings vary con
siderably from material to material, required optical power is 
also quite different from room to room even if the room size 
is the same. 

Furthermore, in some cases the reflections of walls and 
ceilings cannot be used. One example of such cases is a big 
hall that is divided into several portions, in each of which 
different optical wireless systems are to be operated. 

In this modem, the direct line of sight transmission shown 
in Figure 5(b) is employed. Using this type of propagation, the 
predetermined maximum communication distance is always 
assured, regardless of the shape or the reflective properties of 
walls and ceilings, so long as the direct line of sight is not 
interrupted. The maximum transmission length requires the 
alignment of the satellite and the terminal. However, since the 

Sate I I ite Head 

Ceiling 

~DownLink 

Network 
Node 

!Ll 
Office 

Terminal 

Terminal 
Figure 3-An installation example of the optical wireless modem 



BODY 

- - FSK 
MOD 

I 

Inter- FSK LIM O-r- foce -- OEM -- AMP r--
I 

_i 
I LEVEL 

V24/V28 
or 

RS-232C 

I DET 

I I 
I 

FIL ,-.. 

'-' 

I 

Optical Wireless Modem 725 

HEAD 
-

DRIV 

PRE PIN-
AMP ~ PO 

-

-~~ ==> OPT 
~I OUT -

~I F~¢:= 
-

OPT 
IN 

Figure 4-Block diagram of satellite and terminal 

optical beam used for the up-link is of medium directivity, no 
fine alignment is needed. 

Furthermore, when the modem is used in a small room that 
is surrounded by walls, the direct line of sight is not neces
sarily required, since the optical paths between satellite and 
terminal are usually assured by the reflections at walls as well 
as at ceilings, as shown in Figure 5(c). 

Ambient Light 

The ambient light is a kind of noise source to the optical 
receiver. The main source of ambient light in office rooms is 
the lighting, such as fluorescent light. 

To avoid the degradation due to the fluorescent light, two 
kinds of measures are taken, one in the optical domain and 
the other in the electrical domain. 

In the optical domain, by the use of a film type of optical 
filter attached on the surface of the photodiode, optical power 
in the region of shorter wavelengths than that of the light
emitting diode (LED) emission is rejected. 3 The optical 
power in the region of longer wavelength is also rejected, 

Table I-Main specifications of the optical wireless modem 

Item 

Data rate 
Modulation 
Mode of operation 
Service area 

Interface 
Optical source/detector 
Type of optical wave 

propagation 
Down-link 
Up-link 

Power supply 
Power consumption 
Dimensions (terminal) 

Environment 

Specifications 

up to 19.2 kbitls 
FSK-IM 
Full or Half-Duplex 
10 m radius (Error Rate <10-6

, 

under Fluorescent Light) 
CCITT V24N28 or EIA RS-232C 
LED (A = 0.88 /-Lm)/Si PIN-PD 

Nondirectional radiation 
Medium-directivity beam 
AC 100 ± 15 V, 50/60 Hz 
7VA 
210 (width) x 320 (height) x 325 (depth) 

mm 
Temperature: 5° to 40° C 

using the property of the silicon PIN photo diode that it has 
little optical sensitivity in this region. 

On the other hand, an experiment was carried out to mea
sure the noise spectrum at the output of the low noise pre
amplifier with the photo diodes in a room where fluorescent 
light was used with standard intensity of illumination. The 
results indicate that noise from the fluorescent lights domi
nates the receiver noise in the frequency region lower than 300 
kHz, even when the optical filter is attached on the photo
diodes (see Figure 6). For this reason, the FSK modulation at 
higher subcarrier frequencies than 300 kHz was adopted. By 
this measure together with the optical filter, the influence of 
fluorescent light on the transmission performance is fully 
avoided. 

The effect of sunlight is a somewhat bigger problem, since 
sunlight has quite a large amount of optical power in the 
infrared region. When the receiver is exposed to the direct 
sunlight, the transmission distance is reduced from 10 m to 
approximately 2 to 3 m. However, it may be rare to receive 
such strong sunlight in office rooms. Under normal use, the 
reduction of the transmission distance in a room with windows 
is usually 10 to 20%. Furthermore, in most offices direct sun
light is usually shaded by a blind or a coating on the window
glass to improve the efficiency of the air conditioning. This 
also improves the efficiency of the modem use, even near the 
window. 

The direct incidence of strong tungsten light can also cause 
noise problems, and it should be avoided. 

Full-Duplex Mode of Operation 

To realize the full-duplex mode of operation, different sub
carrier frequencies are used for the up-link (terminal to sat
ellite) and down-link (satellite to terminal). The subcarrier 
frequencies are chosen according to the following consid
erations. 

Suppose the subcarrier frequency of the down-link is fl. The 
transmitted optical waves from the satellite are reflected from 
various surfaces, such as floors, walls, and desks. The reflec
ted waves come back into the satellite. So the satellite receives 
the reflected down-link waves as well as the up-link waves. 



726 National Computer Conference, 1983 

C7 
Receiver 

(a) Optical Diffuse Propagation 

Ceiling 
Transmitter 

c:::l 

/ 
<:) 

Receiver 

(b) Direct Line of Sioht Propagation 

Ceiling 
Transmitter 

c::l 

c:::::7 

Receiver 

a 

c:::::7 

Receiver 

Wall 

Wall 

(c) Optical Propagation Using Reflection Paths 

Figure 5-Types of optical wave propagation 

The level of the reflected waves varies considerably, de
pending on such conditions as the height of the ceiling. At the 
same time, mainly because of the nonlinearity of the LED, the 
higher-order harmonics of /1 also enter the satellite receiver. 
These reflected signals should be filtered out by the electrical 
filter. The situation is also the same for the terminal head. 

Computer simulations and experiments were done to deter
mine what filtering characteristic was required to keep the 
receiver sensitivity from being degraded by the reflected 
waves. The results show that more than 60 dB rejection of the 
unnecessary reflected waves is needed relative to the main 

-m 
'C 

Q) 

i) 
...J 
Q) 
en 
·0 50 
z 
Q) 
> .... 
o 
Q) 

Q: 

Fluorescent Light 
o ON 
x: OFF 

0.5 

Frequency (MHz) 
Figure 6-Relative noise level at the output of preamplifier with optical filter 

received signal, for the typical case of a satellite attached to a 
ceiling 3 m high. 

At the same time the use of subcarrier frequencies higher 
than a few MHz should be avoided if the signal is to be free 
from multipath distortion. 3 

Taking all these factors into account, we chose 1 MHz and 
1.5 MHz as the subcarrier frequencies for the up-link and the 
down-link, respectively. We employ the lower frequency for 
the up-link in order to minimize the receiver noise, which 
depends on the product of the subcarrier frequency and the 
total capacitance of the photodiodes. 

Optical Transmitter 

High radiant LEDs of 15 milliwatt output power with a 
directivity of approximately ±60° are used in the optical trans
mitters in both satellite and terminal heads. 

The number of LEDs required depends on the transmission 
distance. For the satellite head, 9 LEDs were needed to obtain 
the service area of 10 m radius in rooms with fluorescent 
lighting. Each of these LEDs is aimed in a different direction 
so that the optical waves are spread as uniformly as possible. 

On the other hand, 5 LEDs were necessary for the terminal 
head. To save on total optical power, the directivity of the 
optical beam emitted from the terminal head is adjusted to be 
about ±30 degrees by a simple rectangular pipe that is put in 
front of the LEDs. The medium directivity of the up-link 
beam renders unnecessary the fine alignment that is usually 
required for optical-space transmission. 

Optical Receiver 

PIN photodiodes with a typical capacitance of 350 pF and 
a large active area of 1 cm2 are used as the optical detector. 

In the satellite head, 4 PIN photodiodes are used; they are 
so aimed as to receive the optical waves coming from all 
directions in a room. The total capacitance of the photodiodes 
is approximately 1400 pF. To obtain high receiver sensitivity, 



the admittance due to this capacitance is canceled by that of 
the inductance, using a resonance circuit inserted at the front 
end of the low-noise preamplifier of the receiver; this circuit 
resonates at the center of the up-link FSK frequencies. 

In the terminal head, on the other hand, 2 PIN photodiodes 
of the same type are used. A similar resonance circuit is also 
employed. 

Other Features 

As shown in Figure 1, a hemispheric cover is used on the 
satellite head to protect the optical components and other 
electronic circuits from damages, while allowing the optical 
signal to pass with insertion loss as low as 1.0 dB. The cover 
also functions as an optical filter to reject visible light. A flat 
cover made of the same material is used on the terminal head, 
as shown in Figure 2, for the same reasons. 

The satellite body is equipped with a level indicator that 
tells the input optical power in four steps. 

PERFORMANCES AND APPLICATIONS 

The modem was actually used in an office environment like 
that shown in Figure 7. 

Figure 7-An office room where optical wireless modem is introduced 

Optical Wireless Modem 727 

It was verified that no direct line of sight was necessary 
when the transmission distance was less than 3 to 5 m and the 
wall and ceiling reflections could be effectively used. Desk 
surfaces and floors could also be used as useful reflectors. 
However, when the transmission distance was too long, the 
transmission failed whenever the direct line of sight was inter
rupted. Such interruptions may be a little annoying. So in 
situations where a room is shared by a group of people and 
frequent interruptions of the direct optical path are expected, 
it is highly recommended that the modem be used with intel
ligent data terminals, such as personal computers or word 
processors, that can have an automatic retransmission func
tion with the aid of their software or high-level protocols such 
as HDLC. 

Needless to say, multipoint access is also possible. For ex
ample, using a polling access method, where each data termi
nal is assigned a unique address selected by the network con
troller connected to the satellite, one satellite can be shared by 
several terminals around the room. 

It sometimes happens that for some reason the satellite 
head cannot be attached to either ceiling or wall. To cope with 
such situations, the modem is so designed that terminal-to
terminal communication is also made possible simply by re
placing the satellite head by the terminal head and making a 
minor change in the circuit. Either the direct line of sight or 
the reflections can be used, as is shown in Figure 8. Since the 
terminal head has some directivity, terminal-to-terminal 
transmission may be appropriate for point-to-point commu
nication except in a small room. 

CONCLUSION 

A novei type of opticai wireiess modem has been developed 
and presented in this paper. This modem is quite suitable for 
office communications, especially for office rooms where fre
quent layout changes or the portability of the office data ter
minals is highly required. 

Two types of modem, satellite and terminal, each of which 
consists of head and body, have been developed. A full
duplex mode of data transmission up to 19.2 kbit/s between 

Obstacle 

OTE 

~ 
Terminal ( I) n 

Ceiling 

OTE 

ll:1t =-:=-c-

Terminol(2) 

OTE : Data Terminal 
Equipment 

Figure 8--Terrninal-to-terminal communication 



728 National Computer Conference, 1983 

satellite and terminal is realized in a service area of 10 m 
radius around the satellite head. This can be attached, for 
example, to the ceiling of an office, under the fluorescent 
light. By replacing the satellite head with the terminal head, 
transmission between two terminal heads is also possible, us
ing either the direct line of sight or the reflections from walls 
or ceilings. 

This modem has been used in an actual office environment, 
and its feasibility has been confirmed. 

ACKNOWLEDGMENTS 

The authors wish to thank Dr. H. Takanashi and Messrs. N. 
Sata and Y. Mochida for their encouragement and valuable 
advice. 

REFERENCES 

1. Takahashi, 0., Y. Suzuki, and R. Yatsuboshi. "Large Scale Integrated 
Service Local Network Using Optical Fiber Data Highway." ICC-8I, 
pp. 48.2. i-48.2.5, 198i. 

2. Matsuda, T., M. Endo, T. Ohyama, and O. Takahashi. "General Purpose 
Local Network Using Optical Loop Highway." NTC Record, 
pp. G1.2.1-G1.2.5, 1981. 

3. Gfeller, F. R., and U. Bapst. "Wireless In-House Data Communication 
via Diffuse Infrared Radiation." Proceedings of the IEEE, 67 (1979), 
pp. 1474-1486. 

4. Braun, E., and S. Schon. "A Cordless Infrared Telephone." Telcom report 
3 (1980) No.2, pp. 83-86. 

5. Citta, R. "An Infra-red Wireless Speaker System Utilizing a Super Wide
band FM Carrier." IEEE Transactions on Consumer Electronics, CE-21 
(1975), pp. 115-119. 



A high-throughput interconnection structure 

by J. A. HERNANDEZ 
Ecole Nationale Superieure des Telecommunications 
Paris, France 

E. HORLAIT 
Universite Pierre et Marie Curie 
Paris, France 

R. JOLY 
Ecole Nationale Superieure des Telecommunications 
Paris, France 

and 

G. PUJOLLE 
Universite Pierre et Marie' Curie 
Paris, France 

ABSTRACT 

Today, high-throughput interconnection structure (HTIS) is a concept. This paper 
surveys the properties that HTIS should satisfy and proposes a new architecture that 
satisfies some of the HTIS requirements. We describe the topology, the access 
method, and the logical structure of our experimental network. This network is a 
part of a project called ESCALIBUR, in which both interconnection architectures 
and distributed applications are studied. The network architecture presented here 
is mainly oriented toward local and bus networks but may be extended long-haul 
networks. 

729 





INTRODUCTION 

The high-throughput interconnection structure (HTIS) can be 
defined as a digital telecommunications local network capable 
of supporting a wide spectrum of user needs that require high 
capacity. Today, such a network exists as a concept; an actual 
HTIS system has yet to be physically created and its architec
ture clearly defined. 1

•
2

•
3 To satisfy the user's needs, the 

throughput must be very high. In Figure 1 we give the classical 
digital throughput for certain services.4 This figure shows the 
complex problem of simultaneously satisfying a wide variety 
of services. 

Alarm/security system 
Computer terminal applications 
Digitized telephone speech 
Picture phone 
Interprocessor bus 
Color television 
High-quality video service 

4 bits/s 
256 bits/s 
32 or 64 Kbits/s 
2 Mbits/s 
8 Mbits/s 
128 Mbits/s 
512 Mbits/s 

Figure 1-Mean bandwidth required for certain services 

In this paper we give some new ideas on a possible architec
ture for HTIS. Then we present a project called ESCALI
BUR,s an example of a real experience in the area of future 
networks. 

SERVICES AND ARCHITECTURE 

Three very different services should coexist in a high
throughput interconnection structure: a telephone network, a 
video network, and a computer bus. Table I characterizes 
some of the differences of these networks. The problem is to 
know what sort of architecture is to be chosen. Some partial 
responses exist: The baseband local network6 is capable of 
supporting a data communications channef· 8

•
9 and a very 

TABLE I-Main characteristics of communication networks 

Telephone Network Video Network Computer Bus 

little bandwidth wide bandwidth very high speed 
channels channels transmission 

bidirectional unidirectional bidirectional 
state wide network building wide network room wide network 
high interactive noninteractive highly interactive 
real time real time non real time 

A High-Throughput Interconnection Structure 731 

limited number of telephone channels (response time and 
asynchronous characteristics of these networks are contra
dictory to a synchronous real-time digital service). The broad
band local network provides a communication backbone that 
can accommodate application. But the words digital and inte
grated are not satisfied. CATV technology currently gives the 
best possibilities. For example, the MITRE coaxial cable 
LAN has been in operation since 1979. It provides the follow
ing services: 

1. Twelve video channels 
2. One FM radio channel 
3. Voice communication 
4. One time-division multiple access data bus 

Another response to HTIS is the private automatic branch 
exchanges (PABX): telephone network and limited computer 
channels. PABX can support between 64 Kbits/sec and 72 
Kbits/sec of channel capaCity per user. 

In these examples, HTIS concepts are not fully satisfied. 
However, local HTIS can be looked upon as an extension of 
a broadband local network and a baseband local network. By 
the mid-1980s, the HTIS will include circuit-switched, packet
switched, and nonswitched capabilities. These three sets of 
capabilities are interrelated. In some special cases, they may 
share common facilities and equipment, but the capabilities 
are interconnected. Essential characteristics of the architec
tures of the mid-1980s will include digital transmission 
through a packet-switched network. 

The difficulty of integration comes from the necessity of 
knowing application characteristics. This may lead to net
works having sufficient intelligence to determine whether the 
customer's information should be packet or circuit switched. 

A NEW ARCHITECTURAL CONCEPT 

To allow a superposition of telephone, video, and data trans
fers, a new communication concept would provide the main 
following characteristics: 

1. A medium supporting 1 Gbit/sec. 
2. An access to the shared medium allowing real-time com

munication. For example, a carrier sense multiple-access 
scheme does not permit realistic telephone traffic. 

3. Error detection depending on the customer's informa
tion. 

4. High-throughput output interfaces. 

A project shared by the Institut de Programmation of the 
Universite Pierre et Marie Curie and the Ecole Nationale 



732 National Computer Conference, 1983 

Superieure des Telecommunications in Paris is beginning to 
analyze and experiment with a new concept of HTIS. This 
project is called ESCALIBUR. 

The communication medium comprises N parallel chan
nels. In a first approach N is equal to 64 parallel lines. The 
capacity of each line is 1 Mbit/sec. This involves a relatively 
simple technology. Since the first approach uses telephone 
cables, the future use of fiberoptics will allow us to choose 
speedier lines and a larger network. 

An important part of this work is to optimize the number of 
parallel channels and the capacity of each line to reach the 
:1-Gbit/sec bandwidth. 

The new concept provided by ESCALIBUR concerns 
frame transport. A frame is carried in parallel over the net
work. The frame structure is classical and comes from the 
HDLC standard protocol. Two kinds of frames will be used; 
they are shown in Figure 2. 

3 2 (Bytes) 
----, 

CRC for I 
I frames I 

Sender Receiver Supervisory 
Data 

address address field 
__ --.J 

Figure 2-Structure of frames 

I frames are used for asynchronous information transfer 
with strong error detection and correction. UI frames can 
transport asynchronous and synchronous traffic with no error 
correction (e.g., telephone or video traffic). 

Our switching technique is a new one for a local network 
architecture. to It is only an extension of bus principles, how
ever, but is connected with the two first levels of ISO architec
ture.l1 This switching technique involves a simple access logic 
to the communication medium. It avoids collisions and allows 
for a completely decentralized management. 

The topology adopted is a ring12
, 13 with a "garbage" unit to 

avoid problems with erroneous frames running around the 
network indefinitely. The access method is based on the foi
lowing two main ideas: 

1. We use an extension of the register insertion protocol. 14 

2. A frame is only carried away by its emitter (or by the 
garbage unit if some error occurred). 

The access logic is shown in Figure 3. Access is obtained 
through five registers to guarantee the absence of collision. 
Let us describe the three possibilities. 

1. Introduction of a frame contained in the sender buffer 
R5. This is possible only if registers R2, R3, and R 1 are 
free. Nevertheless, the communicator cannot send a 
frame. 

2. Passage of a frame. When register R 1 receives a frame, 
a decoder looks at the receiver address field. If the ad
dress is not the address of the communicator, the frame 
is copied on register R2 or R3, depending on the oc
cupancy of these registers. If the sender address field is 

r·-·-·-·------·----·----, 
. I I . 

SYNC i R3 I SYNC 

Data i 
I 

I ·GJ IE] 

Figure 3-The ESCALIBUR network interface 

//~,., 
.;' Garbage Unit " " 

/ , 
I , 

I , 

Communicator 

.................. .--._-_ .............. 

Figure 4-The ESCALIBUR network topology 

the address of the communicator, the frame is destroyed 
in register R 1. 

3. Reception of a frame. If the decoded address is the 
address of the communicator, the frame is copied on the 
receiver buffer R 4 (and also in R 3 or R 2 if necessary). 

This access logic guarantees a finite transmission delay for a 
frame ready in R5. 

The ESCALIBUR project aims to propose a new network 
able to replace both PABX and the baseband local network. 
If the second characteristic is satisfied, the first one is more 
difficult to achieve. In effect, we have chosen an internal 
packet switching following the X25 packet format to make 
interconnection with public network easier. Packet switching 
is not appropriate for digitized telephone speech: The voice is 
converted into a digital signal by means of pulse-code modu
lation. This technique requires synchronizations, which are 
generally incompatible with packet switching. As an illustra
tion we can point to the difficulty of integrating digitized 
telephone voices on the Ethernet network. For a lO-Mbits/sec 
local network only 10 or so voice channels can be easily sup
ported. In the ESCALIBUR network a circuit switch possi
bility is mixed with the packet switch, thanks to the station's 
capacity to recover empty frames regularly. However, to keep 
the network asynchronous and to avoid the use of a main 
station to manage the network, this empty frame can deliver 



a high-throughput channel (which is larger than a PCM chan
nel but is used either for voice traffic or for data traffic). This 
possibility, along with a correct buffering system (placed in 
each node to avoid echo problems), is the reason why syn
chronous traffic can be transported through ESCALIBUR. 

CONCLUSION 

For future high-throughput interconnection structure, it is 
necessary to develop other new concepts and to make major 
changes in the architecture and capabilities of data commu
nications equipment. A most important element of change 
will be that users will have a workstation at their desks with a 
digital phone, a keyboard, and a graphic screen. This necessi
tates obtaining very high throughput not only for local but also 
for long-haul networks. Our objective with the ESCALIBUR 
project is to propose a solution for local HTIS networks. But 
with the development of fiberoptic cables,15 our solution can 
be considered feasible for networks of 50 km. 

The problem of a network's determining whether the cus
tomer's information should be packet or circuit switched has 
still to be solved. This facility is contradictory to ISO 7-level 
architecture: Level 2 should know the parameters of level 7. 
No satisfactory solution has yet been provided. 

REFERENCES 

1. Anderson, G. A., and E. D. Jensen. "Computer Interconnection Struc
tures: Taxonomy Characteristics and Examples." Association for Com
puting Machinery, Computing Survey, (1975), pp. 197-213. 

2. Penney, B. K., and A. A. Baghdadi. "Survey of Computer Communication 

A High-Throughput Interconnection Structure 733 

Loop Networks: Part I." Computer Communications, 2 (1979), 
pp. 165-180. Part 2: 2(1979), pp. 224-241. 

3. Pierce, J. R. "Network for Block Switches of Data." Bell System Tech
nology Journal, 51 (1972), pp. 1133-1145. 

4. Martson W. B., and J. S. Hunter. "CABLE TV: The Missing Link in a 
National Data Communication Architecture." Actes des 3eme journees de 
['!DATE, (1981), pp. 75-82. 

5. HERNANDEZ, J. A., E. Horiait, R. Joly, and G. Pujolle. 
"ESCALIBUR-Une Structure d'Interconnexion a Haut Debit." Pro
ceedings of SEIR 2, (1982), pp. 425-437, Universidad de Santiago de 
Compostela, Spain. 

6. Clark, D. D. et al. "An Introduction to Local Area Network." Proceedings 
of the IEEE, 66, 11 (1978), pp. 1497-1517. 

7. Farmer, W. D., and E. E. Newhall. "An Experimental Distributed Switch
ing System to Handle Bursty Computer Traffic." Proceeding of the Associ
ation for Computing Machinery Symposium on Problems in the ,Opti
mization of Data Communication Systems, Pine Mountain, Ga., (1969), 
pp.31-34. 

8. Liu, M. T., and G. G. Reames. "The Design of the Distrubted Loop 
Computer Network." Proceedings of the 1975 International Computer Sym
posium (Vol. 1), 1975, pp. 273-282. 

9. Metcalfe, R. M., and D. R. Boggs. "Ethernet: Distributed Packet Switch
ing for Local Computer Networks." Communications of the Association for 
Computing Machinery, 19, 7 (1976), pp. 395-404. 

10. Horiait, E. "Protocoles de Communication de Bas Niveau et Reseaux 
Locaux," These de 3eme cycle, Universite de Paris sud, Novembre 1981. 

11. Zimmermann, H. "OSI Reference Model-The ISO Model of Architec
ture for Open System Interconnection." IEEE Transactions on Computer, 
(1980), pp. 425-432. 

12. Farber, D. J. "A Ring Network." Datamation, 21, 2 (1975), pp. 44-46. 
13. Saitzer, J. H., and D. D. Clark. "Why a Ring?" Proceedings of the 7th Data 

Communications Symposium, (1981), pp. 211-217. 
14. Wilkes, M. V., and D. J. Wheeler. "The Cambridge Digital Commu

nication Ring." Proceedings of the LACN Symposium, (1979), pp. 47-60. 
15. Pendibidu, J. M. "Presentation du Projet THERESE." Technique et Sci

ence Informatiques, (1982), pp. 253-257. 





A new look at computer contracts 

by DENNIS K. KNIGHT, ESQ. 
Hitt, Hartwell & Knight 
San Diego, California 

ABSTRACT 

Standard form contracts for computer sales and licenses are typically drafted pri
marily to protect vendors by limiting their legal liability. These contracts do not 
usually playa constructive role in the management of a computer project. 

Three factors cast doubt on the enforceability of the vendor-protective provisions 
of these contracts: (a) two recent court decisions refusing to enforce these protective 
provisions, (b) the application of consumer protection laws to certain computer 
transactions, and (c) the proliferation of business computer systems among un
sophisticated users. 

This paper discusses these factors and proposes as an alternative to these standard 
form contracts a type of contract patterned after system development methodology 
and designed to educate the customer, provide a management guide for successful 
computer system acquisition, and reduce the risk of a court's refusing to enforce the 
contract. 

735 





INTRODUCTION 

One of the standards adopted by the data processing industry 
is the general form of contract used for computer sales, leases, 
and licenses. Typically, these computer contracts are prepared 
by the vendor's legal staff, printed in somewhat small print on 
the reverse side of an invoice form, and designed to give the 
vendor maximum protection and limited risks. 

Three factors cast doubt on the enforceability of important 
parts of these standard contracts: 

• Two recent court decisions in which the court refused to 
enforce certain vendor-protective terms, 

• The application of consumer protection laws to certain 
computer transactions, and 

• The proliferation of business computer systems among 
unsophisticated users. 

This paper discusses these factors, their potential effect on 
contracting practices in the computer industry, and an alter
nate approach to computer contracts. 

CURRENT STANDARD FORM CONTRACTS 

Almost all standard form contracts attempt to limit vendor 
warranties to those explicitly stated within the contract. To the 
extent that these clauses are enforced by a court, they effec
tively cancel oral sales representations that are not repeated in 
the contract. They also, if upheld in court, do away with cer
tain warranties implied by the law. For example, the implied 
warranty of fitness for a particular purpose provides that if a 
customer relies on the vendor to provide a system that will do 
a particular job, if he or she tells the vendor of such reliance, 
and if the vendor accepts this responsibility by providing a 
system for that purpose, the law will read into the contract a 
warranty that the equipment will achieve that purpose. 

Standard contracts generally contain language that dis
claims implied warranties. The same statutes that set up the 
implied warranties also provide a means to disclaim them, and 
the vendor contract forms usually do so in the prescribed 
manner. 

Standard contracts also seek to limit the kind and amount 
of damages for which the vendor can be held liable. For exam
ple, liability for consequential and incidental damages is typi
cally disclaimed. Consequential damages include lost business 
caused by failure of the computer system. Incidental damages 
include electrical power and air-conditioning expenses in
curred to provide the proper environment for the computer 
and personnel costs associated with attempted computer 

A New Look at Computer Contracts 737 

usage. The usual goal of such limitations is to avoid potential 
liability for anything more than the price of the computer 
system. 

Until recently, courts have generally enforced these dis
claimers and limitations in cases involving commercial parties, 
saying that the parties are free to bargain whatever shifting of 
risk they desire. Therefore, vendors could rest comfortably in 
the belief that their risk of a judgment greatly in excess of the 
price of the system was minimal. 

RECENT COURT DECISIONS 

Two recent decisions should cause vendors to think twice 
about how well their standard form contracts will actually 
protect them. 

The first case, Glovatorium, Inc. v. NCR, has received 
considerable attention in the computer press. The second 
case, A & M Produce Co. v. FMC Corp., has not received this 
media attention. As a matter of fact, A & M Produce Co. v. 
FMC Corp. is not even a computer case. However, the prin
ciples of the decision appear directly applicable to computer 
cases and, taken together with the NCR case, cast doubt on 
the effectiveness of vendor protections found in standard form 
contracts. 

Glovatorium, Inc. v. NCR 

The NCR case was tried in the Federal District Court for the 
Northern District of California. The jury found for Glova
torium in the amount of $2.3 million, which included a sub
stantial punitive damage award and NCR appealed to the 
Ninth Circuit Court of Appeals. The Court of Appeals upheld 
the award of the jury. 

The computer system purchased by Glovatorium, a dry
cleaning company, was an NCR 8200 minicomputer with a 
software package called SPIRIT. The price of this system was 
about $50,000; therefore, the award of $2.3 million in total 
damages was far in excess of the system price and demon
strates the potential risk for a vendor in certain aggravated 
fact situations. (Large punitive damage awards are not gener
ally given by trial courts and upheld by appellate courts unless 
the facts showing misrepresentation and other types of fraud 
are clear and aggravated.) 

The standard form contract used by NCR in its sale to 
Glovatorium contained the standard warranty disclaimers and 
limitations of liability; however this contract language did not 
protect the vendor once the facts of fraudulent conduct were 
proven. The court in effect threw out the protective language 
and treated the case as though the protective language were 
not part of the contract. 



738 National Computer Conference, 1983 

A & M Produce v. FMC Corp. 

The A & M Produce v. FMC Corp. case is, in my opinion, 
potentially more significant than the NCR case because facts 
of fraudulent conduct did not playa large role in the case. 
Instead, the California state court directly considered the va
lidity of warranty disclaimers and limitations of liability for 
consequential damages. It found this protective contract lan
guage of no force or effect, primarily because the judges 
simply did not think the contract language was fair in light of 
sales representations made to A & M Produce and the other 
circumstances of the sale. 

FMC sold a tomato weight-sizing machine to A & M Pro
duce for approximately $32,000. FMC sales representatives 
convinced A & M Produce that the machine was the right type 
of equipment for them. The sales contract was a standard 
vendor-prepared document with typical fine-print provisions 
on the reverse side of an invoice. This contract excluded all 
warranties except a warranty that the machine was free of 
defects, and it excluded any liability for consequential dam
ages. In other words, the contract was, in these respects, quite 
similar to vendor standard form contracts for computers. 

When the machine failed to operate satisfactorily, A & M 
Produce suffered the loss of a large part of the tomato crop. 
The jury in the Superior Court trial awarded A & M Produce 
$255,000 plus $45,000 in attorneys' fees. The Court of Ap
peal, Fourth District, upheld this verdict. 

The courts refused to enforce the warranty disclaimers and 
limitations of liability, finding that these contract terms in
volved oppression and surprise and that they reallocated the 
risks of the bargain in an unreasonable, one-sided manner. 
Some of the courts' language is instructive as to how they 
viewed the standard form contract: 

The social benefits associated with freedom of contract are 
severely skewed where it appears that had the party actually 
been aware of the term to which he agreed, or had he any real 
choice in the matter, he would never have assented to inclusion 
of the term. 

One suspects that the length, complexity and obtuseness of most 
form contracts may be due at least in part to the seller's prefer
ence that the buyer will be dissuaded from reading that to which 
he is supposedly agreeing. This process almost inevitably results 
in a one-sided contract. 

Especially where an inexperienced buyer is concerned, the 
seller's performance representations are absolutely necessary to 
allow the buyer to make an intelligent choice among the com
petitive options available. A seller's attempt, through the use of 
a warranty disclaimer, to prevent the buyer from reasonably 
relying on such representations calls into question the commer
cial reasonableness of the agreement. 

Thus, the court effectively erased the protective terms in 
the contract. Furthermore, after such terms were erased, the 
court could substitute its own judgment about risk alloca
tion, performance guarantees, and other important contract 
matters. 

The legal principles set out in the A & M Produce case are 
directly applicable to computer cases. In fact, the disparity of 

technical knowledge between vendor and many customers, 
and the types of aggressive marketing approaches used today 
in the computer industry, might well cause a court to be even 
more protective of a computer buyer than of an agricultural 
machine buyer. 

The purpose of this somewhat detailed summary of the 
NCR and A & M Produce cases is not to demonstrate the 
kinds of situations in which a court might find a contract unfair 
and unenforceable. The legal principles set out in past cases
precedents-must be applied afresh to each new fact situ
ation. A few changes in the factual circumstances of a case can 
make a marked difference in the result. Rather, the purpose 
of this discussion is to suggest that the standard form vendor 
contracts used in the computer industry may not provide the 
vendor the protection sought. If a court throws out all of the 
carefully drafted vendor-protective language found in most 
computer contracts and substitutes its own judgment as to 
what is fair and reasonable, the form contract provides noth
ing but a false and misplaced sense of security. 

APPLICATION OF CONSUMER PROTECTION LAWS 
TO CERTAIN COMPUTER TRANSACTIONS 

During the last 10 years, a number of consumer protection 
laws have been passed by the federal legislature and various 
state legislatures. These laws are designed to replace the old 
"caveat emptor" (let the buyer beware) axiom with the notion 
that government and laws will aid consumers in getting a fair 
deal. 

The Magnuson Moss Consumer Warranty Act is an exam
ple of federal consumer law. This act requires certain disclo
sures to be made to consumers about warranties. It regulates 
the content of warranties and sets out certain warranty service 
requirements. It also provides that the Federal Trade Com
mission (as well as private individuals) can take action to 
enforce this law. 

In California, the Song Beverly Consumer Warranty Act 
regulates warranties for the benefit and protection of buyers. 
There are also many other consumer protection laws presently 
on the books in California. 

Many other states have enacted consumer protection laws. 
All of these laws tend to define consumer and consumer goods 
broadly. For example, under federal law, a commercial pur
chaser of an IBM Selectric typewriter may be considered a 
consumer purchasing consumer goods. Consequently, a seller 
may find that consumer protection laws apply to what that 
seller thought was a commercial transaction. 

With the availability of small and relatively inexpensive 
"personal" computer systems to small business owners and 
professionals, it is likely that many computer system sales will 
be classified as consumer sales under federal and state con
sumer protection laws. One result of such a classification is 
that standard form computer contracts with their disclaimers 
of warranty and limitations of liability may be found in vio
lation of these laws and, therefore, unenforceable. Further
more, computer system vendors may find themselves subject 
to investigative and enforcement actions by administrative 
agencies such as the Federal Trade Commission. Anyone who 



has been on the receiving end of these actions knows that they 
are highly disruptive and expensive to defend against. 

It might be said that the NCR and A & M Produce cases 
reflect the application of consumer protection principles to 
commercial transactions. The courts in those cases certainly 
refused to impose what they considered an unfair deal on 
Glovatorium, Inc., and A & M Produce, the commercial con
sumers in the cases. 

THE PROLIFERATION OF BUSINESS COMPUTER 
SYSTEMS AMONG UNSOPHISTICATED USERS 

The substantial reduction in the cost of computer hardwar~, 
the availability of mass-marketed off-the-shelf business sys
tems and application software, and extremely aggressive mar
keting efforts for small computer systems are resulting in the 
. acquisition of computer systems by a large number of small 
business and professional users. One characteristic of this 
marketplace is the lack of user data processing sophistication. 
Many, if not most, of these customers are first -time computer 
users, and this characteristic creates its own set of problems. 

Implementation of a computer system, even a small system, 
takes a great deal of preparation, training, and user sophisti
cation. Computer system users must understand and accept 
their responsibilities in acquiring and implementing a system. 
For example, users must define needs with a high degree of 
specificity to ensure that the computer vendor knows what 
kind of functions the system must perform. Users must estab
lish and conduct an effective implementation program to en
sure that business functions can carry on during the sbJft from 
manual to computer operation. Last, users must be an integral 
part of the trouble-shooting team when problems occur. Sim
ply calling up the vendor and reporting that the. system does 
not work will not do. 

Unfortunately, first-time, unsophisticated computer users 
are frequently unaware of these responsibilities and do not 
understand the significant impact that the computer system 
will have on their business operations. They do not under
stand that this impact will probably be relatively far greater 
than the cost of the system in dollars or that they will have a 
key participatory role in the success or failure of the system. 

One of the tasks facing a vendor in this small-computer 
marketplace is educating the customers in their' role and re
sponsibilities during a computer system acquisition; however, 
the contracting practices of most vendors fail to consider this 
task. Contracts emphasize protection of the vendor, not edu
cation of the customer and management of the project. Now, 
as discussed earlier, even this protective function is of doubt
ful effectiveness. 

AN ALTERNATIVE APPROACH TO COMPUTER 
CONTRACTS 

Why not look at a computer system contract from a new 
perspective? Instead of perceiving it as a legal document that 
no one but the lawyers really understands and that few people 
take the trouble to read, why not look at the contract as a 

A New Look at Computer Contracts 739 

management tool-a project management plan designed to 
educate and guide the vendor and customer toward the goal 
of successful system implementation? 

Legal documents are frequently used to educate and guide 
people in their affairs. For example, corporate by-laws can 
describe to the shareholders, officers, and directors their 
rights, duties, and responsibilities. These documents are rela
tively short and concise directives that, if followed, ensure 
conformance with laws and duties. They educate as well as set 
out legal relationships. Well-drawn estate-planning docu
ments, such as trust documents, describe trustees' responsibil
ities and beneficiaries' rights and responsibilities. By reading 
these documents, trustees can see what they must do to sell 
trust property and buy other property. Likewise, a computer 
contract can be drafted to guide vendor representatives and 
customers to successful system installation. Such a document 
could save all parties time and money by providing a manage
ment guide that educates and directs effort. 

Computer System Development Methodology 

Consider the typical computer system development meth
odology described in various texts on data processing project 
management. The phases of such a methodology might be as 

, follows: 

1. System definition phase. 
2. System design phase. 
3. System test and acceptance phase. 
4. Conversion, training, and implementation phase. 
5. Maintenance and support phase. 

Use of such a methodology is not uncommon in large systems, 
but it is uncommon in small systems where, it is reasoned, the 
system cost does not warrant a conventional development 
effort. 

Small systems may be relatively inexpensive, and price pres
sures may limit the use of systems analysts and other data 
processing professionals. The problem is, however, that the 
impact of a small-business computer system on business oper
ations may be enormous. Consider, for example, the effect 
failure of an inventory-control system might have on an 
inventory-intensive business like an auto parts store. Small 
businesses can fail and have failed because of computer sys
tem failure. 

It may not be realistic to suggest that a business owner 
purchasing a $10,000 computer system hire an analyst at $40 
to $60 per hour to manage the purchase, although such a 
decision should be guided more by risks and consequences of 
failure than by the price of the system. However, at least the 
business owner should be informed and guided in some way 
through the complex process of a system implementation. It 
is certainly in the interests of the computer system vendor to 
minimize the amount of necessary customer hand holding and 
the number of trouble calls from the customer--or the risk of 
a lawsuit. 



740 National Computer Conference, 1983 

Implementing Methodology via the Contract 

The contract should describe and provide a management 
tool for implementing the methodology. It should be a project 
olanniflll document as well as a leeal document. No maeic 
~ords ~e needed, and technical t;rms of art shotIld be ~as 
prevalent as legal terms of art. 

The following discussion is not intended to prescribe the 
form of the contract, nor does it address all of the legal consid
erations the contract should cover. The purpose of the ideas 
set forth is to demonstrate how the contract can contribute to 
the goal of achieving a successful installation. 

System definition 

The contract should incorporate specifications of system 
needs. This can be done by including these specifications in 
the contract or by referring to other documents, such as a 
functional specification, and incorporating these documents 
into the contract. Such a contract provision should, first of all, 
point up the requirement for a written specification. Often, 
prospective buyers never objectively and specifically deter
mit:Ie their needs, much less write them down. Even in a small 
system acquisition, a buyer can describe, in writing, the way 
his or her business functions and its special problems and 
considerations. 

If buyer needs are not specified, there will be a real risk that 
the vendor does not understand what must be done. Further
more, there will be no objective way to determine whether or 
not the system does what it is supposed to do, and if a lawsuit 
occurs, it will be more difficult and expensive to prove 
whether or not the system was defective. 

Warranties are also much more meaningful if they are set 
out in this manner. The effect of a functional specification is, 
in many cases, to warrant that the system will perform the 
specified functions. Such warranties help buyers by informing 
them of what the vendor is promising to do. They help the 
vendor by limiting performance promises to what is contained 
in the specification, assuming that oral sales representations 
and written performance specifications are substantially 
similar. 

Furthermore, a court is less likely to throw out or ignore 
contract terms if they seem fair. Specifying in writing what a 
system will do seems much fairer than making oral sales prom
ises and then repudiating them in the "fine print" of a con
tract. 

System design 

If the system software is to be developed especially for a 
particular buyer, design specifications are required to inform 
all parties involved what is to be done and how. Even in the 
case of off-the-shelf software, the functional specification will 
provide a way to match buyer needs with a package that will 
meet those needs. If no package will fit the needs in every 
respect, necessary changes (either to the software or to th~ 
business operations) can be identified more easily if the busi
ness operations and needs have been previously described, 
documented, and incorporated into the contract. 

System test and acceptance 

This may be one of the most critical phases of a computer 
system acquisition from both a legal and a technical point of 
view. If a properly designed, planned, and executed test and 
acceptance procedure is accomplished, all parties can gain a 
high degree of assurance that the computer system will do the 
job it was designed to do. If this phase is done haphazardly, 
system problems may not surface until the buyer is actually 
using the system. Problems that arise during the operational 
use of a computer system are the ones that hurt the most and 
lead to lawsuits. 

My experience in the litigation of computer cases has been 
that the last step in the acquisition process where problems 
can be discovered and corrected without serious adverse ef
fects on business operations is this system test phase. Despite 
the importance of this phase, it is often given little attention 
and concern. Standard form contracts currently in use are 
almost invariably designed to get the user to sign off as soon 
as possible rather than to ensure that a proper test and accept
ance procedure is employed. 

Consider what a good system test requires. First of all, good 
functional specifications are needed. Not only must these 
specifications describe the needs to be met, but also objective 
measures of satisfaction of those needs must be developed 
against which to test system performance, whether a separate 
test specification or simply a comprehensive functional speci
fication. The contract can and shouid set out the test proce
dures, the method of objective measurement of performance, 
the location of the testing, the personnel to be used, the type 
of data to be used, the procedure for isolating and reporting 
problems, and other considerations relevant to performance 
testing. This can be done in the contract itself or in another 
document that is referred to and incorporated into the con
tract by such reference. 

The contract should also specify the procedure for accept
ance of the system by the user. There frequently exists a 
serious discrepancy between what is called acceptance in the 
contract (if it is mentioned at all) and the practical require
ments of an intelligent acceptance procedure. Perhaps an au
tomobile can be intelligently accepted after a short period of 
driving it, but computer systems, depending on their size and 
the nature of the operations they support, may take several 
weeks to several months before users can be said to have had 
a reasonable opportunity to determine if their system does 
what is supposed to do. The law will give them this oppor
tunity. 

Rarely, particularly in small systems, does the contract or 
any other document make adequate provision for a reason
able test and acceptance procedure. The result of this situ
ation is a dispute waiting to happen. Without an adequate test 
and acceptance procedure, users may not find problems until 
they have used the system operationally for weeks or months. 
The disputes that arise in this situation are the kind that 
frequently lead to lawsuits. 

If a dispute does arise, despite the use of a good test and 
acceptance procedure, it can be resolved with much greater 
ease if there are objective ways of determining system per
formance. 



Conversion, training, and implementation 

The inexperienced buyer of a computer system is frequently 
not aware of the potential magnitude of the tasks of data 
conversion, training, and implementation. Even in small sys
tems it may take days or weeks to get through this phase 
successfully. The contract should address the requirements of 
data conversion, training of user personnel, and imple
mentation of the system into the user's operations. If these 
matters are addressed in the contract, and if the contract is 
used as a management tool to be read and understood, users 
can be educated and informed of the requirements of this 
important phase and vendors can gain some degree of assur
ance that, when they believe the project to be nearly finished, 
major problems in getting the system running will not arise. 

If these matters are not discussed and resolved early, they 
may create another area of potential dispute. As noted ear
lier, these disputes may grow into expensive and disruptive 
lawsuits. 

Maintenance and support 

This area is sometimes covered by a maintenance con
tract, usually drafted by the vendor's attorney to protect the 
vendor. Maintenance contracts that a court sees as unfair or 
unreasonable are just as likely to be struck down as sales 
contracts. Furthermore, lack of user knowledge and fore
thought in this area can be just as destructive to a potentially 
successful transaction as they can in any other area. 

A New Look at Computer Contracts 741 

The contract should discuss maintenance and support re
quirements up front, before these requirements turn into 
emergencies. For example, a user requirement for one-hour 
maintenance response can be discussed reasonably when the 
contract is being negotiated. Such a discussion held 15 
minutes after a retail point of sale and inventory system goes 
down in the middle of the Christmas rush is likely to lead 
quickly to heated words and disputes with lawsuit potential. 

CONCLUSION 

This paper has discussed certain court decisions, laws, and 
marketplace characteristics that affect computer contracts and 
has proposed an alternative to the standard contract currently 
in use. This alternative is designed to educate, provide a man
agement tool, prevent problems, and maximize the chance of 
a successful computer system project. 

Viewing the contract as a management device rather than 
as a legal document with no real bearing on practical con
siderations will benefit both computer vendors and their 
customers. Vendors will benefit from certainty in their obli
gations, education for their customers, and happy and satis
fied customers. Buyers will benefit from effective methods to 
ensure that their needs are defined and met with minimum 
adverse impact on business operations. 

In this age of proliferation of highly sophisticated computer 
systems into business, professional, industrial, and education
al entities, it is high time the industry changed its approach to 
contracting from a protectionist one to a success-oriented one. 





An information system for developing information systems 

by BRUCE 1. BLUM 
The Johns Hopkins University 
Baltimore, Maryland 

ABSTRACT 

This paper considers a paradigm for the development of software through the use 
of a complete, integrated-design database. A prototype information system for the 
implementation of information management systems is then described. This tool 
manages the requirement definitions, the process and data flow, and all design and 
operational documentation. Using a relational-data model and program specifica
tions, it generates programs in a selected target language. The results of two years' 
production use are presented, and the potential for transfer of the concept is 
examined. 

743 





INTRODUCTION 

One convenient mechanism for generalizing about progress in 
computer technology is to speak of generations. Thus, the 
Japanese are developing a fifth-generation computerl that will 
be an order of magnitude of improvement over the von Neu
mann computer, and language developers are working on 
fourth-generation languages2 that will result in an order of 
magnitude of improvement in productivity over conventional 
high-order languages. 

If we follow this analogy, we should be looking to a fourth
generation development environment. The first generation 
required hands-on manipulation of code and data, the second 
generation used punched cards and their electronic equiv
alent, and the third generation added libraries of tools and 
databases to support aspects of the life cycle. In this context, 
a fourth-generation development environment would provide 
uniform, integrated support to the full life cycle development 
process. This includes, of course, the maintenance and config
uration management activities that constitute roughly half the 
total system cost. 

Since the end result of computer system development is a 
machine-sensible product, one would expect practitioners in 
the field to have developed full-support automated tools. Un
fortunately, this is not the case. Source programs are still 
retained as modified card images in files. Access to and con
trol of programs are normally left to general file management 
programs. The contents of the program text are usually man
aged by the compiler with little analyzed data preserved in 
machine-sensible form. The link loader manages object pro
grams without providing much system structure information. 
Standalone and integrated packages may manage the data
base or data dictionaries. Word processing is used to record 

~ STANDARD DEVELOPMENT CYCLE 

~ NONINTEGRATED ADJUNCT 

~ FULLY AUTOMATED PARADIGM 

Figure I-The role of automation in the production life cycle 

Developing Information Systems 745 

requirements and specification documentation. Independent 
tools may support project management, test reporting, config
uration management, and so on. 

Figure 1 illustrates the role of automation in the current 
production model. Most machine-sensible products are not 
created until the process of coding begins. Coding is complete 
(for a given build) before testing begins; the coded product is 
used during operations. Superimposed upon the coded prod
uct is a nonintegrated, machine-sensible adjunct !o the prod
uct. This adjunct includes text-processed documentation, in
dependent reporting tools, standalone specification data, and 
so on. Clearly, our goals should be directed toward an inte
grated support environment that manages all information for 
each step of the process and links data among development 
processes. This is called the fully automated paradigm; as 
shown in Figure 1, it treats the system design information 
(requirements, specification, code, test data, etc.) as a single 
integrated database. 

In what follows, a prototype fourth-generation develop
ment environment is presented. This system, The Environ
ment for Developing Information and Utility Machines 
(TEDIUMTM, a trademark of Tedious Enterprises, Inc.) has 
been in production use at the Johns Hopkins Medical Institu
tions for over two years. The tool is directed toward a specific 
application set: the information management system (IMS). 

The IMS is characterized by its use of commercially avail
able hardware and software, its reliance upon a database, and 
its lack of realtime demands beyond those normally associated 
with interactive processing. The useful life of an IMS normally 
is 5 to 10 years; perhaps 75 percent of all commercial EDP 
activity is related to IMS projects. 

The IMS provides a convenient target for a fourth
generation design environment. There is little technical risk 
associated with a project. That is, because of its reliance upon 
off-the-shelf products, there is little doubt whether the tech
nology will be able to support the application. There is, how
ever, great application risk-that is, risk that the finished 
project will not meet the users' needs. This failure to produce 
acceptable results is a major problem in IMS development. 
For example, surveys show that 52% of the requested applica
tions are backlogged for two or more years. 3 Further, one 
report indicated that of the software undertaken, 75% was 
never completed or not used if completed.4 

Figure 2 presents an overview of the state-of-the-art with 
respect to these two axes of risk. While a fully automated 
paradigm may be appropriate for all system development, it is 
reasonable to narrow the scope for prototype development. In 
the case of TEDIUM, the application area is the IMS in 
general and clinical information systems in particular. The 
latter manage clinical data in support of patient care. The 



746 National Computer Conference, 1983 

t 
~ 
C/) 

a:: 
z 
o 

~ 
o 
..J 
Q.. 
Q.. 
« 

CURRENT 

~ STATE OF THE ART 

TECHNICAL RISK --. 

Figure 2-Two axes of development risk 

primary challenge is the definition and refinement of require
ments in a dynamic user environment. Once the needs are 
established, there is little difficulty in transforming them into 
a final product. (Of course, the previously cited performance 
statistics suggest that although implementation may not be 
difficult, mere implementation does not imply that there will 
be a satisfactory prodUCt.) 

METHOD 

TEDIUM is a comprehensive methodology and environment 
intended to support the development and maintenance of an 

IMS. It operates upon a database containing all the machine
sensible information about the target IMS. In this sense, it is 
an information system for developing information systems. As 
an IMS, TEDIUM is implemented using TEDIUM. 

The target applications for which TEDIUM was designed 
are moderate to large IMSs with heavy user interaction, a 
limited understanding of the final requirements, and sophis
ticated data structures. These are custom-built systems that 
require from one-half to twenty man-years of effort. Though 
TEDIUM clearly has the ability to act as a report generator 
or "programmerless" application generator, its design capa
bilities are considerably broader. Various aspects of the sys
tem and its implementation techniques have been described in 
detail elsewhere. The remainder of this section contains an 
overview of TEDIUM and provides references for further 
reading. 

A model of the IMS development life cycle is presented in 
Figure 3. Although it resembles the traditional waterfall dia
gram, this schematic shows the process as a series of trans
formations between environments. The underlying concept is 
that we must first understand each operational environment 
before we can develop the tools needed to support the trans
formation of knowledge from one environment to another. 

The application environment is the arena in which the sys
tem will be used. The needs of this environment establish 
what is to be done; its procedures are generally altered by the 
delivered IMS. (This is a combination of the Heisenberg Un
certainty Principie and a fundamentai restructuring of the 
environment. ) 

The analyst's description of what the IMS is to do is created 
in the development environment. The description usually con
sists of text and diagrams limited to the scope of the IMS. Part 

SYSTEM MAINTENANCE 

APPLICATION ENVIRONMENT 

SYSTEM USE 

ENVIRONMENT SYSTEM DOCUMENTATION 

SYSTEM OPERATIONS ENVIRONMENT 

DEVELOPMENT S7 OPERATION 

Figure 3--A model of the system life cycle 



of the description is used only during the development phase; 
other parts (e.g., user manuals) are required throughout the 
life cycle. 

In the design environment there is a translation of the de
scription that tells what is to be done into a specification of 
how it is to be done. The form may be either text or a formal 
specification language. This specification is translated into 
instructions that can be executed. The process is an expansion 
of the design into code (commonly called programming). This 
function is carried out in the implementation environment. It 
is supported by the system operation environment that repre
sents the hardware and software (e.g., computer and oper
ating system) used for testing and the operation of the finished 
application system. Not shown in the figure are the necessary 
feedback loops or overlaps due to phased implementation. 

In this development model there are five major trans
formations. The first is from the application to the descrip
tion. It is independent of programming language, operating 
system, and computer equipment. The description is typically 
documented as text that is partially maintained throughout 
the system's life cycle. The next transformation is from the 
descriptive text to the design specification. If a formal specifi
cation language is used, this is a translation from a text docu
ment to an unambiguous description of how the system shall 
be implemented. (Some software engineering documents 
limit the role of formal specifications to the requirements that 
simply describe what is to be done. It is now generally recog
nized that it is impossible to always separate structure from 
behavior; thus this convention is not used with TEDIUM.) 

The design specifications are based only upon the descrip
tion and are independent of the application environment. 
They also are generally independent of the implementation 
language and target system. The next two transformations 
involve the conversion of the design to an' implementable 
product and a test of that product in a system operations 
environment. For the target applications, there is little tech
nical risk in these transformations. The major concern is that 
the design specifications satisfy the application environment 
needs. 

The final transformation is system maintenance. System 
maintenance consists of (1) correction of errors and (2) 
changes and expansions to the system. In either case the 
process involves each activity required during the initial de
sign. For system maintenance, however, the problem may be 
complicated by the fact that key analysts and documentation 
are not available. The model shows system maintenance as a 
feedback loop that restarts the cycle. (This flow is described 
in greater detail by Blum.S

) 

TED IUM uses this development model to structure the 
design process. It begins with a statement of requirements 
that is developed within the application environment. These 
requirements are produced by the users and application de
signer. Though in some cases diagrams may be used, the 
requirements are normally text descriptions. Where the re
quirements are well understood, they are written in document 
format; for less well-understood requirements, an outline fre
quently suffices. The process of requirement definition is in
tended to document mutual understandings and to work 
toward the establishment of the users' true needs. The system 

Developing Information Systems 747 

requirements, therefore, do not act as a fixed document that 
initiates the design activity (i.e., a "build to" specification). 
Rather, the requirements represent an initial step in a con
tinuing user-designer dialogue. (The overall process is called 
system sculpture and is further described by Blum and 
Houghton. 6) 

Once the requirements for an application (or build) are 
established, the requirements are decomposed into processes 
and data groups. There is no algorithm for the allocation of 
requirements to processes and data; it is a highly subjective 
and personal activity. Of course, the general principles of 
structured analysis apply. One requirement may initiate many 
processes (data groups); one process (data group) may satisfy 
many requirements. Following the examples of Jackson and 
Warnier, we have made the notation for processes and data 
symmetric. Depending upon the application, the designer ini
tially may elect to concentrate on processes or data groups. 
Both processes and data groups are documented as text. 
Again, outlines may be used where uncertainty exists. 

Although there is freedom to work within the design meth
odology, the final design of an application must reach equi
librium and completeness. This is accomplished when all 
requirements are satisfied by at least one process or data 
group, all processes and data groups satisfy at least one re
quirement, and a data flow exists that includes each process 
and data group. And finally, the requirements, processes, and 
data groups must have been organized in hierarchical struc
tures (outlines). 

The activity just described represents the transformation 
from the application environment to the description environ
ment. TEDIUM supports this process by managing the hier
archy nodes and text of the requirements, processes, and data 
groups. It also provides links between the various entities and 
thus controls the descriptive network. Text recorded in the 
descriptive environment may be flagged with respect to im
portance (great, moderate, detailed) and potential audience 
(general, user, programmer, operator). TEDIUM provides 
tools to extract and organize text based upon .class, im
portance, and audience in order to produce general docu
ments and manuals. Thus, the requirements and design data 
are seen as an initial step in a continuing process of refinement 
that produces the final application documents. (The docu
mentation process and data structures used to support it are 
presented in greater detail by Blum.7

) 

Once the descriptive environment material is available, the 
transformation to the design environment begins. Processes 
are decomposed into executable entities (programs) and data 
groups are decomposed as relations (tables). Again, programs 
and tables are linked to the processes and data groups that 
spawned them. This many-to-many map is also maintained by 
TEDIUM. It facilitates maintenance by directly linking any 
program or table with the system elements or requirements 
that it affects. Of course, the validity of these links depends on 
the judgment and dedication of the application designer. 
Though the network can get out of date, the relative ease of 
update and the ability to produce cross-references to highlight 
inconsistencies represent improvements over traditional docu
mentation methods. 

Figure 4 summarizes the linkage of the various descriptive 



748 National Computer Conference, 1983 

REQUIREMENTS 

SYSTEM ~ 
FLOW DATA GROUPS 

~----------~~------------

PROGRAMS TABLES 

Figure 4-System definition network 

and design components. Several points should be noted. First, 
the documentation process is not mandatory. One can define 
programs and tables without starting with requirements. For 
small, limited-use applications, written requirements are not 
prepared. Second, the definition network allows the designer 
to conceive of the system as a network with neither top nor 
bottom, even though processes and data groups are repre
sented as a hierarchy-that is, data flow is possible between 
data groups at one level of depth and processes at another. 
Consequently, data flow diagrams that impose a system hier
archy upon the data-process interactions may be managed by 
TEDIUM; however, they are the exception rather than the 
rule when the TEDIUM design methodology is used. (A more 
complete discussion of the design methodology with sample 
descriptive outputs is given by Blum and Brunn.B

) 

-- Once the programs and tables have been identified they can 
be specified. An underlying axiom of TEDIUM is that it 
should minimize duplication and provide immediate access to 
all established application design information. This is most 
easily illustrated by considering the process of table defini
tion. (Because TEDIUM relies heavily upon user interaction, 
the term table was selected in place of the more threatening 
term relation.) 

The TEDIUM data model uses tables with multiple, 
variable-length keys (index elements) and variable-length 
records containing zero or more data elements. Unlike a true 
relational model, it always orders the entries in a table by 
index element. (This knowledge of access order is essential 
when one is producing applications for small systems with no 
DBMS facilities.) The short notation used by TEDIUM is 

PATIENT(PATID) = NAME,AGE,RACE,SEX 

where PATIENT is the table name, PATID is an index term, 
and NAME, AGE, RACE, and SEX are data terms. The 
underlining of PATID indicates that it is a defined term. That 
is, the table PATIENT will act as a dictionary for values of 
PATID. All attempts to enter a value of PATID that is not 
already in the table PATIENT will be rejected (unless, of 
course, this feature is overridden within a specification.) 

The TEDIUM data model also allows the creation of 
secondary tables that are subsets of a primary table. For exam
ple, the table 

PATNAME(NAME,PATID) 

is a name index to PATIENT. (PATID is required to provide 
uniqueness for patients with the same name. There are no 
data elements.) 

The process of defining these two tables can be done in a 
five-minute interaction session. Once the table definition op
tion is selected, the table name is prompted for. If it has not 
yet been defined, it is added to the database. Descriptive text 
information about the table is also requested; this may be 
supplied now or added at a later date. For new tables, 
TEDIUM prompts for the index and data elements. Again, if 
the element has not been defined, it is added to the data 
dictionary. Element definitions contain an external name 
(used for prompts), the data type and format, optional valida
tion criteria, and text description. After the data element has 
been established, the system allows the user to add attributes 
to the element within this table, that is, defined, mandatory, 
optional, defaulted to a given value, initialized as a given 
value, and so on. (A more complete description ofthis process 
plus a sample dialogue and printed table listings are contained 
in another paper. 9) 

The TEDIUM schema contains all table and data element 
definitions. The definitions include both formal parameters 
and free text. (User requests for information about an ele
ment first display the text; a subsequent request produces the 
formal parameters and validation criteria.) The data types 
include fixed and variable-length strings, integer and real 
numbers, date and time. There is also a text data type that 
calls in the text processor for each input request and the text 
formatter for all writes. The TEDIUM requirement table, for 
example, has the following general format: 

REQUIRE(APPLICATION ,REQUID) 
= REQNAME,REQTEXT 

where REQNAME is defined as a variable-length character 
string of maximum length 120 and REQTEXT is a text data 
element of arbitrary length. 

Programs in TEDIUM are defined by use of minimal speci
fications. The minimal specification is the least amount of 
information needed to produce the program within the con
text of a given system style and the design database. That is, 
one should be able to give a programmer a minimal specifica
tion plus the schema and a style manual and, without any 
further interaction, receive a complete and correct program 
that fully satisfies the specification and style requirements. 
For example, given the system style currently in use at the 
Johns Hopkins Medical Institutions, the specification for a 
program that would add, edit, delete, list, change index 
values, and produce table listings for the table PATIENT and 
also maintain the consistency between the tables PATIENT 
and PATNAME would be 

Entry program for the table PATIENT 



The "Entry" program is an illustration of a generic pro
gram. It is a template that accepts specific required and op
tional commands in order to fully define a program. Another 
example of a generic specification is that for a program to 
search through the name index (PATNAME), list out all pa
tients who match a given root name, allow the user to select 
a patient (or indicate that no patient was found), and return 
the value of the selected patient's NAME and PATID (or the 
not-found code). This would be written 

Prompt program for table PATNAME 
Input is NAME 
Output is NAME,PATID 

In each of these cases the program specification is given as 
nonprocedural statements. Unfortunately, few applications 
can be specified exclusively through the use of nonprocedural 
statements. Thus TEDIUM provides the TEDIUM language 
either to augment generic specifications or to create complete 
specifications. 

Commands in the TEDIUM language tend to be house
keeping-free and application oriented. For example, in the 
JHMI style, the PRompt command 

PR CONTINUE PROCESSING (YIN) 

will print out the string CONTINUE PROCESSING (YIN) 
and read an input. If the input is null, it is set to Y. If the input 
is the escape character, an abnormal program return is made. 
If the input is a question mark, then a help message is printed. 
(If none exists, then [NO HELP MESSAGE AVAILABLE] 
is printed. The user has tools to add or alter help messages 
after system delivery.) If the input is not Y ,N, or any of the 
above, then the system prints [ERROR] and repeats the 
prompt. Note how the use of this command assures both 
completeness and consistency in the final product. (Alternate 
styles might accept Y,YE,YES,N,NO function keys, etc.) 

All TEDIUM commands are written as five fields: 

• An optional label 
• An optional guard that contains a predicate which must 

be true if the statement (or block started by the state
ment) is to be executed 

• A mandatory operand 
• Parameters for the operand· 
• Optional control fields that indicate where control should 

be sent after normal or abnormal execution of operand 

This command structure builds a GOTO into each statement. 
Although this may seem to violate current thinking, it is effec
tive for TEDIUM specifications because 

• Specifications are compact and short: normally one CRT 
screen-full, seldom longer than an 8! x 11" printed page. 

• All procedural statements are always printed in a box 
with labels outside the box to the left and control state
ments outside the box to the right. With this format, 
control flow and block structure are much easier to rec
ognize than in the more commonly used nested style. 

Developing Information Systems 749 

All generic programs are written as expansions of 
TEDIUM statements and nonprocedural inputs. Nonpro
cedural statements are used for entry and exit assertions. All 
generic programs allow the insertion of TEDIUM commands 
at key points in their flow. Thus one can create a generic 
program and modify it with custom statements that will alter 
the flow, function, or interface. A common practice in the 
TEDIUM environment is to generate a program with the 
desired functionality quickly and then, based upon designer 
and user experience with the interactive flow, modify the 
program; hence the term system sculpture. (A more complete 
discussion of the specifications, system style, the command 
language, and the method for creating generic programs may 
be found elsewhere. 10) 

Programs are defined as a program specification and a 
frame specification. The frame is a generalization of the out
put environment-interactive or batch, scroll or page, or 80 or 
132 characters wide, for example. The frame definition may 
contain head and foot lines and other specific features which 
facilitate the maintenance of uniformity within an application. 
The frame allows programs to process output according to the 
execution mode. Thus, reports being printed interactively will 
recognize the end of the screen and prompt to continue or 
quit. When execution is in the batch mode, the page size is 
adjusted and the prompt is ignored. Since this is managed by 
the frame, the same program specification and program gen
erally are used for both interactive and batch reports. 

Design is completed when the table schema and program 
and frame specifications are complete. Since TEDIUM uses 
the concept of minimal specifications, the translation from the 
design environment to the implementation and systems oper
ations environment is a mechanical task which requires no 
knowledge beyond that already available in the design data
base. TEDIUM takes advantage of this fact by generating 
programs from the design database. Figure 5 illustrates the 
flow. 

TABLE SCHEMA 

ELEMENT 

DICTIONARY 

PROGRAM 

GENERATOR 
t---~ CODE 

PROGRAM DEFINITION 

/ \ 
PROGRAM FRAME 

SPECIFICATION SPECIFICATION 

Figure 5-Code generation tree 

The generation of programs is a function of program style. 
Since the TEDIUM specifications are implementation inde
pendent, the target language is arbitrary. For example, the 
flow presented for the PRompt command could be imple-



750 National Computer Conference, 1983 

mented in almost any language. The initial prototype of 
TEDIUM (called SIMPLE) was designed to produce COBOL 
outputs. The present version generates MUMPS using a cus
tom coded generator. The next-generation system, currently 
under development, will have the generator written in 
TED IUM and will be designed to produce MUMPS, 
COBOL, and other target languages. This will provide the 
tools for users to produce programs that conform to their 
individual target styles. 

The final development process of the life cycle model is 
maintenance. TEDIUM supports the maintenance process by 
providing online and printed access to the entire design data
base. A query capability is available from all specification 
definition screens. It allows the user to identify programs, 
tables, frames, and elements, and to examine their contents 
arid structure. Online access is also provided to cross refer
ences that indicate, for each program, what programs call and 
are called by it and what tables are read and written by it. 
Similar information is available by table name. Program struc
ture listings present a call tree for a root program. All of these 
listings are derived from the design database and are always 
accurate and timely. Because the TEDIUM programs are 
written in TEDIUM, it is easy to add new functions to the tool 
base. 

RESULTS 

TED IUM has been in production use since the summer of 
1980. There have been 15 or 20 different people using the 
system. Since 1981 virtually all programming by a staff of eight 
has been done with TEDIUM. Four TEDIUM users are per
sons with no previous professional programming experience; 
after six months of experience, each was able to work inde
pendently with users in the design and implementation of 
applications. The obvious conclusion is that---even though 
documentation and training materials are severely deficient
the product is understandable at the level of specification and 
generation. Two other questions remain: (1) can TEDIUM be 
used to support the development of complex systems as its 
design objectives intend, and (2) do the features of TEDIUM 
improve productivity? Each is addressed below. 

Scope of Systems Generated 

TEDIUM is being used to implement applications that are 
put into production use. Five major applications have been 
implemented. 

• TEDIUM.-All of TEDIUM except the program gener
ator and selected utility programs are written in 
TEDIUM. Work on this version of TEDIUM was frozen 
in September 1981. 

• SOCIAL WORK.-A small system used for manage
ment by objective, it was the first complete system to be 
implemented. It has been frozen since June 1981. 

• CORE RECORD.-A prototype ambulatory care sys
tem was implemented in three clinics, accounting for 

75,000 visits a year. 11,12 This version of the system was 
frozen in December 1981. 

• ONCOLOGY CLINICAL INFORMATION SYSTEM 
(OCIS).-A major tertiary care system13 with protocol 
directed patient management,14 this has been repro
grammed using TEDIUM. Work on system expansion 
continues. 

• OPERATING ROOM SCHEDULING.-This sub
system for the Department of Anesthesiology is in pro
duction use; work continues on it. 

Table I summarizes the approximate size of each application. 
It can be seen from these brief descriptions that TEDIUM can 
be used to produce complex systems. 

TABLE I-Overview of TEDIUM-generated applications 

Operational 
Application Date Tables Elements Programs 

TEDIUM 8/80 105 175 318 
SOCIAL WORK 3/81 21 78 94 
CORE RECORD 3/81 85 245 533 
OCIS 6/81 456 1,251 2,177 
ANESTHESIOLOGY 1182 20 66 166 

Productivity 

Productivity is generally measured in terms of lines of code 
per unit of work. This measure is imperfect because there are 
no uniform definitions for a line of code. Moreover, the mea
sure includes only an indication of the bulk of the delivered 
product. Lines-of-code measures do not address utility of the 
delivered product (Gladden states that 37% of the systems 
started were delivered but not used4), or the impact of main
tenance (generally considered to be at least half of the total 
life cycle cost.) Software science provides improved measures 
for volume and effort but does not address the other two 
variables. 

TABLE n-Some productivity measures 

Equivalent 
Lines per man-day Custom Codea 

Activity Effort TEDIUM Generatedb MUMPS COBOL 

Start-upC 10 man-years 13.8 
Anesthesiologyd 10 man-days 35.3 
Symposiume 10 man-days 45.5 

101 
247 
402 

50 
125 
200 

280 
700 
900 

aEstimated lines of custom code in the target language necessary to produce the 
same functionality, Based upon analysis by the author. IS The figures on COB
OL are of questionable accuracy but do indicate rough orders of magnitude. 
bGenerated lines are based upon 30 characters per line of MUMPS code. 
CAll programmer activity from the time TEDIUM was first available to the end 
of 1981. Includes training of new employees, debugging of TEDIUM, etc. 
dPrototype of the operating room scheduling system. First use of TEDIUM by 
the analyst. 10 

eA symposium program management system developed by the author and a 
novice. 16 



Table II summarizes three exercises in measuring TEDIUM 
productivity. More detailed analysis will be initiated when the 
major system we are working on is frozen. Each system cited 
is in operation and fully satisfies the users' needs (to the extent 
that this can be done within resource constraints). Finally, 
long-term maintenance will be facilitated because 

• The size of the specifications is one-seventh the size of 
the generated programs; thus, there is less to maintain. 

• Programs are generated from specifications and the data 
model definitions, so documentation is always correct 
and up-to-date. 

• TEDIUM's automatic generation of cross-reference 
indices and set/used tables facilitates maintenance. 

• The linkage between programs and user documentation 
is part of the TEDIUM program. 

DISCUSSION 

There are very few systematic attempts to address the prob
lems of managing the software life cycle. Most tool devel
opment is directed to standalone, nonintegratable packages. 17 

Most of the work on specifications ignores the maintenance of 
a bidirectional link between the design and the delivered 
product. The computer generally is used as a passive store for 
design information without any provision of access to the 
knowledge imbedded in it. Too much of the design and coding 
effort is spent on the mechanical and repetitive translation of 
general, predictable requirements into programs-a process 
that is time-consuming and imperfectly executed. Clearly, 
there is a need to establish a conceptual framework for the 
development of automated tools that can manage this activity. 

This paper began by outlining a fully automated paradigm 
for the development life cycle. It continued by illustrating 
how-for a specialized application area-a prototype envi
ronment is approaching this problem. It also suggested that 
the use of this tool offered an order of magnitude of im
provement in productivity, a necessary condition for a fourth
generation development environment. While this specific 
product is of significant use to a small user community, the key 
issue is how the concept of a fully automated paradigm will 
affect the process of software development. 

First, we must question whether products such as TEDIUM 
are transportable. Because TEDIUM represents such a sig
nificant change to the established life cycle model and product 
development flow, there is bound to be strong resistance. The 
barriers are the existence of program libraries and databases, 
investments in programmer/analyst training, emotional dis
trust, competition with proprietary products, variation in local 
styles and needs, and the presence of backlogs that preclude 
reassignments from production tasks to training in new 
methodologies. 

The technical barriers are relatively simple to address. 
TEDIUM currently runs on a minicomputer within partitions 
of less than 10K. The system can be installed on a micro
processor-based system with four terminals, a printer, and 
30M disk for about $20,000. This analyst station could support 
all development and rapid prototyping and send the generated 

Developing Information Systems 751 

code to a target machine for compilation and final testing. 
With the program generator written in TEDIUM, system pro
grammers could adapt the system style to meet local needs or 
to interface with tools such as a DBMS, distributed processing 
software, and so on. Thus, if the social and emotional barriers 
can be overcome, the product is transportable. The growth in 
popularity of "programmerless" systems demonstrates how 
flexible the user community is. 

Another question of equal importance relates to the mar
keting of such fundamentally different products. In his review 
of information systems in the 1980s, Wei 1 notes that, because 
of a need for stability and support, the number of independent 
software houses will be limited to a dozen or two out of the 
universe of hundreds. 18 This implies that, barring a phenom
enal success story, leadership in the distribution of fully auto
mated environments will have to come from the established 
vendors. And each of these already has products that claim to 
provide fourth-generation functionality. 

In conclusion, therefore, we see that there is a user com
munity need for continuity and support and an established 
vendor need to build on existing product lines. Both these 
needs reinforce the status quo-hence the resilience of FOR
TRAN and COBOL. Thus, a fully automated paradigm may 
find wide acceptance only with fifth-generation computer sys
tems. In the meantime, however, TEDIUM provides an effec
tive tool for high application risk IMS projects. And though 
the goals of TEDIUM development are limited, it is hoped 
that our experience will encourage others to consider alterna
tive methodologies for a fourth-generation design environ
ment. 

REFERENCES 

1. Treleaven, P. c., and I. G. Lima. "Japan's Fifth-Generation Computer 
Systems." Computer, 15 (1982), 8, pp. 79-88. 

2. Martin, J. Application Development Without Programmers. Englewood 
Cliffs, N.J.: Prentice-Hall, Inc., 1982. 

3. Focus. 1982 CPU Market Survey, Datamation, 28 (1982), 5, pp. 34-47. 
4. Gladden, G. R. "Stop the Life-Cycle, I Want to Get Off." ACM SIGSOFT 

Software Engineering Notes, 7 (1982), 2, pp. 35--39. 
5. Blum, B. "A Methodology for Information System Production." Annual 

Meeting of the Society for General Systems Research on Systems Meth
odology (Vol. 26), 1982, pp. 278--281. 

6. Blum, B., and R. Houghton, Jr. "Rapid Prototyping of Information Man
agement Systems." Software Engineering Symposium on Rapid Proto
typing, 1982. 

7. Blum, B. "An Approach to Computer Maintained Software Documen
tation." NBS FIPS Software Documentation Workshop, NBS Special Publi
cation 500-94, October 1982, pp. 110-118. 

8. Blum, B., and C. Brunn. "Implementing an Appointment System with 
TEDIUM." Proceedings of the Fifth Annual Symposium on Computer 
Applications in Medical Care, 1981, pp. 172-181. 

9. Blum, B. "Program Generation with TEDIUM, An Illustration." National 
Bureau of Standards, Trends and Applications 1981, May 1981, 
pp. 141-149. 

10. Blum, B. "A Tool for Developing Information Systems." In H. J. 
Schneider and A. I. Wasserman (eds.) Automated Tools for Information 
System Design and Development. North-Holland Publishing Co., 1982, 
pp. 215--236. 

11. McColligan, E., B. Blum, and C. Brunn. "An Automated Core Medical 
Record System for Ambulatory Care." SAMSISCM Joint Conference, 
Oct.!Nov. 1981, pp. 72-77. 

12. McColligan, E., and B. Blum. "Evaluating an Automated Core Medical 
Record System for Ambulatory Care." American Medical Informatics 
Association (AMIA) Congress '82, May 1982, pp. 2()(r...215. 



752 National Computer Conference, 1983 

13. Blum, B. and R. Lenhard, Jr. "An Oncology Clinical Information System." 
Computer Magazine, 12 (1979), 11, pp. 42-50. 

14. McColligan, E., B. Blum, R. Lenhard, Jr., and M. Johnson. "The Human 
Element in Computer Generated Patient Management Plans." Tenth 
Annual Conference of the Society for Computer Medicine, September 1980. 
Reprinted in Journal for Medical Systems, 6 (1982), 3, pp. 265-275. 

15. Blum, B. "MUMPS, TEDIUM and Productivity." MEDCOMP 'S2, 
September 1982, pp. 200-209. 

16. Blum, B., and J. Blum. "MUMPS Program Generation Productivity 
Measures." Eleventh Annual Meeting of the MUMPS Users' Group, June 
1982, pp. 1-5. 

17. Houghton, Jr., R. C. Software Development Tools, National Bureau of 
Standards Special Publication 500-88, March 1982. 

18. Weil, U. Information Systems in the SO's. Englewood Cliffs, New Jersey: 
Prentice Hall, Inc., 1982. 



A metric of estimation quality 

by TOM DEMARCO 
Yourdon Inc. 
New York, New York 

ABSTRACT 

This paper reports on a metric of the estimating process called Estimating Quality 
Factor (EQF). EQF is used to gauge progress in estimating technique and to 
provide an easily measurable standard for good estimating. 

753 





INTRODUCTION 

You cannot control what you cannot measure. Anything you 
do not measure is almost certainly out of control. To say that 
the estimating process for software is out of control would be 
relatively kind: In a recent metric survey! I conducted, esti
mated development efforts were plotted against actual efforts, 
giving the dismal result shown in Figure 1. The caption of 
Figure 1 may be overly optimistic, because a number of par-

, 
• / 

/ 

•• / 
/ • / 

• / • / 
1:: / 
0 •• / 

= / 
W • / 

1; • / • ::s / ..., • " U 
, 

< • / 

• / 

e/ • 
••• 

/ 
/ 

/ 

Estimated Effort 

Figure I-The State of the Art of Software Estimating? 

ticipants dropped out of the survey before completion, and 
there is every reason to suspect that those who drop out of a 
productivity survey tend to be among the lower-than-average 
performers. 

Software cost estimates are notoriously poor. In a recent 
chemical plant construction project, support software was de
livered at a cost nearly 400% of the original estimate; the 
construction effort was delivered within 9% of its estimate. 
One very evident difference between the methods used by 
construction estimators and those used by software estimators 
is that construction estimators keep rigorous and formal 
records on the quality of their estimates; software estimators 
do not. A prevailing software industry standard is to lose 
estimates the moment they are found to be wrong so that, by 
the end of a project, no one can say for sure just how bad the 
original estimates were. 

A Metric of Estimation Quality 755 

As the software discipline matures, we will need to adopt 
some of the methods used by estimators in other fields in 
order to be able to approach their performance. In particular, 
we will need to formulate a precise and verifiable measure of 
estimation quality and use that measure to analyze and im
prove the estimating process. This paper describes one such 
measure. 

ASSESSING THE QUALITY OF AN ESTIMATE 

The quality of an estimate must be judged with respect to the 
duration of the unknown. Estimates generated when manage
ment typically requires them-first microsecond of the 
project-should be expected to have wide tolerances. Later 
estimates, say from the project 50% point, should have con
siderably narrower tolerances. Any assessment of estimation 
quality must, therefore, take into account the point in time at 
which the estimate was produced . 

First Rule: Estimate quality increases monotonically with 
accuracy (how closely the estimate predicts the actual) and 
with earliness (how soon in the project the estimate is pro
duced) . 

The first, and in many ways most crucial, estimates are 
commissioned at the very beginning of a project. There are so 
many unknowns at this point that the tolerance of estimates is 
unacceptably high. Most projects are begun with estimates 
that (time will prove) have a tolerance of -20%, +300%. 
Because tolerances are often not expressly stated, managers 
assume an expected deviation of -0%, +0%. They deal with 
the problem of unacceptably wide tolerances by ignoring it. A 
manager who takes explicit account of the wide tolerances of 
early estimates, however, is obliged to narrow the risk as the 
project goes on. This means that he/she must begin to con
sider estimating as a continuing process. A project may begin 
with the understanding that cost may exceed benefit by a 
factor of 300%, but it cannot be continued on that basis. 
Subsequent estimates will have to narrow the unknown so that 
go/no-go decisions can be made intelligently. 

Second Rule: Estimate quality must be assessed not on the 
initial estimate alone but on the dynamic characteristic of 
successive estimates and their convergence to actual results. 

This means that key project parameters will have to be esti
mated and re-estimated throughout the project and a formal 
history maintained. The history might take this form: 



756 National Computer Conference, 1983 

ABX Project: Estimated Debugging Effort (Man-Hours) 

Date of Estimate 
1115/80 
3/15/80 
6/15/80 
8115/80 
9/15/80 

Estimated Value 
2,000 hrs 
3,500 hrs 
5,500 hrs 
5,000 hrs 
4,750 hrs (actual) 

ESTIMATING QUALITY DEFINED 

The metric Estimating Quality Factor (EQF) is defined by 
applying the two rules to the estimating history in the follow
ing fashion: 

EQF = Reciprocal of the average absolute deviation 

where the deviation between estimate and actual is expressed 
as a p~rcentage of the actual. This formulation is more easily 
understood from a graphic representation of the estimating 
history, as shown in Figure 2. EQF is now seen to be the area 
under the actual result (A x T) divided by the shaded area. 
High EQF numbers imply good estimates. The starting point 
for computation of EQF is taken arbitrarily as the point at 
which 10% of elapsed time has been used up. Obviously, EQF 
can be assessed only after the estimated parameter becomes 
known. 

EARLY EXPERIENCE WTIH THE EQF METRIC 

For 17 projects studied in Reference 1, average EQF was 
slightly below 4. The estimating technique used in these 
projects seems to have been the traditional gut-feel approach. 
I concluded that an EQF of 4 or lower characterizes the cur
rent state of the art of software estimating, and it is a reason
able standard against which to test new estimating techniques. 
Techniques that raise EQF substantially above 4.0 can be 
considered improvements. 

Experiments in six client companies -involved the establish
ment of politically separated groups of estimating experts 
according to the method described in Reference 2. These 
estimating teams did all estimates within their organizations. 
Project personnel did no estimating and estimators did no 
development. Estimators were instructed to track EQF for 30 
key project parameters and to endeavor to maximize average 
EQF. They had no incentives beyond this. Explicitly stated, 
they had no incentive to come up with optimistic estimates, 
because such estimates would not reflect on their own devel
opment skills; no incentives to come up with padded esti
mates, because estimates that are above the actual reduce 
EQF just as much as those below; and no disincentive to 

.... 
C 
G) .. .. 
~ 
o 

~I •• ------------ T 
I 
:/10% Point 

Time 

Figure 2-Estimating History (Graphic View) 

Actual 
- Result 

frequent re-estimation. The estimators applied metric tech
niques taken from References 2,3, and 4 as well as from other 
sources. Average EQF for the experiment improved over the 
18 months during which data were collected, from an initial 
value of 3.8 to 10 or higher. 

CONCLUSION 

Estimating quality can only improve if we adopt some way to 
measure and track it. The measure selected should depend on 
the degree of convergence of estimates to actuals over time. 
The EQF metric is a palatable metric of estimating quality, 
at least for some organizations. * Improvement of average 
EQF in the experiment is the only evidence I know that any
one has ever made progress in learning to estimate software 
development. 

REFERENCES 

1. DeMarco, T. "1978--1980 Project Survey Final Report." Yourdon Inc. Tech
nical Report, September 1981. 

2. DeMarco, T. Controlling Software Projects: Management, Measurement and 
Estimation. New York: Yourdon Press, 1982. 

3. Boehm, B. W. Software Engineering Economics. Englewood Cliffs, N.J.: 
Prentice-Hall, 1981. 

4. Putnam, L. H. Software Cost Estimating and Life Cycle Control: Getting the 
Software Numbers. IEEE Catalog No. EHO 165-1. New York: IEEE, 1980. 

*One of the participating companies insisted on redefining EQF to weight 
earlier estimates somewhat higher. Although their formulation was slightly 
different, it was also a measure of convergence of estimate to actual over time. 
The specific formula seems to me to be not so important as the idea that there 
be a predefined formula for estimating quality. 



Software productivity measurement 

by J. S. COLLOFELLO, S. N. WOODFIELD, and N.E. GIBBS 
Computer Science Department 
Arizona State University 

ABSTRACT 

Productivity is a crucial concern for most organizations. This is especially true for 
software development organizations. Although the term productivity is widely used, 
the difficulty of defining it leads to serious problems in productivity measurement. 
This paper will attempt to survey some current productivity measures for software 
development organizations and discuss their deficiencies. A theoretical productivity 
model that overcomes these deficiencies will also be presented. A practical produc
tivity measure that exceeds current measures by including a quality component will 
also be described. Although this measure is only a small improvement over contem
porary measures, it is a promising step in the direction of better productivity 
measurement. 

757 





INTRODUCTION 

Productivity has become a major concern for most organiza
tions attempting to survive in today's competitive market. 
Productivity improvements are being sought to produce a 
higher quality product at a lower cost. To assess the effect of 
steps taken to improve productivity, it is first necessary to 
have an objective measure. This measure normally assumes 
the form of a ratio of acceptable products developed to unit of 
time. rhus, measures such as manufactured components per 
hour are typical. 

Productivity is a major concern for software development 
organizations. As in other organizations, productivity im
provements are being sought to produce higher quality soft
ware at reasonable costs. High-level programming languages, 
software engineering techniques and tools, and new project 
management methods are all being proposed as ways to im
prove productivity. For an organization to assess the effects of 
these new approaches, an objective software development 
productivity measure is needed. With this type of measure a 
software development organization can assess its current 
productivity and determine if and where improvements are 
needed. Appropriate new techniques can then be applied and 
a determination made whether productivity was increased by 
the new techniques. 

Productivity measures can also be used by many organiza
tions for comparative purposes. Comparisons may be made of 
productivity differences between individuals, projects, or 
competitive organizations. In software development wide 
variations of productivity are common. Observations of large 
productivity differences for individuals performing the same 
task have been cited. When productivity is used to evaluate 
different software organizations, this comparison must be per
formed carefully. The reason for this is that although all soft
ware developers are producing programs, their products may 
be no more comparable than transportation manufacturers' 
products, such as bicycles and aircraft. 

Another major use of productivity measures occurs in the 
product development time and cost estimation phase. An or
ganization must have an estimate of production productivity 
to project development time and expense adequately. Al
though software development is often regarded more as re
search and development rather than manufacturing, costs 
must nevertheless be estimated. Although still in their in
fancy, most software cost estimation models require an esti
mate of the organization's software development productivity 
as a major input. 

Thus, productivity measures are needed for most organiza
tions, including software development organizations. The re
mainder of this paper will focus on productivity measurement 
for software development. 

Software Productivity Measurement 759 

STATE-OF-THE-ART PRODUCTIVITY MEASURES 

Several different approaches to software productivity mea
surement are currently used. Historically, the two major ap
proaches are lines of code per programmer month, which 
expresses productivity in terms of work units; and cost per line 
of code, which expresses productivity in terms of cost units. 
These productivity measures can be used to assess the pro
ductivity of the entire software development effort. Other 
productivity measures for specific tasks in the software life 
cycle can also be used, such as pages of documentation per 
programmer month and number of test case runs per pro
grammer month. 

Another approach to productivity measurement is the soft
ware science approach.1 In this approach lines of code are 
decomposed into operators and operands in an attempt to 
produce a more invariant measure than lines of code. Based 
upon some ratios and counts of unique operators and oper
ands and total numbers of operators and operands, some 
interesting work and complexity estimates have been 
formulated. 

A new approach to productivity measurement, which aban
dons the lines-of-code approach completely, is quantifying the 
functions of programming. 2 This approach concentrates on 
the number of external user inputs, inquiries, outputs, and 
master files to be dealt with by the program and uses a weight
ing approach to calculate a dimensionless number called a 
function point. A variation of this approach is a cost-per-func
tion method, in which a function is defined as a program 
segment with a single input and output that performs a single 
transformation or action. 3 

Of the major approaches to productivity measures just dis
cussed, the measure applied most frequently is lines of code 
per programmer month. This measure as well as the others 
have several severe deficiencies, which will now be discussed. 

DEFICIENCIES OF CURRENT PRODUCTIVITY 
MEASURES 

One of the biggest problems with software productivity is the 
difficulty of measuring the work accomplished. In other indus
tries, work can easily be measured in terms of products, such 
as radios produced per unit of time. In software the products 
are not as easy to quantify. This fact has left the lines-of-code 
measure as the traditional unit of work. This measure, as well 
as the software science and functionality types of measures, all 
suffer from the same problem of not representing adequate 
work units. Since the difficulty in developing software de
pends upon the problem being solved, implementation-based 
metrics such as lines of code, software science size or complex
ity measures, or function counts will vary with the complexity 



760 National Computer Conference, 1983 

of the task. Thus, all current software productivity measures 
fail to take into account the problem size of the task being 
performed. 

Another major deficiency with contemporary measures is 
the difficulty of extending them into the maintenance phase, 
One measure for estimating maintenance productivity, re
ported by Boehm,4 consists of the average number of in
structions that can be modified per man-month of mainte
nance effort. Modified instructions consist of new instructions 
or changed instructions. This measure suffers from the same 
deficiencies of the lines-of-code measure discussed for soft
ware development, and it also presents difficulties during 
maintenance. Since modification of a line of code requires 
understanding the program, changing it, and accommodating 
to a possible ripple effect, this measure may be a poor esti
mate of the amount of work performed.s 

Another severe problem of all current productivity mea
sures is their failure to incorporate a quality component. The 
quality of a product must be reflected in productivity mea
surement. For example, if two organizations achieve the same 
lines-of-code measure for identical problems, but one organi
zation produces a flawless system and the other is plagued 
with errors, the software productivity of the organizations 
should not be regarded as equal. This implies that defect 
removal costs must be factored into the productivity calcu
lation. In general, other quality factors must also be incorpo
rated into the productivity calculation, and none of them are 
included in any current measures. 

Current productivity measures thus have several deficien
cies that have prevented their being reliable or widely used. In 
the next section a proposed theoretical productivity model 
will be discussed that overcomes these deficiencies. 

PROPOSED PRODUCTIVITY MODEL 

For a productivity measure to gain universal acceptance, the 
problems discussed in the previous section must be resolved. 
The magnitude of these problems is so great that many feel 
that the development of such a measure is nearly impossible. 
Despite the difficulty of solving these problems, it is still es
sential to identify the characteristics of the ideal solution so 
that a direction of research can be planned and progress 
charted toward an eventual solution. It is to attain this objec
tive that a theoretical productivity model is proposed. 

The proposed productivity model is calculated as a function 
of problem size, resources consumed in production, and qual
ity of the product produced. This productivity will be denoted 
as: 

P=f(PS, RC, Q) 

where PS is the problem size, RC is the resources consumed, 
and Q is the quality of the product. 

The problem size component of this productivity measure is 
meant to correspond to the magnitude and complexity of the 
task under development. It replaces the lines-of-code and 
functions measures of work in current productivity measures. 
This concept is essential to avoiding the current pitfall of 

productivity measures: rewarding long, inelegant solutions to 
problems. For example, the current lines-of-code productivity 
measure would conclude that a programmer who writes a 
2000-lines-of-code solution to a problem in 1 month is twice as 
productive as a programmer who writes a lOOO-lines-of-code 
equivalent solution to the same problem in 1 month. If, in
stead of lines of code, the problem size is used as a measure 
of work, the productivity of the two programmers would be 
regarded as equal, assuming the product was of equai quality. 

The problem size for a particular software development 
effort must be calculated at the requirements level. This is 
essential, because problem size is independent of implemen
tation size. This notion of problem size rewards cost- and 
timesaving measures such as reusing code and identifying sim
ple and elegant solutions. The problem size notion is also 
consistent with the way productivity is measured in other in
dustries. For example, in the automotive industry, produc
tivity is measured by the assembly time of a car; the car 
corresponds to the problem size. It is not normally measured 
by the number of welds per hour, since this is an implemen
tation metric. The number of welds per hour is, however, 
analogous to the lines-of-code measures; and they both sig
nificantly affect productivity once a development approach is 
selected. The key here is that productivity measurement must 
focus upon the problem size and not upon implementation 
approaches. The implementation approach is a factor that 
affects productivity but does not serve as a measure of work 
in its calculation. 

The resources-consumed component of this productivity 
measure is equivalent to that used in contemporary measures. 
Thus, this measure may correspond to either a time or a cost 
calculation of the resources consumed to complete the devel
opment of a particular problem size. The time component 
may be measured in programmer months and the cost com
ponent in dollars. 

The quality component of this productivity measure recog
nizes the necessity of evaluating the quality of a product devel
oped. This concept is essential to avoiding the current pitfall 
of productivity measures: encouraging quantity of code pro
duced without taking into account the reliability of the re
sulting sofware product. Unless the assumption is made that 
all software produced is of the same quality, this component 
must be a part of any productivity measure. 

The measurement of software quality is a complex task. In 
fact, it is impossible to establish a single figure for software 
quality, since it has many attributes. Some typical software 
quality attributes are correctness, flexibility, portability, re
liability, efficiency, integrity, and maintainability. 6 In a given 
software development effort, some of these quality attributes 
may be stressed more than others. Several of the quality attri
butes, such as efficiency and portability, may also be in con
flict with each other. The point here is that a single measure 
of software quality is unlikely; instead, software quality must 
be examined in terms of attributes affecting it. 

Ths quality component and the problem size component of 
the proposed productivity measure must be combined to form 
a measure of the work to be performed. Thus, for a given 
problem size, the quality desired will determine the actual 
amount of work to be done. For example, consider a scientific 



program. If this program were placed on a spacecraft, reliabil
ity requirements would cause a larger amount of work to be 
expended than if the same program did not have these strin
gent requirements or was used in a different application. 
Thus, quality and problem size must be combined to form a 
measure of work in the productivity model. 

The proposed productivity model combines these com
ponents to form a relationship between work accomplished 
and resources consumed in the same manner as contemporary 
productivity measures, but without their deficiencies. Quality 
is a definite component of this model; therefore, if a product 
does not meet its quality requirements, the additional rework 
expenses are factored into the model by adding them to the 
resources consumed in order to lower the productivity of the 
developers. Thus, the productivity model does not reward 
hasty work of poor quality. 

It should be noted that this model provides an absolute 
measure of productivity as a function of work accomplished 
and resources consumed. This implies all software develop
ment organizations can be equally productive, regardless of 
the product under development. This contrasts greatly with 
the lines-of-code productivity measures, which expect wide 
variances of productivity, depending on the application.7 This 
absolute nature of the productivity model stems from the fact 
that work is being measured as a function of problem size and 
quality. There are many factors, however, that may affect this 
absolute productivity, such as development tools and tech
niques, management approaches, and computer resources. 8 

These are factors that can be manipulated by an organization 
in an effort to improve productivity. They are not, however, 
factors to be included in the productivity calculation. 

The proposed productivity model is, of course, currently at 
a theoretical level. The major difficulty lies in the mea
surement of problem size and software quality. Once accept
able measures for these two factors are found or reasonably 
estimated, another problem will be combining these factors 
into an acceptable measure of work. These are formidable 
tasks for researchers, with potential spinoffs to many other 
facets of computer science. The goals of the research, how
ever, are clear; and progress can be charted against these 
objectives. 

PRAGMATIC FIRST STEP TOWARD THE 
THEORETICAL PRODUCTIVITY MODEL 

The proposed productivity model presented in the last section 
is not usable by current software developers. In this section a 
pragmatic first step toward the theoretical productivity model 
calculable today will be described. This productivity measure 
attempts to go beyond current measures by incorporating a 
quality component, which will be very simple and will concen
trate on the reliability of the software. Other software quality 
characteristics will be ignored. The productivity measure will 
also not attempt to calculate a problem size, but instead can 
use any contemporary measure of work, such as lines of code. 
Thus, the only significant difference between this productivity 
measure and current measures is the incorporation of the 
reliability component. The reliability component will be cal
culated as the amount of rework time required to fix devel-

Software Productivity Measurement 761 

opment errors. This rework time includes both debugging 
time and the cost of removing the error. Thus, productivity 
will be calculated as follows: 

work accomplished 
Productivity = ------------

development resources consumed 
+ rework resources consumed 

The work accomplished can be measured in lines of code or 
by some measure of functionality currently in use. The re
sources consumed can be programmer months or any other 
suitable measure. The rework costs are the resources con
sumed by correction of errors in the development process. 
This information is available from the error reports filed 
against the development effort. This productivity measure 
penalizes hasty efforts that produce many errors. This produc
tivity measure also supports current software engineering de
velopment methodologies that call for extensive reviews 
throughout the life cycle. These reviews take time, and with 
current productivity measures the added time detracts from 
productivity. Under the proposed productivity model, these 
reviews can increase productivity as long as they are cost 
effective. 

Thus, the proposed productivity measure can be used in an 
organization to assess its current productivity and measure the 
effect of development improvement on productivity. This 
measure can be calculated at the end of the coding phase or 
at the end of the testing phase to assess the productivity of 
different life cycle phases. If it is calculated at the end of the 
coding phase, then error rework costs incurred during the 
testing and maintenance phases are factored into the produc
tivity equation. If it is calculated at the end of the testing 
phase, then some interval may be selected, such as the next 
release, where error rework costs will be calculated. 

This productivity measure may also be used (with caution) 
to compare productivity with that of other organizations. In 
addition to comparing work measures across organizations 
(which presents potential problems), error detection and cor
rection mechanisms in the organizations must be examined. 
They must be examined because the rework component due 
to errors in the productivity calculation depends on error 
detection and removal costs. Thus, the productivity of two 
development organizations producing identical software with 
identical resources consumed may vary if the error detection 
and correction tools and techniques of the organizations vary. 
This forces meaningful productivity comparisons only among 
organizations with equivalent error detection and correction 
mechanisms. 

Although this proposed productivity measure suffers many 
of the same problems as other contemporary measures and is 
limited in scope, the measure does advance the state of pro
ductivity measurement to include one facet of software qual
ity. It is hoped that future research efforts will continue to 
progress toward the development of a complete productivity 
measure similar to the model proposed in this paper. 

FUTURE RESEARCH 

We plan to continue our research efforts on improving our 
pragmatic productivity measure. An attempt is being made to 



762 National Computer Conference, 1983 

include other quality factors besides reliability in its calcu
lation. The problem size calculation problem is also being 
addressed. This research has led us into an examination of 
cost estimation models. Finally, the feasibility of productivity 
calculation based upon predictive quality metrics, which 
would enable productivity measurements to take place ear
lier, is being examined. 

REFERENCES 

1. Halstead, M. H. Elements of Software Science. New York: North-Holland, 
1977. 

2. Albrecht, A. J. "Measuring Application Development Productivity." In 

Proceedings of the Joint Share/Guide/IBM Application Development Sym
posium, 1979, pp. 83-92. 

3. Crossman, T. D. "Taking the Measure of Programmer Productivity." Data
mation, 25 (1979), pp. 144-147. 

4. Boehm, B. W. Software Engineering Economics. Englewood Cliffs, N.J.: 
Prentice-Hall, 1981, pp. 533-553. 

5. Collofello, J. S., and S. S. Yau. "Some Stability Measures for Software 
Maintenance." IEEE Transactions on Software Engineering, Vol. SE-6 
(1980), pp. 545-553. 

6. Boehm, B. W. Characteristics of Software Quality. New York: North
Holland, 1978. 

7. Sommerville, L Software Engineering. Reading, Mass.: Addison-Wesley, 
1982. 

8. Walston, C. E., and C. P. Felix. "A Method of Programming Measurement 
and Estimation." IBM Systems Journal, 10 (1977), pp. 10-29. 



The laboratory automation system in the electrical 
communication laboratories of NTT 

by NOBUYOSHI TERASHIMA 
Nippon Telegraph & Telephone Public Corporation 
Tokyo,Japan 

ABSTRACT 

Nippon Telegraph & Telephone (NIT) has developed a laboratory automation 
system to improve the efficiency of research activities in the Electrical Commu
nication Laboratories. NIT has four laboratories at locations distant from each 
other. However, the research activities each laboratory undertakes are related with 
what the others are doing. To improve the interchange of infort:nation among 
laboratories, electronic mail, videoconference, and video lecture services have been 
introduced in the system. It is possible to make inquiries concerning job-processing 
status and reservations for video conference rooms by telephoning the computer 
center directly, without going through a human intermediary. Researchers can 
retrieve information on the newest research results in common with other research
ers at any other location. Taking into account the increase in large-scale computing 
jobs, such as traffic simulation, structural analysis and circuit analysis, newly devel
oped DIPS computers and CAD facilities, such as circuit analysis, have been in
stalled in the system. This paper presents a description of the system's configuration 
and its characteristics as well as a service outline. 

763 





INTRODUCTION 

To improve the efficiency of research activities in the Elec
trical Communication Laboratories, NTT has developed a 
la~oratory automation system with the following services: 

1. Computing. Computer facilities are available for con
versational, remote batch, and local batch processing 
modes. 

2. Office automation 1-5 This service consists of research 
information retrieval, word processing and electronic 
mail. 6-8 

3. Design automation. 9-12 This service provides CAD facil
ities for LSI logical design, circuit design, and LSI test
ing for communications equipment. 

4. Speech recognition and synthesis. This service makes it 
possible to automatically reserve a video conference 

Musashino Laboratory 1- o~ -T-er-m-in-a-I-

~81 
Atsugi LdJorotory I 
1

-- ~\ 
Video Conference 

Room "'-., 

, t{rr 0 
c. \.\) c::; 
<.\..-

DA 
Termirol 

~---
Video Network 

Dedicated Network 

The Laboratory Automation System 765 

room, as well as get information on the operation sched
ules of the computer centers and job processing statuses, 
by use of a telephone. 

5. Videoconferencing and video lectures. 13, 14 These ser
vices make it possible for researchers to communicate 
with each other from laboratories in widely separated 
locations. 

The present paper describes the configuration and charac
teristics of this system. It also gives an outline of the services 
provided by the laboratory automation system. 

SYSTEM CONFIGURATION 

Figure 1 shows the configuration of the laboratory automation 
system. The system is composed of DIPS centers, the net-

(Network) 

Video Lecture Room l 
~~ og 

G;]@GiJ 

I 
G;;J G;::: G;J 
C;;)G;;]a 

D Cl DO 

"'- ..,..,..., ) .' lboragi Labo~tory 
, /Video Conference Room I 

t:::::J, V:. . 
O 

~J 

5] 
o .)J 

Data Station Telephone Network 
~ 0 A Terminal 

OA Tominal ~ .s 
~ B TSS Terminal DA Terminal 

DA TSS i-rr:z;...""4t!C..-------.--::::::::J-It---i--:z:--t-ti---~ ~ 
Terminal Terminal .:r=» v--v 

i ~ Pb ,,~o~inol/ft __ -_ -~DrIPS;;~C-e~n~ieir~~Video Conference ROO,:" Vide~~ure R~om J 
L-_ --~( ~DA··;·· -. DDDCJ ''1~--' Qc:JO ~~~ 

~ ~ ~ Irl + Video Switching 
I Terminal " ...;v> ~ ~ ~ I Equipment 

~~uu~v I L____ OQ~~ ~ 
Yokosuka Labomtory 

Figure l-Configuration of the laboratory automation system 



766 National Computer Conference, 1983 

work, and various terminals. In addition, a data station is 
installed at the Atsugi Laboratory. 

1. DIPS centers. The DIPS centers, where very-large-scale 
computer systems for DIPS (or Den Den Kosha [Japa
nese for NTT] Information Processing System) are in
stalled, are located in the Musashino and Yokosuka 
Laboratories. The DIPS systems are interconnected 
through a 48 kb/s dedicated network. 

2. The network. The network is composed of a telephone 
network, a 48 kb/s dedicated network, and a video net
work. 15

-
17 

a. Data terminals for time sharing, office automation, 
and design automation, as well as minicomputers 
and personal computers, are linked through the 
telephone network. 

b. The 48kb/s dedicated network is used for inter
connecting DIPS systems, and for interconnecting 
the data station in the Atsugi Laboratory with the 
DIPS system in the Musashino Laboratory. 

c. Videoconferencing terminals are interconnected 
through the video network, as are video lecture 
terminals. 

3. Terminals. Terminal rooms are located in each labora
tory for the use of researchers. In the terminal rooms are 
data terminals, XY plotters, card readers, line printers, 
and a cassette MT unit. Data terminals and minicom
puters are distributed to each research section. They are 
interconnected to the DIPS centers through the tele
phone network. 

4. The data station. The data station is located at the Atsugi 
Laboratory and is used for transporting design auto
mation programs to the Musashino Laboratory com
puter center through the 48 kb/s dedicated network. 

SYSTEM CHARACTERISTICS 

The computer network enables each laboratory to make the 
best use of computers, programs, and services and to circulate 
research information efficiently. 

To increase computing efficiency, high-speed vector in
structions have been implemented in the DIPS systems to 
speed up the vector operations, which appear quite often in 
scientific calculations in the laboratories. IS These instructions 
are about two times faster than the usual operations. Specifi
cations for the vector instructions are shown in Table 1. 

To increase office automation and efficiency, basic soft
ware and application packages that facilitate Japanese lan
guage processing have been developed. Kanji terminals such 
as the DT-308 and DT-9658 are installed, and high-speed 
kanji printers, which print documents with Japanese charac
ters at 15 kilo lines/sec, are also implemented at the computer 
centers. 

Additionally, so as to realize the speech recognition and 
synthesis services, we have developed speech recognition and 
synthesis techniques we respectively call SPLIT19 and LSP. 20 

The SPLIT method, a speaker-independent speech recog
nition method, recognizes up to 1000 words of the speech fed 
directly from the telephone network in real time. 

TABLE I-Specifications for vector instructions 

I I Vector Instruction 
No ~io1ed I NCITle 

I V I 

I VWf Vector Move (VMDl 

2 
VECE Vector Elementwise 
(VECD) Complement 

3 VEAf. Vector Elementwise 
(VEAD) Add 

4 VESE ~or Elementwise 
(VESD) Subtract 

5 
VEME Vector Elementwise 
(VEMD) Multiply 

6 
VEDE Vector Elementwise 

(VEa) Divide 

7 VIPE Vector Inner Product (VI PO) 

8 VIPCE Vector !mer Product with 
(VIPCD) Complement 

9 VCDS Coovert ()oJ)Ie to Single 

10 VCSD Convert Single to Double 

I. Parentheses show double precision operations 
2. Xi 1 Vi ,Zi show vector elements 
3. S' shows a scolar element 

I Operation 

Zi-Xi 

Zi--Xi 

Zi-Xi +Yi 

Zi-Xi- Yi 

Zi - Xi )( Yi 

Zi- Xi+ Yi 

S'-S'+1: Xi x Yi 
i 

s'-S'-~ Xi x Yi 
I 

Zi (SJ - Xi (0) 

Zi 1»-Xi (S) 

In this method the average speech spectrum is divided into 
256 regions. Telephone speech is divided into speech ele
ments of 16 milliseconds each. Then each element is investi
gated to see which regions are involved. Then the speech is 
pattern-matched with the patterns of the predefined words. 
This LSP method is 40% more economical than the PAR
COR method. 

Figure 2 shows the configuration of the system. In this 
system, processing is performed as follows. 

1. Speech input through the telephone is fed through the 
circuit control unit and the exchange, where it is recog-

Dial Signal 

DIPS 

Center 

Figure 2-Configuration of speech recogniiion and synthesis system 



nized by the speech recognition equipment. Then the 
recognized request is stored in the information pro
cessing equipment. 

2. Information concerning operation schedules and job
processing statuses is sent from the DIPS center to the 
information processing equipment. Information involv
ing conference room reservations is also stored in the 
equipment. 

3. The recognized request is compared with the informa
tion on the operation schedules, job processing statuses, 
and conference room reservations. Then the answer to 
the request is generated. 

4. The answer is synthesized by speech synthesis equip
ment and is then sent back to the telephone through the 
circuit control unit and exchange. 

Tables II and III show the specifications for the speech 
recognition and speech synthesis equipment, respectively. 

SERVICE OUTLINE 

The services that have been referred to are outlined below in 
a little more detail. 

TABLE II-Specifications for speech recognition equipment 

Item Content 

Recognition Object Isolated word spoken through telephone netv.ork 

Recognition Method Speaker independent speech recognition: SPUT Method 

Nuniler of Recognizable 
1000 words (templates) Words 

Word Length 3.2 seconds 

Input Channel 1 channel 

Response Time less than 0.1 seconds 

110 Interface GPIB (IEEE 488) 

TABLE III-Specifications for speech synthesis equipment 

Item Content 

Synthesis Method 
LSPmethod: a more efficient method than the 

widely used PARCOR method 

Frome Synchronous Period 10 ms 

4.8 Kbitls : information necessary for 
Information synthesis of 1 second speech 

Buffer Memory 32 Kbytes 

Channel 1 channel for input, 1 channel for output 

I/O Interface RS232C (9.6Kbit/s) 

The Laboratory Automation System 767 

1. Computing. Computer power is provided for conversa
tional, remote batch and local batch processing modes. 

2. Office automation. Office automation involves research 
information retrieval, word processing, electronic mail, 
and a library service. The information retrieval service 
allows access to state-of-the-art technical data, inter
national conference schedules, newly developed prod
ucts, and so on. The general-purpose word processing 
service provides facilities for putting together research 
papers and documents with figures and tables. In the 
standard-form word processing service, documents used 
frequently in a fixed form are prepared in the center file. 
Therefore, these standard-form documents can easily be 
generated by inputting only a few variable words. 
The electronic mail service allows the sending and re
ceiving of documents through the telephone network. 
By combining this service and word processing it is pos
sible to create a conference notification document and 
then deliver it to remote terminals. Specifications for 
office automation services are shown in Table IV. 

3. Design automation. LSI design of communications 
equipment or devices is performed hierarchically in the 
following manner: 
a. Logical verifications are made at the resistor or gate 

level. 
b. Circuit analysis is performed at the transistor level. 
Table V shows examples of design automation pro
grams. The LSI design flow is shown in Figure 3. 

4. Speech recognition and synthesis. The reservation and 
inquiry system that uses speech recognition and syn
thesis techniques has been developed to provide the fol
lowing services: 
a. Videoconference room reservation service. 
b. Inquiry service concerning job-processing status. 
c. Inquiry service regarding the operation schedules for 

computer centers. 
5. Videoconference and video lecture services. 

a. Videoconference rooms with video cameras, large
scale video receivers, speakers, and microphones are 
located in each laboratory. With the use of these 
rooms, a conference can take place simultaneously at 
different laboratories. 

b. Video lecture rooms with video cameras, video re
ceivers, microphones, and speakers are presently lo
cated at the Musashino and Yokosuka Laboratories. 
By using these facilities a lecture can be transferred to 
the video lecture room in the other laboratory, and 
students in the other laboratory can ask questions and 
receive answers through the video network. 

Specifications for the videoconference and lecture services 
are shown in Table VI. 

CONCLUSION 

This paper discusses the basic concept underlying an inte
grated laboratory automation system that has already been 
put into practical use at the Electrical Communication Labo
ratories. 



768 National Computer Conference, 1983 

TABLE IV-Specifications of office automation service 

No. Item Content 

State-of-the- New data with respect to computers, 

I Art Technical electronic exchanges, transmission systems, 

Data. lSI, etc. 
-

Conference Information necessory for attending on 
2 Schedules international conference, such as period, 

place, deadline for papers, etc. 
'----

3 Newl y Developed Information on newly developed products such 

Products as features and prices. 

- "0 
> 
Q) 

Schedule Registrations and cancellations of appointments . 4 
. ;: 

~ Management 

- e 
.2 Information Names, itineraries and t he purposes of ..... 

5 0 Relating to people goi ng on overseas business trips E 
.£ Overseas 

oS Business Trips 
-.,.. --

6 
A Log of Visitors Information relating to people who have 

to ECl visited the Electrical Coml1Ulication lclJorolories 

General (I) Joponesem processing is performed on a 
Ihbrd non-programmable portable Kanji terrrinol,the 

7 
Processing DT - 308, using a word processing program 

called the K(Jl(] to Chinese Character 
C7I 

Transformation Package. e 
.~ 

Q) (2) Documents ore created by selecting and touching .., 
the desired Kana and Chinese characters on 0 

d: 
the panel of the DT -9658 progrommoble Kanji 

"E 
~ terminal. Documents that hove been stored in the 

flqlpy disk this way con be sent 10 the CPU ~ 
demond. 

8 Standard Documents used frequently in a fixed form 
C7I 

are prepared in the center fi Ie. e Form Ihbrd .~ 

~~ 
''processing Thus I standard form documents can eosi Iy be generated 

:;; by inputting a few variable words. 

9 .~ Electronic Documents con be transferred from one ..... "6 

~ .~ Mail termina I to t he other through the network. 
g § 
au 

Library Service Services include management of books, retrieval 
10 of papers, etc. The OCR hondsconners are 

used to i~ut the information with ease. 

NIT is now planning to develop the laboratory automation 
system into a prototype system for the Information Network 
System (INS). The INS is the advanced public digital network 
that NIT is now planning to build nationwide. 

REFERENCES 

1. Wiseman, C. "Integrated Planning for Office Automation." AFIPS, 1981 
Office Automation Conference Digest. Arlington, Va.: AFIPS Press, 1981, 
pp.93-100. 

2. Ellis C. A., and G. J. Nutt. "Office Information System and Computer 
Science," Computing Surveys, 12 (1980), pp. 27-60. 

TABLE V-Specifications of the design automation programs 

Design Stage Program Function 

Functional 
FDLSIM a FUiictioiial simulation 

Design 

HIDEMAP • HSl translation, macro expansion 

• Data bose ! nterface 

TEGAS • 3 value / 6 value gate level 

sirrulation 

Logical • 6 value gate level simulation 

Design 
LAP- I 

• MOS Transfer gate simulation 

ADGRAM • Visible circuit chart generation 

PlACAD • PlA programming 

LNAP 
• Circuit analysis of DC and 

transient current 
Ci rcuit 

Design • General-purpose simtJation program for 
SPICE non-linear DC. non-linear transient and 

I i near AC analysis 

Test Data TEGAS Fault detection simulation 
DeS! n 

""-_........1._--~ Manufacturing 

! i 
I I 

L _________ ~ 
Figure 3-LSI design flow 



TABLE VI-Specifications of videoconference and video lecture 
systems 

Item Scale 

Seating 
Accommodat i on 6 
Possible ~~llI.,It;r 

up to 3 of Hookups 
0 
Q) Receivers 2 :2 
> 
Q) 

E 
Cameras 6 

0 
"- Monitors 2 J::. 
0 

2 Microphones and 0 5 :E Speakers 
Q) 
0 Seating 10 c: 
Q) Accommodation "-
Q) 

Possi ble Number ...... 
c: I 0 0 of Hookups u Q) 

~ 

0 > Receivers I 
Q) 

:Q 
Cameras I > ~ 

0 
0 

I u Monitors 

Seating lecture room: 12 
Accommodation auditor room: 24 
Possible Number I of Hookups 

Q) 

Receivers 4 "-
::J -0 
Q) 

Cameras 4 .-I 

0 Microphones and Q) I ~ Speakers 
> 

Monitors 24 

The Laboratory Automation System 769 

3. "Information Presentation and Manipulation in the Electronic Office." 
Infortech State of the Art Report-Office Automation (Series S-Number 
3). Maidenhead, England: Infortech Ltd., 1980. 

4. "CRT Workstations Envisioned as Office Appliances of Future." Comput-
erworld, May 19, 1980. . 

5. Hammer, M., R. Ilson, T. Anderson, E. J. Gilbert, M. Good, B. Niamir, 
L. Rosenstein, and S. Schoichet. "Etude: An Integrated Document Pro
cessing System." Office Automation Group memo, MIT Laboratory for 
Computer Science, Massachusetts Institute of Technology, February 1981. 

6. Ulrich, W. E. "Introduction to Electronic Mail." AFlPS, Proceedings of 
the National Computer Conference (Vol. 49), 1980, pp. 485-488. 

7. Holden, J. B. "Experiences of an Electronic Mail Vendor." AFlPS, Pro
ceedings of the National Computer Conference (Vol. 49), 1980, pp. 49~97. 

8. Farber, D. J., and S. H. Caine. "Computer Message Systems in the Of
fice." Proceedings of the 5th International Conference on Computer Com
munication. Amsterdam: International Council for Computer Commu
nication, 1980, pp. 4>-50. 

9. O'Neill, L. A., C. G. Savolaine, T. J. Thompson, J. M. Franke, R. A. 
Friedenson, E. D. Walsh, P. H. McDonald, J. R. Breiland, and D. S. 
Evans. "Designers Work Bench-Efficient and Economical Design Aids." 
Proceedings of the 16th Design Automation Conference. New York: IEEE 
Computer Society, 1979, pp. 185-199. 

to. Walsh, M. E. "SPIDER-A Computer Aided Manufacturing Network." 
Proceedings of the 14th Design Automation Conference. New York: IEEE 
Computer Society, 1977, pp. 431-436. 

11. Carley, D. K. "SWESS-The Middle System of a Design Automation 
Network." Proceedings of the 14th Design Automation Conference. New 
York: IEEE Computer Society, 1977, pp. 425-430. 

12. Swiatek, F. E. "A Design Automation System for Telephone Electronic 
Switching System." Proceedings of the 14th Design Automation Conference. 
New York: IEEE Computer Society, 1977, pp. 419-424. 

13. Vallee, J., R. Johansen, and T. Wilson. "Pragmatics and Dynamics of 
Computer Conferencing: A Summary of Findings from the Forum Project. " 
Proceedings of the 3rd International Conference on Computer Commu
nication. Amsterdam: International Council for Computer Commu
nication, 1976, pp. 20S-213. 

14. Shimamura, K., and Y. Sakasai. "Video Teleconference Systems Psycho
logical Evaluation." l~.eview of the Electrical Communication Laboratories, 
N. T. T., 29 (1981), pp. 307-328. 

15. Clark, D. D., K. T. Pogran, and D. P. Reed. "An Introduction to Local 
Area Networks." Proceedings of IEEE, 66 (1978), pp. 1497-1517. 

16. Gravis, H. "Local Networks for the 1980s." Datamation, March 1981,.pp. 
9S-104. 

17. Breithaupt, A. R. "Project Viperidae, A Bell Labs Computing Network." 
IEEE, Digest of Papers of Computer Society Conference, 1973, pp. 
235-237. 

18. Terashima, N., T. Ishii, and S. Kojo. "The Firmware Technique to Speed 
Up the Vector Operations." In Proceedings of the National Convention 
Record of the Institute of Electronics and Communication Engineers of 
Japan, 1981, p. 174. 

19. Furui, S. "A Training Procedure for Isolated Word Recognition Systems." 
IEEE Transactions on Acoustics, Speech, Signal Processing, ASSP-28-2 
(1980), pp. 129-136. 

20. Sugamura, N., and F. Itakura. "Speech Data Compression by LSP Speech 
Analysis-Synthesis Technique." Transactions of the Institute of Electronics 
and Communication Engineers of Japan, J64-A (1981), pp. 599-606. 





Applications of digital optical disks in library preservation 
and reference 

by WILLIAM R. NUGENT 
Library of Congress 
Washington, D.C. 

ABSTRACT 

A Library of Congress pilot project is described in which digital optical disks will 
be used to provide high-density storage of textual page images. The configuration 
of the system is shown and the advantages of optical storage for preservation of 
library materials is explained. It is further shown that while library preservation is 
the primary objective of the project, the characteristics of digital optical disk pro
vide simultaneous advantages in online reference retrieval. The project plan is 
described; it calls for scanning and storing one million pages of text over a two-year 
period. The new system is compared to the library's existing digital optical disk 
system for demand printing of catalog cards. The future of digital optical disks in 
libraries is then discussed. 

771 





INTRODUCTION 

The deterioration of library materials has by now brought 
about a crisis in all large research libraries. A significant frac
tion of such libraries' collections of print on paper, over 25 
percent by some estimates, are exhibiting the symptoms of 
terminal acidic decay: turning brown, becoming brittle, and 
ultimately crumbling into flakes and dust. The cause is well 
known: the increase in demand for printed matter in the last 
half of the nineteenth century caused paper manufacturers to 
make paper from wood pulp and sizing materials that to
gether, by acidic hydrolysis, ultimately form sulfuric acid, 
which in turn breaks up the normally long and flexible cellu
lose polymers of the paper. To combat this problem, the Li
brary of Congress has initiated two programs. 

The first program, which is proving very successful, is that 
of gaseous deacidification of large groups of books placed in 
large vacuum chambers. By this means, books that are in good 
condition can have their life expectancies extended another 
400 to 600 years. A cooperative program with NASA is cur
rently showing the way to achieve deacidification in 
5,OOO-book lots. The second program, the one we address 
here, will use the high-density digital optical storage of page 
images as an alternative means of library preservation. A 
development contract has been awarded to Teknekron Con
trols Incorporated of Berkeley, California, for'a system that 
will scan and digitize text pages, store them on digital optical 
disks, and under access control of the library'S central com
puter system will retrieve desired page images for bigh
resolution display and printout. The digital disk medium itself 
has a life expectancy of only 10 to 20 years, which is a mere 
instant in preservationists' thinking; but by the well-estab
lished techniques of error detection and correction, early signs 
of increased soft errors can be detected in time to make a 
perfect copy on a fresh disk of the same technology or on a 
future digital medium of a newer technology. By this process, 
the page images may thus be preserved indefinitely, or for as 
long as they are believed to be useful. 

A second problem of large libraries, of somewhat lesser 
severity, is that of document delivery to the library patron. 
With contemporary online computer retrieval systems, such 
as the Library of Congress' LOCIS system, patrons can find 
citations of desired items and their call numbers almost in
stantly. But the time from a patron's request for a work until 
it is manually searched for in the stacks and delivered can too 
often exceed an hour. The online accessibility of page-image 
material on digital optical disks can reduce this document
delivery time to seconds for materials available on optical 
disks. Greater integrity of the collection is also achieved, 
avoiding the too common "not-on-shelf' problem. 

Applications of Digital Optical Disks 773 

In the classical library environment, the dual objectives of 
preservation of materials and providing of frequent public 
access to them are opposed to each other. Preservation gener
ally means a strictly controlled physical environment, watch
ful custodial care, and limited public usage. High public usage 
generally means accelerated wear and deterioration. But page 
images preserved on digital optical disk can now meet both 
objectives without conflict, since no wear results from the 
low-power laser beam reflecting data from the disks. 

DENSITY CHARACTERISTICS OF DITIGAL 
OPTICAL DISK AND PAGE-STORAGE CAPACITY 

The primary attribute of digital optical disks is extremely high 
recording density: Bit areas are generally of the same order of 
magnitude as the wavelength of the laser light used to record 
them; that is, in the order of 1 micron or less. Typical numbers 
for a single-sided 12-inch disk and single-sided 14-inch disk 
are 1010 bits and 5 x 1010 bits, respectively. The general range 
is within a factor of two of these numbers. The 12-inch 
ThomsonlCSF disk that will be used in the library's applica
tion 'W'ill initially have 0.5 x 1010 user bits, and will later be 
raised to 1010 user bits. We will use the latter number in our 
library storage examples. On a per-surface basis, the capacity 
of an optical disk is thus about 150 times that of a magnetic 
disk. 

Although this results in many obvious applications of digital 
optical disk as a computer-room peripheral for mass storage 
of conventional character-encoded data, it is this observer's 
view that the highest potential applications are those involving 
digitized image storage. For the first time, a practical non
contact medium of extremely high density exists to make such 
image applications cost-feasible. 

THE LIBRARY OF CONGRESS PILOT PROJECT 

In order to establish a firm and cost-justified basis for the 
digital-storage approach to library preservation, the Library 
of Congress has established a pilot project using digital optical 
storage technology. 

The object of the pilot project is to establish a production 
environment in which both capital costs and operating costs 
can be determined, so that decisions on expansion can be 
made. It was determined that scanning and storing 500,000 
pages per year would constitute a project of sufficient size. 
Other questions to be resolved include the depth of indexing 
and abstracting required when full text rather than citations 
only are available. Of high importance as well will be life 
testing, both in real time and in accelerated time, of the digital 



774 National Computer Conference, 1983 

optical media and the establishment of test criteria for deter
mining when a disk is beginning to degrade so that replication 
can be effected before correctable errors become noncorrect
able ones. Since library preservation is the primary objective 
of this program, determining the best procedures to achieve 
this aim will be a major contribution of this pilot project. 

SYSTEM CONFIGURATION 

The specified configuration of the Library of Congress digital 
optical disk system is shown in Figure 1. The core of the 
system is a Video System Controller that directs all systems 
input/output activities and provides the functions of video
crosspoint switch and compressor/expander for the digitized 
images. Two optical disk units are shown, one of which will 
incorporate a 100-disk jukebox. Two magnetic disks serve as 
image buffers for materials being accessed by the display clus
ters and for materials being scanned by either the document
page scanner or the microfiche scanner. The Video Image 
Controller, a high-speed laser printer (a Xerox 5700), the 
scanners and a two-terminal cluster will be housed in a com
puter room in the library's James Madison building and will 
service two-terminal clusters in three library reading rooms, 
one in each ofthe library's three buildings. The initial reading
room configuration will have two user retrieval stations, each 
consisting of a high-resolution CRT terminal for query entry 
and for display of full pages of text and an associated medium
speed printer for page-image printout. The Video System 
Controller is also interfaced to the library'S Computer Service 
Center and uses the library's LOCIS online information-

Reading ROOOI 
Jefferson Building 

Display
Terminais & 

Cluster Medium-Speed 
Controller Printers 

Reading Room 
Madison Building 

Display 
Terminals I. 

Cluster MediUl1l-Speed 
Controller Printers 

LIBRARY OF CONGRESS 
Digital Optical Disk System 

For Page Image 
Storage and Retrieval 

Reading Room 
Adams Building 

Display 
I Terminal'; & 

f co;!~~~~~r ~:~:~~:eed 
I 

I 
I 
I 
I 

Figure I-The configuration of the digital optical disk system 

retrieval system for locating citations to page-image material 
available on digital optical disk. 

RELATION TO THE LIBRARY OF CONGRESS'S 
EXISTING OPTICAL DISK SYSTEM 

The library's Cataloging Distribution Service is now using 
digital optical disk for storage of images of 3" x 5" catalog 
cards in its DEMAND system for high-speed demand printing 
of catalog cards. This system was developed for the library by 
Xerox Electro-Optical Systems and was placed in production 
in August 1982. An exceptionally high resolution system, it 
laser-scans and laser-reproduces cards at 480 lines per inch. 
Output is by a specially adapted Xerox 9700 laser printer that 
produces 12 cards per second. More than 200,000 images of 
master catalog cards can be stored on one side of the Xerox 
14-inch digital optical disk. This is the equivalent of 140 card 
catalog drawers. The cards output from this system are used 
to fulfill orders from libraries all over the world, and the 
DEMAND system has made this operation faster and more 
cost effective. The success of this first-in-production digital 
optical disk system has given us confidence that digital optical 
disk is eminently practical for the storage and retrieval of 
textual page-images as well as for catalog cards. 

THE FUTURE OF DIGITAL OPTICAL DISKS IN 
LIBRARIES 

We expect many future applications in libraries as digital op
tical disk technology is further refined and lowered in cost. In 
addition to benefits in preservation and reference retrieval, 
there are significant benefits in storage space and space is an 
increasing problem in all major research libraries. Today's 
optical disks offer a shelf-space advantage of about 200X, and 
we expect a lOOOX advantage in a few years. As a second 
future development, we expect a rapid decrease in the cost of 
disk players that, in turn, will lead to decentralized use of 
these devices on a stand-alone basis for special collections, 
individual reading rooms, and in smaller libraries. The next 
improvements in greater densities will, in addition, permit the 
cost-effective storage and retrieval of halftone images and 
color plates. A particular challenge to be met in the future is 
that of effectively scanning and encoding pages of mixed ma
terial, such as art books that may mix black and white text, 
halftone graphics and color plates on one page. When this 
problem is solved, we will have achieved true electronic fac
similes of the printed book. 

REFERENCES 

1. ADONIS Project Secretary. ADONIS Preliminary Draft. Amsterdam: 
Elsevier Science Publishers, June 1982. 9 pp. 

2. Sparks, Peter G. "Mass Deacidification." Minutes of the One Hundredth 
Meeting, Association of Research Libraries, May 1982. pp. 68-83. 

3. Nugent, William R. "Optical Disk Technology." Minutes of the One Hun
dredth Meeting, Association of Research Libraries, June 1982. 

4. Remington, David G. "Practical Applications at the Cataloging Distribu
tion Service." Minutes of the One Hundredth Meeting, Association of 
Research Libraries, June 1982. Pp. 80-Rl. 



5. LaBudde, Ed. "Tracking the New Storage Strategy-Optical Disk Memo
ries." Phototonics Spectra, May 1982, pp. 61-63. 

6. Goldstein, Charles M. "Optical Disk Technology and Information." Sci
ence, February 12, 1982, pp. 862-868. 

7. Brody, Herb. "Materials for Optical Storage: A State-of-the-Art Survey." 
Laser Focus, August 1981, pp. 47-52. 

8. McLeod, Jonah. "Optical Disk Storage Technology-New Materials, New 
Methods." Optical Spectra, November 1981, pp. 52-54. 

9. Rodriguez, Juan A. "Optical Disk Storage Technology-The Systems Ap-

Applications of Digital Optical Disks 775 

proach." Optical Spectra, November 1981, pp. 54-55. 
10. Drexler, Jerome. "Optical Disk Storage." Paper presented at Word Pro

cessing Industry Conference, Sarasota, Florida, December 3-5, 1980. 
11. Bulthuis, Kees, M. G. Carasso, J. P. J. Heemskerk, P. J. Kivits, W. J. 

Kleuters, and P. Zalm. "Ten Billion Bits on a Disk." IEEE Spectrum, 
August 1979, pp. 26-33. 

12. Bartolini, R. A., A. E. Bell, R. E. Flory, M. Lurie, and F. W. Spong. 
"Optical Disk Systems Emerge." IEEE Spectrum, August 1978, pp. 20-28. 





Tom Fox 
Foxware Systems Corporation 
Irvine, California 

PERSONAL COMPUTERS 

Since their invention over 49 years ago, electronic computing machines have 
touched the lives of nearly every person on the face of the earth. This has 
never been more true than now, as we enter the age of personal computers. 
A personal computer is a dedicated resource, relating one-to-one with its user/ 
master. Whether a production-enhancing tool at one's work, a mind-expand
ing diversion in the home, or a companion on the road between, a personal 
computer enriches the lives of those who use them. 

For this year's NCC, 24 industry observers and leaders combine in eight 
sessions to present the 1983 picture of pertinent issues in the personal com
puter marketplace. Topics range from crucial industry concerns such as soft
ware transportability between processors to new-technology methods of pro
tection against program pirates. Included also are practical how-to seminars 
on business planning with microcomputers and applications for the new gener
ation of mobile carry-along processors. One of the sessions is dedicated to the 
computer designer's view of the microprocessor that has all but dominated 
new product introductions since last year's NCC-the 16/32-bit 68000 dual
processor chip. 

The most quickly evolving of all computer types deserves special attention 
to the future, and several of this year's sessions concentrate on the personal 
computers of tomorrow and their continuing impact on our society. Portia 
Isaacson has again assembled a panel of experts to look into the future of 
microcomputing. Industry maker Adam Osborne and seer Jerry Pournelle will 
project the ways in which personal computers will continue to alter our lives 
during the rest of this decade. 

777 





Software maintenance objectives* 

by NED CHAPIN 
InfaSci, Inc. 
Menlo Park, California 

ABSTRACT 

Recent survey work indicates that the objectives held by managers of maintenance 
for application software are partially out of step with the managers' own perceptions 
of the demands on them. This is a possible cause of maintenance difficulties, to the 
extent that maintenance managers do guide their behavior by their professed objec
tives. It is a likely cause of maintenance difficulties if software maintenance is 
regarded as a service function in an organization, which the survey indicates is the 
case. 

*This paper was presented at the 1982 National Computer Conference, but it was mistakenly omitted from the 1982 
Proceedings and thus appears in this year's Proceedings. It was not presented as part of a 1983 NCC session. AFIPS 
appreciates Dr. Chapin's contribution to NCC 1982 and regrets the omission of the paper from last year's publication. 

779 





INTRODUCTION 

The management of software maintenance for application 
software affects what maintenance is done, when it is done, 
and how it is done. Software maintenance is managed by 
supervisors, team leaders, project leaders, programming 
managers, maintenance managers, and sometimes even by 
programmers.4 For convenience and briefness in wording, the 
term maintenance manager is used here for any person, what
ever his or her job title, who manages software maintenance. 

By software maintenance is meant work performed on exist
ing computer programs and systems to correct their perfor
mance (for example, to restore to operation after an abort), 
to adapt them to changed operating environments (for exam
ple, to fit with a change in the operating system), to enhance 
or perfect their performance, to include new or different func
tions, or to delete functions (for example, to add a new output 
report).3 The most important influence on this definition of 
maintenance is the administrative judgment of how large an 
enhancement must be to be classified as new development 
instead of maintenance. 2 

As the total amount of maintenance to be done gradually 
grows, so also grows the effect of the way that the mainte
nance work is managed. The swelling backlog of work waiting 
to be done, the reiativeiy high cost of maintenance, and the 
lag from request to completion, have all been pointed to as 
evidence of increasing problems in managing maintenance.2

-
5 

As part of a study of the causes of maintenance problems, 
15 managers from 12 organizations were surveyed about the 
demands on them and their objectives in managing mainte
nance work. The report that follows describes the character of 
the response, and discusses its implications. This study is a 
companion to one reported previously at the 1981 National 
Computer Conference. 1 

RESPONSES 

The respondents (maintenance managers) were asked two 
questions. The first question was what their objectives were in 
managing maintenance work. Later on the same day, a second 
question was put: What were the demands made on them in 
managing maintenance work? Both questions sought open
ended responses and gave the respondents freedom to frame, 
organize, and order their responses as they saw fit. Essays 
were not expected but were acceptable, and multiple-choice 
and true/false responses were neither asked nor encouraged. 

In making their responses, the managers had the oppor
tunity to discuss their possible responses with one or two other 
maintenance managers, and they were encouraged to do so. 

Software Maintenance Objectives 781 

The responses were also sometimes orally commented on by 
still other maintenance managers; the respondent was allowed 
to reply orally but not to change the response. In general, 
nearly all maintenance managers spoke of their jobs just as 
they saw them, and were respected for that by the other 
maintenance managers. 

The responses fell predominantly into five categories, but 
with some notable exceptions as described later. Which cate
gory a response fell into depended partly on how the response 
was expressed, partly on its implications. Some responses fell 
into more than one category. 

The first category focused on the managers' supervisors. 
The objectives here were to secure recognition of accomplish
ment. The demands seen from this source were to use re
sources well and make do with existing conditions. 

A second category focused on the organization. The objec
tives of maintenance managers here were to exercise control 
to keep systems running. The demands seen from this source 
involved schedules and budgets, and keeping up communica
tions. 

A third category of response focused on the user commu
nity. The objectives here were aimed at keeping the user 
satisfied or even happy. The demands seen from this source 
mostly concerned how maintenance service was provided. 

A fourth category focused on the managers' subordinates. 
The objectives here dealt with providing acceptable work con
ditions. The demands involved morale. 

A fifth category focused on closely related organizational 
units, such as computer operations, systems, and procedures, 
EDP auditing, and data entry. The objectives here dealt with 
avoiding difficulties. The demands seen involved performance 
aspects of the software. 

Table I lists some representative objectives, and Table II 
lists some representative demands. For convenience in read
ing, the table entries shown have been classified by category. 
Note that the numbering assigned to the categories is arbi
trary, though reflective of general management thinking. The 
ordering of the items within each category, however, is totally 
without significance and entirely arbitrary. 

FINDINGS 

The findings here, as in many other studies, depend in part on 
the manner of collecting the responses. The objectives and 
demands were separately solicited without first pointing out to 
the respondents any connection or relationship between 
them. Both sets of responses were solicited from the same 
respondents in the context of examining management prac
tices affecting maintenance. 



782 National Computer Conference, 1983 

TABLE I-Representative held objectives identified by 
maintenance managers 

Category 1. Toward supervisors 
Do maintenance effectively 
Reduce costs for work accomplished 
Get recognition for job done 
Use resources effectively 
Keep within estimates 

Category 2. Toward the organization 
Keep systems running 
Act to fit plan, do not react 
Keep control over maintenance 

Category 3. Toward the user community 
Improve communication with users 
Keep users happy 
Provide good estimates promptly 
Satisfy users' requests 
Provide a smooth transition from development 
Get recognition for a good job done 
Increase users' involvement 
Reduce problem areas 
Make changes in a timely fashion 
Prevent users from moving the target 

Category 4. Toward subordinates 
Improve morale 
Keep people motivated 
Provide growth potential 
Make maintenance work desirable 
Keep subordinates happy 
Provide training 

Category 5. Toward related organizational units 
Use less computer time 
Do less testing 
Satisfy EDP audit requirements 
Analyze production problems 

Unclassified 

Before being asked for held objectives and seen demands, 
the respondents were each asked to what extent they believed 
that in their organizations the unit charged with doing mainte
nance work on application software was a "service unit." All 
of the respondents indicated that they regarded themselves as 
working in service units. By a "service unit" was meant a unit 
whose mission, function, and task is to support the func
tioning of other organizational units of the same parent 
organization-not, for example, to operate as a profit center 
selling software maintenance in the open market to any cus
tomer. Most maintenance units (but not all) also had software 
development responsibilities. 

The findings from the survey showed much variation in the 
degree of correspondence between managers' held objectives 
and seen demands. Some managers displayed a close match. 
Others displayed large discrepancies. The results reported 
here are for the aggregate; hence they are not necessarily fully 
applicable as a picture of the way anyone particular mainte
nance manager sees himself or herself. 

An interesting aspect of the findings was the scant attention 
most maintenance managers gave to ordering either their held 
objectives or seen demands. Apparently, they do not usually 
think of them in terms of a hierarchy of priorities. Rather, 

TABLE II-Representative seen demands identified by 
maintenance managers 

Category 1. From supervisors 
Resolve conflicting demands 
Use available resources effectively 
Build motivation for staff 
Reallocate resources to fit changed workload 
Put up with vague directions 

Category 2. From the organization 
Meet deadlines 
Respect budgets 
Fill out reports 
Participate in meetings 
Adhere to organization's standards 
Take prompt action on abnormal terminations 

Category 3. From user community 
Provide immediate response 
Provide unreasonable amount of testing 
Reduce maintenance backlog 
Give quick and accurate estimates 
Provide assurance that software works 
Reduce time on unproductive work 
Accept changes in priorities 
Justify estimates 
Provide what is asked 
Perform within estimates 

Category 4. From subordinates 
Improve morale 

Category 5. From related organizational units 
Make the work fit expectations 

Unclassified 

maintenance managers think of them as associated, some
times causally; hence the managers take a linear or sequential 
view of them. Thinking of one objective or demand reminds 
them of another, which in turn calls to mind still another, and 
so on, with scant attention to their relative importance. 

The most significant finding from the survey was of a mis
match between the managers' objectives, and the demands 
they saw placed on them. Although partial overlap was 
present, both the set of held objectives and the set of seen 
demands covered areas and specific items not covered by the 
other. While a perfect match was not expected, the overall 
magnitude and character of the mismatch was unexpected. 

This mismatch showed the maintenance manager as having 
many objectives and no demands in the category of con
venience. In fact, this was the largest category of objectives. 
A mismatch was expected here, but not to the major extent 
observed. Examples of some of the convenience objectives 
cited were not to get home late, to have a better qualified staff 
of subordinates, to consolidate related requests, to have time 

I to test completely, to make maintenance work easier to man
age, and to work on a planned rather than a reactive basis. 
The picture is one of putting self, not the user and not the 
organization, first. 

The user category had the largest number of seen demands, 
and the second largest number of held objectives expressed. 
The tenor of the demands was that the users seemed to be 
acting as though they were buyers of services. Yet the objec-



tives the maintenance managers held were only in part those 
of vendors of services. Rather than being a crisp "provide 
what he wants, when he wants it, and at an agreed price," the 
objectives were diffuse and means oriented, including such 
items as increasing user involvement, providing a smooth 
transition, reducing problem areas, keeping users happy, and 
getting recognition. When such patterns occur in lines of work 
other than computer software, the usual interpretation is that 
the manager is experiencing difficulty in providing per
formance, either from management incompetence, inappro
priate resources, or inadequate work methods used by subor
dinates, or from some combination of them. Whether this 
interpretation also applies to software maintenance, or not, is 
unknown. 

The supervisor category suggests that the maintenance 
managers picture their supervisors as wanting them to make 
do with what they have, yet to adjust to changing require
ments as well. The managers' held objectives focus on keeping 
within estimates, reducing costs, and getting recognition. The 
match for this category is the closest of all the categories, yet 
it still shows some divergence. 

In contrast, the subordinates category is very divergent. 
The only common seen demand is ill-defined: improve mo
rale. The held objectives were generally vague, such as to 
keep subordinates happy, to keep them motivated, and to 
make maintenance desirable. The maintenance manager ap
pears to be out of touch with his or her subordinates. Yet 
subordinates are the means by which the maintenance service 
is accomplished. 

The organization was seen as above average in the number 
of seen demands but low in the number of held objectives. 
The demands were specific and involved administrative pro
cedures or practices, such as filling out reports or meeting 
deadlines. In contrast, the held objectives were very general, 
such as keeping the systems running and providing control. 
Apparently there are feelings of psychological distance, and 
the maintenance managers do not feel themselves to be part 
of the organizational team. 

Finally, the managers had very few held objectives in the 
related organizational-units category, yet demands were seen 
as present. No convincing interpretation has been found yet 
for this mismatch, other than a reinforcement of the psycho
logical-distance interpretation noted above. 

In summary, the message that emerges is that the objectives 
held by the maintenance managers do not focus closely on the 
demands that they perceive. Apparently the managers see 
themselves, except as regards their relations with superiors, as 
concerned with trying to keep afloat and with side issues 
rather than directly with providing service to the user commu
nity. This is consistent with the findings of another survey. 2 

A hint of confirmation is available from informal con
versations with user representatives. About a third of the user 
organizations contacted complained that they were not being 
adequately serviced. Their maintenance needs were not being 
attended to at a level commensurate, they believed, with their 
financial contribution (implicit or explicit) to paying for the 
maintenance effort. They believed that they were paying for 
more service than they were getting; the most frequent culprit 
they saw was the maintenance managers' "misdirected ef-

Software Maintenance Objectives 783 

forts." It would be interesting to compare the maintenance 
managers' held objectives with what the users and others in 
their organizations regard as their claims upon the mainte
nance managers. 

DISCUSSION 

The most probable causes of a self-view of the sort just noted 
are the maintenance managers' choices of objectives, the em
phasis they give to achieving them, and the constraints that are 
beyond their abilities to affect. Let us look at each cause. 

The constraints on the managers in the very near term (such 
as this week) are real and intractable. The code is what it 
is, the subordinates' skills are what they are, and the com
puter programs to be run are mostly set. In the face of this 
fixity, bugs appear unpredictably, changes requiring unpre
dictable amounts of effort are to be made in the software, and 
other work may take away from the available staff and com
puter time, according to the maintenance managers. Many 
maintenance managers appear to set as their objectives what 
will let them live with these constraints from day to day, 
indefinitely.l,5 

Many of the constraints on the managers in the longer term, 
say a year from now, are tractable. For example, in a year's 
time subordinates' skills and work practices can be drastically 
changed, code can be made more maintainable, and user 
needs can be in part anticipated and deliberately scheduled 
for satisfaction-if the maintenance managers so choose. 
However, informal conversation indicates that many mainte
nance managers believe themselves to be powerless or their 
hands to be tied-"Who's going to pay for it?" and "They 
won't let me do it," they say. In other lines of management 
work, such views are often regarded as focusing on the prob
lem rather than on the opportunity, a sign of weakness in 
management. Whether or not this is also true in software 
maintenance has not been established. 

Managers always give more emphasis or attention in their 
performance to meeting some objectives than to others. The 
choices managers make reflect personal preferences, person
ality, and the mix of skills, as well as a conflict between lip
service and performance. It is just human nature for managers 
to emphasize what they are comfortable with and what they 
like to do. The element of job security also affects the empha
sis too. The old saw about programmers creating job security 
by documenting nothing and writing opaque code seems also 
to apply to some maintenance managers. Keeping a big back
log of unsatisfied user demands is apparently seen by a few 
maintenance managers as not only ensuring job security but 
also strengthening requests for increases in the manager's pay 
and status. 

Managers' choices of objectives are really statements of the 
terms in which the managers see their jobs. Managers can 
express these in any way they like. Managers may elect to 
ignore nearly all of the demands they see and to concentrate 
objectives on other matters. Or at the other extreme, manag
ers can match, nearly one-for-one, objectives against de
mands. Managers set their own objectives, because other 
objectives-such as those they hear their bosses pushing-are 



784 National Computer Conference, 1983 

by definition not the managers' objectives but rather just 
some more demands upon them. The critical factor is the 
extent to which their behavior is guided by the held objec
tives. Managers who profess one thing and then do something 
inconsistent with it usually get unfavorable attention from 
their supervisors and associates. Whether or not this is also 
true for maintenance managers has not been established. 

CONCLUSION 

The survey reported here has highlighted a discrepancy be
tween the objectives and the demands that maintenance man
agers see as defining their jobs. The reality that the managers 
live with is the reality they see-the seen demands, and their 
choices of objectives. In a service organization, the held ob
,jectives and the seen demands should match fairly closely, if 
objectives direct or guide performance. The survey reported 

here found a mismatch, with differences in the type, number, 
and quality of the held objectives and those of the seen de
mands. Under the assumption just noted, this mismatch is a 
significant cause of difficulty in managing maintenance. 

REFERENCES 

1. Chapin, Ned. "Productivity in software maintenance," AFlPS, Proceedings 
of the National Computer Conference (Vol. 50), 1981, pp. 349-352. 

2. Comptroller General of the United States. Federal Agencies' Maintenance of 
Computer Programs: Expensive and Undermanaged. Report AFMD-81-25, 
Gaithersburg, MD: U.S. General Accounting Office, 1981. 60 pp. 

3. Lientz, Bennet P., and E. Burton Swanson. Software Maintenance Manage
ment. Reading, Mass.: Addison-Wesley, 1980. 

4. McClure, Carma L. Managing Software Development and Maintenance, New 
York: Van Nostrand Reinhold, 1981. 

5. Munson, John B. "Software Maintainability: A Practical Concern for Life 
Cycle Costs." Proceedings of the 2nd International Computer Software and 
Application Conference, 1978, pp. 54-59. 



1983 NATIONAL COMPUTER 
CONFERENCECO~TTEES 

Chairman 
Allen N. Smith 
Atlantic Richfield Company 
Los Angeles, CA 

Vice-Chairman 
Daniel J. Drageset 
Atlantic Richfield Company 
Los Angeles, CA 

Members 

Lorette L. Cameron 
ARCO Metals 
Rolling Meadows, IL 

Tom Fox 
Foxware Systems Corp. 
Irvine, CA 

General Chairman 
Don B. Medley 
California State Polytechnic University 
Pomona, CA 

Vice-Chairman 
James J. Keil 
Xerox Corporation 
EI Segundo, CA 

Program Chairman 
Allen N. Smith 
Atlantic Richfield Company 
Los Angeles, CA 

Professional Development 
Seminars Chairman 
George R. Eggert 
DCASR, Chicago 
Department of Defense 
Chicago,IL 

PROGRAM COMMITTEE 

Donald R. Hyde 
IBM 
San Jose, CA 

David L. Holzman 
Holzman & Associates, Inc. 
Manhattan Beach, CA 

Richard Lampman 
Hewlett-Packard Company 
Cupertino, CA 

Ronald S. Lemos 
California State University, 

Dominguez Hills 
Carson, CA 

Lance Leventhal 
Emulative Systems Co. 
San Diego, CA 

CONFERENCE STEERING COMMITTEE 

Finance Chairman 
Richard B. Blue, Sr. 
TRW 
Redondo Beach, CA 

Operations Chairman 
Mary L. Rich 
PFS, Inc. 
EI Segundo, CA 

Registration Chairman 
Ron Colman 
California State University, Northridge 
Northridge, CA 

Human Resources Chairman 
C. E. Dettman 
City of Burbank 
Burbank, CA 

Special Activities Chairman 
Harvey Marks 
Transaction Technology Inc. 
Santa Monica, CA 

785 

Bennet P. Lientz 
University of California, Los Angeles 
Los Angeles, CA 

Randy J. Pile 
American Bell, Inc. 
Lincroft, NJ 

Toni Shetler 
TRW 
Redondo Beach, CA 

Eugene B. Smith 
U.S. Department of Agriculture 
Beltsville, MD 

Todd Ziesing 
Ross Systems, Inc. 
New York, NY 

Communications Chairman 
Ted E. Lorber 
Cochrane, Chase, Livingston & Co. 
Irvine, CA 

Advisor 
Herbert B. Safford 
GTE Data Services, Inc. 
Marina Del Rey, CA 

NCC Liaison 
Jerry L. Koory 
The Rand Corporation 
Santa Monica, CA 

AFIPS Representative 
Jim Kroell 
AFIPS 
Arlington, VA 

Secretary 
Bill Fowler 
The Rand Corporation 
Santa Monica, CA 



Chairman 
Herbert B. Safford 
GTE Data Services, Inc. 
Marina Del Rey, CA 

Chairman 
Mary L. Rich 
PFS, Inc. 
EI Segundo, CA 

Members 

Cheryl Chapman 
Xerox Corporation 
EI Segundo, CA 

E. Lawrence Doyle 
HRFA 
Mitchellville, MD 

Chairman 
Robert V. D. Campbell 
The MITRE Corporation 
Bedford, MA 

Members 

Peter McKinney 
Harvard University 
Cambridge, MA 

Richard M. Bloch 
R. M. Bloch Associates 
Newton, MA 

ADVISOR COMMITTEE 

Members 
Linda T. Taylor 
Gaskell & Taylor Engineering, Inc. 
Los Angeles, CA 

OPERATIONS COMMITTEE 

Bruce Hamilton 
Xerox Corporation 
EI Segundo, CA 

Steve Herold 
Ford Aerospace 
Costa Mesa, CA 

Virginia Lashley 
Glendale Community College 
San Marino, CA 

PIONEER DAY COMMITTEE 

Mort Bernstein 
System Development Corporation 
Santa Monica, CA 

William Aspray 
Harvard University 
Cambridge, MA 

I. Bernard Cohen 
Harvard University 
Cambridge, MA 

Robert L. Ashenhurst 
University of Chicago 
Chicago,IL 

786 

Barbara McNurlin 
Canning Publications 
Torrance, CA 

Sam Lippman 
AFIPS 
Arlington, VA 

Barbara McNurlin 
Canning Publications 
Torrance, CA 

Robert L. White 
Bureau of Census 
Washington, DC 

Henry S. Tropp 
Humboldt State University 
Arcata, CA 

Gwen Bell 
The Computer Museum 
Marlboro, MA 

J. A. N. Lee 
Virginia Polytechnic Institute and 

State University 
Blacksburg, VA 



PROFESSIONAL DEVELOPMENT SEMINARS COMMITfEE 

Chairman 
George R. Eggert 
DCASR, Chicago 
Department of Defense 
Chicago,IL 

Members 

Evelyn Teed 
Data Entry Specialists 
Phoenix, AZ 

Chairman 
Ron Colman 
California State University, Northridge 
Northridge, CA 

Members 

Robert L. White 
Bureau of Census 
Washington, DC 

Chairman 
Harvey Marks 
Transaction Technology Inc. 
Santa Monica, CA 

Members 

Carol Johnson 
U.S. Department of Agriculture 
Beltsville, MD 

Sonya (Sam) Anderson 
T. H. Garner Co., Inc. 
Claremont, CA 

Newell Moore 
Coast Industrial Exchange 
Chatsworth, CA 

REGISTRATION COMMITfEE 

Shirley Taylor 
Property Tax Service 
Newport Beach, CA 

SPECIAL ACTIVITIES COMMITTEE 

Lora Meise 
Comprehensive Software 
Los Angeles. CA 

Stuart Shaffer 
Litton Industries 
Woodland Hills, CA 

787 

Evelyn Babler 
Defense Logistics Agency 
Cameron Station, VA 

Barbara Mandell 
Barbara Mandell & Associates 
La Habre, CA 

Mike Marks 
Transaction Technology Inc. 
Santa Monica, CA 

Robert V. D. Campbell 
The MITRE Corporation 
Bedford, MA 



NCC '83 SESSION LEADERS 

Eevelyn S. Arkush 
Index Systems 
Cambridge, MA 

Gary Arlen 
Arlen Communications, Inc. 
Bethesda, MD 

Robert Ashenhurst 
University of Chicago 
Chicago,IL 

Herbert V. Bertine 
American Bell, Inc. 
Lincroft, NJ 

Naomi Lee Bloom 
American Management Systems, Inc. 
Arlington, VA 

Grady Booch 
Consultant 
Lakewood, CO 

Alfred Bork 
University of California, Irvine 
Irvine, CA 

Louis J. Brocato 
U.S. Department of Agriculture 
Beltsville, MD 

Howard Bromberg 
Bromberg Computer Consultants 
Mill Valley, CA 

J. Stephen Brugler 
Telesensory Systems, Inc. 
Palo Alto, CA 

Lorette Cameron 
Atlantic Richfield Co. 
Rolling Meadows, IL 

Dr. Ned Chapin 
InfoSci, Inc. 
Menlo Park, CA 

David M. Chereb 
Getty Oil Company 
Venice, CA 

I. Bernard Cohen 
Harvard University 
Cambridge, MA 

Steve Cooper 
Intel Corporation 
Aloha, OR 

Dr. Daniel J. Cougar 
University of Colorado 
Colorado Springs, CO 

Thomas B. Cross 
Cross Information Company 
Boulder, CO 

Dr. Carl Davis 
Ballistic Missile Defense 
Huntsville, AL 

Dr. Gordon B. Davis 
University of Minnesota 
Minneapolis,MN 

Larry E. Druffel 
Department of Defense 
Washington, DC 

Philip Evans 
Ferox Micro Systems 
Arlington, VA 

Martha Evans 
Illinois Institute of Technology 
Chicago,IL 

William E. Farley 
Lee College 
Austin, TX 

James L. Flanagan 
Bell Laboratories 
Murray Hill, NJ 

Dr. Jason Frand 
University of California, Los Angeles 
Los Angeles, CA 

Barry Frankel 
Applied Data Research, Inc. 
Princeton, NJ 

Wayne Green 
Wayne Green, Inc. 
Peterborough, NH 

Michael Hammer 
Hammer & Company 
Cambridge, MA 

788 

Hal Hart 
TRW 
Redondo Beach, CA 

Dr. Paula Hawthorn 
Lawrence Berkeley Lab 
Berkeley, CA 

David M. Herstad 
Arthur Andersen & Co. 
Los Angeles, CA 

David Holzman 
Holzman & Associates, Inc. 
Manhattan Beach, CA 

Dr. David G. Hopelain 
Jet Propulsion Labs 
Pasadena, CA 

Portia Isaacson 
Future Computing, Inc. 
Richardson, TX 

Dr. Evan Ivie 
Brigham Young University 
Provo, Utah 

Alyce Jackson 
Technology Research Labs, Inc. 
Hawthorne, CA 

Steven M. Jacobs 
TRW 
Redondo Beach, CA 

Dr. Philip James 
Northrop Corporation 
Hawthorne, CA 

Dr. Walter Karplus 
University of California, Los Angeles 
Los Angeles, CA 

Dr. Steven I. Kartashev 
Dynamic Computer Architecture, Inc. 
Lincoln, NB 

Dr. Svetlana P. Kartashev 
University of Nebraska-Lincoln 
Lincoln, NB 

John King 
DMW Group, Inc. 
Carmel, CA 



Theodore Klein 
Boston Systems Group 
Boston, MA 

Dennis K. Knight 
Hitt, Hartwell & Knight 
San Diego, CA 

Franklin F. Kuo 
SRI International 
Menlo Park, CA 

Dale Kutnick 
The Yankee Group 
Boston, MA 

Dr. Daniel T. Lee 
University of Hartford 
Hartford, CT 

Dr. Bennet P. Lientz 
University of California, Los Angeles 
Los Angeles, CA 

Rita Gail MacAuslan 
Sanders Federal Systems Group 
Nashua, NH 

Larry Martin 
Raytheon Computer Services 
Wellesley, MA 

Kiyoshi MaruYCl111a 
IBM 
Yorktown Heights, NY 

Richard J. Matlack 
Infocorp 
Cupertino, CA 

Addie Mattox 
The Mattox Group 
Los Angeles, CA 

Eleanor G. Maurer 
Blue Cross of California 
Oakland, CA 

Roy Maxion 
Xerox Corporation 
Palo Alto, CA 

N. Dean Meyer 
N. Dean Meyer and Associates, Inc. 
Ridgefield, CT 

Dr. C. Mohan 
IBM 
San Jose, CA 

Paul Nesdore 
Datapro Research 
Delran, NJ 

Dr. Jack M. Nilles 
University of Southern California 
Los Angeles, CA 

J. Michael Nye 
Marketing Consultants International 
Hagerstown, MD 

Paul O'Grady 
Micro Focus 
Palo Alto, CA 

Bob Patterson 
Intel Corporation 
Aloha, OR 

Michael Pies set 
Aerospace Corporation 
El Segundo, CA 

Steve Puthuff 
Fortune Systems 
San Carlos, CA 

Arthur Pyster 
TRW 
Redondo Beach, CA 

Dr. Jock A. Rader 
Hughes Aircraft Company 
Los Angeles, CA 

William E. Riddle 
Software Design & Analysis, Inc. 
Boulder, CO 

Ken Ross 
Ross Systems 
Palo Alto, CA 

John Ruchinkas 
University of Southern California 
Los Angeles, CA 

Jerald Savin 
Main, Hurdman 
Los Angeles, CA 

Omri Serlin 
Itom International 
Los Altos, CA 

Dr. Phil Shaw 
IBM 
San Jose, CA 

789 

George Sonnemann 
Nationwide Insurance 
Columbus, OH 

John Stidd 
Molecular Computing 
San Jose, CA 

Lynn Svenning 
University of Southern California 
Los Angeles, CA 

James C. Taylor 
Socio-Technical Design Consultants 
Pacific Palisades, CA 

Douglas Theis 
Aerospace Corporation 
El Segundo, CA 

John Thompson 
Index Systems 
Santa Monica, CA 

Dr. Rein Turn 
California State University, Northridge 
Pacific Palisades, CA 

Walter Ulrich 
Walter E. Ulrich Consulting 
Houston, TX 

Virginia C. Walker 
Department of Energy 
Arlington , VA 

James F. Ware 
Nolan, Norton & Co. 
Lexington, MA 

Tom Williams 
Computer Design Magazine 
Sunnyvale, CA 

Amy Wohl 
Advanced Office Concepts, Inc. 
Bala Cynwyd, PA 

Eberhard F. Wunderlich 
American Bell, Inc. 
Lincroft, NJ 

Nicholas Zvegintzov 
Zvegintzov Associates 
Staten Island, NY 



Ackermann, J. 
Anderson, Harold A. 
Appleton, Daniel 

Barnes, Ben 
Bartoli, Paul D. 
Beamer, Gary D. 
Bengston, Deanna 
Bertine, Herbert V. 
Borko, Harold 
Bowen, John B. 
Brey, Hans 
Brown, Thomas C. 

Carlsen, Dave 
Cerow, Wayne P. 
Chapin, Ned 
Charp, Sylvia 
Cheney, Paul 
Oeveland, L. J. 
Conery, John S. 
Cotterman, W. 
Cox, R. 

Date, C. J. 
Davidson, Ed 
Davis, E. W. 
Dawson, Peter P. 
De, Prabuddha 
Decoster, Wallace 
Dordick, Herbert S. 

Evans, M. 

Finfer, Marcia 
Finnila, C. A. 

Glaseman, Steve 
Gleason, T. C. 
Goldberg, Jack 
Goodlett, James C. 
Gopal, Inder 

Hart, Hal 
Heafner, John F. 
Ho,K.D. 
Hohn, William C. 
Holmes, William M. 

NCC '83 REFEREES 

Hopwood, Marsha D. 
Horning, James Jay 
Huber, K. M. 

Ingrassia, Frank 
Ives, Blake 

Jaffe, J. 
James, Philip 
Jaramillo, Plas 
Jenner, Steve 
Johns, Daniel 

Kartashev, Steven 
Kartashev, Svetlana 
Konsynski, Benn 
Kozdrowicki, E. W. 

Lobel, Jerome 
Losch, Myles 
Love, Hubert H., Jr. 

Manny, Ben 
Maruyama, Kiyoshi 
Maxion, Roy 
McAllister, David 
McCullough, T. L. 
Mears, Brian R. 
Medley, Don 
Minoli, Daniel 

Navathe, Sham 
Nezu, Koji 
Nielsen, Francis H. 
Nudd, Graham R. 

Ormancioglu, Levent 

Penedo, Maria H. 
Pflager, FUchardC. 
Plesset, Michael 
Pramanik, Sakti 
Prescott, Bill 
Procella, Maria 
Pyster, Arthur 

Raiser, Coty 
FUne, David 

790 

Robb, Richard A. 
Rogson, Leon 
Rosenbaum, Susan L. 
Rosenberg, A. E. 
Rosenthal, Soren 

Sankar, P. V. 
Sastry, K. V. 
Schiebe, Lowell H. 
Schneidewind, Norman F. 
Sealy, David 
Shaffron, Nancy 
Shaw, Phil 
Shoquist, Marc 
Shu, Nan 
Sibley, Edgar H. 
Silver, Aaron N. 
Simmons, Dick B. 
Smith, Allen N. 
Smith, Don D. 
Spaniol, Roland D. 
Stier, L. 
Sulg, Madis 

Theis, Douglas J. 
Timson, George 
Tutelman, D. M. 

Vallone, Antonio 

Walker, Stephen T. 
Wang, C. Charles 
Wartik, Steven 
Wasserman, Anthony 
Wetmiller, John R. 
Williams, Donald 
Wolfson, Seymour J. 
Wunderlich, Eberhard F. 

Yost, Robert 
Young, C. E. 
Young, Jeffrey P. 
Young, Steve 

Zucker, Steven 



NCC '83 SPEAKERS AND PANELISTS 

Adkisson, James Evans, Gwil Krishnaswimy, Kris 
Adleman, Leonard Everest, Gordon Kruesi, Elizebeth 
Alker, Pauline Krupp, Marguerite 
Alon, Eli Feezor, Betty C. Kunkler, J. Edward 
Alter, Steven Feigenbaum, Edward Kutnick, Dale 
Athey, Thomas Fiero, Charles 

Fischer, Brian Lanergan, Robert 
Balzer, Robert Florio, Mike Larson, Judy 
Barksdale, Gerald L., Jr. Foster, William Leslie, Mark 
Barley, Kathryn F. Fox, Steven Lewin, Marsha D. 
Bateman, Joan Fukunaga, Frank Loesh, Robert 
Beadles, Robert L. Fuld, Stephen Lowenthal, Eugene 1. 
Bekey, George Furniss, Mary Ann Lupin, Ed 
Belady, Les 
Belz, Frank Gilb, Tim McAndrews, Robert L. 
Berkman, Samuel Godbout, Bill McCalmont, Tom 
Berney, Carl Goodell, Robert McDermott, John 
Blackwell, Dennis J. Greenlee, M. Blake McEvoy, Dennis 
Bloch, Richard M. Grosz, Barbara J. McShan, Clyde 
Boehm, Barry Gunter, Tom Manara, James A. 
Borgioli, Richard Mankin, Donald 
Brandin, David H. Hammer, Michael Margerum, Barry 
Brantley, Gladys Harr, John A. Martin, Roger 
Brechtlein, Richard Harris, Larry Mateosian, Richard 
Brooks, Frederick P., Jr. Hayes, Michael Matlack, Richard J. 
Brower, Steven Heuston, Dustin Mellen, Roger 
Brown, John Seely Hipson, Peter Meyer, N. Dean 
Brugler, J. Stephen Hitchcock, Michael H. Michael, George 
Burstyn, Paris Hoffman, Lance J. Missikoff, Michele 

Holly, James Mohan, C. 
Casevoy, Nick Holmes, Fenwick Mohrman, Allan M. 
Castano, Gregory L. Hopper, Grace Moreland, Thomas W. 
Chen, Steve Hunke, Horst Morgan, Howard 
Cohen, Danny Hutchison, John Morrow, George 
Collier, James C. Mostow, Jack 
Comisco, Charles Iverson, Kenneth E. Munson, John 
Cooper, Dale O. Musa, John 
Corkery, James Jackson, Alyce Myers, Dan 
Cornwell, Jack Jackson, Barbara 
Corson, Alexandra James, Philip Nesdore, Paul 
Cougar, Daniel Jamison, H. Ness, David 
Crandall, Vern J. Jeffries, Neil P. Noble, Chris 
Cross, Thomas B. Johnson, Bonnie M. Norman, James C. 

Jones, Wendell W., II 
Damron, Ray Juliussen, Egil O'Connor, Rod 
Davis, Gordon B. O'Grady, Paul 
Dorn, Phil Kahn, Robert E. Oettinger, Anthony G. 
Doty, Ted Kalow, Samuel Jay Orbeton, Peter 
Druffel, Larry Karplus, Walter J. Osborne, Adam 
DuVal, Richard S. Keirn, Robert T. 
Dutton, William Keller, John H. Paller, Allan 

Kemler, David Parker, Donald M. B. 
Emma, Frank J. Killdall, Gary Parker, Marilyn M. 
Engelbart, Douglas C. Kimbrough, Steve Piestrip, Ann 
Epstein, Robert Kinne, Harold Plain, Harold 
Eulenberg, John B. Koffler, Richard Plumlee, Hugh 

791 



Porter, Benjamin S. 
Pournelle, Jerry 
Powell, Bruce 
Puthuff, Steve 

Rabin, Richard 
Ramos, Jose 
Ratliff, Wayne 
Ratner, Andy 
Redwine, Samuel 
Reifer, Donald 
Rich, Elaine 
Richards, Stewart A. 
Rodman, David J. 
Rogers, C.H. 
Rogow, Bruce J. 
Rollander, Tom 
Rosen, Benjamin M. 
Russell, David 

Sargent, Willis 
Schweitzer, Norm 

Scooros, Ted 
Selders, Wim 
Selmi, William 
Semon, Warren L. 
Sennett, Wayne 
Serlin, Omri 
Skelton, Thomas 
Sloma, Richard S. 
Sokol, Ellen 
Spencer, Bill 
Standish, Tim 
Steinfield, Charles W. 
Stetter, Gertrude 
Stidd, John 
Strong, Peter F. 
Stvett, Thomas 
Swanson, John 

Tai, Hoi 
Talbot, Guy 
Taubert, William 
Thomasmeyer, William 

792 

Tracy, Rex 
Turner, Thomas 

Umbaugh, Robert E. 

Valleni, Robert 
Vaught, Tom 

Ware, Willis H. 
Whalen, Jack 
Whitson, Donald Ray 
Wick, John D. 
Wilkes, Maurice V. 
Winslow, Frederick D. 
Winter, Charles 
Wolford, Dean 
Wszolet, Donald 

Yeh, Raymond 
Young, Ron 

Zollman, Dean 
Zuboff, Shoshana 



Allan, 1. Dal, 623 
Anderton, Mark, 203 
Arden, Bruce W., 539 
Arlen, Gary H., 513 
Arkush, Eevelyn S., 415 
Aronson, M. H., 191 

Bailey, Richard M., 655 
Ballard, Bruce W., 39 
Bhadra, K., 671 
Bikson, T. K., 319 
Blanning, Robert W., 395 
Bloom, Naomi Lee, 3 
Blum, Bruce I., 743 
Bonczek, Robert H., 421 
Boney, Joel, 503 

. Brice, Linda, 113 
Brodersen, R. W., 645 
Budde, Dave, 531 
Burstyn, H. Paris, 379 
Butler, Charles W., 155 

Carson, Dave, 531 
Chapin, Ned, 779 
Chiang, T. c., 387 
Chin, Chi-Yuan, 705 
Chusho, Takeshi, 73 
CoUofello, J. S., 757 
Connell, John, 113 
Cooper, Steve, 497 
Crochiere, R. E., 639 
Curtis, Gary A., 11 

Daniell, T. P., 219 
Davis, Edward W., 299 
Davis, Gordon B., 261 
DeMarco, Tom, 753 
Deutsch, Donald R., 241 
DiGiammarino, Peter F., 21 
Donohue, B. P., III, 367 

Easterday , John L., 557 

Fallin, John J., 487 
Finke, Douglas L., 479 
Finn, Nancy B., 353 
Finnigan, Paul F., 373 
Fischer, Herman, 47 
Flanagan, J. L., 639 

Ghiaseddin, Nasir, 421 
Gibbs, N. E., 757 
Ginosar, Ran, 539 
Gruber, William H., 409 

AUTHOR INDEX 
Gulden, Gary K., 415 
Gustafsson, Christian, 65 
Gutek, B. A., 319 

Hagglund, Sture, 65 
Handler, Gary J., 685 
Harding, R. C. Jr., 219 
Harrington, Carl, 403 
Hernandez, J. A., 729 
Hevner, Ala.1J. R., 229 
Ho, Tai-Ping, 29 
Holsapple, Clyde W., 421 
Honda, Akinori, 73 
Horlait, E., 729 
Hsiao, David K., 293 
Hwang, Kai, 705 

Iacobucci, Edward E., 677 

Jacob, Larry, 523 
Johnson, Dave, 531 
Joly, R., 729 
Jonesjo, Lennat, 65 
Joyce, John D., 247 

Kant, Krishna, 81 
Kartashev, Steven I., 579, 593 
Kartashev, Svetlana P., 579, 593 
Kerner, David V., 255 
Kota, S. L., 191 
Knight, Dennis K., 735 
Kurosaki, TOfU, 73 

Lee, Daniel T., 453 
Lee, Edward T., 437 
Lewis, Daniel W., 691 
Lillevik, Sigurd L., 557 
Linington, Peter F., 631 
Lo, S. C., 191 
Lusth, John c., 39 

Malhotra, Ashok, 255 
Marselos, Nicholas L., 131 
Marsh, Robert E., 145 
Mercer, R. L., 643 
Minami, Takatoshi, 721 
Morikawa, Hisashi, 721 

Nauckhoff, S. H., 219 
Norman, Alan, 203 
Novotny, Eric J., 341 
Nugent, William R., 771 
Nye, J. Michael, 647 

793 

Oflazer, Kemal, 271 
O'Hara, Robert P., 329 
Okamoto, Eri, 73 
Onuegbe, Emmanuel, 229 

Pesic, Ivan M., 691 
Peterson, Craig, 531 
Pfister, Larry T., 519 
Pramanik, Sakti, 283 
Pujolle, G., 729 

Rahimi, Said, 229 
Raynor, Randy J., 173 
Richardson, Gary L., 155 

Saib, Sabina H., 57 
Sami, Mariagiovanna, 565 
Sandewall, Erik, 65 
Schiffman, S. M., 663, 671 
Schneider, G. R. Eugenia, 137 
Sibley, Edgar H., 47 
Sonnemann, George, 409 
Soucy, Richard C., 655 . 
Speckmann, Linda D., 173 
Stefanelli, Renato, 565 
Stoeller, Willem, 309 
Stromfors, Ola, 65 

Takahashi, Osamu, 721 
Tanaka, Atsushi, 73 
Taute, Barbara J., 123 
Terashima, Nobuyoshi, 763 
Thomas, M. 1.,91 
Thompson, Bozena Henisz, 29 
Thompson, Frederick B., 29 
TInnirello, Paul C., 107 
Touge, Takashi, 721 
Tum, Rein, 341 

Ulrich, Walter, 361 

Wang, R. S., 97 
Warn, David D., 247 
Weingarten, Robert A., 677 
Wetherbe, James C., 261 
Whinston, Andrew B., 421 
Wilson, Kenneth G., 469 
Woodfield, S. N., 757 
Woodward, Mary, 21 

Yano, Kenjiro, 721 
Young, Charles E., 617 

Zak, Joan R., 163 
Zells, Lois, 181 



AMERICAN FEDERATION OF INFORMATION 
PROCESSING SOCIETIES, INC. (AFIPS) 

President 
Sylvia Charp 
The School District of Philadelphia 
Philadelphia, P A 

Vice President 
Stephen S. Yau 
Northwestern University 
Evanston, IL 

AFIPS Immediate Past President 
J. Ralph Leatherman 
Hughes Tool Company 
Houston, TX 

American Society for Information 
Science (ASIS) 

James N. Cretsos 
Merrell Dow Pharmaceuticals, Inc. 
Cincinnati, OH 

American Statistical Association (ASA) 
Jack Moshman 
Moshman Associates, Inc. 
Bethesda, MD 

Association for Computational 
Linguistics (ACL) 

Donald E. Walker 
SRI International 
Menlo Park, CA 

Association for Computing Machinery 
(ACM) 

David Brandin 
SRI International 
Menlo Park, CA 

Michael A. Harrison 
University of California 
Berkeley, CA 

OFFICERS 

Treasurer 
Walter A. Johnson 
Consolidated Papers, Inc. 
Wisconsin Rapids, WI 

Secretary 
Arthur C. Lumb 
Procter & Gamble Co. 
Cincinnati, OH 

BOARD OF DIRECfORS 

Raymond E. Miller 
Georgia Institute of Technology 
Atlanta, GA 

Association for Educational Data 
Systems (AEDS) 

John Hamblen 
National Bureau of Standards 
Washington, DC 

Data Processing Management 
Association (DPMA) 

George R. Eggert 
Defense Contract Administration 

Services 
Chicago,IL 

Jerry Knierim 
Pioneer Corporation 
Amarillo, TX 

Donald E. Price 
Sierra College 
Rocklin, CA 

IEEE-Computer Society 
Rolland B. Arndt 
Sperry Univac 
Saint Paul, MN 

794 

Executive Director 
Paul J. Raisig 
AFIPS 
Arlington, VA 

Tse-yun Feng 
Ohio State University 
Columbus, OH 

Oscar N. Garcia 
University of South Florida 
Tampa, FL 

Instrument Society of America 
Chun H. Cho 
Fisher Controls International, Inc. 
Marshalltown, IA 

Society for Computer Simulation (SCS) 
Per Holst 
The Foxboro Company 
Foxboro, MA 

Society for Industrial and Applied 
Mathematics (SIAM) 

Donald L. Thomsen, Jr. 
SIAM Institute for Mathematics & 

Society 
New Canaan, Cf 

Society for Information Display 
Carlo P. Crocetti 
Rome Air Development Center/XP 
Griffis Air Force Base, NY 



NATIONAL COMPUTER CONFERENCE BOARD MEMBERS 

Chairman and AFIPS Representative 
Stephen S. Yau 
Northwestern University 
Evanston,IL 

Vice Chairman and AFIPS 
Representative 

Chun H. Cho 
Fisher Controls International, Inc. 
Marshalltown,IA 

Treasurer and AFIPS Representative 
Walter A. Johnson 
Consolidated Papers, Inc. 
Wisconsin Rapids, WI 

Secretary and IEEE-CS Representative 
Stanley Winkler 
IBM Corporation 
Armonk, NY 

AFIPS Representative 
Sylvia Charp 
The School District of Philadelphia 
Philadelphia, PA 

A CM Representative 
Seymour Wolfson 
Wayne State University 
Detroit, MI 

D P MA Representative 
P. Roger Fenwick 
New York Telephone 
New York, NY 

SCS Representative 
Carl Malstrom 
North Carolina State University 
Raleigh, NC 

ACM President-Ex Officio 
David Brandin 
SRI International 
Menlo Park, CA 

DPMA President-Ex Officio 
J. Crawford Turner Jr. 
Knoxville Utilities Board 
Knoxville, TN 

IEEE-CS President-Ex Officio 
Oscar N. Garcia 
University of South Florida 
Tampa, FL 

SCS President-Ex Officio 
Walter J. Karplus 
University of California, Los Angeles 
Los Angeles, CA 

NCCC Chairman-Ex Officio 
Robert C. Spieker 
AT&T 
New Brunswick, NJ 

lAP Chairman-Ex Officio 
S. A. Lanzarotta 
Xerox Corporation 
EI Segundo, CA 

AFIPS Executive Director-Ex Officio 
Paul J. Raisig 
AFIPS 
Arlington, VA 

NATIONAL COMPUTER CONFERENCE COMMITTEE OF THE NCC BOARD 

Chairman 
Robert C. Spieker 
AT&T Company 
New Brunswick, NJ 

Secretary 
Arnold P. Smith 
IBM Corporation 
White Plains, NY 

Members 
Morton M. Astrahan 
IBM Corporation 
San Jose, CA 

Harvey L. Garner 
Moore School of Electrical 

Engineering 
University of Pennsylvania 
Philadelphia, PA 

Floyd O. Harris 
Life of Georgia 
Atlanta, GA 

Albert K. Hawkes 
Sargent & Lundy Engineering 
Chicago,IL 

Jerry L. Koory 
The Rand Corporation 
Santa Monica, CA 

Hans D. Puehse 
Fireman's Fund Insurance Companies 
San Rafael, CA 

William H. Sitter 
Tenneco, Inc. 
Houston, TX 

NCC '82 Chairman 
Russell K. Brown 
Benchmark Services, Inc. 
Houston, TX 

NCC '83 Chairman 
Don B. Medley 
California State Polytechnic University 
Pomona, CA 

795 

OAC '83 Chairman 
James F. Towsen 
Masco 
Harrisburg, PA 

OAC '84 Chairman 
Steven M. Abraham 
Price Waterhouse 
Los Angeles, CA 

OAC '85 Chairman 
James F. Foley, Jr. 
Life Office Management Association 
Atlanta, GA 



OFFICE OF EXECUTWE 
DIRECTOR 

Executive Director 
Paul Raisig 

Executive Secretary 
Joan Tackett 

COMMUNICATIONS 
DEPARTMENT 

Director of Communications 
John Gilbert 

Communications Coordinator 
Dianne Edgar 

Communications Support 
Leslie Rodier 

Facilities Coordinator 
Debra Guazzo 

Secretary 
Patricia Mayo 

Receptionist 
Tryphene Miller 

FINANCE AND ADMINISTRATION 

Director of Finance and 
Administration 

Janis P. Gemignani 

Administrative Assistant 
Vacant 

AFIPS HEADQUARTERS STAFF 

Accountant 
Patricia Whiteaker (Acting) 

Bookkeeper 
Carrol Reid 

Accounting Clerk 
John Balderson 

Registration Manager 
Dennis Smoot 

Registration Support 
Teresa DiMurro 

AFIPS PRESS 

Director of AFIPS Press 
Christopher N. Hoelzel 

Fulfillment Administrator 
Olive Shill and 

Secretary 
Sharon Conway 

NCC Proceedings Production 
Editor 

Elizabeth G. Emanuel 

CONFERENCE DEPARTMENT 

Director of Conferences 
James H. Kroell 

Administrative Assistant 
Susan Robinson 

796 

Conference Operations Manager 
Sam Lippman 

Conference Operations 
Coordinator 

Margaret Dyer 

Conference Secretary 
Wendy Chin 

Marketing Manager 
Ann-Marie Bartels 

Marketing Coordinator 
Loretta Keller 

Marketing Secretary 
Elizabeth Dollison 

Exhibit Operations Manager 
Larry Jennings 

Exhibit Operations Support 
Jill Newman 

Exhibit Sales Manager 
Richard Dobson 

Exhibit Sales Coordinator 
Katherine Stormont 

Exhibit Sales Support 
Molly Finney (Acting) 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796

